WO2014198206A1 - 视觉立体漂浮图像的薄膜及其制备方法 - Google Patents

视觉立体漂浮图像的薄膜及其制备方法 Download PDF

Info

Publication number
WO2014198206A1
WO2014198206A1 PCT/CN2014/079458 CN2014079458W WO2014198206A1 WO 2014198206 A1 WO2014198206 A1 WO 2014198206A1 CN 2014079458 W CN2014079458 W CN 2014079458W WO 2014198206 A1 WO2014198206 A1 WO 2014198206A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
film
arc
arrangement
arc mirror
Prior art date
Application number
PCT/CN2014/079458
Other languages
English (en)
French (fr)
Inventor
徐良衡
庄孝磊
高芸
董兰新
林斌
游仁顺
Original Assignee
上海天臣控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天臣控股有限公司 filed Critical 上海天臣控股有限公司
Publication of WO2014198206A1 publication Critical patent/WO2014198206A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth

Definitions

  • the invention relates to the field of security and anti-counterfeiting and the field of product packaging, in particular to a dynamic and three-dimensional film, which can be used for anti-counterfeiting certification of cash, securities, certificates, passports, etc., and can also be used for external packaging of various commodities. Enhance the appeal of merchandise to consumers with its special visual effects. Background technique
  • the original function of the package is to protect the goods from damage.
  • product packaging in addition to the most basic protection, is also committed to beautify and promote the products to enhance the competitiveness and grade of the products in the market. Therefore, all kinds of flat decorative patterns appear on the product packaging.
  • these simple product packaging can be easily copied, and more and more counterfeit goods are available to manufacturers and consumers. Both caused huge losses. Therefore, the society urgently needs a brand new product packaging technology that is both aesthetically pleasing and can be used for anti-counterfeiting identification, and is not easy to be copied.
  • Laser holographic packaging anti-counterfeiting technology has quickly become the new darling of commodity packaging with its brilliant color and high production technology, and it has spread rapidly.
  • a safety device utilizing a spherical microlens array in combination with a microtextographic array is proposed by Drinkwater et al. in U.S. Patent 5,721,273, each of which has a pore size of 50 to 250 microns and a preferred focal length of 200 microns.
  • the structure of the product is relatively heavy and cannot be used for the security, anti-counterfeiting and packaging of goods.
  • the technical disadvantages of the above patents have been improved by RASteenblik in U.S. Patent No. 2005180020 A1, which reduces the microlens aperture to 50 microns and the structure thickness to 50 microns. Although this overcomes the thickness problem, as the lens aperture is reduced, the processing and manufacturing process difficulty is also greatly increased.
  • due to today's printing technology such tiny micro-textures can only be molded by UV, and then filled with nano-dye, the process is cumbersome, costly and low in yield. Summary of the invention
  • the film of the visual stereoscopic floating image of the present invention comprises a film body having a front surface and a back surface, a thumbnail image array layer disposed on the front surface, and a micro-arc mirror array disposed on the back surface of the film body Floor;
  • the thumbnail image array layer is composed of a micro-pattern arranged periodically, and the thumbnail image includes two arrangement directions;
  • the micro-arc mirror array layer is composed of periodically arranged micro-arc mirrors, and the arrangement of the micro-arc mirrors corresponds to the arrangement of the thumbnail images;
  • the micro-arc mirror is composed of a microlens and a reflective layer coated on the surface of the microlens, and the material of the reflective layer is preferably aluminum or zinc sulfide.
  • the term "two alignment directions" refers to the arrangement of elements in an array. Only one alignment direction forms a one-dimensional array, and two alignment directions form a two-dimensional array;
  • peripheral arrangement refers to the arrangement of elements and elements in an array in the same distance cycle
  • the generated magnification m satisfies the following relationship:
  • the arrangement period of the miniature graphics and the arrangement period of the micro-arc mirrors do not have to be very close or equal to those required in other invention patents, but may have different proportional relationships; the numerical value of N represents Under the same magnification condition, there may be different proportional relationship between the micro-pattern alignment period and the micro-arc mirror alignment period.
  • the arrangement direction of the micro-texture array and the arrangement direction of the micro-arc mirror array are at an angle ⁇ , the magnification m generated when the micro-image array is combined with the micro-arc mirror array is different from the micro-image array.
  • the arrangement period is related to the arrangement period of the micro-arc mirror array ⁇ 2 , and is also related to the size of the angle between the two arrays, and the following relationship is satisfied:
  • the angle ⁇ is 0 ⁇ 3 °;
  • magnification m varies according to different needs and different design parameters, preferably 10-400;
  • the light focus point of the micro-arc mirror is near the front surface, and the light focus point is
  • the thickness d of the film body satisfies
  • the micro-arc mirror is a convex mirror or a concave mirror, preferably a concave mirror;
  • the curved surface structure of the micro-arc mirror is spherical or aspherical, preferably an aspherical structure.
  • the spherical structure can not completely converge the light to a point when imaging, which will result in blurred imaging. Poor ball.
  • the curvature radius of the non-spherical structure changes with the central axis, and the light can be concentrated to pass through a point, which can well correct the spherical aberration caused by the spherical structure, and has better imaging quality.
  • the method for manufacturing the film of the visual stereoscopic floating image comprises the following steps:
  • the film thickness parameter d the arrangement period of the thumbnail image 7; the magnification m and the actual process parameter requirements, combined with the formula (1) and the formula (3), determine the effective diameter of the micro-arc mirror 0 , arc height h and spacing Dl.
  • the invention has the beneficial effects that: the film structure of the visual stereoscopic floating image is light and thin, the effect is unique, the manufacturing process is simple, and the yield is high.
  • the focal length of the mirror of the above structure is only related to the curvature of the mirror, and its size is only half of the radius of curvature.
  • the thickness of the desired film body is greatly reduced, making the entire structure lighter and thinner.
  • using a lOOum effective diameter microlens requires a film thickness of at least 100 ⁇ m. To reduce the film thickness to 24 ⁇ m, the effective diameter of the microlens is also reduced to
  • Fig. 1 is a view showing a structure of a film of a stereoscopic floating image when the arrangement period is 1.
  • Figure 2 is an isometric view of Figure 1.
  • Figure 3 is a plan view of Figure 1.
  • Figure 4 is a graph showing the light propagation pattern of the reflective structure of the product of Example 1.
  • Fig. 5 is a view showing a structure of a film of a stereoscopic floating image when the arrangement period is 2.
  • Fig. 6 is an isometric view when the arrangement direction of the thumbnail images and the arrangement direction of the micro-arc mirrors are at an angle.
  • Fig. 7 is a plan view showing an arrangement angle between the arrangement direction of the thumbnail images and the arrangement direction of the micro-arc mirrors.
  • Fig. 8 is a view showing the effect of the embodiment 4.
  • Fig. 9 is a view showing the effect of the fifth embodiment.
  • Fig. 10 is a view showing the structure of the color layer in the sixth embodiment.
  • Fig. 1 is a schematic view showing the structure of adding a macroscopic group in the sixth embodiment.
  • Figure 12 is a process flow diagram of the fabrication method.
  • D is the diameter of the micro-arc mirror
  • D1 is the spacing between two adjacent micro-mirrors
  • h is the height of the arc
  • d is the thickness of the film.
  • a film of a stereoscopic floating image includes a film body 12 having a front surface 1 and a rear surface 2, and a miniature graphic image disposed on the front surface 1
  • the thumbnail image array layer is composed of a periodically arranged thumbnail image 13 , and the thumbnail image 13 includes two arrangement directions;
  • the micro-arc mirror array layer is composed of periodically arranged micro-arc mirrors 11 , and the arrangement of the micro-arc mirrors 11 corresponds to the arrangement of the thumbnail images 13;
  • the micro-arc mirror is composed of a microlens and a reflective layer coated on the surface of the microlens, and the material of the reflective layer is preferably aluminum or zinc sulfide.
  • the miniature graphic 13 is a microstructured protrusion or groove;
  • the spacing D1 between two adjacent micromirrors is 2 micrometers to 10 micrometers;
  • the generated magnification m is full:
  • represents the different proportional relationship between the micro-pattern alignment period and the micro-arc mirror alignment period under the same magnification condition.
  • the arrangement period of the miniature graphics and the arrangement period of the micro-arc mirrors are not necessarily similar or equal to those required in other invention patents, but may have different proportional relationships;
  • the arrangement period ⁇ is related to the arrangement period ⁇ 2 of the micro-arc mirror array, and is also related to the size of the arrangement direction of the two arrays, and satisfies the following relationship -
  • the magnification m varies according to different needs and different design parameters, preferably 10 ⁇ weight;
  • the light focus point of the micro-arc mirror is near the front surface, and the light focus point is
  • the reflective structure has a focusing distance of 16/2 compared to the conventional transmissive structure.
  • the thickness d of the film body satisfies the following relationship. D 2 - I2h 2
  • the micro-arc mirror is a convex mirror or a concave mirror, preferably a concave mirror;
  • the curved surface structure of the micro-arc mirror is spherical or aspherical, preferably an aspherical structure.
  • the spherical structure does not completely converge the light to a point when imaging, which can result in blurred imaging and spherical aberration.
  • the curvature radius of the non-spherical structure changes with the central axis, and the light can be concentrated to pass through a point, which can well correct the spherical aberration caused by the spherical structure, and has better imaging quality.
  • micro-arc mirror array means that the surface curvature of a micro-arc mirror is aspherical, and the arc curve is close to an ellipse or a parabola. When parallel light is incident, both paraxial and far-axis rays can converge to a point.
  • the micro-arc mirror array is arranged in a circumferential arrangement, a rectangular arrangement, an equilateral triangle arrangement or a regular hexagonal arrangement, preferably a regular hexagonal arrangement;
  • the thumbnail image is a microstructured depression or protrusion.
  • the thumbnail layer is located between the observer and the micro-arc mirror.
  • the present invention observes on the side of the thumbnail image. From the observed order, the observer first sees the thumbnail image. After seeing the micro-arc mirror. Light needs to enter the entire system through the miniature layer, so the light transmittance of the layer has a greater impact on the light utilization of the entire system.
  • the preferred transparent depression or projection, that is, the thumbnail text is transparent, ensures maximum light utilization of the system. Under acceptable conditions, the miniature text can be made to have different gloss, color, contrast, refractive index, dispersion, reflection, polarization, and the like.
  • the miniature graphic is expressed in a regular shape or imaged on a macroscopic style, and can be expressed as a company logo, a company name, and other specific decorative patterns related to the packaged product according to different requirements.
  • the material of the film body is ethylene terephthalate (PET), polycarbonate (PC) or polymethyl methacrylate (PMMA), polyethylene (PE) or polypropylene (PP);
  • PET ethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PE polyethylene
  • PP polypropylene
  • the film of the stereoscopic floating image may be used alone or in combination with other packaging materials.
  • the micro-arc mirror array is arranged in a circumferential arrangement, a rectangular array, an equilateral triangle arrangement or a regular hexagon arrangement, and the base geometry of the micro-arc mirror array is circular, rectangular, triangular or six Angle and its combination.
  • the arrangement of the micro-arc mirror arrays includes a circular base-rectangular arrangement, a square base-rectangular arrangement, a circular base regular hexagonal arrangement or a regular hexagonal base- Regular hexagonal arrangement;
  • substrate refers to the bottom of a micro-arc mirror, and the circular base refers to the shape of the bottom of a micro-arc mirror that is circular;
  • the thumbnail image 13 has different patterns and different arrangement periods to achieve different display effects, and the thumbnail image 13 includes the first thumbnail image 131 and the second thumbnail image 132;
  • the first thumbnail image 131 constitutes a first macro pattern 62
  • the second thumbnail image 132 constitutes a second macro pattern 63.
  • the final display effect of the product is a visually floating five-pointed star pattern in the macro pattern pentagon, and a visually sinking heart-shaped pattern elsewhere. Further, see Figure 10.
  • the film body is provided with a color layer 71 on one side or both sides, which can enhance and highlight the display effect;
  • a macroscopic pattern layer 72 is provided on one or both sides of the film body to enhance and highlight the effect.
  • the spacing D1 between two adjacent micromirrors is 1 ⁇ 10 microns;
  • the arrangement period of the thumbnail image 13 is 30 to 500 ⁇ m, and the row of the micro-arc mirror 1 1
  • the column period is 30 to 500 microns.
  • a film of a stereoscopic floating image as shown in Figs. 1 to 3 was prepared.
  • the focus of the light of the micro-arc mirror is near the front surface 1, and the focus of the light is from the top of the arc.
  • the material of the film body 12 is a PET film
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • 2 and 3 are an isometric view and a plan view, respectively, of a specific embodiment 1. Referring to Figures 2 and 3, the arrangement direction of the thumbnail image 13 and the arrangement direction of the micro-arc mirror 11 are parallel to each other;
  • the comprehensive magnification m of the system can be calculated ;
  • the visual size of the miniature text is about 10.6mm.
  • a microlens array layer having the same diameter D and a curved surface height h as the micro-arc mirror is formed on one side of the film body by an ultraviolet molding technique;
  • the micro-texture technique is also used to form a miniature image array on the other side of the film body, where the thumbnail image is a TC-shaped protrusion formed by curing the ultraviolet glue;
  • FIG. 12c As shown in Fig. 12c, one side of the microlens array layer is vacuum-aluminized to form a reflective layer on the surface of the lens to realize the function of the micro-arc mirror.
  • FIG. 4 FIG. 4, FIG. 41 is a transmission structure optical path diagram, and FIG. 42 is a reflective structural optical path diagram;
  • the focal length of the mirror of the above structure is only related to the curvature of the mirror, and its size is only half of the radius of curvature.
  • the thickness of the desired film body is greatly reduced, making the entire structure lighter and thinner.
  • using a microlens with an effective diameter of lOOum requires a film thickness of at least 100 ⁇ m.
  • the effective diameter of the microlens is also reduced to about 25 ⁇ m.
  • the exponential increase in the difficulty of printing thumbnails greatly increases the difficulty of the process. The present invention solves this problem well.
  • a film of a visual stereoscopic floating image as shown in Fig. 5 was prepared. Structural parameters - the micro-arc mirror is a concave mirror;
  • micro-arc mirror diameter D 100 microns
  • arc height h 17 microns.
  • the light focusing point of the micro-arc mirror is near the front surface 1, and the light focusing point is 41 micrometers from the top of the arc;
  • the material of the film body 12 is a PET film
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • the arrangement direction of the thumbnail image 13 and the arrangement direction of the micro-arc mirror 11 are parallel to each other;
  • the micro-arc mirror is a concave mirror
  • micro-arc mirror diameter D 100 microns
  • arc height h 17 microns.
  • the light focusing point of the micro-arc mirror is near the front surface 1, and the light focusing point is 41 micrometers from the top of the arc;
  • the material of the film body 12 is a PP film
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • FIG. 8 A film of the visual stereoscopic floating image shown in Fig. 8 was prepared.
  • the macroscopic pattern 61 is composed of a thumbnail image 13, and the final display effect of the product under the structure is that a five-pointed star which is visually floating in the macroscopic pattern exists.
  • the micro-arc mirror is a concave mirror
  • micro-arc mirror diameter D 100 microns
  • arc height h 17 microns.
  • the light focusing point of the micro-arc mirror is near the front surface 1, and the light focusing point is 41 micrometers from the top of the arc;
  • the material of the film body is a PET film
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • the thumbnail image 13 has different patterns and different arrangement periods to achieve different display effects, and the thumbnail image 13 includes a first thumbnail image 131 and a second thumbnail image 132;
  • the first thumbnail image 131 constitutes a first macro pattern 62, a second thumbnail image 132, and a second macro pattern 63.
  • the final display effect of the product is a visually floating five-pointed star pattern in the macro pattern pentagon, and a visually sinking heart-shaped pattern elsewhere.
  • the micro-arc mirror is a concave mirror
  • micro-arc mirror diameter D 100 microns
  • arc height h 17 microns.
  • the light focusing point of the micro-arc mirror is near the front surface 1, and the light focusing point is 41 micrometers from the top of the arc;
  • the material of the film body is a PET film
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • the preparation method was the same as in Example 2.
  • the film body is provided with a color layer 71 on one side or both sides to enhance and highlight the effect;
  • a macro pattern layer 72 is provided on one or both sides of the film body.
  • the preparation method is:
  • a color layer or a macro pattern layer is formed on the surface of the film body, and then the micro-pattern array layer and the micro-arc mirror array layer are prepared by using the foregoing methods respectively.
  • the micro-arc mirror is a concave mirror
  • micro-arc mirror diameter D 100 microns
  • arc height h 17 microns.
  • the light focusing point of the micro-arc mirror is near the front surface 1, and the light focusing point is 41 micrometers from the top of the arc;
  • the material of the film body is a PET film, and a macroscopic pattern is printed on the surface of the film body;
  • the micro-arc mirror array has two alignment directions
  • the material of the reflective layer is aluminum
  • the spacing D1 between two adjacent micromirrors is 3 micrometers, and the curved surface of the micro-arc mirror is an aspherical structure.
  • the comprehensive magnification m of the system can be calculated ;
  • the visual size of the miniature text is about l lmm.
  • a microlens array layer having the same diameter D and a curved surface height h as the micro-arc mirror is formed on one side of the film body by the ultraviolet molding technique.
  • the process of making a microlens array by UV molding is well known to those skilled in the art, and the present invention is not described in detail. For details, see C.Y. Chang, S.Y. Yang, M.H. Chu, "Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process" [J]. Micromech. Microeng, 84 (2007) 355-361.
  • the micro-texture technique is also used to form a miniature image array on the other side of the film body, where the thumbnail image is a TC-shaped protrusion formed by curing the ultraviolet glue.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

公开了一种视觉立体漂浮图像的薄膜及其制备方法。视觉立体漂浮图像的薄膜,包括具有前表面和后表面的膜体、设置在所述前表面的微缩图文阵列层和设置在膜体后表面的微弧面反射镜阵列层;微缩图文阵列层由周期排布的微缩图文组成;微弧面反射镜阵列层由周期排布的微弧面反射镜组成。所述视觉立体漂浮图像的薄膜的结构轻薄,制作工艺简洁,在给定透镜直径的条件下,降低了所需膜体的厚度。

Description

视觉立体漂浮图像的薄膜及其制备方法 技术领域
本发明涉及安全防伪领域以及产品包装领域,具体涉及一种动态、 立体的薄膜, 既可以用于现金、 有价证券、 证卡、 护照等的防伪认证, 也可用于各种商品的外部包装, 以其特殊的视觉效果增强商品对消费 者的吸引力。 背景技术
商品包装的原始作用是保护商品不受损伤。 随着生活水平的不断 提高, 产品包装除了最基本的保护作用之外, 还致力于对商品进行美 化和宣传, 以提高产品在市场上的竞争力和档次。 故各式各样的平面 装饰图案出现在了产品包装上, 然而随着印刷技术的发展和普及, 这 些简单的商品外包装可以被轻松的复制, 假冒商品越来越多, 对厂商 和消费者都造成巨大的损失。 因此社会急需一种既美观又能起到防伪 鉴别作用, 同时又不容易被复制的全新的产品包装技术。 激光全息包装防伪技术曾经以其绚丽的色彩、 较高的制作技术门 槛, 迅速成为商品包装的新宠, 并迅速扩散。 但时至今日, 造假者已 从各个方面攻破了激光全息防伪技术, 使其几乎完全失去了防伪能力。 aule等人在美国专利 4892336中提出了一种安全线制作技术,也 是目前流行的三维立体画制作技术的基础, 它通过在膜体一侧的柱面 透镜结构与另一侧特定印刷图案相结合产生逼真绚丽的三维图像。
Drinkwater等人在美国专利 5712731中提出一种利用球面微透镜阵列与 微图文阵列相组合的安全装置, 每一微透镜的孔径为 50到 250微米且 优选的焦距为 200 微米, 以上两种技术产品的机构比较厚重, 无法用 于商品的安全防伪和包装。 R.A.Steenblik在美国专利 US2005180020 A 1 中将上述专利的技术 缺点进行了改进, 将微透镜孔径减小到 50微米一下, 结构厚度也控制 住 50微米一下。 这样虽然克服了厚度问题, 但随着透镜孔径的减小, 其加工制作工艺难度也大幅增加。 同时受限于当今的印刷技术, 如此 微小的微缩图文只能通过紫外模压, 然后用纳米染料填充的方法, 工 艺繁琐复杂, 成本高且成品率低。 发明内容
本发明的目的在于提供一种视觉立体漂浮图像的薄膜及其制备方 法, 以克服现有技术存在的上述缺陷。 本发明所述的视觉立体漂浮图像的薄膜, 包括具有前表面和后表 面的膜体、 设置在所述前表面的微缩图文阵列层和设置在膜体后表面 的微弧面反射镜列阵层;
所述微缩图文阵列层由周期排布的微缩图文组成, 微缩图文包含 两个排列方向;
所述微弧面反射镜阵列层由周期排布的微弧面反射镜组成, 所述 微弧面反射镜的排列方式与所述的微缩图文的排列方式相对应;
所述微弧面反射镜由微透镜和涂覆在微透镜表面的反射层组成, 反射层的材料优选为铝或硫化锌。 术语 "两个排列方向" , 指的是阵列中元素的排列方式, 只有一 个排列方向即形成一维阵列, 两个排列方向即形成二维阵列;
术语 "周期排列" , 指的是阵列中元素与元素之间以相同的距离 周期依次排列开来;
所述微缩图文阵列的排列方向与微弧面镜阵列的排列方向相互平 行时, 所产生的放大倍率 m满足下列关系:
Figure imgf000004_0001
式 (1 ) 其中-
7;为微缩图文阵列的排布周期, 2为微弧面镜阵列的排布周期, N 为比例系数, N=0.1〜10, 优选的: N=l或 2 ;
本发明结构中, 微缩图文排列周期与微弧面反射镜的排列周期不 必像其他发明专利中所要求的必须非常接近或相等, 而是可以具有不 同的比例关系; N 的数值大小即代表了在同一放大倍率条件下, 微缩 图文排列周期与微弧面反射镜排列周期之间可以具有的不同比例关 系。 所述微缩图文阵列的排列方向与微弧面镜阵列的排列方向存在夹 角 α时, 所述微縮图文阵列与微弧面镜阵列组合时产生的放大倍率 m 除了与微缩图文阵列的排布周期 和微弧面镜阵列的排布周期 Γ2有关 外, 还与两阵列排列方向夹角的大小有关, 且满足下列关系:
Figure imgf000005_0001
式 (2 )
优选的, 所述夹角 α为 0〜3 ° ;
所述放大倍率 m根据不同的需要和不同的设计参数而变化, 优选 的为 10—400;
所述微弧面镜的光线聚焦点在前表面附近, 光线聚焦点为
^-^ , 该反射型结构与传统的透射型结构相比, 其光线的聚焦距离 I 6h
大大缩短, 这样大大降低所需膜体的厚度, 实现轻薄化。 若微弧面镜直径为 D , 弧面高度为 h,则所述膜体的厚度 d满足下
D2 - \2h2
列关系: d
I6h 式 (3 )
所述微弧面镜为凸面镜或凹面镜, 优选的凹面镜;
所述微弧面镜的弧面结构为球面或非球面,优选的为非球面结构。 球面结构在成像时不能将光线完全汇聚到一点, 会造成成像模糊, 产 生球差。 而非球面结构的曲率半径随着中心轴变化, 能将光线汇聚到 通过一点, 可以很好的修正球面结构所产生的球差, 有更好的成像质
所述的视觉立体漂浮图像的薄膜的制作方法, 包括如下步骤:
( 1 ) 根据膜体厚度参数 d, 微缩图文的排列周期 7;, 放大倍率 m 以及实际工艺参数要求, 并结合采用式 (1 ) 和式 (3 ) , 确定微弧面 镜有效直径大小0, 弧面高度 h以及间距 Dl。
( 2 )通过紫外模压技术或热压技术, 在膜体的一侧形成与微弧面 镜具有相同直径 D、 弧面高度 h的微透镜阵列层;
其中紫外模压制作微透镜阵列的工艺过程已为本行业技术人员所 熟知,本发明不在详述。具体可参阅文献 C.Y.Chang, S.Y.Yang, M.H.C "Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process" [J] . Micromech. Microeng.84(2007)355-361.
( 3 ) 利用压印、 光刻、 印刷、 蒸镀、 溅射等方法在膜体的另一侧 形成微缩图文阵列;
( 4 )将微透镜阵列层一侧进行真空镀铝,使透镜表面形成反射层, 实现微弧面镜的功能。 本发明的有益效果是: 所述视觉立体漂浮图像的薄膜结构轻薄、 效果独特且制作工艺简洁, 成品率高。 上述结构的反射镜的焦距只与 反射镜的曲率有关, 且其大小只为曲率半径的一半。 在给定透镜直径 的条件下, 大大降低了所需膜体的厚度, 使整个结构更加轻薄化。 对 于传统的透射模式来说, 使用 lOOum 有效直径的微透镜, 需要至少 lOOum的膜厚, 要将膜厚降低至 24um, 微透镜的有效直径也要降低至
25um左右, 这样随之带来的是微缩图文印刷难度的指数性增加, 极大 的增加了工艺难度。 而本发明很好的解决了这一问题。 附图说明
图 1是排列周期为 1时的视觉立体漂浮图像的薄膜结构图。 图 2是图 1的等距视图。
图 3为图 1的俯视图。
图 4是实施例 1的产物的反射式结构的光线传播规律图。
图 5是排列周期为 2时的视觉立体漂浮图像的薄膜结构图。
图 6是微缩图文的排列方向与微弧面反射镜的排列方向存在夹角 时的等距视图。
图 7是微缩图文的排列方向与微弧面反射镜的排列方向存在夹角 时的俯视图。
图 8是实施例 4的效果示意图。
图 9是实施例 5的效果示意图。
图 10是实施例 6中增加色彩层的结构示意图。
图 1 1是实施例 6中增加宏观团的结构示意图。
图 12是制作方法的工艺流程图。
图中: D为微弧面镜直径, D1为相邻两个微反射镜之间的间距, h为弧面高度, d为膜体厚度。 具体实施方式
参见图 1〜图 3, 图 5〜图 7, 本发明所述的视觉立体漂浮图像的 薄膜, 包括具有前表面 1和后表面 2的膜体 12、 设置在所述前表面 1 的微缩图文阵列层和设置在膜体后表面 2的微弧面反射镜列阵层; 所述微缩图文阵列层由周期排布的微缩图文 13 组成, 微缩图文 13包含两个排列方向;
所述微弧面反射镜阵列层由周期排布的微弧面反射镜 11组成,所 述微弧面反射镜 11 的排列方式与所述的微缩图文 13 的排列方式相对 应;
所述微弧面反射镜由微透镜和涂覆在微透镜表面的反射层组成, 反射层的材料优选为铝或硫化锌。 微縮图文 13为微结构化的凸起或凹槽;
优选的, 相邻两个微反射镜之间的间距 D1为 2微米〜 10微米; 所述微缩图文阵列的排列方向与微弧面镜阵列的排列方向相互平 行时, 所产生的放大倍率 m满 系:
Figure imgf000008_0001
式 (1 )
其中:
7;为微缩图文阵列的排布周期, Γ2为微弧面镜阵列的排布周期, Ν 为比例系数, Ν=0·卜 10, 优选的: N=l或 2 ;
Ν 的数值代表了在同一放大倍率条件下, 微缩图文排列周期与微 弧面反射镜排列周期之间可以具有的不同比例关系。 本发明结构中, 微缩图文排列周期与微弧面反射镜的排列周期不 必像其他发明专利中所要求的必须相近或相等, 而是可以具有不同的 比例关系;
所述微缩图文阵列的排列方向与微弧面镜阵列的排列方向存在夹 角 α时, 所述微缩图文阵列与微弧面镜阵列组合时产生的放大倍率 m 除了与微缩图文阵列的排布周期 η和微弧面镜阵列的排布周期 Γ2有关 外, 还与两阵列排列方向夹角的大小有关, 且满足下列关系-
Figure imgf000008_0002
式 (2 )
优选的, 所述夹角。为 0〜3 ° ; N=0.1〜10, 优选的: N=l或 2 ; 所述放大倍率 m根据不同的需要和不同的设计参数而变化, 优选 的为 10〜權;
所述微弧面镜的光线聚焦点在前表面附近, 光线聚焦点为
4½2 + 1)2, 该反射型结构与传统的透射型结构相比, 其光线的聚焦距离 16/2
大大缩短, 这样大大降低所需膜体的厚度, 实现轻薄化。
若微弧面镜直径为 D, 弧面高度为 h, 则所述膜体的厚度 d满足下 列关系. · D2 - I2h2
a =
I6h
式 (3 )
所述微弧面镜为凸面镜或凹面镜, 优选的凹面镜;
所述微弧面镜的弧面结构为球面或非球面,优选的为非球面结构。 球面结构在成像时不能将光线完全汇聚到一点, 会造成成像模糊, 产 生球差。 而非球面结构的曲率半径随着中心轴变化, 能将光线汇聚到 通过一点, 可以很好的修正球面结构所产生的球差, 有更好的成像质
术语 "非球面结构"指的是微弧面镜的表面弧度是非球面的, 弧 度曲线接近椭圆或抛物线, 当平行光入射时, 不论近轴光线还是远轴 光线都可以会聚为一点。 所述微弧面镜阵列的排布方式为圆周排列、 矩形排列、 正三角形 排列或正六角形排列, 优选的为正六角形排列;
所述微缩图文为微结构化的凹陷或凸起。 本发明中微缩图文层位 于观察者与微弧面反射镜之间, 本发明是在微缩图文一侧进行观察的, 从观察到的顺序来讲, 观察者是先看到微缩图文, 后看到微弧面反射 镜。 光线需经过微缩图文层进入整个系统, 因此该层的透光性对整个 系统的光线利用有较大的影响。 优选的透明的凹陷或凸起, 即微缩图 文本身是透明的, 可以保证系统最大限度的光线利用率。 在可以接受 的条件下, 微缩图文可以做成具有不同光泽、 颜色、 对比度、 折射率、 色散、 反射、 偏振等特征。 所述微縮图文, 在宏观样式上表现为规则形状或图像化的, 根据 不同的要求可表现为公司 logo、 公司名称和其他与包装产品有关的特 定装饰性图案。 所述的膜体的材料为对苯二甲酸乙二醇酯 (PET)、 聚碳酸酯 (PC ) 或聚甲基丙烯酸甲酯 (PMMA) 、 聚乙烯 (PE) 或聚丙烯 (PP) ; 上述技术方案中, 所述视觉立体漂浮图像的薄膜可单独使用, 也 可以结合其他包装材料上共同使用。 优选的, 所述微弧面镜阵列的排布方式为圆周排列、 矩形棑列、 正三角形排列或正六角形排列, 所述微弧面镜阵列的基部几何形状为 圆形、 矩形、 三角形或六角形及其组合。 进一步, 所述的微弧面反射镜阵列的排布方式, 包括圆形基底-矩 形方式排列方式、 方形基底-矩形方式排列方式、 圆形基底正六边方式 形排列方式或者是正六边形基底 -正六边形方式排列方式;
术语 "基底" 指的是微弧面反射镜的底部, 圆形基底指的是微弧 面反射镜的底部形状为圆形;
进一步, 参见图 9, 微缩图文 13有不同图案和不同的排列周期, 以实现不同的显示效果, 微缩图文 13包括第一微缩图文 131和第二微 缩图文 132;
第一微缩图文 131组成第一宏观图案 62, 第二微缩图文 132组成 第二宏观图案 63。 该结构下, 产品的最终显示效果为宏观的图案五角形中为视觉上 浮的五角星图案, 而其他地方为视觉下沉的心形图案。 进一步, 参见图 10。 所述的膜体一侧或两侧设有色彩层 71, 可增 强和突出显示效果;
进一步, 参见图 1 1, 所述膜体一侧或两侧设有宏观图案层 72, 可 增强和突出显示效果。 优选的, 微弧面镜直径 D=30〜500微米, 弧面高度 h=3〜130微米, 膜体厚度 d=10〜300微米; 相邻两个微反射镜之间的间距 D1为 1〜10微 米;
微缩图文 13的排列周期为 30〜500微米, 微弧面反射镜 1 1的排 列周期为 30〜500微米。 实施例 1
制备如图 1〜图 3所示的视觉立体漂浮图像的薄膜。 结构参数- 微弧面镜为凹面镜;
微弧面镜直径 D-100微米, 弧面高度 h-Π微米, 膜体厚度 d采用式 ( 3 ) 进行计算: d=24微米。
微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶
41微米;
膜体 12的材料是 PET薄膜;
微弧面反射镜阵列有 2个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。 图 2和图 3分别为具体实施例 1的等距视图和俯视图。 参见图 2和图 3, 微缩图文 13 的排列方向和与微弧面反射镜 11 的排列方向相互平行;
微缩图文 13的排列周期为 103um, 微弧面反射镜 11的排列周期 为 104um, 两者相近, N=l ;
根据式 (1 ) , 可计算得系统的综合放大倍率 m;
1
NT, m=103, 微缩图文的视觉大小约为 10.6mm。
制备方法, 参见图 12:
( 1 )根据膜体厚度参数 d=24um、 m=103、 Dl=3um, 并采用式(1 ) 和式(3 ) , 确定微弧面镜有效直径大小 D=100um、 弧面高度 h=17um。
( 2 )如图 12a所示, 通过紫外模压技术, 在膜体的一侧形成与微 弧面镜具有相同直径 D、 弧面高度 h的微透镜阵列层;
紫外模压制作微透镜阵列的工艺过程已为本行业技术人员所熟 知, 本发明不在详述。 具体可参阅文献 C.Y.Chang, S.Y.Yang, M.H.Chu,
"Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process" [J]. Micromech. Microeng.84(2007)355-361.
( 3 )如图 12b所示, 同样利用紫外模压技术在膜体的另一侧形成 微缩图文阵列, 此处的微缩图文是由紫外胶固化形成的 TC 字形的凸 起;
( 4 ) 如图 12c所示, 将微透镜阵列层一侧进行真空镀铝, 使透镜 表面形成反射层, 实现微弧面镜的功能。 参见图 4, 图 4中, 图 41 为透射式结构光路图, 图 42为反射式 结构光路图;
上述结构的反射镜的焦距只与反射镜的曲率有关, 且其大小只为 曲率半径的一半。 在给定透镜直径的条件下, 大大降低了所需膜体的 厚度, 使整个结构更加轻薄化。对于传统的透射模式来说, 使用 lOOum 有效直径的微透镜, 需要至少 lOOum的膜厚, 要将膜厚降低至 24um, 微透镜的有效直径也要降低至 25um左右,这样随之带来的是微缩图文 印刷难度的指数性增加, 极大的增加了工艺难度。 而本发明很好的解 决了这一问题。 实施例 2
制备如图 5所示的视觉立体漂浮图像的薄膜。 结构参数- 微弧面镜为凹面镜;
微弧面镜直径 D=100微米, 弧面高度 h=17微米。
膜体厚度 d采用式 (3 ) 进行计算: d=24微米。 微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶 41微米;
膜体 12的材料是 PET薄膜;
微弧面反射镜阵列有两个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。
微縮图文 13的排列方向和与微弧面反射镜 11的排列方向相互平 行;
微缩图文 13的排列周期为 51.5um, 微弧面反射镜 11的排列周期 为 104um, N=2;
根据式 (1) , 可计算得系统的综合放大倍率 m;
Figure imgf000013_0001
m=103, 微缩图文的视觉大小约为 5.3mm。
制备方法:
(1)根据膜体厚度参数 d=24um、 m=103、 Dl=3um, 并采用式(1) 和式(3) , 确定微弧面镜有效直径大小 D=100um、 弧面高度 h=17um。
(2)通过紫外模压技术, 在膜体的一侧形成与微弧面镜具有相同 直径 D、 弧面高度 h的微透镜阵列层;
紫外模压制作微透镜阵列的工艺过程已为本行业技术人员所熟 知, 本发明不在详述。 具体可参阅文献 C.Y.Chang, S.Y.Yang,M.H.Chu, "Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process"[J]. Micromech. Microeng.84(2007)355— 361.
(3) 利用微缩图文印刷技术 (可参阅专利: 201110074244.0) 在 膜体的另一侧形成微缩图文阵列, 此处的微缩图文是由蓝色颜料形成 的 TC字形;
(4)将微透镜阵列层一侧进行真空镀铝,使透镜表面形成反射层, 实现微弧面镜的功能。 图 5所示为 N=2时结构的剖面图, 此时微缩图文的排列周期与微 弧面反射镜的排列周期有接近 2 : 1的比例关系。 实施例 3
制备如图 6和图 7所示的视觉立体漂浮图像的薄膜, 图 6和图 7 分别为等距视图和俯视图。 微缩图文 13排列方向 13与微弧面反射镜 1 1的排列方向存在夹角
结构参数:
微弧面镜为凹面镜;
微弧面镜直径 D=100微米, 弧面高度 h=17微米。
膜体厚度 d采用式 (3 ) 进行计算: d=24微米。
微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶 41微米;
膜体 12的材料是 PP薄膜;
微弧面反射镜阵列有两个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。 微縮图文 13的排列方向与微弧面反射镜 1 1的排列方向存在夹角 α =0.5°;
微缩图文 13的排列周期为 104um, 微弧面反射镜 1 1的排列周期 为 104um, N=l ;
根据式 (2 ) , 可计算得系统的综合放大倍率 m;
Figure imgf000014_0001
m=114.6, 微缩图文的视觉大小约为 1 1.9mm。
制备方法同实施例 2。 实施例 4
制备图 8所示的视觉立体漂浮图像的薄膜。 图 8中, 宏观图案 61是由微缩图文 13构成, 该结构下产品的最 终显示效果为宏观的图案中为视觉漂浮的五角星存在。 结构参数:
微弧面镜为凹面镜;
微弧面镜直径 D=100微米, 弧面高度 h=17微米。
膜体厚度 d采用式 (3 ) 进行计算: d=24微米。
微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶 41微米;
膜体的材料是 PET薄膜;
微弧面反射镜阵列有两个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。
微縮图文的排列方向和与微弧面反射镜的排列方向相互平行; 微缩图文 13 的排列周期为 105um, 微弧面反射镜的排列周期为 104um, N=l ;
根据式 (1 ) , 可计算得系统的综合放大倍率 m;
Figure imgf000015_0001
m=105 , 微缩图文的视觉大小约为 l lmm<
制备方法同实施例 2。 实施例 5
参见图 10, 微缩图文 13有不同图案和不同的排列周期, 以实现 不同的显示效果, 所述微缩图文 13包括第一微缩图文 131和第二微缩 图文 132 ;
第一微缩图文 131组成第一宏观图案 62, 第二微缩图文 132第二 宏观图案 63。 该结构下, 产品的最终显示效果为宏观的图案五角形中为视觉上 浮的五角星图案, 而其他地方为视觉下沉的心形图案。 结构参数:
微弧面镜为凹面镜;
微弧面镜直径 D=100微米, 弧面高度 h=17微米。
膜体厚度 d采用式 (3 ) 进行计算: d=24微米。
微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶 41微米;
膜体的材料是 PET薄膜;
微弧面反射镜阵列有两个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。
微缩图文的排列方向和与微弧面反射镜的排列方向相互平行; 第一微缩图文 131的排列周期为 105um, 第二微缩图文 132的排 列周期为 103um, 微弧面反射镜的排列周期为 104um, N=l ;
根据式 (1 ) , 可计算得系统的综合放大倍率 m; m NTX mI31=105 , 第一微缩图文 131的视觉大小约为 l lmm, m132=103, 第二微缩图文 132的视觉大小约为 10.6mm。 制备方法同实施例 2。 实施例 6
参见图 11。所述的膜体一侧或两侧设有色彩层 71, 可增强和突出 显示效果;
参见图 12, 所述膜体一侧或两侧设有宏观图案层 72。 制备方法为:
首先在膜体表面形成色彩层或宏观图案层, 然后在分别釆用前述 的方法, 制备微缩图文阵列层和微弧面反射镜阵列层
结构参数:
微弧面镜为凹面镜;
微弧面镜直径 D=100微米, 弧面高度 h=17微米。
膜体厚度 d采用式 (3 ) 进行计算: d=24微米。
微弧面反射镜的光线聚焦点在前表面 1附近,光线聚焦点距离弧顶 41微米;
膜体的材料是 PET薄膜, 膜体表面印刷有宏观图案;
微弧面反射镜阵列有两个排列方向;
反射层的材料为铝;
相邻两个微反射镜之间的间距 D1为 3微米,微弧面反射镜的弧面结 构为非球面结构。
微缩图文的排列方向和与微弧面反射镜的排列方向相互平行; 微缩图文的排列周期为 105um , 微弧面反射镜的排列周期为 104um, N=l ;
根据式 (1 ) , 可计算得系统的综合放大倍率 m;
丄 = 1—
m ΝΊ\ m=105 , 微缩图文的视觉大小约为 l lmm。
制备方法: ( 1 )根据膜体厚度参数 d=24um、 m=103、 Dl=3um, 并采用式(1 ) 和式(3 ) , 确定微弧面镜有效直径大小 D=100um、 弧面高度 h=17um。
( 2)在膜体表面通过凹印、 丝印等印刷技术印刷特定的宏观装饰 性图案。
( 3 )通过紫外模压技术, 在膜体的一侧形成与微弧面镜具有相同 直径 D、 弧面高度 h的微透镜阵列层。 紫外模压制作微透镜阵列的工艺过程已为本行业技术人员所熟 知, 本发明不在详述。 具体可参阅文献 C.Y.Chang, S.Y.Yang, M.H.Chu, "Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process"[J]. Micromech. Microeng,84(2007)355-361。 ( 4 ) 同样利用紫外模压技术在膜体的另一侧形成微缩图文阵列, 此处的微缩图文是由紫外胶固化形成的 TC字形的凸起。
( 5 )将微透镜阵列层一侧进行真空镀铝,使透镜表面形成反射层, 实现微弧面镜的功能。

Claims

权 利 要 求 书
1. 视觉立体漂浮图像的薄膜, 其特征在于, 包括具有前表面 (1 ) 和后表面 (2) 的膜体 (12 ) 、 设置在所述前表面 (1 ) 的微缩图文阵 列层和设置在膜体后表面 (2 ) 的微弧面反射镜列阵层;
所述微缩图文阵列层由周期排布的微缩图文 (13 ) 组成; 所述微弧面反射镜阵列层由周期排布的微弧面反射镜(11 )组成; 所述微弧面反射镜 (11 ) 由微透镜和涂覆在微透镜表面的反射层 组成。
2.根据权利要求 1所述的视觉立体漂浮图像的薄膜,其特征在于, 微缩图文 (13 ) 为微结构化的凹陷或凸起。
3.根据权利要求 2所述的视觉立体漂浮图像的薄膜,其特征在于, 微缩图文 (13 ) 具有透明、 色彩、 反射、 干涉、 色散或偏振特性中的 一种或几种。
4. 根据权利要求 1所述的视觉立体漂浮图像的薄膜,其特征在于, 所述微缩图文 (13 ) 包含两个排列方向, 所述微弧面反射镜 (11 ) 的 排列方式与所述的微缩图文 (13 ) 的排列方式相对应。
5. 根据权利要求 1所述的视觉立体漂浮图像的薄膜,其特征在于, 相邻两个微反射镜之间的间距 D1为 2微米〜 10微米。
6. 根据权利要求 1〜5 任一项所述的视觉立体漂浮图像的薄膜, 其特征在于, 所述微缩图文阵列的排列方向与微弧面镜阵列的排列方 向相互平行时, 所产生的 m满足下列关系:
Figure imgf000019_0001
式 (1 ) 其中:
I;为微缩图文阵列的排布周期, 2为微弧面镜阵列的排布周期, N 为比例系数, N=0.1〜10 ;
所述微缩图文阵列的排列方向与微弧面镜阵列的排列方向存在夹 角 α时, 所产生的放大倍率 m满足下列关系:
Figure imgf000020_0001
式 (2 )
所述夹角。为 0〜3 ° , N=0.1〜10 ;
所述微弧面镜的光线聚焦点在前表面附近, 光线聚焦点为 4h ^D2; 若微弧面镜直径为 D, 弧面髙度为 h, 则所述膜体的厚度 d 满足下列关系:
D2 -\2h2
d .
\6h
式 (3 ) 。
7. 根据权利要求 6所述的视觉立体漂浮图像的薄膜,其特征在于, 所述微弧面镜为凸面镜或凹面镜。
8. 根据权利要求 6所述的视觉立体漂浮图像的薄膜,其特征在于, 所述放大倍率 m为 10〜權。
8. 根据权利要求 7所述的视觉立体漂浮图像的薄膜,其特征在于, 所述微弧面镜的弧面结构为球面或非球面。
9. 根据权利要求 6所述的视觉立体漂浮图像的薄膜,其特征在于, 所述微弧面镜阵列的排布方式为圆周排列、 矩形排列、 正三角形排列 或正六角形排列。
10. 根据权利要求 7 所述的视觉立体漂浮图像的薄膜, 其特征在 于, 所述微弧面镜阵列的基部几何形状为圆形、 矩形、 三角形或六角 形及其组合。
11. 根据权利要求 1 所述的视觉立体漂浮图像的薄膜, 其特征在 于, 所述的膜体的材料为对苯二甲酸乙二醇酯 (PET)、 聚碳酸酯 (PC) 或聚甲基丙烯酸甲酯 (PMMA) 、 聚乙烯 (PE) 或聚丙烯 (PP) 。
13. 根据权利要求 6 所述的视觉立体漂浮图像的薄膜, 其特征在 于,所述微缩图文(13)包括第一微缩图文(131)和第二微缩图文(132), 第一微缩图文 (131) 组成第一宏观图案 (62) , 第二微缩图文 (132) 组成第二宏观图案 (63) 。
14. 根据权利要求 6 所述的视觉立体漂浮图像的薄膜, 其特征在 于, 所述的膜体一侧或两侧设有色彩层 (71) 。
15. 根据权利要求 6 所述的视觉立体漂浮图像的薄膜, 其特征在 于, 所述膜体一侧或两侧设有宏观图案层 (72) , 根据不同的要求可 表现为公司 logo、 公司名称和其他与包装产品有关的特定装饰性图案。
16. 根据权利要求 6所述的视觉立体漂浮图像的薄膜, 其特征在 于, 微弧面镜直径 D=30微米〜 500微米, 弧面高度 h=3微米〜 130微米, 膜体厚度 d=10微米〜 300微米; 微缩图文 (13) 的排列周期为 30微米〜 500微米, 微弧面反射镜 (11) 的排列周期为 30微米〜 500微米。
17. 根据权利要求 1〜16 任一项所述的视觉立体漂浮图像的薄膜 的制备方法, 其特征在于, 包括如下步骤:
(1) 根据膜体厚度参数 d, 微缩图文的排列周期 7], 放大倍率 m 以及实际工艺参数要求, 并结合采用式 (1) 和式 (3) , 确定微弧面 镜有效直径大小 D, 弧面高度 h以及间距 D1;
(2)通过紫外模压技术或热压技术, 在膜体的一侧形成与微弧面 镜具有相同直径 D、 弧面高度 h的微透镜阵列层;
(3) 利用压印、 光刻、 印刷、 蒸镀、 溅射等方法在膜体的另一侧 形成微缩图文阵列;
(4)将微透镜阵列层一侧进行真空镀铝,使透镜表面形成反射层, 实现微弧面镜的功能, 获得产品。
PCT/CN2014/079458 2013-06-09 2014-06-09 视觉立体漂浮图像的薄膜及其制备方法 WO2014198206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310229569.0 2013-06-09
CN2013102295690A CN103309047A (zh) 2013-06-09 2013-06-09 视觉立体漂浮图像的薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2014198206A1 true WO2014198206A1 (zh) 2014-12-18

Family

ID=49134445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079458 WO2014198206A1 (zh) 2013-06-09 2014-06-09 视觉立体漂浮图像的薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN103309047A (zh)
WO (1) WO2014198206A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510250A (ja) * 2015-12-18 2019-04-11 ビジュアル フィジクス エルエルシー 単層画像投影システム
CN111830726A (zh) * 2019-04-19 2020-10-27 昇印光电(昆山)股份有限公司 3d成像薄膜

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309047A (zh) * 2013-06-09 2013-09-18 上海天臣控股有限公司 视觉立体漂浮图像的薄膜及其制备方法
KR20170080674A (ko) * 2014-12-10 2017-07-10 도판 인사츠 가부시키가이샤 엠보싱 시트 및 화장 시트
CN104834029B (zh) * 2015-04-16 2016-09-28 上海天臣包装材料有限公司 双面成像的微光学器件及其制备方法和应用
WO2017005204A1 (zh) * 2015-07-08 2017-01-12 昇印光电(昆山)股份有限公司 光学薄膜
US11143794B2 (en) 2015-07-08 2021-10-12 Shine Optoelectronics (Kunshan) Co., Ltd Optical film
WO2017005206A1 (zh) 2015-07-08 2017-01-12 昇印光电(昆山)股份有限公司 光学薄膜
CN107219570A (zh) * 2016-03-22 2017-09-29 昇印光电(昆山)股份有限公司 光学成像薄膜及其制备方法
CN107454778B (zh) * 2016-06-01 2021-04-27 昇印光电(昆山)股份有限公司 装饰片、电子设备盖板以及电子设备
WO2017206724A1 (zh) 2016-05-31 2017-12-07 昇印光电(昆山)股份有限公司 装饰片、电子设备盖板以及电子设备
CN106125317A (zh) * 2016-06-28 2016-11-16 北京邮电大学 一种光学显示膜的结构和制备方法
CN107765438B (zh) * 2016-08-18 2020-09-15 群睿股份有限公司 影像显示装置及影像显示方法
CN108469684B (zh) * 2018-05-22 2024-04-30 成都工业学院 一种透明显示器及一种显示系统
CN112505805A (zh) * 2019-08-26 2021-03-16 昇印光电(昆山)股份有限公司 成像薄膜及电子设备壳体
CN112505806A (zh) * 2019-08-26 2021-03-16 昇印光电(昆山)股份有限公司 成像薄膜及电子设备壳体
CN112505940B (zh) * 2019-08-26 2023-03-24 昇印光电(昆山)股份有限公司 一种立体成像光学薄膜
CN113687522B (zh) * 2021-08-25 2022-05-27 苏州大学 一种反射式成像薄膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712731A (en) * 1993-05-11 1998-01-27 Thomas De La Rue Limited Security device for security documents such as bank notes and credit cards
CN1271106A (zh) * 1999-04-21 2000-10-25 四川大学 微透镜微图形组合薄膜
CN101434176A (zh) * 2008-12-25 2009-05-20 中国印钞造币总公司 光学防伪元件及带有该光学防伪元件的产品
CN101443692A (zh) * 2006-05-12 2009-05-27 克瑞尼股份有限公司 单独或与安全文件或标签一起投射的图像在空间上与静态图像和/或其他投射图像相一致的微型光学膜结构
CN103309047A (zh) * 2013-06-09 2013-09-18 上海天臣控股有限公司 视觉立体漂浮图像的薄膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2990275C (en) * 2003-11-21 2023-01-03 Visual Physics, Llc Micro-optic security and image presentation system
JP4800302B2 (ja) * 2005-04-11 2011-10-26 日本カーバイド工業株式会社 印刷像が設置されている再帰反射シート
CN101850680B (zh) * 2010-05-24 2012-06-06 苏州苏大维格光电科技股份有限公司 一种具有动态立体效果的安全薄膜
DE102010025775A1 (de) * 2010-07-01 2012-01-05 Giesecke & Devrient Gmbh Sicherheitselement sowie Wertdokument mit einem solchen Sicherheitselement
CN102991860B (zh) * 2011-09-08 2015-09-23 上海天臣防伪技术股份有限公司 具有立体、动态显示效果的防伪功能包装膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712731A (en) * 1993-05-11 1998-01-27 Thomas De La Rue Limited Security device for security documents such as bank notes and credit cards
CN1271106A (zh) * 1999-04-21 2000-10-25 四川大学 微透镜微图形组合薄膜
CN101443692A (zh) * 2006-05-12 2009-05-27 克瑞尼股份有限公司 单独或与安全文件或标签一起投射的图像在空间上与静态图像和/或其他投射图像相一致的微型光学膜结构
CN101434176A (zh) * 2008-12-25 2009-05-20 中国印钞造币总公司 光学防伪元件及带有该光学防伪元件的产品
CN103309047A (zh) * 2013-06-09 2013-09-18 上海天臣控股有限公司 视觉立体漂浮图像的薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510250A (ja) * 2015-12-18 2019-04-11 ビジュアル フィジクス エルエルシー 単層画像投影システム
CN111830726A (zh) * 2019-04-19 2020-10-27 昇印光电(昆山)股份有限公司 3d成像薄膜
CN111830726B (zh) * 2019-04-19 2023-03-17 昇印光电(昆山)股份有限公司 3d成像薄膜

Also Published As

Publication number Publication date
CN103309047A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014198206A1 (zh) 视觉立体漂浮图像的薄膜及其制备方法
US20180111405A1 (en) Micro-optical device double-sided imaging, preparation method therefor and application thereof
CN106324726B (zh) 一种3d成像光学薄膜
CN111479682B (zh) 装饰构件
WO2021233416A1 (zh) 一种超透镜与折射和或反射透镜的混合光学系统
US11143794B2 (en) Optical film
JP5467478B2 (ja) 改良されたマイクロ光学的セキュリティデバイス
WO2017092667A1 (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
CN111669989B (zh) 装饰构件
CN111683563B (zh) 装饰构件
CN110382253B (zh) 装饰构件及装饰构件的制造方法
WO2021218100A1 (zh) 一种微镜动态光变膜
KR101384717B1 (ko) 복수의 나노 구조물을 포함하여 히든 이미지를 표현하는 입체 렌즈시트
ES2860910T3 (es) Película de proyección de imágenes de una sola capa
CN106324846B (zh) 悬浮成像光学薄膜
WO2022152310A1 (zh) 一种投影幕布
JP5906653B2 (ja) 表示体および物品
CN106338786A (zh) 一种微光学成像薄膜
WO2020187285A1 (zh) 光学防伪元件及光学防伪产品
WO2017005204A1 (zh) 光学薄膜
CN111867822B (zh) 装饰构件
CN207833879U (zh) 一种空中悬浮显示系统
WO2022110878A1 (zh) 一种光学防伪元件及其产品
AU2022413830A1 (en) Diffractive displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14811525

Country of ref document: EP

Kind code of ref document: A1