WO2022152310A1 - 一种投影幕布 - Google Patents

一种投影幕布 Download PDF

Info

Publication number
WO2022152310A1
WO2022152310A1 PCT/CN2022/072479 CN2022072479W WO2022152310A1 WO 2022152310 A1 WO2022152310 A1 WO 2022152310A1 CN 2022072479 W CN2022072479 W CN 2022072479W WO 2022152310 A1 WO2022152310 A1 WO 2022152310A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fresnel lens
projection screen
lens layer
annular
Prior art date
Application number
PCT/CN2022/072479
Other languages
English (en)
French (fr)
Inventor
周小红
朱鸣
浦东林
朱鹏飞
朱昊枢
孙如斌
陈林森
Original Assignee
维业达科技(江苏)有限公司
苏州维业达触控科技有限公司
苏州苏大维格科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维业达科技(江苏)有限公司, 苏州维业达触控科技有限公司, 苏州苏大维格科技集团股份有限公司 filed Critical 维业达科技(江苏)有限公司
Priority to JP2023541710A priority Critical patent/JP2024502851A/ja
Priority to US18/270,875 priority patent/US20240069426A1/en
Publication of WO2022152310A1 publication Critical patent/WO2022152310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Definitions

  • the present invention relates to the field of display technology, in particular to a projection screen.
  • high-quality optical projection screens are also an essential key component for projection display technology to reach or surpass the mainstream liquid crystal display technology or organic display technology in the market in terms of displaying image effects.
  • An optical projection screen is a projection screen composed of a series of fine optical structures that can redistribute the projector and ambient light in the screen structure. Its characteristics are that it can effectively reduce the ambient light intensity and enhance the light intensity projected by the projector, improve the picture contrast, brightness gain, color reproduction, resolution, etc., to meet people's needs for ultra-high image quality.
  • the Fresnel screen is a common optical projection screen.
  • the Fresnel screen adopts the principle of the Fresnel lens structure to collimate the light beam incident at a certain angle into parallel light, and finally send it to the human eye for imaging. How to further enhance the anti-ambient light interference of the Fresnel screen, and then improve the screen brightness and contrast, has always been the goal of engineers and R&D personnel.
  • the commonly used preparation method of the Fresnel lens in the Fresnel screen at present is the diamond turning method.
  • the microstructure of the Fresnel lens produced by the processing method has a low degree of refinement, and the groove width is usually 20-50um.
  • a microstructure with such a low degree of refinement is not conducive to the improvement of light efficiency utilization.
  • the microstructure with a high degree of refinement is not conducive to the processing of the Fresnel lens. How to reduce the processing difficulty of Fresnel lenses while ensuring the same or even improved light efficiency utilization rate has always been the goal that engineers and R&D personnel are constantly pursuing.
  • optical projection screens currently on the market such as Dai Nippon Printing Co., Ltd. (DNP) and Chengdu First Technology Co., Ltd., are supported by a heavy rigid backplane, supplemented by decorative frames, pendants and other accessories. made of hard curtain.
  • the optical projection screen in the form of a hard screen is not only heavy, but also bulky and cannot be curled, which is not only unfavorable for handling, but also takes up a lot of space.
  • the present invention provides a Fresnel lens
  • the Fresnel lens includes a plurality of annular protrusions protruding along a plane, the plurality of annular protrusions are arranged in an annular zone, and along a section perpendicular to the plane , the cross-sectional shape of each annular protrusion is a triangle, the side of the triangle parallel to the plane is called the first side, and the other two sides are called the second side and the third side; wherein, each triangle The height H of the first side of each triangle is the same, and the angle ⁇ 1 between the third side of each triangle and the first side is 90 degrees.
  • the present invention provides another Fresnel lens
  • the Fresnel lens includes a plurality of annular protrusions convex along a plane, the plurality of annular protrusions are arranged in annular bands, and
  • the cross-section of the plane, the cross-sectional shape of each annular protrusion is a multi-step shape, the side of the multi-step shape parallel to the plane is called the first side, the side with a step shape is called the second side, and the side without The stepped side is called the third side, the third side is perpendicular to the first side, and among the two sides of each step, one side is perpendicular to the first side, and the other side is parallel to the first side; each multi-step The side of the step farthest from the first side of the shape is parallel to the first side, and the vertical distance to the first side is called the height H of the first side, and the height H of the first side of each multi-step shape is equal.
  • the height H of the first side is: Length Lj of the first side of the j-th triangle or multi-step, counting outwards from the center:
  • P is an integer greater than or equal to 1
  • is the center wavelength
  • f is the focal length of the Fresnel lens.
  • the height H of the first side is 1-20 ⁇ m.
  • the included angle ⁇ 1 between the second side of each triangle and the first side is 65-81 degrees.
  • the length of the first side is 0.02 ⁇ 0.3 mm.
  • the surface of the annular protrusion has scattered microstructures.
  • the present invention provides a method for designing a Fresnel lens.
  • the Fresnel lens includes a plurality of annular protrusions that are raised along a plane.
  • the cross-section of the plane, the cross-sectional shape of each annular protrusion is a triangle or a multi-step shape, and the side of the triangle or the multi-step shape parallel to the plane is called the first side, counting from the center to the outside, the first side is the first side.
  • the length Lj of the first side of j triangles or multi-step shapes is
  • obtaining the length Lj of the first side of the jth triangle or multi-step shape includes the following steps:
  • Step 1 Assuming that the radius of the spherical lens is R and the refractive index is n, the focal length of the spherical lens is
  • Step 2 Collapse the lens surface, and the height of each collapse is: The jth ring, collapses j times;
  • Step 3 Assuming that the radius of the jth ring is aj, according to the triangular relationship:
  • Step 4 The length Lj of the first side of the jth triangle:
  • the present invention provides a Fresnel lens mold.
  • the Fresnel lens mold includes a plurality of annular microstructure units protruding along a plane, and the plurality of annular microstructure units are arranged in annular bands along the
  • the cross-section perpendicular to the plane, the cross-sectional shape of each annular microstructure unit is a triangle or a multi-step shape, and the side of the triangle or the multi-step shape parallel to the plane is called the first side, outward from the center number, the length L j of the first side of the jth triangle or multi-step shape:
  • the height H of the first side of the triangular or multi-step shape of the cross-sectional shape of the annular microstructure unit is:
  • n is the refractive index of the Fresnel lens.
  • the invention provides a method for preparing a mold of a Fresnel lens.
  • the mold preparation method of the Fresnel lens comprises the following steps:
  • Step 4 Project the three-dimensional model image on a plane to obtain a grayscale image; wherein, the grayscale image includes a plurality of pixel points, and each pixel point includes the position of the pixel point and the grayscale value; the three-dimensional model image
  • the projection on the horizontal plane includes a plurality of points, and each point includes a position and a height value; the position of each point corresponds to the position of the pixel point in the grayscale image; the height according to the set height value of the three-dimensional model image is located
  • the height range of the interval and the corresponding function f2(x) of the corresponding gray value range are calculated to obtain the gray value corresponding to the height value, and the gray value of the corresponding pixel of the gray image is obtained.
  • Step 6 Transfer the patterned structure to another carrier by means of UV transfer printing or metal growth to form a mold complementary to the pattern of the Fresnel lens.
  • the present invention provides another method for preparing a Fresnel lens mold.
  • the Fresnel lens mold preparation method includes the following steps:
  • Step 1 Provide a 3D model drawing.
  • Step 6 Coating photoresist on the target carrier, performing superposition photolithography based on the multiple sets of binary images, and forming a patterned structure on the target carrier by exposure and development.
  • n is the refractive index of the Fresnel lens material
  • is the center wavelength
  • f is the focal length of the Fresnel lens
  • N is the total number of annular microstructure units.
  • curvature function f1(x) is:
  • curvature function f1(x) is:
  • the independent variable x refers to the distance from a point on a certain radius of the base circle of the cone or the base circle to the end of the radius away from the center of the base circle.
  • the function f2(x) corresponding to the gray value in the gray value range and the height value in the height range of the j+1th interval is preferably:
  • the gray value range is greater than or equal to 0, and less than or equal to Qmax.
  • Qmax is the largest gray value in the gray value range
  • the independent variable x refers to the height value within the height range.
  • M is the number of steps
  • i is an integer whose value is greater than or equal to 0 and less than M.
  • the kth range interval at least partially covers the k-1th range interval, M is an integer greater than or equal to 2, black represents 1 in binary values, and white represents 0 in binary values.
  • the present invention provides a projection screen, the projection screen includes a coloring layer, a diffusion layer, a Fresnel lens layer and a reflective layer that are sequentially stacked along the thickness direction; or,
  • the projection screen includes a diffusion layer, a coloring layer, a Fresnel lens layer and a reflective layer that are sequentially stacked along the thickness direction.
  • the present invention provides a projection screen, which comprises a coloring layer, a Fresnel lens layer and a reflective layer which are sequentially stacked along the thickness direction; wherein, diffusing particles are added to the Fresnel lens layer.
  • the present invention provides a projection screen, which comprises a diffusion layer, a Fresnel lens layer and a reflection layer which are sequentially stacked along the thickness direction, wherein coloring particles are added to the Fresnel lens layer.
  • the invention provides a projection screen, the projection screen comprises a Fresnel lens layer and a reflective layer which are sequentially stacked along the thickness direction; wherein, in the base material layer of the Fresnel lens layer or in a film with a certain haze Shaded and diffused particles are added, or in a Fresnel lens.
  • the Fresnel lens layer is disposed on the substrate, wherein the substrate is a high transmittance resin material with a light transmittance greater than 75%, and the thickness is 10-200 ⁇ m.
  • the Fresnel lens layer and the base material are integrally formed; or the Fresnel lens layer is attached to the base material by optically clear adhesive (OCA).
  • OCA optically clear adhesive
  • the Fresnel lens layer is disposed on a film with a certain haze; wherein the film has a haze value of 50-90% and a thickness of 50-200 ⁇ m.
  • the Fresnel lens layer is attached to the film with a certain haze through OCA.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspheric Fresnel lens layer.
  • the thickness of the OCA is 10-200 ⁇ m.
  • the thickness of the colored layer is 10-200 ⁇ m, and the light transmittance thereof is 50-90%.
  • the colored layer is a nickel-plated layer, and its light transmittance is 50-90%.
  • the diffusing layer is a light-transmitting resin mixed with diffusing particles.
  • the thickness of the diffusion layer is 50-1000 ⁇ m.
  • the diffusion layer is a micro-nano structure with diffusion function
  • the cross-sectional shape is one or a combination of two or more of arc, triangle, square, rectangle, trapezoid or irregular.
  • the height of the micro-nano structure is 1-20 ⁇ m.
  • the micro-nano structure is made of a flexible material.
  • the diffusion layer is a semi-transparent and semi-reflective film, the haze value of which is 50-90% and the transmittance is 55-65%.
  • the reflective layer is a metal reflective layer, or an alloy reflective layer.
  • the metal reflection layer includes aluminum, silver, gold, chromium, nickel, and copper;
  • the alloy reflection layer includes nickel-chromium alloy, aluminum alloy, and titanium alloy.
  • the reflective layer is an aluminum metal reflective layer, which is prepared by coating or spraying technology.
  • the thickness of the aluminum metal reflective layer is 0.04-3 ⁇ m.
  • the particle size of the aluminum particles is less than or equal to 500 nm.
  • the thickness of the aluminum metal reflective layer is 10-20 ⁇ m.
  • the particle size of the aluminum particles is greater than 5 ⁇ m.
  • the difference between the refractive index of the Fresnel lens material and the refractive index of the diffusing particles is less than 0.4.
  • the present invention also provides a preparation method of a projection screen, the preparation method comprising: bonding any two of the diffusion layer, the coloring layer and the Fresnel lens layer by OCA; or,
  • the coloring layer is coated on one surface of the diffusion layer, and then the side of the coloring layer far away from the diffusion layer is laminated with the Fresnel lens layer through OCA.
  • a reflective layer is prepared on the surface of the Fresnel lens layer.
  • the thickness of the OCA is 10-200 ⁇ m.
  • the surface of the Fresnel lens mold has a random dot structure prepared by a laser direct writing process, and then the mold is used to emboss to form a Fresnel lens layer, so that the The annular convex surface of the Fresnel lens layer has a scattered microstructure.
  • the present invention provides two simple preparation methods for Fresnel lens molds.
  • FIG. 3 is a geometric diagram used for designing a Fresnel lens according to a third embodiment of the present invention.
  • 5a-5c are schematic structural diagrams of a projection screen according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a projection screen according to a tenth embodiment of the present invention.
  • Figure 10 shows the test results of a Fresnel lens with random points on the surface and a reflective layer prepared by a coating process.
  • FIG. 1 is a schematic structural diagram of a first Fresnel lens provided by the present invention
  • FIG. 1 a is a top view
  • FIG. 1 b is a cross-sectional view
  • the Fresnel lens includes a plurality of annular protrusions protruding along a plane, the plurality of annular protrusions are arranged in annular bands, and along a cross-section perpendicular to the plane, each ring
  • the cross-sectional shape of the bulge is a triangle, and the side of the triangle parallel to the plane is called the first side a1, and the remaining two sides are called the second side b1 and the third side c1, as shown in Figure 1c;
  • the height H of the first side a1 of each triangle is the same.
  • the angle ⁇ 1 between the third side c1 of each triangle and the first side a1 is preferably 90 degrees.
  • the width of the first side a1 of each triangular section is gradually changing, and the height is constant, so that the section of the triangle is gradually changing, and the shape of the section and its width are gradually changing, which determines the convergence of the spherical Fresnel lens layer or aspherical Fresnel lens layer. light properties.
  • P is an integer greater than or equal to 1
  • is the center wavelength
  • n is the refractive index of the Fresnel lens.
  • the angle ⁇ 1 between the second side b1 of each triangle and the first side a1 is preferably 65-81 degrees
  • the height of the first side a1 is preferably 1-20 ⁇ m
  • the length of the first side a1 It is preferably 0.02 to 0.3 mm.
  • FIG. 2 is a schematic structural diagram of a Fresnel lens provided by the present invention
  • FIG. 2 a is a top view
  • FIG. 2 b is a cross-sectional view
  • the Fresnel lens includes a plurality of annular protrusions protruding along a plane, the plurality of annular protrusions are arranged in an annular band, and along a cross section perpendicular to the plane, each The cross-sectional shape of the annular protrusion is multi-step shape, the multi-step shape side parallel to the plane is called the first side a2, the side with the step shape is called the second side b2, and the side without the step shape Called the third side c2, as shown in Figure 2c.
  • the third side c2 is perpendicular to the first side a2, and among the two sides of each step, one side d1 is perpendicular to the first side a2, the other side d2 is parallel to the first side a2, as shown in Figure 2c.
  • the vertical distance from the side d2 parallel to the first side a2 of the step farthest from the first side a2 of each multi-step shape is called the height H of the first side a2.
  • the height H of the first side a1 is the same.
  • the width of the first side a2 of each multi-step-shaped section is gradually changing, and the height is constant, so that the multi-step-shaped section is gradually changing, and the section shape and its width are gradually changing. Concentrating properties of the lens layer.
  • P is an integer greater than or equal to 1
  • is the center wavelength
  • n is the refractive index of the Fresnel lens.
  • the height of the first side a2 is preferably 1-20 ⁇ m, and the length of the first side a2 is preferably 0.02-0.3 mm.
  • the cross-sectional shape of the annular protrusion may also be a free surface shape.
  • the Fresnel lens includes a plurality of annular protrusions protruding along a plane, the plurality of annular protrusions are arranged in annular bands, and along a section perpendicular to the plane, each annular protrusion
  • the cross-sectional shape is a free surface shape, the side of the free surface shape parallel to the plane is called the first side, the side with a freely changing shape is called the second side, and the other side is called the third side; the second side
  • the vertical distance from the intersection with the third side to the first side is called the height H of the first side, and the height H of the first side of each free surface shape is equal.
  • the included angle ⁇ 1 between each third side and the first side is preferably 90 degrees.
  • the width of the first side a1 of each free-form cross-section is gradual, and the height is constant, so that the free-form cross-section exhibits gradual change, and the gradual change of the cross-sectional shape and its width determines the spherical Fresnel lens layer or aspherical Fresnel. Concentrating properties of the lens layer.
  • the invention provides a design method of a Fresnel lens.
  • the Fresnel lens includes a plurality of annular protrusions protruding along a plane, the plurality of annular protrusions are arranged in an annular band, and along a cross-section perpendicular to the plane, the cross-section of each annular protrusion is
  • the shape is a triangle or multi-step or free-face, and the side of said triangle or multi-step or free-face parallel to said plane is called the first side, counting from the center, the jth triangle or multi-step or The length Lj of the first side of the free surface:
  • the length Lj of the first side of the jth triangle or multi-step shape or free-face shape is obtained by the following steps:
  • Step 1 Assuming that the radius of the spherical lens is R and the refractive index of the lens material is n, the focal length f of the spherical lens is:
  • Step 2 Collapse the lens surface, and the height H of each collapse is: The jth ring, collapses j times;
  • Step 3 Assuming that the radius of the jth ring is aj, according to the triangular relationship:
  • Step 4 Length Lj of the first side of the j-th triangle or multi-step or free-form:
  • the invention provides a method for preparing a mold of a Fresnel lens.
  • the Fresnel lens mold includes a plurality of annular microstructure units protruding along a plane, the plurality of annular microstructure units are arranged in annular bands, and along a cross section perpendicular to the plane, each annular
  • the cross-sectional shape of the microstructure unit is a triangle or a multi-step or free-face shape, and the side parallel to the plane of the triangle or the multi-step or free-face shape is called the first side, counting outward from the center, the jth
  • the length L j of the first side of a triangle or multi-step or free-form :
  • the cross-sectional shape of the annular microstructure unit is the first side of the triangular or multi-step or free-face shape
  • the high H is:
  • n is the refractive index of the Fresnel lens.
  • the mold preparation method of the Fresnel lens comprises the following steps:
  • Step 1 provide a 3D model diagram.
  • the three-dimensional model of the three-dimensional model diagram is preferably conical, as shown in FIG. 4a.
  • the radius R of the base circle of a cone is:
  • P is an integer greater than or equal to 1
  • is the center wavelength
  • n is the refractive index of the Fresnel lens material
  • f is the focal length of the Fresnel lens
  • N is the total number of annular microstructure units.
  • the three-dimensional model of the three-dimensional model diagram is preferably a hemisphere.
  • the radius R of the circle at the base of the hemisphere, that is, the radius of the hemisphere, is:
  • P is an integer greater than or equal to 1
  • is the center wavelength
  • n is the refractive index of the Fresnel lens material
  • f is the focal length of the Fresnel lens
  • N is the total number of annular microstructure units.
  • Step 2 Set at least one curvature function f1(x), and determine the height of the point in the three-dimensional model according to the curvature function f1(x).
  • the curvature function f1(x) is preferably:
  • the independent variable x refers to the distance from a point on a certain radius of the conical base circle to the end of the radius away from the center of the base circle.
  • the curvature function f1(x) is preferably:
  • the independent variable x refers to the distance from a point on a certain radius of the hemispherical base circle to the end of that radius away from the center of the hemispherical base circle.
  • Step 3 Divide the three-dimensional model image in the height direction to obtain a plurality of height intervals. Specifically, the cone is divided into N parts by a plane parallel to the bottom surface of the cone, as shown in Figure 4b. Counting from the top of the cone, the length ⁇ Lj+1 of the generatrix of the truncated cone at the j+1th interval is:
  • the hemisphere is divided into N equal parts by a plane parallel to the bottom circle of the hemisphere. Length of each serving:
  • Step 4 Project the 3D model image on a plane to obtain a grayscale image.
  • the grayscale image includes a plurality of pixels, and each pixel includes a position of the pixel and a grayscale value;
  • the projection of the three-dimensional model image on the horizontal plane includes a plurality of points, and each point includes a position, and height value.
  • the position of each point corresponds to the position of the pixel point in the grayscale image, and each height interval of the three-dimensional model image corresponds to the grayscale value range.
  • the gray value ranges from 0 to 64, or 0 to 256.
  • the gray value corresponding to the height value is calculated to obtain the corresponding pixel of the gray image.
  • the gray value of the point is preferably:
  • the function f2(x) corresponding to the gray value in the gray value range and the height value in the height range of the j+1th interval is preferably:
  • the gray value range is greater than or equal to 0, and less than or equal to Qmax.
  • Qmax is the largest gray value in the gray value range
  • the independent variable x refers to the height value within the height range.
  • Step 5 Coating photoresist on the target carrier, and performing photolithography according to the grayscale image to obtain a patterned structure.
  • the grayscale image can be divided into a plurality of unit images before photolithography, and according to the corresponding function f3(x) between the grayscale value and the photolithography time, a slope is formed on the target carrier through exposure and development.
  • the higher the gray value of the pixel point of the grayscale image the longer the lithography time, and the deeper the lithography can be; the lower the gray value of the pixel point of the grayscale image, the shorter the lithography time, and the lithography can be shallower.
  • the function f3(x) corresponding to the lithography time and the gray value is preferably:
  • is the rate of lithography, that is, the depth of lithography per unit time; the independent variable x refers to the gray value.
  • the lithography time remains unchanged.
  • M is the number of steps
  • i is an integer whose value is greater than or equal to 0 and less than M.
  • Step 6 Transfer the patterned structure to another carrier by means of UV transfer printing or metal growth to form a mold complementary to the pattern of the Fresnel lens.
  • the Fresnel lens mold preparation method of the present embodiment is that a grayscale image is obtained by projecting a three-dimensional model image on a plane, and the three-dimensional model image is divided into a plurality of height intervals according to the height. , the height range of each height interval corresponds to the grayscale value range, and the three-dimensional model image can be easily converted into a grayscale image, so as to easily realize the fabrication of the Fresnel lens mold.
  • the invention provides a preparation method of a Fresnel lens mold.
  • the Fresnel lens mold preparation method includes the following steps:
  • Step 1 Provide a 3D model drawing.
  • Step 2 Set at least one curvature function, and determine the height of the point in the three-dimensional model according to the curvature function.
  • Step 3 Divide the three-dimensional model image in the height direction to obtain a plurality of height intervals.
  • Step 4 Project the 3D model image on a plane to obtain a grayscale image.
  • steps 1-4 are the same as those of steps 1-4 in Embodiment 4, and are not repeated here.
  • Step 5 Sample multiple sets of binary images according to the grayscale image. Specifically,
  • the kth range interval at least partially covers the k-1th range interval
  • M is an integer greater than or equal to 2
  • black represents 1 in binary values
  • white represents 0 in binary values.
  • Step 6 Coating photoresist on the target carrier, performing superimposed photolithography based on the multiple sets of binary images, and forming a multi-step patterned structure on the target carrier by exposure and development.
  • the target carrier is baked after the stack photolithography, so as to obtain a smooth patterned structure.
  • Step 7 Transfer the patterned structure to another carrier by means of UV transfer printing or metal growth to form a mold complementary to the pattern of the Fresnel lens.
  • the Fresnel lens mold is prepared by using multiple sets of binary images to perform superimposed lithography. Therefore, the problems of time-consuming and low efficiency of preparing a Fresnel lens mold by grayscale photolithography can be effectively solved.
  • the present invention provides a projection screen, as shown in Figs. 5a-5b, the projection screen includes a coloring layer, a diffusion layer, a Fresnel lens layer and a reflective layer which are sequentially stacked along the thickness direction.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspherical Fresnel lens layer.
  • the projection screen includes a diffusion layer, a coloring layer, a Fresnel lens layer, and a reflective layer that are sequentially stacked along the thickness direction.
  • the projection screen includes a diffusion layer, a Fresnel lens layer, a coloring layer, and a reflective layer that are sequentially stacked along the thickness direction.
  • the coloring layer is arranged on several annular convex surfaces of the Fresnel lens layer, and the reflective layer is arranged on the surface of the coloring layer.
  • the coloring layer has the functions of absorbing the ambient light incident on the projection screen, reducing the black brightness of the image, and improving the contrast of the image.
  • the coloring layer is usually uniformly mixed with a colorant in a high transmittance resin with a light transmittance greater than 75%, and then processed and formed by means of injection molding, extrusion, stretching, or thermal curing.
  • a colorant dark-colored dyes, pigments, and the like such as gray-based and black-based are preferably used; for example, metal salts such as carbon black, graphite, and black iron oxide, and the like are used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • MS methyl methacrylate styrene
  • MBS methyl methacrylate
  • ester butadiene, styrene
  • TAC triethylene cellulose
  • PEN polyethylene naphthalate
  • acrylic resin etc.
  • the thickness of the colored layer is preferably 10 to 200 ⁇ m, and the light transmittance thereof is preferably 50 to 90%.
  • the colored layer is a nickel-plated layer, and its light transmittance is preferably 50-90%.
  • the diffuser layer is to expand the viewing angle and increase the uniformity of brightness within the screen surface.
  • the diffusing layer may be a thin film in which diffusing particles having diffuse light scattering function are uniformly mixed in a resin having light transmissivity, as shown in FIG. 5 a .
  • the difference between the refractive index of the resin and the refractive index of the diffusing particles is less than 0.4 in order to widen the viewing angle and increase the surface uniformity of the brightness.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • MS methyl methacrylate-styrene
  • MBS methyl methacrylate-butadiene
  • Styrene Styrene
  • TAC trivinyl cellulose
  • PEN polyethylene naphthalate
  • the diffusion particles can be selected from inorganic diffusion particles and/or organic diffusion particles, and the inorganic diffusion particles are selected from alumina, antimony oxide, cadmium oxide, tantalum oxide, zirconium oxide, iron oxide, copper oxide, lead oxide, manganese oxide, tin oxide, oxide Particles formed from one or more of tungsten, zinc selenide, niobium oxide, zinc telluride, vanadium oxide, molybdenum oxide, zinc sulfide, zinc oxide, cadmium sulfide, cadmium selenide, titanium oxide, lead sulfide; organic
  • the diffusing particles may be selected from particles formed of one or more materials selected from polystyrene, acrylic resin, polyurethane, polytetrafluoroethylene, melamine resin, benzoic melamine resin, epoxy resin or silicone resin.
  • the particle diameter of the diffusing particles is 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the thickness of the diffusion layer is 50
  • the diffusion layer is a micro-nano structure with diffusion function, its height is 1-20 ⁇ m, and the cross-sectional shape is arc, triangle, square, rectangle, trapezoid or irregular shape One or a combination of two or more.
  • the micro-nano structure is preferably made of a flexible material, such as resin.
  • the diffusion layer can be a semi-transparent and semi-reflective film, and its haze value is preferably 50-90%, and its transmittance is preferably 55-65%.
  • the reflective layer may be a metal reflective layer or an alloy reflective layer.
  • the metal reflection layer includes but is not limited to: aluminum, silver, gold, chromium, nickel, copper; the alloy reflection layer includes but is not limited to: nickel-chromium alloy, aluminum alloy, titanium alloy.
  • the reflective layer is preferably an aluminum metal reflective layer, which is prepared by electroplating or spraying technology.
  • the thickness is preferably 0.04-3 ⁇ m, and the particle size of the aluminum particles is preferably within 500 nm; when prepared by spraying technology, the thickness is less than 10-20 ⁇ m, and the particle size is greater than 5 ⁇ m.
  • the Fresnel lens layer plays the role of adjusting the transmission direction of the projection beam.
  • the Fresnel lens layer is the Fresnel lens described in Embodiment 1-2.
  • the raised surface of the Fresnel lens layer has scattered microstructures, such as shown in Figure 5c.
  • the Fresnel lens layer is disposed on the substrate.
  • the base material is preferably a high transmittance resin material with a light transmittance of more than 75%, and the thickness thereof is preferably 10 to 200 ⁇ m.
  • the Fresnel lens layer may be integrally formed with the substrate.
  • the Fresnel lens layer can be attached to the substrate by optically transparent adhesive (OCA), and the thickness of the optically transparent adhesive is preferably 10-200 ⁇ m.
  • OCA optically transparent adhesive
  • the Fresnel lens layer is provided on a film with a certain haze.
  • the haze value of the film is preferably 50 to 90%, and the thickness is preferably 50 to 200 ⁇ m.
  • the Fresnel lens layer is attached to a film or plate with a certain haze through OCA, and the thickness of the OCA is preferably 10-200 ⁇ m.
  • the invention also provides a preparation method of the projection screen.
  • the diffusion layer, the coloring layer, and the Fresnel lens layer are laminated by OCA in sequence; or the coloring layer, the diffusion layer, and the Fresnel lens layer are laminated by OCA in sequence; wherein the thickness of the OCA is 10-200 ⁇ m.
  • the diffusion layer and the coloring layer are prepared by coating in turn, and then the OCA and the Fresnel lens layer are laminated together; or the coloring layer and the diffusion layer are prepared by coating in turn, and then The OCA and the Fresnel lens layer are bonded together; wherein, the thickness of the OCA is 10-200 ⁇ m.
  • the Fresnel lens layer is prepared by a roll-to-roll process. Specifically, firstly, coat the adhesive layer on the substrate, or the film with a certain degree of haze, or the diffusion layer, or the coloring layer; In the roll-to-roll imprinting process, the Fresnel lens layer is formed by imprinting; finally, it is dried and cured.
  • Fresnel In order to make the projection screen have stronger brightness (ie gain) and larger viewing angle (ie half viewing angle), when making the Fresnel lens molds of Examples 4-5, Fresnel
  • the surface of the Fresnel lens mold has a random dot structure prepared by the laser direct writing process, and then the Fresnel lens layer is formed by imprinting with the mold, so that the annular convex surface of the Fresnel lens layer has scattered microscopic dots. structure.
  • the coloring layer is coated on one surface of the diffusion layer, and then the other surface of the diffusion layer is laminated by OCA and the Fresnel lens layer; or the coloring layer is coated on one surface of the diffusion layer, and then the coloring layer is applied
  • the side away from the diffusion layer is bonded to the Fresnel lens layer through OCA; wherein, the thickness of the OCA is 10-200 ⁇ m.
  • a reflection layer is prepared on the surface of the Fresnel lens layer.
  • a reflective layer is prepared on its surface.
  • the above lamination adopts a roll-to-roll process.
  • the present invention provides a projection screen.
  • the projection screen includes a coloring layer, a Fresnel lens layer and a reflective layer that are sequentially stacked along the thickness direction.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspherical Fresnel lens layer.
  • the coloring layer and the reflective layer are as described in Example 6, and will not be repeated here.
  • the fabrication method of the Fresnel lens layer is as described in Example 6, which is not repeated here, except that diffusion particles are added to the adhesive layer for making the Fresnel lens layer.
  • the difference between the refractive index of the material of the Fresnel lens layer and the refractive index of the diffusing particles is less than 0.4.
  • the diffusing particles may be the diffusing particles of inorganic or organic materials described in Example 5, which are not described here.
  • the projection screen of this embodiment lacks the diffusion layer, which makes the projection screen thinner and softer, which is more conducive to curling;
  • the viewing angle of the image on the screen is larger, and the surface uniformity of brightness is better.
  • the present invention also provides a method for preparing a projection screen.
  • the coloring layer and the Fresnel lens layer are laminated in sequence through OCA; wherein the thickness of OCA is 10-200 ⁇ m.
  • a reflection layer is prepared on the surface of the Fresnel lens layer.
  • a reflective layer is prepared on its surface.
  • the above lamination adopts a roll-to-roll process.
  • the present invention provides a projection screen.
  • the projection screen includes a diffusion layer, a Fresnel lens layer, and a reflection layer that are sequentially stacked along the thickness direction.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspherical Fresnel lens layer.
  • the diffusion layer and the reflective layer are as described in Example 6, and will not be repeated here.
  • the fabrication method of the Fresnel lens layer is as described in Example 6, which is not repeated here, except that colored particles are added to the adhesive layer for making the Fresnel lens layer.
  • the colored particle material dark-colored dyes or pigments such as gray or black are preferably used; for example, metal salts such as carbon black, graphite, and black iron oxide, etc. are used.
  • the particle diameter of the colored particles is preferably less than 200 ⁇ m.
  • the projection screen of this embodiment reduces the coloring layer, making the projection screen thinner and softer, which is more conducive to curling; on the other hand, coloring particles are added to the Fresnel lens layer, which significantly reduces ambient light. Caused by the black brightness of the image, greatly improving the contrast of the image.
  • the present invention also provides a method for preparing a projection screen.
  • the diffusion layer and the Fresnel lens layer are laminated in sequence through OCA; wherein the thickness of the OCA is 10-200 ⁇ m.
  • a reflection layer is prepared on the surface of the Fresnel lens.
  • a reflective layer is prepared on its surface.
  • the above lamination adopts a roll-to-roll process.
  • the present invention provides a projection screen.
  • the projection screen includes a Fresnel lens layer and a reflective layer that are sequentially stacked along the thickness direction.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspherical Fresnel lens layer.
  • the reflective layer is as described in Example 6, and will not be repeated here.
  • the fabrication method of the Fresnel lens layer is as described in Example 6, which is not repeated here, except that colored particles and diffusion particles are added to the base material layer of the Fresnel lens layer or the film with a certain haze.
  • the material of the colored particles dark-colored dyes or pigments such as gray or black are preferably used; for example, metal salts such as carbon black, graphite, and black iron oxide, etc. are used.
  • the diffusing particles can be selected from inorganic diffusing particles and/or organic diffusing particles.
  • the particle size of the colored particles is less than 200 ⁇ m.
  • the particle diameter of the diffusing particles is 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the thickness of the base material layer is preferably 50 to 200 ⁇ m.
  • the projection screen of this embodiment reduces the coloring layer and the diffusion layer, making the projection screen thinner and softer, which is more conducive to curling; on the other hand, the projection screen prepared in this way not only significantly reduces ambient light caused by
  • the black brightness of the image can be greatly improved, the contrast of the image can be greatly improved, and the viewing angle of the image projected on the projection screen can be expanded, and the surface uniformity of the brightness can be greatly improved.
  • the present invention provides a projection screen.
  • the projection screen includes a Fresnel lens layer and a reflective layer that are sequentially stacked along the thickness direction.
  • the Fresnel lens layer is a spherical Fresnel lens layer or an aspherical Fresnel lens layer.
  • the reflective layer is as described in Example 6, and will not be repeated here.
  • the fabrication method of the Fresnel lens layer is as described in Example 6, which is not repeated here, except that colored particles and diffusion particles are added to the adhesive layer for making the Fresnel lens layer.
  • the diffusing particles and colored particles are as described in Example 9, and will not be repeated here.
  • the inventors of the present invention have not found that, when the Fresnel lens layer in Example 5-10 is imprinted with the Fresnel lens mold shown in Example 4-5, and the Fresnel lens layer shown in Example 4-5 is
  • the surface of the lens mold has a random dot structure prepared by a laser direct writing process
  • the reflective layer adopts a coating (such as electroplating, vapor deposition, or sputtering) process, which shows a higher brightness (ie gain) than the existing projection screen. ), and a larger viewing angle (ie, half-angle).
  • the Fresnel lens layer of the existing projection screen is made by imprinting the Fresnel lens mold described in Examples 4-5, but the surface of the Fresnel lens mold does not have the random dot structure prepared by the laser direct writing process.
  • the reflective layer adopts the process of spraying aluminum. Its experimental data is shown in Figure 10. The reason is unknown and is under further study.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种投影幕布,至少包括着色层、扩散层、菲涅尔透镜层中的一层、以及反射层;其中,菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层,菲涅尔透镜层包括沿着一平面突起的若干环状凸起,若干环状凸起以环带排列,且沿着垂直于平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形,每个截面形状平行于平面的边宽度渐变,截面形状及其宽度的渐变,决定球面菲涅尔透镜层或非球面菲涅尔透镜层的聚光特性;每个环状凸起表面具有散点微结构,反射层为金属层或金属合金层,且其采用电镀、蒸镀、溅射或涂布工艺制备。投影幕布表现出比现有投影幕布具有更高的亮度、以及更大的视角。

Description

一种投影幕布 技术领域
本发明涉及显示技术领域,尤其涉及一种投影幕布。
背景技术
随着各种显示技术的发展,作为能够实现超大显示画面的投影显示技术越来越受到人们的重视。投影显示技术在显示图像效果上要达到或者超越市场主流的液晶显示技术或者有机显示技术,除了需要高品质的投影仪外,高品质的光学投影屏幕也是必不可少的关键部件。
光学投影屏幕是由一系列微细光学结构组成的可以使投影仪和环境光强在屏幕结构中重新分布的投影屏幕。其特点是可以有效的减弱环境光强和增强投影机投射的光强,提升画面对比度、亮度增益、色彩还原性、分别率等,满足人们对超高画质的需求。其中,菲涅尔屏是常见的光学投影屏幕,菲涅尔屏采用菲涅尔透镜结构原理,将一定角度入射的光束进行准直变成平行光,并最终送入人眼成像。如何进一步增强菲涅尔屏的抗环境光干扰,进而提高屏幕亮度和对比度,一直是工程人员和研发人员不断追求的目标。
另外,目前菲涅尔屏中的菲涅尔透镜常用的制备方法是金刚石车削加工方法。该加工方法制作的菲涅尔透镜的微结构精细化程度低,其槽型宽度通常为20~50um。精细化程度如此低的微结构,不利于光效利用率的提升。同时,精细化程度高的微结构又不利于菲涅尔透镜的加工。如何在保证光效利用率不变甚至提升的情况下,降低菲涅尔透镜的加工难度,也一直是工程人员和研发人员不断追求的目标。
此外,现在市场上在售的光学投影屏幕,如大日本印刷株式会社(DNP)和成都菲斯特科技有限公司,都是以厚重的刚性背板作支撑,再辅以装饰边框、挂件等配件制成的硬幕。这种硬屏形态的光学投影屏幕不仅重量重,而且体积大,且无法卷曲,不仅不利于搬运,而且占有大量的空间。
发明内容
针对上述问题或者部分上述问题。
本发明提供一种菲涅尔透镜,该菲涅尔透镜包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形,所述三角形的平行于所述平面的边称为第一边,其余的两条边称为第二边以及第三边;其中,每个三角形的第一边的高H均相同,每个三角形的第三边与第一边的夹角α1为90度。
本发明提供另一种菲涅尔透镜,所述菲涅尔透镜包括沿着一平面凸起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为多台阶形,所述多台阶形的平行于所述平面的边称为第一边,具有台阶状的边称为第二边,不具有台阶状的边称为第三边,第三边垂直于第一边,且每个台阶的两条边中,一条边垂直于第一边,另一条边平行于第一边;每个多台阶形的离第一边最远的台阶的平行于第一边的边,到第一边的垂直距离称为第一边的高H,每个多台阶形的第一边的高H均相等。
可选的,第一边的高H为:
Figure PCTCN2022072479-appb-000001
从中心向外数,第j个三角形或多台阶形的第一边的长度Lj:
Figure PCTCN2022072479-appb-000002
其中,P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
可选的,第一边的高H为1~20μm。
可选的,每个三角形的第二边与第一边的夹角β1为65~81度。
可选的,第一边的长度为0.02~0.3mm。
可选的,环状凸起的表面具散点微结构。
本发明提供一种菲涅尔透镜的设计方法,所述菲涅尔透镜包括沿着一平面凸起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形,所述三角形或多台阶形的平行于所述平面的边称为第一边,从中心向外数,第j个三角形或多台阶形的第一边的长度Lj:
Figure PCTCN2022072479-appb-000003
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
可选的,第j个三角形或多台阶形的第一边的长度Lj获取包括如下步骤:
步骤1:假设球面透镜的半径为R,折射率为n,则球面透镜的焦距为
Figure PCTCN2022072479-appb-000004
步骤2:将透镜曲面进行塌陷,每次塌陷的高度为:
Figure PCTCN2022072479-appb-000005
第j个环,塌陷j次;
步骤3:假设第j个环带的半径为aj,根据三角关系有:
Figure PCTCN2022072479-appb-000006
展开得到:
Figure PCTCN2022072479-appb-000007
其中
Figure PCTCN2022072479-appb-000008
相对于2R来说很小,可以作忽略近似,那么近似后的半径表达式为:
Figure PCTCN2022072479-appb-000009
步骤4:第j个三角形的第一边的长度Lj:
Figure PCTCN2022072479-appb-000010
本发明提供一种菲涅尔透镜的模具,所述菲涅尔透镜模具包括沿着一平面凸起的若干环状微结构单元,所述若干环状微结构单元以环带排列,且沿着垂直于所述平面的截面,每个环状微结构单元的截面形状为三角形或多台阶形,所述三角形或多台阶形的平行于所述平面的边称为第一边,从中心向外数,第j个三角形或多台阶形的第一边的长度L j:
Figure PCTCN2022072479-appb-000011
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
类似于实施例1-2中的三角形或多台阶形第一边的高H的定义,该环状微结构单元的截面形状的三角形或多台阶形的第一边的高H为:
Figure PCTCN2022072479-appb-000012
其中,n为菲涅尔透镜的折射率。
本发明提供一种菲涅尔透镜的模具制备方法。该菲涅尔透镜的模具制备方法包括如下步骤:
步骤1,提供三维模型图。
步骤2:设定至少一个曲率函数f1(x),根据所述曲率函数f1(x),确定三维模型中点的高度。
步骤3:将所述三维模型图在高度方向上进行划分获得多个高度区间。
步骤4:将三维模型图在平面上进行投影得到灰度图;其中,所述灰度图包括多个像素点,每个像素点包括像素点的位置、以及灰度值;所述三维模型图在水平面上的投影包括多个点,每个点包括位置、以及高度值;每个点的位置对应于灰度图中的像素点的位置;根据设定的三维模型图的高度值所在的高度区间的高度范围,与对应的灰度取值范围的对应函数f2(x),计算得到所述高度值对应的灰度值,获得所述灰度图对应像素点的灰度值。
步骤5:在目标载体上涂布光刻胶,根据所述灰度图进行光刻,其中,根据灰度值与光刻时间的对应函数f3(x),通过曝光显影在目标载体上形成图形化结构。
步骤6:采用UV转印或金属生长的方式将图形化结构转移到另一载体上,形成与菲涅尔透镜的图案互补的模具。
本发明提供另一种菲涅尔透镜模具的制备方法。该菲涅尔透镜模具制备方法包括如下步骤:
步骤1:提供三维模型图。
步骤2:设定至少一个曲率函数f1(x),根据所述曲率函数f1(x),确定三维模型中点的高度。
步骤3:将所述三维模型图在高度方向上进行划分获得多个高度区间。
步骤4:将三维模型图在平面上进行投影得到灰度图;其中,所述灰度图包括多个像素点,每个像素点包括像素点的位置、以及灰度值;所述三维模型图在水平面上的投影包括多个点,每个点包括位置、以及高度值;每个点的位置对应于灰度图中的像素点的位置;根据设定的三维模型图的高度值所在的高度区间的高度范围,与对应的灰度取值范围的对应函数f2(x),计算得到所述高度值对应的灰度值,获得所述灰度图对应像素点的灰度值。
步骤5:根据所述灰度图取样出多套二值图。
步骤6:在目标载体上涂布光刻胶,基于所述多套二值图进行叠加光刻,通过曝光显影以在目标载体上形成图形化结构。
步骤7:采用UV转印或金属生长的方式将图形化结构转移到另一载体上,形成与菲涅尔透镜的图案互补的模具。
可选的,三维模型图的三维模型为圆锥形,
圆锥形的底面圆的半径R为:
Figure PCTCN2022072479-appb-000013
圆锥形母线的长度L和底面圆的夹角α为:
Figure PCTCN2022072479-appb-000014
其中:
Figure PCTCN2022072479-appb-000015
P为大于等于1的整数,n为菲涅尔透镜材料的折射率,λ为中心波长,f为菲涅尔透镜的焦距,N为总的环状微结构单元数。
可选的,三维模型图的三维模型为半球形,半球底面圆的半径R为:
Figure PCTCN2022072479-appb-000016
可选的,曲率函数f1(x)为:
f 1(x)=xtanα…………4-5
可选的,曲率函数f1(x)为:
Figure PCTCN2022072479-appb-000017
其中,
Figure PCTCN2022072479-appb-000018
其中,自变量x指的是圆锥底面圆或半球底面圆的某个半径上的点,到该半径的远离底面圆中心的一端的距离。
可选的,以平行于圆锥底面的平面,把圆锥划分为N份;从圆锥的顶部数,第j+1个区间所截圆锥母线的长度ΔLj+1为:
Figure PCTCN2022072479-appb-000019
可选的,以平行于半球底面圆的平面,把半球划分为N等份,每份的长度:
Figure PCTCN2022072479-appb-000020
可选的,灰度取值范围内的灰度值和第j+1区间的高度范围内的高度值对应的函数f2(x)优选为:
Figure PCTCN2022072479-appb-000021
可选的,灰度取值范围内的灰度值和第j+1区间的高度范围内的高度值对应的函数f2(x)优选为:
Figure PCTCN2022072479-appb-000022
其中,灰度取值范围为大于等于0,小于等于Qmax。其中,Qmax为灰度值取值范围中的最大的灰度值,自变量x指的是高度范围内的高度值。
可选的,光刻时间与灰度值对应函数f3(x)优选为:
Figure PCTCN2022072479-appb-000023
其中,η为光刻的速率;自变量x指的是灰度值。
可选的,
f 3(X)=f 3(x 2)…………4-13
其中,
x 1≤x<x 2
可选的,
Figure PCTCN2022072479-appb-000024
Figure PCTCN2022072479-appb-000025
其中,M是台阶的个数,i是取值为大于等于0,且小于M的整数。
可选的,根据台阶个数M,取样M-1套二值图;其中,
将灰度值在第k个范围内的像素点赋值为黑,灰度值在其他范围的像素点赋值为白,以得到第k套二值图;或者,
将灰度值在第k个范围内的像素点赋值为白,灰度值在其他范围的像素 点赋值为黑,以得到第k套二值图;
其中,第k个范围区间至少部分覆盖第k-1个范围区间,M为大于等于2的整数,黑代表二值中的1,白代表二值中0。
可选的,光刻后对所述目标载体进行烘烤,以获得光滑的图案化结构。
本发明提供一种投影幕布,所述投影幕布包括沿厚度方向依次层叠设置的着色层、扩散层、菲涅尔透镜层以及反射层;或者,
所述投影幕布包括沿厚度方向依次层叠设置的扩散层、着色层、菲涅尔透镜层以及反射层。
本发明提供一种投影幕布,所述投影幕布包括沿厚度方向依次层叠设置的着色层、菲涅尔透镜层以及反射层;其中,在菲涅尔透镜层中加入了扩散粒子。
本发明提供一种投影幕布,所述投影幕布包括沿厚度方向依次层叠设置的扩散层、菲涅尔透镜层以及反射层,其中,在菲涅尔透镜层中加入了着色粒子。
本发明提供一种投影幕布,所述投影幕布包括沿厚度方向依次层叠设置的菲涅尔透镜层以及反射层;其中,在菲涅尔透镜层的基材层,或者具有一定雾度的薄膜中加入了着色粒子和扩散粒子,或者在菲涅尔透镜中加入了着色粒子和扩散粒子。
可选的,菲涅尔透镜层设置在基材上,其中,基材为光透过率大于75%的高透过率树脂材料,厚度为10~200μm。
可选的,菲涅尔透镜层和基材一体形成;或者菲涅尔透镜层通过光学透明胶(OCA)贴合于基材上。
可选的,菲涅尔透镜层设置在具有一定雾度的薄膜上;其中,薄膜的雾度值为50~90%,厚度为50~200μm。
可选的,菲涅尔透镜层通过OCA贴合于一定雾度的薄膜上。
可选的,菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
可选的,OCA的厚度为10~200μm。
可选的,着色层的厚度为10~200μm,其光透过率为50~90%。
可选的,着色层为镀镍层,其光透过率为50~90%。
可选的,扩散层是混合有扩散粒子的透光性的树脂。
可选的,扩散层的厚度为50~1000μm。
可选的,扩散层为具有扩散功能的微纳结构,横截面形状为弧形、三角形、正方形、矩形、梯形或不规则形中的一种或两种及以上的组合。
可选的,微纳结构的高度为1~20μm。
可选的,微纳结构用柔性的材质制造。
可选的,扩散层为半透半反膜,其雾度值为50~90%,透过率为55-65%。
可选的,反射层是金属反射层,或者合金反射层。
可选的,所述金属反射层包括铝、银、金、铬、镍、铜;所述合金反射层包括镍铬合金、铝合金、钛合金。
可选的,反射层为铝金属反射层,采用镀膜或者喷涂技术制备。
可选的,采用镀膜技术制备时,铝金属反射层厚度为0.04~3μm。
可选的,铝粒子的粒径小于等于500nm。
可选的,采用喷涂技术制备时,铝金属反射层厚度为10~20μm。
可选的,铝粒子的粒径大于5μm。
可选的,菲涅尔透镜材料的折射率和扩散粒子的折射率之差小于0.4。
可选的,着色粒子的粒径为小于200μm。
可选的,扩散粒子粒径为1-50μm。
本发明还提供一种投影幕布的制备方法,该制备方法包括:扩散层、着色层、菲涅尔透镜层中任意两者通过OCA贴合;或者,
扩散层、着色层采用涂布的方式制备,然后再通过OCA和菲涅尔透镜 层贴合;或者,
着色层镀在扩散层的一个表面、然后扩散层的另一表面通过OCA和菲涅尔透镜层贴合;或者,
着色层镀在扩散层的一个表面、然后着色层远离扩散层的一面通过OCA和菲涅尔透镜层贴合。
可选的,菲涅尔透镜层贴合好以后,在菲涅尔透镜层表面制备反射层。
可选的,在菲涅尔透镜层贴合以前,在其表面制备反射层。
可选的,OCA的厚度为10~200μm。
可选的,菲涅尔透镜层采用卷对卷工艺制备。
可选的,首先在基材、或者具有一定雾度的薄膜、或者扩散层、或者着色层上涂布胶层;然后用上述菲涅尔透镜的模具在胶层上采用卷对卷压印工艺,压印形成菲涅尔透镜层。
可选的,最后烘干固化。
可选的,在制作上述菲涅尔透镜模具时,菲涅尔透镜模具的表面,具有利用激光直写工艺制备的随机点结构,然后再用该模具来压印形成菲涅尔透镜层,使得菲涅尔透镜层的环状凸起的表面具有散点微结构。
本发明至少取得如下优点:
(1).本发明提供一种在保证光效利用率不变的情况下,降低菲涅尔透镜的加工难度的菲涅尔透镜模具的设计方法。
(2).本发明提供两种简单的菲涅尔透镜模具的制备方法。
(3).本发明提供一种比现有投影幕布更加高的亮度、以及更大视角的投影幕布。
附图说明
图1为本发明提供的第一实施例的菲涅尔透镜的结构示意图;图1a是 俯视图,图1b是截面图,图1c为单个微结构单元截面图。
图2为本发明提供的第二实施例的菲涅尔透镜的结构示意图;图2a是俯视图,图2b是截面图,图2c为单个微结构单元截面图。
图3为本发明提供的第三实施例的菲涅尔透镜设计所用的几何图。
图4a和4b为本发明提供的第四实施例的制备菲涅尔透镜的模具所用的三维模型图;其中,图4a是三维模型图为锥形时的立体图,图4b是锥形的轴截面。
图5a-5c为本发明提供的第六实施例的投影幕布结构示意图。
图6为本发明提供的第七实施例的投影幕布结构示意图。
图7为本发明提供的第八实施例的投影幕布结构示意图。
图8为本发明提供的第九实施例的投影幕布结构示意图。
图9为本发明提供的第十实施例的投影幕布结构示意图。
图10为菲涅尔透镜表面具随机点,且采用镀膜工艺制备反射层的测试结果。
具体实施方式
以下将通过实施例来详细说明本申请的实施方式,借此对本申请如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本申请中所用原料、设备,若无特别说明,均为本领域的常用原料、设备,均来自市售产品。本申请中所用方法,若无特别说明,均为本领域的常规方法。
实施例1
图1为本发明提供的第一种菲涅尔透镜的结构示意图;图1a是俯视图,图1b是截面图。如图1a-1b所示,菲涅尔透镜包括沿着一平面突起的若干 环状凸起,所述若干环凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形,所述三角形的平行于所述平面的边称为第一边a1,其余的两条边称为第二边b1以及第三边c1,如图1c所示;其中,每个三角形的第一边a1的高H均相同。同时,为了有利于采用后述的微纳光刻方法来制备该菲涅尔透镜的模具,每个三角形的第三边c1与第一边a1的夹角α1优选为90度。其中,每个三角形截面的第一边a1宽度渐变,高度不变,使得三角形的截面呈现渐变,截面形状及其宽度的渐变,决定球面菲涅尔透镜层或非球面菲涅尔透镜层的聚光特性。
三角形第一边a1的高H为:
Figure PCTCN2022072479-appb-000026
其中,P为大于等于1的整数,λ为中心波长,n为菲涅尔透镜的折射率。
从中心向外数,第j个三角形的第一边a1的长度Lj为:
Figure PCTCN2022072479-appb-000027
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
作为一个可选的实施方式,每个三角形的第二边b1与第一边a1的夹角β1优选为65~81度,第一边a1的高优选为1~20μm,第一边a1的长度优选为0.02~0.3mm。
实施例2
图2为本发明提供的菲涅尔透镜的结构示意图;图2a是俯视图,图2b是截面图。如图2a-2b所示,菲涅尔透镜包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环 状凸起的截面形状为多台阶状,所述多台阶状的平行于所述平面的边称为第一边a2,具有台阶状的边称为第二边b2,不具有台阶状的边称为第三边c2,如图2c所示。为了采用后述的微纳光刻方法,来制备该菲涅尔透镜的模具,第三边c2垂直于第一边a2,且每个台阶的两条边中,一条边d1垂直于第一边a2,另一条边d2平行于第一边a2,如图2c所示。同时,每个多台阶状离第一边a2最远的台阶的平行于第一边a2的边d2,到第一边a2的垂直距离称为第一边a2的高H,每个多台阶形的第一边a1的高H均相同。其中,每个多台阶状截面的第一边a2宽度渐变,高度不变,使得多台阶状的截面呈现渐变,截面形状及其宽度的渐变,决定球面菲涅尔透镜层或非球面菲涅尔透镜层的聚光特性。
高H为:
Figure PCTCN2022072479-appb-000028
其中,P为大于等于1的整数,λ为中心波长,n为菲涅尔透镜的折射率。
从中心向外数,第j个多台阶形的第一边a2的长度Lj:
Figure PCTCN2022072479-appb-000029
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
作为一个可选的实施方式,第一边a2的高优选为1~20μm,第一边a2长度优选为0.02~0.3mm。
在本发明的其他实施例中,环状凸起的截面形状还可以为自由面形。具体的,菲涅尔透镜包括沿着一平面凸起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为自由面形,所述自由面形的平行于所述平面的边称为第一边,形状呈自由变化 的边称为第二边,另一边称为第三边;第二边与第三边的交点到第一边的垂直距离称为第一边的高H,每个自由面形的第一边的高H均相等。同时,为了有利于采用后述的微纳光刻方法来制备该菲涅尔透镜的模具,每个第三边与第一边的夹角α1优选为90度。其中,每个自由面形截面的第一边a1宽度渐变,高度不变,使得自由面形的截面呈现渐变,截面形状及其宽度的渐变,决定球面菲涅尔透镜层或非球面菲涅尔透镜层的聚光特性。
实施例3
本发明提供一种菲涅尔透镜的设计方法。所述菲涅尔透镜包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形,所述三角形或多台阶形或自由面形的平行于所述平面的边称为第一边,从中心数,第j个三角形或多台阶形或自由面形的第一边的长度Lj:
Figure PCTCN2022072479-appb-000030
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
其中,如图3所示,第j个三角形或多台阶形或自由面形的第一边的长度Lj通过如下步骤获得:
步骤1:假设球面透镜的半径为R,透镜材料的折射率为n,则球面透镜的焦距f为:
Figure PCTCN2022072479-appb-000031
步骤2:将透镜曲面进行塌陷,每次塌陷的高度H为:
Figure PCTCN2022072479-appb-000032
第j个环,塌陷j次;
步骤3:假设第j个环带的半径为aj,根据三角关系有:
Figure PCTCN2022072479-appb-000033
展开得到:
Figure PCTCN2022072479-appb-000034
其中
Figure PCTCN2022072479-appb-000035
相对于2R来说很小,可以作忽略近似,那么近似后的半径表达式为:
Figure PCTCN2022072479-appb-000036
步骤4:第j个三角形或多台阶形或自由面形的第一边的长度Lj:
Figure PCTCN2022072479-appb-000037
从上式3-4或3-5能看出,此结构的菲涅尔透镜模具的微结构单元的周期得到了明显的扩大,扩大倍数为
Figure PCTCN2022072479-appb-000038
倍。因此,一定程度上能够减小加工难度。
实施例4
本发明提供一种菲涅尔透镜的模具制备方法。所述菲涅尔透镜模具包括沿着一平面凸起的若干环状微结构单元,所述若干环状微结构单元以环带排列,且沿着垂直于所述平面的截面,每个环状微结构单元的截面形状为三角形或多台阶形或自由面形,所述三角形或多台阶形或自由面形的平行于所述平面的边称为第一边,从中心向外数,第j个三角形或多台阶形或自由面形的第一边的长度L j:
Figure PCTCN2022072479-appb-000039
其中P为大于等于1的整数,λ为中心波长,f为菲涅尔透镜的焦距。
类似于实施例1-2中的三角形或多台阶形或自由面形第一边的高H的定义,该环状微结构单元的截面形状的三角形或多台阶形或自由面形的第一边的高H为:
Figure PCTCN2022072479-appb-000040
其中,n为菲涅尔透镜的折射率。
该菲涅尔透镜的模具制备方法包括如下步骤:
步骤1,提供三维模型图。具体的,三维模型图的三维模型优选为圆锥形,如图4a所示。
圆锥形的底面圆的半径R为:
Figure PCTCN2022072479-appb-000041
圆锥形母线的长度L和底面圆的夹角α为:
Figure PCTCN2022072479-appb-000042
其中:
Figure PCTCN2022072479-appb-000043
P为大于等于1的整数,λ为中心波长,n为菲涅尔透镜材料的折射率,f为菲涅尔透镜的焦距,N为总的环状微结构单元数。
作为一个可选的实施方式,三维模型图的三维模型优选为半球形。半球 底面圆的半径R,也即半球的半径,为:
Figure PCTCN2022072479-appb-000044
P为大于等于1的整数,λ为中心波长,n为菲涅尔透镜材料的折射率,f为菲涅尔透镜的焦距,N为总的环状微结构单元数。
步骤2:设定至少一个曲率函数f1(x),根据所述曲率函数f1(x),确定三维模型中点的高度。具体的,该曲率函数f1(x)优选为:
f 1(x)=xtanα…………4-5
其中,自变量x指的是圆锥形底面圆的某个半径上的点,到该半径的远离底面圆中心的一端的距离。
作为一个可选的实施方式,该曲率函数f1(x)优选为:
Figure PCTCN2022072479-appb-000045
其中,
Figure PCTCN2022072479-appb-000046
自变量x指的是半球底面圆的某个半径上的点,到该半径的远离半球底面圆中心的一端的距离。
步骤3:将所述三维模型图在高度方向上进行划分获得多个高度区间。具体为,以平行于圆锥底面的平面,把圆锥划分为N份,如图4b所示。从圆锥的顶部数,第j+1个区间所截圆锥母线的长度ΔLj+1为:
Figure PCTCN2022072479-appb-000047
作为一个可选的实施方式,以平行于半球底面圆的平面,把半球划分为N等份。每份的长度:
Figure PCTCN2022072479-appb-000048
步骤4:将三维模型图在平面上进行投影得到灰度图。其中,所述灰度图包括多个像素点,每个像素点包括像素点的位置、以及灰度值;所述三维模型图在水平面上的投影包括多个点,每个点包括位置、以及高度值。每个点的位置对应于灰度图中像素点的位置,将所述三维模型图的每个高度区间对应于灰度取值范围。例如,灰度取值范围为0~64,或者0~256。根据三维模型图的高度值所在的高度区间的高度范围,与灰度取值范围的对应函数f2(x),计算得到所述高度值对应的灰度值,获得所述灰度图的对应像素点的灰度值。具体的,灰度取值范围内的灰度值和第j+1区间的高度范围内的高度值对应的函数f2(x)优选为:
Figure PCTCN2022072479-appb-000049
作为一个可选的实施方式,灰度取值范围内的灰度值和第j+1区间的高度范围内的高度值对应的函数f2(x)优选为:
Figure PCTCN2022072479-appb-000050
其中,灰度取值范围为大于等于0,小于等于Qmax。其中,Qmax为灰度值取值范围中的最大的灰度值,自变量x指的是高度范围内的高度值。
步骤5:在目标载体上涂布光刻胶,根据所述灰度图进行光刻,获得图案化结构。可以将灰度图分割成复数个单元图后进行光刻,根据灰度值与光刻时间的对应函数f3(x),通过曝光显影在目标载体上形成斜坡。其中,灰度图的像素点的灰度值越高,光刻的时间越久,可以光刻的更深,灰度图的像素点的灰度值越低,光刻的时间越短,可以光刻的更浅。具体的,光刻时间与灰度值对应函数f3(x)优选为:
Figure PCTCN2022072479-appb-000051
其中,η为光刻的速率,即单位时间光刻的深度;自变量x指的是灰度值。
作为一个可选的实施方式,当灰度值取某个范围时,光刻时间不变。即:
f 3(x)=f 3(x 2)…………4-13
其中,
x 1≤x<x 2
作为一个可选的实施方式,
Figure PCTCN2022072479-appb-000052
Figure PCTCN2022072479-appb-000053
其中,M是台阶的个数,i是取值为大于等于0,且小于M的整数。
步骤6:采用UV转印或金属生长的方式将图案化结构转移到另一载体 上,形成与菲涅尔透镜的图案互补的模具。
与现有技术相比,本实施例的菲涅尔透镜的模具制备方法是,通过将三维模型图在平面上进行投影得到灰度图,按照高度将所述三维模型图划分成多个高度区间,每个高度区间的高度范围对应于灰度取值范围,可以将三维模型图轻易的转化成灰度图,从而容易实现菲涅尔透镜模具的制作。
实施例5
本发明提供一种菲涅尔透镜模具的制备方法。该菲涅尔透镜模具制备方法包括如下步骤:
步骤1:提供三维模型图。
步骤2:设定至少一个曲率函数,根据所述曲率函数,确定三维模型中点的高度。
步骤3:将所述三维模型图在高度方向上进行划分获得多个高度区间。
步骤4:将三维模型图在平面上进行投影得到灰度图。
其中,步骤1-4的具体过程,和实施例4的步骤1-4相同,在此不再累述。
步骤5:根据所述灰度图取样出多套二值图。具体为,
根据台阶个数M,取样M-1套二值图;
将灰度值在第一个范围内的像素点赋值为黑(或白),灰度值在其他范围的像素点赋值为白(或黑),以得到第一套二值图;
将灰度值在第二个范围内的像素点赋值为黑(或白),灰度值在其他范围的像素点赋值为白(或黑),以得到第二套二值图;
将灰度值在第k个范围内的像素点赋值为黑(或白),灰度值在其他范围的像素点赋值为白(或黑),以得到第k套二值图;
其中,第k个范围区间至少部分覆盖第k-1个范围区间,M为大于等 于2的整数,黑代表二值中的1,白代表二值中0。
步骤6:在目标载体上涂布光刻胶,基于所述的多套二值图进行叠加光刻,通过曝光显影以在目标载体上形成多台阶形的图案化结构。
作为一个优选的实施实施方式,在叠加光刻后对所述目标载体进行烘烤,以获得光滑的图案化结构。
步骤7:采用UV转印或金属生长的方式将图案化结构转移到另一载体上,形成与菲涅尔透镜的图案互补的模具。
本实施例采用多套二值图进行叠加光刻的方式来制备菲涅尔透镜模具。因此,可以有效解决灰度光刻法制备菲涅尔透镜模具耗时长,效率低的问题。
实施例6
本发明提供一种投影幕布,如图5a-5b所示,该投影幕布包括沿厚度方向依次层叠设置的着色层、扩散层、菲涅尔透镜层以及反射层。菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
作为一个可选的实施方式,如图5c所示,投影幕布包括沿厚度方向依次层叠设置的扩散层、着色层、菲涅尔透镜层以及反射层。
作为一个可选的实施方式,投影幕布包括沿厚度方向依次层叠设置的扩散层、菲涅尔透镜层、着色层以及反射层。其中,着色层设置在菲涅尔透镜层的若干环状凸起表面,反射层设置在着色层的表面。
着色层具有吸收入射至投影幕布的环境光、降低图像的黑色亮度、提高图像的对比度等功能。着色层通常是在光透过率大于75%的高透过率树脂中均匀混合着色剂,再通过注塑挤出拉伸或热固化等方式加工成型。作为着色剂,优选使用灰色系或黑色系等暗色系的染料或颜料等;例如,炭黑、石墨、黑色氧化铁等金属盐等。作为高透光率的树脂可选用PET(聚对苯二甲酸乙二醇酯)树脂、PC(聚碳酸酯)树脂、MS(甲基丙烯酸甲酯·苯乙烯)树脂、 MBS(甲基丙烯酸甲酯·丁二烯·苯乙烯)树脂、TAC(三乙烯纤维素)树脂、PEN(聚萘二甲酸乙二醇酯)树脂、丙烯酸系树脂等。着色层的厚度优选10~200μm,其光透过率优选50~90%。
作为一个可选的实施方式,着色层为镀镍层,其光透过率优选50~90%。
扩散层是为了扩大视场角、以及增加幕布面内光亮度的均匀性。扩散层可以是在具有透光性的树脂中均匀混合具有漫光散射功能的扩散粒子的薄膜,如图5a所示。其中,为了扩大视场角以及增加亮度的面均匀性,树脂的折射率和扩散粒子的折射率之差小于0.4。树脂例如优选使用PET(聚对苯二甲酸乙二醇酯)树脂、PC(聚碳酸酯)树脂、MS(甲基丙烯酸甲酯·苯乙烯)树脂、MBS(甲基丙烯酸甲酯·丁二烯·苯乙烯)树脂、TAC(三乙烯纤维素)树脂、PEN(聚萘二甲酸乙二醇酯)树脂、丙烯酸系树脂等。扩散粒子可以选择无机扩散粒子和/或有机扩散粒子,无机扩散粒子选自氧化铝、氧化锑、氧化镉、氧化钽、氧化锆、氧化铁、氧化铜、氧化铅、氧化锰、氧化锡、氧化钨、硒化锌、氧化铌、碲化锌、氧化钒、氧化钼、硫化锌、氧化锌、硫化镉、硒化镉、氧化钛、硫化铅中的一种或多种材料形成的粒子;有机扩散粒子可选自聚苯乙烯、丙烯酸树脂、聚氨酯、聚四氟乙烯、密胺树脂、苯代三聚氰胺树脂、环氧树脂或硅树脂中的一种或多种材料形成的粒子。扩散粒子的粒径为1~50μm,优选5~30μm。扩散层的厚度为50~1000μm,优选为188μm。
作为一个可选的实施方式,如图5b所示,扩散层为具有扩散功能的微纳结构,其高度为1~20μm,横截面形状为弧形、三角形、正方形、矩形、梯形或不规则形中的一种或两种及以上的组合。出于投影幕布具有柔性,能够被卷曲的目的,微纳结构优选用柔性的材质制造,例如树脂。
作为一个可选的实施方式,扩散层可为半透半反膜,其雾度值优选为50~90%,透过率优选为55~65%。
所述反射层可以是金属反射层,也可以是合金反射层。所述金属反射层 包括但不限于:铝、银、金、铬、镍、铜;所述合金反射层包括但不限于:镍铬合金、铝合金、钛合金。
作为一个优选的实施方式,反射层优选铝金属反射层,采用电镀或者喷涂技术制备。采用电镀技术制备时,其厚度优选0.04~3μm,且其铝粒子的粒径优选500nm以内;采用喷涂技术制备时,其厚度小于10~20μm,粒径大于5μm。
菲涅尔透镜层起到调节投影光束传输方向的作用。菲涅尔透镜层为实施例1-2所述的菲涅尔透镜。
作为一个可选的实施方式,为了使投影幕布具有更强的亮度(即增益)、以及更大的视角(即半视角),菲涅尔透镜层的凸起的表面具有散点微结构,如图5c所示。
作为一个可选的实施方式,菲涅尔透镜层设置在基材上。其中,基材优选光透过率大于75%的高透过率树脂材料,其厚度优选为10~200μm。
作为一个可选的实施方式,菲涅尔透镜层可以和基材一体形成。
作为一个可选的实施方式,菲涅尔透镜层可以通过光学透明胶(OCA)贴合于基材上,光学透明胶的厚度优选为10~200μm。
作为一个可选的实施方式,菲涅尔透镜层设置在具有一定雾度的薄膜上。其中,薄膜的雾度值优选为50~90%,厚度优选为50~200μm。
作为一个可选的实施方式,菲涅尔透镜层通过OCA贴合于一定雾度的薄膜或板材上,OCA的厚度优选为10~200μm。
本发明还提供一种投影幕布的制备方法。
扩散层、着色层、菲涅尔透镜层依次通过OCA贴合;或者着色层、扩散层、菲涅尔透镜层依次通过OCA贴合;其中OCA的厚度为10~200μm。
作为一个可选的实施方式,扩散层、着色层依次采用涂布的方式制备,然后再通过OCA和菲涅尔透镜层贴合;或者着色层、扩散层依次采用涂布 的方式制备,然后再通过OCA和菲涅尔透镜层贴合;其中,OCA的厚度为10~200μm。
作为一个可选的实施方式,菲涅尔透镜层采用卷对卷工艺制备。具体地,首先在基材、或者具有一定雾度的薄膜、或者扩散层、或着色层上涂布胶层;然后用实施例4-5所述的菲涅尔透镜模具在胶层上采用卷对卷压印工艺,压印形成菲涅尔透镜层;最后烘干固化。
作为一个可选的实施方式,为了使投影幕布具有更强的亮度(即增益)、以及更大的视角(即半视角),在制作实施例4-5的菲涅尔透镜模具时,菲涅尔透镜模具的表面,具有利用激光直写工艺制备的随机点结构,然后再用该模具来压印形成菲涅尔透镜层,使得菲涅尔透镜层的环状凸起的表面具有散点微结构。
作为一个可选的实施方式,着色层镀在扩散层的一个表面、然后扩散层的另一表面通过OCA和菲涅尔透镜层贴合;或者着色层镀在扩散层的一个表面、然后着色层远离扩散层的一面通过OCA和菲涅尔透镜层贴合;其中,OCA的厚度为10~200μm。
菲涅尔透镜层贴合好以后,在菲涅尔透镜层表面制备反射层。
作为一个优选的实施方式,在菲涅尔透镜层贴合以前,在其表面制备反射层。
作为一个可选的实施方式,上述贴合采用卷对卷工艺。
实施例7
本发明提供一种投影幕布,如图6所示,该投影幕布包括沿厚度方向依次层叠设置的着色层、菲涅尔透镜层以及反射层。菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
着色层、反射层如实例中6所述,在此不再累述。菲涅尔透镜层的制作 方法如实例中6所述,在此不再累述,只不过在制作菲涅尔透镜层的胶层中加入了扩散粒子。菲涅尔透镜层的材料的折射率和扩散粒子的折射率的差小于0.4。扩散粒子可以是实施例5中所述的无机或有机材料的扩散粒子,在此不在累述。
该实施例的投影幕布,一方面少了扩散层,使得投影幕布变的更薄,更柔软,从而更加有利于卷曲;另一方面,菲涅尔透镜层中加入了扩散粒子,使得投影在投影幕布上的图像的观看视角更大,且亮度的面均匀性更好。
本发明还提供一种投影幕布制备方法。
着色层、菲涅尔透镜层依次通过OCA贴合;其中OCA的厚度为10~200μm。
菲涅尔透镜层贴合好以后,在菲涅尔透镜层表面制备反射层。
作为一个可选的实施方式,在菲涅尔透镜层贴合以前,在其表面制备反射层。
作为一个可选的实施方式,上述贴合采用卷对卷工艺。
实施例8
本发明提供一种投影幕布,如图7所示,该投影幕布包括沿厚度方向依次层叠设置的扩散层、菲涅尔透镜层以及反射层。菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
扩散层、反射层如实例6所述,在此不再累述。菲涅尔透镜层的制作方法如实例中6所述,在此不再累述,只不过在制作菲涅尔透镜层的胶层中加入了着色粒子。着色粒子材料,优选使用灰色系或黑色系等暗色系的染料或颜料等;例如,炭黑、石墨、黑色氧化铁等金属盐等。着色粒子的粒径优选为小于200μm。
该实施例的投影幕布,一方面减少了着色层,使得投影幕布变的更薄, 更柔软,从而更加有利于卷曲;另一方面,菲涅尔透镜层中加入了着色粒子,显著降低环境光引起的图像黑色亮度、极大的提高图像的对比度。
本发明还提供一种投影幕布制备方法。
扩散层、菲涅尔透镜层依次通过OCA贴合;其中OCA的厚度为10~200μm。
菲涅尔透镜层贴合好以后,在菲涅尔透镜表面制备反射层。
作为一个可选的实施方式,在菲涅尔透镜层贴合以前,在其表面制备反射层。
作为一个可选的实施方式,上述贴合采用卷对卷工艺。
实施例9
本发明提供一种投影幕布,如图8所示,该投影幕布包括沿厚度方向依次层叠设置的菲涅尔透镜层以及反射层。菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
反射层如实例6所述,在此不再累述。菲涅尔透镜层的制作方法如实例中6所述,在此不再累述,只不过在菲涅尔透镜层的基材层或具有一定雾度的薄膜中加入了着色粒子和扩散粒子。着色粒子的材质,优选使用灰色系或黑色系等暗色系的染料或颜料等;例如,炭黑、石墨、黑色氧化铁等金属盐等。扩散粒子可选择无机扩散粒子和/或有机扩散粒子,其材料如实施例6所述,在此不再累述。着色粒子粒径小于200μm。扩散粒子粒径为1~50μm,优选5~30μm。基材层的厚度优选50~200μm。
该实施例的投影幕布,一方面减少了着色层和扩散层,使得投影幕布变的更薄,更柔软,从而更加有利于卷曲;另一方面,这样制备的投影幕布,不仅显著降低环境光引起的图像黑色亮度、极大的提高图像的对比度,而且更能扩大投影在投影幕布上的图像的观看视角,以及极大提高亮度的面均匀 性。
实施例10
本发明提供一种投影幕布,如图9所示,该投影幕布包括沿厚度方向依次层叠设置菲涅尔透镜层以及反射层。菲涅尔透镜层为球面菲涅尔透镜层或非球面菲涅尔透镜层。
反射层如实例6所述,在此不再累述。菲涅尔透镜层的制作方法如实例中6所述,在此不再累述,只不过在制作菲涅尔透镜层的胶层中加入了着色粒子和扩散粒子。扩散粒子和着色粒子如实施例9所述,在此不再累述。
本发明人无意发现,当实施例5-10中的菲涅尔透镜层采用实施例4-5所示的菲涅尔透镜模具进行压印制作,且实施例4-5所示的菲涅尔透镜模具的表面,具有利用激光直写工艺制备的随机点结构时,反射层采用镀膜(例如电镀、蒸镀、或者溅射)工艺,其表现出比现有投影幕布更加高的亮度(即增益)、以及更大的视角(即半视角)。其中,现有的投影幕布的菲涅尔透镜层采用实施例4-5所述的菲涅尔透镜模具进行压印制作,但菲涅尔透镜模具的表面没有激光直写工艺制备的随机点结构,反射层采用喷铝的工艺。其实验数据如图10所示。其原因不详,正在进一步研究中。
本申请还存在其它多种可实施的技术方案,在此不做一一列举,本申请权利要求中要求保护的技术方案都是可以实施的。
本申请说明书中未作详细描述的内容属于本领域技术人员的公知常识。
如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非 排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (15)

  1. 一种投影幕布,其特征在于,所述投影幕布包括沿厚度方向依次层叠设置的着色层、扩散层、菲涅尔透镜层以及反射层;或者,所述投影幕布包括沿厚度方向依次层叠设置的扩散层、着色层、菲涅尔透镜层以及反射层;其中,所述菲涅尔透镜层包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形。
  2. 如权利要求1所述的投影幕布,其特征在于,反射层是金属反射层,或者合金反射层;所述金属反射层包括铝、银、金、铬、镍、铜;所述合金反射层包括镍铬合金、铝合金、钛合金;
    菲涅尔透镜层还包括设置在若干环状凸起底部的基材层、或者具有一定雾度的薄膜层;和/或
    菲涅尔透镜层的环状凸起的表面具有散点微结构。
  3. 如权利要求2所述的投影幕布,其特征在于,反射层采用电镀、蒸镀、溅射或涂布工艺制备。
  4. 一种投影幕布,其特征在于,所述投影幕布包括沿厚度方向依次层叠设置的着色层、菲涅尔透镜层以及反射层;其中,所述菲涅尔透镜层包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形;在菲涅尔透镜层的环状凸起中加入了扩散粒子。
  5. 如权利要求4所述的投影幕布,其特征在于,反射层是金属反射层,或者合金反射层;所述金属反射层包括铝、银、金、铬、镍、铜;所述合金 反射层包括镍铬合金、铝合金、钛合金;
    菲涅尔透镜层还包括设置在若干环状凸起底部的基材层、或者具有一定雾度的薄膜层;和/或
    菲涅尔透镜层的环状凸起的表面具有散点微结构。
  6. 如权利要求5所述的投影幕布,其特征在于,反射层采用电镀、蒸镀、溅射或涂布工艺制备。
  7. 一种投影幕布,其特征在于,所述投影幕布包括沿厚度方向依次层叠设置的扩散层、菲涅尔透镜层以及反射层;其中,所述菲涅尔透镜层包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形;在菲涅尔透镜层的环状凸起中加入了着色粒子。
  8. 如权利要求7所述的投影幕布,其特征在于,反射层是金属反射层,或者合金反射层;所述金属反射层包括铝、银、金、铬、镍、铜;所述合金反射层包括镍铬合金、铝合金、钛合金;
    菲涅尔透镜层还包括设置在若干环状凸起底部的基材层、或者具有一定雾度的薄膜层;和/或
    菲涅尔透镜层的环状凸起的表面具有散点微结构。
  9. 如权利要求8所述的投影幕布,其特征在于,反射层采用电镀、蒸镀、溅射或涂布工艺制备。
  10. 一种投影幕布,其特征在于,所述投影幕布包括沿厚度方向依次层叠设置的菲涅尔透镜层以及反射层,其中,所述菲涅尔透镜层包括沿着一平 面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形;在菲涅尔透镜层的底部的基材层,或者底部的具有一定雾度的薄膜中加入了着色粒子和扩散粒子,或者在环状凸起中加入了着色粒子和扩散粒子。
  11. 如权利要求10所述的投影幕布,其特征在于,菲涅尔透镜层的环状凸起的表面具有散点微结构;
    反射层是金属反射层,或者合金反射层;所述金属反射层包括铝、银、金、铬、镍、铜;所述合金反射层包括镍铬合金、铝合金、钛合金。
  12. 如权利要求11所述的投影幕布,其特征在于,反射层采用电镀、蒸镀、溅射或涂布工艺制备。
  13. 一种投影幕布的制备方法,所述投影幕布包括沿厚度方向依次层叠设置的着色层、扩散层、菲涅尔透镜层以及反射层,或者包括沿厚度方向依次层叠设置的着色层、菲涅尔透镜层以及反射层,或者包括沿厚度方向依次层叠设置的扩散层、菲涅尔透镜层以及反射层,或者包括沿厚度方向依次层叠设置的菲涅尔透镜层以及反射层,
    所述制备方法包括:扩散层、着色层、菲涅尔透镜层中任意两者通过OCA贴合;或者
    扩散层、着色层采用涂布的方式制备,然后再通过OCA和菲涅尔透镜层贴合;或者
    着色层镀在扩散层的一个表面、然后扩散层的另一表面通过OCA和菲涅尔透镜层贴合;或者
    着色层镀在扩散层的一个表面、然后着色层远离扩散层的一面通过 OCA和菲涅尔透镜层贴合。
  14. 如权利要求13所述的投影幕布的制备方法,其特征在于,所述菲涅尔透镜层包括沿着一平面突起的若干环状凸起,所述若干环状凸起以环带排列,且沿着垂直于所述平面的截面,每个环状凸起的截面形状为三角形或多台阶形或自由面形;
    反射层是金属反射层,或者合金反射层;所述金属反射层包括铝、银、金、铬、镍、铜;所述合金反射层包括镍铬合金、铝合金、钛合金。
  15. 如权利要求14所述的投影幕布的制备方法,其特征在于,菲涅尔透镜层采用卷对卷工艺制备,所述卷对卷工艺包括步骤:(1)在基材、或者具有一定雾度的薄膜、或者扩散层、或者着色层上涂布胶层,(2)用菲涅尔透镜模具在胶层上卷对卷压印;
    反射层采用电镀、蒸镀、溅射或涂布工艺制备;
    菲涅尔透镜层还包括设置在若干环状凸起底部的基材层、或者具有一定雾度的薄膜层;和/或
    菲涅尔透镜层的环状凸起的表面具有散点微结构。
PCT/CN2022/072479 2021-01-18 2022-01-18 一种投影幕布 WO2022152310A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023541710A JP2024502851A (ja) 2021-01-18 2022-01-18 投影スクリーン
US18/270,875 US20240069426A1 (en) 2021-01-18 2022-01-18 Projector curtain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110062212.2A CN114815489A (zh) 2021-01-18 2021-01-18 一种投影幕布
CN202110062212.2 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022152310A1 true WO2022152310A1 (zh) 2022-07-21

Family

ID=82446955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072479 WO2022152310A1 (zh) 2021-01-18 2022-01-18 一种投影幕布

Country Status (4)

Country Link
US (1) US20240069426A1 (zh)
JP (1) JP2024502851A (zh)
CN (1) CN114815489A (zh)
WO (1) WO2022152310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147337A1 (ja) * 2023-01-06 2024-07-11 大日本印刷株式会社 光学素子、導光板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113515021A (zh) * 2021-03-12 2021-10-19 苏州苏大维格科技集团股份有限公司 激光直写光刻机制作的三维微纳形貌结构
CN115202144B (zh) * 2022-09-14 2022-12-13 深圳市真屏科技发展有限公司 投影屏幕及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023369A (en) * 1996-08-16 2000-02-08 Dai Nippon Printing Co., Ltd. Reflection screen and front projection system
CN106990665A (zh) * 2017-05-24 2017-07-28 成都菲斯特科技有限公司 一种由八种不同功能材料组成的短距离投影屏幕及其制作方法
CN109426062A (zh) * 2017-09-01 2019-03-05 四川长虹电器股份有限公司 一种短焦距正投影显示屏幕及其制作方法
CN109426061A (zh) * 2017-09-01 2019-03-05 四川长虹电器股份有限公司 一种短焦距正投影显示屏幕及其制作方法
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
CN209765259U (zh) * 2019-06-20 2019-12-10 四川长虹电器股份有限公司 投影屏幕
CN110824825A (zh) * 2019-12-21 2020-02-21 成都菲斯特科技有限公司 投影屏幕及投影系统
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023369A (en) * 1996-08-16 2000-02-08 Dai Nippon Printing Co., Ltd. Reflection screen and front projection system
CN106990665A (zh) * 2017-05-24 2017-07-28 成都菲斯特科技有限公司 一种由八种不同功能材料组成的短距离投影屏幕及其制作方法
CN109426062A (zh) * 2017-09-01 2019-03-05 四川长虹电器股份有限公司 一种短焦距正投影显示屏幕及其制作方法
CN109426061A (zh) * 2017-09-01 2019-03-05 四川长虹电器股份有限公司 一种短焦距正投影显示屏幕及其制作方法
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
CN209765259U (zh) * 2019-06-20 2019-12-10 四川长虹电器股份有限公司 投影屏幕
CN110824825A (zh) * 2019-12-21 2020-02-21 成都菲斯特科技有限公司 投影屏幕及投影系统
CN112099303A (zh) * 2020-08-06 2020-12-18 广西佳视微电子科技有限公司 一种菲涅尔抗光投影幕及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147337A1 (ja) * 2023-01-06 2024-07-11 大日本印刷株式会社 光学素子、導光板

Also Published As

Publication number Publication date
JP2024502851A (ja) 2024-01-23
CN114815489A (zh) 2022-07-29
US20240069426A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022152310A1 (zh) 一种投影幕布
WO2014198206A1 (zh) 视觉立体漂浮图像的薄膜及其制备方法
JP2007526490A (ja) マイクロレンズアレイ・ベースの利得調整可能な透過型スクリーン
JP2006526811A (ja) マイクロレンズアレイ・ベースの高解像度かつ低映像アーチファクトの透過型スクリーン
CN110850674A (zh) 投影屏幕及投影系统
JP2006047608A (ja) 光拡散シート及びその製造方法、並びにスクリーン
CN106405699A (zh) 定向光反射元件、锥形辊筒及投影屏幕
CN215729261U (zh) 一种投影幕布
CN110824825A (zh) 投影屏幕及投影系统
JP2017111429A (ja) スクリーン及び映像表示システム
CN107430326A (zh) 反射型屏幕、影像显示系统
JP2007526492A (ja) マイクロレンズアレイ・ベースの透過型スクリーン
JP2021196609A (ja) 窓や電子機器のディスプレイのためのアンチグレア、プライバシースクリーン
CN111929978A (zh) 一种投影屏幕及投影系统
CN111929976A (zh) 一种投影屏幕及投影系统
CN110928133A (zh) 投影屏幕及投影系统
WO2019230758A1 (ja) 微細パターンフィルム、及び、ヘッドアップディスプレイ装置
WO2019201012A1 (zh) 菲涅尔投影屏幕以及投影系统
CN114690530A (zh) 一种成像显示均匀性高的光学投影屏幕及投影系统
JP4612204B2 (ja) レンズシートおよびこれを有する表示装置
CN110928130A (zh) 投影屏幕及投影系统
KR20120078395A (ko) 반사구조체 및 이를 포함하는 표시장치
WO2022110878A1 (zh) 一种光学防伪元件及其产品
CN114690531B (zh) 一种成像显示均匀性高的投影屏幕及投影系统
JP6510798B2 (ja) 反射スクリーン、映像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541710

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739185

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22739185

Country of ref document: EP

Kind code of ref document: A1