WO2020187285A1 - 光学防伪元件及光学防伪产品 - Google Patents

光学防伪元件及光学防伪产品 Download PDF

Info

Publication number
WO2020187285A1
WO2020187285A1 PCT/CN2020/080179 CN2020080179W WO2020187285A1 WO 2020187285 A1 WO2020187285 A1 WO 2020187285A1 CN 2020080179 W CN2020080179 W CN 2020080179W WO 2020187285 A1 WO2020187285 A1 WO 2020187285A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface microstructure
interference
layer
type surface
light
Prior art date
Application number
PCT/CN2020/080179
Other languages
English (en)
French (fr)
Inventor
张宝利
朱军
Original Assignee
中钞特种防伪科技有限公司
中国印钞造币总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钞特种防伪科技有限公司, 中国印钞造币总公司 filed Critical 中钞特种防伪科技有限公司
Publication of WO2020187285A1 publication Critical patent/WO2020187285A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/342Moiré effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the invention relates to the field of optical anti-counterfeiting, in particular to an optical anti-counterfeiting element and an optical anti-counterfeiting product.
  • optical anti-counterfeiting technology has been widely used in various types of high-security or high-value-added printed materials such as banknotes, ID cards, and product packaging, and has achieved very good results.
  • a micro graphic array with a certain degree of complexity can be provided, and a novel optical anti-counterfeiting effect can be provided at the same time, it will greatly improve the level of the corresponding optical anti-counterfeiting product that is difficult to forge and easy to identify.
  • a micro graphic array with a certain complexity Challenges the production of micro-graphics.
  • the usual micro-graphics array is completed by the printing process, and printed micro-graphics will inevitably have problems such as ink expansion, rough strokes, poor fineness, etc., which leads to blurred strokes in the micro-graphics array and cannot be smaller than 2 micron strokes.
  • the printed micro-graphics cannot achieve multi-color micron-level overprinting, which limits the choice of optical effects of anti-counterfeiting products, and the anti-counterfeiting capability is in urgent need of improvement.
  • the purpose of the embodiments of the present invention is to provide an optical anti-counterfeiting element and an optical anti-counterfeiting product that are easy to identify and difficult to forge.
  • an embodiment of the present invention provides an optical anti-counterfeiting element.
  • the optical anti-counterfeiting element includes: a substrate, the substrate includes a first surface and a second surface opposed to each other; and is formed on the first surface of the substrate A sampling synthesis layer on at least one part of the substrate; and a micro-image layer formed on at least one part of the second surface of the substrate, the micro-image layer including a surface microstructure and at least isomorphically covering the surface micro Structured reflective layer, the surface microstructure is an interference type surface microstructure and/or a light absorption type surface microstructure, wherein the sampling synthesis layer can sample and synthesize the micro image layer to form one or more macro synthesis image.
  • the present invention also provides an optical anti-counterfeiting product, including the above-mentioned optical anti-counterfeiting element.
  • the use of a micro graphic array with interference type and/or light absorption type surface microstructure makes the micro image and the macro composite image have high definition and contrast, and at the same time, it can realize the micro scale and the multi-color characteristics.
  • the precise alignment on the macro vision enhances the anti-counterfeiting ability of optical anti-counterfeiting components and products.
  • the optical anti-counterfeiting element of the present invention can be mass-produced using general equipment in the field.
  • Figure 1a shows a cross-sectional view of an optical security element according to an embodiment of the present invention
  • Fig. 1b shows an example distribution diagram of an interference-type surface microstructure
  • Figs. 1c and 1d show example cross-sectional views of an interference-type surface microstructure
  • FIG. 1e shows another example distribution diagram of the interference type surface microstructure
  • FIG. 1f shows another example cross-sectional view of the interference type surface microstructure
  • FIG. 1g shows another example distribution diagram of the interference type surface microstructure
  • FIG. 1h and FIG. 1i show another example cross-sectional views of the interference type surface microstructure
  • Figure 2a shows a cross-sectional view of an optical security element according to another embodiment of the present invention.
  • Fig. 2b shows an example top view of a light-absorbing surface microstructure
  • Figs. 2c to 2f respectively show four example cross-sectional views of a light-absorbing surface microstructure
  • 3a and 3b respectively show a schematic diagram of a macro image and a corresponding micro image layer used in explaining the physical principle of the sampling and synthesis layer-to-micro image layer sampling and synthesis process;
  • Figure 4a shows a cross-sectional view of an optical security element according to another embodiment of the present invention.
  • 4b, 4c and 4d respectively show the macro image effect provided by the micro image layer in the optical anti-counterfeiting element shown in FIG. 4a, the part of the sampling synthesis layer and the micro image layer;
  • Figure 5a shows a schematic diagram of the sampling synthesis layer of the optical security element according to the present invention using cylindrical microlenses
  • Figure 5b shows a schematic diagram of the sampling synthesis layer of the optical security element according to the present invention using spherical microlenses
  • Fig. 6a shows a schematic diagram of the sampling synthesis layer of the optical security element according to the present invention using defocused spherical microlenses
  • Fig. 6b shows a schematic diagram of the sampling synthesis layer of the optical security element according to the present invention using focusing spherical microlenses.
  • optical anti-counterfeiting element and the optical anti-counterfeiting product including the optical anti-counterfeiting element according to the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the drawings and specific embodiments are only descriptions of preferred embodiments of the present invention, and do not limit the scope of the present invention in any way.
  • the optical anti-counterfeiting element 1 may include: a substrate 2 including a first surface 31 and a second surface 32 opposed to each other; formed on the substrate 2
  • the sampling synthesis layer 21 on at least one subsection of the first surface 31; the micro image layer 22 formed on at least one subsection of the second surface 32 of the substrate 2, the micro image layer 22 comprising
  • the reflective layer 223 has a surface microstructure and at least covers the surface microstructure in the same shape, wherein the micro image layer 22 corresponds to the sampling synthesis layer 21, that is, the sampling synthesis layer 21 can sample and synthesize the micro image layer 22 to form one or Multiple macro composite images.
  • the surface microstructure is an interference type surface microstructure 221.
  • the sampling synthesis layer 21 may be a micro lens array layer or other micro sampling tools capable of imaging the micro image layer 22.
  • the microlens array layer can be a non-periodic array, random array, periodic array, partially periodic array or any combination thereof composed of a plurality of microlens units
  • the microlens unit can be a refractive microlens, Diffractive microlens or their combination, wherein the refractive microlens can be selected from spherical, parabolic, ellipsoidal, cylindrical, or other geometrical microlenses based on geometric optics or any combination thereof, diffractive Microlenses can be selected from harmonic diffraction microlenses, plane diffraction microlenses, and Fresnel zone plates.
  • the sampling synthesis layer 21 in FIG. 1a can be a periodic array composed of a plurality of spherical microlens units arranged in rectangular, honeycomb, diamond, triangular, etc., or it can be a periodic array of cylindrical microlenses along a certain direction. Sexual arrangement.
  • the period of the periodic or partially periodic sampling composite layer 21 in the optical anti-counterfeiting element of the present invention may be 10 ⁇ m to 200 ⁇ m, preferably 15 ⁇ m to 70 ⁇ m; the focal length of the sampling composite layer (for example, the microlens array layer) 21 It can be 10 ⁇ m to 200 ⁇ m, preferably 15 ⁇ m to 40 ⁇ m; the processing depth of the sampling composite layer (for example, the microlens array layer) 21 is preferably less than 15 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m.
  • the difference between the thickness of the base material 2 and the focal length of the sampling synthesis layer 21 is preferably less than 10 ⁇ m, and more preferably the difference is less than 3 ⁇ m.
  • the sampling synthesis layer 21 can be obtained by micro-nano processing methods such as optical exposure, electron beam exposure, etc., and can also be implemented in combination with processes such as hot melt reflow, and batch replication can be performed by processing methods such as ultraviolet casting, molding, and nanoimprinting.
  • the micro image layer 22 may be a non-periodic array, random array, periodic array, partial periodic array or a plurality of micro image units defined according to the sampling synthesis layer 21 and the desired effect. Any combination of them ensures that the sampling synthesis layer 21 can sample and synthesize the micro image layer 22 on its opposite side to form a macro synthesis image.
  • the formed image feature can be one or a combination of multiple effects such as sinking, floating, dynamic, zooming, rotating, multi-channel conversion, continuous depth-of-field changing graphics, three-dimensional graphics, and continuous multi-frame animation.
  • the color feature of the macro composite image comes from the micro image layer 22, then the number of color features that the micro image layer 22 can provide regionally determines the number of color features of the macro composite image .
  • a solution in which the interference type surface microstructure 221 is selected for a specific area in the micro image layer 22 is provided.
  • the interference type surface microstructure 221 is defined as when a light beam illuminates the interference type surface microstructure 221 at an incident angle, the light of a wavelength or wavelength range in the light beam interferes constructively in the reflected light direction.
  • the interference-type surface microstructure 221 area provides two color features that are complementary colors at different viewing angles, while the remaining areas of the micro image layer 22 cannot provide the color feature, thereby achieving the contrast and contrast of color features between different areas. Further, the macro composite image provides the color contrast and contrast contributed by different regions, so as to obtain a unique optical anti-counterfeiting element that is easy to identify and difficult to forge.
  • the area of the convex portion in the interference type surface microstructure 221 may account for 20% to 80% of the total area of the interference type surface microstructure 221, preferably 35% to 65%.
  • the cross-sectional shape of the relief unit of the interference surface microstructure 221 may be sinusoidal. As shown in FIG. 1c, the cross-sectional shape of the relief unit of the interference-type surface microstructure 221 may be sawtooth. As shown in FIG. 1d, the cross-sectional shape of the relief unit of the interference type surface microstructure 221 may be a rectangle. Those skilled in the art can understand that the cross-sectional shape of the relief unit of the interference surface microstructure 221 may also be other shapes.
  • the depth d of the interference type surface microstructure 221 can meet the following conditions, that is, when natural light (white light) illuminates the interference type surface microstructure 221 at an incident angle ⁇ , after the light beam passes through the interference type surface microstructure 221, the wavelength is ⁇ (or a wavelength Range) light interferes constructively in the direction of the reflected light, so that when the interference-type surface microstructure 221 is observed in the direction of the reflected light, the first color appears, and when the interference-type surface microstructure 221 is observed in the direction of the scattered light, it appears the same as For a second color with a different first color (as shown in Figure 1c), the same color characteristics will be reflected on the optical security element.
  • the depth d of the interference type surface microstructure 221 is usually between 100 nm and 5 ⁇ m, preferably between 200 nm and 3 ⁇ m.
  • the depth d can be determined by the following method.
  • ⁇ g the complex amplitude transmittance ⁇ g of the interference type surface microstructure 221, where ⁇ g is the depth d, the design wavelength ⁇ , the groove shape of the interference type surface microstructure 221, the material refractive index distribution n and the position (x, y) Function; 2Fourier transform of the complex amplitude transmittance ⁇ g ; 3Find the maximum condition of the reflected light with wavelength ⁇ (ie zero-order diffracted light); 4Calculate the interference type surface microstructure 221 according to the maximum reflected light condition Depth d.
  • the cross-sectional shape of the interference-type surface microstructure 221 is sinusoidal
  • the external medium is air
  • d 1528.8nm
  • the interference-type surface microstructure 221 can be made into a master by laser etching, electron beam etching, ion etching, etc., and then copied onto the substrate by processes such as electroforming, molding, and UV replication.
  • a more commonly used process is to coat an imaging layer on the surface of a substrate, and copy the interference-type surface microstructure on the imaging layer. The purpose is to improve the replication quality and efficiency of the interference-type surface microstructure.
  • the material of the interference type surface microstructure 221 can be, for example, ZnS, ZnO, Ta 2 O 5 , SnO 2 , Nb 2 O 5 , HfO 2 , In 2 O 3 , CeO 2 , Dy 2 O 3 , Bi 2 O 3 , MgF 2.
  • the substrate can be, for example, a transparent material such as PET, PVC, PE, or a carrier such as paper, printed matter, and packaging.
  • the substrate may also be a carrier in the processing process, and be peeled off during later application.
  • FIG. 1e and FIG. 1f show another preferred form of the interference type surface microstructure 221.
  • the interference-type surface microstructure 221 may be located on the xoy plane (or a plane parallel to the xoy plane).
  • the characteristic size of the interference type surface microstructure 221 in the x-axis direction may be greater than 6 ⁇ m, preferably greater than 10 ⁇ m, so that the interference type surface microstructure 221 has no diffraction effect in this direction.
  • the feature size of the interference-type surface microstructure 221 in the y-axis direction may be 0.3 ⁇ m to 6 ⁇ m, preferably 0.6 ⁇ m to 3 ⁇ m, and the interference type surface microstructure 221 may be a random or pseudo-random distribution of the relief units of the micro-relief structure.
  • the area of the convex portion in the interference-type surface microstructure 221 may account for 20% to 80% of the total area of the micro relief structure 202, preferably 35% to 65%.
  • FIG. 1f is a schematic cross-sectional view of the interference type surface microstructure 221 in the Yoz plane (or a plane parallel to the Yoz plane). As shown in FIG.
  • the cross-sectional shape of the relief unit of the interference surface microstructure 221 may be sinusoidal. However, those skilled in the art can understand that the cross-sectional shape of the relief unit of the interference-type surface microstructure 221 may be sawtooth, rectangular or other shapes.
  • the depth d of the interference type surface microstructure 221 can meet the following conditions, that is, when natural light (white light) illuminates the interference type surface microstructure 221 at an incident angle ⁇ , after the light beam passes through the interference type surface microstructure 221, the wavelength is ⁇ (or a wavelength Range) light interferes constructively in the reflected light direction, so that the first color is observed in the reflected light direction.
  • the same color Features will be reflected in the optical security element.
  • Figures 1g to 1i show another preferred form of the interference type surface microstructure 221.
  • the interference-type surface microstructure 221 is located on the xoy plane (or a plane parallel to the xoy plane), and the feature size in the y-axis direction can be, for example, 0.3 ⁇ m to 6 ⁇ m, preferably 0.6 ⁇ m to 3 ⁇ m
  • the relief units of the interference-type surface microstructure 221 may be randomly or pseudo-randomly distributed
  • the feature size in the x-axis direction may be, for example, 0.3 ⁇ m to 6 ⁇ m, preferably 0.6 ⁇ m to 3 ⁇ m
  • the relief units of 221 are periodically distributed in the x direction, that is, the pattern may be a periodic structure, for example.
  • the depth d of the interference type surface microstructure 221 can meet the following conditions, that is, when natural light (white light) illuminates the interference type surface microstructure 221 at an incident angle ⁇ , light with a wavelength of ⁇ (or a wavelength range) interferes in the direction of the reflected light Constructive, so that the first color is observed in the direction of the reflected light.
  • the selective light-absorbing microstructure 224 may be composed of a plurality of concave microstructures 222, and the width of the concave microstructure 222 is the characteristic of the selective light-absorbing surface microstructure 224 Size, the feature size can be 1 ⁇ m, and its depth can be 0.8 ⁇ m. At the same time, the surface of the recessed microstructure 222 is covered with a 40-nm thick metal Al layer as the reflective layer 223.
  • the concave microstructure 222 and the reflective layer 223 together provide a light trap with light absorption, which can absorb the full spectrum of visible light and suppress reflected light.
  • the strokes of the micro image layer 22 covered by it are black.
  • the spectral absorption characteristics of the selective light-absorbing surface microstructure 224 can be controlled, including the color and efficiency of absorption and the color and efficiency of reflection, thereby determining the micro-image layer 22 image stroke colors.
  • the top view shape of the light-absorbing surface microstructure is any geometric shape such as a circle, a polygon, and the cross-section can be any curved surface such as a circle, a sinusoid, a rectangle, a triangle, etc.
  • the characteristic size of the light-absorbing surface microstructure is less than 10 ⁇ m, and the characteristic size of the light-absorbing surface microstructure is preferably less than 1 ⁇ m.
  • the ratio of the depth of the light-absorbing surface microstructure to the characteristic size is greater than 0.3, and the ratio of the depth of the light-absorbing surface microstructure to the characteristic size is preferably greater than 0.8.
  • the feature size of the concave microstructure 222 of the selective light-absorbing surface microstructure 224 shown in FIG. 2a may be 330 nm, and the depth may be 180 nm. At this time, whether the micro image layer 22 is observed through a microscope or the macro image formed by sampling and synthesizing the micro image layer 22 by the sampling synthesis layer 21, the image strokes are brown.
  • FIGS. 2c to 2f show different arrangements of the concave microstructure 222 of the selective light-absorbing surface microstructure 224.
  • Figure 2c uses a periodically arranged concave microstructure 222;
  • Figure 2d uses a random arrangement of concave microstructures 222;
  • Figure 2e uses a concave microstructure 222 with random depth;
  • Figure 2f uses randomness Recessed microstructure 222 of characteristic size.
  • the periodically arranged concave microstructure 222 in FIG. 2c will inevitably produce a diffraction effect on incident light, thereby simultaneously containing diffracted light on the basis of selective absorption and reflection. If the diffracted light does not meet the needs of the user, the randomly arranged concave microstructure 222 shown in Figure 2d can solve this problem.
  • the random arrangement can reduce the diffraction caused by the periodically arranged concave microstructure 222 The effect is eliminated to provide purely selective light absorption characteristics.
  • One of the roles of the concave microstructure 222 with random depth in FIG. 2e and the concave microstructure 222 with random feature size in FIG. 18d is to control the ratio of selective light absorption and light reflection, thereby controlling the strokes of the micro image layer The color of gray.
  • a similar purpose can be achieved by controlling the arrangement density of the concave microstructures 222.
  • the reflective layer 223 may include any one or a combination of the following various coatings: a single-layer metal coating; a multi-layer metal coating; an absorption layer, a low refractive index dielectric layer A plating layer formed by sequentially stacking with a reflective layer; and a plating layer formed by sequentially stacking an absorption layer, a high refractive index medium layer and a reflective layer.
  • the high refractive index dielectric layer refers to a dielectric layer with a refractive index greater than or equal to 1.7, and its material can be ZnS, TiN, TiO 2 , TiO, Ti 2 O 3 , Ti 3 O 5 , Ta 2 O 5 , Nb 2 O 5 , CeO 2 , Bi 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , HfO 2 , ZnO, etc.
  • the low refractive index dielectric layer refers to a dielectric layer with a refractive index less than 1.7.
  • the material can be MgF 2 , SiO 2 and so on.
  • the material of the metal coating or the reflective layer can be Al, Cu, Ni, Cr, Ag, Fe, Sn, Au, Pt and other metals or their mixtures and alloys; the material of the absorption layer can be Cr, Ni, Cu, Co, Ti, V , W, Sn, Si, Ge and other metals or their mixtures and alloys.
  • the above-mentioned reflective layer 223 has a specific color due to the choice of material, such as the silver white of the Al layer and the yellow color of Au.
  • the micro-image layer 22 reflects the color characteristics formed by the surface microstructure 224 and the above-mentioned reflective layer 223, which are different from the color characteristics of the selected reflective layer, for example, the black and black formed in the corresponding embodiment in FIG. 2a The silver white of the Al layer is completely different.
  • the original plate of the micro-image layer 22 with a surface microstructure can be obtained by micro-nano processing methods such as optical exposure and electron beam exposure, and can be obtained by processing methods such as ultraviolet casting, molding, and nanoimprinting. Perform bulk copy.
  • the area covered by the surface microstructure in the above general processing process is deterministically determined by the original plate, and is not affected by the batch processing process.
  • the common ink printing micro-image layer Compared with the common ink printing micro-image layer, it has unique advantages, such as complete restoration of strokes Design size, no defects such as wetting expansion during the ink molding process, with high contrast and clarity, and the fineness of the optical microstructure depends on the feature size of the surface microstructure, which can be micron or even smaller, Compared with ink printing, the micro image with a line width of 10 microns has a higher resolution.
  • FIGS. 3a and 3b show the design and formation process of the micro image layer, wherein the corresponding sampling synthesis layer is a cylindrical micro lens array, and the extension direction of the cylindrical micro lens (not shown) is the y direction.
  • the pictures 1, 2, 3...k in Fig. 3a correspond to the macro images that the observer wants to see set at various angles, and the corresponding macro images are indicated by A, B, C... ⁇ .
  • Each macro image is cut according to a matrix arrangement, for example, A is cut into a matrix composed of pixels A 11 , A 12 ... Am , and other macro images are processed in the same way.
  • optical anti-counterfeiting element is determined by the basic structure and specific implementation of the optical anti-counterfeiting element.
  • the embodiment corresponding to FIG. 1a or FIG. 2a schematically depicts that the surface microstructure is provided in the image strokes and other areas of the micro image layer 22, in fact, the surface microstructure can be set at any position of the micro image layer according to requirements.
  • the structure can even realize the micro image layer 22 containing multiple colors by adjusting the feature size, depth, arrangement form of the surface microstructure, the type and structure of the reflective layer 223 in different areas, and finally realize the color of the optical security element of the present invention. ⁇ .
  • the colorized optical anti-counterfeiting element of the present invention will be described below with reference to the embodiments of FIGS. 4a to 4d.
  • the micro image layer 22 on the lower surface 32 in the embodiment shown in FIG. 1a is divided into regions (the region division in the figure is only schematic, and all needs to be considered in practical applications.
  • the corresponding relationship between the divided area and the sampling composite layer 21 is described to form a macro composite image that meets the needs of the user).
  • the 40nm thick Al layer deposited by the electron beam is selected as the reflective layer 223, and the surface microstructure division area in the micro image layer 22 is:
  • the third area is a selective light-absorbing surface microstructure 2213 with a depth of 100nm and a width of 300nm, corresponding to the red color observed by the naked eye;
  • Area four is a selective light-absorbing surface microstructure 2214, with a depth of 180nm and a width of 345nm, corresponding to the brown observed with the naked eye;
  • Area 5 is a selective light-absorbing surface microstructure 2215, with a depth of 300nm and a width of 250nm, corresponding to the black color observed by the naked eye;
  • Region 6 is a selective light-absorbing surface microstructure 2216, the depth of which is randomly arranged in the range of 50nm to 150nm, and the width of which is randomly arranged in the range of 500nm to 1000nm, corresponding to the white color observed by naked eyes.
  • Figure 4b shows the macro image effect provided by the periodically arranged micro image layers.
  • Figure 4b shows the macro image effect provided by the periodically arranged micro image layers.
  • only 5 rows and 5 columns of macro images are schematically selected.
  • the macro pattern Moving in parallel along the positive direction of the x-axis this is a translation effect that can form a floating depth of field, and at the same time has the same positive translation effect of the macro pattern when the viewing angle is changed in the y-axis direction.
  • Fig. 4c shows a top view of a spherical microlens array with a rectangular arrangement of the sampling synthesis layer 21 used. The arrangement period of the microlens array is 25 ⁇ m, and the diameter of the bottom surface of the microlens is 23 ⁇ m.
  • Figure 4d shows a part of the corresponding micro image layer, and schematically marks the distribution of regions one to six, that is, the distribution of 2211 to 2216, in grayscale.
  • the number "50" of this configuration is periodic
  • the macroscopic composite image effect shown in FIG. 4b formed by the microscopic arrangement has the above-mentioned six color characteristics.
  • the inventor found that among various preferred solutions of the sampling synthesis layer 21, the one-dimensional arrangement of micro-sampling tools is more conducive to the identification of the color characteristics of the macro-synthesis image, such as cylindrical microlenses and one-dimensional Fresnel lenses.
  • One-dimensional zone plate instead of two-dimensional array of micro-sampling tools, such as spherical microlens, Fresnel lens, zone plate.
  • FIG. 5a shows a situation where periodically arranged cylindrical microlenses are used as the sampling synthesis layer 21
  • FIG. 5b shows a situation where rectangular and periodically arranged spherical microlenses are used as the sampling synthesis layer 21. situation.
  • the cylindrical microlens Since the sampling process involves collecting the part of the micro-image layer 22 of the emitted light from various angles, the cylindrical microlens only collects the emitted light from various angles along the x-axis, and only collects a single direction in the y-direction. On the contrary, the spherical surface The microlens simultaneously collects the emitted light from various angles of the x-axis and y-axis. This does not affect the color feature recognition of the macro composite image for the selective light-absorbing surface microstructure, but it has a significant impact on the interference surface microstructure. The reason is that the interference surface microstructure has different exit angles.
  • the sampling process involves light rays in various exit directions in a certain dimension (x-axis or y-axis)
  • a pair of complementary colors provided as interference-type surface microstructures will be collected at the same time, and The composite color of a pair of complementary colors is white, thus losing the expected color characteristics in the sampling dimension. Since the cylindrical microlens only collects the emitted light in a single direction on the y-axis, the color characteristics of the interference-type surface microstructure can be restored on the y-axis.
  • the use of a defocused micro-sampling tool as the sampling synthesis layer 22 is also conducive to solving the problem of identifying the color characteristics of the macro-composite image, which will be described below with reference to FIGS. 6a and 6b.
  • the spherical microlens in FIG. 6a and the spherical surface of FIG. 6b The similarity of the microlens is that the distance between the bottom of the sampling synthesis layer 21 and the microimage layer 22 is the same and the diameter of the bottom surface of the spherical microlens is the same, but due to the difference in the height or curvature of the spherical microlens, the focal position of the focus is different.
  • the focal point of the spherical microlens in Fig. 6a is below the micro-image layer 22, so the spherical microlens in Fig. 6a is out of focus, and the focal point of the spherical microlens in Fig. 6b is near the micro-image layer 22, so in Fig. 6b
  • the spherical mirror is in a roughly focused state.
  • the angular range of the light that it collects and emits in the micro image layer 22 is smaller than that of the spherical microlens in FIG. 6b.
  • the micro-image layer 22 in the optical anti-counterfeiting element of the present invention further includes a patterned hollowed out image of the reflective layer 223, and the patterned hollowed out image is a microscopic hollowed out image (not shown) corresponding to the sampling composite layer 21 ), the hollowed-out image of the pattern painting can be sampled and synthesized by the sampling synthesis layer 21 into a macro synthesized image.
  • the micro-image layer 22 in the optical anti-counterfeiting element of the present invention may further include a patterned hollowed out image on the reflective layer 223, and the patterned hollowed out image 23 does not correspond to the sampling composite layer 21, and may be a macro hollowed out
  • the image can also be a microscopic hollow image.
  • a coded image can also be added to the micro image layer 22, and the coded image does not require the sampling synthesis layer 21 to perform sampling synthesis.
  • the coded image may be a macro coded image, or a microscopic hidden image recognized by a magnifying glass or a microscope, or an image reproduced by white light or monochromatic incident light.
  • the coded image can be processed with the micro image layer at one time, or can be added twice by using the method in the processing range of the micro image layer.
  • the optical anti-counterfeiting element 1 may further include the sampling composite layer 21 formed in the substrate 2, on the first surface 31 and the second surface 32 of the substrate 2, In, at least one of the diffractive optical variable features, interference optical variable features, micro-nano structure features, printing features, partial metallization features, and magnetic, optical, and electrical , One or more of radioactive features.
  • a fluorescent material (not shown) can be added to the optical anti-counterfeiting element 1 of the present invention, so that it has fluorescent characteristics.
  • the fluorescent material can form a fluorescent pattern by, for example, printing.
  • replacing the liquid crystal optically variable material as the color functional layer with a fluorescent material will realize that the fluorescent pattern can meet the conditions of sampling synthesis, thereby forming a sampling synthesis fluorescent pattern.
  • the substrate 2 may be at least partially transparent, or may be a colored medium layer.
  • the substrate 2 can be a single transparent medium film, such as a PET film, a PVC film, etc., of course, it can also be a transparent medium film with a functional coating (such as an embossed layer) on the surface. , It can also be a multi-layer film formed by compounding.
  • the optical anti-counterfeiting element according to the present invention is particularly suitable for making a window security thread.
  • the thickness of the security thread is not more than 50 ⁇ m.
  • the anti-counterfeiting paper with the security thread for opening the window is used for anti-counterfeiting of various high-security products such as banknotes, passports, and securities.
  • optical anti-counterfeiting element according to the present invention can also be used as a label, logo, wide strip, transparent window, film, etc., and can be adhered to various articles through various bonding mechanisms. For example, transfer to high-security products and high-value-added products such as banknotes and credit cards.
  • the product includes, but is not limited to, various high-security products and high-value-added products such as banknotes, credit cards, passports, securities, and various Wrapping paper, packing box, etc.

Abstract

提供一种光学防伪元件及包含其的光学防伪产品。光学防伪元件(1)包括:基材(2),该基材(2)包括相互对立的第一表面(31)和第二表面(32);形成在所述基材(2)的第一表面(31)的至少一分部上的采样合成层(21);以及形成在所述基材(2)的第二表面(32)的至少一分部上的微图像层(22),所述微图像层(22)包括表面微结构以及至少同形覆盖所述表面微结构的反射层(223),所述表面微结构为干涉型表面微结构(221)和/或光吸收型表面微结构(224),其中所述采样合成层(21)能够对所述微图像层(22)进行采样合成从而形成一个或多个宏观合成图像。这种光学防伪元件具有易识别且难伪造的特点。

Description

光学防伪元件及光学防伪产品 技术领域
本发明涉及光学防伪领域,具体地,涉及一种光学防伪元件及光学防伪产品。
背景技术
为了防止利用扫描和复印等手段产生的伪造,钞票、证卡和产品包装等各类高安全或高附加值印刷品中广泛采用了光学防伪技术,并且取得了非常好的效果。
公开号为CN1271106A、CN1552589A的中国专利申请或者《Properties of moire magnifiers》(Optical Engineering 37(11)3007-3014)、《微透镜列阵显示技术研究》(微纳电子技术2003年第6期)等文献中公开了在基材的两个表面上分别带有微透镜阵列和微图文阵列的微光学元件,其中,微图文阵列位于微透镜阵列的焦平面附近,通过微透镜阵列对微图文阵列的莫尔放大作用来再现具有一定景深或呈现动态效果的图案。
目前此类公开文献中均采用周期性微图文阵列,所形成的光学效果为随着观察视角的改变,特定宏观图像在某一维度上简单平移或切换。虽然容易设计和加工,但是在防止破解伪造方面难以满足包装品、印刷品、有价证券等产品对防伪技术不断提高的要求。
如果能够提供具有一定复杂度的微图文阵列,同时还能够提供新颖的光学防伪效果,那么将大大提高相应光学防伪产品的难伪造且易识别的水平,然而具有一定复杂度的微图文阵列对微图文的制作提出了挑战。通常的微图文阵列是由印刷工艺完成的,而印刷微图文难以避免的会出现油墨的拓展、笔画粗糙、精细程度差等问题,从而导致微图文阵列出现笔画模糊,且无法实现小于2微米的笔画。此外,印刷的微图文无法实现多色的微米级套印,从而使得防伪产品的光学效果选择受限,防伪能力亟需提升。
发明内容
本发明实施例的目的是提供一种具有易识别且难伪造特点的光学防伪元件及光学防伪产品。
为了实现上述目的,本发明实施例提供一种光学防伪元件,该光学防伪元件包括:基材,该基材包括相互对立的第一表面和第二表面;形成在所述基材的第一表面的至少一分部上的采样合成层;以及形成在所述基材的第二表面的至少一分部上的微图像层,所述微图像层包括表面微结构以及至少同形覆盖所述表面微结构的反射层,所述表面微结构为干涉型表面微结构和/或光吸收型表面 微结构,其中所述采样合成层能够对所述微图像层进行采样合成从而形成一个或多个宏观合成图像。
相应地,本发明还提供一种光学防伪产品,包括上述的光学防伪元件。
通过上述技术方案,采用带有干涉型和/或光吸收型表面微结构的微图文阵列,使得微图像以及宏观合成图像具有高清晰度和对比度,同时能够实现多种颜色特征的微观尺度和宏观视觉上的精准对位,增强了光学防伪元件及产品的防伪能力。另外,本发明所述的光学防伪元件可利用本领域通用设备进行批量生产。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1a示出了根据本发明一实施方式的光学防伪元件的剖面图;
图1b示出了干涉型表面微结构的示例分布图,图1c和图1d示出了干涉型表面微结构的示例剖面图;
图1e示出了干涉型表面微结构的另一示例分布图,图1f示出了干涉型表面微结构的另一示例剖面图;
图1g示出了干涉型表面微结构的又一示例分布图,图1h和图1i示出了干涉型表面微结构的又一示例剖面图;
图2a示出了根据本发明另一实施方式的光学防伪元件的剖面图;
图2b示出了光吸收型表面微结构的示例俯视图,图2c至图2f分别示出了光吸收型表面微结构的四种示例剖面图;
图3a和图3b分别示出了对采样合成层对微图像层采样合成过程的物理原理进行解释时采用的宏观图像和对应的微图像层示意图;
图4a示出了根据本发明又一实施方式的光学防伪元件的剖面图;
图4b、图4c和图4d分别示出了图4a示出的光学防伪元件中微图像层所提供的宏观图像效果、采样合成层和微图像层的局部;
图5a示出了根据本发明的光学防伪元件中采样合成层采用柱面微透镜的示意图,图5b示出了根据本发明的光学防伪元件中采样合成层采用球面微透镜的示意图;以及
图6a示出了根据本发明的光学防伪元件中采样合成层采用离焦球面微透镜的示意图,图6b示出了根据本发明的光学防伪元件中采样合成层采用聚焦球面微透镜的示意图。
具体实施方式
下面将结合附图来详细说明根据本发明的光学防伪元件及包括该光学防伪元件的光学防伪产品。应当理解,所述附图和具体实施方式只是对本发明优选实施方式的描述,并非以任何方式来限制本发明的范围。
如图1a所示,根据本发明一种实施方式的光学防伪元件1可以包括:基材2,该基材2包括相互对立的第一表面31和第二表面32;形成在所述基材2的所述第一表面31的至少一分部上的采样合成层21;形成在所述基材2的所述第二表面32的至少一分部上的微图像层22,微图像层22包括有表面微结构及至少同形覆盖表面微结构的反射层223,其中,微图像层22与采样合成层21相对应,即采样合成层21能够对所述微图像层22进行采样合成从而形成一个或多个宏观合成图像。在本实施例中所述表面微结构为干涉型表面微结构221。
可选地,采样合成层21可以为微透镜阵列层或者能够对微图像层22进行成像的其他微采样工具。其中,微透镜阵列层可以是由多个微透镜单元构成的非周期性阵列、随机性阵列、周期性阵列、局部周期性阵列或它们的任意组合,同时微透镜单元可以为折射型微透镜、衍射型微透镜或它们的组合,其中折射型微透镜可以选取球面、抛物面、椭球面微透镜、柱面微透镜、或其它任意几何形状的基于几何光学的微透镜或它们的任意组合,衍射型微透镜可以选取谐衍射微透镜、平面衍射微透镜、菲涅尔波带片。其中,除菲涅尔波带片外,其它微透镜的具体形式可以选择为连续曲面型或阶梯型透镜作为微透镜单元。例如,图1a中的采样合成层21可以是由多个矩形、蜂窝、菱形、三角形等排列方式的球面微透镜单元组成的周期性阵列,也可以是柱面微透镜沿着某个方向的周期性排列。
可选地,根据本发明的光学防伪元件中的周期性或局部周期性采样合成层21的周期可以为10μm至200μm,优选为15μm至70μm;采样合成层(例如微透镜阵列层)21的焦距可以为10μm至200μm,优选为15μm至40μm;采样合成层(例如微透镜阵列层)21的加工深度优选小于15μm,更优选为0.5μm至10μm。另外,基材2的厚度与采样合成层21的焦距之差优选小于10μm,更优选地所述差值小于3μm。
可选地,采样合成层21可以通过光学曝光、电子束曝光等微纳加工方式获得,还可以结合热熔回流等工艺来实现,通过紫外浇铸、模压、纳米压印等加工方式进行批量复制。
可选地,微图像层22可以是依据采样合成层21及所需实现的效果而定义的由多个微图像单元构成的非周期性阵列、随机性阵列、周期性阵列、局部周期性阵列或它们的任意组合,保证所述采样合成层21能够对处于其对立面的微图像层22进行采样合成从而形成宏观合成图像。所形成的 图像特征可以为下沉、上浮、动感、缩放、旋转、多通道转换、连续景深变化图形、三维图形、连续多帧动画等之一或多个效果的组合特征。
根据上述采样合成放大过程可知,宏观合成图像的颜色特征来自于微图像层22,那么所述微图像层22能够区域化地提供的颜色特征数量,则决定了所述宏观合成图像的颜色特征数量。在图1a所示的实施例中,提供了微图像层22中的特定区域选择了干涉型表面微结构221的方案。
所述干涉型表面微结构221被定义成当光束以一入射角照射所述干涉型表面微结构221时,该光束中一波长或波长范围的光在反射光方向上干涉相长。
干涉型表面微结构221区域提供了不同的观察角度分别呈现两种互为补色的颜色特征,而微图像层22的其余区域无法提供该颜色特征,从而实现不同区域间颜色特征的对比和反差。进一步地,宏观合成图像提供了不同区域间贡献的颜色对比和反差,从而获得具有易识别、难伪造的特征的独特的光学防伪元件。
为了便于描述干涉型表面微结构221,定义x-y-z空间坐标系。如图1b所示,干涉型表面微结构221可以位于xoy平面(或与xoy平面平行的平面),且在x轴、y轴方向的特征尺寸可以例如是0.3μm至6μm,优选为0.6μm至3μm,且干涉型表面微结构221可以是微浮雕结构的浮雕单元的随机或伪随机分布。干涉型表面微结构221中凸起部分的面积可以占干涉型表面微结构221总面积的20%至80%,优选为35%至65%。干涉型表面微结构221的浮雕单元的剖面形状可以是正弦形。如图1c所示,干涉型表面微结构221的浮雕单元的剖面形状可以是锯齿形。如图1d所示,干涉型表面微结构221的浮雕单元的剖面形状可以是矩形。本领域技术人员可以理解的是,干涉型表面微结构221的浮雕单元的剖面形状还可以是其他形状。干涉型表面微结构221的深度d可以满足以下条件,即当自然光(白光)以入射角α照射干涉型表面微结构221时,光束通过干涉型表面微结构221后,波长为λ(或者一波长范围)的光在反射光方向上干涉相长,从而使得在反射光方向观察干涉型表面微结构221时,呈现第一颜色,而在散射光方向上观察干涉型表面微结构221时,呈现与第一颜色不同的第二颜色(如图1c所示),相同的颜色特征将反映在光学防伪元件上。
干涉型表面微结构221的深度d通常在100nm至5μm之间,优选为200nm至3μm。可以通过以下的方法来确定深度d。
①表示干涉型表面微结构221的复振幅透过率τ g,τ g为深度d、设计波长λ、干涉型表面微结构221的槽型、材料折射率分布n以及位置(x,y)的函数;②对复振幅透过率τ g进行傅利叶变换;③找出波长为λ的反射光(即零级衍射光)最大的条件;④根据反射光最大的条件计算干涉型表面微结构221的深度d。
举例来说,设计波长λ=600nm,干涉型表面微结构221材料的折射率n=1.5,干涉型表面微结构221的剖面形状为正弦形,外部介质为空气,则d=1528.8nm时,干涉型表面微结构221区域在反射光方向上呈现红色,在散射光方向呈现蓝绿色。若d=2668.8nm,由于此时波长为410.8nm的光也满足反射光干涉相长条件,所以干涉型表面微结构221区域在反射光方向上呈现洋红色,散射光方向上呈现绿色。
干涉型表面微结构221可以通过激光刻蚀、电子束刻蚀、离子刻蚀等方式制成母版,然后通过电铸、模压、UV复制等工艺复制到基材上。更为常用的工艺是在基材的表面涂布成像层,将干涉型表面微结构复制在成像层上,目的是提高干涉型表面微结构的复制质量和提高复制效率。
干涉型表面微结构221的材料可以例如为ZnS、ZnO、Ta 2O 5、SnO 2、Nb 2O 5、HfO 2、In 2O 3、CeO 2、Dy 2O 3、Bi 2O 3、MgF 2、Al 2O 3、AlF 3、CaF 2、SiO 2、SrF 2、YbF 3、NaF、Na 3AlF 6、PET、PVC、PE、聚酯胶、聚氨酯胶等。
所述基材可以例如为PET、PVC、PE等透明材料,也可以是纸张、印刷品、包装等载体。所述基材也可以是加工过程中的载体,而在后期应用时被剥离。
图1e和图1f示出了干涉型表面微结构221的另外一种优选形式。定义x-y-z空间坐标系,如图1e所示,干涉型表面微结构221可以位于xoy平面(或与xoy平面平行的平面)。干涉型表面微结构221在x轴方向的特征尺寸可以大于6μm,优选大于10μm,由此干涉型表面微结构221在该方向上没有衍射效果。干涉型表面微结构221在y轴方向上的特征尺寸可以为0.3μm至6μm,优选为0.6μm至3μm,且干涉型表面微结构221可以是微浮雕结构的浮雕单元的随机或伪随机分布。干涉型表面微结构221中凸起部分的面积可以占微浮雕结构202总面积的20%至80%,优选为35%至65%。图1f是干涉型表面微结构221在yoz平面(或与yoz平面平行的平面)的剖面示意图。如图1f所示,干涉型表面微结构221的浮雕单元的剖面形状可以是正弦形。但是本领域技术人员可以理解,干涉型表面微结构221的浮雕单元的剖面形状可以是锯齿形、矩形或者其他形状。干涉型表面微结构221的深度d可以满足下述条件,即自然光(白光)以入射角α照射干涉型表面微结构221时,光束通过干涉型表面微结构221后,波长为λ(或者一波长范围)的光在反射光方向上干涉相长,从而在反射光方向上观察到第一颜色。此外,如果光束在yoz平面(或与yoz平面平行的平面)内,在yoz平面(或与yoz平面平行的平面)内散射光方向上观察到与第一颜色不同的第二颜色,相同的颜色特征将反映在光学防伪元件上。
图1g至图1i示出了干涉型表面微结构221的又一种优选形式。定义x-y-z空间坐标系,如图1g所示,干涉型表面微结构221位于xoy平面(或与xoy平面平行的平面),在y轴方向上的特征尺寸可以例如是0.3μm至6μm,优选为0.6μm至3μm,干涉型表面微结构221的浮雕单元可以是随 机或伪随机分布的,在x轴方向上的特征尺寸可以例如是0.3μm至6μm,优选为0.6μm至3μm,干涉型表面微结构221的浮雕单元在x方向上周期分布,即图案可以例如是周期性结构。干涉型表面微结构221中凸起部分的面积可以占干涉型表面微结构221总面积的20%至80%,优选为35%至65%。图1h是干涉型表面微结构221在yoz平面(或与yoz平面平行的平面)的剖面示意图,其为正弦形。图1i是干涉型表面微结构221在xoz平面(或与xoz平面平行的平面)的剖面示意图,其为正弦形。干涉型表面微结构221的浮雕单元的剖面形状可以是正弦形、锯齿形、矩形或者其他形状。干涉型表面微结构221的深度d可以满足下述条件,即自然光(白光)以入射角α照射干涉型表面微结构221时,波长为λ(或者一波长范围)的光在反射光方向上干涉相长,从而在反射光方向上观察到第一颜色。此外,如果光束在yoz平面(或与yoz平面平行的平面)内,在yoz平面(或与yoz平面平行的平面)内散射光方向观察到与第一颜色不同的第二颜色;如果光束在xoz平面(或与xoz平面平行的平面)内,在衍射光方向上观察到光栅的+1或-1级衍射光颜色随观察角度变化,相同的颜色特征将反映在光学防伪元件上。
图2a示出了根据本发明另一实施方式的光学防伪元件的剖面图。图2a与图1a所述的光学防伪元件的不同之处在于,图2a中表面微结构可可选地采用了光吸收型表面微结构224,其可以是选择性光吸收型表面微结构。图2b示出了该光学防伪元件1中使用选择性光吸收型表面微结构224作为微图像笔画的微图像层片段的俯视图。
该实施例中所述选择性光吸型收微结构224可由多个下凹的微观结构222组所成,所述下凹微观结构222的宽度即为选择性光吸收型表面微结构224的特征尺寸,该特征尺寸可为1μm,其深度为可0.8μm。同时,在下凹的微观结构222表面覆盖有40纳米厚的金属Al层作为反射层223。
此时,不论通过显微镜观察微图像层22抑或观察由采样合成层21对微图像层22采样合成后形成的宏观图像,图像笔画均为黑色。
其原理在于下凹微观结构222与反射层223共同提供了具有光吸收作用的光陷阱,其能够对可见光波段进行全谱的吸收,抑制反射光。从而使其覆盖的微图像层22的笔画为黑色。通过选择下凹的微观结构222的深度和特征尺寸以及排列形式能够控制选择性光吸收型表面微结构224的光谱吸收特性,包括吸收的颜色和效率以及反射的颜色和效率,从而决定微图像层22的图像笔画的颜色。
可选地,所述光吸收型表面微结构的俯视形状为圆形、多边形等任意几何形状,其截面可以为圆形、正弦形、矩形、三角形等任意曲面。
可选地,所述光吸收型表面微结构的特征尺寸小于10μm,所述光吸收型表面微结构的特征尺寸优选小于1μm。
可选地,所述光吸收型表面微结构的深度与特征尺寸的比值大于0.3,所述光吸收型表面微结构 的深度与特征尺寸的比值优选大于0.8。
在另外一个实施方式中,图2a所示的选择性光吸收型表面微结构224的下凹微观结构222的特征尺寸可为330nm,其深度可为180nm。此时,不论通过显微镜观察微图像层22亦或观察由采样合成层21对微图像层22采样合成后形成的宏观图像,图像笔画均为棕色。
图2c至图2f示出了所述选择性光吸收型表面微结构224的下凹微观结构222的不同排列形式。其中图2c采用了周期性排列的下凹微观结构222;图2d采用了随机性排列的下凹微观结构222;图2e采用了具有随机性深度的下凹微观结构222;图2f采用了随机性特征尺寸的下凹微观结构222。
图2c的周期性排列的下凹微观结构222不可避免地会产生对入射光的衍射作用,从而在选择性吸收和反射的基础上同时包含了衍射光。如果该衍射光不符合用户的需要,那么图2d所示的随机性排列的下凹微观结构222即能够解决这一问题,随机性排列能够将周期性排列的下凹微观结构222带来的衍射效应排除,从而纯粹地提供选择性光吸收特征。
图2e的随机性深度的下凹微观结构222以及图18d的随机性特征尺寸的下凹微观结构222所起的作用之一是控制选择性光吸收和光反射的比例,从而控制微图像层的笔画的颜色的灰度。当然,通过控制下凹微观结构222的排列密度也可以达到类似的目的。
可选地,本发明任意实施例所述的反射层223可以包括下述各种镀层中的任意一种或其组合:单层金属镀层;多层金属镀层;由吸收层、低折射率介质层和反射层依次堆叠形成的镀层;以及由吸收层、高折射率介质层和反射层依次堆叠形成的镀层。在根据本发明中,高折射率介质层指的是折射率大于等于1.7的介质层,其材料可以是ZnS、TiN、TiO 2、TiO、Ti 2O 3、Ti 3O 5、Ta 2O 5、Nb 2O 5、CeO 2、Bi 2O 3、Cr 2O 3、Fe 2O 3、HfO 2、ZnO等,低折射率介质层指的是折射率小于1.7的介质层,其材料可以是MgF 2、SiO 2等。金属镀层或反射层的材料可以是Al、Cu、Ni、Cr、Ag、Fe、Sn、Au、Pt等金属或其混合物和合金;吸收层材料可以是Cr、Ni、Cu、Co、Ti、V、W、Sn、Si、Ge等金属或其混合物和合金。需要说明的是,虽然上述反射层223由于材料的选择从而使自身就具备特定的颜色,例如Al层的银白色和Au的黄色。但是微图像层22所反映的是表面微结构224和上述反射层223共同作用形成的颜色特征,该颜色特征不同于所选择的反射层的颜色特征,例如图2a对应实施例中形成的黑色与Al层的银白色完全不同。
可选地,本发明任意实施例中,带有表面微结构的微图像层22的原版可以通过光学曝光、电子束曝光等微纳加工方式获得,通过紫外浇铸、模压、纳米压印等加工方式进行批量复制。以上的通用加工过程中表面微结构覆盖的区域确定性地由原版所决定,而不受批量加工的过程所影响,相比较常见的油墨印刷构成的微图像层具有独特的优势,例如笔画完全还原设计尺寸,无油墨成型过程中的浸润拓展等缺陷,具有较高的对比度和清晰度,并且光学微结构的精细度取决于表面微结构 的特征尺寸,该特征尺寸可以是微米级甚至更小,相较于油墨印刷构成的10微米量级线宽的微图像具有更高的分辨率。
下面将结合图3a、图3b对采样合成层21对微图像层22的采样合成原理进行说明。图3a、图3b示出微图像层的设计与形成过程,其中对应的采样合成层为柱面微透镜阵列,且柱面微透镜(未示出)的延伸方向为y方向。图3a中图文1、2、3…k分别对应各个角度下设定的观察者希望看到的宏观图像,对应的宏观图像依次以A、B、C…¥表示。将每个宏观图像均按照矩阵排列方式进行切割,例如A被切割为像素A 11、A 12…A mn构成的矩阵,其它宏观图像同样处理。
图3b与图3a相对应,其中每一个矩阵单元代表一个柱面微透镜下方的像素集合,按照该配置每个柱面微透镜单元都分配到图3a所示的各预先设定的宏观图像的一部分,当某个柱面微透镜以一定的观察角度采样到某个宏观图像的像素单元时,其它柱面微透镜会同时采样到该宏观图像的其它像素单元,从而呈现给观察者该宏观图像的内容,而当观察角度改变时,以上采样过程将相应地作用于其它宏观图像。因此,对于柱面微透镜阵列可以自由地设定不同观察角度上的宏观图像。对于其它上述提到的采样合成层形式,以上原理同样有效,例如对于矩形排列的球面微透镜阵列,可以看作为在柱面微透镜阵列基础上增加了与之垂直的维度用于进一步增加所需的宏观图像,其它采样合成层形式可以同理推而广之。
尽管上述所描述的物理原理是目前所认为的对于本发明所涉及的光学防伪元件所产生的物理现象的一种理解和描述,但并不意味所述光学防伪元件被当前用于解释这一现象的所述物理原理所限制。所述光学防伪元件是由该光学防伪元件的基本结构和具体实施方式所决定的。
虽然图1a或图2a对应的实施例中示意性地描述了微图像层22的图像笔画等区域处设置表面微结构,但事实上可以根据需求,在微图像层的任意位置设置所述表面微结构,甚至可以在不同区域通过调整表面微结构的特征尺寸、深度、排列形式,反射层223的种类、结构来实现含有多种颜色的微图像层22,最终实现本发明的光学防伪元件的彩色化。下面结合图4a至图4d的实施例分别对本发明的彩色化的光学防伪元件进行说明。
如图4a至图4d所示,将图1a所示的实施例中的下表面32上的微图像层22进行区域划分(图中所述区域划分仅为示意性的,实际应用中需要考虑所述被划分的区域与采样合成层21的对应关系以形成符合用户需求的宏观合成图像)。选择电子束蒸镀的40nm厚的Al层为反射层223,微图像层22中的表面微结构划分区域为:
(1)区域一为干涉型表面微结构2211,其设计波长λ=600nm,干涉型表面微结构2211材料的折射率n=1.5,干涉型表面微结构2211的剖面形状为正弦形,外部介质为空气,则深度d=1528.8nm时,干涉型表面微结构221区域在反射光方向上呈现红色,在散射光方向呈现蓝绿 色。
(2)区域二为干涉型表面微结构2212,折射率n=1.48,干涉型表面微结构2212的剖面形状为矩形,外部介质为空气,则深度d=600nm,所以干涉型表面微结构2212在反射光方向上呈现绿色,散射光方向上呈现洋红色。
(3)区域三为选择性光吸收型表面微结构2213,其深度为100nm,宽度为300nm,对应肉眼观察的红色;
(4)区域四为选择性光吸收型表面微结构2214,其深度为180nm,宽度为345nm,对应肉眼观察的棕色;
(5)区域五为选择性光吸收型表面微结构2215,其深度为300nm,宽度为250nm,对应肉眼观察的黑色;
(6)区域六为选择性光吸收型表面微结构2216,其深度在50nm至150nm范围内随机排布,宽度在500nm至1000nm范围内随机排布,对应肉眼观察的白色。
图4b示出的是周期性排列的微图像层所提供的宏观图像效果,图中仅示意性选择了5行5列宏观图像,其中沿着x轴正方向改变观察视角的过程中,宏观图案沿着x轴正方向平行移动,这是一种能够形成上浮景深感的平移的效果,同时在y轴方向具有同样的正向改变视角时宏观图案正向平移的效果。图4c示出了所采用的采样合成层21为矩形排列的球面微透镜阵列的俯视图,所述微透镜阵列排列周期为25μm,微透镜底面直径为23μm。图4d示出了对应的微图像层的局部,并以灰度示意性地标出了区域一至区域六,即2211至2216的分布,在本实施例中具有该配置的数字“50”的周期性微观排列所形成的图4b所示的宏观合成图像效果具备上述六种颜色特征。
在实施过程中,本发明人发现采样合成层21的各种优选方案中,一维排列的微采样工具更加有利于宏观合成图像颜色特征的识别,例如柱面微透镜、一维菲涅尔透镜、一维波带片,而非采用二维排列的微采样工具,例如球面微透镜,菲涅尔透镜、波带片。
下面结合图5加以说明,图5a示出了采用周期性排列的柱面微透镜作为采样合成层21的情形,图5b示出了采用矩形且周期性排列的球面微透镜作为采样合成层21的情形。
由于采样过程涉及将微图像层22的局部进行各个角度的出射光线的收集的过程,柱面微透镜仅沿x轴收集各个角度的出射光线,而在y方向仅收集单一方向,相对的,球面微透镜则同时收集x轴和y轴的各个角度的出射光线。这对于选择性光吸收型表面微结构来说并不影响宏观合成图像的颜色特征识别,而对于干涉型表面微结构来说则有明显的影响,其原因在于干涉型表面微结构存在不同出射角度上的颜色差异,即互补色,如果采样过程涉及某个维度(x轴或y轴)上的各个出射方向的光线,那么作为干涉型表面微结构提供的一对互补色将同时被收集,而一对互补色的合成颜色 为白色,从而失去了该采样维度上的预期颜色特征。由于所述柱面微透镜在y轴上的仅收集单一方向的出射光,因此在y轴上将可还原干涉型表面微结构的颜色特征。
优选地,采用离焦的微采样工具作为采样合成层22也有利于解决宏观合成图像颜色特征的识别问题,下面结合图6a和图6b加以说明,图6a中的球面微透镜与图6b的球面微透镜的相同之处在于采样合成层21的底部与微图像层22的距离是相同的并且球面微透镜的底面直径是相同的,但是由于球面微透镜的高度或曲率不同,使得聚焦的焦点位置不同。图6a中的球面微透镜的焦点在微图像层22的下方,因此图6a中球面微透镜为离焦状态,而图6b中的球面微透镜的焦点在微图像层22附近,因此图6b中球面镜为大致聚焦的状态。在这种配置下,图6a中的球面微透镜虽然聚焦的分辨率较低,但其在微图像层22中收集出射光的角度范围相对图6b中的球面微透镜要小,从而在微图像层22采用干涉型表面微结构时能够在宏观合成图像中还原干涉型表面微结构的颜色特征。
可选地,本发明的光学防伪元件中微图像层22中还包含对反射层223图案化镂空的图像,所述图案化镂空的图像是与采样合成层21对应的微观镂空图像(未示出),所述图案画镂空的图像能够被采样合成层21采样合成为宏观合成图像。
可选地,本发明的光学防伪元件中微图像层22中还可包含对反射层223图案化镂空的图像,所述图案化镂空的图像23并非与采样合成层21对应,其可以为宏观镂空图像,也可是为微观镂空图像。
可选地,还可在所述微图像层22中加入编码图像,该编码图像无需所述采样合成层21进行采样合成。所述编码图像可以是宏观的编码图像,也可以是微观的通过放大镜、显微镜来识别的隐藏图像,还可以是通过白光或单色入射光进行再现的图像。所述编码图像可以与微图像层一次加工完成,也可以采用上述微图像层的加工范围中的方法进行二次添加。
可选地,根据本发明的光学防伪元件1还可以包括形成于所述基材2中、所述基材2的所述第一表面31上和第二表面32上、所述采样合成层21中、所述微图像层22的表面上的至少一者中的衍射光变特征、干涉光变特征、微纳结构特征、印刷特征、部分金属化特征以及用于机读的磁、光、电、放射性特征中的一种或多种特征。例如,可以在本发明的光学防伪元件1中添加荧光材料(未示出),从而使其带有荧光特征。该荧光材料可以通过例如印刷方式形成荧光图案。例如,将作为颜色功能层的液晶光变材料替换为荧光材料,将实现荧光图案能够满足采样合成的条件,从而形成采样合成荧光图案。
此外,所述基材2可以是至少局部透明的,也可以是有色的介质层。在一种优选方案中,所述基材2可以是一层单一的透明介质薄膜,例如PET膜、PVC膜等,当然也可以是表面带有功能涂层(比如压印层)的透明介质薄膜,还可以是经过复合而成的多层膜。
根据本发明的光学防伪元件特别适合制作成开窗安全线。所述安全线的厚度不大于50μm。带有所述开窗安全线的防伪纸用于钞票、护照、有价证券等各类高安全产品的防伪。
根据本发明的光学防伪元件也可用作标签、标识、宽条、透明窗口、覆膜等,可以通过各种粘结机理粘附在各种物品上。例如转移到钞票、信用卡等高安全产品和高附加值产品上。
本发明另一方面提供了带有所述光学防伪元件的光学防伪产品,所述产品包括但不限于钞票、信用卡、护照、有价证券等各类高安全产品及高附加值产品,以及各类包装纸、包装盒等。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种等同变换或修改,这些等同变换或修改均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (18)

  1. 一种光学防伪元件,该光学防伪元件包括:
    基材,该基材包括相互对立的第一表面和第二表面;
    形成在所述基材的第一表面的至少一分部上的采样合成层;以及
    形成在所述基材的第二表面的至少一分部上的微图像层,所述微图像层包括表面微结构以及至少同形覆盖所述表面微结构的反射层,所述表面微结构为干涉型表面微结构和/或光吸收型表面微结构,其中所述采样合成层能够对所述微图像层进行采样合成从而形成一个或多个宏观合成图像。
  2. 根据权利要求1所述的光学防伪元件,其中,所述干涉型表面微结构的至少一部分的深度满足以下条件:
    当光束以一入射角照射所述干涉型表面微结构的至少一部分时,该光束中一波长或波长范围的光在反射光方向上干涉相长,由此所述光学防伪元件的至少一部分在反射光方向上呈现第一颜色。
  3. 根据权利要求2所述的光学防伪元件,其中,所述干涉型表面微结构的至少一部分的图案为以下中的至少一种或任意组合:
    所述干涉型表面微结构的浮雕单元随机或伪随机分布;
    所述干涉型表面微结构的浮雕单元在一个方向随机或伪随机分布;以及
    所述干涉型表面微结构的浮雕单元在第一方向周期分布,在第二方向随机或伪随机分布。
  4. 根据权利要求3所述的光学防伪元件,其中,在所述干涉型表面微结构的至少一部分的图案为所述干涉型表面微结构的浮雕单元随机或伪随机分布的情况下,所述干涉型表面微结构的至少一部分的特征尺寸为0.3μm-6μm,优选为0.6μm至3μm,所述干涉型表面微结构的至少一部分深度满足以下条件:
    当所述光束以一入射角照射所述干涉型表面微结构的至少一部分时,所述光学防伪元件的至少一部分在散射光方向上呈现第二颜色。
  5. 根据权利要求3所述的光学防伪元件,其中,在所述干涉型表面微结构的至少一部分的图案为所述干涉型表面微结构的浮雕单元在第二方向随机或伪随机分布情况下,所述干涉型表面微结构 的至少一部分在与所述第二方向垂直的第一方向的特征尺寸大于6μm,优选大于10μm,在所述第二方向的特征尺寸为0.3μm至6μm,优选为0.6μm至3μm,所述干涉型表面微结构的至少一部分的深度满足以下条件:
    当所述光束以一入射角照射所述干涉型表面微结构的至少一部分时,如果所述光束在与所述基材所在平面垂直并包含所述第二方向的第一平面内,则所述光学防伪元件的至少一部分在该第一平面内散射光方向上呈现第二颜色。
  6. 根据权利要求1所述的光学防伪元件,其特征在于,在所述干涉型表面微结构的至少一部分的图案为所述干涉型表面微结构的浮雕单元在第一方向周期分布,在与所述第一方向垂直的第二方向随机或伪随机分布的情况下,所述干涉型表面微结构的至少一部分在所述第一方向的特征尺寸为0.3μm至6μm,优选为0.6μm至3μm,在所述第二方向的特征尺寸为0.3μm至6μm,优选为0.6μm至3μm,所述干涉型表面微结构的至少一部分的深度满足以下条件:
    当光束以一入射角照射所述干涉型表面微结构至少一部分的时,如果所述光束在与所述基材所在平面垂直并包含所述第二方向的第一平面内,则所述光学防伪元件的至少一部分在该第一平面内散射光方向上呈现第二颜色;如果所述光束在与所述基材所在平面垂直并包含所述第一方向的第二平面内,则所述光学防伪元件的至少一部分在该第二平面内的衍射光方向上呈现随观察角度变化的+1级或-1级衍射光颜色。
  7. 根据权利要求1至4中任一项所述的光学防伪元件,其中,所述干涉型表面微结构满足以下一者或多者:
    所述干涉型表面微结构的浮雕单元的剖面形状为以下一者或多者:正弦形、锯齿形或矩形;
    所述干涉型表面微结构中凸起部分的面积为所述干涉型表面微结构的总面积的20%至80%,优选为35%至65%;以及
    所述干涉型表面微结构的深度为100nm至5μm,优选为200nm至3μm。
  8. 根据权利要求1所述的光学防伪元件,其中,
    所述光吸收型表面微结构的特征尺寸小于10μm,优选小于1μm;和/或
    所述光吸收型表面微结构的深度与特征尺寸的比值大于0.3,优选大于0.8。
  9. 根据权利要求1所述的光学防伪元件,其中,
    所述光吸收型表面微结构由周期性排列的多个下凹微观结构组成;或者
    所述光吸收型表面微结构由随机性排列的多个下凹微观结构组成;或者
    所述光吸收型表面微结构由具有随机性深度的多个下凹微观结构组成;或者
    所述光吸收型表面微结构由具有随机性特征尺寸的多个下凹微观结构组成。
  10. 根据权利要求1所述的光学防伪元件,其中,所述微图像层包括由第一干涉型表面微结构组成的第一区域、由第二干涉型表面微结构组成的第二区域、由第一光吸收型表面微结构组成的第三区域、由第二光吸收型表面微结构组成的第四区域、由第三光吸收型表面微结构组成的第五区域、以及由第四光吸收型表面微结构组成的第六区域。
  11. 根据权利要求10所述的光学防伪元件,其中,所述第一干涉型表面微结构的组成材料的折射率为1.5、深度为1528.8nm,所述第二干涉型表面微结构的组成材料的折射率为1.48、深度为600nm,所述第一光吸收型表面微结构的深度为100nm、特征尺寸为300nm,所述第二光吸收型表面微结构的深度为180nm、特征尺寸为345nm,所述第三光吸收型表面微结构的深度为300nm、特征尺寸为250nm,所述第四光吸收型表面微结构的深度在50nm至150nm范围内随机分布、特征尺寸在500nm至1000nm范围内随机分布。
  12. 根据权利要求1所述的光学防伪元件,其中,所述采样合成层为微透镜阵列层。
  13. 根据权利要求1所述的光学防伪元件,其中,所述采样合成层由一维排列的微采样工具组成,或者所述微图像层与所述采样合成层之间处于离焦状态。
  14. 根据权利要求1所述的光学防伪元件,其中,所述采样合成层满足以下一者或多者:
    所述采样合成层具有周期为10μm至200μm,优选为15μm至50μm的周期性或局部周期性;
    所述采样合成层的加工深度小于15μm,所述加工深度优选为0.5μm至10μm;
    所述采样合成层的焦距为10μm至200μm,优选为15μm至40μm;
    所述基材的厚度与所述采样合成层的焦距之差小于10μm,优选小于3μm。
  15. 根据权利要求1所述的光学防伪元件,其中,所述反射层包括以下镀层中的一者或多者:单层金属镀层;多层金属镀层;由吸收层、低折射率介质层和反射层依次堆叠形成的镀层;以及由 吸收层、高折射率介质层和反射层依次堆叠形成的镀层。
  16. 根据权利要求1所述的光学防伪元件,其中,
    所述微图像层还包括对所述反射层进行图案化镂空的图像;和/或
    所述微图像层还包括编码图像。
  17. 根据权利要求1所述的光学防伪元件,所述光学防伪元件还包括形成于所述基材中、所述基材的第一表面上、所述基材的第二表面上、所述采样合成层中、所述微图像层的表面上的至少一者中的衍射光变特征、干涉光变特征、微纳结构特征、印刷特征、部分金属化特征以及用于机读的磁、光、电、放射性特征中的一种或多种特征。
  18. 一种光学防伪产品,包括根据权利要求1至17中任一项所述的光学防伪元件。
PCT/CN2020/080179 2019-03-19 2020-03-19 光学防伪元件及光学防伪产品 WO2020187285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910209119.2A CN111716939B (zh) 2019-03-19 2019-03-19 光学防伪元件及光学防伪产品
CN201910209119.2 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020187285A1 true WO2020187285A1 (zh) 2020-09-24

Family

ID=72518977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080179 WO2020187285A1 (zh) 2019-03-19 2020-03-19 光学防伪元件及光学防伪产品

Country Status (2)

Country Link
CN (1) CN111716939B (zh)
WO (1) WO2020187285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114675354A (zh) * 2020-12-24 2022-06-28 昇印光电(昆山)股份有限公司 一种光学成像膜、制作方法及搭载其的电子设备盖板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764137B (zh) * 2021-02-22 2022-09-09 武汉华工图像技术开发有限公司 一种光学水印成像装置及防伪设备
CN115527467A (zh) * 2022-05-20 2022-12-27 苏州苏大维格科技集团股份有限公司 烫印膜、转移膜、复合纸及转移纸

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061242A1 (de) * 2003-12-19 2005-07-07 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
JP2012083477A (ja) * 2010-10-08 2012-04-26 Toppan Printing Co Ltd 偽造防止構造体、及び偽造防止媒体
CN103576216A (zh) * 2012-08-02 2014-02-12 中钞特种防伪科技有限公司 一种光学防伪元件及采用该光学防伪元件的防伪产品
CN104249597A (zh) * 2013-06-28 2014-12-31 中钞特种防伪科技有限公司 一种光学防伪元件
GB2549481A (en) * 2016-04-18 2017-10-25 De La Rue Int Ltd Security devices and methods of manufacture thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2554859T3 (es) * 2005-05-18 2015-12-23 Visual Physics, Llc Sistema de presentación de imágenes y de seguridad micro-óptico
DE102006005000B4 (de) * 2006-02-01 2016-05-04 Ovd Kinegram Ag Mehrschichtkörper mit Mikrolinsen-Anordnung
DE102009058602A1 (de) * 2009-12-17 2011-06-22 Giesecke & Devrient GmbH, 81677 Sicherheitselement und Herstellverfahren dafür
GB2553968B (en) * 2015-05-21 2021-03-03 Ccl Secure Pty Ltd Combination microlens optical device
KR101775695B1 (ko) * 2016-04-18 2017-09-20 한국조폐공사 다시점 입체 이미지 보안요소 및 이를 포함한 보안제품
CN108454265B (zh) * 2017-02-20 2023-09-08 中钞特种防伪科技有限公司 防伪元件及光学防伪产品
CN108454264B (zh) * 2017-02-20 2020-09-29 中钞特种防伪科技有限公司 光学防伪元件及使用该光学防伪元件的光学防伪产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061242A1 (de) * 2003-12-19 2005-07-07 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
JP2012083477A (ja) * 2010-10-08 2012-04-26 Toppan Printing Co Ltd 偽造防止構造体、及び偽造防止媒体
CN103576216A (zh) * 2012-08-02 2014-02-12 中钞特种防伪科技有限公司 一种光学防伪元件及采用该光学防伪元件的防伪产品
CN104249597A (zh) * 2013-06-28 2014-12-31 中钞特种防伪科技有限公司 一种光学防伪元件
GB2549481A (en) * 2016-04-18 2017-10-25 De La Rue Int Ltd Security devices and methods of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114675354A (zh) * 2020-12-24 2022-06-28 昇印光电(昆山)股份有限公司 一种光学成像膜、制作方法及搭载其的电子设备盖板

Also Published As

Publication number Publication date
CN111716939B (zh) 2021-10-26
CN111716939A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US20200269628A1 (en) Anti-counterfeiting component and optical anti-counterfeiting product
CN108454264B (zh) 光学防伪元件及使用该光学防伪元件的光学防伪产品
US10308062B2 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product utilizing the same
WO2020187285A1 (zh) 光学防伪元件及光学防伪产品
US11960107B2 (en) Nano-structures patterned on micro-structures
CN105313529B (zh) 光学防伪元件及使用该光学防伪元件的防伪产品
RU2596088C2 (ru) Защитный элемент для защищенных от подделки документов, ценных документов или т.п.
CN104656167B (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
JP2013509314A (ja) セキュリティデバイス
EA012512B1 (ru) Защитное устройство и способ его изготовления
CN205416817U (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
CA3195189A1 (en) Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products
WO2020187287A1 (zh) 光学防伪元件及光学防伪产品
WO2022110878A1 (zh) 一种光学防伪元件及其产品
CN109808337B (zh) 光学防伪元件及光学防伪产品
WO2013143089A1 (zh) 一种光学防伪元件及使用该光学防伪元件的产品
WO2021103670A1 (zh) 光学防伪元件及光学防伪产品
CN117485048A (zh) 一种光学防伪元件和光学防伪产品
CN117485046A (zh) 光学防伪元件和光学防伪产品
CN111716935A (zh) 光学防伪元件及光学防伪产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772842

Country of ref document: EP

Kind code of ref document: A1