WO2016163561A1 - 反応性シルセスキオキサン化合物を含む重合性樹脂組成物 - Google Patents

反応性シルセスキオキサン化合物を含む重合性樹脂組成物 Download PDF

Info

Publication number
WO2016163561A1
WO2016163561A1 PCT/JP2016/061710 JP2016061710W WO2016163561A1 WO 2016163561 A1 WO2016163561 A1 WO 2016163561A1 JP 2016061710 W JP2016061710 W JP 2016061710W WO 2016163561 A1 WO2016163561 A1 WO 2016163561A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
polymerizable composition
meth
Prior art date
Application number
PCT/JP2016/061710
Other languages
English (en)
French (fr)
Inventor
偉大 長澤
佐代子 田所
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177031955A priority Critical patent/KR20170135906A/ko
Priority to EP16776727.6A priority patent/EP3281959A4/en
Priority to CN201680021031.2A priority patent/CN107531812B/zh
Priority to US15/565,615 priority patent/US10550217B2/en
Priority to JP2017511120A priority patent/JP6718152B2/ja
Publication of WO2016163561A1 publication Critical patent/WO2016163561A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material

Definitions

  • the present invention relates to a polymerizable resin composition containing a reactive silsesquioxane compound. Specifically, the present invention relates to a polymerizable resin composition capable of forming a cured product having excellent optical properties (high refractive index, low Abbe number) and high heat resistance (crack resistance, dimensional stability, etc.).
  • Plastic lenses are used for mobile phones, digital cameras, in-vehicle cameras, etc., and are required to have excellent optical characteristics according to the purpose of the equipment. Moreover, high durability, for example, heat resistance, weather resistance, and the like, and high productivity that can be molded with a high yield are required in accordance with the usage mode.
  • a resin material for example, a transparent resin such as a polycarbonate resin, a cycloolefin polymer, and a methacrylic resin has been used.
  • optical properties that can be used as lenses for high-resolution camera modules and heat resistance such as crack resistance against temperature changes, peeling resistance, and dimensional stability that are compatible with mounting processes such as solder reflow
  • This invention is made
  • a specific reactive silsesquioxane compound As a result of intensive studies to solve the above problems, the present inventors have found that a specific reactive silsesquioxane compound, a specific fluorene compound, and a polymer having a weight average molecular weight of 5,000 to 100,000 It is found that a molded article that can maintain a high refractive index and can suppress cracks caused by high-temperature thermal history, peeling from the support, and dimensional change can be produced by forming a composition containing It came to be completed.
  • the present invention provides a first aspect as follows: (A) 100 parts by mass of a reactive silsesquioxane compound which is a polycondensate of an alkoxysilicon compound A represented by the formula [1] and an alkoxysilicon compound B represented by the formula [2], (B) A polymerizable composition comprising 10 to 500 parts by mass of a fluorene compound represented by the formula [3] and (c) 0.1 to 50 parts by mass of a polymer having a weight average molecular weight of 5,000 to 100,000. About.
  • Ar 1 represents at least a phenyl group having at least one group having a polymerizable double bond, a naphthyl group having at least one group having a polymerizable double bond, or a group having a polymerizable double bond. Represents one biphenyl group, and R 1 represents a methyl group or an ethyl group.
  • Ar 2 is a phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, a naphthyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, or 1 to 1 carbon atoms.
  • the present invention relates to the polymerizable composition according to the first aspect, in which the polymer (c) is a polymer having at least a monomer unit represented by the formula [4].
  • Ar 3 is a phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, a naphthyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • the third aspect relates to the polymerizable composition according to the first aspect or the second aspect, further comprising (d) 10 to 100 parts by mass of a (meth) acrylate compound different from the fluorene compound.
  • the present invention relates to the polymerizable composition according to the third aspect, in which the (d) (meth) acrylate compound is a mono (meth) acrylate compound having an aromatic group.
  • the reactive silsesquioxane compound (a) includes a compound represented by the formula [1a] and a compound represented by the formula [2a], the formula [2b], and the formula [2c].
  • the present invention relates to the polymerizable composition according to any one of the first to fourth aspects, which is a polycondensate with at least one compound selected from the group.
  • the present invention relates to the polymerizable composition according to any one of the first aspect to the fifth aspect, in which the Abbe number of a cured product obtained from the composition is 32 or less.
  • the present invention relates to a cured product obtained by polymerizing the polymerizable composition according to any one of the first aspect to the sixth aspect.
  • the present invention relates to a high refractive index resin lens material comprising the polymerizable composition according to any one of the first to sixth aspects.
  • the said molded object is related with the manufacturing method as described in a 9th viewpoint which is a lens for camera modules.
  • the polymerizable composition of the present invention is suitable not only for the cured product thereof to have optical characteristics (high refractive index) desirable as a lens for an optical device, for example, a high-resolution camera module, but also for a high-resolution camera module mounting process. It also has heat resistance (crack resistance, peel resistance, dimensional stability, etc.) to be obtained. Therefore, the high refractive index resin lens material of the present invention comprising the polymerizable composition can be suitably used as a lens for a high resolution module.
  • the production method of the present invention can efficiently produce a molded body, particularly a camera module lens.
  • the polymerizable composition of the present invention has a viscosity that can be sufficiently handled in a solvent-free form, it is suitably formed by applying a pressing process (imprint technique) of a mold such as a mold. Can be molded.
  • the polymerizable composition of the present invention comprises a specific reactive silsesquioxane compound as component (a), a specific fluorene compound as component (b), and a weight average of 5,000 to 100,000 as component (c).
  • a polymerizable composition comprising a polymer having a molecular weight.
  • the (a) reactive silsesquioxane compound used in the present invention is a compound obtained by polycondensation of an alkoxysilicon compound A having a specific structure described later and an alkoxysilicon compound B having a specific structure in the presence of an acid or a base. It is.
  • alkoxysilicon compound A is a compound represented by the following formula [1].
  • Ar 1 has a phenyl group having at least one group having a polymerizable double bond, a naphthyl group having at least one group having a polymerizable double bond, or a polymerizable double bond.
  • a biphenyl group having at least one group is represented, and R 1 represents a methyl group or an ethyl group.
  • Examples of the phenyl group having at least one group having a polymerizable double bond represented by Ar 1 include a 2-vinylphenyl group, a 3-vinylphenyl group, a 4-vinylphenyl group, a 4-vinyloxyphenyl group, 4 -Allylphenyl group, 4-allyloxyphenyl group, 4-isopropenylphenyl group and the like.
  • Examples of the naphthyl group having at least one group having a polymerizable double bond represented by Ar 1 include 4-vinylnaphthalen-1-yl group, 5-vinylnaphthalen-1-yl group, and 6-vinylnaphthalene-2.
  • -Yl group 4-allyloxynaphthalen-1-yl group, 5-allyloxynaphthalen-1-yl group, 8-allyloxynaphthalen-1-yl group, 5-vinyloxynaphthalen-1-yl group, 5- Examples include an allylnaphthalen-1-yl group and a 5-isopropenylnaphthalen-1-yl group.
  • Examples of the biphenyl group having at least one group having a polymerizable double bond represented by Ar 1 include a 4′-vinyl- [1,1′-biphenyl] -2-yl group, 4′-vinyl- [1 , 1′-biphenyl] -3-yl group, 4′-vinyl- [1,1′-biphenyl] -4-yl group, 4′-vinyloxy- [1,1′-biphenyl] -4-yl group, 4′-allyl- [1,1′-biphenyl] -4-yl group, 4′-allyloxy- [1,1′-biphenyl] -4-yl group, 4′-isopropenyl- [1,1′- And biphenyl] -4-yl group.
  • the compound represented by the formula [1] include, for example, trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane, (4-isopropenylphenyl) trimethoxysilane, trimethoxy (4 -Vinyl-1-naphthyl) silane, trimethoxy (4'-vinyl- [1,1'-biphenyl] -4-yl) silane, and the like, but are not limited thereto.
  • alkoxysilicon compound B is a compound represented by the following formula [2].
  • Ar 2 is a phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, a naphthyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, or a carbon atom.
  • a biphenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, or a phenanthryl group which may be substituted with an alkyl group having 1 to 6 carbon atoms
  • R 2 represents a methyl group or an ethyl group.
  • Examples of the phenyl group optionally substituted by an alkyl group having 1 to 6 carbon atoms represented by Ar 2 include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, 2, 4, 6 -Trimethylphenyl group, 4-tert-butylphenyl group and the like.
  • Examples of the naphthyl group optionally substituted with an alkyl group having 1 to 6 carbon atoms represented by Ar 2 include a 1-naphthyl group, a 2-naphthyl group, a 4-methylnaphthalen-1-yl group, and 6-methyl. And naphthalen-2-yl group.
  • Examples of the biphenyl group optionally substituted by an alkyl group having 1 to 6 carbon atoms represented by Ar 2 include [1,1′-biphenyl] -2-yl group, [1,1′-biphenyl]- Examples include 3-yl group and [1,1′-biphenyl] -4-yl group.
  • Examples of the phenanthryl group that may be substituted with an alkyl group having 1 to 6 carbon atoms represented by Ar 2 include 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 9-phenanthryl group, 6-methyl group.
  • Examples include phenanthren-1-yl group, 7-methylphenanthren-2-yl group, 6-methylphenanthren-3-yl group, 3-ethylphenanthren-9-yl group, and 2-ethylphenanthren-10-yl group.
  • the compound represented by the formula [2] include, for example, trimethoxy (phenyl) silane, triethoxy (phenyl) silane, trimethoxy (p-tolyl) silane, trimethoxy (naphthyl) silane, triethoxy (naphthyl) silane, ([1,1′-biphenyl] -4-yl) trimethoxysilane, ([1,1′-biphenyl] -4-yl) triethoxysilane, trimethoxy (2-phenanthryl) silane, trimethoxy (3-phenanthryl) Examples include, but are not limited to, silane, trimethoxy (9-phenanthryl) silane, triethoxy (9-phenanthryl) silane, and the like.
  • the reactive silsesquioxane compound (a) is a group consisting of a compound represented by the following formula [1a] and a compound represented by the following formula [2a], formula [2b], and formula [2c].
  • a reactive silsesquioxane compound obtained by polycondensation in the presence of an acid or a base with at least one compound selected from is preferred.
  • R 1 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • R 2 represents the same meaning as described above.
  • the blending molar ratio of the alkoxysilicon compound A to the blending mole number of the alkoxysilicon compound B is set to 5 or less, the remaining of unreacted polymerizable double bonds in the cured product can be suppressed, and a stronger cured product can be obtained. Can do. Moreover, sufficient crosslinking density is obtained and the dimensional stability with respect to a heat
  • the above-mentioned alkoxysilicon compound A and alkoxysilicon compound B compounds can be appropriately selected and used as necessary, and plural kinds of compounds can be used in combination. In this case, the molar ratio of the total amount of the alkoxysilicon compound A and the total molar amount of the alkoxysilicon compound B also falls within the above range.
  • the polycondensation reaction between the alkoxysilicon compound A represented by the above formula [1] and the alkoxysilicon compound B represented by the above formula [2] is preferably carried out in the presence of an acid or a basic catalyst.
  • the type of the catalyst used for the polycondensation reaction is not particularly limited as long as it is dissolved or uniformly dispersed in a solvent described later, and can be appropriately selected and used as necessary.
  • Examples of catalysts that can be used include acidic compounds such as inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as acetic acid and oxalic acid, etc .; basic compounds such as alkali metal hydroxides and alkaline earth metal waters.
  • fluoride salts include NH 4 F, NR 4 F, and the like.
  • R represents a hydrogen atom, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, or a cyclic alkyl group having 3 to 12 carbon atoms.
  • Examples of the acidic compound include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, boric acid and the like.
  • Examples of the basic compound include sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, hydroxide Examples include tetrabutylammonium and triethylamine.
  • fluoride salt examples include ammonium fluoride, tetramethylammonium fluoride, and tetrabutylammonium fluoride.
  • one or more selected from the group consisting of hydrochloric acid, acetic acid, potassium hydroxide, calcium hydroxide, barium hydroxide and tetraethylammonium hydroxide are preferably used.
  • the amount of the catalyst used is 0.01 to 10% by mass, preferably 0.1 to 5% by mass, based on the total mass of the alkoxysilicon compound A and the alkoxysilicon compound B.
  • the reaction proceeds more favorably when the amount of the catalyst used is 0.01% by mass or more. In consideration of economy, the use of 10% by mass or less is sufficient.
  • the reactive silsesquioxane compound according to the present invention is characterized by the structure of the alkoxysilicon compound A.
  • the reactive group (polymerizable double bond) contained in the alkoxysilicon compound A used in the present invention is easily polymerized by radicals or cations, and exhibits high heat resistance after polymerization (after curing).
  • the hydrolysis polycondensation reaction between the alkoxysilicon compound A and the alkoxysilicon compound B can be carried out in the absence of a solvent, but a solvent inert to both alkoxysilicon compounds such as tetrahydrofuran (THF) described later is used as a reaction solvent. It is also possible to use it.
  • THF tetrahydrofuran
  • the synthesis reaction of the reactive silsesquioxane compound may be performed without a solvent as described above, but there is no problem even if a solvent is used to make the reaction more uniform.
  • the solvent is not particularly limited as long as it does not react with both alkoxysilicon compounds and dissolves the polycondensate thereof.
  • Examples of such a reaction solvent include ketones such as acetone and methyl ethyl ketone (MEK); aromatic hydrocarbons such as benzene, toluene and xylene; tetrahydrofuran (THF), 1,4-dioxane, diisopropyl ether, cyclopentylmethyl, and the like.
  • Ethers such as ether (CPME); glycols such as ethylene glycol, propylene glycol, hexylene glycol; glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol; N— Examples thereof include amides such as methyl-2-pyrrolidone (NMP) and N, N-dimethylformamide (DMF). These solvents may be used alone or in combination of two or more.
  • NMP methyl-2-pyrrolidone
  • DMF N-dimethylformamide
  • the reactive silsesquioxane compound used in the present invention comprises an alkoxysilicon compound A represented by the formula [1] and an alkoxysilicon compound B represented by the formula [2] in the presence of an acid or a basic catalyst. It can be obtained by carrying out hydrolysis polycondensation.
  • the reaction temperature for the hydrolysis polycondensation is 20 to 150 ° C, more preferably 30 to 120 ° C.
  • the reaction time is not particularly limited as long as it is longer than the time necessary for the molecular weight distribution of the polycondensate to increase and to stabilize the molecular weight distribution, and more specifically, several hours to several days.
  • the obtained reactive silsesquioxane compound After completion of the polycondensation reaction, it is preferable to collect the obtained reactive silsesquioxane compound by any method such as filtration and evaporation of the solvent, and appropriately perform a purification treatment as necessary.
  • the polycondensation compound obtained by such a reaction has a weight average molecular weight Mw measured in terms of polystyrene by GPC of 500 to 100,000, preferably 500 to 30,000. Dispersity: Mw (weight average molecular weight ) / Mn (number average molecular weight) is 1.0 to 10.
  • the (b) fluorene compound used in the present invention is a compound represented by the formula [3].
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group
  • L 1 and L 2 each independently represent a phenylene group which may have a substituent.
  • L 3 and L 4 each independently represents an alkylene group having 1 to 6 carbon atoms
  • m and n represent 0 or a positive integer in which m + n is 0 to 40.
  • Examples of the phenylene group optionally having a substituent represented by L 1 and L 2 include an o-phenylene group, an m-phenylene group, a p-phenylene group, a 2-methylbenzene-1,4-diyl group, Examples include 2-aminobenzene-1,4-diyl group, 2,4-dibromobenzene-1,3-diyl group, 2,6-dibromobenzene-1,4-diyl group and the like.
  • alkylene group having 1 to 6 carbon atoms represented by L 3 and L 4 examples include methylene group, ethylene group, trimethylene group, 1-methylethylene group, tetramethylene group, 1-methyltrimethylene group, 1,1 -Dimethylethylene group, pentamethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-ethyltrimethylene group, hexamethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1-ethyltetramethylene group, 1,1,2-trimethyltrimethylene group, Examples include 1,2,2-trimethyltrimethylene group, 1-ethyl-1-methyltrimethylene group, 1-ethyl-2-methyltrim
  • m and n are preferably m + n from 0 to 30, and more preferably m + n from 2 to 20.
  • Specific examples of the compound represented by the above formula [3] include, for example, 9,9-bis (4- (2- (meth) acryloyloxyethoxy) phenyl) -9H-fluorene, Ogsol (registered trademark) EA- 0200, EA-F5003, EA-F5503, EA-F5510 [above, manufactured by Osaka Gas Chemical Co., Ltd.], NK ester A-BPEF [manufactured by Shin-Nakamura Chemical Co., Ltd.], etc. It is not limited to.
  • the content of the component (b) is 10 to 500 parts by mass with respect to 100 parts by mass of the component (a). Of these, 30 to 250 parts by mass are preferable.
  • the polymer (c) used in the present invention has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography (GPC) of 5,000 to 100,000, preferably 10,000 to 80,000, more preferably. Is a polymer of 20,000-60,000.
  • GPC gel permeation chromatography
  • a polymer having at least a monomer unit represented by the formula [4] or a monomer unit represented by the formula [5] is preferable, and is represented by at least the monomer unit represented by the formula [4] and the formula [5].
  • a polymer having monomer units is more preferred.
  • Ar 3 is a phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, a naphthyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, or carbon. It represents a biphenyl group which may be substituted with an alkyl group having 1 to 6 atoms, and R 5 represents a hydrogen atom or a methyl group.
  • Ar 3 represents a phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, a naphthyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms.
  • Examples of the biphenyl group which may be substituted with an alkyl group include the same groups as those exemplified as Ar 2 in the above formula [2].
  • the monomer unit represented by the formula [4] include, for example, 1-phenylethylene group, 1-methyl-1-phenylethylene group, 1- (naphthalen-1-yl) ethylene group, 1- ( [1,1′-biphenyl] -2-yl) ethylene group, 1-([1,1′-biphenyl] -3-yl) ethylene group, 1-([1,1′-biphenyl] -4-yl ) Ethylene group and the like. Of these, a 1-phenylethylene group is preferable.
  • R 6 represents a hydrogen atom or a methyl group
  • R 7 represents an alkyl group having 1 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R 7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, n-pentyl, isoamyl, neopentyl, tert-amyl, sec-isoamyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl Group, n-decyl group, n-dodecyl group, benzyl group, phenethyl group and the like.
  • monomer unit represented by the above formula [5] include, for example, 1-methoxycarbonylethylene group, 1-methoxycarbonyl-1-methylethylene group and the like.
  • polystyrene examples include, for example, polystyrene, acrylonitrile-chlorinated polyethylene-styrene copolymer (ACS), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-EPDM (ethylene-propylene-dienter).
  • ACS acrylonitrile-chlorinated polyethylene-styrene copolymer
  • ABS acrylonitrile-butadiene-styrene copolymer
  • EPDM ethylene-propylene-dienter
  • Polymer -styrene copolymer (AES), acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-acrylate copolymer (ASA), methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate -Styrene polymers such as styrene copolymer (MS), silicone-acrylonitrile-styrene copolymer (SAS), styrene-butadiene copolymer (SBC), styrene-maleic anhydride copolymer (SMA); Ak (Meth) acrylic polymers such as poly (methyl methacrylate) and poly (methyl methacrylate) (PMMA); polyolefins such as polyethylene (PE) and polypropylene (PP); polyamide (PA); polycarbonate (PC); polyethylene terephthalate (PET) Polyesters such as polybutylene ter
  • the molar ratio of each monomer unit constituting the copolymer is not particularly limited.
  • these are molar ratios of the monomer unit represented by the formula [4]: formula It is preferable that the monomer unit represented by [5] 99: 1 to 10:90.
  • the polymer may be used alone or in combination of two or more.
  • the blending amount is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, and more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the (a) reactive silsesquioxane compound. Particularly preferred.
  • the polymerizable composition of the present invention may further contain a (meth) acrylate compound different from the (b) fluorene compound as the component (d).
  • a (meth) acrylate compound different from the (b) fluorene compound as the component (d).
  • mono (meth) acrylate compounds having an aromatic group are preferred.
  • the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
  • (meth) acrylic acid refers to acrylic acid and methacrylic acid.
  • Examples of the mono (meth) acrylate compound having an aromatic group include benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-hydroxy- Examples include, but are not limited to, 3-phenoxypropyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate, and the like.
  • Examples of the (meth) acrylate compound other than the mono (meth) acrylate compound having an aromatic group as the component (d) include methyl (meth) acrylate, ethyl (meth) acrylate, 2,2,2- Trifluoroethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2- ( Jisiku Pentanyl
  • the compound When the (meth) acrylate compound of the component (d) is used, the compound may be used alone or in combination of two or more.
  • the content of the component (d) is 10 to 100 parts by mass with respect to 100 parts by mass of the component (a).
  • the polymerizable composition of the present invention may contain (e) a polymerization initiator in addition to the components (a) to (c) or the components (a) to (d).
  • a polymerization initiator any of a photopolymerization initiator and a thermal polymerization initiator can be used.
  • photopolymerization initiator examples include alkylphenones, benzophenones, acylphosphine oxides, Michler's benzoylbenzoates, oxime esters, tetramethylthiuram monosulfides, and thioxanthones.
  • photocleavable photoradical polymerization initiators are preferred.
  • examples of the photocleavable photoradical polymerization initiator include those described in the latest UV curing technology (p. 159, publisher: Kazuhiro Takahisa, publisher: Technical Information Association, published in 1991). .
  • radical photopolymerization initiators examples include IRGACURE (registered trademark) 184, 369, 651, 500, 819, 907, 784, 2959, CGI 1700, CGI 1750, and CGI 1850.
  • thermal polymerization initiator examples include azos and organic peroxides.
  • thermal polymerization initiator examples include V-30, V-40, V-59, V-60, V-65, and V-70 [above, manufactured by Wako Pure Chemical Industries, Ltd.] Etc.
  • organic peroxide thermal polymerization initiators examples include, for example, Parkadox (registered trademark) CH, BC-FF, 14, 16 and Trigonox (registered trademark) 22, 23, 121.
  • the polymerization initiators may be used alone or in combination of two or more.
  • the added amount thereof is 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable component, that is, the above components (a) to (c), or the total amount of the above components (a) to (d). More preferably, it is 0.3 to 10 parts by mass.
  • a preferred embodiment in the present invention is a polymerizable composition in which the resulting cured product has an Abbe number of 32 or less from the viewpoint of making the cured product obtained from the polymerizable composition have a high refractive index.
  • the polymerizable composition of the present invention may contain a chain transfer agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, a rheology modifier, a silane, as necessary, as long as the effects of the present invention are not impaired. It can contain adhesion aids such as coupling agents, pigments, dyes, antifoaming agents and the like.
  • thiol compounds include methyl mercaptoacetate, methyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, 3-methoxybutyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate, stearyl 3-mercaptopropionate, 1,4-bis (3-mercaptopropionyloxy) butane, 1,4-bis (3-mercaptobutyryloxy) butane, trimethylolethane tris (3-mercaptopropionate), trimethylolethanetris (3-mercapto Butyrate), trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol Ritoltetrakis (3-mercaptobutyrate), dipent
  • Disulfide compounds include diethyl disulfide, dipropyl disulfide, diisopropyl disulfide, dibutyl disulfide, di-tert-butyl disulfide, dipentyl disulfide, diisopentyl disulfide, dihexyl disulfide, dicyclohexyl disulfide, didecyl disulfide, bis (2,3,3,3) 4,4,5-hexamethylhexane-2-yl) disulfide (di-tert-dodecyl disulfide), bis (2,2-diethoxyethyl) disulfide, bis (2-hydroxyethyl) disulfide, dibenzyl disulfide, etc.
  • Alkyl disulfides diphenyl disulfide, di-p-tolyl disulfide, di (pyridin-2-yl) pyridyl disulfide, di (benzimidazol-2-yl) Disulfide, aromatic disulfide and di (benzothiazol-2-yl) disulfide; tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrabutyl thiuram disulfide, thiuram disulfides such as bis (pentamethylene) disulfide, etc., Examples include ⁇ -methylstyrene dimer.
  • the chain transfer agent When a chain transfer agent is added, the chain transfer agent may be used alone or in combination of two or more.
  • the added amount thereof is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymerizable component, that is, the above components (a) to (c), or the total amount of the above components (a) to (d). More preferably, it is 0.1 to 10 parts by mass.
  • antioxidants examples include phenol-based antioxidants, phosphoric acid-based antioxidants, sulfide-based antioxidants, etc. Among them, phenol-based antioxidants are preferable.
  • phenolic antioxidant examples include IRGANOX (registered trademark) 245, 1010, 1035, 1076, 1135 [above, manufactured by BASF Japan Ltd.], Sumilizer (registered trademark) GA-80, GP MDP-S, BBM-S, WX-R [above, manufactured by Sumitomo Chemical Co., Ltd.], ADK STAB (registered trademark) AO-20, AO-30, AO-40, AO-50, AO-60, AO-80, AO-330 [above, manufactured by ADEKA Corporation] and the like.
  • the antioxidants When adding an antioxidant, the antioxidants may be used alone or in combination of two or more.
  • the added amount thereof is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymerizable component, that is, the above components (a) to (c), or the total amount of the above components (a) to (d). More preferably, it is 0.1 to 10 parts by mass.
  • the method for preparing the polymerizable composition of the present embodiment is not particularly limited.
  • a preparation method for example, the components (a) to (c) and, if necessary, the components (d) and (e) are mixed at a predetermined ratio, and other additives are further added as necessary. And a method using a uniform solution or a method using a conventional solvent in addition to these components.
  • the ratio of the solid content in the present polymerizable composition is not particularly limited as long as each component is uniformly dissolved in the solvent, but is, for example, 1 to 50% by mass, or 1 to 30 % By mass or 1 to 25% by mass.
  • the solid content is obtained by removing the solvent component from all components of the polymerizable composition.
  • the solution of the polymerizable composition is preferably used after being filtered using a filter having a pore size of 0.1 to 5 ⁇ m.
  • the polymerizable composition can be exposed (photocured) or heated (heat cured) to obtain a cured product.
  • light rays to be exposed include ultraviolet rays, electron beams, and X-rays.
  • a light source used for ultraviolet irradiation sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a UV-LED, or the like can be used.
  • the post-baking method is not particularly limited, but is usually performed in a range of 50 to 260 ° C.
  • thermosetting The heating conditions in the thermosetting are not particularly limited, but are usually appropriately selected from the range of 50 to 300 ° C. and 1 to 120 minutes.
  • the heating means is not particularly limited, and examples thereof include a hot plate and an oven.
  • the cured product obtained by curing the polymerizable composition of the present invention has a refractive index as high as 1.55 or higher at a wavelength of 589 nm, and the generation of cracks and peeling from the support are suppressed. Since it has dimensional stability, it can be suitably used as a material for a high refractive index resin lens.
  • the polymerizable composition of the present invention can be formed into various molded products in parallel with the formation of a cured product by using a conventional molding method such as compression molding (imprinting, etc.), casting, injection molding, blow molding and the like. Can be easily manufactured.
  • the molded body thus obtained is also an object of the present invention.
  • a step of filling the above-mentioned polymerizable composition of the present invention into a space between a supporting substrate and a mold or a space inside a mold that can be divided, the filled composition A step of exposing and photopolymerizing the product, a step of removing the resulting photopolymerized product from the space filled with the mold, and a step of heating the photopolymerized product before, during or after the release.
  • the manufacturing method of the molded object containing is preferable.
  • the step of filling the polymerizable composition may be performed by placing a mold on a support, for example a glass substrate, and filling the space between the support and the mold with the polymerizable composition of the present invention.
  • the polymerizable composition may be filled in a space inside a mold that can be divided into a few partial molds.
  • the exposure and photopolymerization step can be carried out by applying the conditions shown in the above ⁇ cured product >>.
  • the photopolymer may be heated before or after the release step, in the middle of the release, that is, simultaneously with the release operation, and further heated from before release to after release. May be.
  • the photopolymer may be removed from the filled space between the support and the mold, heated on the support, and the photopolymer filled in the internal space of the separable mold may be You may heat without taking out from space.
  • the conditions for the heating step are not particularly limited, but are usually selected appropriately from the range of 50 to 260 ° C. and 1 to 120 minutes. Moreover, it does not specifically limit as a heating means, For example, a hotplate, oven, etc. are mentioned.
  • the molded body produced by such a method can be suitably used as a camera module lens.
  • Agitating and defoaming machine Device Rotating / revolving mixer manufactured by Shinkey Co., Ltd. Nertaro Awatori (registered trademark) ARE-310
  • UV exposure system Batch type UV irradiation system (high pressure mercury lamp 2kW x 1 lamp) manufactured by Eye Graphics Co., Ltd.
  • Nanoimprinter Device NM-0801HB manufactured by Myeongchang Kiko Co., Ltd. Pressing pressure: 150N UV exposure amount: 20 mW / cm 2 , 150 seconds
  • Reflow furnace Device Desktop reflow furnace STR-3100 manufactured by Shin Apex Co., Ltd.
  • PTMS Trimethoxy (phenyl) silane [manufactured by Shin-Etsu Chemical Co., Ltd.]
  • STMS Trimethoxy (4-vinylphenyl) silane [manufactured by Shin-Etsu Chemical Co., Ltd.]
  • FDA Bisaryl full orange acrylate [Ogsol (registered trademark) EA-F5503 manufactured by Osaka Gas Chemical Co., Ltd.]
  • BnA benzyl acrylate [Osaka Organic Chemical Co., Ltd.
  • NPGDA Neopentylglycol diacrylate [Kyarad (registered trademark) NPGDA manufactured by Nippon Kayaku Co., Ltd.]
  • PS Polystyrene [manufactured by Negami Kogyo Co., Ltd. MS0103, Mw: 32,000]
  • DDT n-dodecanethiol [Kio Co., Ltd.
  • DDDS Didecyl disulfide [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • I1010 Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [IRGANOX (registered trademark) 1010 manufactured by BASF Japan Ltd.]
  • TPO Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide [IRGACURE (registered trademark) TPO manufactured by BASF Japan Ltd.]
  • reaction mixture was warmed to 40 ° C. and stirred for 4 hours.
  • the reaction mixture was cooled to room temperature (approximately 23 ° C.), and 70.6 g of a 1.2 mass% acetic acid / ethyl acetate solution (14 mmol as acetic acid) was added to stop the reaction by changing the liquidity of the aqueous layer to neutral to acidic. . Thereafter, this reaction mixture was added to 448 g of ethyl acetate and 223 g of ion-exchanged water, and the organic layer was separated using a separatory funnel.
  • the obtained organic layer was washed 3 times with ion-exchanged water, and then concentrated using a rotary evaporator, whereby 96.8 g of a reactive silsesquioxane compound 1 (hereinafter sometimes abbreviated as SQ55B) solution.
  • SQ55B reactive silsesquioxane compound 1
  • the content of SQ55B in the obtained solution was 53.9% by mass.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained compound was 4,000, and dispersion degree: Mw / Mn was 1.8.
  • Example 1 The SQ55B solution produced in Production Example 1 as a reactive silsesquioxane compound (40.7 parts by mass as SQ55B) and 16.6 parts by mass of BnA as other (meth) acrylate compounds are mixed, and a rotary evaporator is used. The solvent was distilled off. To this residue, 39.7 parts by mass of FDA as a fluorene compound, 1.5 parts by mass of NPGDA as another (meth) acrylate compound, 1.5 parts by mass of PS as a polymer, and DDDS 0. 5 as a chain transfer agent (reaction accelerator).
  • Each polymerizable composition was sandwiched between two release-treated glass substrates together with a 800 ⁇ m thick silicone rubber spacer.
  • the sandwiched polymerizable composition was exposed to UV at 20 mW / cm 2 for 150 seconds and further heated in an oven at 150 ° C. for 20 minutes. After cooling to room temperature (approximately 23 ° C.), the cured product was peeled from the glass substrate to produce a test piece having a diameter of 30 mm and a thickness of 800 ⁇ m.
  • the refractive index n D and Abbe number ⁇ D of the obtained test piece at the D line were measured. The results are shown in Table 2.
  • Examples 5 to 8, Comparative Example 2 The polymerizable compositions 1 to 5 were molded using a nanoimprinter on a glass substrate as a support, using a nickel mold (25 mm lens molds arranged in 5 rows x 5 rows). .
  • template was previously mold-release-processed by Novec (trademark) 1720 [made by 3M company].
  • the glass substrate used was preliminarily treated with SILQUEST (registered trademark) A-174 SILANE (made by Momentive Performance Materials Japan (same)). After removing the mold, the lens was heated in an oven at 150 ° C. for 20 minutes to produce a convex lens on the glass substrate.
  • the dimensional stability due to heating was evaluated from height ⁇ lens height after heating) ⁇ lens height before heating ⁇ 100).
  • production of the crack in the lens after a heat test and peeling was observed with the microscope attached to the non-contact surface property measuring apparatus.
  • the cured product (convex lens) (Examples 5 to 8) obtained from the polymerizable composition according to the present invention was subjected to the reflow process at 260 ° C. three times, and the lens and its surrounding flat plate. No cracks were generated in the cured product, and no cracks were removed from the glass substrate. Furthermore, the result that the change in the lens height was sufficiently small and the dimensional stability was high was obtained. That is, any of the cured products obtained from the polymerizable composition of the present invention has high dimensional stability, excellent crack resistance, and peeling resistance after heating (such as a solder reflow process at 260 ° C.). It was confirmed that On the other hand, in the cured product (Comparative Example 2) to which no specific polymer was added, it was confirmed that crack resistance and peel resistance were low and could not withstand the solder reflow process.
  • the cured composition of the polymerizable composition of the present invention has a high refractive index. Further, the cured product obtained from the polymerizable composition of the present invention has excellent heat resistance that suppresses generation of cracks, peeling from the support, and dimensional change even in a high temperature thermal history in a reflow process such as 260 ° C. It has sex. Therefore, the cured product of the present invention can be suitably used as a material for a camera module lens. Of course, the cured product also has transparency and hardness (strength) which are naturally required as a material for a camera module lens.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】 高い屈折率を維持し、さらに高温熱履歴によって生じるクラック、支持体からの剥離及び寸法変化を抑制することができる成形体を作るのに好適な重合性組成物を提供すること。 【解決手段】 (a)特定の反応性シルセスキオキサン化合物100質量部、 (b)特定のフルオレン化合物10~500質量部、及び (c)5,000~100,000の重量平均分子量を有するポリマー0.1~50質量部を含む重合性組成物、当該重合性組成物を重合して得られる硬化物並びに当該重合性組成物からなる高屈折率樹脂レンズ用材料。

Description

反応性シルセスキオキサン化合物を含む重合性樹脂組成物
 本発明は、反応性シルセスキオキサン化合物を含む重合性樹脂組成物に関する。詳細には、優れた光学特性(高屈折率、低アッベ数)、高い耐熱性(耐クラック性、寸法安定性等)を有する硬化物を形成することができる、重合性樹脂組成物に関する。
 プラスチックレンズは、携帯電話、デジタルカメラ、車載カメラ用などに用いられており、その機器の目的に応じた、優れた光学特性を有するものであることが求められる。また、使用態様に合わせて、高い耐久性、例えば耐熱性、耐候性等と、歩留まり良く成形できる高い生産性とが求められている。このような樹脂材料としては、例えば、ポリカーボネート樹脂、シクロオレフィンポリマー、メタクリル樹脂等の透明性樹脂が使用されてきた。
 近年、実装コスト低減の目的で、カメラモジュールをはんだリフローにて一括実装する方法が提案されており、それに用いるプラスチックレンズ材料としては、はんだリフロー工程での高温熱履歴(例えば260℃)に耐え得るものが求められている。しかしながら、従来のプラスチックレンズでは耐熱性が低く、リフロープロセスに満足に適応することは困難となっていた。
 また、高解像度カメラモジュールには複数枚のレンズが用いられるが、この中の一枚の波長補正レンズとして、高屈折率を有する光学材料が要求されている。さらに、樹脂レンズの製造にあたり、歩留まりや生産効率向上のために熱可塑性樹脂の射出成形から、室温で液状の硬化性樹脂を使った押し付け成形に移行しつつある。
 しかし、高屈折率を特長として提案されている従来材料は、特許文献1に示されているとおり、耐熱性を改良しても200℃以下のものが殆どであり、例えば260℃のはんだリフロー工程に耐える耐熱性を保証するには至っていない。
 一方、満足するリフロー耐熱を有機材料のみでは確保しづらいことから、有機材料にシリカなどの無機微粒子を混合し、耐熱性を付与した材料が提案されている(例えば、特許文献2参照。)。しかしながら、耐熱性を満足するためにシリカの含有率を高める必要があり、組成物の高屈折率化を妨げるという弊害が生じる。また、無機微粒子の凝集によって透明性が低下することや微粒子の添加によって硬化物の脆弱性が発現する場合があることから、信頼性に乏しいと言わざるを得ない。
特開平09-31136号公報 特開2012-62398号公報
 このように、高解像度カメラモジュール用レンズとして使用し得る光学特性(高屈折率)と、はんだリフロー等の実装プロセスに適合する、温度変化に対する耐クラック性、耐剥離性及び寸法安定性等の耐熱性を満足する硬化性樹脂材料は未だなく、その開発が望まれていた。
 本発明は、このような事情に鑑みてなされたものであり、高い屈折率を維持し、さらに高温熱履歴によって生じるクラック、支持体からの剥離及び寸法変化を抑制することができる成形体を作るのに好適な重合性組成物を提供することを課題とする。
 本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、特定の反応性シルセスキオキサン化合物、特定のフルオレン化合物、及び5,000~100,000の重量平均分子量を有するポリマーを含む組成物を構成することにより、高い屈折率を維持し、さらに高温熱履歴によって生じるクラック、支持体からの剥離及び寸法変化を抑制することができる成形体を作製できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、第1観点として、
(a)式[1]で表されるアルコキシケイ素化合物Aと、式[2]で表されるアルコキシケイ素化合物Bとの重縮合物である反応性シルセスキオキサン化合物100質量部、
(b)式[3]で表されるフルオレン化合物10~500質量部、及び
(c)5,000~100,000の重量平均分子量を有するポリマー0.1~50質量部
を含む重合性組成物に関する。
Figure JPOXMLDOC01-appb-C000009
(式中、Ar1は重合性二重結合を有する基を少なくとも1つ有するフェニル基、重合性二重結合を有する基を少なくとも1つ有するナフチル基、又は重合性二重結合を有する基を少なくとも1つ有するビフェニル基を表し、R1はメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式中、Ar2は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェナントリル基を表し、R2はメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000011
(式中、R3及びR4はそれぞれ独立して、水素原子又はメチル基を表し、L1及びL2はそれぞれ独立して、置換基を有していてもよいフェニレン基を表し、L3及びL4はそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。)
 第2観点として、前記(c)ポリマーが、少なくとも式[4]で表されるモノマー単位を有するポリマーである、第1観点に記載の重合性組成物に関する。
Figure JPOXMLDOC01-appb-C000012
(式中、Ar3は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基を表し、R5は水素原子又はメチル基を表す。)
 第3観点として、さらに(d)前記フルオレン化合物と異なる(メタ)アクリレート化合物10~100質量部を含む、第1観点又は第2観点に記載の重合性組成物に関する。
 第4観点として、前記(d)(メタ)アクリレート化合物が、芳香族基を有するモノ(メタ)アクリレート化合物である、第3観点に記載の重合性組成物に関する。
 第5観点として、前記(a)反応性シルセスキオキサン化合物が、式[1a]で表される化合物と式[2a]、式[2b]、及び式[2c]で表される化合物からなる群から選ばれる少なくとも1つの化合物との重縮合物である、第1観点乃至第4観点のうち何れか一つに記載の重合性組成物に関する。
Figure JPOXMLDOC01-appb-C000013
(式中、R1は前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、R2は前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中、R2は前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000016
(式中、R2は前記と同じ意味を表す。)
 第6観点として、当該組成物より得られる硬化物のアッベ数が32以下となる、第1観点乃至第5観点のうち何れか一つに記載の重合性組成物に関する。
 第7観点として、第1観点乃至第6観点の何れか一つに記載の重合性組成物を重合して得られる、硬化物に関する。
 第8観点として、第1観点乃至第6観点の何れか一つに記載の重合性組成物からなる高屈折率樹脂レンズ用材料に関する。
 第9観点として、請求項1乃至請求項6の何れか一項に記載の重合性組成物を、接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に充填する工程、当該充填された組成物を露光して光重合する工程、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程、を含む成形体の製造方法に関する。
 第10観点として、前記成形体がカメラモジュール用レンズである、第9観点に記載の製造方法に関する。
 本発明の重合性組成物は、その硬化物が、光学デバイス、例えば、高解像度カメラモジュール用のレンズとして望ましい光学特性(高屈折率)を有するだけでなく、高解像度カメラモジュールの実装プロセスに適し得る耐熱性(耐クラック性、耐剥離性及び寸法安定性等)をも有する。
 したがって、上記重合性組成物からなる本発明の高屈折率樹脂レンズ用材料は、高解像用モジュール用のレンズとして好適に使用することができる。
 また、本発明の製造方法は、成形体、特にカメラモジュール用レンズを効率的に製造することができる。
 さらに、本発明の重合性組成物は、無溶剤の形態で十分に取り扱い可能な粘度を有しているため、金型等の鋳型の押し付け加工(インプリント技術)を適用して好適に成形体を成形することができる。
<<重合性組成物>>
 本発明の重合性組成物は、成分(a)として特定の反応性シルセスキオキサン化合物、成分(b)として特定のフルオレン化合物、及び成分(c)として5,000~100,000の重量平均分子量を有するポリマーを含む重合性組成物である。
 以下、各成分の詳細を説明する。
<(a)反応性シルセスキオキサン化合物>
 本発明に用いられる(a)反応性シルセスキオキサン化合物は、後述する特定構造のアルコキシケイ素化合物Aと特定構造のアルコキシケイ素化合物Bとを、酸又は塩基の存在下重縮合して得られる化合物である。
[アルコキシケイ素化合物A]
 前記アルコキシケイ素化合物Aは、下記式[1]で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
 上記式[1]中、Ar1は重合性二重結合を有する基を少なくとも1つ有するフェニル基、重合性二重結合を有する基を少なくとも1つ有するナフチル基、又は重合性二重結合を有する基を少なくとも1つ有するビフェニル基を表し、R1はメチル基又はエチル基を表す。
 Ar1が表す重合性二重結合を有する基を少なくとも1つ有するフェニル基としては、例えば、2-ビニルフェニル基、3-ビニルフェニル基、4-ビニルフェニル基、4-ビニルオキシフェニル基、4-アリルフェニル基、4-アリルオキシフェニル基、4-イソプロペニルフェニル基等が挙げられる。
 Ar1が表す重合性二重結合を有する基を少なくとも1つ有するナフチル基としては、例えば、4-ビニルナフタレン-1-イル基、5-ビニルナフタレン-1-イル基、6-ビニルナフタレン-2-イル基、4-アリルオキシナフタレン-1-イル基、5-アリルオキシナフタレン-1-イル基、8-アリルオキシナフタレン-1-イル基、5-ビニルオキシナフタレン-1-イル基、5-アリルナフタレン-1-イル基、5-イソプロペニルナフタレン-1-イル基等が挙げられる。
 Ar1が表す重合性二重結合を有する基を少なくとも1つ有するビフェニル基としては、例えば、4’-ビニル-[1,1’-ビフェニル]-2-イル基、4’-ビニル-[1,1’-ビフェニル]-3-イル基、4’-ビニル-[1,1’-ビフェニル]-4-イル基、4’-ビニルオキシ-[1,1’-ビフェニル]-4-イル基、4’-アリル-[1,1’-ビフェニル]-4-イル基、4’-アリルオキシ-[1,1’-ビフェニル]-4-イル基、4’-イソプロペニル-[1,1’-ビフェニル]-4-イル基等が挙げられる。
 上記式[1]で表される化合物の具体例としては、例えば、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、(4-イソプロペニルフェニル)トリメトキシシラン、トリメトキシ(4-ビニル-1-ナフチル)シラン、トリメトキシ(4’-ビニル-[1,1’-ビフェニル]-4-イル)シラン等が挙げられるが、これらに限定されるものではない。
[アルコキシケイ素化合物B]
 前記アルコキシケイ素化合物Bは、下記式[2]で表される化合物である。
Figure JPOXMLDOC01-appb-C000018
 上記式[2]中、Ar2は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェナントリル基を表し、R2はメチル基又はエチル基を表す。
 Ar2が表す炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,4,6-トリメチルフェニル基、4-tert-ブチルフェニル基等が挙げられる。
 Ar2が表す炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基としては、例えば、1-ナフチル基、2-ナフチル基、4-メチルナフタレン-1-イル基、6-メチルナフタレン-2-イル基等が挙げられる。
 Ar2が表す炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基としては、例えば、[1,1’-ビフェニル]-2-イル基、[1,1’-ビフェニル]-3-イル基、[1,1’-ビフェニル]-4-イル基等が挙げられる。
 Ar2が表す炭素原子数1乃至6のアルキル基で置換されていてもよいフェナントリル基としては、例えば、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、9-フェナントリル基、6-メチルフェナントレン-1-イル基、7-メチルフェナントレン-2-イル基、6-メチルフェナントレン-3-イル基、3-エチルフェナントレン-9-イル基、2-エチルフェナントレン-10-イル基等が挙げられる。
 上記式[2]で表される化合物の具体例としては、例えば、トリメトキシ(フェニル)シラン、トリエトキシ(フェニル)シラン、トリメトキシ(p-トリル)シラン、トリメトキシ(ナフチル)シラン、トリエトキシ(ナフチル)シラン、([1,1’-ビフェニル]-4-イル)トリメトキシシラン、([1,1’-ビフェニル]-4-イル)トリエトキシシラン、トリメトキシ(2-フェナントリル)シラン、トリメトキシ(3-フェナントリル)シラン、トリメトキシ(9-フェナントリル)シラン、トリエトキシ(9-フェナントリル)シラン等が挙げられるが、これらに限定されるものではない。
 (a)成分の反応性シルセスキオキサン化合物としては、下記式[1a]で表される化合物と下記式[2a]、式[2b]、及び式[2c]で表される化合物からなる群から選ばれる少なくとも1つの化合物とを、酸又は塩基の存在下重縮合して得られる反応性シルセスキオキサン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式[1a]中、R1は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000020
 上記式[2a]中、R2は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000021
 上記式[2b]中、R2は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000022
 上記式[2c]中、R2は前記と同じ意味を表す。
[アルコキシケイ素化合物Aとアルコキシケイ素化合物Bの配合割合]
 (a)成分の反応性シルセスキオキサン化合物に用いる、式[1]で表されるアルコキシケイ素化合物Aと式[2]で表されるアルコキシケイ素化合物Bの重縮合反応にかかる配合モル比は特に限定されないが、硬化物の物性を安定させる目的から、通常、アルコキシケイ素化合物A:アルコキシケイ素化合物B=5:1~1:5の範囲が好ましい。より好ましくは3:1~1:3の間で配合される範囲である。アルコキシケイ素化合物Bの配合モル数に対するアルコキシケイ素化合物Aの配合モル比を5以下とすることで、硬化物中の未反応の重合性二重結合の残存を抑え、より強固な硬化物を得ることができる。また、アルコキシケイ素化合物Bの配合モル数に対するアルコキシケイ素化合物Aの配合モル比を1/5以上とすることで、十分な架橋密度が得られ、熱に対する寸法安定性がより向上する。
 上述のアルコキシケイ素化合物A及びアルコキシケイ素化合物Bは、必要に応じて適宜化合物を選択して用いることができ、またそれぞれ複数種の化合物を併用することもできる。この場合の配合モル比も、アルコキシケイ素化合物Aのモル量の総計と、アルコキシケイ素化合物Bのモル量の総計の比が、上記の範囲となる。
[酸又は塩基性触媒]
 上記式[1]で表されるアルコキシケイ素化合物Aと、上記式[2]で表されるアルコキシケイ素化合物Bとの重縮合反応は、酸又は塩基性触媒の存在下で好適に実施される。
 上記重縮合反応に用いる触媒は、後述の溶媒に溶解する、又は均一分散する限りにおいては特にその種類は限定されず、必要に応じて適宜選択して用いることができる。
 用いることのできる触媒としては、例えば、酸性化合物として、塩酸、硝酸、硫酸などの無機酸、酢酸、シュウ酸などの有機酸等;塩基性化合物として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、水酸化アンモニウム、第四級アンモニウム塩、アミン類等;フッ化物塩として、NH4F、NR4F等が挙げられる。なお、ここでRは、水素原子、炭素原子数1乃至12の直鎖状アルキル基、炭素原子数3乃至12の分枝状アルキル基、炭素原子数3乃至12の環状アルキル基からなる群から選ばれる一種以上の基である。
 これら触媒は、一種単独で、又は複数種を併用することもできる。
 上記酸性化合物としては、例えば、塩酸、硝酸、硫酸、酢酸、シュウ酸、ホウ酸等が挙げられる。
 上記塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、トリエチルアミン等が挙げられる。
 上記フッ化物塩としては、例えば、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラブチルアンモニウム等を挙げることができる。
 これら触媒のうち、好ましく用いられるのは、塩酸、酢酸、水酸化カリウム、水酸化カルシウム、水酸化バリウム及び水酸化テトラエチルアンモニウムからなる群から選ばれる一種以上である。
 触媒の使用量は、上記アルコキシケイ素化合物Aとアルコキシケイ素化合物Bとの合計質量に対し、0.01~10質量%、好ましくは0.1~5質量%である。触媒の使用量を0.01質量%以上とすることで反応がより良好に進行する。また、経済性を考慮すれば、10質量%以下の使用で十分である。
[重縮合反応]
 本発明にかかる反応性シルセスキオキサン化合物は、アルコキシケイ素化合物Aの構造が一つの特徴となっている。本発明に用いられるアルコキシケイ素化合物Aに含まれる反応性基(重合性二重結合)は、ラジカル又はカチオンによって容易に重合し、重合後(硬化後)は高い耐熱性を示す。
 アルコキシケイ素化合物Aとアルコキシケイ素化合物Bの加水分解重縮合反応は、無溶媒下で行うことも可能だが、後述するテトラヒドロフラン(THF)などの両アルコキシケイ素化合物に対して不活性な溶媒を反応溶媒として用いることも可能である。反応溶媒を用いる場合は、反応系を均一にしやすく、より安定した重縮合反応を行えるという利点がある。
 反応性シルセスキオキサン化合物の合成反応は、前述のように無溶媒で行ってもよいが、反応をより均一化させるために溶媒を使用しても問題ない。溶媒は、両アルコキシケイ素化合物と反応せず、その重縮合物を溶解するものであれば特に限定されない。
 このような反応溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;テトラヒドロフラン(THF)、1,4-ジオキサン、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)等のエーテル類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール等のグリコールエーテル類;N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等のアミド類などが挙げられる。これら溶媒は、一種単独で、又は二種以上を混合して用いてもよい。
 本発明で用いる反応性シルセスキオキサン化合物は、式[1]で表されるアルコキシケイ素化合物Aと式[2]で表されるアルコキシケイ素化合物Bとを、酸又は塩基性触媒の存在下で、加水分解重縮合を行うことにより得られる。加水分解重縮合にかかる反応温度は20~150℃、より好ましくは30~120℃である。
 反応時間は、重縮合物の分子量増加が終了し、分子量分布が安定するのに必要な時間以上なら、特に制限は受けず、より具体的には数時間から数日間である。
 重縮合反応の終了後、得られた反応性シルセスキオキサン化合物をろ過、溶媒留去等の任意の方法で回収し、必要に応じて適宜精製処理を行うことが好ましい。
 このような反応によって得られた重縮合化合物は、GPCによるポリスチレン換算で測定される重量平均分子量Mwが500~100,000、好ましくは500~30,000であり、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.0~10である。
<(b)フルオレン化合物>
 本発明に用いられる(b)フルオレン化合物は、式[3]で表される化合物である。
Figure JPOXMLDOC01-appb-C000023
 上記式[3]中、R3及びR4はそれぞれ独立して、水素原子又はメチル基を表し、L1及びL2はそれぞれ独立して、置換基を有していてもよいフェニレン基を表し、L3及びL4はそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。
 L1及びL2が表す置換基を有していてもよいフェニレン基としては、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、2-メチルベンゼン-1,4-ジイル基、2-アミノベンゼン-1,4-ジイル基、2,4-ジブロモベンゼン-1,3-ジイル基、2,6-ジブロモベンゼン-1,4-ジイル基等が挙げられる。
 L3及びL4が表す炭素原子数1乃至6のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、1-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルエチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-エチルトリメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1-エチルテトラメチレン基、1,1,2-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基等が挙げられる。
 式[3]で表される化合物において、m及びnは、m+nが0乃至30となる場合が好ましく、m+nが2乃至20となる場合がより好ましい。
 上記式[3]で表される化合物の具体例としては、例えば、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)-9H-フルオレン、オグソール(登録商標)EA-0200、同EA-F5003、同EA-F5503、同EA-F5510[以上、大阪ガスケミカル(株)製]、NKエステルA-BPEF[新中村化学工業(株)製]等が挙げられるが、これらに限定されるものではない。
 本発明の重合性組成物において、(b)成分の含有量は、(a)成分100質量部に対し10~500質量部である。中でも、30~250質量部が好ましい。
<(c)ポリマー>
 本発明に用いられる(c)ポリマーは、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算で測定される重量平均分子量Mwが5,000~100,000、好ましくは10,000~80,000、より好ましくは20,000~60,000のポリマーである。
 また、少なくとも式[4]で表されるモノマー単位又は式[5]で表されるモノマー単位を有するポリマーが好ましく、少なくとも式[4]で表されるモノマー単位及び式[5]で表されるモノマー単位を有するポリマーがより好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記式[4]中、Ar3は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基を表し、R5は水素原子又はメチル基を表す。
 Ar3が表す炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、及び炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基としては、上述の式[2]中のAr2として例示したものと同様の基が挙げられる。
 上記式[4]で表されるモノマー単位の具体例としては、例えば、1-フェニルエチレン基、1-メチル-1-フェニルエチレン基、1-(ナフタレン-1-イル)エチレン基、1-([1,1’-ビフェニル]-2-イル)エチレン基、1-([1,1’-ビフェニル]-3-イル)エチレン基、1-([1,1’-ビフェニル]-4-イル)エチレン基等が挙げられる。中でも、1-フェニルエチレン基が好ましい。
Figure JPOXMLDOC01-appb-C000025
 上記式[5]中、R6は水素原子又はメチル基を表し、R7は炭素原子数1乃至12のアルキル基を表す。
 R7が表す炭素原子数1乃至12のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、ネオペンチル基、tert-アミル基、sec-イソアミル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、ベンジル基、フェネチル基等が挙げられる。
 上記式[5]で表されるモノマー単位の具体例としては、例えば、1-メトキシカルボニルエチレン基、1-メトキシカルボニル-1-メチルエチレン基等が挙げられる。
 このようなポリマーの具体例としては、例えば、ポリスチレン、アクリロニトリル-塩素化ポリエチレン-スチレン共重合体(ACS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-EPDM(エチレン-プロピレン-ジエンターポリマー)-スチレン共重合体(AES)、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-スチレン-アクリレート共重合体(ASA)、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS)、メタクリル酸メチル-スチレン共重合体(MS)、シリコーン-アクリロニトリル-スチレン共重合体(SAS)、スチレン-ブタジエン共重合体(SBC)、スチレン-無水マレイン酸共重合体(SMA)等のスチレン系ポリマー;ポリ(アクリル酸メチル)、ポリ(メタクリル酸メチル)(PMMA)等の(メタ)アクリルポリマー;ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリアミド(PA);ポリカーボネート(PC);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル;環状ポリオレフィン(COP);ポリアリールエーテル;ポリエーテルエーテルケトン(PEEK);ポリエーテルスルホン(PES);ポリウレタン(PU);フルオレン・ポリエステル樹脂(例えば、大阪ガスケミカル(株)製 OKP4)などが挙げられる。
 中でも、スチレン系ポリマーが好ましく、ポリスチレン、メタクリル酸メチル-スチレン共重合体がより好ましい。
 (c)ポリマーとして共重合体を用いる場合、共重合体を構成する各モノマー単位のモル比は特に制限されない。例えば、上記式[4]で表されるモノマー単位及び式[5]で表されるモノマー単位を有する共重合体の場合、これらはモル比で、式[4]で表されるモノマー単位:式[5]で表されるモノマー単位=99:1~10:90とすることが好ましい。
 本発明の重合性組成物において、(c)ポリマーは一種単独で、又は二種以上を混合して用いてもよい。また、その配合量は、(a)反応性シルセスキオキサン化合物100質量部に対して0.1~50質量部が好ましく、0.5~30質量部がより好ましく、1~20質量部が特に好ましい。
<(d)前記フルオレン化合物と異なる(メタ)アクリレート化合物>
 本発明の重合性組成物は、さらに(d)成分として、前記(b)フルオレン化合物と異なる(メタ)アクリレート化合物を含み得る。中でも、芳香族基を有するモノ(メタ)アクリレート化合物が好ましい。
 なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
 芳香族基を有するモノ(メタ)アクリレート化合物としては、例えば、ベンジル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられるが、これらに限定されるものではない。
 また、(d)成分として、前記芳香族基を有するモノ(メタ)アクリレート化合物以外の(メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-(ジシクロペンタニルオキシ)エチル(メタ)アクリレート、2-(ジシクロペンテニルオキシ)エチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールモノ(ヒドロキシピバリン酸)エステル(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-(3-ヒドロキシ-2-メチルプロピル-2-イル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサンジ(メタ)アクリレート(ジオキサングリコールジ(メタ)アクリレートとも呼ぶ)、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリトリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート等が挙げられるが、これらに限定されるものではない。
 (d)成分の(メタ)アクリレート化合物を用いる場合、当該化合物は一種単独で、又は二種以上を混合して用いてもよい。また、本発明の重合性組成物中、(d)成分の含有量は、(a)成分100質量部に対し10~100質量部である。
<(e)重合開始剤>
 本発明の重合性組成物は、上記(a)成分乃至(c)成分、又は上記(a)成分乃至(d)成分に加えて、(e)重合開始剤を含み得る。重合開始剤としては、光重合開始剤及び熱重合開始剤の何れも使用できる。
 光重合開始剤としては、例えば、アルキルフェノン類、ベンゾフェノン類、アシルホスフィンオキシド類、ミヒラーのベンゾイルベンゾエート類、オキシムエステル類、テトラメチルチウラムモノスルフィド類、チオキサントン類等が挙げられる。
 特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されているものが挙げられる。
 市販されている光ラジカル重合開始剤としては、例えば、IRGACURE(登録商標)184、同369、同651、同500、同819、同907、同784、同2959、同CGI1700、同CGI1750、同CGI1850、同CG24-61、同TPO、Darocur(登録商標)1116、同1173[以上、BASFジャパン(株)製]、ESACURE KIP150、同KIP65LT、同KIP100F、同KT37、同KT55、同KTO46、同KIP75[以上、ランベルティ社製]等を挙げることができる。
 熱重合開始剤としては、例えば、アゾ類、有機過酸化物類等が挙げられる。
 市販されているアゾ系熱重合開始剤としては、例えば、V-30、V-40、V-59、V-60、V-65、V-70[以上、和光純薬工業(株)製]等を挙げることができる。
 また市販されている有機過酸化物系熱重合開始剤としては、例えば、パーカドックス(登録商標)CH、同BC-FF、同14、同16、トリゴノックス(登録商標)22、同23、同121、カヤエステル(登録商標)P、同O、カヤブチル(登録商標)B[以上、化薬アクゾ(株)製]、パーヘキサ(登録商標)HC、パークミル(登録商標)H、パーオクタ(登録商標)O、パーヘキシル(登録商標)O、同Z、パーブチル(登録商標)O、同Z[以上、日油(株)製]等を挙げることができるが、これらに限定されるものではない。
 重合開始剤を添加する場合、重合開始剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分乃至(c)成分、又は上記(a)成分乃至(d)成分の総量100質量部に対して0.1~20質量部、さらに好ましくは0.3~10質量部である。
 また、本発明において好ましい態様は、重合性組成物から得られる硬化物を高屈折率のものとする観点から、得られる硬化物のアッベ数が32以下である重合性組成物である。
<その他添加剤>
 さらに本発明の重合性組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、連鎖移動剤、酸化防止剤、紫外線吸収剤、光安定化剤、レベリング剤、レオロジー調整剤、シランカップリング剤等の接着補助剤、顔料、染料、消泡剤などを含有することができる。
 上記連鎖移動剤としては、例えば、
チオール化合物として、メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプトプロピオン酸n-オクチル、3-メルカプトプロピオン酸ステアリル、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、トリス[2-(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリス[2-(3-メルカプトブチリルオキシ)エチル]イソシアヌレート等のメルカプトカルボン酸エステル類;エタンチオール、2-メチルプロパン-2-チオール、n-ドデカンチオール、2,3,3,4,4,5-ヘキサメチルヘキサン-2-チオール(tert-ドデカンチオール)、エタン-1,2-ジチオール、プロパン-1,3-ジチオール、ベンジルチオール等のアルキルチオール類;ベンゼンチオール、3-メチルベンゼンチオール、4-メチルベンゼンチオール、ナフタレン-2-チオール、ピリジン-2-チオール、ベンゾイミダゾール-2-チオール、ベンゾチアゾール-2-チオール等の芳香族チオール類;2-メルカプトエタノール、4-メルカプト-1-ブタノール等のメルカプトアルコール類;3-(トリメトキシシリル)プロパン-1-チオール、3-(トリエトキシシリル)プロパン-1-チオール等のシラン含有チオール類など、
ジスルフィド化合物として、ジエチルジスルフィド、ジプロピルジスルフィド、ジイソプロピルジスルフィド、ジブチルジスルフィド、ジ-tert-ブチルジスルフィド、ジペンチルジスルフィド、ジイソペンチルジスルフィド、ジヘキシルジスルフィド、ジシクロヘキシルジスルフィド、ジデシルジスルフィド、ビス(2,3,3,4,4,5-ヘキサメチルヘキサン-2-イル)ジスルフィド(ジ-tert-ドデシルジスルフィド)、ビス(2,2-ジエトキシエチル)ジスルフィド、ビス(2-ヒドロキシエチル)ジスルフィド、ジベンジルジスルフィド等のアルキルジスルフィド類;ジフェニルジスルフィド、ジ-p-トリルジスルフィド、ジ(ピリジン-2-イル)ピリジルジスルフィド、ジ(ベンゾイミダゾール-2-イル)ジスルフィド、ジ(ベンゾチアゾール-2-イル)ジスルフィド等の芳香族ジスルフィド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ビス(ペンタメチレン)チウラムジスルフィド等のチウラムジスルフィド類など、
α―メチルスチレンダイマーなどが挙げられる。
 連鎖移動剤を添加する場合、連鎖移動剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分乃至(c)成分、又は上記(a)成分乃至(d)成分の総量100質量部に対して0.01~20質量部、さらに好ましくは0.1~10質量部である。
 上記酸化防止剤としては、フェノール系酸化防止剤、リン酸系酸化防止剤、スルフィド系酸化防止剤等が挙げられるが、中でもフェノール系酸化防止剤が好ましい。
 フェノール系酸化防止剤としては、例えば、IRGANOX(登録商標)245、同1010、同1035、同1076、同1135[以上、BASFジャパン(株)製]、スミライザー(登録商標)GA-80、同GP、同MDP-S、同BBM-S、同WX-R[以上、住友化学(株)製]、アデカスタブ(登録商標)AO-20、同AO-30、同AO-40、同AO-50、同AO-60、同AO-80、同AO-330[以上、(株)ADEKA製]等が挙げられる。
 酸化防止剤を添加する場合、酸化防止剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分乃至(c)成分、又は上記(a)成分乃至(d)成分の総量100質量部に対して0.01~20質量部、さらに好ましくは0.1~10質量部である。
<重合性組成物の調製方法>
 本実施の形態の重合性組成物の調製方法は、特に限定されない。調製法としては、例えば、(a)成分乃至(c)成分、及び必要に応じて(d)成分、(e)成分を所定の割合で混合し、所望によりその他添加剤をさらに添加して混合し、均一な溶液とする方法、又はこれらの成分に加えさらに慣用の溶媒を使用する方法等が挙げられる。
 溶媒を使用する場合、本重合性組成物における固形分の割合は、各成分が溶媒に均一に溶解している限りは特に限定はないが、例えば1~50質量%であり、又は1~30質量%であり、又は1~25質量%である。ここで固形分とは、重合性組成物の全成分から溶媒成分を除いたものである。
 また、重合性組成物の溶液は、孔径が0.1~5μmのフィルタなどを用いてろ過した後、使用することが好ましい。
<<硬化物>>
 また、本発明は、上記重合性組成物を露光(光硬化)又は加熱(熱硬化)して、硬化物を得ることができる。
 露光する光線としては、紫外線、電子線、X線等が挙げられる。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、UV-LED等が使用できる。また、露光後、硬化物の物性を安定化させるためにポストベークを施してもよい。ポストベークの方法としては、特に限定されないが、通常、ホットプレート、オーブン等を使用して、50~260℃、1~120分間の範囲で行われる。
 熱硬化における加熱条件としては、特に限定されないが、通常、50~300℃、1~120分間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えばホットプレート、オーブン等が挙げられる。
 本発明の重合性組成物を硬化することにより得られる硬化物は、波長589nmにおける屈折率が1.55以上と高いものであり、また、加熱によるクラックの発生や支持体からの剥離が抑制され、寸法安定性を有するものであるから高屈折率樹脂レンズ用材料として好適に使用することができる。
<<成形体>>
 本発明の重合性組成物は、例えば、圧縮成形(インプリント等)、注型、射出成形、ブロー成形などの慣用の成形法を使用することによって、硬化物の形成と並行して各種成形体を容易に製造することができる。こうして得られる成形体も本発明の対象である。
 成形体を製造する方法としては、例えば接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に前述の本発明の重合性組成物を充填する工程、当該充填された組成物を露光して光重合する工程、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程、を含む成形体の製造方法が好ましい。
 上記重合性組成物を充填する工程は、支持体例えばガラス基板上に鋳型を載置し、支持体と鋳型との間の空間内に本発明の重合性組成物を充填してもよいし、例えば二、三の部分型に分割可能な鋳型の内部の空間に重合性組成物を充填してもよい。
 上記露光して光重合する工程は、前述の<<硬化物>>に示す条件を適用して実施することができる。
 上記加熱工程については、光重合物を離型工程の前に又はその後に、離型の中途に、つまり離型の動作と同時に加熱してもよく、さらには離型前から離型後にわたって加熱してもよい。例えば、光重合物を支持体と鋳型との間の充填された空間から取り出し、支持体上で加熱してもよく、また分割可能な鋳型の内部空間に充填された光重合物を、該内部空間から取り出さずに加熱してもよい。
 また、上記加熱工程の条件としては、特に限定されないが、通常、50~260℃、1~120分間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えば、ホットプレート、オーブン等が挙げられる。
 このような方法によって製造された成形体は、カメラ用モジュールレンズとして好適に使用することができる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)撹拌脱泡機
 装置:(株)シンキー製 自転・公転ミキサー あわとり練太郎(登録商標)ARE-310
(2)UV露光
 装置:アイグラフィックス(株)製 バッチ式UV照射装置(高圧水銀灯2kW×1灯)
(3)ナノインプリンター
 装置:明昌機工(株)製 NM-0801HB
 押し付け圧:150N
 UV露光量:20mW/cm2、150秒
(4)リフロー炉
 装置:(株)シンアペックス製 卓上型リフロー炉STR-3100
(5)ゲル浸透クロマトグラフィー(GPC)
 装置:(株)島津製作所製 Prominence(登録商標)GPCシステム
 カラム:昭和電工(株)製 Shodex(登録商標)GPC KF-804L及びGPC KF-803L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:RI
 検量線:標準ポリスチレン
(6)揮発分
 装置:メトラー・トレド社製 ハロゲン水分計 HR83
(7)屈折率nD、アッベ数νD
 装置:(株)アタゴ製 多波長アッベ屈折計DR-M4
 測定温度:20℃
(8)レンズ高さ測定、クラック観察
 装置:三鷹光器(株)製 非接触表面性状測定装置PF-60
 また、略記号は以下の意味を表す。
PTMS:トリメトキシ(フェニル)シラン[信越化学工業(株)製]
STMS:トリメトキシ(4-ビニルフェニル)シラン[信越化学工業(株)製]
FDA:ビスアリールフルオレンジアクリレート[大阪ガスケミカル(株)製 オグソール(登録商標)EA-F5503]
BnA:ベンジルアクリレート[大阪有機化学工業(株)製 ビスコート#160]
NPGDA:ネオペンチルグリコールジアクリレート[日本化薬(株)製 KAYARAD(登録商標)NPGDA]
PS:ポリスチレン[根上工業(株)製 MS0103、Mw:32,000]
DDT:n-ドデカンチオール[花王(株)製 チオカルコール20]
DDDS:ジデシルジスルフィド[東京化成工業(株)製]
I1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート][BASFジャパン(株)製 IRGANOX(登録商標)1010]
I184:1-ヒドロキシシクロヘキシル=フェニル=ケトン[BASFジャパン(株)製 IRGACURE(登録商標)184]
TPO:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド[BASFジャパン(株)製 IRGACURE(登録商標)TPO]
[製造例1]反応性シルセスキオキサン化合物1(SQ55B)の製造
 凝縮器を備えた300mLの反応フラスコに、35質量%水酸化テトラエチルアンモニウム2.97g(7.1mmol)、テトラヒドロフラン89.5g、及びイオン交換水9.5gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。この混合物に、STMS39.6g(177mmol)及びPTMS35.0g(177mmol)の混合物を、室温(およそ23℃)で10分間かけて滴下した。この反応混合物を40℃に昇温し、4時間撹拌した。
 反応混合物を室温(およそ23℃)に冷却し、1.2質量%酢酸/酢酸エチル溶液70.6g(酢酸として14mmol)を加え、水層の液性を中性~酸性として反応を停止させた。その後、この反応混合物を、酢酸エチル448g及びイオン交換水223gに加え、分液ロートを用いて有機層を分取した。得られた有機層を、イオン交換水で3回洗浄した後、ロータリーエバポレーターを用いて濃縮することで、反応性シルセスキオキサン化合物1(以下、SQ55Bと略記することもある)溶液96.8gを得た。
 100℃での揮発分測定から、得られた溶液のSQ55Bの含有量は53.9質量%であった。また、得られた化合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは4,000、分散度:Mw/Mnは1.8であった。
[実施例1]
 反応性シルセスキオキサン化合物として製造例1で製造したSQ55B溶液(SQ55Bとして40.7質量部)、及びその他の(メタ)アクリレート化合物としてBnA 16.6質量部を混合し、ロータリーエバポレーターを用いて溶媒を留去した。この残渣に、フルオレン化合物としてFDA 39.7質量部、その他の(メタ)アクリレート化合物としてNPGDA 1.5質量部、ポリマーとしてPS 1.5質量部、連鎖移動剤(反応促進剤)としてDDDS 0.5質量部、酸化防止剤としてI1010 0.5質量部、並びに重合開始剤としてI184 2質量部及びTPO 0.5質量部を加え、50℃で3時間撹拌混合し、さらに10分間撹拌脱泡することで重合性組成物1を調製した。
[実施例2~4、比較例1]
 各組成を表1に記載のとおりに変更した以外は実施例1と同様に操作し、重合性組成物2~5を調製した。なお、表1中、「部」は「質量部」を表す。
Figure JPOXMLDOC01-appb-T000026
[光学特性評価]
 各重合性組成物を、800μm厚のシリコーンゴム製スペーサーとともに、離型処理したガラス基板2枚で挟み込んだ。この挟み込んだ重合性組成物を、20mW/cm2で150秒間UV露光し、さらに150℃のオーブンで20分間加熱した。室温(およそ23℃)まで冷却後、硬化物をガラス基板から剥離することで、直径30mm、厚さ800μmの試験片を作製した。
 得られた試験片のD線(波長589nm)における屈折率nD、及びアッベ数νDを測定した。結果を表2に示す。
[実施例5~8、比較例2]
 重合性組成物1~5について、ニッケル製の鋳型(2mm径レンズ型を縦5列×横5列の25個配置)を用い、支持体としてのガラス基板上にナノインプリンターを用いて成形した。なお、使用した鋳型は、予めNovec(登録商標)1720[3M社製]で離型処理した。また、使用したガラス基板は、予めSILQUEST(登録商標)A-174 SILANE[モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製]で密着処理した。鋳型を外した後、150℃のオーブンで20分間加熱することで、該ガラス基板上に凸レンズを作製した。
 得られたガラス基板上の凸レンズの任意の6個について、リフロー炉を用いた加熱試験前後のレンズ高さ(厚み)を非接触表面性状測定装置で測定し、その変化率(=(加熱前レンズ高さ-加熱後レンズ高さ)÷加熱前レンズ高さ×100)から加熱による寸法安定性を評価した。また、加熱試験後のレンズにおけるクラック及び剥離の発生の有無を非接触表面性状測定装置に付属のマイクロスコープで観察した。なお、加熱試験は、各重合性組成物につき、得られた凸レンズをガラス基板ごとリフロー炉に入れ、1)260℃まで3分間で昇温、2)260℃で20秒間保持、3)50℃まで放冷、の3ステップを3回繰り返した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000027
 表2に示すように、本発明の重合性組成物から得られた硬化物(凸レンズ)(実施例5~8)は、260℃でのリフロー工程を3回経ても、レンズ及びその周囲の平板状硬化物にクラックが全く発生せず、またガラス基板からも全く剥離しなかった。さらにレンズ高さの変化が十分小さく、寸法安定性が高いという結果が得られた。すなわち、本発明の重合性組成物から得られた硬化物は、何れも、加熱後(260℃のはんだリフロー工程等)において、高い寸法安定性と、優れた耐クラック性、耐剥離性を有していることが確認された。
 一方、特定のポリマーを添加しない硬化物(比較例2)にあっては、耐クラック性、耐剥離性が低くはんだリフロー工程に耐えられないことが確認された。
 本発明の重合性組成物は、その硬化物が高い屈折率を有している。また本発明の重合性組成物から得られる硬化物は、高温プロセスにおいて、例えば260℃といったリフロー工程での高温熱履歴においてもクラックの発生、支持体からの剥離及び寸法変化を抑制する優れた耐熱性を有するものである。そのため本発明の硬化物は、カメラ用モジュールレンズの材料等として好適に使用することができる。なお、当該硬化物は、カメラ用モジュールレンズの材料等として当然求められる透明性や硬度(強度)についても勿論有するものである。

Claims (10)

  1. (a)式[1]で表されるアルコキシケイ素化合物Aと、式[2]で表されるアルコキシケイ素化合物Bとの重縮合物である反応性シルセスキオキサン化合物100質量部、
    (b)式[3]で表されるフルオレン化合物10~500質量部、及び
    (c)5,000~100,000の重量平均分子量を有するポリマー0.1~50質量部
    を含む重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ar1は重合性二重結合を有する基を少なくとも1つ有するフェニル基、重合性二重結合を有する基を少なくとも1つ有するナフチル基、又は重合性二重結合を有する基を少なくとも1つ有するビフェニル基を表し、R1はメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar2は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェナントリル基を表し、R2はメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3及びR4はそれぞれ独立して、水素原子又はメチル基を表し、L1及びL2はそれぞれ独立して、置換基を有していてもよいフェニレン基を表し、L3及びL4はそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。)
  2. 前記(c)ポリマーが、少なくとも式[4]で表されるモノマー単位を有するポリマーである、請求項1に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Ar3は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基、炭素原子数1乃至6のアルキル基で置換されていてもよいナフチル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいビフェニル基を表し、R5は水素原子又はメチル基を表す。)
  3. さらに(d)前記フルオレン化合物と異なる(メタ)アクリレート化合物10~100質量部を含む、請求項1又は請求項2に記載の重合性組成物。
  4. 前記(d)(メタ)アクリレート化合物が、芳香族基を有するモノ(メタ)アクリレート化合物である、請求項3に記載の重合性組成物。
  5. 前記(a)反応性シルセスキオキサン化合物が、式[1a]で表される化合物と式[2a]、式[2b]、及び式[2c]で表される化合物からなる群から選ばれる少なくとも1つの化合物との重縮合物である、請求項1乃至請求項4のうち何れか一項に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1は前記と同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R2は前記と同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R2は前記と同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R2は前記と同じ意味を表す。)
  6. 当該組成物より得られる硬化物のアッベ数が32以下となる、請求項1乃至請求項5のうち何れか一項に記載の重合性組成物。
  7. 請求項1乃至請求項6の何れか一項に記載の重合性組成物を重合して得られる、硬化物。
  8. 請求項1乃至請求項6の何れか一項に記載の重合性組成物からなる高屈折率樹脂レンズ用材料。
  9. 請求項1乃至請求項6の何れか一項に記載の重合性組成物を、接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に充填する工程、当該充填された組成物を露光して光重合する工程、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程、を含む成形体の製造方法。
  10. 前記成形体がカメラモジュール用レンズである、請求項9に記載の製造方法。
PCT/JP2016/061710 2015-04-10 2016-04-11 反応性シルセスキオキサン化合物を含む重合性樹脂組成物 WO2016163561A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177031955A KR20170135906A (ko) 2015-04-10 2016-04-11 반응성 실세스퀴옥산 화합물을 포함하는 중합성 수지 조성물
EP16776727.6A EP3281959A4 (en) 2015-04-10 2016-04-11 Polymerizable resin composition containing reactive silsesquioxane compound
CN201680021031.2A CN107531812B (zh) 2015-04-10 2016-04-11 包含反应性倍半硅氧烷化合物的聚合性树脂组合物
US15/565,615 US10550217B2 (en) 2015-04-10 2016-04-11 Polymerizable resin composition comprising reactive silsesquioxane compound
JP2017511120A JP6718152B2 (ja) 2015-04-10 2016-04-11 反応性シルセスキオキサン化合物を含む重合性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081235 2015-04-10
JP2015-081235 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163561A1 true WO2016163561A1 (ja) 2016-10-13

Family

ID=57072369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061710 WO2016163561A1 (ja) 2015-04-10 2016-04-11 反応性シルセスキオキサン化合物を含む重合性樹脂組成物

Country Status (7)

Country Link
US (1) US10550217B2 (ja)
EP (1) EP3281959A4 (ja)
JP (1) JP6718152B2 (ja)
KR (1) KR20170135906A (ja)
CN (1) CN107531812B (ja)
TW (1) TWI712651B (ja)
WO (1) WO2016163561A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030090A1 (ja) * 2015-08-18 2017-02-23 日産化学工業株式会社 反応性シルセスキオキサン化合物及び芳香族ビニル化合物を含む重合性組成物
WO2017179438A1 (ja) * 2016-04-11 2017-10-19 日産化学工業株式会社 フェナントレン環含有反応性シルセスキオキサン化合物を含む重合性組成物
CN110537126A (zh) * 2017-04-28 2019-12-03 日产化学株式会社 包含反应性倍半硅氧烷化合物的光波导形成用组合物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734571B2 (ja) * 2016-05-30 2020-08-05 日産化学株式会社 重合性シラン化合物
CN109196008B (zh) * 2016-05-30 2021-07-06 日产化学株式会社 反应性聚硅氧烷及包含该反应性聚硅氧烷的聚合性组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049823A (ja) * 2011-08-04 2013-03-14 Daicel Corp ウェハレベルレンズ用ラジカル硬化性組成物
WO2013047524A1 (ja) * 2011-09-27 2013-04-04 丸善石油化学株式会社 光学素子材料、及びその製造方法
JP2015025075A (ja) * 2013-07-26 2015-02-05 日産化学工業株式会社 反応性シリコーン化合物を含む重合性組成物
WO2015152154A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 反応性含フッ素シリコーン化合物を含む重合性組成物
WO2015159972A1 (ja) * 2014-04-18 2015-10-22 日産化学工業株式会社 反応性シリコーン化合物を含む重合性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556332B2 (ja) 1995-07-17 2004-08-18 三菱レイヨン株式会社 プラスチックレンズ成形用組成物及びそれを用いたプラスチックレンズ
JP2008297490A (ja) * 2007-06-01 2008-12-11 Showa Denko Kk 耐エッチング性に優れた硬化性樹脂組成物
CN101802033B (zh) * 2007-12-14 2013-03-13 旭化成电子材料株式会社 感光性树脂组合物
US8492450B2 (en) * 2008-11-27 2013-07-23 Toray Industries, Inc. Siloxane resin composition and protective film for touch panel using the same
JP5444177B2 (ja) 2010-09-16 2014-03-19 新日鉄住金化学株式会社 硬化性複合体組成物及びその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049823A (ja) * 2011-08-04 2013-03-14 Daicel Corp ウェハレベルレンズ用ラジカル硬化性組成物
WO2013047524A1 (ja) * 2011-09-27 2013-04-04 丸善石油化学株式会社 光学素子材料、及びその製造方法
JP2015025075A (ja) * 2013-07-26 2015-02-05 日産化学工業株式会社 反応性シリコーン化合物を含む重合性組成物
WO2015152154A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 反応性含フッ素シリコーン化合物を含む重合性組成物
WO2015159972A1 (ja) * 2014-04-18 2015-10-22 日産化学工業株式会社 反応性シリコーン化合物を含む重合性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3281959A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030090A1 (ja) * 2015-08-18 2017-02-23 日産化学工業株式会社 反応性シルセスキオキサン化合物及び芳香族ビニル化合物を含む重合性組成物
US10450418B2 (en) 2015-08-18 2019-10-22 Nissan Chemical Industries, Ltd. Polymerizable composition comprising reactive silsesquioxane compound and aromatic vinyl compound
WO2017179438A1 (ja) * 2016-04-11 2017-10-19 日産化学工業株式会社 フェナントレン環含有反応性シルセスキオキサン化合物を含む重合性組成物
US20190169345A1 (en) * 2016-04-11 2019-06-06 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring
US10787535B2 (en) 2016-04-11 2020-09-29 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring
CN110537126A (zh) * 2017-04-28 2019-12-03 日产化学株式会社 包含反应性倍半硅氧烷化合物的光波导形成用组合物

Also Published As

Publication number Publication date
KR20170135906A (ko) 2017-12-08
EP3281959A4 (en) 2018-04-11
JP6718152B2 (ja) 2020-07-08
EP3281959A1 (en) 2018-02-14
TWI712651B (zh) 2020-12-11
CN107531812A (zh) 2018-01-02
CN107531812B (zh) 2020-06-09
TW201706365A (zh) 2017-02-16
JPWO2016163561A1 (ja) 2018-02-01
US20180079849A1 (en) 2018-03-22
US10550217B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6579335B2 (ja) 反応性シルセスキオキサン化合物を含む重合性組成物
JP6718152B2 (ja) 反応性シルセスキオキサン化合物を含む重合性樹脂組成物
JP6555485B2 (ja) 反応性シリコーン化合物を含む重合性樹脂組成物
TWI713577B (zh) 包含具有丙烯酸基之半矽氧烷化合物之聚合性組成物
CN107849190B (zh) 包含反应性倍半硅氧烷化合物及芳香族乙烯基化合物的聚合性组合物
CN109196008B (zh) 反应性聚硅氧烷及包含该反应性聚硅氧烷的聚合性组合物
CN109071731B (zh) 含有反应性含菲环倍半硅氧烷化合物的聚合性组合物
WO2017209004A1 (ja) 高屈折率重合性化合物の低粘度化剤及びそれを含む重合性組成物
JP2017049461A (ja) 反応性シロキサン化合物を含むインプリント成形用重合性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511120

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15565615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031955

Country of ref document: KR

Kind code of ref document: A