WO2016163468A1 - 熱処理鋼板部材およびその製造方法 - Google Patents

熱処理鋼板部材およびその製造方法 Download PDF

Info

Publication number
WO2016163468A1
WO2016163468A1 PCT/JP2016/061425 JP2016061425W WO2016163468A1 WO 2016163468 A1 WO2016163468 A1 WO 2016163468A1 JP 2016061425 W JP2016061425 W JP 2016061425W WO 2016163468 A1 WO2016163468 A1 WO 2016163468A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
heat
steel sheet
steel plate
treated steel
Prior art date
Application number
PCT/JP2016/061425
Other languages
English (en)
French (fr)
Inventor
嘉宏 諏訪
進一郎 田畑
東 昌史
匹田 和夫
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CA2982078A priority Critical patent/CA2982078C/en
Priority to RU2017138053A priority patent/RU2686713C1/ru
Priority to MX2017012873A priority patent/MX2017012873A/es
Priority to BR112017019994-7A priority patent/BR112017019994A2/ja
Priority to JP2017511057A priority patent/JP6380659B2/ja
Priority to EP16776634.4A priority patent/EP3282030B1/en
Priority to US15/563,989 priority patent/US11041225B2/en
Priority to ES16776634T priority patent/ES2787005T3/es
Priority to KR1020177031588A priority patent/KR102034129B1/ko
Priority to CN201680020893.3A priority patent/CN107429363B/zh
Publication of WO2016163468A1 publication Critical patent/WO2016163468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a heat-treated steel sheet member and a manufacturing method thereof.
  • hot stamping technology has been adopted as a technology for press-forming materials that are difficult to form, such as high-strength steel plates.
  • the hot stamping technique is a hot forming technique in which a material used for forming is heated and then formed.
  • the steel material is soft and has good formability at the time of forming. Thereby, even a high-strength steel material can be accurately formed into a complicated shape.
  • quenching is performed at the same time as molding with a press die, the steel material after molding has sufficient strength.
  • Patent Document 1 it is possible to impart a tensile strength of 1400 MPa or more to a steel material after forming by hot stamping technology.
  • Patent Document 2 discloses a press-molded product that is excellent in toughness and hot press-molded with a tensile strength of 1.8 GPa or more.
  • Patent Document 3 discloses a steel material having an extremely high tensile strength of 2.0 GPa or more and further having good toughness and ductility.
  • the hot forming technique such as the above hot stamp is an excellent forming method capable of increasing the strength of the member while ensuring the formability, but it is necessary to heat to a high temperature of 800 to 1000 ° C.
  • the problem that the steel plate surface oxidizes arises. If the scale made of iron oxide generated at this time falls off during pressing and adheres to the mold, productivity decreases. In addition, there is a problem that when the scale remains in the product after pressing, the appearance becomes poor.
  • automobile steel plates are also required to have collision safety.
  • the crash safety of an automobile is evaluated by the crushing strength and the absorbed energy in the crash test of the entire vehicle body or a steel plate member.
  • the crushing strength greatly depends on the material strength, the demand for ultra-high strength steel sheets is dramatically increasing.
  • fracture toughness and deformability generally decrease with the increase in strength, it breaks early at the time of collision collapse of an automobile member, or breaks at a site where deformation is concentrated, and the crushing strength corresponding to the material strength is obtained. It is not exerted and the absorbed energy decreases. Therefore, in order to improve the collision safety, it is important to improve not only the material strength but also the material toughness and ductility, which are important indicators of the fracture toughness and deformability of the automobile member.
  • Patent Documents 1 and 2 Although tensile strength and toughness are described, ductility is not considered. Further, according to the technique described in Patent Document 3, it is possible to improve the tensile strength, toughness, and ductility, but no study has been made on obtaining appropriate scale characteristics, leaving room for improvement. ing.
  • the present invention has been made to solve the above problems, and provides a heat-treated steel sheet member having excellent scale characteristics, tensile strength of 1.4 GPa or more, and excellent toughness and ductility.
  • the purpose is to do.
  • the hot-formed steel plate member is not a flat plate in many cases but a formed body, but in the present invention, it is referred to as a “heat treated steel plate member” including the case of a formed body.
  • the steel plate used as the raw material of the heat-treated steel plate member before heat treatment is also referred to as “heat-treated steel plate”.
  • the present invention has been made in order to solve the above-mentioned problems, and provides the following heat-treated steel sheet member and a manufacturing method thereof.
  • the chemical composition is mass%, C: 0.05 to 0.50%, Si: 0.50 to 5.0%, Mn: 1.5 to 4.0%, P: 0.05% or less, S: 0.05% or less, N: 0.01% or less, Ti: 0.01 to 0.10%, B: 0.0005 to 0.010%, Cr: 0 to 1.0%, Ni: 0 to 2.0%, Cu: 0 to 1.0%, Mo: 0 to 1.0%, V: 0 to 1.0%, Ca: 0 to 0.01%, Al: 0 to 1.0%, Nb: 0 to 1.0%, REM: 0 to 0.1%, Balance: Fe and impurities, Having a metal structure mainly composed of martensite and having a volume fraction of retained austenite of 5.0% or more, The number density of residual carbide having an equivalent circle diameter of 0.1 ⁇ m or more present in the steel sheet member is 4.0 ⁇ 10 3 pieces / mm 2 or less, When the following mechanical properties were measured using a plate-like test piece specified by ASTM E8, The value of
  • the chemical composition is mass%, Cr: 0.01 to 1.0%, Ni: 0.1 to 2.0%, Cu: 0.1 to 1.0%, Mo: 0.1 to 1.0%, V: 0.1 to 1.0%, Ca: 0.001 to 0.01%, Al: 0.01 to 1.0% Nb: 0.01 to 1.0%, and REM: 0.001 to 0.1%, Containing one or more selected from The heat-treated steel sheet member according to (1) above.
  • the cleanliness value of steel specified in JIS G 0555 (2003) is 0.10% or less.
  • C 0.05 to 0.50%, Si: 0.50 to 5.0%, Mn: 1.5 to 4.0%, P: 0.05% or less, S: 0.05% or less, N: 0.01% or less, Ti: 0.01 to 0.10%, B: 0.0005 to 0.010%, Cr: 0 to 1.0%, Ni: 0 to 2.0%, Cu: 0 to 1.0%, Mo: 0 to 1.0%, V: 0 to 1.0%, Ca: 0 to 0.01%, Al: 0 to 1.0%, Nb: 0 to 1.0%, REM: 0 to 0.1%, The balance: having a chemical composition that is Fe and impurities, The maximum height roughness Rz on the surface is 3.0 to 10.0 ⁇ m, A steel plate having a number density of carbides having a circle-equivalent diameter of 0.1 ⁇ m or more of 8.0 ⁇ 10 3 pieces / mm 2 or less, After heating to a temperature range of Ac 3 points to Ac 3 points + 200 ° C.
  • cooling is performed from the temperature range to the Ms point at an upper critical cooling rate or more, and then from the Ms point to 100 Cooling to 5 ° C. at an average cooling rate of 5 ° C./s or less Manufacturing method of heat-treated steel plate member.
  • the chemical composition is mass%, Cr: 0.01 to 1.0%, Ni: 0.1 to 2.0%, Cu: 0.1 to 1.0%, Mo: 0.1 to 1.0%, V: 0.1 to 1.0%, Ca: 0.001 to 0.01%, Al: 0.01 to 1.0% Nb: 0.01 to 1.0%, and REM: 0.001 to 0.1%, Containing one or more selected from The manufacturing method of the heat-treated steel plate member as described in said (5).
  • the number density of residual carbides present in the steel plate member is 4.0 ⁇ 10 3 pieces / mm 2 or less.
  • the Mn segregation degree ⁇ represented by the following formula (ii) is 1.6 or less.
  • [maximum Mn concentration (mass%) at the thickness center portion] / [average Mn concentration (mass%) at the 1/4 depth position of the thickness from the surface] (ii)
  • the present inventors examined in further detail the influence of residual austenite inevitably contained in the heat-treated steel plate member on the properties of the steel plate member.
  • a steel having a composite structure containing retained austenite based on ferrite is excellent in ductility due to a TRIP (Transformation-Induced-Plasticity) effect utilizing a processing-induced transformation of retained austenite.
  • TRIP Transformation-Induced-Plasticity
  • (E) The amount of retained austenite in the structure of the steel plate member can be dramatically increased by optimizing the component design of elements such as C, Si and Mn.
  • the toughness of the heat-treated steel sheet member is further improved by quantifying and reducing the Mn segregation degree contained in the heat-treated steel sheet.
  • C 0.05 to 0.50% C is an element that enhances the hardenability of the steel and improves the strength of the steel plate member after quenching.
  • the C content is less than 0.05%, it is difficult to ensure sufficient strength in the steel plate member after quenching. Therefore, the C content is 0.05% or more.
  • the C content exceeds 0.50%, the strength of the steel sheet member after quenching becomes too high, and the deterioration of toughness becomes remarkable. Therefore, the C content is 0.50% or less.
  • the C content is preferably 0.08% or more, and preferably 0.45% or less.
  • Si 0.50 to 5.0% Si is an element that improves the hardenability of the steel and improves the strength of the steel material by solid solution strengthening. Furthermore, since Si hardly dissolves in the carbide, it suppresses the precipitation of the carbide during hot forming and promotes the C concentration to untransformed austenite. As a result, the Ms point is remarkably lowered and a large amount of austenite strengthened by solid solution remains. In addition, Si plays a role of generating Fe 2 SiO 4 on the surface of the steel sheet during heat treatment to suppress scale formation and reduce FeO in the scale. Since this Fe 2 SiO 4 serves as a barrier layer and the supply of Fe into the scale is blocked, the scale thickness can be reduced. Furthermore, if the scale thickness is thin, it is difficult to peel off during hot forming, and there is also an advantage that it is easy to peel off during scale removal processing after forming.
  • Si is 0.50% or more. If Si is 0.50% or more, residual carbides tend to decrease. As will be described later, if there are many carbides precipitated in the steel plate before heat treatment, they remain undissolved during heat treatment, and sufficient hardenability cannot be secured, and low strength ferrite may precipitate, which may result in insufficient strength. In this sense, Si is 0.50% or more.
  • the Si content in the steel exceeds 5.0%, the heating temperature required for the austenite transformation during the heat treatment becomes extremely high. As a result, the cost required for the heat treatment may increase, or the quenching may be insufficient due to insufficient heating. Therefore, the Si content is 5.0% or less.
  • the Si content is preferably 0.75% or more, and preferably 4.0% or less.
  • Mn 1.5 to 4.0%
  • Mn is an extremely effective element for enhancing the hardenability of the steel sheet and stably securing the strength after quenching. Furthermore, it is an element that lowers Ac 3 points and promotes lowering of the quenching temperature. However, if the Mn content is less than 1.5%, the effect is not sufficient. On the other hand, if the Mn content exceeds 4.0%, the above effect is saturated and further the toughness deterioration of the quenched portion is caused. Therefore, the Mn content is set to 1.5 to 4.0%.
  • the Mn content is preferably 2.0% or more. Further, the Mn content is preferably 3.8% or less, and more preferably 3.5% or less.
  • P 0.05% or less
  • P is an element that deteriorates the toughness of the steel plate member after quenching.
  • the P content is 0.05% or less.
  • the P content is preferably 0.005% or less.
  • S 0.05% or less
  • S is an element that deteriorates the toughness of the steel plate member after quenching.
  • the S content is 0.05% or less.
  • the S content is preferably 0.003% or less.
  • N 0.01% or less
  • N is an element that deteriorates the toughness of the steel sheet member after quenching.
  • the N content exceeds 0.01%, coarse nitrides are formed in the steel, and the local deformability and toughness deteriorate significantly. Therefore, the N content is 0.01% or less.
  • the lower limit of the N content is not particularly limited, but it is economically not preferable that the N content is less than 0.0002%. Therefore, the N content is preferably 0.0002% or more. More preferably, it is made 0008% or more.
  • Ti 0.01 to 0.10% Ti suppresses recrystallization when a steel sheet is heated to a temperature of Ac 3 point or higher and heat-treats, and forms fine carbides to suppress grain growth, thereby reducing austenite grains. It is an element having For this reason, the effect which the toughness of a steel plate member improves greatly is acquired by containing Ti. Further, Ti preferentially bonds with N in the steel to suppress the consumption of B due to the precipitation of BN, and promote the effect of improving the hardenability by B described later. If the Ti content is less than 0.01%, the above effects cannot be obtained sufficiently. Therefore, the Ti content is set to 0.01% or more.
  • the Ti content is 0.10% or less.
  • the Ti content is preferably 0.015% or more, and preferably 0.08% or less.
  • B 0.0005 to 0.010%
  • B is a very important element in the present invention because it has the effect of dramatically increasing the hardenability of steel even in a small amount. Further, B segregates at the grain boundary, thereby strengthening the grain boundary and increasing toughness. Furthermore, B suppresses the grain growth of austenite when the steel sheet is heated. If the B content is less than 0.0005%, the above effects may not be sufficiently obtained. Therefore, the B content is 0.0005% or more. On the other hand, when the B content exceeds 0.010%, a large amount of coarse compounds are precipitated, and the toughness of the steel sheet member is deteriorated. Therefore, the B content is 0.010% or less. The B content is preferably 0.0010% or more, and preferably 0.008% or less.
  • the heat-treated steel sheet member of the present invention and the heat-treated steel sheet before heat treatment are further selected from the following amounts of Cr, Ni, Cu, Mo, V, Ca, Al, Nb and REM in addition to the above elements.
  • One or more elements may be contained.
  • Cr 0 to 1.0% Cr is an element that enhances the hardenability of the steel and makes it possible to stably ensure the strength of the steel plate member after quenching, and thus may be contained. Further, similarly to Si, FeCr 2 O 4 is generated on the surface of the steel plate during heat treatment to suppress scale generation and to reduce FeO in the scale. Since this FeCr 2 O 4 serves as a barrier layer and the supply of Fe into the scale is interrupted, the scale thickness can be reduced. Furthermore, if the scale thickness is thin, it is difficult to peel off during hot forming, and there is also an advantage that it is easy to peel off during scale removal processing after forming. However, if the Cr content exceeds 1.0%, the above effect is saturated, and the cost is unnecessarily increased. Therefore, the Cr content when contained is 1.0%. The Cr content is preferably 0.80% or less. In order to acquire said effect, it is preferable that Cr content is 0.01% or more, and it is more preferable that it is 0.05% or more.
  • Ni 0 to 2.0%
  • Ni is an element that enhances the hardenability of the steel and makes it possible to stably ensure the strength of the steel sheet member after quenching, and thus Ni may be contained.
  • the Ni content in the case of inclusion is 2.0% or less.
  • Cu 0 to 1.0%
  • Cu is an element that enhances the hardenability of the steel and makes it possible to stably ensure the strength of the steel plate member after quenching, and thus may be contained.
  • the Cu content exceeds 1.0%, the above effect is saturated and the economic efficiency is lowered. Therefore, the Cu content when contained is 1.0% or less. In order to acquire said effect, it is preferable to contain 0.1% or more of Cu.
  • Mo 0 to 1.0%
  • Mo is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the steel plate member after quenching, and thus may be contained. However, if the Mo content exceeds 1.0%, the above effects are saturated and the economic efficiency is lowered. Therefore, the Mo content when contained is 1.0% or less. In order to acquire said effect, it is preferable to contain 0.1% or more of Mo.
  • V 0 to 1.0%
  • V is an element that enhances the hardenability of the steel and makes it possible to stably secure the strength of the steel plate member after quenching, and thus may be contained.
  • the V content exceeds 1.0%, the above effect is saturated and the economy is lowered. Therefore, the V content when contained is 1.0% or less. In order to acquire said effect, it is preferable to contain V 0.1% or more.
  • Ca 0 to 0.01% Ca is an element that has the effect of refining inclusions in steel and improving the toughness and ductility after quenching, so Ca may be contained. However, when the Ca content exceeds 0.01%, the effect is saturated, and the cost is unnecessarily increased. Therefore, when it contains Ca, the content shall be 0.01% or less.
  • the Ca content is preferably 0.004% or less. When it is desired to obtain the above effect, the Ca content is preferably 0.001% or more, and more preferably 0.002% or more.
  • Al 0 to 1.0%
  • Al is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the steel plate member after quenching, and thus may be contained.
  • the Al content exceeds 1.0%, the above effect is saturated and the economic efficiency is lowered. Therefore, the Al content when contained is 1.0% or less. In order to acquire said effect, it is preferable to contain 0.01% or more of Al.
  • Nb 0 to 1.0%
  • Nb is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of the steel plate member after quenching, and thus may be contained.
  • the Nb content in the case of inclusion is 1.0% or less.
  • REM 0 to 0.1% Since REM is an element having the effect of refining inclusions in steel and improving toughness and ductility after quenching as in Ca, it may be included. However, when the REM content exceeds 0.1%, the effect is saturated and the cost is unnecessarily increased. Therefore, the REM content when contained is 0.1% or less.
  • the REM content is preferably 0.04% or less. When it is desired to obtain the above effect, the REM content is preferably 0.001% or more, and more preferably 0.002% or more.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
  • REM is added to the molten steel using, for example, an Fe—Si—REM alloy, which includes, for example, Ce, La, Nd, Pr.
  • the balance is Fe and impurities.
  • impurities are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially manufacturing steel sheets, and are permitted within a range that does not adversely affect the present invention. Means something.
  • the heat-treated steel sheet member according to the present invention has a metal structure mainly composed of martensite and the volume ratio of retained austenite is 5.0% or more.
  • the martensite which exists in this steel plate member is automatic tempered martensite.
  • “mainly martensite” means a metal structure having a martensite volume ratio of 90% or more.
  • a structure such as ferrite, pearlite, and bainite may be mixed, but these structures are allowed if the total volume ratio is 5.0% or less.
  • Residual austenite 5.0% or more Residual austenite is martensitic transformed at the time of deformation, thereby preventing constriction and promoting work hardening and improving ductility.
  • the volume ratio of the residual austenate is less than 5.0%, the ductility is remarkably reduced, the risk of breakage of the ultra-high strength heat-treated steel sheet member is increased, and the collision safety is reduced. Therefore, the volume ratio of retained austenite is 5.0% or more.
  • the upper limit of the volume ratio of retained austenite is not particularly limited. However, if the volume ratio of retained austenite is excessive, the strength is lowered, so that it is preferably 10% or less.
  • phase fraction volume fraction of the structure including the second phase including residual austenite
  • a technique using X-ray diffraction is generally used. This is because the diffracted X-ray intensity of the first phase (martensitic structure, body-centered cubic lattice) and the second phase (residual austenite phase, face-centered cubic lattice) is measured by a detector, This is a method for measuring the volume fraction of phases, and the volume% of retained austenite in a steel plate member can be measured with high accuracy.
  • ferrite or the like is mixed in addition to retained austenite, it can be easily identified with an optical microscope, so that the volume percentage of martensite, which is the main structure in the steel plate member, can also be measured with high accuracy.
  • the number density of residual carbides having an equivalent circle diameter of 0.1 ⁇ m or more present in the steel plate member after heat treatment exceeds 4.0 ⁇ 10 3 pieces / mm 2 , the toughness and ductility of the steel plate member after heat treatment are increased. Getting worse. Therefore, the number density of residual carbides having an equivalent circle diameter of 0.1 ⁇ m or more present in the heat-treated steel sheet member is 4.0 ⁇ 10 3 pieces / mm 2 or less.
  • carbonized_material which the circle equivalent diameter which exists in the steel plate before heat processing is 0.1 micrometer or more shall be 8.0 * 10 ⁇ 3 > pieces / mm ⁇ 2 > or less.
  • carbonized_material points out a granular thing, and specifically, what has an aspect ratio of 3 or less is object.
  • the amount of dissolved C in the retained austenite dominates whether or not transformation is easily caused when strain is applied to the retained austenite.
  • the amount of retained austenite And the amount of solute C is positively correlated. For example, when the solute C amount is about 0.8%, the k value is about 15, and when the solute C amount is about 0.2%, the k value is about 53.
  • the heat-treated steel sheet member according to the present invention has a tensile strength of 1.4 GPa or more and a total elongation of 8.0% or more. This is because by having a high tensile strength of 1.4 GPa or more and an excellent ductility of 8.0% or more of the total elongation, it is possible to meet the demand for achieving both fuel efficiency and crash safety.
  • the local elongation is preferably 2.8% or more.
  • an ASTM standard E8 half-size plate test piece is used for measurement of mechanical properties including the strain-induced transformation parameter k, tensile strength, total elongation and local elongation.
  • the tensile test is performed in accordance with the standard of ASTM standard E8, and is performed on a plate-shaped test piece having a thickness of 1.2 mm, a parallel part length of 32 mm, and a parallel part plate width of 6.25 mm.
  • a room temperature tensile test is performed at a strain rate of 3 mm / min, and the maximum strength (tensile strength) is measured.
  • a 25 mm ruled line is put in advance in the parallel part of the tensile test, and the elongation percentage (total elongation) is measured by attaching the broken sample. Then, the local elongation is obtained as a value obtained by subtracting the plastic strain (uniform elongation) at the maximum strength from the total elongation.
  • Mn segregation degree of heat-treated steel sheet member Mn segregation degree ⁇ : 1.6 or less ⁇ [maximum Mn concentration (mass%) at the thickness center portion] / [1/4 depth position of thickness from the surface] Mean Mn concentration (mass%)] (ii)
  • MnS concentrates in the center as inclusions, and it becomes easy to form hard martensite. Therefore, a difference in hardness from the surroundings may occur, and the toughness may deteriorate.
  • the value of the segregation degree ⁇ of Mn represented by the above formula (ii) exceeds 1.6, the toughness may be deteriorated. Therefore, in order to improve toughness, the value of ⁇ of the heat-treated steel sheet member is preferably set to 1.6 or less. In order to further improve toughness, the value of ⁇ is more preferably set to 1.2 or less.
  • the value of ⁇ of the heat-treated steel sheet member is also set to 1.6 or less by setting the value of ⁇ of the heat-treated steel sheet within the above range. That is, the toughness of the heat-treated steel sheet member can be improved.
  • the maximum Mn concentration at the center of the plate thickness is determined by the following method. Using an electronic probe microanalyzer (EPMA), line analysis is performed in the direction perpendicular to the plate thickness direction at the center of the plate thickness of the steel plate, three measured values are selected in descending order from the analysis result, and the average value is calculated. In addition, the average Mn concentration at the 1/4 depth position of the plate thickness from the surface is determined by the following method. Similarly, using EPMA, analysis is performed at 10 positions at the 1/4 depth position of the steel sheet, and the average value is calculated.
  • EPMA electronic probe microanalyzer
  • the segregation of Mn in the steel sheet is controlled mainly by the steel sheet composition, particularly the impurity content, and the conditions for continuous casting, and does not substantially change before and after hot rolling and hot forming. Therefore, by controlling the segregation status of the steel plate for heat treatment, it is possible to similarly control the segregation status of the steel plate member heat-treated therefrom.
  • the cleanliness value of the heat-treated steel sheet member is preferably 0.10% or less. In order to further improve the toughness, the cleanliness value is more preferably 0.06% or less. In addition, the value of the cleanliness of steel is obtained by calculating the area percentage occupied by the above-mentioned A-type, B-type and C-type inclusions.
  • the cleanliness value of the heat treated steel plate member is also set to 0.10 by setting the cleanliness value of the heat treated steel plate within the above range. % Or less.
  • the cleanliness value of the heat-treated steel sheet or the heat-treated steel sheet member can be obtained by the following method.
  • the test material is cut out from five locations.
  • the cleanliness is investigated by a point calculation method for each position of the plate thickness 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, 7 / 8t of each test material.
  • the numerical value having the largest cleanliness value (lowest cleanliness) at each plate thickness is taken as the cleanliness value of the specimen.
  • Wustite is superior to hematite and magnetite in plastic deformability at high temperatures, and it is considered that the scale also exhibits the characteristic of being easily plastically deformed when the steel sheet undergoes plastic deformation during hot forming.
  • the reason for the increase in the ratio of wustite is unclear, but if there are irregularities, the area of the scale iron interface becomes larger, which promotes the outward diffusion of iron ions during oxidation, and the ratio of iron It is thought that the high wustite increases.
  • (H) Method for Producing Steel Sheet for Heat Treatment There is no particular limitation on the production conditions of the steel sheet for heat treatment, which is the steel sheet before heat treatment of the heat treated steel sheet member according to the present invention, but by using the production method shown below, the structure described above is used. It is possible to manufacture a steel sheet for heat treatment having In the following manufacturing method, for example, hot rolling, pickling, cold rolling and annealing are performed.
  • a slab is produced by casting.
  • a center segregation reduction process that reduces the center segregation of Mn.
  • Examples of the center segregation reduction treatment include a method of discharging molten steel enriched in Mn in an unsolidified layer before the slab is completely solidified.
  • molten steel enriched with Mn before complete solidification can be discharged.
  • the electromagnetic stirring treatment can be performed by applying a flow to the unsolidified molten steel at 250 to 1000 gauss, and the unsolidified layer reduction treatment is performed by reducing the final solidified layer with a gradient of about 1 mm / m. It can be carried out.
  • ⁇ ⁇ Soaking (soaking) treatment may be performed on the slab obtained by the above method as necessary.
  • a preferable soaking temperature is 1200 to 1300 ° C.
  • a soaking time is 20 to 50 hours.
  • the heating temperature of the molten steel is set to 5 ° C. higher than the liquidus temperature of the steel, and per unit time. It is desirable to suppress the amount of molten steel cast to 6 t / min or less.
  • the molten steel flow in the mold is fast, so that inclusions are easily trapped in the solidified shell and inclusions in the slab increase.
  • the molten steel heating temperature is less than 5 ° C higher than the liquidus temperature, the viscosity of the molten steel increases, and inclusions hardly float in the continuous casting machine, resulting in an increase in inclusions in the slab. Cleanliness is likely to deteriorate.
  • the molten steel heating temperature from the liquidus temperature of the molten steel is 5 ° C. or more and the molten steel casting amount per unit time is 6 t / min or less, inclusions are hardly brought into the slab. As a result, the amount of inclusions at the stage of producing the slab can be effectively reduced, and the steel sheet cleanliness of 0.10% or less can be easily achieved.
  • the molten steel heating temperature is desirably 8 ° C. or more higher than the liquidus temperature, and the molten steel casting amount per unit time is desirably 5 t / min or less.
  • the cleanliness can be easily made 0.06% or less. This is desirable.
  • the hot rolling start temperature is in a temperature range of 1000 to 1300 ° C. and the hot rolling completion temperature is 950 ° C. or higher from the viewpoint of more uniformly generating carbides.
  • the coiling temperature after hot rolling is preferably higher from the viewpoint of workability, but if it is too high, the yield decreases due to scale formation, and therefore it is preferably 500 to 650 ° C. Further, when the coiling temperature is lowered, the carbides are easily finely dispersed and the number of carbides is reduced.
  • the form of carbide can be controlled by adjusting the subsequent annealing conditions in addition to the conditions in hot rolling. That is, it is desirable that the annealing temperature is set to a high temperature and the carbide is once dissolved in the annealing stage and then transformed at a low temperature. Since carbide is hard, its form does not change in cold rolling, and the existence form after hot rolling is maintained even after cold rolling.
  • Descaling treatment is performed on the hot-rolled steel sheet obtained by hot rolling by pickling or the like.
  • the amount of cutting in the pickling process When the amount of cutting is reduced, the maximum height roughness is increased. On the other hand, when the amount of cutting is increased, the maximum height roughness is reduced.
  • the amount of cutting by pickling is preferably 1.0 to 15.0 ⁇ m, and more preferably 2.0 to 10.0 ⁇ m.
  • a hot rolled steel plate or a hot rolled annealed steel plate, or a cold rolled steel plate or a cold rolled annealed steel plate can be used. What is necessary is just to select a process process suitably according to the plate
  • the hot-rolled steel sheet that has been descaled is annealed as necessary to obtain a hot-rolled annealed steel sheet.
  • the hot-rolled steel sheet or the hot-rolled annealed steel sheet is cold-rolled as necessary to make a cold-rolled steel sheet, and the cold-rolled steel sheet is annealed as necessary to make a cold-rolled annealed steel sheet.
  • the steel plate to be used for cold rolling is hard, it is preferable to increase the workability of the steel plate to be used for cold rolling by annealing before cold rolling.
  • Cold rolling may be performed using a normal method. From the viewpoint of ensuring good flatness, the rolling reduction in cold rolling is preferably 30% or more. On the other hand, in order to avoid an excessive load, the rolling reduction in cold rolling is preferably 80% or less. Note that the maximum height roughness on the surface of the steel sheet does not change greatly by cold rolling.
  • the hot-rolled steel sheet or the cold-rolled steel sheet is annealed.
  • annealing for example, a hot-rolled steel sheet or a cold-rolled steel sheet is held in a temperature range of 550 to 950 ° C.
  • the temperature maintained by annealing is preferably 550 ° C. or higher.
  • the temperature maintained by annealing exceeds 950 ° C.
  • the structure may become coarse.
  • the coarsening of the structure may reduce the toughness after quenching.
  • the temperature maintained by annealing is preferably 950 ° C. or less.
  • an average cooling rate 3 to 20 ° C./s.
  • generation of coarse pearlite and coarse cementite is suppressed, and the properties after quenching can be improved.
  • the average cooling rate 20 ° C./s or less, it becomes easy to suppress the occurrence of unevenness in strength and stabilize the material of the annealed hot-rolled steel sheet or the annealed cold-rolled steel sheet.
  • Heating step The steel sheet is heated to a temperature range of Ac 3 points to Ac 3 points + 200 ° C. at an average temperature increase rate of 5 ° C./s or more.
  • the structure of the steel sheet is made into an austenite single phase. If the heating rate is too slow or the heating temperature is too high in the heating step, the ⁇ grains become coarse and the strength of the steel sheet member after cooling may be deteriorated. On the other hand, deterioration of the strength of the heat-treated steel sheet member can be prevented by performing the heating process that satisfies the above conditions.
  • Cooling step The steel plate that has undergone the heating step is cooled at a temperature higher than the upper critical cooling rate from the temperature range to the Ms point so that diffusion transformation does not occur (that is, ferrite does not precipitate), and then from the Ms point to 100 ° C. Cool at an average cooling rate of °C / s or less. About the cooling rate from the temperature below 100 degreeC to room temperature, the cooling rate about an air cooling is preferable.
  • the upper critical cooling rate is greatly influenced by the Mn content, and the critical cooling rate is about 1 to 30 ° C./s within the range of the Mn content defined in the present invention.
  • the lower limit of the average cooling rate up to the Ms point may be 1 ° C./s depending on the components of the steel sheet.
  • a certain cooling rate is required, and for example, it may be set to 10 ° C./s or higher, or may be 45 ° C./s or higher as exemplified in the examples.
  • the maximum height roughness Rz of the steel plate is adjusted to 3.0 to 10.0 ⁇ m.
  • the maximum height roughness Rz is less than 3.0 ⁇ m, the adhesion of the scale in the process of heating, processing and cooling is reduced, and the scale is partially peeled off, resulting in a large variation in cooling rate.
  • the maximum height roughness Rz exceeds 10.0 ⁇ m, the variation in the cooling rate increases due to the uneven shape of the surface. In this way, by adjusting the maximum height roughness Rz to 3.0 to 10.0 ⁇ m, temperature control is improved and variations in product characteristics are reduced.
  • Said heat processing can be implemented by arbitrary methods, for example, you may implement by induction hardening.
  • the time for holding the steel sheet in the temperature range of Ac 3 point to Ac 3 point + 200 ° C. should be 10 s or more from the viewpoint of improving the hardenability of the steel by advancing the austenite transformation and dissolving the carbide. preferable.
  • the holding time is preferably 600 s or less from the viewpoint of productivity.
  • an annealed hot rolled steel plate or an annealed cold rolled steel plate obtained by annealing a hot rolled steel plate or a cold rolled steel plate may be used.
  • hot forming such as the above hot stamp may be performed after heating to a temperature range of Ac 3 point to Ac 3 point + 200 ° C. and before cooling to the Ms point.
  • hot forming include bending, draw forming, stretch forming, hole expansion forming, and flange forming.
  • the present invention may be applied to a forming method other than press forming, for example, roll forming, as long as a means for cooling the steel sheet is provided at the same time as forming or immediately after forming.
  • the cooling rate of the slab was controlled by changing the amount of water in the secondary cooling spray zone. Further, the center segregation reduction treatment was performed by performing a light reduction at a gradient of 1 mm / m using a roll in the final solidification portion and discharging the concentrated molten steel in the final solidification portion. Some slabs were then soaked at 1250 ° C. for 24 hours.
  • the obtained slab was hot rolled by a hot rolling tester to obtain a hot rolled steel sheet having a thickness of 3.0 mm.
  • descaling was performed after rough rolling, and finally finish rolling was performed. Thereafter, the hot-rolled steel sheet was pickled in a laboratory. Further, cold rolling was performed with a cold rolling tester to obtain a cold-rolled steel sheet having a thickness of 1.4 mm, and steel sheets for heat treatment (steel Nos. 1 to 18) were obtained.
  • the obtained heat-treated steel sheet was measured for maximum height roughness, arithmetic average roughness, carbide number density, Mn segregation, and cleanliness.
  • the maximum height roughness Rz and the arithmetic average roughness Ra are determined, the maximum height roughness Rz and the arithmetic average roughness Ra in the 2 mm section are determined in the rolling direction and the rolling vertical direction using a surface roughness meter. 10 points were measured, and the average value was adopted.
  • the surface of the steel sheet for heat treatment is corroded with a picral solution, magnified 2000 times with a scanning electron microscope, and observed in multiple fields of view. It was. At this time, the number per 1 mm 2 was calculated by counting the number of visual fields in which carbide having an equivalent circle diameter of 0.1 ⁇ m or more was present.
  • the Mn segregation degree was measured according to the following procedure.
  • EPMA is used to analyze the line in the direction perpendicular to the thickness direction at the center of the thickness of the steel sheet for heat treatment, select the three measured values in order from the analysis result, calculate the average value, The maximum Mn concentration at the center was determined.
  • analysis is performed at 10 locations using EPMA, the average value is calculated, and the 1 ⁇ 4 depth position of the plate thickness from the surface is calculated.
  • the average Mn concentration was determined.
  • Mn segregation degree (alpha) was calculated
  • the cleanliness was measured by a point calculation method at each position of the plate thickness 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, and 7 / 8t. And the numerical value with the largest cleanliness value (lowest cleanliness) at each plate thickness was taken as the cleanliness value of the steel sheet.
  • Table 2 also shows the measurement results of temperature, amount of cutting by pickling, maximum height roughness Rz, arithmetic average roughness Ra, and carbide number density of the steel sheet for heat treatment. Mn segregation degree ⁇ and cleanliness The measurement results are shown in Table 4 below.
  • the tensile test was carried out with an Instron tensile tester in accordance with ASTM standard E8. After grinding the heat-treated sample to 1.2 mm thickness, ASTM standard E8 half-size plate test piece (parallel part length: 32 mm, parallel part plate width: 6.25 mm) so that the test direction is parallel to the rolling direction. ) was collected.
  • ASTM standard E8 half-size plate test piece parallel part length: 32 mm, parallel part plate width: 6.25 mm
  • the soaking part obtained from the sample having a length of about 200 mm is limited, so the ASTM standard E8 half-size plate-like test piece is adopted.
  • a strain gauge KFG-5, gauge length: 5 mm
  • a room temperature tensile test was performed at a strain rate of 3 mm / min, and the maximum strength (tensile strength) was measured.
  • a 25 mm ruled line was put in advance in the parallel part of the tensile test, and the elongation percentage (total elongation) was measured by attaching the broken sample.
  • the local elongation was determined as a value obtained by subtracting the plastic strain (uniform elongation) at the maximum strength from the total elongation.
  • the soaked part was ground to a thickness of 1.2 mm, and a V-notched test piece was prepared by laminating three of them, and the Charpy impact test was performed on the test piece at ⁇ 80 ° C.
  • the impact value was determined.
  • a case having an impact value of 40 J / cm 2 or more was evaluated as being excellent in toughness.
  • test piece obtained by chemically polishing the surface of the heat-treated sample to a depth of 0.1 mm using hydrofluoric acid and hydrogen peroxide water was used. Specifically, the test piece after chemical polishing was measured in the range of 45 ° to 105 ° at 2 ⁇ using a Co tube. The residual austenite volume fraction f ⁇ 0 was determined from the obtained X-ray diffraction spectrum.
  • the austenite volume fraction f ⁇ (0.02) was determined. From these, the strain-induced transformation parameter k represented by the following formula (i) was calculated and used as an index for increasing ductility due to the TRIP effect. As k increases, the retained austenite transforms at a lower strain, so that it is not possible to prevent squeezing at a high strain, that is, a high ductility due to the TRIP effect.
  • the above heat-treated sample after surface-mirror-finishing the above heat-treated sample, it was corroded using a picral solution, magnified 2000 times with a scanning electron microscope, and observed in multiple fields. At this time, the number per 1 mm 2 was calculated by counting the number of visual fields in which residual carbide having an equivalent circle diameter of 0.1 ⁇ m or more was present. Further, the surface of the above heat-treated sample was mirror-finished and then subjected to nital corrosion. And the metal structure was observed using the optical microscope, the area ratio of the martensite which is a main structure was measured, and the value was made into the volume ratio of the martensite.
  • the scale property evaluation test is divided into evaluation of scale adhesion, which is an indicator of whether or not peeling off during pressing, and evaluation of scale peelability, which is an indicator of whether it can be easily removed by shot blasting. went.
  • scale adhesion is an indicator of whether or not peeling off during pressing
  • scale peelability is an indicator of whether it can be easily removed by shot blasting.
  • No peeling ⁇ : 1 to 5 peeling pieces falling ⁇ : 6 to 20 peeling pieces falling ⁇ ⁇ : 21 or more peeling pieces falling
  • Table 4 shows the results of the tensile test, Charpy impact test, X-ray diffraction test, microscopic observation, and scale characteristic evaluation test.
  • test no. In 6-8, 17, 23, and 33 the volume ratio of retained austenite was less than 5.0% due to the cooling rate from the Ms point to 100 ° C. being too high. As a result, the total elongation was 8%. Less than 0.0%, the desired ductility was not obtained. Since the k value is 20 or more, it is considered that the TRIP effect is not sufficiently exhibited, so that high ductility cannot be achieved.
  • the value of the maximum height roughness Rz was less than 3.0 ⁇ m, so the scale adhesion was poor, and in addition, the volume fraction of retained austenite was less than 5.0%, so the total elongation was The result was less than 8.0%, which was inferior in ductility.
  • Test No. In No. 34 Si content was lower than the range prescribed
  • Test No. Reference numerals 29 to 31 are reference examples using steel plates for heat treatment that satisfy the provisions of the present invention but are inferior in scale characteristics.
  • a heat-treated steel sheet that has a tensile strength of 1.4 GPa or more and is excellent in toughness and ductility by subjecting the heat-treated steel sheet having excellent scale characteristics during hot forming to heat treatment or hot forming treatment.
  • a member can be obtained.
  • the heat-treated steel sheet member according to the present invention is particularly suitable for use as a collision-resistant component for automobiles.

Abstract

 化学組成が、質量%で、C:0.05~0.50%、Si:0.50~5.0%、Mn:1.5~4.0%、P:0.05%以下、S:0.05%以下、N:0.01%以下、Ti:0.01~0.10%、B:0.0005~0.010%、Cr:0~1.0%、Ni:0~2.0%、Cu:0~1.0%、Mo:0~1.0%、V:0~1.0%、Ca:0~0.01%、Al:0~1.0%、Nb:0~1.0%、REM:0~0.1%、残部:Feおよび不純物であり、マルテンサイトを主体とし、かつ、残留オーステナイトの体積率が5.0%以上である金属組織を有し、前記鋼板部材中に存在する円相当直径が0.1μm以上の炭化物の数密度が4.0×103個/mm2以下であり、ASTM E8で規定される板状試験片を用いて機械的性質を測定した場合に、[(logfγ0-logfγ(0.02))/0.02<20.0]を満たし、引張強度が1.4GPa以上であり、全伸びが8.0%以上である、熱処理鋼板部材。

Description

熱処理鋼板部材およびその製造方法
 本発明は、熱処理鋼板部材およびその製造方法に関する。
 自動車用鋼板の分野においては、昨今の環境規制および衝突安全基準の厳格化を背景に、燃費と衝突安全性とを両立させるため、高い引張強度を有する高強度鋼板の適用が拡大している。しかし、高強度化に伴い鋼板のプレス成形性が低下するため、複雑な形状の製品を製造することが困難になってきている。具体的には、高強度化に伴う鋼板の延性低下により、高加工部位の破断という問題が生じている。また、加工後の残留応力によってスプリングバックおよび壁反りが発生し、寸法精度が劣化するという問題も生じている。したがって、高強度、特に780MPa以上の引張強度を有する鋼板を、複雑な形状を有する製品にプレス成形することは容易ではない。なお、プレス成形ではなくロール成形によれば、高強度の鋼板を加工しやすいが、その適用先は長手方向に一様な断面を有する部品に限定される。
 そこで近年、例えば、特許文献1~3に開示されるように、高強度鋼板のような成形が困難な材料をプレス成形する技術として、ホットスタンプ技術が採用されている。ホットスタンプ技術とは、成形に供する材料を加熱してから成形する熱間成形技術である。この技術では、材料を加熱してから成形するため、成形時には、鋼材が軟質で良好な成形性を有する。これにより、高強度の鋼材であっても、複雑な形状に精度よく成形することができる。また、プレス金型によって成形と同時に焼入れを行うので、成形後の鋼材は十分な強度を有する。
 例えば、特許文献1によれば、ホットスタンプ技術により、成形後の鋼材に1400MPa以上の引張強度を付与することが可能となる。また、特許文献2には、靱性に優れ、かつ引張強さが1.8GPa以上の熱間プレス成形されたプレス成形品が開示されている。さらに、特許文献3には、2.0GPa以上という極めて高い引張強さを有し、さらに、良好な靱性と延性とを有する鋼材が開示されている。
特開2002-102980号公報 特開2012-180594号公報 特開2012-1802号公報
 上記ホットスタンプのような熱間成形技術は、成形性を確保しつつ部材を高強度化することのできる優れた成形方法であるが、800~1000℃といった高温に加熱することが必要なため、鋼板表面が酸化するという問題が生じる。その際に生じる鉄酸化物からなるスケールがプレス時に脱落して金型に付着すると生産性が低下する。また、プレス後の製品にスケールが残存すると外観が不良となるという問題がある。
 しかも、鋼板表面にスケールが残存すると、次工程で塗装する場合に鋼板と塗膜との密着性が劣化し、耐食性の低下を招く。そこでプレス成形後は、ショットブラスト等のスケール除去処理が必要となる。したがって、生成するスケールに要求される特性としては、プレス時には剥離脱落して金型汚染を引き起こすことなく、ショットブラスト処理時には容易に剥離除去されやすいことである。
 また、前述のように、自動車用鋼板には衝突安全性も要求される。自動車の衝突安全性は、車体全体または鋼板部材の衝突試験における圧壊強度および吸収エネルギーによって評価される。特に圧壊強度は材料強度に大きく依存するため、超高強度鋼板の需要が飛躍的に高まっている。しかしながら、一般に高強度化に伴い破壊靱性および変形能が低下するため、自動車部材の衝突圧壊時に早期に破断するか、または変形が集中するような部位において破断し、材料強度に見合った圧壊強度が発揮されず、吸収エネルギーが低下する。したがって、衝突安全性を向上させるためには、材料強度だけでなく、自動車部材の破壊靱性および変形能の重要な指標である、材料の靱性および延性を向上させることが重要である。
 特許文献1および2に記載の技術においては、引張強度および靱性については記載されているものの、延性に関しては考慮されていない。また、特許文献3に記載の技術によれば、引張強度、靱性および延性を向上させることが可能であるが、適切なスケール特性を得ることについて検討がなされておらず、改良の余地が残されている。
 本発明は、上記の問題点を解決するためになされたものであり、良好なスケール特性を有するとともに、1.4GPa以上の引張強度を有し、かつ靱性および延性に優れた熱処理鋼板部材を提供することを目的とする。なお、特に熱間成形された鋼板部材は、多くの場合、平板ではなく成形体であるが、本発明では、成形体である場合も含めて「熱処理鋼板部材」という。また、熱処理鋼板部材の熱処理前の素材となる鋼板を「熱処理用鋼板」ともいう。
 本発明は、上記課題を解決するためになされたものであり、下記の熱処理鋼板部材およびその製造方法を要旨とする。
 (1)化学組成が、質量%で、
 C:0.05~0.50%、
 Si:0.50~5.0%、
 Mn:1.5~4.0%、
 P:0.05%以下、
 S:0.05%以下、
 N:0.01%以下、
 Ti:0.01~0.10%、
 B:0.0005~0.010%、
 Cr:0~1.0%、
 Ni:0~2.0%、
 Cu:0~1.0%、
 Mo:0~1.0%、
 V:0~1.0%、
 Ca:0~0.01%、
 Al:0~1.0%、
 Nb:0~1.0%、
 REM:0~0.1%、
 残部:Feおよび不純物であり、
 マルテンサイトを主体とし、かつ、残留オーステナイトの体積率が5.0%以上である金属組織を有し、
 前記鋼板部材中に存在する円相当直径が0.1μm以上の残留炭化物の数密度が4.0×10個/mm以下であり、
 ASTM E8で規定される板状試験片を用いて下記の機械的性質を測定した場合に、
 下記(i)式で表されるひずみ誘起変態パラメータkの値が20.0未満であり、
 引張強度が1.4GPa以上であり、
 全伸びが8.0%以上である、
 熱処理鋼板部材。
 k=(logfγ0-logfγ(0.02))/0.02   ・・・(i)
 但し、上記式中の各記号の意味は以下のとおりである。
 fγ0:鋼板部材中に存在する残留オーステナイトの体積率
 fγ(0.02):鋼板部材に対して0.02の真ひずみを付与し、除加した後の部材中に存在する残留オーステナイトの体積率
 (2)前記化学組成が、質量%で、
 Cr:0.01~1.0%、
 Ni:0.1~2.0%、
 Cu:0.1~1.0%、
 Mo:0.1~1.0%、
 V:0.1~1.0%、
 Ca:0.001~0.01%、
 Al:0.01~1.0%
 Nb:0.01~1.0%、および
 REM:0.001~0.1%、
 から選択される1種以上を含有する、
 上記(1)に記載の熱処理鋼板部材。
 (3)下記(ii)式で表されるMn偏析度αが1.6以下である、
 上記(1)または(2)に記載の熱処理鋼板部材。
 α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(ii)
 (4)JIS G 0555(2003)で規定される鋼の清浄度の値が0.10%以下である、
 上記(1)から(3)までのいずれかに記載の熱処理鋼板部材。
 (5)質量%で、
 C:0.05~0.50%、
 Si:0.50~5.0%、
 Mn:1.5~4.0%、
 P:0.05%以下、
 S:0.05%以下、
 N:0.01%以下、
 Ti:0.01~0.10%、
 B:0.0005~0.010%、
 Cr:0~1.0%、
 Ni:0~2.0%、
 Cu:0~1.0%、
 Mo:0~1.0%、
 V:0~1.0%、
 Ca:0~0.01%、
 Al:0~1.0%、
 Nb:0~1.0%、
 REM:0~0.1%、
 残部:Feおよび不純物である化学組成を有し、
 表面における最大高さ粗さRzが3.0~10.0μmであり、
 円相当直径が0.1μm以上の炭化物の数密度が8.0×10個/mm以下である鋼板を、
 5℃/s以上の平均昇温速度でAc点~Ac点+200℃の温度域まで加熱した後、前記温度域からMs点まで上部臨界冷却速度以上で冷却し、その後、Ms点から100℃まで5℃/s以下の平均冷却速度で冷却する、
 熱処理鋼板部材の製造方法。
 (6)前記化学組成が、質量%で、
 Cr:0.01~1.0%、
 Ni:0.1~2.0%、
 Cu:0.1~1.0%、
 Mo:0.1~1.0%、
 V:0.1~1.0%、
 Ca:0.001~0.01%、
 Al:0.01~1.0%
 Nb:0.01~1.0%、および
 REM:0.001~0.1%、
 から選択される1種以上を含有する、
 上記(5)に記載の熱処理鋼板部材の製造方法。
 (7)前記鋼板部材中に存在する残留炭化物の数密度が4.0×10個/mm以下である、
 上記(5)または(6)に記載の熱処理鋼板部材の製造方法。
 (8)下記(ii)式で表されるMn偏析度αが1.6以下である、
 上記(5)から(7)までのいずれかに記載の熱処理鋼板部材の製造方法。
 α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(ii)
 (9)JIS G 0555(2003)で規定される鋼の清浄度の値が0.10%以下である、
 上記(5)から(8)までのいずれかに記載の熱処理鋼板部材の製造方法。
 (10)前記温度域まで加熱した後、Ms点まで冷却する前に、前記鋼板に熱間成形を施す、
 上記(5)から(9)までのいずれかに記載の熱処理鋼板部材の製造方法。
 本発明によれば、1.4GPa以上の引張強度を有するとともに靱性および延性に優れる熱処理鋼板部材を得ることが可能である。
 本発明者らは、良好なスケール特性を有するとともに、靱性および延性に優れる鋼板部材を得るための化学成分および組織の関係について鋭意検討を行った結果、以下の知見を得るに至った。
 (a)国内外で生産されている熱処理用鋼板の成分はほとんど同一であり、C:0.2~0.3%およびMn:1~2%程度を含有し、さらにTiおよびBを含む。熱処理工程において、この鋼板をAc点以上の温度まで加熱した後、フェライトが析出しないように速やかに搬送し、マルテンサイト変態開始温度(Ms点)まで金型プレスによって急冷することにより、強度の高いマルテンサイト組織を得る。
 (b)しかしながら、本発明者らが詳細な組織調査を行った結果、熱処理工程後の鋼板部材において、全てをマルテンサイトが占める組織とならない場合があることが分かった。その原因として、以下のことが考えられる。急冷過程のMs点以下の温度範囲において、変態に伴う発熱によって冷却速度が低下する。そのため、発生したマルテンサイトがその場で焼き戻され(自動焼き戻し)、未変態オーステナイトへ炭素が拡散・偏析し、オーステナイトが1~2%程度残留する。また、熱延または焼鈍条件によって析出した炭化物が、熱処理工程後においても残留することも考えられる。
 (c)本発明者らは、熱処理鋼板部材中に不可避的に含まれる残留オーステナイトが鋼板部材の特性に与える影響について、さらに詳しく検討した。フェライトをベースとして残留オーステナイトを含む複合組織を有する鋼は、残留オーステナイトの加工誘起変態を利用したTRIP(Transformation Induced Plasticity)効果によって延性に優れる。一方、超高強度鋼材のようなマルテンサイトをベースとして残留オーステナイトを含む複合組織を有する鋼において、TRIP効果が有効に働くがどうかについては、これまで定かではなかった。
 (d)本発明者らが鋼材の変形時に残留オーステナイトがどのように変化しているか調査した結果、マルテンサイトをベースとした鋼においても、TRIP効果が発現し、延性が向上することが明らかとなった。また、発明者らは、シャルピー衝撃試験のような靱性評価試験を行い、残留オーステナイトのTRIP効果によって延性だけでなく靱性も向上することを見出した。
 (e)鋼板部材の組織中の残留オーステナイト量は、C、SiおよびMn等の元素の成分設計を適正化することによって、飛躍的に増加させることが可能である。
 (f)また、従来、衝突安全性を向上させる上で、一様伸びが注目されていたが、局部伸びを向上させることも衝突時の破断を抑制する上で重要である。
 (g)熱処理用鋼板中に粗大な炭化物が過剰に存在し、熱処理後に炭化物が粒界に多く残留すると、熱処理鋼板部材の靱性が悪化するだけでなく、局部伸びが低下し、結果的に衝突安全性が悪化する。そのため、鋼板部材中に存在する残留炭化物の数密度を規定値以下にする必要がある。
 (h)さらに、スケール特性については、熱処理前の鋼板において、鋼中のSi量を従来の鋼板より多くすることで、所望のスケール特性を得ることが可能となる。
 (i)熱処理用鋼板に含まれるMn偏析度を定量化し、それを低減することで熱処理鋼板部材の靱性がさらに向上する。
 (j)鋼板部材中に含まれる介在物が超高強度鋼板の靱性に多大な影響を及ぼす。靱性改善のためには、JIS G 0555(2003)で規定される鋼の清浄度の値を低くすることが好ましい。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 (A)熱処理鋼板部材および熱処理用鋼板の化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.05~0.50%
 Cは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を向上させる元素である。しかし、C含有量が0.05%未満では、焼入れ後の鋼板部材において十分な強度を確保することが困難となる。したがって、C含有量は0.05%以上とする。一方、C含有量が0.50%を超えると、焼入れ後の鋼板部材の強度が高くなり過ぎて、靱性の劣化が著しくなる。したがって、C含有量は0.50%以下とする。C含有量は0.08%以上であるのが好ましく、0.45%以下であるのが好ましい。
 Si:0.50~5.0%
 Siは、鋼の焼入れ性を高め、かつ固溶強化により鋼材の強度を向上させる元素である。さらに、Siは炭化物中にほとんど固溶しないため、熱間成形時に炭化物の析出を抑え、未変態オーステナイトへのC濃化を助長する。その結果、Ms点が著しく低下し、かつ固溶強化されたオーステナイトが多く残留する。また、Siは、熱処理時に鋼板表面にFeSiOを生成させ、スケール生成を抑制するとともに、スケール中のFeOを減少させる役割を果たす。このFeSiOがバリア層となり、スケール中へのFeの供給が遮断されるため、スケール厚さを薄くすることが可能となる。さらにスケール厚さが薄いと熱間成形時には剥離しづらく、成形後のスケール除去処理時に剥離しやすいというメリットもある。
 これら効果を得るためには、Siを0.50%以上含有させる必要がある。なお、Siが0.50%以上であると、残留炭化物は少なくなる傾向にある。後述するが、熱処理前の鋼板中に析出する炭化物が多いと、それらが熱処理時に溶け残り、十分な焼入れ性を確保できず、低強度なフェライトが析出し、強度不足となるおそれがあるため、この意味でもSiは0.50%以上とする。
 ただし、鋼中のSi含有量が5.0%を超えると、熱処理に際して、オーステナイト変態のために必要となる加熱温度が著しく高くなる。これにより、熱処理に要するコストの上昇を招いたり、加熱不足による焼入れ不足を招いたりする場合がある。したがって、Si含有量は5.0%以下とする。Si含有量は0.75%以上であるのが好ましく、4.0%以下であるのが好ましい。
 Mn:1.5~4.0%
 Mnは、鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために、非常に効果のある元素である。さらにAc点を下げ、焼入れ処理温度の低温化を促進する元素である。しかし、Mn含有量が1.5%未満ではその効果は十分ではない。一方、Mn含有量が4.0%を超えると上記の効果は飽和し、さらに焼入れ部の靱性劣化を招く。そのため、Mn含有量は1.5~4.0%とする。Mn含有量は2.0%以上であるのが好ましい。また、Mn含有量は3.8%以下であるのが好ましく、3.5%以下であるのがより好ましい。
 P:0.05%以下
 Pは、焼入れ後の鋼板部材の靱性を劣化させる元素である。特に、P含有量が0.05%を超えると、靱性の劣化が著しくなる。したがって、P含有量は0.05%以下とする。P含有量は、0.005%以下であることが好ましい。
 S:0.05%以下
 Sは、焼入れ後の鋼板部材の靱性を劣化させる元素である。特に、S含有量が0.05%を超えると、靱性の劣化が著しくなる。したがって、S含有量は0.05%以下とする。S含有量は、0.003%以下であることが好ましい。
 N:0.01%以下
 Nは、焼入れ後の鋼板部材の靱性を劣化させる元素である。特に、N含有量が0.01%を超えると、鋼中に粗大な窒化物が形成され、局部変形能や靱性が著しく劣化する。したがって、N含有量は0.01%以下とする。N含有量の下限は特に限定する必要はないが、N含有量を0.0002%未満とすることは経済的に好ましくないので、N含有量は0.0002%以上とすることが好ましく、0.0008%以上とすることがより好ましい。
 Ti:0.01~0.10%
 Tiは、鋼板をAc点以上の温度に加熱して熱処理を施す際に再結晶を抑制するとともに、微細な炭化物を形成して粒成長を抑制することで、オーステナイト粒を細粒にする作用を有する元素である。このため、Tiを含有させることによって、鋼板部材の靱性が大きく向上する効果が得られる。また、Tiは、鋼中のNと優先的に結合することによってBNの析出によるBの消費を抑制し、後述するBによる焼入れ性向上の効果を促進する。Ti含有量が0.01%未満では、上記の効果を十分に得られない。したがって、Ti含有量は0.01%以上とする。一方、Ti含有量が0.10%を超えると、TiCの析出量が増加してCが消費されるため、焼入れ後の鋼板部材の強度が低下する。したがって、Ti含有量は0.10%以下とする。Ti含有量は0.015%以上であるのが好ましく、0.08%以下であるのが好ましい。
 B:0.0005~0.010%
 Bは、微量でも鋼の焼入れ性を劇的に高める作用を有するので、本発明において非常に重要な元素である。また、Bは粒界に偏析することで、粒界を強化して靱性を高める。さらに、Bは、鋼板の加熱時にオーステナイトの粒成長を抑制する。B含有量が0.0005%未満では、上記の効果を十分に得られない場合がある。したがって、B含有量は0.0005%以上とする。一方、B含有量が0.010%を超えると、粗大な化合物が多く析出し、鋼板部材の靱性が劣化する。したがってB含有量は0.010%以下とする。B含有量は0.0010%以上であるのが好ましく、0.008%以下であるのが好ましい。
 本発明の熱処理鋼板部材および熱処理前の熱処理用鋼板には、上記の元素に加えてさらに、下記に示す量のCr、Ni、Cu、Mo、V、Ca、Al、NbおよびREMから選択される1種以上の元素を含有させてもよい。
 Cr:0~1.0%
 Crは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。またSiと同様に、熱処理時に鋼板表面にFeCrを生成させ、スケール生成を抑制するとともに、スケール中のFeOを減少させる役割を果たす。このFeCrがバリア層となり、スケール中へのFeの供給が遮断されるため、スケール厚さを薄くすることが可能となる。さらにスケール厚さが薄いと熱間成形時には剥離しづらく、成形後のスケール除去処理時に剥離しやすいというメリットもある。しかし、Cr含有量が1.0%を超えると上記の効果は飽和し、いたずらにコストの増加を招く。したがって、含有させる場合のCr含有量は1.0%とする。Cr含有量は0.80%以下であるのが好ましい。上記の効果を得るためには、Cr含有量は0.01%以上であるのが好ましく、0.05%以上であるのがより好ましい。
 Ni:0~2.0%
 Niは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Ni含有量が2.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のNi含有量は2.0%以下とする。上記の効果を得るためには、Niを0.1%以上含有させることが好ましい。
 Cu:0~1.0%
 Cuは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Cu含有量が1.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のCu含有量は1.0%以下とする。上記の効果を得るためには、Cuを0.1%以上含有させることが好ましい。
 Mo:0~1.0%
 Moは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Mo含有量が1.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のMo含有量は1.0%以下とする。上記の効果を得るためには、Moを0.1%以上含有させることが好ましい。
 V:0~1.0%
 Vは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、V含有量が1.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のV含有量は1.0%以下とする。上記の効果を得るためには、Vを0.1%以上含有させることが好ましい。
 Ca:0~0.01%
 Caは、鋼中の介在物を微細化し、焼入れ後の靱性および延性を向上させる効果を有する元素であるため、含有させてもよい。しかし、Ca含有量が0.01%を超えるとその効果は飽和して、いたずらにコストの増加を招く。したがって、Caを含有する場合にはその含有量は0.01%以下とする。Ca含有量は0.004%以下であるのが好ましい。上記の効果を得たい場合は、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
 Al:0~1.0%
 Alは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Al含有量が1.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のAl含有量は1.0%以下とする。上記の効果を得るためには、Alを0.01%以上含有させることが好ましい。
 Nb:0~1.0%
 Nbは、鋼の焼入れ性を高め、かつ焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素であるため、含有させてもよい。しかし、Nb含有量が1.0%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のNb含有量は1.0%以下とする。上記の効果を得るためには、Nbを0.01%以上含有させることが好ましい。
 REM:0~0.1%
 REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の靱性および延性を向上させる効果を有する元素であるため、含有させてもよい。しかし、REM含有量が0.1%を超えるとその効果は飽和して、いたずらにコストの増加を招く。したがって、含有させる場合のREM含有量は0.1%以下とする。REM含有量は0.04%以下であるのが好ましい。上記の効果を得たい場合は、REM含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
 ここで、REMは、Sc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。REMは、例えばFe-Si-REM合金を使用して溶鋼に添加され、この合金には、例えば、Ce、La、Nd、Prが含まれる。
 本発明の熱処理鋼板部材および熱処理用鋼板の化学組成において、残部はFeおよび不純物である。
 ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 (B)熱処理鋼板部材の金属組織
 本発明に係る熱処理鋼板部材は、マルテンサイトを主体とし、かつ、残留オーステナイトの体積率が5.0%以上である金属組織を有する。なお、本鋼板部材中に存在するマルテンサイトは、自動焼戻しマルテンサイトである。また、「マルテンサイトを主体」とするとは、マルテンサイトの体積率が90%以上である金属組織を意味する。鋼板部材中には、フェライト、パーライト、ベイナイト等の組織が混在する場合もあるが、これらの組織は合計体積率で5.0%以下であれば許容される。
 残留オーステナイト:5.0%以上
 残留オーステナイトは、変形時にマルテンサイト変態することによって、くびれを防止して加工硬化を助長し、延性を向上させる。特に、残留オーステイトの体積率が5.0%未満であると、延性が顕著に低下し、超高強度な熱処理鋼板部材の破断リスクが高まり、衝突安全性が低下する。したがって、残留オーステナイトの体積率は5.0%以上とする。一方、残留オーステナイトの体積率の上限について、特に制限は設けない。しかしながら、残留オーステナイトの体積率が過剰であると強度が低下してしまうため、10%以下とすることが好ましい。
 なお、残留オーステナイトをはじめとした第二相を含む組織の相分率(体積率)を測定する手法としては、X線回折を用いた手法が一般的である。これは、第一相(マルテンサイト組織、体心立方格子)および第二相(残留オーステナイト相、面心立方格子)の回折X線強度を検出器で測定し、その回折曲線の面積比から各相の体積率を測定する手法であり、鋼板部材中の残留オーステナイトの体積%を高精度で測定することができる。なお、残留オーステナイトの他にフェライト等が混入する場合は、光学顕微鏡で容易に見分けることができるため、鋼板部材中の主組織であるマルテンサイトの体積%も高精度で測定することができる。
 (C)残留炭化物:4.0×10個/mm以下
 熱処理を行う場合、鋼中に一般に存在する炭化物の再固溶により十分な焼入れ性を確保することができる。しかしながら、炭化物の一部が再固溶されずに残留する場合は、十分な焼入れ性を確保できず、低強度なフェライトが析出する。したがって、この残留炭化物が少ないほど、焼入れ性が向上し、高強度を確保することができる。
 また、熱処理前の鋼板中に残留炭化物が多く存在すると、焼入れ性が低下するだけでなく、残留炭化物は旧γ粒界に堆積し、粒界を脆化させる。さらに、残留炭化物の量が過剰であると、変形時に残留炭化物がボイド起点となり、連結が容易となるため、鋼板部材の延性、特に局部伸びが低下し、結果的に衝突安全性が悪化する。
 特に、熱処理後の鋼板部材中に存在する円相当直径が0.1μm以上の残留炭化物の数密度が4.0×10個/mmを超えると、熱処理後の鋼板部材の靭性および延性が悪化する。そのため、熱処理鋼板部材中に存在する円相当直径が0.1μm以上の残留炭化物の数密度は4.0×10個/mm以下とする。なお、熱処理前の鋼板に存在する円相当直径が0.1μm以上の炭化物の数密度は8.0×10個/mm以下とすることが好ましい。また、上記炭化物は粒状のものを指し、具体的にはアスペクト比が3以下であるものを対象とする。
 (D)熱処理鋼板部材の機械的性質
 上述のように、残留オーステナイトの加工誘起変態を利用したTRIP効果によって高い延性を得ることが可能となる。しかしながら、低いひずみで残留オーステナイトが変態してしまうと、TRIP効果による高延性化は期待できない。すなわち、残留オーステナイトの量だけでなく、その性質を制御する必要がある。
 具体的には、下記(i)式で表されるひずみ誘起変態パラメータkの値が大きくなると低ひずみで残留オーステナイトが変態してしまう。そのため、ひずみ誘起変態パラメータkの値を20.0未満とする必要がある。
 k=(logfγ0-logfγ(0.02))/0.02   ・・・(i)
 但し、上記式中の各記号の意味は以下のとおりである。
 fγ0:鋼板部材中に存在する残留オーステナイトの体積率
 fγ(0.02):鋼板部材に対して0.02の真ひずみを付与し、除加した後の部材中に存在する残留オーステナイトの体積率
 なお、残留オーステナイトにひずみが付与された際に変態しやすいかどうかを支配するのは、残留オーステナイト中の固溶C量であると考えられ、本発明におけるMn含有量の範囲では、残留オーステナイト量と固溶C量との間には正の相関関係がある。そして、例えば、固溶C量が0.8%程度であると上記kの値は15程度となり、固溶C量が0.2%程度であると上記kの値は53程度となる。
 また、本発明に係る熱処理鋼板部材は、引張強度が1.4GPa以上であり、全伸びが8.0%以上であることとする。1.4GPa以上という高い引張強度と全伸びが8.0%以上という優れた延性とを具備することによって、燃費と衝突安全性とを両立させるという要求に応えることが可能となるためである。
 上述のように優れた延性を実現し、衝突安全性を向上させるためには、一様伸びだけでなく、局部伸びも増加させることが望ましい。そのような観点から、局部伸びは2.8%以上とすることが好ましい。
 なお、本発明においては、上記のひずみ誘起変態パラメータk、引張強度、全伸びおよび局部伸びを含む機械的性質の測定には、ASTM規格E8のハーフサイズ板状試験片を用いることとする。具体的には、引張試験は、ASTM規格E8の規定に準拠して実施し、厚さが1.2mm、平行部長さが32mm、平行部板幅が6.25mmの板状試験片に対して、3mm/minのひずみ速度で室温引張試験を行い、最大強度(引張強度)を測定する。また、引張試験の平行部に予め25mmの罫書きを入れておき、破断サンプルをつき合わせ伸び率(全伸び)を測定する。そして、全伸びから最大強度時の塑性ひずみ(均一伸び)を差し引いた値として局部伸びを求める。
 (E)熱処理鋼板部材のMn偏析度
 Mn偏析度α:1.6以下
 α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(ii)
 鋼板の板厚断面中心部では、中心偏析が起きることでMnが濃化する。そのため、MnSが介在物として中心に集中し、硬質なマルテンサイトができやすくなるため、周囲との硬さに差が生じ、靱性が悪化するおそれがある。特に上記(ii)式で表されるMnの偏析度αの値が1.6を超えると、靱性が悪化するおそれがある。したがって、靱性を改善するためには、熱処理鋼板部材のαの値を1.6以下とすることが好ましい。靱性をより一層改善するには、αの値を1.2以下とすることがより好ましい。
 なお、熱処理または熱間成形によってαの値が大きく変化することはないため、熱処理用鋼板のαの値を上記の範囲にすることで、熱処理鋼板部材のαの値も1.6以下にすることが可能であり、すなわち熱処理鋼板部材の靱性を向上させることが可能となる。
 板厚中心部での最大Mn濃度は、以下の方法により求める。電子プローブマイクロアナライザ(EPMA)を用いて鋼板の板厚中心部において板厚方向と垂直な方向にライン分析を行い、分析結果から高い順に3つの測定値を選択し、その平均値を算出する。また、表面から板厚の1/4深さ位置での平均Mn濃度は、以下の方法により求める。同じくEPMAを用いて鋼板の1/4深さ位置において10ヶ所の分析を行い、その平均値を算出する。
 鋼板中のMnの偏析は、主に鋼板組成、特に不純物含有量と、連続鋳造の条件とにより制御され、熱間圧延および熱間成形の前後では実質的に変化しない。したがって、熱処理用鋼板の偏析状況を制御することによって、それから熱処理された鋼板部材の偏析状況も同様に制御することが可能となる。
 (F)熱処理鋼板部材の清浄度
 清浄度:0.10%以下
 熱処理鋼板部材中にJIS G 0555(2003)に記載のA系、B系およびC系介在物が多く存在すると、上記介在物が靱性劣化の原因となる。介在物が増加すると亀裂伝播が容易に起こるため、靱性が劣化するおそれがある。特に、1.4GPa以上の引張強度を有するような熱処理鋼板部材の場合、介在物の存在割合を低く抑えることが好ましい。JIS G 0555(2003)で規定される鋼の清浄度の値が0.10%を超えると、介在物の量が多いため、実用上十分な靱性を確保することが困難となる。そのため、熱処理鋼板部材の清浄度の値は0.10%以下とすることが好ましい。靱性をより一層改善するには清浄度の値を0.06%以下とすることがより好ましい。なお、鋼の清浄度の値は、上記のA系、B系およびC系介在物の占める面積百分率を算出したものである。
 なお、熱処理または熱間成形によって清浄度の値が大きく変化することはないため、熱処理用鋼板の清浄度の値を上記の範囲にすることで、熱処理鋼板部材の清浄度の値も0.10%以下にすることが可能である。
 本発明において、熱処理用鋼板または熱処理鋼板部材の清浄度の値は以下の方法によって求めることが可能である。熱処理用鋼板または熱処理鋼板部材について、5ヶ所から供試材を切り出す。そして、各供試材の板厚1/8t、1/4t、1/2t、3/4t、7/8tの各位置について、点算法にて清浄度を調査する。各板厚における清浄度の値が最も大きい(清浄性が最も低い)数値を、その供試材の清浄度の値とする。
 (G)熱処理用鋼板の表面粗さ
 最大高さ粗さRz:3.0~10.0μm
 本発明に係る熱処理鋼板部材の熱処理前の素材となる、熱処理用鋼板の表面粗さについて、特に制限は設けない。しかし、熱間成形時のスケール密着性に優れる熱処理鋼板部材を得るためには、鋼板表面において、JIS B 0601(2013)で規定される最大高さ粗さRzが3.0~10.0μmである鋼板を用いることが好ましい。鋼板表面の最大高さ粗さRzを3.0μm以上にすることによって、アンカー効果により熱間成形時のスケール密着性が向上する。一方、最大高さ粗さRzが10.0μmを超えると、ショットブラスト等のスケール除去処理の段階において、スケールが残存してしまうことがあり、押し込み疵の原因となる。
 鋼板の表面における最大高さ粗さRzを3.0~10.0μmとすることによって、プレス時におけるスケール密着性とショットブラスト処理時におけるスケール剥離性とを両立することが可能となる。なお、上記のような適切なアンカー効果を得るためには、算術平均粗さRaで管理するのでは不十分であり、最大高さ粗さRzを用いる必要がある。
 鋼板表面の最大高さ粗さRzが3.0μm以上の鋼板を熱間成形した場合、表面に形成する酸化鉄のウスタイトの比率が増加する傾向を示す。具体的には、ウスタイトの割合が面積%で、30~70%となることによって、優れたスケール密着性が得られる。
 ウスタイトはヘマタイト、マグネタイトよりも高温での塑性変形能に優れ、熱間成形時に鋼板の塑性変形する場合にスケールも塑性変形しやすい特徴を示すことが考えられる。ウスタイトの比率が増加する理由としては、明確には不明であるが、凹凸が存在する場合にはスケール地鉄界面の面積が大きくなり、酸化時に鉄イオンの外方拡散が促進され、鉄の比率が高いウスタイトが増加するものと考えられる。
 また、Siを含有させることにより熱間成形時に鋼板表面にFeSiOを生成させ、スケール生成を抑制することは前述したとおりである。全体のスケール厚が薄くなり、かつスケール中のウスタイト比率が増加することで、熱間成形時のスケール密着性が向上するものと考えられる。具体的には、スケール厚が5μm以下となることによって、優れたスケール密着性が得られる。
 (H)熱処理用鋼板の製造方法
 本発明に係る熱処理鋼板部材の熱処理前の鋼板である、熱処理用鋼板の製造条件について特に制限はないが、以下に示す製造方法を用いることにより、上述の組織を有する熱処理用鋼板を製造することができる。以下の製造方法では、例えば、熱間圧延、酸洗、冷間圧延および焼鈍処理を行う。
 上述の化学組成を有する鋼を炉で溶製した後、鋳造によってスラブを作製する。この際、遅れ破壊の起点となるMnSの集中を抑制するためには、Mnの中心偏析を低減させる中心偏析低減処理を行うことが望ましい。中心偏析低減処理としては、スラブが完全凝固する前の未凝固層において、Mnが濃化した溶鋼を排出する方法が挙げられる。
 具体的には、電磁攪拌、未凝固層圧下等の処理を施すことで、完全凝固前のMnが濃化した溶鋼を排出させることができる。なお、上記の電磁攪拌処理は、250~1000ガウスで未凝固溶鋼に流動を与えることで行うことができ、未凝固層圧下処理は、最終凝固部を1mm/m程度の勾配で圧下することで行うことができる。
 上記の方法で得られたスラブに対して、必要に応じてソーキング(均熱)処理を実施してもよい。ソーキング処理を行うことで、偏析したMnを拡散させ偏析度を低下させることができる。ソーキング処理を行う場合の好ましい均熱温度は1200~1300℃であり、均熱時間は20~50hである。
 また、鋼板の清浄度を0.10%以下にするには、溶鋼を連続鋳造する際に、溶鋼の加熱温度をその鋼の液相線温度より5℃以上高い温度とし、かつ、単位時間当たりの溶鋼鋳込み量を6t/min以下に抑えることが望ましい。
 連続鋳造時に溶鋼の単位時間当たりの鋳込み量が6t/minを超えると、鋳型内での溶鋼流動が速いために、凝固シェルに介在物が捕捉されやすくなり、スラブ中の介在物が増加する。また、溶鋼加熱温度が液相線温度より5℃高い温度未満であると、溶鋼の粘度が高くなり、連続鋳造機内にて介在物が浮上しにくく、結果として、スラブ中の介在物が増加して清浄性が悪化しやすくなる。
 一方、溶鋼の液相線温度からの溶鋼加熱温度を5℃以上、かつ単位時間当たりの溶鋼鋳込み量を6t/min以下として鋳造することにより、介在物がスラブ内に持ち込まれにくくなる。その結果、スラブを作製する段階での介在物の量を効果的に減少させることができ、0.10%以下という鋼板清浄度を容易に達成できるようになる。
 溶鋼を連続鋳造する際、溶鋼の溶鋼加熱温度は液相線温度より8℃以上高い温度とすることが望ましく、また、単位時間当たりの溶鋼鋳込み量を5t/min以下にすることが望ましい。溶鋼加熱温度を液相線温度より8℃以上高い温度とし、かつ、単位時間当たりの溶鋼鋳込み量を5t/min以下にすることにより、清浄度を0.06%以下とすることが容易になるため望ましい。
 その後、上記のスラブに熱間圧延を施す。熱間圧延条件は、炭化物をより均一に生成させる観点から、熱間圧延開始温度を1000~1300℃の温度域とし、熱間圧延完了温度を950℃以上とすることが好ましい。
 熱間圧延工程においては、粗圧延を行った後に、必要に応じてデスケーリングを行い、最後に仕上げ圧延を行う。この際、粗圧延が終了してから仕上げ圧延を開始するまでの時間を10s以下にすると、オーステナイトの再結晶が抑制され、結果的に炭化物の成長を抑えられるだけでなく、高温で生成するスケールの抑制、オーステナイト粒界の酸化の抑制、および鋼板の表面における最大高さ粗さを適切な範囲に調整することが可能になる。加えて、スケールの生成および粒界酸化の抑制により、表層にあるSiが固溶した状態で残存しやすいので、プレス加工の加熱時にファイアライトが生成しやすく、そのためにウスタイトも生成しやすくなると考えられる。
 熱間圧延後の巻取温度は、加工性の観点からは高い方が好ましいが、高すぎるとスケール生成により歩留まりが低下するので、500~650℃とすることが好ましい。また、巻取温度を低温にした方が、炭化物が微細分散しやすく、かつ炭化物の個数も少なくなる。
 炭化物の形態は、熱間圧延での条件に加えて、その後の焼鈍条件を調整することでも制御することが可能である。すなわち、焼鈍温度を高温にし、焼鈍段階で一度炭化物を固溶させた後、低温で変態させるのが望ましい。なお、炭化物は硬質であるため、冷間圧延ではその形態が変化することはなく、冷間圧延後も熱間圧延後の存在形態が維持される。
 熱間圧延により得られた熱延鋼板に酸洗等により脱スケール処理を施す。鋼板の表面における最大高さ粗さを適切な範囲に調整するためには、酸洗工程における溶削量を調整することが好ましい。溶削量を小さくすると最大高さ粗さは大きくなり、一方、溶削量を大きくすると最大高さ粗さは小さくなる。具体的には、酸洗による溶削量を1.0~15.0μmとすることが好ましく、2.0~10.0μmとすることがより好ましい。
 本発明における熱処理用鋼板としては、熱延鋼板もしくは熱延焼鈍鋼板、または冷延鋼板もしくは冷延焼鈍鋼板を用いることができる。処理工程は、製品の板厚精度要求レベル等に応じて適宜選択すればよい。
 すなわち、脱スケール処理が施された熱延鋼板は、必要に応じて焼鈍を施して熱延焼鈍鋼板とする。また、上記の熱延鋼板または熱延焼鈍鋼板は、必要に応じて冷間圧延を施して冷延鋼板とし、さらに、冷延鋼板は、必要に応じて焼鈍を施して冷延焼鈍鋼板とする。なお、冷間圧延に供する鋼板が硬質である場合には、冷間圧延前に焼鈍を施して冷間圧延に供する鋼板の加工性を高めておくことが好ましい。
 冷間圧延は通常の方法を用いて行えばよい。良好な平坦性を確保する観点からは、冷間圧延における圧下率は30%以上とすることが好ましい。一方、荷重が過大となることを避けるため、冷間圧延における圧下率は80%以下とすることが好ましい。なお、冷間圧延で鋼板の表面における最大高さ粗さが大きく変化することはない。
 熱処理用鋼板として焼鈍熱延鋼板または焼鈍冷延鋼板を製造する場合、熱延鋼板または冷延鋼板に対して焼鈍を行う。焼鈍では、例えば、550~950℃の温度域において熱延鋼板または冷延鋼板を保持する。
 焼鈍で保持する温度を550℃以上とすることにより、焼鈍熱延鋼板または焼鈍冷延鋼板のいずれを製造する場合であっても、熱延条件の相違に伴う特性の相違が低減され、焼入れ後の特性をさらに安定したものとすることができる。また、冷延鋼板の焼鈍を550℃以上で行った場合には、再結晶により冷延鋼板が軟質化するため、加工性を向上することができる。つまり、良好な加工性を備えた焼鈍冷延鋼板を得ることができる。したがって、焼鈍で保持する温度は550℃以上とすることが好ましい。
 一方、焼鈍で保持する温度が950℃を超えると、組織が粗粒化することがある。組織の粗粒化は焼入れ後の靱性を低下させることがある。また、焼鈍で保持する温度が950℃を超えても、温度を高くしただけの効果は得られず、コストが上昇し、生産性が低下するだけである。したがって、焼鈍で保持する温度は950℃以下とすることが好ましい。
 焼鈍後には、3~20℃/sの平均冷却速度で550℃まで冷却することが好ましい。上記平均冷却速度を3℃/s以上とすることにより、粗大パーライトおよび粗大なセメンタイトの生成が抑制され、焼入れ後の特性を向上させることができる。また、上記平均冷却速度を20℃/s以下とすることにより、強度むら等の発生を抑制して、焼鈍熱延鋼板または焼鈍冷延鋼板の材質を安定したものとすることが容易になる。
 (I)熱処理鋼板部材の製造方法
 上記の熱処理用鋼板に対して熱処理を施すことによって、高い強度を有するとともに靱性および延性に優れる熱処理鋼板部材を得ることが可能となる。熱処理条件については特に制限は設けないが、例えば、下記の加熱工程および冷却工程を順に含む熱処理を施すことができる。
 加熱工程
 5℃/s以上の平均昇温速度で、Ac点~Ac点+200℃の温度域まで鋼板を加熱する。この加熱工程によって、鋼板の組織をオーステナイト単相にする。加熱工程において昇温速度が遅過ぎるまたは加熱温度が高過ぎると、γ粒が粗大化し、冷却後の鋼板部材の強度が劣化するおそれがある。これに対して、上記の条件を満たした加熱工程を実施することによって、熱処理鋼板部材の強度の劣化を防止できる。
 冷却工程
 上記加熱工程を経た鋼板を、拡散変態が起きない(つまりフェライトが析出しない)ように、上記温度域からMs点まで上部臨界冷却速度以上で冷却し、その後、Ms点から100℃まで5℃/s以下の平均冷却速度で冷却する。100℃未満の温度から室温までの冷却速度については、空冷程度の冷却速度が好ましい。上記の条件を満たした冷却工程を実施することによって、冷却過程におけるフェライトの生成を防止でき、かつMs点以下の温度域において、自動焼戻しにより炭素が未変態オーステナイトに拡散、濃化し、塑性変形に対して安定的な残留オーステナイトが生成される。これにより、靱性および延性に優れた熱処理鋼板部材を得ることが可能となる。
 なお、上部臨界冷却速度はMn含有量の影響が大きく、本発明で規定されるMn含有量の範囲では、臨界冷速速度は1~30℃/s程度となる。組織形成のためには、Ms点までの平均冷却速度の下限は鋼板の成分によっては1℃/sでもよい。ただし、スケールの形成の点からは、ある程度の冷却速度が必要であり、例えば10℃/s以上に設定してもよいし、実施例で例示するように45℃/s以上でもよい。
 また、前述したように、鋼板の最大高さ粗さRzは3.0~10.0μmに調整している。最大高さ粗さRzが3.0μm未満であると、加熱、加工および冷却の過程におけるスケールの密着性が低下し、スケールが部分的に剥離するため、冷却速度のばらつきが大きくなる。また、最大高さ粗さRzが10.0μmを超えても、表面の凹凸形状に起因して冷却速度のばらつきが大きくなる。このように、最大高さ粗さRzを3.0~10.0μmに調整することによって、温度制御が向上して製品の特性のばらつきが低減する。
 上記の熱処理は任意の方法によって実施することができ、例えば、高周波加熱焼入れによって実施してもよい。加熱工程において、鋼板をAc点~Ac点+200℃の温度域で保持する時間は、オーステナイト変態を進めて炭化物を溶解させることによって鋼の焼入れ性を高める観点から、10s以上とすることが好ましい。また、上記保持時間は、生産性の観点からは、600s以下とすることが好ましい。
 なお、熱処理を施す鋼板としては、熱延鋼板または冷延鋼板に焼鈍処理を施した焼鈍熱延鋼板または焼鈍冷延鋼板を用いてもよい。
 上記熱処理に際して、Ac点~Ac点+200℃の温度域に加熱後、Ms点まで冷却する前に、上述したホットスタンプのような熱間成形を施してもよい。熱間成形としては、曲げ加工、絞り成形、張出し成形、穴広げ成形、およびフランジ成形等が挙げられる。また、成形と同時またはその直後に鋼板を冷却する手段を備えていれば、プレス成形以外の成形法、例えばロール成形に本発明を適用してもよい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学成分を有する鋼を試験転炉で溶製し、連続鋳造試験機にて連続鋳造を実施し、幅1000mm、厚さ250mmのスラブを作製した。この際、表2に示す条件において、溶鋼の加熱温度および単位時間当たりの溶鋼鋳込み量の調整を行った。
Figure JPOXMLDOC01-appb-T000001
 スラブの冷却速度の制御は2次冷却スプレー帯の水量を変更することにより行った。また、中心偏析低減処理は、凝固末期部においてロールを用いて、1mm/mの勾配で軽圧下を実施し、最終凝固部の濃化溶鋼を排出することにより行った。一部のスラブについては、その後、1250℃、24hの条件においてソーキング処理を実施した。
 得られたスラブについて、熱間圧延試験機によって熱間圧延を施し、厚さ3.0mmの熱延鋼板とした。熱間圧延工程では、粗圧延後にデスケーリングを行い、最後に仕上げ圧延を行った。その後、上記の熱延鋼板を実験室にて酸洗した。さらに冷間圧延試験機にて冷間圧延を施し、厚さ1.4mmの冷延鋼板とし、熱処理用鋼板(鋼No.1~18)を得た。
 得られた熱処理用鋼板について、最大高さ粗さ、算術平均粗さ、炭化物の数密度、Mn偏析度および清浄度を測定した。本発明において、最大高さ粗さRzおよび算術平均粗さRaを求めるに際しては、表面粗さ計を用いて2mm区間の最大高さ粗さRzおよび算術平均粗さRaを圧延方向および圧延垂直方向に各10ヶ所測定し、その平均値を採用した。
 円相当直径が0.1μm以上の炭化物の数密度を求めるに際しては、熱処理用鋼板の表面を、ピクラール液を使って腐食し、走査型電子顕微鏡で2000倍に拡大し、複数視野の観察を行った。このときに、円相当直径が0.1μm以上の炭化物が存在する視野の数を数えて1mmあたりの個数を算出した。
 Mn偏析度の測定は以下の手順により行った。EPMAを用いて熱処理用鋼板の板厚中央部において、板厚方向と垂直な方向にライン分析を行い、分析結果から高い順に3つの測定値を選択した後、その平均値を算出し、板厚中心部での最大Mn濃度を求めた。また、熱処理用鋼板の表面から板厚の1/4深さ位置において、EPMAを用いて10ヶ所の分析を行い、その平均値を算出し、表面から板厚の1/4深さ位置での平均Mn濃度を求めた。そして、上記の板厚中心部での最大Mn濃度を、表面から板厚の1/4深さ位置での平均Mn濃度で割ることによって、Mn偏析度αを求めた。
 清浄度は、板厚1/8t、1/4t、1/2t、3/4t、7/8tの各位置について、点算法にて測定した。そして、各板厚における清浄度の値が最も大きい(清浄度が最も低い)数値を、その鋼板の清浄度の値とした。
 上述のように、熱間成形によってMn偏析度および清浄度の値が大きく変化することはないため、上記のMn偏析度αおよび清浄度の値を熱処理鋼板部材のMn偏析度αおよび清浄度の値とした。
 熱処理用鋼板の製造工程における中心偏析低減処理およびソーキング処理の有無、熱間圧延工程における粗圧延が終了してから仕上げ圧延を開始するまでの時間、熱間圧延完了温度および熱延鋼板の巻取温度、酸洗による溶削量、ならびに、熱処理用鋼板の最大高さ粗さRz、算術平均粗さRaおよび炭化物の数密度の測定結果を表2に併せて示し、Mn偏析度αおよび清浄度の測定結果を後述の表4に示す。
Figure JPOXMLDOC01-appb-T000002
 その後、上記の各鋼板から、厚さ:1.4mm、幅:30mm、および長さ:200mmのサンプルを2つずつ採取した。採取した各サンプルのうち1つについては、熱間成形を模擬した下記の表3に示す熱処理条件に従って、通電加熱および冷却した。なお、表3には、各鋼板のAc点およびMs点を併せて示す。冷却後に、各サンプルの均熱部位を切り出し、引張試験、シャルピー衝撃試験、X線回折試験、顕微鏡観察に供した。
 引張試験は、ASTM規格E8の規定に準拠して、インストロン社製引張試験機で実施した。上記熱処理サンプルを1.2mm厚まで研削した後、試験方向が圧延方向に平行になるように、ASTM規格E8のハーフサイズ板状試験片(平行部長さ:32mm、平行部板幅:6.25mm)を採取した。なお、本実施例で用いた通電加熱装置冷却装置では、長さ200mm程度のサンプルから得られる均熱部位は限られるため、ASTM規格E8のハーフサイズ板状試験片を採用することとした。
 そして、各試験片にひずみゲージ(共和電業製KFG-5、ゲージ長:5mm)を貼付け、3mm/minのひずみ速度で室温引張試験を行い、最大強度(引張強度)を測定した。また、引張試験の平行部には予め25mmの罫書きを入れておき、破断サンプルをつき合わせ伸び率(全伸び)を測定した。そして、全伸びから最大強度時の塑性ひずみ(均一伸び)を差し引いた値として局部伸びを求めた。
 シャルピー衝撃試験では、均熱部位を厚さが1.2mmとなるまで研削し、これを3枚積層したVノッチ入り試験片を作製し、この試験片のシャルピー衝撃試験を行って-80℃における衝撃値を求めた。なお、本発明においては、40J/cm以上の衝撃値を有する場合を靱性に優れると評価することとした。
 X線回折試験では、フッ化水素酸と過酸化水素水とを用いて上記熱処理サンプルの表面を0.1mmの深さまで化学研磨した試験片(厚さ1.1mm)を用いた。具体的には、化学研磨後の試験片を、Co管球を用いて、2θで45°から105°の範囲で測定を行った。得られたX線回折スペクトルより残留オーステナイト体積率fγ0を求めた。
 また、上記熱処理サンプルを上記引張試験片に加工し、一定塑性ひずみ(真歪み:ε=0.02)を付与し、除加した引張試験片から上記X線回折用試験片を作製し、残留オーステナイト体積率fγ(0.02)を求めた。これらより下記(i)式で示されるひずみ誘起変態パラメータkを計算し、TRIP効果による高延性化の指標とした。kが大きいほど低ひずみで残留オーステナイトが変態するため、高ひずみにおける括れ防止、つまりTRIP効果による高延性化は期待できない。
 k=(logfγ0-logfγ(0.02))/0.02   ・・・(i)
 但し、上記式中の各記号の意味は以下のとおりである。
 fγ0:鋼板部材中に存在する残留オーステナイトの体積率
 fγ(0.02):鋼板部材に対して0.02の真ひずみを付与し、除加した後の部材中に存在する残留オーステナイトの体積率
 さらに、上記の熱処理サンプルの表面鏡面加工した後、ピクラール液を使って腐食し、走査型電子顕微鏡で2000倍に拡大し、複数視野の観察を行った。このときに、円相当直径が0.1μm以上の残留炭化物が存在する視野の数を数えて1mmあたりの個数を算出した。また、上記の熱処理サンプルの表面を鏡面加工した後、ナイタール腐食した。そして、光学顕微鏡を用いて、金属組織の観察を行い、主組織であるマルテンサイトの面積率を測定し、その値をマルテンサイトの体積率とした。
 また、採取した各サンプルのうち、もう1つについては、熱間成形を模擬した下記の表3に示す熱処理条件で通電加熱した後、均熱部位に対して曲げ加工を施し、その後冷却した。冷却後に、各サンプルの曲げ加工を施した部位を切り出し、スケール特性評価試験に供した。なお、曲げ加工を施すに際しては、サンプルの両端を支持具で支え、長手方向中央付近に上からR10mmの冶具を押しつけて、U字曲げを行った。支持具同士の間隔は30mmとした。
 スケール特性評価試験は、プレス時に剥離脱落しないかどうかの指標となるスケール密着性の評価と、ショットブラスト処理等により容易に剥離除去できるかどうかの指標となるスケール剥離性の評価とに分けてを行った。まず、通電加熱後の曲げ加工により剥離が生じるかどうかを観察し、以下の基準によってスケール密着性の評価を行った。本発明においては、結果が「○○」または「○」の場合に、スケール密着性に優れると判断することとした。
 ○○:剥離なし
  ○:1~5個の剥離片落下
  ×:6~20個の剥離片落下
 ××:21個以上の剥離片落下
 続いて、上記のスケール密着性の評価において「××」となったサンプル以外については、さらに曲げ加工を施した部位に対して、接着テープにより貼着・剥離するテープ剥離試験を行った。その後、スケールがテープに付着して容易に剥離するかどうかを観察し、以下の基準によってスケール剥離性の評価を行った。本発明においては、結果が「○○」または「○」の場合に、スケール剥離性に優れると判断することとした。そして、スケール密着性およびスケール剥離性の双方に優れる場合に、熱間成形中のスケール特性が優れるとした。
 ○○:全て剥離
  ○:1~5個の剥離片残存
  ×:6~20個の剥離片残存
 ××:21個以上の剥離片残存
Figure JPOXMLDOC01-appb-T000003
 引張試験、シャルピー衝撃試験、X線回折試験、顕微鏡観察、スケール特性評価試験の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1~4を参照して、本発明で規定される化学組成および組織の全てを満たした試験No.1~5、10~16、19~22、25および26では、引張強度が1.4GPa以上であり、8.0%以上の全伸びを有し延性に優れ、かつ、40J/cm以上の衝撃値を有し靱性に優れるとともに、スケール密着性にも優れる結果となった。これらの試料はk値がいずれも20未満であったことから、TRIP効果により高延性化が実現されていることが分かる。なかでもMn偏析度αの値が1.6以下でかつ清浄度が0.10%以下である試験No.1、3~5、10~16および19~22では、50J/cm以上の衝撃値を有し、特に靱性に優れる結果となった。
 一方、試験No.6~8、17、23および33では、Ms点から100℃までの冷却速度が高すぎたことに起因して、残留オーステナイトの体積率が5.0%未満となり、その結果、全伸びが8.0%未満となり、所望の延性が得られなかった。k値が20以上となっていることからも、TRIP効果が十分に発現せず、そのため高延性化を達成できなかったと考えられる。
 また、試験No.9、18および24では、Ac点~Ac点+200℃の温度域まで加熱する際の加熱条件が不適切であったことに起因して、脱炭が顕著となり、1.4GPa以上の引張強度を確保することができなかった。
 本発明の化学組成を満足していない試験No.27および28では、最大高さ粗さRzの値が3.0μm未満となったため、スケール密着性が不良であり、加えて残留オーステナイトの体積率が5.0%未満であったため、全伸びが8.0%未満となり延性に劣る結果となった。
 試験No.32および33では、熱間圧延工程における粗圧延が終了してから仕上げ圧延を開始するまでの時間が10sを超えた。また、試験No.34では、Si含有量が本発明で規定する範囲より低く、また巻取温度が高かった。これらに起因して、試験No.32~34では、最大高さ粗さRzの値が3.0μm未満となったことに加えて、残留炭化物数密度が4.0×10個/mmを超えたため、スケール密着性が不良であり、かつ、衝撃値が40J/cm未満となり、所望の靱性が得られなかった。
 なお、試験No.29~31は、本発明の規定は満足するものの、スケール特性に劣る熱処理用鋼板を用いた参考例である。試験No.29および31では、熱間圧延後の酸洗工程における溶削量が不十分であったことに起因して、最大高さ粗さRzの値が10.0μmを超えたため、スケール剥離性が不良であった。さらに、試験No.30では、熱間圧延後の酸洗工程における溶削量が過剰であったことに起因して、最大高さ粗さRzの値が3.0μm未満となったため、スケール密着性が不良であった。
 試験No.29および31では、最大高さ粗さが過大であったため、凹凸形状に起因して、部分的に冷却むらが生じた。また、試験No.30でも、スケールの密着性が悪いため、部分的に冷却むらが生じた。そのため、これらのサンプルについては、材質にばらつきが生じた。これらの傾向は、熱間成形を実際に行った場合にはより顕著であった。
 本発明によれば、熱間成形時のスケール特性に優れる熱処理用鋼板に対して、熱処理または熱間成形処理を施すことによって、1.4GPa以上の引張強度を有するとともに靱性および延性に優れる熱処理鋼板部材を得ることが可能となる。本発明に係る熱処理鋼板部材は、特に自動車の耐衝突部品として用いるのに好適である。

Claims (10)

  1.  化学組成が、質量%で、
     C:0.05~0.50%、
     Si:0.50~5.0%、
     Mn:1.5~4.0%、
     P:0.05%以下、
     S:0.05%以下、
     N:0.01%以下、
     Ti:0.01~0.10%、
     B:0.0005~0.010%、
     Cr:0~1.0%、
     Ni:0~2.0%、
     Cu:0~1.0%、
     Mo:0~1.0%、
     V:0~1.0%、
     Ca:0~0.01%、
     Al:0~1.0%、
     Nb:0~1.0%、
     REM:0~0.1%、
     残部:Feおよび不純物であり、
     マルテンサイトを主体とし、かつ、残留オーステナイトの体積率が5.0%以上である金属組織を有し、
     前記鋼板部材中に存在する円相当直径が0.1μm以上の残留炭化物の数密度が4.0×10個/mm以下であり、
     ASTM E8で規定される板状試験片を用いて下記の機械的性質を測定した場合に、
     下記(i)式で表されるひずみ誘起変態パラメータkの値が20.0未満であり、
     引張強度が1.4GPa以上であり、
     全伸びが8.0%以上である、
     熱処理鋼板部材。
     k=(logfγ0-logfγ(0.02))/0.02   ・・・(i)
     但し、上記式中の各記号の意味は以下のとおりである。
     fγ0:鋼板部材中に存在する残留オーステナイトの体積率
     fγ(0.02):鋼板部材に対して0.02の真ひずみを付与し、除加した後の部材中に存在する残留オーステナイトの体積率
  2.  前記化学組成が、質量%で、
     Cr:0.01~1.0%、
     Ni:0.1~2.0%、
     Cu:0.1~1.0%、
     Mo:0.1~1.0%、
     V:0.1~1.0%、
     Ca:0.001~0.01%、
     Al:0.01~1.0%
     Nb:0.01~1.0%、および
     REM:0.001~0.1%、
     から選択される1種以上を含有する、
     請求項1に記載の熱処理鋼板部材。
  3.  下記(ii)式で表されるMn偏析度αが1.6以下である、
     請求項1または請求項2に記載の熱処理鋼板部材。
     α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(ii)
  4.  JIS G 0555(2003)で規定される鋼の清浄度の値が0.10%以下である、
     請求項1から請求項3までのいずれかに記載の熱処理鋼板部材。
  5.  質量%で、
     C:0.05~0.50%、
     Si:0.50~5.0%、
     Mn:1.5~4.0%、
     P:0.05%以下、
     S:0.05%以下、
     N:0.01%以下、
     Ti:0.01~0.10%、
     B:0.0005~0.010%、
     Cr:0~1.0%、
     Ni:0~2.0%、
     Cu:0~1.0%、
     Mo:0~1.0%、
     V:0~1.0%、
     Ca:0~0.01%、
     Al:0~1.0%、
     Nb:0~1.0%、
     REM:0~0.1%、
     残部:Feおよび不純物である化学組成を有し、
     表面における最大高さ粗さRzが3.0~10.0μmであり、
     円相当直径が0.1μm以上の炭化物の数密度が8.0×10個/mm以下である鋼板を、
     5℃/s以上の平均昇温速度でAc点~Ac点+200℃の温度域まで加熱した後、前記温度域からMs点まで上部臨界冷却速度以上で冷却し、その後、Ms点から100℃まで5℃/s以下の平均冷却速度で冷却する、
     熱処理鋼板部材の製造方法。
  6.  前記化学組成が、質量%で、
     Cr:0.01~1.0%、
     Ni:0.1~2.0%、
     Cu:0.1~1.0%、
     Mo:0.1~1.0%、
     V:0.1~1.0%、
     Ca:0.001~0.01%、
     Al:0.01~1.0%
     Nb:0.01~1.0%、および
     REM:0.001~0.1%、
     から選択される1種以上を含有する、
     請求項5に記載の熱処理鋼板部材の製造方法。
  7.  前記鋼板部材中に存在する残留炭化物の数密度が4.0×10個/mm以下である、
     請求項5または請求項6に記載の熱処理鋼板部材の製造方法。
  8.  下記(ii)式で表されるMn偏析度αが1.6以下である、
     請求項5から請求項7までのいずれかに記載の熱処理鋼板部材の製造方法。
     α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(ii)
  9.  JIS G 0555(2003)で規定される鋼の清浄度の値が0.10%以下である、
     請求項5から請求項8までのいずれかに記載の熱処理鋼板部材の製造方法。
  10.  前記温度域まで加熱した後、Ms点まで冷却する前に、前記鋼板に熱間成形を施す、
     請求項5から請求項9までのいずれかに記載の熱処理鋼板部材の製造方法。
PCT/JP2016/061425 2015-04-08 2016-04-07 熱処理鋼板部材およびその製造方法 WO2016163468A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2982078A CA2982078C (en) 2015-04-08 2016-04-07 Heat-treated steel sheet member and method for producing the same
RU2017138053A RU2686713C1 (ru) 2015-04-08 2016-04-07 Элемент из термообработанного стального листа и способ его производства
MX2017012873A MX2017012873A (es) 2015-04-08 2016-04-07 Miembro de lamina de acero con tratamiento termico y metodo para producirlo.
BR112017019994-7A BR112017019994A2 (ja) 2015-04-08 2016-04-07 A heat treatment steel plate member and a manufacturing method for the same
JP2017511057A JP6380659B2 (ja) 2015-04-08 2016-04-07 熱処理鋼板部材およびその製造方法
EP16776634.4A EP3282030B1 (en) 2015-04-08 2016-04-07 Heat-treated steel sheet member, and production method therefor
US15/563,989 US11041225B2 (en) 2015-04-08 2016-04-07 Heat-treated steel sheet member and method for producing the same
ES16776634T ES2787005T3 (es) 2015-04-08 2016-04-07 Miembro de lámina de acero tratado térmicamente, y método de producción para el mismo
KR1020177031588A KR102034129B1 (ko) 2015-04-08 2016-04-07 열처리 강판 부재 및 그 제조 방법
CN201680020893.3A CN107429363B (zh) 2015-04-08 2016-04-07 热处理钢板构件以及其的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-079390 2015-04-08
JP2015079387 2015-04-08
JP2015-079387 2015-04-08
JP2015079390 2015-04-08
JP2015141647 2015-07-15
JP2015-141644 2015-07-15
JP2015-141647 2015-07-15
JP2015141644 2015-07-15

Publications (1)

Publication Number Publication Date
WO2016163468A1 true WO2016163468A1 (ja) 2016-10-13

Family

ID=57072649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061425 WO2016163468A1 (ja) 2015-04-08 2016-04-07 熱処理鋼板部材およびその製造方法

Country Status (12)

Country Link
US (1) US11041225B2 (ja)
EP (1) EP3282030B1 (ja)
JP (1) JP6380659B2 (ja)
KR (1) KR102034129B1 (ja)
CN (1) CN107429363B (ja)
BR (1) BR112017019994A2 (ja)
CA (1) CA2982078C (ja)
ES (1) ES2787005T3 (ja)
MX (1) MX2017012873A (ja)
RU (1) RU2686713C1 (ja)
TW (1) TWI612153B (ja)
WO (1) WO2016163468A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208556A1 (ja) 2018-04-23 2019-10-31 日本製鉄株式会社 鋼部材およびその製造方法
WO2020075394A1 (ja) 2018-10-10 2020-04-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP3550047A4 (en) * 2016-12-05 2020-06-17 Nippon Steel Corporation HIGH MECHANICAL STRENGTH SHEET
EP3730652A4 (en) * 2017-12-24 2020-10-28 Posco ULTRA HIGH STRENGTH COLD-ROLLED STEEL SHEET AND MANUFACTURING METHOD FOR IT
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
WO2022080489A1 (ja) * 2020-10-16 2022-04-21 日本製鉄株式会社 ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法
WO2023132289A1 (ja) * 2022-01-07 2023-07-13 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
KR102660727B1 (ko) 2019-06-28 2024-04-26 닛폰세이테츠 가부시키가이샤 강판

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2788163T3 (es) 2015-04-08 2020-10-20 Nippon Steel Corp Miembro de lámina de acero tratado térmicamente, y método de producción para el mismo
MX2017012873A (es) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Miembro de lamina de acero con tratamiento termico y metodo para producirlo.
RU2690383C2 (ru) * 2015-04-08 2019-06-03 Ниппон Стил Энд Сумитомо Метал Корпорейшн Стальной лист для термической обработки
CN108085605A (zh) * 2017-12-26 2018-05-29 苏州贝尔纳德铁路设备有限公司 一种耐磨损道岔钢轨及其制备方法
CN108315671B (zh) * 2018-05-14 2019-09-17 东北大学 屈服强度1000MPa级低屈强比超高强钢及其制备方法
JP6801823B1 (ja) * 2019-02-22 2020-12-16 Jfeスチール株式会社 熱間プレス部材およびその製造方法、ならびに熱間プレス部材用鋼板の製造方法
WO2021123877A1 (en) * 2019-12-17 2021-06-24 Arcelormittal Hot rolled steel sheet and method of manufacturing thereof
KR102379443B1 (ko) * 2019-12-20 2022-03-29 주식회사 포스코 열간성형용 강재, 열간성형 부재 및 이들의 제조방법
US20230002873A1 (en) * 2019-12-20 2023-01-05 Posco Steel for hot forming, hot-formed member, and manufacturing methods therefor
CN113106339B (zh) * 2021-03-22 2022-02-11 北京科技大学 一种超高强高塑性抗高温氧化热冲压成形钢的制备方法
CN113755758B (zh) * 2021-09-03 2023-02-03 本钢板材股份有限公司 一种添加铈微合金制备的8mm厚热冲压钢以及其热冲压工艺
CN116024490A (zh) * 2021-10-25 2023-04-28 宝山钢铁股份有限公司 一种中碳预硬化锯片钢及其制造方法
CN116590625B (zh) * 2023-04-23 2024-01-09 鞍钢股份有限公司 一种高性能细晶压力容器钢板及其制造方法
CN116574978B (zh) * 2023-04-23 2024-01-09 鞍钢股份有限公司 一种多阶段热处理细晶压力容器钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045195A (ja) * 2006-08-21 2008-02-28 Kobe Steel Ltd 高張力厚鋼板およびその製造方法
JP2012031466A (ja) * 2010-07-30 2012-02-16 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013185246A (ja) * 2012-03-09 2013-09-19 Kobe Steel Ltd プレス成形品の製造方法およびプレス成形品
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765141B2 (ja) * 1985-09-18 1995-07-12 日立金属株式会社 熱間加工用工具鋼
JP3389562B2 (ja) 2000-07-28 2003-03-24 アイシン高丘株式会社 車輌用衝突補強材の製造方法
JP4437869B2 (ja) 2000-12-08 2010-03-24 新日本製鐵株式会社 成形性および焼入れ性に優れた熱延鋼板および冷延鋼板
FR2836930B1 (fr) 2002-03-11 2005-02-25 Usinor Acier lamine a chaud a tres haute resistance et de faible densite
JP4325277B2 (ja) * 2003-05-28 2009-09-02 住友金属工業株式会社 熱間成形法と熱間成形部材
TWI290586B (en) 2003-09-24 2007-12-01 Nippon Steel Corp Hot rolled steel sheet and method of producing the same
JP3863874B2 (ja) 2003-10-02 2006-12-27 新日本製鐵株式会社 金属板材の熱間プレス成形装置及び熱間プレス成形方法
JP4441417B2 (ja) * 2005-02-14 2010-03-31 新日本製鐵株式会社 成形加工性と溶接性に優れる高張力冷延鋼板及びその製造方法
WO2007020916A1 (ja) 2005-08-12 2007-02-22 Kabushiki Kaisha Kobe Seiko Sho スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材
JP4369415B2 (ja) 2005-11-18 2009-11-18 株式会社神戸製鋼所 酸洗い性に優れたばね用鋼線材
JP4781836B2 (ja) 2006-02-08 2011-09-28 新日本製鐵株式会社 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4983082B2 (ja) 2006-04-26 2012-07-25 住友金属工業株式会社 高強度鋼材及びその製造方法
KR101133870B1 (ko) 2006-05-10 2012-04-06 수미도모 메탈 인더스트리즈, 리미티드 열간 프레스 성형 강판 부재 및 그 제조 방법
BRPI0807565B1 (pt) * 2007-02-23 2017-06-13 Corus Staal Bv Method of termomechanical formating of a final product with very high resistance and a product produced through the same
JP4782056B2 (ja) * 2007-03-27 2011-09-28 新日本製鐵株式会社 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法
JP5181517B2 (ja) 2007-04-13 2013-04-10 Jfeスチール株式会社 熱間プレス加工用鋼板
JP5365216B2 (ja) 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板とその製造方法
CN102282280B (zh) 2008-11-19 2015-01-07 新日铁住金株式会社 钢板和表面处理钢板以及钢板和表面处理钢板的制造方法
JP5195413B2 (ja) 2008-12-26 2013-05-08 新日鐵住金株式会社 曲げ加工性及び靭性の異方性に優れた高強度熱延鋼板及びその製造方法
JP4998756B2 (ja) 2009-02-25 2012-08-15 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5463715B2 (ja) 2009-04-06 2014-04-09 Jfeスチール株式会社 自動車構造部材用高強度溶接鋼管の製造方法
JP5499664B2 (ja) 2009-11-30 2014-05-21 新日鐵住金株式会社 疲労耐久性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
AU2011221047B2 (en) * 2010-02-26 2014-02-20 Nippon Steel Corporation Heat-treated steel material, method for producing same, and base steel material for same
JP5521818B2 (ja) 2010-06-21 2014-06-18 新日鐵住金株式会社 鋼材およびその製造方法
JP5029749B2 (ja) 2010-09-17 2012-09-19 Jfeスチール株式会社 曲げ加工性に優れた高強度熱延鋼板およびその製造方法
JP4980471B1 (ja) 2011-01-07 2012-07-18 株式会社神戸製鋼所 鋼線材及びその製造方法
RU2450079C1 (ru) 2011-03-11 2012-05-10 Закрытое акционерное общество "Научно-Производственная Компания Технология машиностроения и Объемно-поверхностная закалка" (ЗАО "НПК Техмаш и ОПЗ") Конструкционная сталь для объемно-поверхностной закалки
CA2831551C (en) 2011-04-13 2016-03-08 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method of producing the same
RU2463359C1 (ru) 2011-05-18 2012-10-10 Общество с ограниченной ответственностью "Северсталь-Проект" (ООО "Северсталь-Проект") Способ производства толстолистового низколегированного штрипса
EP2524970A1 (de) 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
WO2012169640A1 (ja) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
KR101682868B1 (ko) * 2011-07-21 2016-12-05 가부시키가이샤 고베 세이코쇼 열간 프레스 성형 강 부재의 제조 방법
JP5699860B2 (ja) 2011-08-24 2015-04-15 新日鐵住金株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP2013181183A (ja) 2012-02-29 2013-09-12 Jfe Steel Corp 降伏強度の面内異方性の小さい高強度冷延鋼板およびその製造方法
JP5869924B2 (ja) 2012-03-09 2016-02-24 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
TWI481730B (zh) * 2012-08-28 2015-04-21 Nippon Steel & Sumitomo Metal Corp 鋼板
BR112015005870B1 (pt) * 2012-11-05 2018-11-21 Nippon Steel & Sumitomo Metal Corporation aço de baixa liga para produtos tubulares da indústria petrolífera que tem resistência a trinca por tensão de sulfeto e método de fabricação dos mesmos
JP5942841B2 (ja) * 2012-12-21 2016-06-29 新日鐵住金株式会社 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
CN103194668B (zh) * 2013-04-02 2015-09-16 北京科技大学 一种低屈强比超高强冷轧钢板及其制备方法
RU2683397C1 (ru) * 2015-03-31 2019-03-28 Ниппон Стил Энд Сумитомо Метал Корпорейшн Стальной лист для горячей штамповки, способ производства стального листа для горячей штамповки, а также формируемое горячей штамповкой тело
RU2690383C2 (ru) * 2015-04-08 2019-06-03 Ниппон Стил Энд Сумитомо Метал Корпорейшн Стальной лист для термической обработки
MX2017012873A (es) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Miembro de lamina de acero con tratamiento termico y metodo para producirlo.
ES2788163T3 (es) 2015-04-08 2020-10-20 Nippon Steel Corp Miembro de lámina de acero tratado térmicamente, y método de producción para el mismo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045195A (ja) * 2006-08-21 2008-02-28 Kobe Steel Ltd 高張力厚鋼板およびその製造方法
JP2012031466A (ja) * 2010-07-30 2012-02-16 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
JP2013185246A (ja) * 2012-03-09 2013-09-19 Kobe Steel Ltd プレス成形品の製造方法およびプレス成形品

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550047A4 (en) * 2016-12-05 2020-06-17 Nippon Steel Corporation HIGH MECHANICAL STRENGTH SHEET
EP3730652A4 (en) * 2017-12-24 2020-10-28 Posco ULTRA HIGH STRENGTH COLD-ROLLED STEEL SHEET AND MANUFACTURING METHOD FOR IT
US11713497B2 (en) 2018-04-23 2023-08-01 Nippon Steel Corporation Steel member and method of manufacturing same
WO2019208556A1 (ja) 2018-04-23 2019-10-31 日本製鉄株式会社 鋼部材およびその製造方法
JP6638870B1 (ja) * 2018-04-23 2020-01-29 日本製鉄株式会社 鋼部材およびその製造方法
KR20200140883A (ko) 2018-04-23 2020-12-16 닛폰세이테츠 가부시키가이샤 강 부재 및 그 제조 방법
WO2020075394A1 (ja) 2018-10-10 2020-04-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20210053324A (ko) 2018-10-10 2021-05-11 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
US11939642B2 (en) 2018-10-10 2024-03-26 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
JP7160199B2 (ja) 2019-06-28 2022-10-25 日本製鉄株式会社 鋼板
US11898219B2 (en) 2019-06-28 2024-02-13 Nippon Steel Corporation Steel sheet
JPWO2020262652A1 (ja) * 2019-06-28 2021-12-23 日本製鉄株式会社 鋼板
KR102660727B1 (ko) 2019-06-28 2024-04-26 닛폰세이테츠 가부시키가이샤 강판
WO2022080489A1 (ja) * 2020-10-16 2022-04-21 日本製鉄株式会社 ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法
WO2023132289A1 (ja) * 2022-01-07 2023-07-13 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体

Also Published As

Publication number Publication date
JPWO2016163468A1 (ja) 2017-12-21
CA2982078A1 (en) 2016-10-13
TW201708566A (zh) 2017-03-01
CA2982078C (en) 2020-01-28
US20180171429A1 (en) 2018-06-21
KR102034129B1 (ko) 2019-10-18
EP3282030A1 (en) 2018-02-14
CN107429363B (zh) 2019-08-23
RU2686713C1 (ru) 2019-04-30
KR20170132309A (ko) 2017-12-01
ES2787005T3 (es) 2020-10-14
US11041225B2 (en) 2021-06-22
EP3282030A4 (en) 2018-09-12
EP3282030B1 (en) 2020-02-19
TWI612153B (zh) 2018-01-21
BR112017019994A2 (ja) 2018-06-19
JP6380659B2 (ja) 2018-08-29
CN107429363A (zh) 2017-12-01
MX2017012873A (es) 2018-01-15

Similar Documents

Publication Publication Date Title
JP6380659B2 (ja) 熱処理鋼板部材およびその製造方法
JP6380660B2 (ja) 熱処理鋼板部材およびその製造方法
JP6380658B2 (ja) 熱処理用鋼板
JP6638870B1 (ja) 鋼部材およびその製造方法
WO2015147216A1 (ja) 高強度熱間成形鋼板部材
WO2018026014A1 (ja) 鋼板及びめっき鋼板
JP6315087B2 (ja) 熱間成形鋼板部材
JP7216933B2 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2982078

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012873

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031588

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017138053

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017019994

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017019994

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170919