WO2016163457A1 - リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 - Google Patents

リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 Download PDF

Info

Publication number
WO2016163457A1
WO2016163457A1 PCT/JP2016/061398 JP2016061398W WO2016163457A1 WO 2016163457 A1 WO2016163457 A1 WO 2016163457A1 JP 2016061398 W JP2016061398 W JP 2016061398W WO 2016163457 A1 WO2016163457 A1 WO 2016163457A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
forming
acid
layer film
lithography
Prior art date
Application number
PCT/JP2016/061398
Other languages
English (en)
French (fr)
Inventor
佳奈 岡田
牧野嶋 高史
越後 雅敏
豪 東原
篤 大越
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP16776623.7A priority Critical patent/EP3282319A4/en
Priority to US15/565,064 priority patent/US20180101097A1/en
Priority to KR1020177030371A priority patent/KR20170134511A/ko
Priority to SG11201708157RA priority patent/SG11201708157RA/en
Priority to CN201680019607.1A priority patent/CN107533297A/zh
Priority to JP2016554521A priority patent/JP6052652B1/ja
Publication of WO2016163457A1 publication Critical patent/WO2016163457A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • C08G10/02Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
    • C08G10/04Chemically-modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Definitions

  • the present invention relates to a material for forming an underlayer film for lithography, a composition for forming an underlayer film for lithography containing the material, an underlayer film for lithography formed using the composition, and a pattern forming method (resist) using the composition Pattern method or circuit pattern method).
  • the light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • KrF excimer laser 248 nm
  • ArF excimer laser (193 nm)
  • simply thinning the resist makes it difficult to obtain a resist pattern film thickness sufficient for substrate processing. Therefore, not only a resist pattern but also a process in which a resist underlayer film is formed between the resist and a semiconductor substrate to be processed and the resist underlayer film also has a function as a mask during substrate processing has become necessary.
  • a material for forming an underlayer film for a multilayer resist process contains at least a resin component having a substituent that generates a sulfonic acid residue and a solvent (see Japanese Patent Application Laid-Open No. 2004-177668).
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed as a material for realizing a resist underlayer film for lithography having a lower dry etching rate selection ratio than a resist (Patent Document 2: (See JP 2004-271838 A). Furthermore, in order to realize a resist underlayer film for lithography having a low dry etching rate selection ratio compared with a semiconductor substrate, a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see Patent Document 3: Japanese Patent Laid-Open No. 2005-250434).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • the inventors of the present invention provide a lithographic lower layer containing a naphthalene formaldehyde polymer containing a specific structural unit and an organic solvent as a material that is excellent in optical characteristics and etching resistance and is soluble in a solvent and applicable to a wet process.
  • a film-forming composition (see Patent Document 4 (International Publication No. 2009/072465) and Patent Document 5 (International Publication No. 2011/034062)) is proposed.
  • a silicon nitride film formation method for example, a silicon nitride film formation method (see Patent Document 6: Japanese Patent Laid-Open No. 2002-334869), a silicon nitride film A CVD forming method (see Patent Document 7: International Publication No. 2004/066377) is known.
  • a material containing a silsesquioxane-based silicon compound is known (Patent Document 8 (Japanese Patent Laid-Open No. 2007-226170) and Patent Document 9 (Japanese Patent Laid-Open No. 2007)). -226204)).
  • the present invention has been made in view of the above-described problems, and its purpose is to apply a wet process, and is useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance, and is a lithography underlayer.
  • An object of the present invention is to provide a film forming material, a composition for forming a lower layer film for lithography containing the material, and a lower layer film for lithography and a pattern forming method using the composition.
  • the present invention is as follows.
  • the modified xylene formaldehyde resin is a resin obtained by modifying a xylene formaldehyde resin or a deacetal-bound xylene formaldehyde resin with a phenol represented by the following formula (2): Material for forming a lower layer film for lithography. (In formula (2), Ar 1 represents an aromatic ring structure.
  • R 2 represents a monovalent substituent and each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • the substituent on the aromatic ring is in an arbitrary position.
  • A represents the number of bonds of the hydroxy group and is an integer of 1 to 3.
  • b represents the number of bonds of R 2 , and 5-a when Ar 1 is a benzene structure, 7 when it is a naphthalene structure.
  • -A, 9-a for biphenylene structure [3]
  • cyanate ester compound includes a cyanate ester compound represented by the following formula (1).
  • Ar 1 represents an aromatic ring structure, and each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group, and these may be linked.
  • 2 represents a monovalent substituent, each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, an aryl group, a hydroxy group or a hydroxymethylene group.
  • M represents an integer of 1 or more, and n represents an integer of 0 or more, and the arrangement of each repeating unit is arbitrary, k represents the number of bonds of the cyanate group, and is an integer of 1 to 3.
  • x is This represents the number of bonds of R 2 and is “the number of bonds of Ar 1 ⁇ (k + 2)”.
  • Y represents an integer of 0 to 4.
  • a lower layer film is formed on the substrate by using the lower layer film forming composition according to any one of items 7 to 9, and at least one photoresist layer is formed on the lower layer film.
  • a method for forming a resist pattern in which after the step is formed, a predetermined region of the photoresist layer is irradiated with radiation and developed.
  • a lower layer film is formed on the substrate using the lower layer film forming composition according to any one of items 7 to 9, and a resist intermediate containing a silicon atom is formed on the lower layer film.
  • An intermediate layer film is formed using a layer film material, and at least one photoresist layer is formed on the intermediate layer film. Then, a predetermined region of the photoresist layer is irradiated with radiation, developed, and resisted. Then, the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the resulting lower layer film pattern is used as an etching mask.
  • a material for forming an underlayer film for lithography which can be applied to a wet process and is useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance, and an underlayer film for lithography containing the material
  • a composition for forming, a lower layer film for lithography and a pattern forming method using the composition can be provided.
  • the material for forming a lower layer film for lithography which is one of the embodiments of the present invention contains a cyanate ester compound obtained by cyanating a modified xylene formaldehyde resin.
  • the material for forming a lower layer film for lithography of the present invention can be applied to a wet process.
  • the material for forming a lower layer film for lithography of the present invention has an aromatic structure and also has a cyanate group, and the cyanate group causes a crosslinking reaction by high-temperature baking alone, and has high heat resistance. Is expressed.
  • the material for forming a lower layer film for lithography of the present invention has an aromatic structure, it has a high solubility in an organic solvent, a high solubility in a safety solvent, Excellent film flatness and good product quality stability.
  • the material for forming a lower layer film for lithography according to the present invention is excellent in adhesion to a resist layer or a resist intermediate layer film material, an excellent resist pattern can be obtained.
  • the modified xylene formaldehyde resin used as the raw material of the cyanate ester compound is, for example, a xylene formaldehyde resin or a deacetal-bound xylene formaldehyde resin, a hydroxy-substituted aromatic compound (for example, a phenol represented by the formula (2)). Can be obtained by denaturation.
  • Ar 1 represents an aromatic ring structure.
  • R 2 represents a monovalent substituent, and each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • Aromatic ring substituents can be selected at any position.
  • a represents the number of bonded hydroxy groups and is an integer of 1 to 3.
  • b represents the number of R 2 bonds, and is 5-a when Ar 1 has a benzene structure, 7-a when a naphthalene structure, and 9-a when a biphenylene structure.
  • the “xylene formaldehyde resin” refers to a compound having a substituted or unsubstituted benzene ring structure (hereinafter sometimes referred to as compound (A)) and formaldehyde in the presence of an acidic catalyst. It means an aromatic hydrocarbon formaldehyde resin obtained by a condensation reaction.
  • the “deacetal-bound xylene formaldehyde resin” means a resin obtained by treating the xylene formaldehyde resin in the presence of water and an acidic catalyst.
  • the xylene formaldehyde resin is a resin obtained by subjecting a compound (A) having a substituted or unsubstituted benzene ring structure to formaldehyde in the presence of an acidic catalyst.
  • the compound (A) having a substituted benzene ring structure is preferably a benzene substituted with one or more groups selected from alkyl groups having 1 to 3 carbon atoms, aryl groups, hydroxy groups and hydroxymethylene groups. Examples include compounds having a ring structure. More preferred is a compound having a benzene ring structure substituted with an alkyl group having 1 to 3 carbon atoms, and further preferred is xylene.
  • the formaldehyde used in the condensation reaction is not particularly limited, and an aqueous formaldehyde solution that is usually industrially available is used.
  • compounds that generate formaldehyde such as paraformaldehyde and trioxane can also be used. From the viewpoint of suppressing gelation, an aqueous formaldehyde solution is preferable.
  • the molar ratio of the compound (A) to formaldehyde is 1: 1 to 1:20, preferably 1: 1.5 to 1: 17.5, more preferably 1: 2 to 1:15. More preferably, it is 1: 2 to 1: 12.5, particularly preferably 1: 2 to 1:10.
  • inorganic acids and organic acids can be used as the acidic catalyst used in the condensation reaction.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, and the like.
  • sulfuric acid, oxalic acid, citric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid, and phosphotungstic acid are preferable from the viewpoint of production. .
  • the amount of the acidic catalyst used is 0.0001 to 100 parts by mass, preferably 0.001 to 85 parts by mass, more preferably 0.001 to 100 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and formaldehyde. 70 parts by mass.
  • the amount to be used in such a range an appropriate reaction rate can be obtained, and an increase in resin viscosity based on a high reaction rate can be prevented.
  • the acidic catalyst may be charged all at once or charged in parts.
  • the condensation reaction is usually performed at normal pressure in the presence of an acidic catalyst, and is performed under heating at a temperature equal to or higher than the temperature at which the raw materials used are compatible (usually 80 to 300 ° C.) or while distilling off the generated water.
  • the reaction pressure may be normal pressure or increased pressure.
  • an inert gas such as nitrogen, helium, or argon may be passed through the system.
  • a solvent inert to the condensation reaction can be used.
  • the solvent include aromatic hydrocarbon solvents such as toluene, ethylbenzene, and xylene, saturated aliphatic hydrocarbon solvents such as heptane and hexane, alicyclic hydrocarbon solvents such as cyclohexane, dioxane, and dibutyl ether.
  • aromatic hydrocarbon solvents such as toluene, ethylbenzene, and xylene
  • saturated aliphatic hydrocarbon solvents such as heptane and hexane
  • alicyclic hydrocarbon solvents such as cyclohexane, dioxane, and dibutyl ether.
  • examples include ether solvents, ketone solvents such as methyl isobutyl ketone, carboxylic acid ester solvents such as ethyl propionate, and carboxylic acid solvents such as acetic acid.
  • the condensation reaction is not particularly limited, but when alcohol coexists, the end of the resin is sealed with alcohol, and a low molecular weight, low dispersion (narrow molecular weight distribution) xylene formaldehyde resin is obtained. From the viewpoint of providing a resin having a good and low melt viscosity, it is preferably carried out in the presence of alcohol.
  • the alcohol is not particularly limited, and examples thereof include monools having 1 to 12 carbon atoms and diols having 1 to 12 carbon atoms.
  • the alcohol may be added alone or in combination. Of these, propanol, butanol, octanol, and 2-ethylhexanol are preferred from the viewpoint of productivity of the xylene formaldehyde resin.
  • the amount of alcohol used is not particularly limited. For example, 1 to 10 equivalents of hydroxyl groups in alcohol are preferable to 1 equivalent of methylol groups in xylene methanol.
  • the compound (A), formaldehyde and an acidic catalyst may be added simultaneously to the reaction system, or the compound (A) may be added sequentially to a system where formaldehyde and the acidic catalyst are present.
  • the above-mentioned sequential addition method is preferable from the viewpoint of increasing the oxygen concentration in the obtained resin and allowing more reaction with the hydroxy-substituted aromatic compound in the subsequent modification step.
  • the reaction time is preferably 0.5 to 30 hours, more preferably 0.5 to 20 hours, and further preferably 0.5 to 10 hours.
  • the reaction temperature is preferably 80 to 300 ° C, more preferably 85 to 270 ° C, still more preferably 90 to 240 ° C.
  • the xylene formaldehyde resin can be obtained by completely removing the acidic catalyst and removing the added solvent and unreacted raw material by a general method such as distillation.
  • At least a part of the benzene ring of the xylene formaldehyde resin obtained by the reaction is a bond in which a bond represented by the formula (3) and a bond represented by the following formula (5) are randomly arranged, For example, you may bridge
  • deacetal-bound xylene formaldehyde resin is obtained by treating the xylene formaldehyde resin in the presence of water and an acidic catalyst. In the present invention, this treatment is referred to as “deacetalization”.
  • Deacetal-bound xylene formaldehyde resin is deacetalized to reduce the bond between oxymethylene groups not via a benzene ring, and c in formula (3) and / or d in formula (4) are small. It points to what became.
  • the deacetal-bound xylene formaldehyde resin thus obtained has a larger amount of residue at the time of thermal decomposition of the resin obtained after modification than the xylene formaldehyde resin, that is, the mass reduction rate is low.
  • the xylene formaldehyde resin can be used for the deacetalization.
  • the acidic catalyst used for the deacetalization can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic
  • sulfuric acid, oxalic acid, citric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid, and phosphotungstic acid are preferable from the viewpoint of production. .
  • the deacetalization is usually performed at normal pressure in the presence of an acidic catalyst, and the water used is dropped into the system or sprayed as water vapor above the temperature at which the raw materials used are compatible (usually 80 to 300 ° C.). While doing.
  • the water in the system may be distilled off or refluxed. However, it is preferable that the water is distilled off together with low-boiling components such as formaldehyde generated in the reaction because the acetal bond can be efficiently removed.
  • the reaction pressure may be normal pressure or increased pressure. If necessary, an inert gas such as nitrogen, helium, or argon may be passed through the system.
  • a solvent inert to deacetalization can be used.
  • the solvent include aromatic hydrocarbon solvents such as toluene, ethylbenzene and xylene, saturated aliphatic hydrocarbon solvents such as heptane and hexane, alicyclic hydrocarbon solvents such as cyclohexane, dioxane and dibutyl ether.
  • aromatic hydrocarbon solvents such as toluene, ethylbenzene and xylene
  • saturated aliphatic hydrocarbon solvents such as heptane and hexane
  • alicyclic hydrocarbon solvents such as cyclohexane, dioxane and dibutyl ether.
  • ether solvents include ether solvents, ketone solvents such as methyl isobutyl ketone, carboxylic acid ester solvents such as ethyl propionate, carboxylic acid solvents such as acetic acid, and the like.
  • the amount of the acidic catalyst used is 0.0001 to 100 parts by mass, preferably 0.001 to 85 parts by mass, and more preferably 0.001 to 70 parts by mass with respect to 100 parts by mass of the xylene formaldehyde resin.
  • the amount to be used in such a range an appropriate reaction rate can be obtained, and an increase in resin viscosity based on a high reaction rate can be prevented.
  • the acidic catalyst may be charged all at once or charged in parts.
  • the water used for the deacetalization is not particularly limited as long as it can be used industrially, and examples thereof include tap water, distilled water, ion exchange water, pure water, and ultrapure water.
  • the amount of water used is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass, and still more preferably 10 to 3000 parts by mass with respect to 100 parts by mass of the xylene formaldehyde resin.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 15 hours, and further preferably 2 to 10 hours. By setting the reaction time in such a range, a resin having the desired properties can be obtained economically and industrially.
  • the reaction temperature is preferably 80 to 300 ° C, more preferably 85 to 270 ° C, still more preferably 90 to 240 ° C.
  • Deacetal-bound xylene formaldehyde resin has a lower oxygen concentration and higher softening point than xylene formaldehyde resin.
  • the amount of the acidic catalyst used is 0.05 parts by mass
  • the amount of water used is 2000 parts by mass
  • the reaction time is 5 hours
  • the reaction temperature is 150 ° C.
  • the oxygen concentration is reduced by about 0.1 to 8.0% by mass.
  • the softening point rises by about 3 to 100 ° C.
  • the modified xylene formaldehyde resin includes the xylene formaldehyde resin or the deacetal-bound xylene formaldehyde resin and, for example, a hydroxy-substituted aromatic compound represented by the following formula (2) (hereinafter also referred to as “phenols”). It can be obtained by heating in the presence of an acidic catalyst to cause a modification condensation reaction. In the present invention, this reaction is referred to as “denaturation”.
  • Ar 1 represents an aromatic ring structure.
  • R 2 represents a monovalent substituent, and each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • Aromatic ring substituents can be selected at any position.
  • a represents the number of bonded hydroxy groups and is an integer of 1 to 3.
  • b represents the number of R 2 bonds, and is 5-a when Ar 1 has a benzene structure, 7-a when a naphthalene structure, and 9-a when a biphenylene structure.
  • examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a biphenylene ring, but are not particularly limited thereto.
  • the alkyl group for R 2 is a linear or branched alkyl group having 1 to 8 carbon atoms, more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, such as methyl Group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group and the like are exemplified, but not limited thereto.
  • examples of the aryl group of R 2 include a phenyl group, a p-tolyl group, a naphthyl group, and an anthryl group, but are not particularly limited thereto.
  • the Ar 1 is a benzene ring
  • those as the R 2 is a 0-3 alkyl group, or as the Ar 1 is a benzene ring
  • R 2 is preferably 0 ⁇ 2 amino aryl What is group is preferable from a viewpoint of raw material availability.
  • hydroxy-substituted aromatic compound represented by the formula (2) examples include phenol, 2,6-xylenol, naphthol, dihydroxynaphthalene, biphenol, hydroxyanthracene, dihydroxyanthracene and the like. Among these, phenol and 2,6-xylenol are preferable from the viewpoint of handling.
  • the amount of the hydroxy-substituted aromatic compound used is preferably 0.1 to 5 moles, more preferably 0.2 to 4 moles per mole of oxygen contained in the xylene formaldehyde resin or deacetal-bound xylene formaldehyde resin. Preferably, 0.3 to 3 mol is more preferable. By setting it as such a range, the yield of the modified xylene resin obtained can be maintained comparatively high, and the quantity of the hydroxy substituted aromatic compound which remains unreacted can be decreased.
  • the molecular weight of the resulting resin is affected by the number of moles of oxygen contained in the xylene formaldehyde resin or deacetal-bound xylene formaldehyde resin, and the amount of hydroxy-substituted aromatic compound used, and the molecular weight decreases as both increase.
  • the acidic catalyst used in the modification reaction can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malon, etc.
  • Acid succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid ,
  • Organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid Examples include solid acids.
  • sulfuric acid, oxalic acid, citric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid, and phosphotungstic acid are preferable from the viewpoint of production. .
  • the acidic catalyst is used in an amount of 0.0001 to 100 parts by weight, preferably 0.001 to 85 parts by weight, more preferably 0.001 to 100 parts by weight with respect to 100 parts by weight of xylene formaldehyde resin or deacetal-bound xylene formaldehyde resin. 70 parts by mass.
  • the acidic catalyst may be charged all at once or charged in parts.
  • the modification reaction is usually performed at normal pressure in the presence of an acidic catalyst, and is performed under reflux or heating at a temperature not lower than the temperature at which the raw materials used are compatible (usually 80 to 300 ° C.) or distilling off the generated water.
  • the reaction pressure may be normal pressure or increased pressure.
  • an inert gas such as nitrogen, helium, or argon may be passed through the system.
  • a solvent inert to the denaturation reaction can be used.
  • the solvent include aromatic hydrocarbon solvents such as toluene, ethylbenzene and xylene, saturated aliphatic hydrocarbon solvents such as heptane and hexane, alicyclic hydrocarbon solvents such as cyclohexane, dioxane and dibutyl ether.
  • ether solvents include ether solvents, alcohol solvents such as 2-propanol, ketone solvents such as methyl isobutyl ketone, carboxylic acid ester solvents such as ethyl propionate, and carboxylic acid solvents such as acetic acid.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 15 hours, and further preferably 2 to 10 hours. By setting the reaction time in such a range, a resin having the desired properties can be obtained economically and industrially advantageously.
  • the reaction temperature is preferably 80 to 300 ° C, more preferably 85 to 270 ° C, and still more preferably 90 to 240 ° C.
  • a modified xylene formaldehyde resin can be obtained by completely removing the acidic catalyst and removing the added solvent and unreacted raw material by a general method such as distillation.
  • the modified xylene formaldehyde resin has a larger amount of residue at the time of thermal decomposition (lower mass reduction rate) and a higher hydroxyl value than the above-mentioned xylene formaldehyde resin or deacetal-bound formaldehyde resin.
  • the above-described acidic catalyst is used in an amount of 0.05 parts by mass, the reaction time is 5 hours, and the reaction temperature is 200 ° C.
  • the amount of residue at the time of thermal decomposition is increased by about 1 to 50%, and the hydroxyl value is 1 to It rises about 300.
  • the main product of the modified xylene formaldehyde resin obtained by the above production method is a product in which formaldehyde becomes a methylene group at the time of reaction, and aromatic rings (for example, benzene rings) of xylene and phenols are bonded to each other through this methylene group.
  • the modified xylene formaldehyde resin obtained after the reaction is obtained as a mixture of many compounds because the position where formaldehyde is bonded to xylene and phenol, the number of polymerizations and the like do not match.
  • modified xylene formaldehyde resins obtained by reacting phenol with xylene formaldehyde resin (Nikanol G manufactured by Fudo Co., Ltd.) in the presence of paratoluenesulfonic acid are compounds represented by the following formulas (9) to (11): Is a mixture having a representative composition.
  • a modified xylene formaldehyde resin obtained by refluxing xylene, an aqueous formalin solution, 2,6-xylenol and concentrated sulfuric acid in a nitrogen stream, refluxing the aqueous solvent for 7 hours, neutralizing the acid, and extracting with an organic solvent Is a mixture having a representative composition of the compounds represented by the following formulas (12) to (15).
  • aromatic hydrocarbon compounds that do not have a hydroxyl group in the structure represented by the above formula (15) cannot be cyanated, and thus are preferably removed by distillation separation in advance.
  • the OH value of the modified xylene formaldehyde resin is preferably 150 to 400 mgKOH / g. More preferably, it is 200 to 350 mgKOH / g.
  • the OH value is determined based on JIS-K1557-1.
  • a commercially available modified xylene formaldehyde resin can also be used.
  • As a commercially available product for example, Nikanol GL16, Nikanol G and the like manufactured by FUDO Co., Ltd. are preferably used.
  • the cyanate ester compound used in the present invention is obtained by cyanating the hydroxy group of the modified xylene formaldehyde resin described above.
  • the method for cyanation is not particularly limited, and a known method can be applied. Specifically, a method in which a modified xylene formaldehyde resin and cyanogen halide are reacted in a solvent in the presence of a basic compound. In the solvent, in the presence of a base, cyanogen halide is always present in excess in excess of the base.
  • a method of reacting a modified xylene formaldehyde resin with cyanogen halide US Pat. No.
  • a modified amine is added by adding a tertiary amine and then adding a cyanogen halide dropwise, or by adding a cyanide halide and a tertiary amine together (Patent No. 3319061), by a continuous plug flow method.
  • Method of reacting resin, trialkylamine and cyanogen halide No.
  • a method of treating a tert-ammonium halide by-produced when a modified xylene formaldehyde resin and cyanogen halide are reacted in a non-aqueous solution in the presence of a tert-amine with a cation and an anion exchange pair (Patent No. 40552210), a modified xylene formaldehyde resin is obtained by simultaneously adding a tertiary amine and a cyanogen halide in the presence of water and a solvent capable of liquid separation and reacting them, followed by water separation. From a solution obtained by precipitation purification using a secondary or tertiary alcohol or hydrocarbon poor solvent (Patent No.
  • the modified xylene formaldehyde resin as a reaction substrate is either a cyanogen halide solution or a basic compound solution.
  • the cyanogen halide solution and the basic compound solution are brought into contact with each other.
  • the cyan halide solution and the basic compound solution are brought into contact with each other by (A) a method in which the basic compound solution is poured into the stirred cyan halide solution, and (B) a stirred and mixed base. Examples thereof include a method in which a cyan halide solution is poured into a neutral compound solution, and a method (C) in which a cyan halide solution and a basic compound solution are continuously or alternately supplied.
  • the contact method of the said cyanogen halide solution and a basic compound solution can be performed either in a semi-batch format or a continuous flow format.
  • the reaction can be completed without leaving the hydroxy group of the modified xylene formaldehyde resin, and a higher purity cyanate ester compound can be obtained in a high yield. Since it can do, it is preferable to divide and drop a basic compound.
  • the number of divisions is not particularly limited, but is preferably 1 to 5 times.
  • the type of basic compound may be the same or different for each division.
  • Examples of the cyanogen halide used in the present invention include cyanogen chloride and cyanogen bromide.
  • cyanide halide a cyanide halide obtained by a known production method such as a method of reacting hydrogen cyanide or metal cyanide with halogen may be used, or a commercially available product may be used.
  • a reaction liquid containing cyanogen halide obtained by reacting hydrogen cyanide or metal cyanide with halogen can be used as it is.
  • the amount of cyanogen halide used in the cyanate-forming step with respect to the modified xylene formaldehyde resin is 0.5 to 5 mol, preferably 1.0 to 3.5, relative to 1 mol of the hydroxy group of the modified xylene formaldehyde resin. The reason for this is to increase the yield of the cyanate ester compound without leaving unreacted modified xylene formaldehyde resin.
  • Solvents used in the cyanogen halide solution include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, aliphatic solvents such as n-hexane, cyclohexane, isooctane, cyclohexanone, cyclopentanone, and 2-butanone, benzene, and toluene.
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • aliphatic solvents such as n-hexane, cyclohexane, isooctane, cyclohexanone, cyclopentanone, and 2-butanone
  • benzene and toluene.
  • Aromatic solvents such as xylene, diethyl ether, dimethyl cellosolve, diglyme, tetrahydrofuran, methyltetrahydrofuran, dioxane, tetraethylene glycol dimethyl ether and other ether solvents, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, chlorobenzene, bromo Halogenated hydrocarbon solvents such as benzene, methanol, ethanol, isopropanol, methylsolvosolve, propylene glycol Alcohol solvents such as methyl ether, aprotic polar solvents such as N, N-dimethylformamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidone and dimethyl sulfoxide, nitrile solvents such as acetonitrile and benzonitrile, Nitro solvents such as nitromethane and nitrobenzen
  • an organic base or an inorganic base can be used as the basic compound used in the cyanate formation step.
  • organic bases include trimethylamine, triethylamine, tri-n-butylamine, triamylamine, diisopropylethylamine, diethyl-n-butylamine, methyldi-n-butylamine, methylethyl-n-butylamine, dodecyldimethylamine, tribenzylamine, Triethanolamine, N, N-dimethylaniline, N, N-diethylaniline, diphenylmethylamine, pyridine, diethylcyclohexylamine, tricyclohexylamine, 1,4-diazabicyclo [2.2.2] octane, 1,8- Tertiary amines such as diazabicyclo [5.4.0] -7-undecene and 1,5-diazabicyclo [4.3.0] -5-nonene are preferred.
  • the amount of the organic base used is usually 0.1 to 8 mol, preferably 1.0 to 3.5 mol, per 1 mol of the hydroxy group of the phenol resin. The reason for this is to increase the yield of the cyanate ester compound without leaving unreacted modified xylene formaldehyde resin.
  • the inorganic base is preferably an alkali metal hydroxide.
  • alkali metal hydroxide include, but are not limited to, sodium hydroxide, potassium hydroxide, and lithium hydroxide that are generally used industrially.
  • Sodium hydroxide is particularly preferable because it can be obtained at low cost.
  • the amount of the inorganic base used is usually 1.0 to 5.0 mol, preferably 1.0 to 3.5 mol, per 1 mol of the hydroxy group of the modified xylene formaldehyde resin. The reason for this is to increase the yield of the cyanate ester compound without leaving unreacted modified xylene formaldehyde resin.
  • the basic compound can be used as a solution dissolved in a solvent as described above.
  • a solvent an organic solvent or water can be used.
  • the amount of the solvent used for the basic compound solution is usually 0.1 to 100 parts by mass, preferably 0, based on 1 part by mass of the modified xylene formaldehyde resin when the modified xylene formaldehyde resin is dissolved in the basic compound solution. .5 to 50 parts by mass.
  • the amount is usually 0.1 to 100 parts by mass, preferably 0.25 to 50 parts by mass with respect to 1 part by mass of the basic compound.
  • the organic solvent for dissolving the basic compound is preferably used when the basic compound is an organic base, for example, a ketone solvent such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, an aromatic solvent such as benzene, toluene, xylene, Ether solvents such as diethyl ether, dimethyl cellosolve, diglyme, tetrahydrofuran, methyltetrahydrofuran, dioxane, tetraethylene glycol dimethyl ether, halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, chlorobenzene and bromobenzene Alcohol solvents such as methanol, ethanol, isopropanol, methylsolvosolve, propylene glycol monomethyl ether, N, N-dimethylform Aprotic polar solvents such as amide
  • the water for dissolving the basic compound is preferably used when the basic compound is an inorganic base, and is not particularly limited, and may be tap water, distilled water, or deionized water. . In order to efficiently obtain the target cyanate ester compound, it is preferable to use distilled water or deionized water with less impurities.
  • the solvent used for the basic compound solution is water
  • a catalytic amount of an organic base is preferred.
  • tertiary amines with few side reactions are preferred.
  • the tertiary amine may be any of alkylamine, arylamine, and cycloalkylamine.
  • trimethylamine, triethylamine, tri-n-butylamine, and diisopropylethylamine are more preferable, and triethylamine is particularly preferable because the target product can be obtained with high solubility and yield in water.
  • the total amount of solvent used in the cyanate formation step is 2.5 to 100 parts by mass with respect to 1 part by mass of the modified xylene formaldehyde resin, so that the modified xylene formaldehyde resin can be uniformly dissolved and the cyanate ester compound can be efficiently dissolved. It is preferable from the viewpoint of manufacturing.
  • the pH of the reaction solution is not particularly limited, but it is preferable to carry out the reaction while keeping the pH below 7. This is because by suppressing the pH to less than 7, the production of by-products such as a polymer of imide carbonate and cyanate ester compound is suppressed, and the cyanate ester compound can be produced efficiently.
  • an acid As the method, an acid is added to the cyanogen halide solution immediately before the cyanation step, and a pH meter is used as needed during the reaction. However, it is preferable to add an acid to the reaction system so as to keep the pH below 7. Examples of the acid used at that time include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid, lactic acid, and propionic acid.
  • the reaction temperature in the cyanation step is such that by-products such as imide carbonate, a polymer of cyanate ester compound, and dialkylcyanoamide, condensation of the reaction liquid, and cyanogen chloride when cyanogen chloride is used as cyanogen halide. From the viewpoint of suppressing volatilization, it is usually ⁇ 20 to + 50 ° C., preferably ⁇ 15 to 15 ° C., more preferably ⁇ 10 to 10 ° C.
  • the reaction pressure in the cyanate formation step may be normal pressure or increased pressure. If necessary, an inert gas such as nitrogen, helium, or argon may be passed through the system.
  • the reaction time is not particularly limited, but the contact time in the case of the above contact methods (A) and (B) and the contact time in the case of (C) is preferably 1 minute to 20 hours, preferably 3 minutes to 10 hours is more preferable. Further, the mixture is preferably stirred while maintaining the reaction temperature for 10 minutes to 10 hours. By setting it as such a range, the target cyanate ester compound can be obtained economically and industrially advantageously.
  • the progress of the reaction in the cyanate formation step can be analyzed by liquid chromatography or IR spectrum method. Volatile components such as by-product dicyan and dialkylcyanoamide can be analyzed by gas chromatography.
  • the intended cyanate ester compound can be isolated by carrying out ordinary post-treatment operations and, if desired, separation / purification operations. Specifically, an organic solvent layer containing a cyanate ester compound is separated from the reaction solution, washed with water, concentrated, precipitated or crystallized, or washed with water and then replaced with a solvent. At the time of washing, in order to remove excess amines, a method using an acidic aqueous solution such as dilute hydrochloric acid is also employed. In order to remove water from the sufficiently washed reaction solution, a drying operation can be performed using a general method such as sodium sulfate or magnesium sulfate.
  • the organic solvent is distilled off by heating to a temperature of 90 ° C. or lower under reduced pressure.
  • a solvent having low solubility can be used.
  • an ether solvent, a hydrocarbon solvent such as hexane, or an alcohol solvent may be dropped into the reaction solution, or a reverse pouring method may be employed.
  • a method of washing the concentrate of the reaction solution and the precipitated crystals with an ether solvent, a hydrocarbon solvent such as hexane, or an alcohol solvent can be employed.
  • the crystals obtained by concentrating the reaction solution can be dissolved again and then recrystallized. In the case of crystallization, the reaction solution may be simply concentrated or cooled.
  • the purification method of the obtained cyanate ester compound will be described in detail later.
  • the cyanate ester compound obtained by the above production method is not particularly limited, but is preferably represented by the following formula (1) from the viewpoint of heat resistance.
  • Another embodiment of the present invention is a material for forming an underlayer film for lithography containing a cyanate ester compound represented by the following formula (1).
  • Ar 1 represents an aromatic ring structure, and each R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxymethylene group, and these may be linked.
  • R 2 represents a monovalent substituent, each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, an aryl group, a hydroxy group or a hydroxymethylene group.
  • M represents an integer of 1 or more, and n represents an integer of 0 or more.
  • the arrangement of each repeating unit is arbitrary.
  • k represents the number of bonds of the cyanate group and is an integer of 1 to 3.
  • x represents the number of bonds of R 2 and is “the number of bonds of Ar 1 ⁇ (k + 2)”.
  • y represents an integer of 0 to 4.
  • m and n show the ratio of each structural unit, and the arrangement
  • the upper limit value of m is usually 50 or less, preferably 20 or less, and the upper limit value of n is usually 20 or less.
  • the cyanate ester compound obtained by the production method is not particularly limited, but specific examples include cyanate obtained from the phenol-modified xylene formaldehyde resins represented by the formulas (9) to (11).
  • the ester compound is a mixture having a representative composition of the compounds represented by the following formulas (16) to (18).
  • the cyanate ester compounds obtained from the 2,6-xylenol-modified xylene formaldehyde resins represented by the above formulas (12) to (14) are represented by the compounds represented by the formulas (19) to (21). It becomes a mixture.
  • the weight average molecular weight (Mw) of the cyanate ester compound used in the present invention is not particularly limited, but is preferably 250 to 10,000, and more preferably 300 to 5,000.
  • the obtained cyanate ester compound can be identified by a known method such as NMR.
  • the purity of the cyanate ester compound can be analyzed by liquid chromatography or IR spectroscopy.
  • Byproducts such as dialkylcyanoamide in the cyanate ester compound and volatile components such as residual solvent can be quantitatively analyzed by gas chromatography.
  • Halogen compounds remaining in the cyanate ester compound can be identified by a liquid chromatograph mass spectrometer, and can be quantitatively analyzed by potentiometric titration using a silver nitrate solution or ion chromatography after decomposition by a combustion method. .
  • the polymerization reactivity of the cyanate ester compound can be evaluated by gelation time by a hot plate method or a torque measurement method.
  • the cyanate ester compound may be further purified as necessary in order to further improve the purity and reduce the amount of residual metal. Further, when the acid catalyst and the cocatalyst remain, generally, the storage stability of the composition for forming a lower layer film for lithography is lowered, or when the basic catalyst remains, the sensitivity of the composition for forming a lower layer film for lithography is generally lowered. Therefore, purification for the purpose of reduction may be performed.
  • Purification can be performed by a known method as long as the cyanate ester compound is not modified, and is not particularly limited.
  • a method of washing with water a method of washing with an acidic aqueous solution, a method of washing with a basic aqueous solution, ion exchange Examples include a method of treating with a resin and a method of treating with silica gel column chromatography. These purification methods are preferably performed in combination of two or more. Moreover, the purification method which wash
  • Acidic aqueous solution, basic aqueous solution, ion exchange resin and silica gel column chromatography are optimal depending on the metal to be removed, the amount and type of acidic compound and / or basic compound, the type of cyanate ester compound to be purified, etc. It is possible to select a thing suitably.
  • hydrochloric acid, nitric acid, acetic acid aqueous solution having a concentration of 0.01 to 10 mol / L as acidic aqueous solution, aqueous ammonia solution having a concentration of 0.01 to 10 mol / L as basic aqueous solution, cation exchange resin as ion exchange resin Examples include “Amberlyst 15J-HG Dry” manufactured by Organo.
  • Drying may be performed after the purification. Drying can be performed by a known method, and is not particularly limited, and examples thereof include a method of vacuum drying and hot air drying under conditions where the cyanate ester compound is not denatured.
  • the method of purifying the cyanate ester compound by washing with an acidic aqueous solution is as follows.
  • a cyanate ester compound is dissolved in an organic solvent that is not miscible with water, and the solution is brought into contact with an acidic aqueous solution to perform an extraction treatment, whereby a solution containing a cyanate ester compound and an organic solvent (B And a step of separating the organic phase and the aqueous phase after transferring the metal content contained in the aqueous phase to the aqueous phase.
  • the organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent to be used is usually about 1 to 100 times by mass with respect to the compound to be used.
  • organic solvent used include ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone, methyl isobutyl ketone, ethyl isobutyl ketone, cyclohexanone and cyclopenta Ketones such as non, 2-heptanone and 2-pentanone, glycol ether acetates such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, n -Aliphatic hydrocarbons such as hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, halo such as methylene chloride
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, and cyclohexanone and propylene glycol monomethyl ether acetate are particularly preferable.
  • organic solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid
  • acetic acid, propionic acid succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfone
  • An aqueous solution in which an organic acid such as acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water may be mentioned.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • aqueous solutions of sulfuric acid, nitric acid, and carboxylic acids such as acetic acid, succinic acid, tartaric acid, and citric acid are preferable, and aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are preferable, and an aqueous solution of succinic acid is particularly preferable.
  • polyvalent carboxylic acids such as succinic acid, tartaric acid, and citric acid are coordinated to metal ions to produce a chelate effect, it is considered that the metal can be removed more.
  • the water used here is preferably one having a low metal content, such as ion-exchanged water, for the purpose of the present invention.
  • the pH of the acidic aqueous solution is not particularly limited, but if the acidity of the aqueous solution becomes too large, it may adversely affect the compound or resin used, which is not preferable.
  • the pH range is about 0 to 5, more preferably about pH 0 to 3.
  • the amount of the acidic aqueous solution used is not particularly limited. However, if the amount is too small, it is necessary to increase the number of extractions for removing the metal. Conversely, if the amount of the aqueous solution is too large, the total amount of the liquid increases. The above problems may occur.
  • the amount of the aqueous solution used is usually 10 to 200% by mass, preferably 20 to 100% by mass, based on the cyanate ester compound solution.
  • the metal component can be extracted by bringing the acidic aqueous solution into contact with a solution (B) containing an organic solvent which is not miscible with the cyanate ester compound and water.
  • the temperature at the time of performing the extraction treatment is usually 20 to 90 ° C., preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing the mixture well by stirring or the like and then allowing it to stand. Thereby, the metal component contained in the solution containing the compound to be used and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of this compound to be used can be suppressed.
  • the solution is separated into a solution phase containing the compound to be used and an organic solvent and an aqueous phase, and a solution containing the organic solvent is recovered by decantation or the like.
  • the standing time is not particularly limited. However, if the standing time is too short, the separation between the solution phase containing the organic solvent and the aqueous phase is not preferable. Usually, the time to stand still is 1 minute or more, More preferably, it is 10 minutes or more, More preferably, it is 30 minutes or more.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution containing the organic solvent extracted from the aqueous solution after the treatment is further subjected to an extraction treatment with water.
  • the extraction operation is performed by allowing the mixture to stand after mixing well by stirring or the like. And since the obtained solution isolate
  • the water used here is preferably one having a low metal content, such as ion-exchanged water, for the purpose of the present invention.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but may be the same as in the case of the contact process with the acidic aqueous solution.
  • the water mixed in the solution containing the cyanate ester compound and the organic solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. If necessary, an organic solvent can be added to adjust the concentration of the compound to an arbitrary concentration.
  • the method for obtaining only the cyanate ester compound from the obtained solution containing an organic solvent can be carried out by a known method such as removal under reduced pressure, separation by reprecipitation, or a combination thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • the material for forming a lower layer film for lithography of this embodiment contains a cyanate ester compound obtained by cyanating the modified xylene formaldehyde resin.
  • the material for forming a lower layer film for lithography of the present embodiment includes a cyanate ester compound other than the cyanate ester compound, a known material for forming a lower layer film for lithography, and the like within a range in which desired characteristics are not impaired. May be included.
  • the cyanate ester compound is preferably 50 to 100% by mass, more preferably 70 to 100% by mass from the viewpoint of heat resistance and etching resistance. Preferably, it is 90 to 100% by mass. Further, in the material for forming a lower layer film for lithography of the present embodiment, it is particularly preferable that the cyanate ester compound is 100% by mass because the thermal weight reduction is small.
  • the cyanate ester compound contained in the material for forming an underlayer film for lithography according to this embodiment preferably has a structure represented by the following formula (1).
  • Ar 1, R 1 , R 2 , R 3 , k, m, n, x, and y are as defined above.
  • the cyanate ester compound contained in the material for forming a lower layer film for lithography of the present embodiment has a structure represented by the following formula (1-1) when Ar 1 has a benzene ring structure in the formula (1). It is preferable in terms of heat resistance and raw material availability.
  • R 1 to R 3 , k, m, n, and y are as defined in the above (1), and x is 4-k.
  • composition for forming underlayer film for lithography contains a material for forming a lower layer film for lithography containing the cyanate ester compound and a solvent.
  • solvent As the solvent used in the composition for forming a lower layer film for lithography of the present embodiment, a known one can be appropriately used as long as it can dissolve at least the cyanate ester compound.
  • solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, Ester solvents such as isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; aromatic solvents such as toluene, xylene and anisole Although hydrocarbon etc.
  • cyclohexanone propylene glycol monomethyl ether
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • ethyl lactate methyl hydroxyisobutyrate
  • anisole is particularly preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is 25 to 9,900 parts by mass with respect to 100 parts by mass of the lower layer film-forming material containing a cyanate ester compound. It is preferably 900 to 4,900 parts by mass.
  • composition for forming an underlayer film for lithography of the present embodiment may contain an acid generator, a crosslinking agent, an acid generator, and other components as required in addition to the cyanate ester compound and the solvent.
  • an acid generator a crosslinking agent
  • an acid generator a crosslinking agent
  • other components as required in addition to the cyanate ester compound and the solvent.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent that can be used in this embodiment include double bonds such as melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, epoxy compounds, thioepoxy compounds, isocyanate compounds, azide compounds, alkenyl ether groups, and the like.
  • crosslinking agents can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use these as an additive.
  • the crosslinkable group may be introduced as a pendant group into the compound represented by the formula (1).
  • a compound containing a hydroxy group can also be used as a crosslinking agent.
  • the melamine compound include, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl melamine And a compound in which 1 to 6 methylol groups of hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
  • epoxy compound examples include tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like.
  • the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or mixtures thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of methylol glycoluril are acyloxymethylated, or mixtures thereof.
  • urea compound examples include, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
  • the compound containing an alkenyl ether group include, for example, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neo Pentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether, etc. Can be mentioned.
  • the content of the crosslinking agent is not particularly limited, but is preferably 0 to 50 parts by weight with respect to 100 parts by weight of the material for forming the lower layer film.
  • the amount is preferably 0 to 40 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting a crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition and those that generate an acid by light irradiation are known, and any of them can be used.
  • R 101a , R 101b and R 101c are each independently a linear, branched or cyclic alkyl group, alkenyl group, oxoalkyl group or oxoalkenyl group having 1 to 12 carbon atoms; 20 aryl group; or an aralkyl group or aryloxoalkyl group having 7 to 12 carbon atoms, part or all of hydrogen atoms of these groups may be substituted with an alkoxy group or the like.
  • R 101b and R 101c may form a ring. When a ring is formed, R 101b and R 101c each independently represent an alkylene group having 1 to 6 carbon atoms.
  • K ⁇ represents a non-nucleophilic counter ion.
  • R 101d , R 101e , R 101f and R 101g are each independently represented by adding a hydrogen atom to R 101a , R 101b and R 101c .
  • R 101d and R 101e , R 101d and R 101e and R 101f may form a ring, and in the case of forming a ring, R 101d and R 101e and R 101d , R 101e and R 101f have 3 carbon atoms.
  • R 101a , R 101b , R 101c , R 101d , R 101e , R 101f and R 101g described above may be the same as or different from each other.
  • Specific examples of the alkyl group include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group.
  • alkenyl groups include, but are not limited to, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups, and cyclohexenyl groups.
  • oxoalkyl groups include, but are not limited to, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, and the like.
  • oxoalkenyl group include, but are not limited to, a 2-oxo-4-cyclohexenyl group, a 2-oxo-4-propenyl group, and the like.
  • aryl group examples include, but are not limited to, phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group.
  • Alkoxyphenyl groups such as m-tert-butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, Alkylphenyl groups such as dimethylphenyl group; alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group; alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group; dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group; Group, diethoxynaphthy Dialkoxy naphthyl group such as a group.
  • aralkyl group For example, a benzyl group, a phenylethyl group, a phenethyl group etc. are mentioned.
  • aryloxoalkyl groups include, but are not limited to, 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, and the like. And 2-aryl-2-oxoethyl group.
  • Non-nucleophilic counter ions for K 2 ⁇ are not limited to the following, but include, for example, halide ions such as chloride ions and bromide ions; triflate, 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, and the like. And aryl sulfonates such as tosylate, benzene sulfonate, 4-fluorobenzene sulfonate, 1,2,3,4,5-pentafluorobenzene sulfonate; alkyl sulfonates such as mesylate and butane sulfonate.
  • halide ions such as chloride ions and bromide ions
  • triflate 1,1,1-trifluoroethanesulfonate
  • nonafluorobutanesulfonate and the like.
  • aryl sulfonates such as tosylate, benzene
  • the heteroaromatic ring may be an imidazole derivative (for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N- Methylpyrrolidone etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyri
  • imidazole derivative for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.
  • the onium salts of the formulas (P1a-1) and (P1a-2) have a function as a photoacid generator and a thermal acid generator.
  • the onium salt of the formula (P1a-3) has a function as a thermal acid generator.
  • R 102a and R 102b each independently represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms.
  • R 103 is a linear structure having 1 to 10 carbon atoms, A branched or cyclic alkylene group, R 104a and R 104b each independently represents a 2-oxoalkyl group having 3 to 7 carbon atoms, and K ⁇ represents a non-nucleophilic counter ion.
  • R 102a and R 102b include, but are not limited to, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group.
  • R 103 include, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 103 includes, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 104a and R 104b include, but are not limited to, 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like.
  • K - is the formula (P1a-1), can be exemplified the same ones as described in (P1a-2) and (P1a-3).
  • R 105 and R 106 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms or halogen. An aryl group or an aralkyl group having 7 to 12 carbon atoms.
  • alkyl group for R 105 and R 106 examples include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl.
  • halogenated alkyl group examples include, but are not limited to, a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group.
  • aryl group examples include, but are not limited to, phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert- Alkoxyphenyl groups such as butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, dimethylphenyl group, etc.
  • An alkylphenyl group etc. are mentioned.
  • halogenated aryl group examples include, but are not limited to, a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5-pentafluorophenyl group, and the like.
  • aralkyl group examples include, but are not limited to, a benzyl group and a phenethyl group.
  • R 107 , R 108 and R 109 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms; aryl having 6 to 20 carbon atoms A group or a halogenated aryl group; or an aralkyl group having 7 to 12 carbon atoms.
  • R 108 and R 109 may be bonded to each other to form a cyclic structure.
  • R 108 and R 109 each represent a linear or branched alkylene group having 1 to 6 carbon atoms. .
  • Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 .
  • the alkylene group for R 108 and R 109 is not limited to the following, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
  • R 101a and R 101b are the same as described above.
  • R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms. Some or all of the hydrogen atoms in these groups may be further substituted with a linear or branched alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, an acetyl group, or a phenyl group.
  • R 111 represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms.
  • Some or all of the hydrogen atoms in these groups may be further substituted with an alkyl or alkoxy group having 1 to 4 carbon atoms, a nitro group, an acetyl group, or a phenyl group.
  • R 111 represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms.
  • Some or all of the hydrogen atoms of these groups may be further substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group; an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group.
  • the arylene group of R 110 is not limited to the following, and examples thereof include a 1,2-phenylene group and a 1,8-naphthylene group.
  • the alkylene group include, but are not limited to, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3-diyl group, and the like.
  • the alkenylene group include, but are not limited to, 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group, and the like.
  • the alkyl group for R 111 include the same groups as R 101a to R 101c .
  • alkenyl group examples include, but are not limited to, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group. Group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl group and the like.
  • alkoxyalkyl group examples include, but are not limited to, for example, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, Ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, A methoxypentyl group, an ethoxypentyl group, a methoxyhexyl group, a methoxyheptyl group, etc. are mentioned.
  • the optionally substituted alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert- A butyl group etc. are mentioned.
  • alkoxy group having 1 to 4 carbon atoms include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and tert-butoxy group.
  • Examples of the phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group include, but are not limited to, for example, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group , P-acetylphenyl group, p-nitrophenyl group and the like.
  • Examples of the heteroaromatic group having 3 to 5 carbon atoms include, but are not limited to, a pyridyl group and a furyl group.
  • the acid generator include, but are not limited to, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, camphorsulfonic acid Triethylammonium, pyridinium camphorsulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p -Tert-butoxyphenyl) phenyliodonium, p-toluen
  • triphenylsulfonium trifluoromethanesulfonate trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid Triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid cyclo
  • the content of the acid generator is not particularly limited, but is preferably 0 to 50 parts by weight with respect to 100 parts by weight of the material for forming the lower layer film. More preferably, it is 0 to 40 parts by mass.
  • composition for forming a lower layer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, A nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like are exemplified, but not limited thereto.
  • the primary aliphatic amines include, but are not limited to, ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine.
  • Tert-butylamine pentylamine, tert-amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
  • secondary aliphatic amines include, but are not limited to, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyl Examples include tetraethylenepentamine.
  • tertiary aliphatic amines include, but are not limited to, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine , Tripentylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N ′ -Tetramethylmethylenediamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyltetraethylenepentamine and the like.
  • hybrid amines include, but are not limited to, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine, and the like.
  • aromatic amines and heterocyclic amines include, but are not limited to, aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2 -Methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitro Aniline, 3,5-dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenyl (p-
  • nitrogen-containing compounds having a carboxy group include, but are not limited to, aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine). Glycylleucine, leucine, methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like.
  • aminobenzoic acid indolecarboxylic acid
  • amino acid derivatives for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine.
  • nitrogen-containing compound having a sulfonyl group examples include, but are not limited to, 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like.
  • Specific examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include, but are not limited to, 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3- Indolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino- 1-propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine,
  • amide derivatives include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like.
  • imide derivative include, but are not limited to, phthalimide, succinimide, maleimide and the like.
  • the content of the basic compound is not particularly limited, but is preferably 0 to 2 parts by weight with respect to 100 parts by weight of the material for forming the lower layer film. More preferably, it is 0 to 1 part by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heterocyclic ring or aromatic ring such as methacrylate, vinyl naphthalene, polyacenaphthylene and other naphthalene rings, phenanthrenequinone, biphenyl rings such as fluorene, hetero rings having hetero atoms such as thiophene and indene; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclod
  • the underlayer film for lithography of the present embodiment is formed using the composition for forming an underlayer film for lithography of the present embodiment.
  • the pattern forming method of the present embodiment includes a step (A-1) of forming a lower layer film on the substrate using the composition for forming a lower layer film for lithography of the present embodiment, and at least on the lower layer film.
  • another pattern forming method of this embodiment includes a step (B-1) of forming a lower layer film on a substrate using the composition for forming a lower layer film for lithography of the present embodiment, A step (B-2) of forming an intermediate layer film using a resist intermediate layer film material containing silicon atoms, and a step (B-3) of forming at least one photoresist layer on the intermediate layer film And after the step (B-3), a step of irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern (B-4) and the step (B-4) Thereafter, the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Having a step (B-5) to form a pattern on the substrate by.
  • the formation method of the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the composition for forming an underlayer film for lithography of the present embodiment, and a known method can be applied.
  • a known method can be applied.
  • the composition for forming a lower layer film for lithography of the present embodiment on a substrate by a known coating method such as spin coating or screen printing or a printing method, the organic solvent is volatilized and removed.
  • a lower layer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within a range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. .
  • a silicon-containing resist layer thereon in the case of a two-layer process, a silicon-containing resist layer thereon, or a single-layer resist made of ordinary hydrocarbon, in the case of a three-layer process, a silicon-containing intermediate layer thereon, It is preferable to form a single layer resist layer not containing silicon thereon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquioxy crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Sun is preferably used.
  • an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film of this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above-described method is one in which pattern collapse is suppressed by the lower layer film of this embodiment. Therefore, by using the lower layer film of this embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas may be added.
  • gas etching can be performed only with CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same gas etching as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following. Those described in 9) can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • etching mainly using a chlorofluorocarbon gas if p-Si, Al, or W is chlorine or bromine, Etching mainly with gas can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film of this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • the reaction was completed in 1 hour after the dropping. After the reaction, steam distillation was carried out at 170 ° C. for 2.5 hours in order to dephenol. Thereafter, 1700 g of methyl isobutyl ketone was gradually added and diluted while cooling. Next, the diluted reaction solution was repeatedly washed with 850 g of hot water at 70 to 80 ° C. three times. Next, the solvent was removed by distillation operation and a small amount of phenol was distilled off to obtain 1130 g of a phenol-modified xylene formaldehyde resin. The obtained phenol-modified xylene formaldehyde resin had an OH value of 314 mg KOH / g (OH group equivalent was 241 g / eq.).
  • the reaction solution was allowed to stand to separate the organic phase and the aqueous phase.
  • the obtained organic phase was washed 4 times with 100 g of water.
  • the electric conductivity of the waste water in the fourth washing with water was 20 ⁇ S / cm, and it was confirmed that ionic compounds that could be removed by washing with water were sufficiently removed.
  • the organic phase after washing with water was concentrated under reduced pressure and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 23.1 g of a cyanate ester compound (yellowish red viscous material) (the following formula (16 ) To (18)).
  • the resulting cyanate ester compound GP100CN had a weight average molecular weight (Mw) of 1050. Further, the IR spectrum of GP100CN showed an absorption of 2260 cm ⁇ 1 (cyanate group) and no absorption of a hydroxy group.
  • thermogravimetry TG
  • the obtained compound (GP100CN) had a 10% heat loss temperature of 400 ° C. or higher. Therefore, it was evaluated that it has high heat resistance and can be applied to high temperature baking.
  • the solubility in PGMEA it was 20% by mass or more (Evaluation A), and the compound (GP100CN) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (GP100CN) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in a semiconductor microfabrication process.
  • PGME / PGMEA mixed liquid edge beat rinse liquid
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid in a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours.
  • a dark brown solid modified resin (CR-1).
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • the carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
  • TG thermogravimetry
  • the amount of heat decrease at 400 ° C. of the obtained resin was 25% or more. Therefore, it was evaluated that application to high temperature baking was difficult.
  • As a result of evaluating the solubility in PGMEA it was 20% by mass or more (Evaluation A), and was evaluated as having excellent solubility.
  • Examples 1 and 2 and Comparative Examples 1 and 2 Using the compound obtained in Synthesis Example 1, the resin obtained in Production Example 1, and the following materials so as to have the composition shown in Table 1, Examples 1-2 and Comparative Examples 1-2 were used. Corresponding materials for forming a lower layer film for lithography were prepared.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate (PGMEA)
  • underlayer film forming compositions of Examples 1 and 2 and Comparative Examples 1 and 2 were spin-coated on a silicon substrate, and then baked at 180 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to obtain a film thickness. Each 200 nm lower layer film was produced. And etching resistance and heat resistance were evaluated on the conditions shown below.
  • Etching resistance was evaluated according to the following procedure. First, a novolac underlayer film was formed under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (GP100CN) in Example 1 and the drying temperature was 110 ° C. Produced. And the above-mentioned etching test was done for the lower layer film of this novolak, and the etching rate at that time was measured. Next, the etching test was similarly performed on the lower layer films of Examples 1 and 2 and Comparative Examples 1 and 2, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film. From the practical viewpoint, the following A evaluation and B evaluation are preferable.
  • Example 3 The composition for forming a lower layer film for lithography in Example 1 was applied on a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 70 nm. Formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the resist solution for ArF is prepared by blending a compound of the following formula (22): 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass. What was done was used.
  • the compound of the following formula (22) was prepared as follows. That is, 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, 0.38 g of azobisisobutyronitrile, The reaction solution was dissolved in 80 mL.
  • This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane.
  • the product resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure to obtain a compound represented by the following formula.
  • 40, 40 and 20 indicate the ratio of each structural unit, and do not indicate a block copolymer.
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • Example 4 A positive resist pattern was obtained in the same manner as in Example 3, except that the composition for forming an underlayer film for lithography in Example 2 was used instead of the composition for forming an underlayer film for lithography in Example 1 above. .
  • the evaluation results are shown in Table 2.
  • Examples 3 and 4 using the material for forming an underlayer film of the present invention containing a cyanate ester compound are significantly superior in both resolution and sensitivity as compared with Comparative Example 3. It was confirmed that In addition, it was confirmed that the resist pattern shape after development did not collapse and the rectangularity was good. Furthermore, from the difference in resist pattern shape after development, it was shown that the lower layer film obtained from the composition for lower layer film for lithography of Examples 3 and 4 has good adhesion to the resist material.
  • the material for forming a lower layer film for lithography according to the present invention has relatively high heat resistance and relatively high solvent solubility, is excellent in embedding characteristics in a stepped substrate and film flatness, and can be applied to a wet process. . Therefore, the material for forming a lower layer film for lithography of the present invention, the composition containing the material, and the lower layer film formed using the composition can be widely and effectively used in various applications that require the above performance. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 変性キシレンホルムアルデヒド樹脂をシアネート化して得られる、シアン酸エステル化合物を含むリソグラフィー用下層膜形成用材料、該材料を含む組成物、該組成物を用いるパターン形成方法。

Description

リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
 本発明は、リソグラフィー用下層膜形成用材料、該材料を含有するリソグラフィー用下層膜形成用組成物、該組成物を用いて形成されるリソグラフィー用下層膜及び該組成物を用いるパターン形成方法(レジストパターン方法又は回路パターン方法)に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われている。近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。そして、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(特許文献1:特開2004-177668号公報参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(特許文献2:特開2004-271838号公報参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(特許文献3:特開2005-250434号公報参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。
 また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献4(国際公開第2009/072465号)及び特許文献5(国際公開第2011/034062号)を参照。)を提案している。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(特許文献6:特開2002-334869号公報参照)や、シリコン窒化膜のCVD形成方法(特許文献7:国際公開第2004/066377号参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(特許文献8(特開2007-226170号公報)及び特許文献9(特開2007-226204号公報)参照)。
特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2009/072465号 国際公開第2011/034062号 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報
 上述したように、従来数多くのリソグラフィー用下層膜形成用材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上述の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な、リソグラフィー用下層膜形成用材料、該材料を含有するリソグラフィー用下層膜形成用組成物、並びに、該組成物を用いたリソグラフィー用下層膜及びパターン形成方法を提供することにある。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は次のとおりである。
[1] 変性キシレンホルムアルデヒド樹脂をシアネート化して得られる、シアン酸エステル化合物を含むリソグラフィー用下層膜形成用材料。
[2] 前記変性キシレンホルムアルデヒド樹脂が、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂を下記式(2)で表されるフェノール類を用いて変性させて得られる樹脂である、第1項に記載のリソグラフィー用下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000004
 
(式(2)中、Arは芳香環構造を表す。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基である。芳香環の置換基は任意の位置を選択できる。aはヒドロキシ基の結合個数を表し、1~3の整数である。bはRの結合個数を表し、Arがベンゼン構造のときは5-a、ナフタレン構造のときは7-a、ビフェニレン構造のときは9-aである。)
[3] 前記式(2)で表されるフェノール類が、フェノール又は2,6-キシレノールである第2項に記載のリソグラフィー用下層膜形成用材料。
[4] 前記シアン酸エステル化合物が下記式(1)で表されるシアン酸エステル化合物を含む第1項~第3項のいずれか一項に記載のリソグラフィー用下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000005
 
(式(1)中、Arは芳香環構造を表し、Rは各々独立にメチレン基、メチレンオキシ基、メチレンオキシメチレン基又はオキシメチレン基を表し、これらが連結していてもよい。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基を表し、Rは各々独立に炭素数が1~3のアルキル基、アリール基、ヒドロキシ基又はヒドロキシメチレン基を表し、mは1以上の整数を表し、nは0以上の整数を表す。各繰り返し単位の配列は任意である。kはシアナト基の結合個数を表し、1~3の整数である。xはRの結合個数を表し、「Arの結合可能な個数-(k+2)」である。yは0~4の整数を表す。)
[5] 前記式(1)で表されるシアン酸エステル化合物が、下記式(1-1)で表される化合物である、第4項に記載のリソグラフィー用下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000006
 
(式(1-1)中、R~R、k、m、n及びyは前記(1)で説明したものと同義であり、xは4-kである。)
[6] 前記シアン酸エステル化合物の重量平均分子量(Mw)が、250~10000である、第1項~第5項のいずれか一項に記載のリソグラフィー用下層膜形成用材料。
[7] 第1項~第6項のいずれか一項に記載のリソグラフィー用下層膜形成用材料と溶媒とを含有するリソグラフィー用下層膜形成用組成物。
[8] 酸発生剤をさらに含有する第7項に記載のリソグラフィー用下層膜形成用組成物。
[9] 架橋剤をさらに含有する第7項又は第8項に記載のリソグラフィー用下層膜形成用組成物。
[10] 第7項~第9項のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて形成されるリソグラフィー用下層膜。
[11] 基板上に、第7項~第9項のいずれか一項に記載の下層膜形成用組成物を用いて下層膜を形成し、該下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所定の領域に放射線を照射し、現像を行う、レジストパターン形成方法。
[12] 基板上に、第7項~第9項のいずれか一項に記載の下層膜形成用組成物を用いて下層膜を形成し、該下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成し、該中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、該レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する、回路パターン形成方法。
 本発明によれば、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な、リソグラフィー用下層膜形成用材料、該材料を含有するリソグラフィー用下層膜形成用組成物、並びに、該組成物を用いたリソグラフィー用下層膜及びパターン形成方法を提供することができる。
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本発明の本実施形態の一つであるリソグラフィー用下層膜形成用材料は、変性キシレンホルムアルデヒド樹脂をシアネート化して得られたシアン酸エステル化合物を含む。本発明のリソグラフィー用下層膜形成用材料は、湿式プロセスへの適用が可能である。また、本発明のリソグラフィー用下層膜形成用材料は、芳香族構造を有しており、またシアネート基を有しており、単独でも高温ベークにより、そのシアネート基が架橋反応を起こし、高い耐熱性を発現する。その結果、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れた下層膜を形成することができる。さらに、本発明のリソグラフィー用下層膜形成用材料は、芳香族構造を有しているにも関わらず、有機溶媒に対する溶解性が高く、安全溶媒に対する溶解性が高く、段差基板への埋め込み特性及び膜の平坦性に優れ、また製品品質の安定性が良好である。加えて、本発明のリソグラフィー用下層膜形成用材料は、レジスト層やレジスト中間層膜材料との密着性にも優れるので、優れたレジストパターンを得ることができる。
 前記シアン酸エステル化合物の原料となる変性キシレンホルムアルデヒド樹脂は、例えば、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂を、ヒドロキシ置換芳香族化合物(例えば、式(2)で表されるようなフェノール類)により変性させることで得ることができる。
Figure JPOXMLDOC01-appb-C000007
 
 前記式(2)中、Arは芳香環構造を表す。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基である。芳香環の置換基は任意の位置を選択できる。aはヒドロキシ基の結合個数を表し、1~3の整数である。bはRの結合個数を表し、Arがベンゼン構造のときは5-a、ナフタレン構造のときは7-a、ビフェニレン構造のときは9-aである。
 ここで、本明細書において、「キシレンホルムアルデヒド樹脂」とは、置換又は無置換のベンゼン環構造を有する化合物(以下、化合物(A)ということがある)とホルムアルデヒドとを、酸性触媒の存在下で縮合反応させて得られる芳香族炭化水素ホルムアルデヒド樹脂を意味する。また、「脱アセタール結合キシレンホルムアルデヒド樹脂」とは、前記キシレンホルムアルデヒド樹脂を、水及び酸性触媒存在下で処理することにより得られる樹脂を意味する。
 以下、キシレンホルムアルデヒド樹脂及び変性キシレンホルムアルデヒド樹脂について説明する。
[キシレンホルムアルデヒド樹脂及びその製造方法]
 キシレンホルムアルデヒド樹脂は、置換又は無置換のベンゼン環構造を有する化合物(A)とホルムアルデヒドとを、酸性触媒の存在下で縮合反応させることによって得られる樹脂である。
 ここで、置換のベンゼン環構造を有する化合物(A)としては、好ましくは炭素数1~3のアルキル基、アリール基、ヒドロキシ基及びヒドロキシメチレン基から選ばれる1種以上の基で置換されたベンゼン環構造を有する化合物が挙げられる。より好ましくは、炭素数1~3のアルキル基で置換されたベンゼン環構造を有する化合物、更に好ましくはキシレンである。
 前記縮合反応に用いられるホルムアルデヒドは、特に限定されず、通常工業的に入手可能な、ホルムアルデヒドの水溶液が挙げられる。その他には、パラホルムアルデヒド及びトリオキサン等のホルムアルデヒドを発生する化合物等も使用可能である。ゲル化抑制の観点から、ホルムアルデヒド水溶液が好ましい。
 前記縮合反応における、前記化合物(A)とホルムアルデヒドとのモル比は、1:1~1:20、好ましくは1:1.5~1:17.5、より好ましくは1:2~1:15、更に好ましくは1:2~1:12.5、特に好ましくは1:2~1:10である。前記モル比をこのような範囲とすることで、得られるキシレンホルムアルデヒド樹脂の収率を比較的高く維持でき、且つ、未反応で残るホルムアルデヒドの量を少なくすることができる。
 前記縮合反応に用いられる酸性触媒は、周知の無機酸、有機酸を使用することができ、例えば塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、ギ酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。これらの中でも、製造上の観点から、硫酸、シュウ酸、クエン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、リンタングステン酸が好ましい。
 前記酸性触媒の使用量は、前記化合物(A)及びホルムアルデヒドの合計量100質量部に対して、0.0001~100質量部、好ましくは0.001~85質量部、更に好ましくは0.001~70質量部である。前記使用量をこのような範囲とすることで、適当な反応速度が得られ、且つ、反応速度が大きいことに基づく樹脂粘度の増加を防ぐことができる。また、酸性触媒は一括で仕込んでも分割で仕込んでもよい。
 前記縮合反応は、酸性触媒存在下、通常常圧で行われ、使用する原料が相溶する温度以上(通常、80~300℃)で加熱還流、又は生成水を留去させながら行う。反応圧力は常圧でも加圧でもよい。必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 また、必要に応じて、縮合反応に不活性な溶媒を使用することもできる。前記溶媒としては、例えばトルエン、エチルベンゼン、キシレン等の芳香族炭化水素系溶媒、ヘプタン、ヘキサン等の飽和脂肪族炭化水素系溶媒、シクロヘキサン等の脂環式炭化水素系溶媒、ジオキサン、ジブチルエーテル等のエーテル系溶媒、メチルイソブチルケトン等のケトン系溶媒、エチルプロピオネート等のカルボン酸エステル系溶媒、酢酸等のカルボン酸系溶媒等が挙げられる。
 前記縮合反応は、特に限定されないが、アルコールが共存する場合、樹脂の末端がアルコールで封止され、低分子量で低分散(分子量分布の狭い)キシレンホルムアルデヒド樹脂が得られ、変性後も溶剤溶解性が良好で低溶融粘度の樹脂となる観点から、アルコール共存下で行うことが好ましい。前記アルコールは、特に限定されず、例えば、炭素数1~12のモノオールや炭素数1~12のジオールが挙げられる。前記アルコールは単独で添加してもよいし、複数を併用してもよい。キシレンホルムアルデヒド樹脂の生産性の観点から、これらのうち、プロパノール、ブタノール、オクタノール、2-エチルヘキサノールが好ましい。アルコールが共存する場合、アルコールの使用量は、特に限定されないが、例えば、キシレンメタノール中のメチロール基1当量に対して、アルコール中のヒドロキシル基が1~10当量が好ましい。
 前記縮合反応は、前記化合物(A)、ホルムアルデヒド及び酸性触媒を反応系に同時に添加してもよいし、前記化合物(A)をホルムアルデヒド及び酸性触媒が存在する系に逐次添加する縮合反応としてもよい。上述の逐次添加する方法は、得られる樹脂中の酸素濃度を高くし、後の変性工程においてヒドロキシ置換芳香族化合物とより多く反応させることができる観点から好ましい。
 前記縮合反応における、反応時間は0.5~30時間が好ましく、0.5~20時間がより好ましく、0.5~10時間が更に好ましい。前記反応時間をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に有利に得られる。
 前記縮合反応における、反応温度は80~300℃が好ましく、85~270℃がより好ましく、90~240℃が更に好ましい。前記反応温度をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に有利に得られる。
 反応終了後、必要に応じて前記溶媒を更に添加して希釈した後、静置することにより二相分離させ、油相である樹脂相と水相とを分離した後、更に水洗を行うことで酸性触媒を完全に除去し、添加した溶媒及び未反応の原料を蒸留等の一般的な方法で除去することにより、キシレンホルムアルデヒド樹脂が得られる。
 前記反応によって得られるキシレンホルムアルデヒド樹脂は、ベンゼン環の少なくとも一部が下記式(3)及び/又は下記式(4)で示される構造で架橋されている。
Figure JPOXMLDOC01-appb-C000008
 
(式(3)中、cは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
 
(式(4)中、dは0~10の整数を表す。)
 また、前記反応によって得られるキシレンホルムアルデヒド樹脂のベンゼン環の少なくとも一部は、前記式(3)で表される結合と下記式(5)で表される結合とがランダムに配列されている結合、例えば、下記式(6)、(7)、(8)等で架橋されていてもよい。
Figure JPOXMLDOC01-appb-C000010
 
(式(5)中、dは0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
[脱アセタール結合キシレンホルムアルデヒド樹脂及びその製造方法]
 脱アセタール結合キシレンホルムアルデヒド樹脂は、前記キシレンホルムアルデヒド樹脂を、水及び酸性触媒存在下で処理することによって得られる。本発明において、この処理を「脱アセタール化」と称する。
 脱アセタール結合キシレンホルムアルデヒド樹脂とは、脱アセタール化を行うことによって、ベンゼン環を介さないオキシメチレン基同士の結合が減り、前記式(3)におけるc及び/又は前記式(4)におけるdが小さくなったものを指す。このようにして得られた脱アセタール結合キシレンホルムアルデヒド樹脂は、前記キシレンホルムアルデヒド樹脂に比較して、変性後に得られる樹脂の熱分解時の残渣量が多くなる、すなわち、質量減少率が低くなる。
 前記脱アセタール化には、前記キシレンホルムアルデヒド樹脂を使用できる。
 前記脱アセタール化に用いられる酸性触媒は、周知の無機酸、有機酸より適宜選択することができ、例えば塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、ギ酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。これらの中でも、製造上の観点から、硫酸、シュウ酸、クエン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、リンタングステン酸が好ましい。
 前記脱アセタール化は、酸性触媒存在下、通常常圧で行われ、使用する原料が相溶する温度以上(通常、80~300℃)において、使用する水を系内に滴下或いは水蒸気として噴霧しながら行う。系内の水は留去しても還流させてもよいが、アセタール結合を効率良く除去できるため、反応で発生するホルムアルデヒド等の低沸点成分と共に留去した方が好ましい。反応圧力は常圧でも加圧でもよい。必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 また、必要に応じて、脱アセタール化に不活性な溶媒を使用することもできる。該溶媒としては、例えばトルエン、エチルベンゼン、キシレン等の芳香族炭化水素系溶媒、ヘプタン、ヘキサン等の飽和脂肪族炭化水素系溶媒、シクロヘキサン等の脂環式炭化水素系溶媒、ジオキサン、ジブチルエーテル等のエーテル系溶媒、メチルイソブチルケトン等のケトン系溶媒、エチルプロピオネート等のカルボン酸エステル系溶媒、酢酸等のカルボン酸系溶媒、等が挙げられる。
 前記酸性触媒の使用量は、キシレンホルムアルデヒド樹脂100質量部に対して、0.0001~100質量部、好ましくは0.001~85質量部、更に好ましくは0.001~70質量部である。前記使用量をこのような範囲とすることで、適当な反応速度が得られ、且つ、反応速度が大きいことに基づく樹脂粘度の増加を防ぐことができる。また、酸性触媒は一括で仕込んでも分割で仕込んでもよい。
 前記脱アセタール化に用いられる水は、工業的に使用し得るものならば特に限定されないが、例えば、水道水、蒸留水、イオン交換水、純水又は超純水等が挙げられる。
 前記水の使用量は、キシレンホルムアルデヒド樹脂100質量部に対して、0.1~10000質量部が好ましく、1~5000質量部がより好ましく、10~3000質量部が更に好ましい。
 前記脱アセタール化における、反応時間は、0.5~20時間が好ましく、1~15時間がより好ましく、2~10時間が更に好ましい。前記反応時間をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に得られる。
 前記脱アセタール化における、反応温度は80~300℃が好ましく、85~270℃がより好ましく、90~240℃が更に好ましい。前記反応温度をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に得られる。
 脱アセタール結合キシレンホルムアルデヒド樹脂は、キシレンホルムアルデヒド樹脂と比較して酸素濃度が低くなり、軟化点が上昇する。例えば、前記酸性触媒使用量0.05質量部、水の使用量2000質量部、反応時間5時間、反応温度150℃で脱アセタール化すると、酸素濃度は0.1~8.0質量%程度低くなり、軟化点は3~100℃程度上昇する。
[変性キシレンホルムアルデヒド樹脂及びその製造方法]
 変性キシレンホルムアルデヒド樹脂は、前記キシレンホルムアルデヒド樹脂又は前記脱アセタール結合キシレンホルムアルデヒド樹脂と、例えば、下記式(2)で表されるヒドロキシ置換芳香族化合物(以下、「フェノール類」と称することもある)を酸性触媒の存在下で加熱し、変性縮合反応させることにより得ることができる。本発明においては、この反応を「変性」と称する。
Figure JPOXMLDOC01-appb-C000014
 
 前記式(2)中、Arは芳香環構造を表す。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基である。芳香環の置換基は任意の位置を選択できる。aはヒドロキシ基の結合個数を表し、1~3の整数である。bはRの結合個数を表し、Arがベンゼン構造のときは5-a、ナフタレン構造のときは7-a、ビフェニレン構造のときは9-aである。
 前記式(2)において、芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、ビフェニレン環等が例示されるが、これらに特に限定されない。また、Rのアルキル基としては、炭素数1~8の直鎖状又は分枝状のアルキル基、より好ましくは炭素数1~4の直鎖状又は分枝状のアルキル基、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基等が例示されるが、これらに特に限定されない。更に、Rのアリール基としては、フェニル基、p-トリル基、ナフチル基、アントリル基等が例示されるが、これらに特に限定されない。これらの中でも、Arとしてはベンゼン環であり、かつRとしては0~3個のアルキル基であるもの、又はArとしてはベンゼン環であり、かつRとしては0~2個のアリール基であるものが、原料入手性の観点から好ましい。
 前記式(2)で表されるヒドロキシ置換芳香族化合物の具体例としては、フェノール、2,6-キシレノール、ナフトール、ジヒドロキシナフタレン、ビフェノール、ヒドロキシアントラセン、ジヒドロキシアントラセン等が挙げられる。これらの中でも、取扱いの観点から、フェノール及び2,6-キシレノールが好ましい。
 前記ヒドロキシ置換芳香族化合物の使用量は、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂中の含有酸素モル数1モルに対して、0.1~5モルが好ましく、0.2~4モルがより好ましく、0.3~3モルが更に好ましい。このような範囲とすることで、得られる変性キシレン樹脂の収率を比較的高く維持でき、且つ、未反応で残るヒドロキシ置換芳香族化合物の量を少なくすることができる。
 得られる樹脂の分子量は、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂中の含有酸素モル数、及びヒドロキシ置換芳香族化合物の使用量の影響を受け、これらが共に多くなると、分子量は減少する。ここで、含有酸素モル数は、有機元素分析によりキシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂中の酸素濃度(質量%)を測定し、下記計算式に従って算出することができる。
 含有酸素モル数(mol)=使用樹脂量(g)×酸素濃度(質量%)/16
 前記変性反応に用いられる酸性触媒は、周知の無機酸、有機酸より適宜選択することができ、例えば塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、ギ酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。これらの中でも、製造上の観点から、硫酸、シュウ酸、クエン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、リンタングステン酸が好ましい。
 前記酸性触媒の使用量は、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂100質量部に対して、0.0001~100質量部、好ましくは0.001~85質量部、更に好ましくは0.001~70質量部である。前記使用量をこのような範囲とすることで、適当な反応速度が得られ、且つ、反応速度が大きいことに基づく樹脂粘度の増加を防ぐことができる。また、酸性触媒は一括で仕込んでも分割で仕込んでもよい。
 前記変性反応は、酸性触媒存在下、通常常圧で行われ、使用する原料が相溶する温度以上(通常、80~300℃)で加熱還流、又は生成水を留去させながら行う。反応圧力は常圧でも加圧でもよい。必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 また、必要に応じて、変性反応に不活性な溶媒を使用することもできる。該溶媒としては、例えばトルエン、エチルベンゼン、キシレン等の芳香族炭化水素系溶媒、ヘプタン、ヘキサン等の飽和脂肪族炭化水素系溶媒、シクロヘキサン等の脂環式炭化水素系溶媒、ジオキサン、ジブチルエーテル等のエーテル系溶媒、2-プロパノール等のアルコール系溶媒、メチルイソブチルケトン等のケトン系溶媒、エチルプロピオネート等のカルボン酸エステル系溶媒、酢酸等のカルボン酸系溶媒、等が挙げられる。
 前記変性反応における、反応時間は、0.5~20時間が好ましく、1~15時間がより好ましく、2~10時間が更に好ましい。前記反応時間をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に有利に得られる。
 前記変性反応における、反応温度は80~300℃が好ましく、85~270℃がより好ましく、90~240℃が更に好ましい。前記反応温度をこのような範囲とすることで、目的の性状を有する樹脂が経済的に、且つ、工業的に有利に得られる。
 反応終了後、必要に応じて前記溶媒を更に添加して希釈した後、静置することにより二相分離させ、油相である樹脂相と水相とを分離した後、更に水洗を行うことで酸性触媒を完全に除去し、添加した溶媒及び未反応の原料を蒸留等の一般的な方法で除去することにより、変性キシレンホルムアルデヒド樹脂が得られる。
 変性キシレンホルムアルデヒド樹脂は、上述のキシレンホルムアルデヒド樹脂又は脱アセタール結合ホルムアルデヒド樹脂と比較して、熱分解時の残渣量が多くなり(質量減少率が低くなり)、且つ、水酸基価が上昇する。例えば、前記記載の酸性触媒使用量0.05質量部、反応時間5時間、反応温度200℃で変性すると、熱分解時の残渣量は1~50%程度多くなり、且つ、水酸基価は1~300程度上昇する。
 前記製造法によって得られた変性キシレンホルムアルデヒド樹脂の主生成物は、反応時にホルムアルデヒドがメチレン基となり、このメチレン基を介してキシレン及びフェノール類の芳香環(例えばベンゼン環)同士が結合したものとなる。なお、反応後に得られる変性キシレンホルムアルデヒド樹脂は、ホルムアルデヒドがキシレン及びフェノール類の結合する位置、重合数等が一致しないため、多くの化合物の混合物として得られる。
 例えば、パラトルエンスルホン酸の存在下、フェノールとキシレンホルムアルデヒド樹脂(フドー(株)製ニカノールG)とを反応させて得られる変性キシレンホルムアルデヒド樹脂は下記式(9)~(11)で表される化合物を代表組成とする混合物となる。
Figure JPOXMLDOC01-appb-C000015
 
 また、例えば、キシレン、ホルマリン水溶液、2,6-キシレノール及び濃硫酸を窒素気流中、水溶媒を7時間還流させた後、酸を中和し、有機溶媒で抽出して得られる変性キシレンホルムアルデヒド樹脂は下記式(12)~(15)で表される化合物を代表組成とする混合物となる。
Figure JPOXMLDOC01-appb-C000016
 
 なお、これらのうち、前記式(15)のような構造中に水酸基を持たない芳香族炭化水素化合物は、シアネート化することができないため、事前に蒸留分離する等して除去することが好ましい。
 取扱性の観点から、変性キシレンホルムアルデヒド樹脂のOH価は、150~400mgKOH/gであることが好ましい。より好ましくは、200~350mgKOH/gである。なお、前記OH価はJIS-K1557-1に基づいて求められる。
 なお、変性キシレンホルムアルデヒド樹脂は、市販品を使用することもできる。市販品としては、例えば、フド(株)製のニカノールGL16やニカノールG等が好適に用いられる。
[シアン酸エステル化合物及びその製造方法]
 本発明に用いるシアン酸エステル化合物は、上述の変性キシレンホルムアルデヒド樹脂が有するヒドロキシ基をシアネート化することで得られる。シアネート化の方法は、特に制限されるものではなく、公知の方法を適用することができる。具体的には、変性キシレンホルムアルデヒド樹脂とハロゲン化シアンとを、溶媒中で、塩基性化合物存在下で反応させる方法、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにして、変性キシレンホルムアルデヒド樹脂とハロゲン化シアンを反応させる方法(米国特許3553244号)や、塩基として3級アミンを用い、これをハロゲン化シアンよりも過剰に用いながら、変性キシレンホルムアルデヒド樹脂に溶媒の存在下、3級アミンを添加した後、ハロゲン化シアンを滴下する、或いは、ハロゲン化シアンと3級アミンを併注滴下する方法(特許3319061号公報)、連続プラグフロー方式で、変性キシレンホルムアルデヒド樹脂、トリアルキルアミン及びハロゲン化シアンとを反応させる方法(特許3905559号公報)、変性キシレンホルムアルデヒド樹脂とハロゲン化シアンとを、tert-アミンの存在下、非水溶液中で反応させる際に副生するtert-アンモニウムハライドを、カチオンおよびアニオン交換対で処理する方法(特許4055210号公報)、変性キシレンホルムアルデヒド樹脂を、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から2級または3級アルコール類若しくは炭化水素の貧溶媒を用いて沈殿精製する方法(特許2991054号)、更には、ナフトール類、ハロゲン化シアン、および3級アミンを、水と有機溶媒との二相系溶媒中で、酸性条件下で反応させる方法(特許5026727号公報)等により、本発明に用いるシアン酸エステル化合物を得ることができる。
 前記変性キシレンホルムアルデヒド樹脂とハロゲン化シアンとを、溶媒中、塩基性化合物存在下で反応させる方法を用いた場合、反応基質である変性キシレンホルムアルデヒド樹脂を、ハロゲン化シアン溶液又は塩基性化合物溶液のどちらかに予め溶解させた後、ハロゲン化シアン溶液と塩基性化合物溶液を接触させる。
 該ハロゲン化シアン溶液と塩基性化合物溶液とを接触させる方法としては、(A)撹拌混合させたハロゲン化シアン溶液に塩基性化合物溶液を注下していく方法、(B)撹拌混合させた塩基性化合物溶液にハロゲン化シアン溶液を注下していく方法、(C)ハロゲン化シアン溶液と塩基性化合物溶液を連続的に交互に又は同時に供給していく方法等が挙げられる。
 前記(A)~(C)の方法の中でも副反応を抑制し、より高純度のシアン酸エステル化合物を高収率で得ることができる観点から、(A)の方法で行うことが好ましい。
 また、前記ハロゲン化シアン溶液と塩基性化合物溶液との接触方法は、半回分形式又は連続流通形式のいずれでも行うことができる。
 特に(A)の方法を用いた場合、変性キシレンホルムアルデヒド樹脂が有するヒドロキシ基を残存させずに反応を完結させることができ、かつ、より高純度のシアン酸エステル化合物を高収率で得ることができることから、塩基性化合物を分割して注下するのが好ましい。分割回数は特に制限はないが、1~5回が好ましい。また、塩基性化合物の種類としては、分割ごとに同一でも異なるものでもよい。
 本発明で用いるハロゲン化シアンとしては、塩化シアン及び臭化シアンが挙げられる。ハロゲン化シアンは、シアン化水素又は金属シアニドとハロゲンとを反応させる方法等の公知の製造方法により得られたハロゲン化シアンを用いてもよいし、市販品を用いてもよい。また、シアン化水素又は金属シアニドとハロゲンとを反応させて得られたハロゲン化シアンを含有する反応液をそのまま用いることもできる。
 シアネート化工程におけるハロゲン化シアンの変性キシレンホルムアルデヒド樹脂に対する使用量は、変性キシレンホルムアルデヒド樹脂のヒドロキシ基1モルに対して0.5~5モル、好ましくは1.0~3.5である。その理由は、未反応の変性キシレンホルムアルデヒド樹脂を残存させずにシアン酸エステル化合物の収率を高めるためである。
 ハロゲン化シアン溶液に用いる溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、n-ヘキサン、シクロヘキサン、イソオクタン、シクロヘキサノン、シクロぺンタノン、2-ブタノンなどの脂肪族系溶媒、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、ジエチルエーテル、ジメチルセルソルブ、ジグライム、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、テトラエチレングリコールジメチルエーテルなどのエーテル系溶媒、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼン、ブロモベンゼンなどのハロゲン化炭化水素系溶媒、メタノール、エタノール、イソプロパノール、メチルソルソルブ、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、N,N-ジメチルホルムアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドン、ジメチルスルホキシドなどの非プロトン性極性溶媒、アセトニトリル、ベンゾニトリルなどのニトリル系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒、酢酸エチル、安息香酸エチルなどのエステル系溶媒、シクロヘキサンなどの炭化水素系溶媒、水溶媒など何れも用いることができ、反応基質に合わせて、1種類又は2種類以上を組み合わせて用いることができる。
 シアネート化工程に用いられる塩基性化合物としては、有機塩基又は無機塩基いずれでも使用可能である。
 有機塩基としては、特にトリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリアミルアミン、ジイソプロピルエチルアミン、ジエチル-n-ブチルアミン、メチルジ-n-ブチルアミン、メチルエチル-n-ブチルアミン、ドデシルジメチルアミン、トリベンジルアミン、トリエタノールアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ジフェニルメチルアミン、ピリジン、ジエチルシクロヘキシルアミン、トリシクロヘキシルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等の3級アミンが好ましい。これらの中でも、収率よく目的物が得られることなどから、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、ジイソプロピルエチルアミンがより好ましく、トリエチルアミンが特に好ましい。
 前記有機塩基の使用量は、フェノール樹脂のヒドロキシ基1モルに対して、通常、0.1~8モル、好ましくは1.0~3.5モル用いる。その理由は、未反応の変性キシレンホルムアルデヒド樹脂を残存させずにシアン酸エステル化合物の収率を高めるためである。
 無機塩基としては、アルカリ金属の水酸化物が好ましい。アルカリ金属の水酸化物としては、特に限定されないが工業的に一般的に用いられる水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。安価に入手できる点から、水酸化ナトリウムが特に好ましい。
 前記無機塩基の使用量は、変性キシレンホルムアルデヒド樹脂のヒドロキシ基1モルに対して、通常1.0~5.0モル、好ましくは1.0~3.5モルである。その理由は、未反応の変性キシレンホルムアルデヒド樹脂を残存させずにシアン酸エステル化合物の収率を高めるためである。
 本反応において、塩基性化合物は上述した通り、溶媒に溶解させた溶液として用いることができる。溶媒としては、有機溶媒又は水を用いることができる。
 塩基性化合物溶液に用いる溶媒の使用量としては、変性キシレンホルムアルデヒド樹脂を塩基性化合物溶液に溶解させる場合、変性キシレンホルムアルデヒド樹脂1質量部に対して、通常0.1~100質量部、好ましくは0.5~50質量部である。
 変性キシレンホルムアルデヒド樹脂を塩基性化合物溶液に溶解させない場合、塩基性化合物1質量部に対して、通常0.1~100質量部、好ましくは0.25~50質量部である。
 塩基性化合物を溶解させる有機溶媒は、該塩基性化合物が有機塩基の場合に好ましく用いられ、例えばアセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、ジエチルエーテル、ジメチルセルソルブ、ジグライム、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、テトラエチレングリコールジメチルエーテルなどのエーテル系溶媒、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼン、ブロモベンゼンなどのハロゲン化炭化水素系溶媒、メタノール、エタノール、イソプロパノール、メチルソルソルブ、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、N,N-ジメチルホルムアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドン、ジメチルスルホキシドなどの非プロトン性極性溶媒、アセトニトリル、ベンゾニトリルなどのニトリル系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒、酢酸エチル、安息香酸エチルなどのエステル系溶媒、シクロヘキサンなどの炭化水素系溶媒などを塩基性化合物、反応基質及び反応に用いられる溶媒に合わせて適宜選択することができる。これらは1種類又は2種類以上を組み合わせて用いることができる。
 塩基性化合物を溶解させる水は、該塩基性化合物が無機塩基の場合に好ましく用いられ、特に制約されず、水道水であっても、蒸留水であっても、脱イオン水であってもよい。効率良く目的とするシアン酸エステル化合物を得る上では、不純物の少ない蒸留水や脱イオン水の使用が好ましい。
 塩基性化合物溶液に用いる溶媒が水の場合、界面活性剤として触媒量の有機塩基を使用することが反応速度を確保する観点から好ましい。中でも副反応の少ない3級アミンが好ましい。3級アミンとしては、アルキルアミン、アリールアミン、シクロアルキルアミン何れでもよく、具体的にはトリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリアミルアミン、ジイソプロピルエチルアミン、ジエチル-n-ブチルアミン、メチルジ-n-ブチルアミン、メチルエチル-n-ブチルアミン、ドデシルジメチルアミン、トリベンジルアミン、トリエタノールアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ジフェニルメチルアミン、ピリジン、ジエチルシクロヘキシルアミン、トリシクロヘキシルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネンなどが挙げられる。これらの中でも、水への溶解度、収率よく目的物が得られることなどから、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、ジイソプロピルエチルアミンがより好ましく、トリエチルアミンが特に好ましい。
 シアネート化工程に用いられる溶媒の総量としては、変性キシレンホルムアルデヒド樹脂1質量部に対し、2.5~100質量部となることが変性キシレンホルムアルデヒド樹脂を均一に溶解させ、シアン酸エステル化合物を効率良く製造する観点から好ましい。
 シアネート化工程においては、反応液のpHは特に限定されないが、pHが7未満の状態を保ったまま反応を行うことが好ましい。pHを7未満に抑えることで、イミドカーボネートやシアン酸エステル化合物の重合物等の副生成物の生成が抑制されて、効率的にシアン酸エステル化合物を製造できるためである。反応液のpHが7未満の状態を保つには酸を添加する方法が好ましく、その方法としてはシアネート化工程直前のハロゲン化シアン溶液に酸を加えておくこと、反応中適宜pH計で測定しながら反応系に酸を添加し、pH7未満の状態を保つようにすることが好ましい。
 その際に用いる酸としては、塩酸、硝酸、硫酸、燐酸等の無機酸、酢酸、乳酸、プロピオン酸等の有機酸が挙げられる。
 シアネート化工程における反応温度は、イミドカーボネート、シアン酸エステル化合物の重合物、及びジアルキルシアノアミド等の副生物の生成、反応液の凝結、及び、ハロゲン化シアンとして塩化シアンを用いる場合は塩化シアンの揮発、を抑制する観点から、通常-20~+50℃、好ましくは-15~15℃、より好ましくは-10~10℃である。
 シアネート化工程における反応圧力は常圧でも加圧でもよい。必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 また、反応時間は特に限定されないが、前記接触方法が上述の(A)及び(B)の場合の注下時間及び(C)の場合の接触時間として1分間~20時間が好ましく、3分間~10時間がより好ましい。更にその後10分間~10時間反応温度を保ちながら撹拌させることが好ましい。このような範囲とすることで、目的とするシアン酸エステル化合物が経済的に、かつ工業的に有利に得られる。
 シアネート化工程における、反応の進行度は、液体クロマトグラフィー又はIRスペクトル法等で分析することができる。副生するジシアンやジアルキルシアノアミド等の揮発成分は、ガスクロマトグラフィーで分析することができる。
 反応終了後は、通常の後処理操作、及び、所望により分離・精製操作を行うことにより、目的とするシアン酸エステル化合物を単離することができる。具体的には、反応液からシアン酸エステル化合物を含む有機溶媒層を分取し、水洗後、濃縮、沈殿化又は晶析、或いは、水洗後、溶媒置換すればよい。洗浄の際には、過剰のアミン類を除去するため、薄い塩酸などの酸性水溶液を用いる方法も採られる。充分に洗浄された反応液から水分を除去するために、硫酸ナトリウムや硫酸マグネシウムなどの一般的な方法を用いて乾燥操作をすることができる。濃縮及び溶媒置換の際には、シアン酸エステル化合物の重合を抑えるため、減圧下90℃以下の温度に加熱して有機溶媒を留去する。沈殿化又は晶析の際には、溶解度の低い溶媒を用いることができる。例えば、エーテル系の溶剤やヘキサン等の炭化水素系溶剤又はアルコール系溶剤を反応溶液に滴下する、又は逆注下する方法を採ることができる。得られた粗生成物を洗浄するために、反応液の濃縮物や沈殿した結晶をエーテル系の溶剤やヘキサン等の炭化水素系溶剤、又はアルコール系の溶剤で洗浄する方法を採ることができる。反応溶液を濃縮して得られた結晶を再度溶解させた後、再結晶させることもできる。また、晶析する場合は、反応液を単純に濃縮又は冷却して行ってもよい。なお、得られたシアン酸エステル化合物の精製方法については、後に詳述する。
 前記製造方法によって得られるシアン酸エステル化合物は、特に限定されるものではないが、耐熱性の観点から、下記式(1)で表されるものが好ましい。本発明の他の実施形態は、下記式(1)で表されるシアン酸エステル化合物を含むリソグラフィー用下層膜形成用材料である。
Figure JPOXMLDOC01-appb-C000017
 
 前記式(1)中、Arは芳香環構造を表し、Rは各々独立にメチレン基、メチレンオキシ基、メチレンオキシメチレン基又はオキシメチレン基を表し、これらが連結していてもよい。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基を表し、Rは各々独立に炭素数が1~3のアルキル基、アリール基、ヒドロキシ基又はヒドロキシメチレン基を表し、mは1以上の整数を表し、nは0以上の整数を表す。各繰り返し単位の配列は任意である。kはシアナト基の結合個数を表し、1~3の整数である。xはRの結合個数を表し、「Arの結合可能な個数-(k+2)」である。yは0~4の整数を表す。
 前記式(1)において、m及びnは各構成単位の比率を示すものであり、各繰り返し単位の配列は任意である。すなわち、式(1)で表されるシアン酸エステル化合物は、ランダム共重合体でもよく、ブロック共重合体でもよい(本明細書中、各構成単位の比率は、全て同様である。)。また、式(1)で表されるシアン酸エステル化合物は、2以上のRにより架橋・連結されていてもよい。なお、mの上限値は、通常は50以下、好ましくは20以下であり、nの上限値は、通常は20以下である。
 前記製造方法によって得られるシアン酸エステル化合物は、特に限定されるものではないが、具体的に例示すると、前記式(9)~(11)で表されるフェノール変性キシレンホルムアルデヒド樹脂から得られるシアン酸エステル化合物については、下記式(16)~(18)で表される化合物を代表組成とする混合物となる。
Figure JPOXMLDOC01-appb-C000018
 
 また、前記式(12)~(14)で表される2,6-キシレノール変性キシレンホルムアルデヒド樹脂から得られるシアン酸エステル化合物については、式(19)~(21)で表される化合物を代表組成とする混合物となる。
Figure JPOXMLDOC01-appb-C000019
 
 
 
 本発明に用いるシアン酸エステル化合物の重量平均分子量(Mw)は、特に限定されないが、250~10000であることが好ましく、300~5000であることがより好ましい。
 得られたシアン酸エステル化合物の同定は、NMR等の公知の方法により行うことができる。シアン酸エステル化合物の純度は、液体クロマトグラフィー又はIRスペクトル法等で分析することができる。シアン酸エステル化合物中のジアルキルシアノアミド等の副生物や残存溶媒等の揮発成分は、ガスクロマトグラフィーで定量分析することができる。シアン酸エステル化合物中に残存するハロゲン化合物は、液体クロマトグラフ質量分析計で同定することができ、また、硝酸銀溶液を用いた電位差滴定又は燃焼法による分解後イオンクロマトグラフィーで定量分析することができる。シアン酸エステル化合物の重合反応性は、熱板法又はトルク計測法によるゲル化時間で評価することができる。
[シアン酸エステル化合物の精製方法]
 前記シアン酸エステル化合物は、更に純度向上、及び残存金属量を低減するために、必要に応じて更なる精製処理を行ってもよい。また、酸触媒及び助触媒が残存すると、一般に、リソグラフィー用下層膜形成用組成物の保存安定性が低下する、又は塩基性触媒が残存すると、一般にリソグラフィー用下層膜形成用組成物の感度が低下するので、その低減を目的とした精製を行ってもよい。
 精製は、シアン酸エステル化合物が変性しない限り公知の方法により行うことができ、特に限定されないが、例えば、水で洗浄する方法、酸性水溶液で洗浄する方法、塩基性水溶液で洗浄する方法、イオン交換樹脂で処理する方法、シリカゲルカラムクロマトグラフィーで処理する方法などが挙げられる。これら精製方法は2種以上を組み合わせて行うことが好ましい。また、酸性水溶液で洗浄する精製方法については後述する。
 酸性水溶液、塩基性水溶液、イオン交換樹脂及びシリカゲルカラムクロマトグラフィーは、除去すべき金属、酸性化合物及び/又は塩基性化合物の量や種類、精製するシアン酸エステル化合物の種類などに応じて、最適なものを適宜選択することが可能である。例えば、酸性水溶液として、濃度が0.01~10mol/Lの塩酸、硝酸、酢酸水溶液、塩基性水溶液として、濃度が0.01~10mol/Lのアンモニア水溶液、イオン交換樹脂として、カチオン交換樹脂、例えばオルガノ製「Amberlyst 15J-HG Dry」などが挙げられる。
 前記精製後に乾燥を行ってもよい。乾燥は公知の方法により行うことができ、特に限定されないが、シアン酸エステル化合物が変性しない条件で真空乾燥、熱風乾燥する方法などが挙げられる。
[酸性水溶液で洗浄する精製方法]
 前記シアン酸エステル化合物について酸性水溶液で洗浄して精製する方法は次のとおりである。
 前記精製方法は、シアン酸エステル化合物を水と任意に混和しない有機溶媒に溶解させ、その溶液を酸性水溶液と接触させ抽出処理を行うことにより、シアン酸エステル化合物と有機溶媒とを含む溶液(B)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離する工程を含む。該精製により本発明のリソグラフィー用下層膜形成用組成物の種々の金属の含有量を著しく低減させることができる。
 水と任意に混和しない前記有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、使用する該化合物に対して、通常1~100質量倍程度使用される。
 使用される有機溶媒の具体例としては、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、特にシクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートが好ましい。これらの有機溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 前記酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、さらに、硫酸、蓚酸、酒石酸、クエン酸の水溶液が好ましく、特に蓚酸の水溶液が好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より金属を除去できると考えられる。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。
 前記酸性の水溶液のpHは特に制限されないが、水溶液の酸性度があまり大きくなると、使用する化合物又は樹脂に悪影響を及ぼすことがあり好ましくない。通常、pH範囲は0~5程度であり、より好ましくはpH0~3程度である。
 前記酸性の水溶液の使用量は特に制限されないが、その量があまりに少ないと、金属除去のための抽出回数多くする必要があり、逆に水溶液の量があまりに多いと全体の液量が多くなり操作上の問題を生ずることがある。水溶液の使用量は、通常、シアン酸エステル化合物の溶液に対して10~200質量%であり、好ましくは20~100質量%である。
 前記酸性の水溶液と、シアン酸エステル化合物及び水と任意に混和しない有機溶媒を含む溶液(B)とを接触させることにより金属分を抽出することができる。
 前記抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、使用する該化合物と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、使用する該化合物の変質を抑制することができる。
 抽出処理後、使用する該化合物及び有機溶媒を含む溶液相と、水相とに分離させ、デカンテーション等により有機溶媒を含む溶液を回収する。静置する時間は特に制限されないが、静置する時間があまりに短いと有機溶媒を含む溶液相と水相との分離が悪くなり好ましくない。通常、静置する時間は1分間以上であり、より好ましくは10分間以上であり、さらに好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 酸性の水溶液を用いてこのような抽出処理を行った場合は、処理を行ったあとに、該水溶液から抽出し、回収した有機溶媒を含む溶液は、さらに水との抽出処理を行うことが好ましい。抽出操作は、撹拌等により、よく混合させたあと、静置することにより行われる。そして得られる溶液は、化合物と有機溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により溶液相を回収する。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に制限されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた、シアン酸エステル化合物と有機溶媒とを含む溶液に混入する水分は減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、化合物の濃度を任意の濃度に調整することができる。
 得られた有機溶媒を含む溶液から、シアン酸エステル化合物のみを得る方法は、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[リソグラフィー用下層膜形成用材料]
 本実施形態のリソグラフィー用下層膜形成用材料は、前記変性キシレンホルムアルデヒド樹脂をシアネート化して得られる、シアン酸エステル化合物を含む。本実施形態のリソグラフィー用下層膜形成用材料は、所期の特性が損なわれない範囲において、前記シアン酸エステル化合物以外のシアン酸エステル化合物や既に知られているリソグラフィー用下層膜形成用材料等を含んでいてもよい。
 本実施形態のリソグラフィー用下層膜形成用材料中、前記シアン酸エステル化合物は、耐熱性及びエッチング耐性の点から、50~100質量%であることが好ましく、70~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。また、本実施形態のリソグラフィー用下層膜形成用材料中、前記シアン酸エステル化合物は100質量%であることが、熱重量減少が少ないため特に好ましい。
 本実施形態のリソグラフィー用下層膜形成用材料に含まれるシアン酸エステル化合物は下記式(1)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000020
 
 前記式(1)中、Ar1、、R、R、k、m、n、x及びyは、前記と同義である。
 本実施形態のリソグラフィー用下層膜形成用材料に含まれるシアン酸エステル化合物は、前記式(1)においてArがベンゼン環構造である場合、すなわち、下記式(1-1)で表される構造を有することが、耐熱性及び原料入手性の点で好ましい。
Figure JPOXMLDOC01-appb-C000021
 
 前記式(1-1)中、R~R、k、m、n及びyは前記(1)で説明したものと同義であり、xは4-kである。
[リソグラフィー用下層膜形成用組成物]
 本実施形態のリソグラフィー用下層膜形成用組成物は、前記シアン酸エステル化合物を含むリソグラフィー用下層膜形成用材料と溶媒とを含有する。
[溶媒]
 本実施形態のリソグラフィー用下層膜形成用組成物に用いる溶媒としては、シアン酸エステル化合物が少なくとも溶解するものであれば、公知のものを適宜用いることができる。溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられるが、これらに特に限定されない。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 前記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 前記溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、シアン酸エステル化合物を含む下層膜形成用材料100質量部に対して、25~9,900質量部であることが好ましく、より好ましくは900~4,900質量部である。
 本実施形態のリソグラフィー用下層膜形成用組成物は、シアン酸エステル化合物及び溶媒以外に、必要に応じて、酸発生剤、架橋剤、酸発生剤、その他の成分を含んでいてもよい。以下、これらの任意成分について説明する。
[架橋剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。
本実施形態で使用可能な架橋剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基を置換基(架橋性基)として有するものなどが挙げるが、これらに特に限定されない。なお、これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよい。なお、前記架橋性基を式(1)で表される化合物にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
 メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。エポキシ化合物の具体例としては、例えば、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが挙げられる。
 グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 アルケニルエーテル基を含む化合物の具体例としては、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、下層膜形成用材料100質量部に対して、0~50質量部であることが好ましく、より好ましくは0~40質量部である。上述の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[酸発生剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、
1)下記一般式(P1a-1)、(P1a-2)、(P1a-3)又は(P1b)のオニウム塩、
2)下記一般式(P2)のジアゾメタン誘導体、
3)下記一般式(P3)のグリオキシム誘導体、
4)下記一般式(P4)のビススルホン誘導体、
5)下記一般式(P5)のN-ヒドロキシイミド化合物のスルホン酸エステル、
6)β-ケトスルホン酸誘導体、
7)ジスルホン誘導体、
8)ニトロベンジルスルホネート誘導体、
9)スルホン酸エステル誘導体
等が挙げられるが、これらに特に限定されない。なお、これらの酸発生剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000022
 
 前記式中、R101a、R101b、R101cはそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基;炭素数6~20のアリール基;又は炭素数7~12のアラルキル基若しくはアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ独立して炭素数1~6のアルキレン基を示す。Kは非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、それぞれ独立してR101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3~10のアルキレン基を示し、又は、式中の窒素原子を環の中に有する複素芳香族環を示す。
 上述のR101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよい。具体的には、アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、以下に限定されないが、例えば、2-オキソシクロペンチル基、2-オキソシクロヘキシル基等や、2-オキソプロピル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。オキソアルケニル基としては、以下に限定されないが、例えば、2-オキソ-4-シクロヘキセニル基、2-オキソ-4-プロペニル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基等や、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基;メチルナフチル基、エチルナフチル基等のアルキルナフチル基;メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基;ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基;ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、以下に限定されないが、例えば、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。Kの非求核性対向イオンとしては、以下に限定されないが、例えば、塩化物イオン、臭化物イオン等のハライドイオン;トリフレート、1,1,1-トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート;トシレート、ベンゼンスルホネート、4-フルオロベンゼンスルホネート、1,2,3,4,5-ペンタフルオロベンゼンスルホネート等のアリールスルホネート;メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
 また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環である場合、その複素芳香族環としては、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
 前記式(P1a-1)と式(P1a-2)のオニウム塩は、光酸発生剤及び熱酸発生剤としての機能を有する。前記式(P1a-3)のオニウム塩は、熱酸発生剤としての機能を有する。
Figure JPOXMLDOC01-appb-C000023
 
(式(P1b)中、R102a、R102bはそれぞれ独立して炭素数1~8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1~10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ独立して炭素数3~7の2-オキソアルキル基を示す。Kは非求核性対向イオンを表す。)
 前記R102a、R102bの具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103の具体例としては、以下に限定されないが、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4-シクロへキシレン基、1,2-シクロへキシレン基、1,3-シクロペンチレン基、1,4-シクロオクチレン基、1,4-シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの具体例としては、以下に限定されないが、2-オキソプロピル基、2-オキソシクロペンチル基、2-オキソシクロヘキシル基、2-オキソシクロヘプチル基等が挙げられる。Kは式(P1a-1)、(P1a-2)及び(P1a-3)で説明したものと同様のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000024
 
 前記式(P2)中、R105、R106はそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6~20のアリール基又はハロゲン化アリール基、又は炭素数7~12のアラルキル基を示す。
 R105、R106のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、以下に限定されないが、例えば、トリフルオロメチル基、1,1,1-トリフルオロエチル基、1,1,1-トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基等が挙げられる。ハロゲン化アリール基としては、以下に限定されないが、例えば、フルオロフェニル基、クロロフェニル基、1,2,3,4,5-ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 
 前記式(P3)中、R107、R108、R109はそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基又はハロゲン化アルキル基;炭素数6~20のアリール基若しくはハロゲン化アリール基;又は炭素数7~12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1~6の直鎖状又は分岐状のアルキレン基を示す。
 R107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 
 前記式(P4)中、R101a、R101bは前記と同様である。
Figure JPOXMLDOC01-appb-C000027
 
 前記式(P5)中、R110は炭素数6~10のアリーレン基、炭素数1~6のアルキレン基又は炭素数2~6のアルケニレン基を示す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4の直鎖状若しくは分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1~8の直鎖状、分岐状若しくは置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1~8の直鎖状、分岐状若しくは置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4のアルキル基又はアルコキシ基;炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3~5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。
 ここで、R110のアリーレン基としては、以下に限定されないが、例えば、1,2-フェニレン基、1,8-ナフチレン基等が挙げられる。アルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン-2,3-ジイル基等が挙げられる。アルケニレン基としては、以下に限定されないが、例えば、1,2-ビニレン基、1-フェニル-1,2-ビニレン基、5-ノルボルネン-2,3-ジイル基等が挙げられる。R111のアルキル基としては、R101a~R101cと同様のものが挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、3-ブテニル基、イソプレニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ジメチルアリル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基、1-ヘプテニル基、3-ヘプテニル基、6-ヘプテニル基、7-オクテニル基等が挙げられる。アルコキシアルキル基としては、以下に限定されないが、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
 なお、さらに置換されていてもよい炭素数1~4のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、以下に限定されないが、例えば、フェニル基、トリル基、p-tert-ブトキシフェニル基、p-アセチルフェニル基、p-ニトロフェニル基等が挙げられる。炭素数3~5のヘテロ芳香族基としては、以下に限定されないが、例えば、ピリジル基、フリル基等が挙げられる。
 酸発生剤の具体例としては、以下に限定されないが、トリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn-ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p-トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、p-トルエンスルホン酸ジフェニルヨードニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p-トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、p-トルエンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p-トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p-トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2-オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec-アミルスルホニル)ジアゾメタン、ビス(tert-アミルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-アミルスルホニル)ジアゾメタン、1-tert-アミルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(p-トルエスルホニル)-α-ジフェニルグリオキシム、ビス-(p-トルエンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(p-トルエンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(p-トルエンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジフェニルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(n-ブタンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(メタンスルホニル)-α-ジメチルグリオキシム、ビス-(トリフルオロメタンスルホニル)-α-ジメチルグリオキシム、ビス-(1,1,1-トリフルオロエタンスルホニル)-α-ジメチルグリオキシム、ビス-(tert-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(パーフルオロオクタンスルホニル)-α-ジメチルグリオキシム、ビス-(シクロヘキサンスルホニル)-α-ジメチルグリオキシム、ビス-(ベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-フルオロベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-tert-ブチルベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(キシレンスルホニル)-α-ジメチルグリオキシム、ビス-(カンファースルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体;ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス-p-トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体;2-シクロヘキシルカルボニル-2-(p-トルエンスルホニル)プロパン、2-イソプロピルカルボニル-2-(p-トルエンスルホニル)プロパン等のβ-ケトスルホン誘導体;ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体、p-トルエンスルホン酸2,6-ジニトロベンジル、p-トルエンスルホン酸2,4-ジニトロベンジル等のニトロベンジルスルホネート誘導体;1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミドエタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-オクタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシスクシンイミドp-メトキシベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド2-クロロエタンスルホン酸エステル、N-ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド-2,4,6-トリメチルベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ナフタレンスルホン酸エステル、N-ヒドロキシスクシンイミド2-ナフタレンスルホン酸エステル、N-ヒドロキシ-2-フェニルスクシンイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドエタンスルホン酸エステル、N-ヒドロキシ-2-フェニルマレイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドメタンスルホン酸エステル、N-ヒドロキシフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシフタルイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドp-トルエンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
 これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が好ましく用いられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、下層膜形成用材料100質量部に対して、0~50質量部であることが好ましく、より好ましくは0~40質量部である。上述の好ましい範囲にすることで、架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
[塩基性化合物]
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
 具体的には、第一級の脂肪族アミン類の具体例としては、以下に限定されないが、アンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が挙げられる。第二級の脂肪族アミン類の具体例としては、以下に限定されないが、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が挙げられる。第三級の脂肪族アミン類の具体例としては、以下に限定されないが、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が挙げられる。
 また、混成アミン類の具体例としては、以下に限定されないが、ジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が挙げられる。芳香族アミン類及び複素環アミン類の具体例としては、以下に限定されないが、アニリン誘導体(例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等)、ジフェニル(p-トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が挙げられる。
 さらに、カルボキシ基を有する含窒素化合物の具体例としては、以下に限定されないが、アミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン)等が挙げられる。スルホニル基を有する含窒素化合物の具体例としては、以下に限定されないが、3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が挙げられる。水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物の具体例としては、以下に限定されないが、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノ-ル、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-クイヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が挙げられる。アミド誘導体の具体例としては、以下に限定されないが、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が挙げられる。イミド誘導体の具体例としては、以下に限定されないが、フタルイミド、スクシンイミド、マレイミド等が挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、下層膜形成用材料100質量部に対して、0~2質量部であることが好ましく、より好ましくは0~1質量部である。上述の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤が挙げられる。
[リソグラフィー用下層膜及びパターンの形成方法]
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて形成される。
 また、本実施形態のパターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
 さらに、本実施形態の他のパターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒間の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmである。
 基板上に下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 前記フォトレジスト材料によりレジスト層を形成する場合においては、前記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上述の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO、NH、SO、N、NO2、ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO2、ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上述の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(上述の特許文献8)、特開2007-226204号(上述の特許文献9)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態の下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
 以下、本発明を合成例及び実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
[炭素濃度及び酸素濃度の測定]
 有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
[重量平均分子量の測定]
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1ml/min
 温度:40℃
[溶解度の測定]
 23℃にて、化合物のプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解量を測定し、その結果を以下の基準で評価した。
 評価A:20質量%以上
 評価B:20質量%未満
<合成例1> フェノール変性キシレンホルムアルデヒド樹脂のシアン酸エステル化合物(以下、「GP100CN」とも略記する)の合成
(フェノール変性キシレンホルムアルデヒド樹脂の合成)
 フェノール800g(8.5mol)及び触媒のパラトルエンスルホン酸0.43gを仕込み、撹拌昇温し、液温130℃にてキシレンホルムアルデヒド樹脂(フドー(株)製ニカノールG)670gを1時間かけて滴下した。滴下中還流温度は150℃から105℃に低下した。滴下後1時間で反応を完結させた。反応後、脱フェノールするため水蒸気蒸留を170℃で2.5時間実施した。その後冷却しながら徐々にメチルイソブチルケトン1700gを添加し希釈した。次いで、希釈した反応液を、70~80℃の温水850gで3回繰り返し洗浄した。次に、蒸留操作により脱溶剤及び微量のフェノールの留去を行い、フェノール変性キシレンホルムアルデヒド樹脂1130gを得た。得られたフェノール変性キシレンホルムアルデヒド樹脂のOH価は314mgKOH/g(OH基当量は241g/eq.)であった。
(GP100CNの合成)
 前記方法で得られたフェノール変性キシレンホルムアルデヒド樹脂20g(OH基換算0.112mol)及びトリエチルアミン17.1g(0.168mol)(ヒドロキシ基1モルに対して1.5モル)を塩化メチレン120gに溶解させ、これを溶液1とした。塩化シアン15.1g(0.249mol)(ヒドロキシ基1モルに対して2.2モル)、塩化メチレン35.3g、36%塩酸23.8g(0.235mol)(ヒドロキシ基1モルに対して2.1モル)及び水147.3gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を10分間かけて滴下した。溶液1滴下終了後、同温度にて30分間撹拌し、その後トリエチルアミン11.4g(0.112mol)を塩化メチレン11.4gの混合溶液を滴下し、さらに30分間撹拌して反応を完結させた。
 その後、反応液を静置して有機相と水相とを分離した。得られた有機相を水100gで4回洗浄した。水洗4回目の廃水の電気伝導度は20μS/cmであり、水による洗浄によって除けるイオン性化合物が十分に除かれたことを確認した。
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて、シアン酸エステル化合物(黄赤色粘性物)23.1gを得た(代表組成として下記式(16)~(18)を有する)。得られたシアン酸エステル化合物GP100CNの重量平均分子量(Mw)は1050であった。また、GP100CNのIRスペクトルは2260cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
 熱重量測定(TG)の結果、得られた化合物(GP100CN)の10%熱減量温度は400℃以上であった。そのため、高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGMEAへの溶解性を評価した結果、20質量%以上(評価A)であり、化合物(GP100CN)は優れた溶解性を有するものと評価された。そのため、化合物(GP100CN)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
Figure JPOXMLDOC01-appb-C000028
 
<製造例1>
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製、試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。また、炭素濃度は84.2質量%、酸素濃度は8.3質量%であった。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上述のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
熱重量測定(TG)の結果、得られた樹脂の400℃での熱減少量は25%以上であった。そのため、高温ベークへの適用が困難であるものと評価された。
 PGMEAへの溶解性を評価した結果、20質量%以上(評価A)であり、優れた溶解性を有するものと評価された。
<実施例1~2、比較例1~2>
 表1に示す組成となるように、前記合成例1で得られた化合物、前記製造例1で得られた樹脂、及び次の材料を用いて、実施例1~2及び比較例1~2に対応するリソグラフィー用下層膜形成材料を各々調製した。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 次に、実施例1~2、比較例1~2の下層膜形成用組成物をシリコン基板上に回転塗布し、その後、180℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。そして、下記に示す条件にてエッチング耐性及び耐熱性を評価した。
Figure JPOXMLDOC01-appb-T000029
 
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:4Pa
 時間:2min
 エッチングガス
 CFガス流量:Oガス流量=5:15(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例1における化合物(GP100CN)に代えてノボラック(群栄化学社製PSM4357)を用い、乾燥温度を110℃にすること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上述のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1~2及び比較例1~2の下層膜を対象として、前記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。実用的観点からは、下記A評価及びB評価が好ましい。
 <評価基準>
A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
B:ノボラックの下層膜に比べてエッチングレートが、-20%以上~-10%以下
C:ノボラックの下層膜に比べてエッチングレートが、-10%以上0%以下
[耐熱性の評価]
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG-DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(300ml/min)気流中昇温速度10℃/minで500℃まで昇温することにより熱重量減少量を測定した。実用的観点からは、下記A又はB評価が好ましい。
<評価基準>
 A:400℃での熱重量減少量が、10%未満
 B:400℃での熱重量減少量が、10%~25%
 C:400℃での熱重量減少量が、25%超
<実施例3>
 実施例1におけるリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。ArF用レジスト溶液としては、下記式(22)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 なお、下記式(22)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000030
 
前記式(22)中、40、40、20とあるのは各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。評価結果を表2に示す。
<実施例4>
 前記実施例1におけるリソグラフィー用下層膜形成用組成物の代わりに実施例2におけるリソグラフィー用下層膜形成用組成物を用いること以外は、実施例3と同様にして、ポジ型のレジストパターンを得た。評価結果を表2に示す。
<比較例3>
 下層膜の形成を行わないこと以外は、実施例3と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。評価結果を表2に示す。
[評価]
 実施例3、4及び比較例3のそれぞれについて、得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製の電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。
Figure JPOXMLDOC01-appb-T000031
 
 表2から明らかなように、シアン酸エステル化合物を含む本発明の下層膜形成用材料を用いた実施例3及び4は、比較例3に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例3及び4のリソグラフィー用下層膜用組成物から得られる下層膜は、レジスト材料との密着性が良いことが示された。
 2015年4月7日に出願された日本国特許出願2015-078565号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 本発明のリソグラフィー用下層膜形成用材料は、耐熱性が比較的に高く、溶媒溶解性も比較的に高く、段差基板への埋め込み特性及び膜の平坦性に優れ、湿式プロセスが適用可能である。そのため、本発明のリソグラフィー用下層膜形成用材料、該材料を含む組成物及び該組成物を用いて形成される下層膜は、前記性能が要求される各種用途において、広く且つ有効に利用可能である。
 

Claims (12)

  1.  変性キシレンホルムアルデヒド樹脂をシアネート化して得られたシアン酸エステル化合物を含むリソグラフィー用下層膜形成用材料。
  2.  前記変性キシレンホルムアルデヒド樹脂が、キシレンホルムアルデヒド樹脂又は脱アセタール結合キシレンホルムアルデヒド樹脂を下記式(2)で表されるフェノール類を用いて変性させて得られた樹脂である、請求項1に記載のリソグラフィー用下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(2)中、Arは芳香環構造を表す。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基である。芳香環の置換基は任意の位置を選択できる。aはヒドロキシ基の結合個数を表し、1~3の整数である。bはRの結合個数を表し、Arがベンゼン構造のときは5-a、ナフタレン構造のときは7-a、ビフェニレン構造のときは9-aである。)
  3.  前記式(2)で表されるフェノール類が、フェノール又は2,6-キシレノールである、請求項2に記載のリソグラフィー用下層膜形成用材料。
  4.  前記シアン酸エステル化合物が、下記式(1)で表されるシアン酸エステル化合物を含む請求項1~3のいずれか1項に記載のリソグラフィー用下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(1)中、Arは芳香環構造を表し、Rは各々独立にメチレン基、メチレンオキシ基、メチレンオキシメチレン基又はオキシメチレン基を表し、これらが連結していてもよい。Rは一価の置換基を表し、各々独立に、水素原子、アルキル基又はアリール基を表し、Rは各々独立に、炭素数が1~3のアルキル基、アリール基、ヒドロキシ基又はヒドロキシメチレン基を表し、mは1以上の整数を表し、nは0以上の整数を表す。各繰り返し単位の配列は任意である。kはシアナト基の結合個数を表し、1~3の整数である。xはRの結合個数を表し、「Arの結合可能な個数-(k+2)」である。yはRの結合個数を表し、0~4の整数を表す。)
  5.  前記式(1)で表されるシアン酸エステル化合物が、下記式(1-1)で表される化合物である、請求項4に記載のリソグラフィー用下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(1-1)中、R~R、k、m、n及びyは前記(1)で説明したものと同義であり、xは4-kである。)
  6.  前記シアン酸エステル化合物の重量平均分子量(Mw)が、250~10000である、請求項1~5のいずれか一項に記載のリソグラフィー用下層膜形成用材料。
  7.  請求項1~6のいずれか一項に記載のリソグラフィー用下層膜形成用材料と溶媒とを含有するリソグラフィー用下層膜形成用組成物。
  8.  酸発生剤をさらに含有する請求項7に記載のリソグラフィー用下層膜形成用組成物。
  9.  架橋剤をさらに含有する請求項7又は8に記載のリソグラフィー用下層膜形成用組成物。
  10.  請求項7~9のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて形成されるリソグラフィー用下層膜。
  11.  基板上に、請求項7~9のいずれか一項に記載の下層膜形成用組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う、レジストパターン形成方法。
  12.  基板上に、請求項7~9のいずれか一項に記載の下層膜形成用組成物を用いて下層膜を形成し、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する、回路パターン形成方法。
     
PCT/JP2016/061398 2015-04-07 2016-04-07 リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 WO2016163457A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16776623.7A EP3282319A4 (en) 2015-04-07 2016-04-07 Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, and pattern formation method
US15/565,064 US20180101097A1 (en) 2015-04-07 2016-04-07 Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
KR1020177030371A KR20170134511A (ko) 2015-04-07 2016-04-07 리소그래피용 하층막 형성용 재료, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막 및 패턴 형성방법
SG11201708157RA SG11201708157RA (en) 2015-04-07 2016-04-07 Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
CN201680019607.1A CN107533297A (zh) 2015-04-07 2016-04-07 光刻用下层膜形成用材料、光刻用下层膜形成用组合物、光刻用下层膜及图案形成方法
JP2016554521A JP6052652B1 (ja) 2015-04-07 2016-04-07 リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-078565 2015-04-07
JP2015078565 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163457A1 true WO2016163457A1 (ja) 2016-10-13

Family

ID=57073292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061398 WO2016163457A1 (ja) 2015-04-07 2016-04-07 リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Country Status (8)

Country Link
US (1) US20180101097A1 (ja)
EP (1) EP3282319A4 (ja)
JP (1) JP6052652B1 (ja)
KR (1) KR20170134511A (ja)
CN (1) CN107533297A (ja)
SG (1) SG11201708157RA (ja)
TW (1) TW201704278A (ja)
WO (1) WO2016163457A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227849A1 (en) * 2014-08-08 2017-08-10 Mitsubishi Gas Chemical Company, Inc. Composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JPWO2019098338A1 (ja) * 2017-11-20 2020-12-17 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
KR20210005595A (ko) * 2018-04-23 2021-01-14 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패턴 형성 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343296B2 (en) 2015-07-25 2019-07-09 Bettcher Industries, Inc. Power operated rotary knife with notched rotary knife blade and trim guide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154857A (en) * 1976-06-18 1977-12-22 Mitsubishi Gas Chem Co Inc Composition containing cyanic ester resin
WO2009072465A1 (ja) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法
WO2013084819A1 (ja) * 2011-12-07 2013-06-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
WO2016021511A1 (ja) * 2014-08-08 2016-02-11 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407823B2 (ja) * 2004-02-18 2010-02-03 三菱瓦斯化学株式会社 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
CN103732642B (zh) * 2011-08-09 2015-05-27 三菱瓦斯化学株式会社 新型的氰酸酯化合物及其制造方法、以及包含该化合物的固化性树脂组合物及其固化物
KR101821705B1 (ko) * 2011-09-06 2018-01-25 주식회사 동진쎄미켐 페놀계 자가가교 고분자 및 이를 포함하는 레지스트 하층막 조성물
EP2810971B1 (en) * 2012-01-31 2018-09-19 Mitsubishi Gas Chemical Company, Inc. Metal foil-clad laminate and printed wiring board using a resin composition
US9214345B2 (en) * 2012-02-09 2015-12-15 Nissan Chemical Industries, Ltd. Film-forming composition and ion implantation method
JP6403003B2 (ja) * 2014-12-05 2018-10-10 Dic株式会社 シアン酸エステル化合物、シアン酸エステル樹脂、硬化性組成物、その硬化物、ビルドアップフィルム、半導体封止材料、プリプレグ、回路基板、及びシアン酸エステル樹脂の製造方法
CN107407884A (zh) * 2015-03-03 2017-11-28 三菱瓦斯化学株式会社 光刻用下层膜形成用材料、光刻用下层膜形成用组合物、光刻用下层膜、抗蚀图案形成方法、及电路图案形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154857A (en) * 1976-06-18 1977-12-22 Mitsubishi Gas Chem Co Inc Composition containing cyanic ester resin
WO2009072465A1 (ja) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法
WO2013084819A1 (ja) * 2011-12-07 2013-06-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
WO2016021511A1 (ja) * 2014-08-08 2016-02-11 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282319A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227849A1 (en) * 2014-08-08 2017-08-10 Mitsubishi Gas Chemical Company, Inc. Composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US10338471B2 (en) * 2014-08-08 2019-07-02 Mitsubishi Gas Chemical Company, Inc. Composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JPWO2019098338A1 (ja) * 2017-11-20 2020-12-17 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
EP3715949A4 (en) * 2017-11-20 2021-01-27 Mitsubishi Gas Chemical Company, Inc. COMPOSITION FOR FORMING A LITHOGRAPHIC FILM, LITHOGRAPHIC FILM, RESERVE PATTERN FORMING PROCESS AND CIRCUIT PATTERN FORMING PROCESS
JP7235207B2 (ja) 2017-11-20 2023-03-08 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
KR20210005595A (ko) * 2018-04-23 2021-01-14 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패턴 형성 방법
KR102697600B1 (ko) 2018-04-23 2024-08-23 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패턴 형성 방법

Also Published As

Publication number Publication date
TW201704278A (zh) 2017-02-01
KR20170134511A (ko) 2017-12-06
US20180101097A1 (en) 2018-04-12
SG11201708157RA (en) 2017-11-29
EP3282319A1 (en) 2018-02-14
JP6052652B1 (ja) 2016-12-27
JPWO2016163457A1 (ja) 2017-04-27
EP3282319A4 (en) 2018-12-05
CN107533297A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6094947B2 (ja) フルオレン構造を有する樹脂及びリソグラフィー用下層膜形成材料
JP6064904B2 (ja) フェノール系樹脂およびリソグラフィー用下層膜形成材料
US11137686B2 (en) Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
WO2011034062A1 (ja) 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物
WO2015137486A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法
JP6673343B2 (ja) リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP6388126B2 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP6646895B2 (ja) リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP6879201B2 (ja) リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、及び回路パターン形成方法
WO2017014191A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
WO2014123102A9 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
WO2016158457A1 (ja) 化合物、樹脂、及びそれらの精製方法、リソグラフィー用の下層膜形成材料、下層膜形成用組成物、及び下層膜、並びに、レジストパターン形成方法、及び回路パターン形成方法
WO2016143635A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び化合物又は樹脂の精製方法
WO2017038645A1 (ja) リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、パターン形成方法、樹脂、並びに精製方法
JP6052652B1 (ja) リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP2016184152A (ja) リソグラフィー用下層膜形成用材料、該材料を含む組成物及びパターン形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554521

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201708157R

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15565064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016776623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177030371

Country of ref document: KR

Kind code of ref document: A