WO2016163256A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2016163256A1
WO2016163256A1 PCT/JP2016/059869 JP2016059869W WO2016163256A1 WO 2016163256 A1 WO2016163256 A1 WO 2016163256A1 JP 2016059869 W JP2016059869 W JP 2016059869W WO 2016163256 A1 WO2016163256 A1 WO 2016163256A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
protrusion
width
groove wall
Prior art date
Application number
PCT/JP2016/059869
Other languages
English (en)
French (fr)
Inventor
さやか 三島
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201680020378.5A priority Critical patent/CN107428207B/zh
Priority to US15/560,090 priority patent/US20180304695A1/en
Priority to EP16776424.0A priority patent/EP3281806B1/en
Publication of WO2016163256A1 publication Critical patent/WO2016163256A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/1338Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a tire in which a groove portion extending in a tire circumferential direction is formed in a tread portion.
  • a pneumatic tire (hereinafter referred to as a tire) that is mounted on a vehicle
  • various methods are used in order to suppress an increase in the temperature of the tire as the vehicle travels.
  • the temperature rise is significant in heavy duty tires mounted on trucks, buses, and the like.
  • a tire has been proposed in which a protrusion that extends linearly from one groove wall to the other groove wall is provided at the groove bottom of the groove formed in the tread portion of the tire (for example, Patent Document 1). ).
  • the land portions on both sides of the groove portion are compressed and deformed in a direction in which the groove width becomes narrower when they come into contact with the road surface. And if the land part of the both sides of a groove part leaves
  • the land portions on both sides of the groove portion repeatedly bulge and deform in the direction in which the groove width becomes narrower every time the land portion touches the road surface. Therefore, the protruding portion formed in the groove portion has one groove wall and the other. Repeatedly receives compressive force from both sides of the groove wall.
  • the protrusion is configured to be linearly connected from one groove wall to the other groove wall, and when the protrusion receives repeated compressive force from both sides, the center of the protrusion in the tire width direction is In some parts, shear deformation repeatedly occurs locally, and cracks may occur in the protrusions.
  • the present invention has been made in view of the above problems, and by suppressing cracks generated in the protrusions formed in the grooves, the temperature of the tread part is reliably suppressed while improving the durability of the protrusions. It is an object to provide a tire that can be used.
  • the tire according to the present invention is a tire in which a groove portion extending in a tire circumferential direction is formed in a tread portion, and a protrusion portion extending in a direction intersecting the tire circumferential direction is provided on a groove bottom of the groove portion.
  • the protrusion extends from one groove wall forming the groove toward the other groove wall forming the groove and terminates in front of the other groove wall;
  • a second projecting portion that extends from the other groove wall toward the one groove wall and terminates in front of the one groove wall, and is in front of the other groove wall.
  • the gist is that the terminal portion of the first projecting portion that terminates at the end is disposed closer to the other groove wall than the terminal portion of the second projecting portion that terminates in front of the one groove wall.
  • FIG. 1 is a cross-sectional view of the tire 1 according to the first embodiment of the present invention along the tire width direction and the tire radial direction.
  • FIG. 2 is a partially broken perspective view of the groove portion according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing the shape of the groove portion according to the first embodiment of the present invention in a tread surface view.
  • FIG. 4 is an enlarged plan view of the protrusion according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view along the tire width direction and the tire radial direction of the groove as viewed from the F1 direction in FIG.
  • FIG. 6 is a cross-sectional view of the protrusion along the line AA in FIG. 3 and the tire radial direction.
  • FIG. 1 is a cross-sectional view of the tire 1 according to the first embodiment of the present invention along the tire width direction and the tire radial direction.
  • FIG. 2 is a partially broken perspective view of the groove portion according to the
  • FIG. 7 is a graph showing measurement results obtained by measuring the relationship between the extending direction of the first protruding portion and the extending direction of the second protruding portion with respect to the tire circumferential direction and the heat transfer coefficient (index indication) in the groove. is there.
  • FIG. 8 is a graph showing measurement results obtained by measuring the relationship between the coefficient multiplied by the length L of the protrusions defining the predetermined interval P and the heat transfer coefficient in the grooves.
  • FIG. 9 is a graph showing measurement results obtained by measuring the relationship between the coefficient applied to the groove depth D defining the height H and the heat transfer coefficient in the groove.
  • FIG. 10 is a graph showing the relationship between the coefficient applied to the groove width W that defines the distance Lx between the first and second protrusions, the strain, and the heat transfer coefficient.
  • FIG. 11 shows the relationship between the coefficient multiplied by the groove width W that defines the groove wall distance Lw1 between the first protrusion and the groove wall (the groove wall distance Lw2 between the second protrusion and the groove wall), and the distortion and heat transfer coefficient.
  • FIG. FIG. 12 is a graph showing the relationship between the width of the protrusion, strain, and heat transfer coefficient.
  • FIG. 13 is a graph showing the relationship between the coefficient applied to the groove width W that defines the end interval Lw between the end portions of the first and second protrusions, and the strain and heat transfer coefficient.
  • FIG. 1 is a cross-sectional view along the tire width direction TW and the tire radial direction TD of the tire 1 according to the present embodiment.
  • the tire 1 according to the present embodiment has a symmetrical shape with respect to the tire equator line CL.
  • the tire 1 may have a left-right asymmetric shape.
  • the tire 1 according to the present embodiment is assumed to be a pneumatic tire that is filled with air after being assembled to the regular rim 5.
  • the gas filled in the tire 1 assembled to the regular rim 5 is not limited to air but may be filled with an inert gas such as nitrogen gas. Furthermore, a cooling liquid (coolant) may be filled.
  • the tire 1 is suitably used as a heavy duty tire (TBR tire) mounted on a truck or bus (TB).
  • the tire 1 has a rubber gauge (rubber thickness) of the tread portion 10 larger than that of a pneumatic tire mounted on a passenger car or the like. Specifically, the tire 1 satisfies DC / OD ⁇ 0.005 when the tire outer diameter is OD and the rubber gauge of the tread portion 10 at the position of the tire equator line CL is DC.
  • the tire outer diameter OD (unit: mm) is the diameter of the tire 1 at a portion where the outer diameter of the tire 1 is maximum (generally, the tread portion 10 in the vicinity of the tire equator line CL).
  • the rubber gauge DC (unit: mm) is the rubber thickness of the tread portion 10 at the position of the tire equator line CL.
  • the rubber gauge DC does not include the thickness of the belt layer 40.
  • the groove part when the groove part is formed in the position containing the tire equator line CL, it is set as the rubber thickness of the tread part 10 in the position adjacent to a groove part.
  • the tire 1 is connected to the tread portion 10 that is in contact with the road surface, the tread portion 10, the sidewall portion 20 that is located on the inner side in the tire radial direction TD from the tread portion 10, and the sidewall portion 20.
  • the bead portion 30 is located on the inner side in the tire radial direction TD from the sidewall portion 20.
  • the tread portion 10 has a tread contact surface 11 that contacts the road surface when the tire rolls.
  • a groove portion extending in the tire circumferential direction TC is formed in the tread portion 10.
  • the tread portion 10 is formed with a groove portion 60 provided on the tire equator line CL and a groove portion 70 provided on the tread end TE side of the tread ground surface 11 as groove portions.
  • the “tread end TE” means that the tire surface is mounted on the regular rim 5, filled with a regular internal pressure, and a regular load is applied. The outermost position in the tire width direction of the tread contact surface that comes into contact with the ground.
  • Regular rim refers to the standard rim specified in the following standards according to the tire size.
  • Regular internal pressure refers to the maximum size of a single wheel in the applicable size described in the following standards. Air pressure corresponding to the load capacity is referred to, and “normal load” refers to the maximum load (maximum load capacity) of a single wheel in the applicable size of the following standard.
  • the standard is an industrial standard that is effective in the area where tires are produced or used.
  • Japan it is “JATMA YEAR BOOK” of the “Japan Automobile Tire Association”, and in the United States “THE TIRE AND RIM ASSOCATION INC” “YEAR BOOK” in Europe, and “STANDARD MANUAL” in “The European Tire and Rim Technical Organization” in Europe.
  • the groove part 70 is comprised by one groove wall 71, the other groove wall 73 facing one groove wall 71, and the groove bottom 72 connected to one groove wall 71 and the other groove wall 73 ( (See FIG. 3).
  • the groove bottom 72 of the groove 70 is provided with a protrusion 100 extending in a direction intersecting the tire circumferential direction TC.
  • the projection part 100 may be provided in the groove part 60 on the tire equator line CL, it is preferable to be provided in the groove part 70 nearest to the edge part of the tire width direction TW of the belt layer 40 mentioned later at least.
  • a plurality of land portions 80 are defined in the tread portion 10 by forming the groove portions 70. Specifically, the land portion 81 is formed inside the groove portion 70 in the tire width direction TW, and the land portion 82 is formed outside the groove portion 70 in the tire width direction TW. In the present embodiment, the land portion 81 and the land portion 82 will be described as simply the land portion 80 as appropriate.
  • a belt layer 40 composed of a plurality of belts 41 is provided inside the tread portion 10 in the tire radial direction TD.
  • a groove portion 70 formed in the tread portion 10 is disposed outside the end portion 41e of the belt 41 in the tire radial direction TD.
  • a carcass layer 52 that forms a skeleton of the tire 1 is provided across the pair of left and right bead cores 51.
  • the end of the carcass layer 52 is folded back so as to wrap the bead core 51.
  • FIG. 2 is a partially broken perspective view of the groove portion according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing the shape of the groove portion according to the first embodiment of the present invention in a tread surface view.
  • FIG. 4 is an enlarged plan view of the protrusion according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view along the tire width direction and the tire radial direction of the groove as viewed from the F1 direction in FIG.
  • FIG. 6 is a cross-sectional view of the protrusion along the line AA in FIG. 3 and the tire radial direction.
  • the rotational direction TR in which the tire 1 rotates as the vehicle advances is defined.
  • the rotation direction TR of the tire 1 when the vehicle is used is not particularly specified.
  • the groove portion 70 is provided with a plurality of protrusions 100.
  • the protrusions are provided at predetermined intervals P in the tire circumferential direction TC.
  • the protrusion 100 is composed of a first protrusion 110 and a second protrusion 120.
  • the first projecting portion 110 extends from one groove wall 71 forming the groove portion 70 toward the other groove wall 73 forming the groove portion 70, and terminates before the other groove wall 73.
  • one groove wall 71 is formed in the land portion 81 inside the tire width direction TW of the groove portion 70, and the other groove wall 73 is formed in the land portion 82 outside the tire width direction TW of the groove portion 70. It is formed.
  • the end portion on the one groove wall 71 side of the first protruding portion 110 is connected to the one groove wall 71.
  • the end portion on the other groove wall 73 side of the first projecting portion 110 constitutes an end portion 110 a that terminates in front of the other groove wall 73. That is, the terminal end portion 110 a of the first protruding portion 110 is located between the one groove wall 71 and the other groove wall 73.
  • the second projecting portion 120 extends from the other groove wall 73 toward the one groove wall 71 and ends before the one groove wall 71.
  • the end of the second protruding portion 120 on the other groove wall 73 side is connected to the other groove wall 73.
  • the end portion on the one groove wall 71 side of the second projecting portion 120 constitutes an end portion 120 a that terminates in front of the one groove wall 71. That is, the end portion 120 a of the second projecting portion 120 is located between the one groove wall 71 and the other groove wall 73.
  • the terminal portion 110a of the first projecting portion 110 is disposed closer to the other groove wall 73 than the terminal portion 120a of the second projecting portion 120.
  • the protrusion part 100 has an overlapping part (not shown) in which a part of the first protrusion part 110 and a part of the second protrusion part 120 overlap in the tire circumferential direction TC.
  • the protrusion portion 100 is formed by the first protrusion portion 110 and the second protrusion portion 120 from one groove wall 71 to the other groove wall. It is comprised so that it may continue to 73 (refer FIG. 5).
  • the extending direction of the first protruding portion 110 and the extending direction of the second protruding portion 120 are parallel. Therefore, the center line CL1 of the first projecting portion 110 and the center line CL2 of the second projecting portion 120 are parallel.
  • the center line CL1 is a virtual line passing through the center in the width direction of the first protrusion portion 110
  • the center line CL2 is a virtual line passing through the center in the width direction of the second protrusion portion 120.
  • the predetermined interval P is preferably not less than 0.75 times and not more than 10 times the length L. That is, it is preferable that the predetermined interval P and the length L satisfy the relationship of 0.75L ⁇ P ⁇ 10L.
  • the groove center line CL70 is a virtual line passing through the center in the groove width direction orthogonal to the extending direction of the groove part 70, and is parallel to the tire circumferential direction TC in this embodiment.
  • the length L is the length from one end of the protrusion 100 along the groove center line CL70 to the other end.
  • the predetermined interval P is a distance between two protrusions 100 adjacent to each other along the groove center line CL70.
  • the extending direction of the first protruding portion 110 and the extending direction of the second protruding portion 120 are inclined with respect to the tire circumferential direction TC.
  • the angle ⁇ 1 formed between the extending direction of the first protruding portion 110 and the tire circumferential direction TC and the angle ⁇ 2 formed between the extending direction of the second protruding portion 120 and the tire circumferential direction TC are 10 to It is preferable to be within the range of 60 degrees.
  • the extending direction of the first protruding portion 110 is the direction along the center line CL1 of the first protruding portion 110, and the extending direction of the second protruding portion 120 is the center line CL2 of the second protruding portion 120.
  • the angle ⁇ 1 and the angle ⁇ 2 are the same. However, the angle ⁇ 1 and the angle ⁇ 2 do not necessarily have to be the same. In other words, the angle ⁇ 1 and the angle ⁇ 2 may be different from each other within the above-described range.
  • the width of the groove portion 70 is the groove width W
  • Lx is preferably 0.1 to 0.3 times the groove width W. That is, it is preferable that the distance Lx and the groove width W satisfy the relationship of 0.1W ⁇ Lx ⁇ 0.3W.
  • the groove width W is the width of the groove part 70 in the groove width direction orthogonal to the extending direction of the groove part 70.
  • the groove width W is the width of the groove part 70 in the tire width direction TW orthogonal to the tire circumferential direction TC.
  • the direction orthogonal to the extending direction of the first protrusion 110 is a direction orthogonal to the center line CL1 of the first protrusion 110.
  • the groove wall interval Lw1 between the terminal end portion 110a of the first protruding portion 110 and the other groove wall 73 and the terminal portion 120a of the second protruding portion 120 and one of the end portions 120a is 0.1 to 0.4 times the groove width W. That is, it is preferable that the groove wall interval Lw1 (and the groove wall interval Lw2) and the groove width W satisfy the relationship of 0.1W ⁇ Lw1 (and Lw2) ⁇ 0.4W.
  • the groove wall interval Lw1 is the same as the groove wall interval Lw2.
  • the groove wall interval Lw1 is not necessarily the same as the groove wall interval Lw2.
  • the groove wall interval Lw1 and the groove wall interval Lw2 may satisfy the relationship Lw1> Lw2.
  • the width of the groove portion 70 is defined as the groove width W
  • the end interval Lw between the end portion 110a of the first protrusion portion 110 and the end portion 120a of the second protrusion portion 120 is equal to the groove width W. It is preferably 0.2 times or more and 0.6 times or less. That is, it is preferable that the termination interval Lw and the groove width W satisfy the relationship of 0.2W ⁇ Lw ⁇ 0.6W.
  • the distance Lx1 between the terminal end portion 110a of the first protrusion portion 110 and the groove center line CL70, and the terminal end portion 120a of the second protrusion portion 120 The distance Lx2 from the groove center line CL70 is the same.
  • the interval Lx1 and the interval Lx2 are not necessarily the same.
  • the distance Lx2 between the two protruding portions 120 may satisfy the relationship Lx1> Lx2.
  • the height from the groove bottom 72 of the first protrusion portion 110 and the second protrusion portion 120 is H, and the depth from the tread grounding surface 11 of the groove portion 70 to the groove bottom 72 (the deepest portion).
  • the thickness is D
  • the height H is preferably larger than 0.03 times the depth D and not more than 0.4 times. That is, it is preferable that the height H and the depth D satisfy the relationship of 0.03D ⁇ H ⁇ 0.4D.
  • the width W110 of the first protrusion 110 and the width W120 of the second protrusion 120 are both preferably 1 mm or more and 4 mm or less.
  • the width W110 of the first protruding portion 110 is a length in a direction perpendicular to the center line CL1 along the extending direction of the first protruding portion 110
  • the width W120 of the second protruding portion 120 is This is the length in the direction orthogonal to the center line CL2 along the extending direction of the second protruding portion 120.
  • the width W110 of the first protrusion 110 and the width W120 of the second protrusion 120 are the same.
  • the width W110 of the first protruding portion 110 and the width W120 of the second protruding portion 120 are not necessarily the same.
  • the width W 110 of the first protruding portion 110 extending from the one groove wall 71 and the first groove wall 73 extending from the other groove wall 73.
  • the width W120 of the two protruding portions 120 may satisfy the relationship of W110> W120.
  • the protrusion 100 is formed at the groove bottom 72 of the groove 70 extending in the tire circumferential direction TC. In the opposite direction, air flows AR1 and AR2 (relative wind) are generated in the groove 70 (see FIG. 4).
  • a part of the air flow AR1 along the other groove wall 73 of the groove part 70 moves over the protrusion part 100 without proceeding along the groove part 70 because the protrusion part 100 is positioned in the traveling direction.
  • the air flow AR1 changes to a spiral (swirl) flow.
  • the air flow AR1 advances by involving surrounding air, the air flow rate increases and the speed of the air flow AR1 increases. Thereby, the heat radiation from the tread portion 10 is promoted.
  • a part of the air flow AR2 along the one groove wall 71 of the groove part 70 proceeds along the extending direction of the protrusion part 100. Thereafter, the air flow AR ⁇ b> 2 flows out of the groove part 70 on the other groove wall 73 side of the groove part 70. Thereby, since the air which stored heat by passing through the inside of the groove part 70 flows to the outside, the heat radiation from the tread part 10 is promoted.
  • the protruding portion 100 is constituted by the first protruding portion 110 and the second protruding portion 120.
  • the first projecting portion 110 extends from one groove wall 71 toward the other groove wall 73 and terminates in front of the other groove wall 73.
  • the second projecting portion 120 extends from the other groove wall 73 toward the one groove wall 71 and terminates in front of the one groove wall 71. That is, each of the first projecting portion 110 and the second projecting portion 120 is configured to be separated from the groove wall 71 or 73 on one side of the groove walls 71 and 73 of the groove portion 70.
  • the first protrusion portion 110 and the second protrusion portion 120 are both Although receiving a compressive force only from the land part 80, it can prevent receiving a compressive force from the land part 80 of both sides.
  • the first protrusion portion is caused by the compressive force received from the land portion 80 as compared with the case where the protrusion is configured to be linearly connected from one groove wall 71 to the other groove wall 73. And the occurrence of shear deformation in the second protrusion portion can be suppressed.
  • the intended turbulent flow can be reliably generated by the protrusion 100. That is, the temperature rise of the tread portion 10 can be reliably suppressed while increasing the durability of the protrusion 100 by suppressing the occurrence of cracks in the protrusion 100.
  • the projection part 100 is comprised by the 1st projection part 110 and the 2nd projection part 120, also when receiving tensile force from the land part 80 of both sides, it is a crack resulting from distortion (deformation) by tensile force. Can also be suppressed.
  • the terminal portion 110a of the first protruding portion 110 is disposed closer to the other groove wall 73 than the terminal portion 120a of the second protruding portion 120. That is, in the protrusion 100, the first protrusion 110 and the second protrusion 120 are changed from one groove wall 71 to the other groove wall 73 in a cross-sectional view of the groove 70 along the tire radial direction TD and the tire width direction TW. It continues until.
  • the inside of the groove 70 is in the tire circumferential direction.
  • the turbulent flow that cools the inside of the groove part 70 can be reliably generated by causing the airflow flowing through the TC to reliably collide with the protrusion 100. Therefore, the effect which suppresses the temperature rise of the tread part 10 can be heightened.
  • the angle ⁇ 1 formed between the extending direction of the first protruding portion 110 and the tire circumferential direction TC and the extending direction of the second protruding portion 120 and the tire circumferential direction TC are formed.
  • the angle ⁇ 2 is preferably 10 degrees or more and 60 degrees or less.
  • FIG. 7 is a graph showing measurement results of measuring the relationship between the angle in the extending direction of the first and second protrusions with respect to the tire circumferential direction and the heat transfer coefficient (index indication) in the groove. Yes.
  • the heat transfer coefficient value “100” indicates the heat transfer coefficient (reference value) of a tire not provided with the protrusion 100.
  • the groove portion 70 is formed by the acute angle portion formed by the protrusion 100 and one groove wall 71 (or the other groove wall 73). It can suppress that the flow AR1 and AR2 of the flowing air become weak. Moreover, since the protrusion part 100 can be easily manufactured in the groove part 70, the convenience in manufacturing increases.
  • the air flow AR2 flowing through the groove 70 can be efficiently changed to a spiral flow. For this reason, the air volume which passes the groove bottom 72 increases, and heat can be efficiently radiated from the tread portion 10.
  • the angle ⁇ 1 and the angle ⁇ 2 are more preferably 15 degrees or more and 40 degrees or less. As a result, as shown in FIG. 7, the heat transfer coefficient value “103” that reliably exhibits the effect at the time of mounting can be exceeded, so that the reliability of the effect of suppressing the temperature rise of the tread portion 10 is increased.
  • the length of the protrusion 100 along the groove center line CL70 passing through the center of the groove 70 is L and the predetermined interval is P in the tread surface view of the tire 1, It is preferable to satisfy the relationship of 0.75L ⁇ P ⁇ 10L.
  • FIG. 8 is a graph showing a measurement result obtained by measuring the relationship between the coefficient applied to the length L of the protrusion 100 defining the predetermined interval P and the heat transfer coefficient in the groove 70.
  • the heat transfer coefficient value “100” indicates the heat transfer coefficient (reference value) of a tire not provided with the protrusion 100.
  • the coefficient can also be restated as the ratio of the predetermined interval P to the length L, P / L.
  • the relationship of 1.25L ⁇ P more preferably satisfy the relationship of 1.5L ⁇ P, and even more preferably satisfy the relationship of 2.0L ⁇ P.
  • the number of protrusions 100 provided in the groove 70 becomes a more appropriate number.
  • the area of the groove bottom 72 through which the air flows AR1 and AR2 pass is not too small, heat is efficiently radiated from the groove bottom 72.
  • the heat transfer coefficient value “103” that reliably exhibits an effect at the time of mounting can be exceeded, so that the reliability of the effect of suppressing the temperature rise of the tread portion 10 is increased.
  • the height from the groove bottom 72 of the first protrusion portion 110 and the second protrusion portion 120 is H, and the depth from the tread grounding surface 11 of the groove portion 70 to the groove bottom 72 is set.
  • D it is preferable to satisfy the relationship of 0.03D ⁇ H ⁇ 0.4D.
  • FIG. 9 is a graph showing a measurement result obtained by measuring the relationship between the coefficient multiplied by the groove depth D defining the height H and the heat transfer coefficient in the groove 70.
  • the heat transfer coefficient value “100” indicates the heat transfer coefficient (reference value) of a tire not provided with the protrusion 100.
  • the coefficient can also be restated as a ratio H / D of the height H to the groove depth D.
  • the height H of the first projecting portion 110 and the second projecting portion 120 is equal to or higher than a predetermined height.
  • the flows AR1 and AR2 can be efficiently changed into a spiral flow. For this reason, the air volume which passes the groove bottom 72 increases, and heat is efficiently radiated from the tread portion 10.
  • the air flows AR1 and AR2 changed into a spiral flow can easily reach the groove bottom 72, so that heat is efficiently radiated from the groove bottom 72.
  • the width of the groove portion 70 is the groove width W
  • the first protrusion portion 110 and the second protrusion portion 120 in the direction orthogonal to the extending direction of the first protrusion portion 110
  • the distance Lx is preferably not less than 0.1 times and not more than 0.3 times the groove width W.
  • FIG. 10 shows the relationship between the coefficient applied to the groove width W that defines the distance Lx and the heat transfer coefficient in the groove portion 70, and the relationship between the coefficient and the distortion generated in the first and second protrusions.
  • the graph figure which shows the measurement result which measured this is shown.
  • the relationship between the coefficient and the heat transfer coefficient is indicated by “solid line ( ⁇ )”
  • the relationship between the coefficient and strain is indicated by “dotted line (square)”.
  • the heat transfer coefficient value “100” and the strain value “100” indicate the heat transfer coefficient (reference value) and strain (reference value) of a tire not provided with the protrusion 100.
  • the coefficient can also be restated as the ratio of the interval Lx to the groove width W, Lx / W.
  • the distance Lx between the first protruding portion 110 and the second protruding portion 120 is 0.1 times or more the groove width W, the first protruding portion 110 and the second protruding portion 120 are compressed from the land portion 80 by a compressive force. Even if it receives and deform
  • the gap between the first protrusion portion 110 and the second protrusion portion 120 (the gap) ) Can be prevented from entering the air flow AR1 and AR2, and the air flow AR1 and AR2 over the protrusion 100 can be generated more reliably.
  • the distance Lx between the first protrusion portion 110 and the second protrusion portion 120 is more preferably 0.2 times or more and 0.3 times or less of the groove width W.
  • the groove wall interval Lw2 is preferably not less than 0.1 times and not more than 0.4 times the groove width W.
  • FIG. 11 shows the relationship between the coefficient applied to the groove width W that defines the groove wall interval Lw1 and the groove wall interval Lw2 and the heat transfer coefficient in the groove part 70, and the coefficient and the first and second protrusion portions.
  • the graph figure which shows the measurement result which measured the relationship with the distortion which arose in is shown.
  • the relationship between the coefficient and the heat transfer coefficient is indicated by “solid line ( ⁇ )”, and the relationship between the coefficient and distortion is indicated by “dotted line (square)”.
  • the heat transfer coefficient value “100” and the strain value “100” indicate the heat transfer coefficient (reference value) and strain (reference value) of a tire not provided with the protrusion 100.
  • the coefficient can also be rephrased as the ratio of the groove wall interval Lw1 to the groove width W, Lw1 / W, and similarly the ratio of the groove wall interval Lw2 to the groove width W, Lw2 / W.
  • the groove wall interval Lw1 of the first protruding portion 110 is 0.1 times or more the groove width W
  • the first protruding portion 110 propagates through the groove bottom 72 and receives the compression force received from the other groove wall 73. Can be suppressed more reliably.
  • the groove wall interval Lw2 of the second protrusion portion 120 since the groove width W is 0.1 times or more, the second protrusion portion 120 propagates through the groove bottom 72, and from one groove wall 71. The compressive force received can be suppressed more reliably.
  • FIG. 11 since distortion generated in the first protrusion portion 110 and the second protrusion portion 120 can be suppressed, cracks generated in the first protrusion portion 110 and the second protrusion portion 120 can be suppressed.
  • the first protrusion portion 110 and the second protrusion portion 120 are 0.4 times or less of the groove width W
  • the first protrusion portion 110 and the second protrusion portion 120 are.
  • the tire circumferential direction is between the first protrusion part 110 and the second protrusion part 120. It is possible to prevent formation of a gap penetrating the TC. Thereby, since the air flows AR1 and AR2 over the protrusion 100 can be generated more reliably, the heat transfer rate can be secured and the temperature rise of the tread portion 10 can be suppressed.
  • the groove wall interval Lw1 and the groove wall interval Lw2 are not less than 0.3 times and not more than 0.4 times the groove width W. Thereby, the temperature rise of the tread portion 10 can be more reliably suppressed while the cracks generated in the first protrusion portion 110 and the second protrusion portion 120 are more reliably suppressed.
  • the width W110 of the first protruding portion 110 and the width W120 of the second protruding portion 120 are preferably 1 mm or more and 4 mm or less.
  • FIG. 12 shows the relationship between the width W110 of the first protrusion 110 (and the width W120 of the second protrusion 120) and the heat transfer coefficient in the groove 70, and the width W110 (and width W120) and the first.
  • a graph showing the measurement results of measuring the relationship with the strain generated in the first and second protrusions is shown.
  • the relationship between the width W110 (and the width W120) and the heat transfer coefficient is indicated by a “solid line (x)”, and the relationship between the width W110 (and the width W120) and the strain is “dotted line ( Square marks) ”.
  • the heat transfer coefficient value “100” and the distortion value “100” indicate the heat transfer coefficient (reference value) and distortion (reference value) of a tire not provided with the protrusion 100. .
  • the width W110 of the first protrusion portion 110 and the width W120 of the second protrusion portion 120 are 1 mm or more, the rigidity of the protrusion portion itself for stably generating turbulent flow can be maintained. Thereby, as shown in FIG. 12, a heat transfer rate is securable. Moreover, generation
  • the width W110 of the first protrusion portion 110 and the width W120 of the second protrusion portion 120 are 4 mm or less, so that the area of the groove bottom 72 other than the first protrusion portion 110 and the second protrusion portion 120 is as follows. Therefore, the effect of cooling the groove bottom 72 can be enhanced by the air flows AR1 and AR2.
  • the width W110 of the first protrusion 110 and the width W120 of the second protrusion 120 are 1 mm or more and 2 mm or less. Thereby, the molding defect can be more reliably suppressed while the temperature increase of the tread portion 10 is more reliably suppressed.
  • the termination interval Lw between the termination portion 110a of the first projection portion 110 and the termination portion 120a of the second projection portion 120 is 0.2 of the groove width W. It is preferable that it is not less than twice and not more than 0.6 times.
  • FIG. 13 shows the relationship between the coefficient applied to the groove width W that defines the end interval Lw and the heat transfer coefficient in the groove 70, and the coefficient and the distortion generated in the first and second protrusions.
  • the graph figure which shows the measurement result which measured the relationship is shown.
  • the relationship between the coefficient and the heat transfer coefficient is indicated by a “solid line (x mark)”
  • the relationship between the coefficient and the strain is indicated by a “dotted line (square mark)”.
  • the heat transfer coefficient value “100” and the strain value “100” indicate the heat transfer coefficient (reference value) and strain (reference value) of a tire not provided with the protrusion 100.
  • the coefficient can also be restated as the ratio of the termination interval Lw to the groove width W, Lw / W.
  • the first protrusion 110 and the second protrusion 120 are deformed with the deformation of the one groove wall 71 and the other groove wall 73. Even if it deform
  • FIG. 13 As a result, as shown in FIG. 13, the air flows AR1 and AR2 over the protrusion 100 can be more reliably generated, so that the heat transfer rate is secured and the temperature rise of the tread portion 10 is suppressed. Can do.
  • the terminal interval Lw is not more than 0.6 times the groove width W
  • the first projecting portion 110 and the second projecting portion are maintained while the heat dissipation effect by the first projecting portion 110 and the second projecting portion 120 is maintained. Generation of cracks due to deformation of 120 can be suppressed.
  • the end interval Lw is more preferably 0.2 times or more and 0.3 times or less of the groove width W.
  • the tire according to Comparative Example 1 used a structure in which the protrusions formed in the groove portion are linearly connected from one groove wall to the other groove wall.
  • the tire according to Comparative Example 2 used a structure in which a protrusion formed in the groove extends linearly from one groove wall to the front of the other groove wall. That is, in Comparative Example 2, one end of the protrusion was connected to the groove wall, and the other end of the protrusion was separated from the other groove wall.
  • Example 1 was the tire according to the first embodiment described above.
  • the tire sizes and rim widths of Comparative Examples 1 and 2 and Example 1 are as follows.
  • Table 1 shows the measurement results after the rolling test and the thermal conductivity measurement results. Moreover, the thermal conductivity shown in Table 1 is indicated by an index based on Comparative Example 1, and the larger the value, the higher the thermal conductivity. In Table 1, the thermal conductivity in Comparative Example 1 is shown as “100”.
  • the tire according to Example 1 can secure the thermal conductivity equivalent to the tire according to Comparative Examples 1 and 2 and can sufficiently suppress the temperature rise of the tread portion 10.
  • the tire 1 is suitably used as a heavy duty tire (TBR tire) mounted on a truck or bus (TB).
  • the tire 1 is, for example, a dump truck or an articulated dump truck that runs on a crushed stone, a mine, or a dam site. It may be used for tires for construction vehicles (ORR tires), or for tires for passenger cars.
  • the groove portion 70 extends in parallel along the tire circumferential direction TC has been described as an example.
  • the groove portion 70 is inclined by several degrees (for example, 10 degrees or less) with respect to the tire circumferential direction TC. It may be.
  • the angle ⁇ 1 formed by the extending direction of the first protruding portion 110 and the tire circumferential direction TC and the angle ⁇ 2 formed by the extending direction of the second protruding portion 120 and the tire circumferential direction TC are 10
  • the angle ⁇ 1 and ⁇ 2 may be outside the range of 10 to 60 degrees.
  • the distance Lx between the first protrusion portion 110 and the second protrusion portion 120 is defined by the relationship with the groove width W of the groove portion 70, but the width W110 (and the second protrusion) of the first protrusion portion 110. It may be defined by the width W120) of the portion 120.
  • the distance Lx between the first protruding portion 110 and the second protruding portion 120 is equal to the width W110 of the first protruding portion 110 (and the width W120 of the second protruding portion 120), or the width of the first protruding portion 110. It may be smaller than W110 (and the width W120 of the second protruding portion 120).
  • the present invention includes various embodiments that are not described herein.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
  • ADVANTAGE OF THE INVENTION providing the tire which can suppress reliably the temperature rise of a tread part, improving the durability of a projection part by suppressing the crack which generate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

トレッド部(10)にタイヤ周方向(TC)に延びる溝部(70)が形成されるタイヤ(1)であって、溝部(70)の溝底(72)には、タイヤ周方向(TC)に交差する方向に延在する突起部(100)が設けられており、突起部(100)は、溝部(70)を形成する一方の溝壁(71)から溝部(70)を形成する他方の溝壁(73)に向けて延在し、他方の溝壁(73)よりも手前で終端する第1突起部分(110)と、他方の溝壁(73)から一方の溝壁(71)に向けて延在し、一方の溝壁(71)よりも手前で終端する第2突起部分(120)と、によって構成されており、第1突起部分(110)の終端部(110a)は、第2突起部分(120)の終端部(120a)よりも、他方の溝壁(73)側に配置される。

Description

タイヤ
 本発明は、トレッド部にタイヤ周方向に延びる溝部が形成されるタイヤに関する。
 従来、車両に装着される空気入りタイヤ(以下、タイヤ)では、車両の走行に伴うタイヤの温度上昇を抑制するために、様々な方法が用いられている。特に、トラック、バスなどに装着される重荷重用タイヤでは、温度上昇が顕著である。
 そこで、例えば、タイヤのトレッド部に形成した溝部の溝底において、一方の溝壁から他方の溝壁まで直線状に延在する突起部を設けたタイヤが提案されている(例えば、特許文献1)。
 このようなタイヤによれば、タイヤが転動すると、溝部の内部を通過する気流が、突起部によって乱流となり、この乱流によってトレッド部からの放熱が促進される。これにより、トレッド部の温度上昇を抑制することができる。
国際公開WO2012/090917号公報
 ところで、タイヤ転動時において、溝部の両側の陸部は、路面に接地すると、圧縮変形するとともに、溝幅の狭くなる方向に膨出変形する。そして、溝部の両側の陸部は、路面から離れると、その膨出変形が元に戻る。このように、溝部の両側の陸部は、路面に接地する度に、溝幅が狭くなる方向への膨出変形を繰り返すため、溝部に形成される突起部は、一方の溝壁と他方の溝壁との両側から、圧縮力を繰り返し受ける。
 従来技術に係るタイヤでは、突起部が、一方の溝壁から他方の溝壁まで直線状に連なる構成であり、かかる突起部が両側から圧縮力を繰り返し受けると、突起部のタイヤ幅方向の中央部において、せん断変形が局所的に繰り返し発生し、突起部にクラックが発生するおそれがある。
 このようなクラックが突起部に発生すると、突起部によって意図した乱流を発生できずに、トレッド部の温度上昇を抑制する効果が低下するおそれがある。
 本発明は、上記問題に鑑みてなされたものであり、溝部に形成した突起部に発生するクラックを抑制することによって突起部の耐久性を高めつつ、トレッド部の温度上昇を確実に抑制することが可能なタイヤを提供することを目的とする。
 本発明に係るタイヤは、トレッド部にタイヤ周方向に延びる溝部が形成されるタイヤであって、前記溝部の溝底には、前記タイヤ周方向に交差する方向に延在する突起部が設けられており、前記突起部は、前記溝部を形成する一方の溝壁から前記溝部を形成する他方の溝壁に向けて延在し、前記他方の溝壁よりも手前で終端する第1突起部分と、前記他方の溝壁から前記一方の溝壁に向けて延在し、前記一方の溝壁よりも手前で終端する第2突起部分と、によって構成されており、前記他方の溝壁よりも手前で終端する前記第1突起部分の終端部は、前記一方の溝壁よりも手前で終端する前記第2突起部分の終端部よりも、前記他方の溝壁側に配置されることを要旨とする。
図1は、本発明の第1実施形態に係るタイヤ1のタイヤ幅方向及びタイヤ径方向に沿った断面図である。 図2は、本発明の第1実施形態に係る溝部の一部破断斜視図である。 図3は、本発明の第1実施形態に係る溝部のトレッド面視における形状を示す平面図である。 図4は、本発明の第1実施形態に係る突起部の拡大平面図である。 図5は、図3のF1方向から見た溝部のタイヤ幅方向及びタイヤ径方向に沿った断面図である。 図6は、図3のA-A線とタイヤ径方向とに沿った突起部の断面図である。 図7は、タイヤ周方向に対する第1突起部分の延在方向及び第2突起部分の延在方向の角度と溝部における熱伝達率(指数表示)との関係を測定した測定結果を示すグラフ図である。 図8は、所定間隔Pを規定する突起部の長さLに掛ける係数と、溝部における熱伝達率との関係を測定した測定結果を示すグラフ図である。 図9は、高さHを規定する溝深さDに掛ける係数と、溝部における熱伝達率との関係を測定した測定結果を示すグラフ図である。 図10は、第1~第2突起部分の間隔Lxを規定する溝幅Wに掛ける係数と、歪み及び熱伝達率との関係を示すグラフ図である。 図11は、第1突起部分と溝壁の溝壁間隔Lw1(第2突起部分と溝壁の溝壁間隔Lw2)を規定する溝幅Wに掛ける係数と、歪み及び熱伝達率との関係を示すグラフ図である。 図12は、突起部の幅と、歪み及び熱伝達率の関係を示すグラフ図である。 図13は、第1~第2突起部分の終端部間の終端間隔Lwを規定する溝幅Wに掛ける係数と、歪み及び熱伝達率との関係を示すグラフ図である。
[第1実施形態]
 (1)タイヤの概略構成
 本発明に係るタイヤの第1実施形態について、図面を参照しながら説明する。まず、本実施形態に係るタイヤ1の概略構成について、図1を参照して説明する。
 図1は、本実施形態に係るタイヤ1のタイヤ幅方向TW及びタイヤ径方向TDに沿った断面図である。本実施形態に係るタイヤ1は、タイヤ赤道線CLを基準として左右対称の形状を有する。なお、タイヤ1は、左右非対称の形状を有していてもよい。
 本実施形態に係るタイヤ1は、正規リム5に組み付けられた後に空気を充填する空気入りタイヤを想定している。なお、正規リム5に組み付けられたタイヤ1に充填される気体は、空気に限らず、窒素ガスなどの不活性ガスを充填してもよい。さらに、冷却用の液体(クーラント)が充填されてもよい。
 タイヤ1は、トラック又はバス(TB)に装着される重荷重用タイヤ(TBRタイヤ)に好適に用いられる。タイヤ1は、乗用車などに装着される空気入りタイヤと比較して、トレッド部10のゴムゲージ(ゴム厚さ)が厚い。具体的には、タイヤ1は、タイヤ外径をOD、タイヤ赤道線CLの位置におけるトレッド部10のゴムゲージをDCとした場合に、DC/OD≧0.005を満たす。
 ここで、タイヤ外径OD(単位:mm)とは、タイヤ1の外径が最大となる部分(一般的には、タイヤ赤道線CL付近におけるトレッド部10)のタイヤ1の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道線CLの位置におけるトレッド部10のゴム厚さである。ゴムゲージDCには、ベルト層40の厚さは含まれない。なお、図1に示すように、タイヤ赤道線CLを含む位置に溝部が形成されている場合には、溝部に隣接する位置におけるトレッド部10のゴム厚さとする。
 図1に示すように、タイヤ1は、路面と接するトレッド部10と、トレッド部10に連なり、トレッド部10よりもタイヤ径方向TD内側に位置するサイドウォール部20と、サイドウォール部20に連なり、サイドウォール部20よりもタイヤ径方向TD内側に位置するビード部30とを有する。
 トレッド部10は、タイヤ転動時に、路面に接地するトレッド接地面11を有する。トレッド部10には、タイヤ周方向TCに延びる溝部が形成されている。
 また、本実施形態では、トレッド部10は、溝部として、タイヤ赤道線CL上に設けられる溝部60と、トレッド接地面11のトレッド端TE側に設けられる溝部70とが形成されている。
 ここで、本実施形態に係るタイヤ1において、「トレッド端TE」とは、タイヤ1を正規リム5に組付けて、正規内圧を充填し、正規荷重を適用した状態において、タイヤ表面が路面(地面)と接触するトレッド接地面のタイヤ幅方向最外位置をいう。
 また、「正規リム」とは、タイヤのサイズに応じて下記の規格に規定された標準リムをいい、「正規内圧」とは、下記の規格に記載されている、適用サイズにおける単輪の最大負荷能力に対応する空気圧をいい、「正規荷重」とは、下記の規格の適用サイズにおける単輪の最大荷重(最大負荷能力)をいうものとする。そして規格とは、タイヤが生産または使用される地域に有効な産業規格であって、たとえば、日本では「日本自動車タイヤ協会」の“JATMA YEAR BOOK”であり、アメリカ合衆国では“THE TIRE AND RIM ASSOCIATION INC.”の“YEAR BOOK”であり、欧州では、“The European Tyre and Rim Technical Organisation”の“STANDARD MANUAL”である。
 溝部70は、一方の溝壁71と、一方の溝壁71に対向する他方の溝壁73と、一方の溝壁71と他方の溝壁73とに連なる溝底72とによって、構成される(図3参照)。
 溝部70の溝底72には、タイヤ周方向TCに交差する方向に延在する突起部100が設けられている。なお、突起部100は、タイヤ赤道線CL上の溝部60に設けてもよいが、少なくとも、後述するベルト層40のタイヤ幅方向TWの端部に最も近い溝部70に設けられることが好ましい。
 これは、次の理由による。すなわち、ベルト層40のタイヤ幅方向TWの端部は、タイヤ1の転動によって温度が上昇しやすいため、溝部に形成した突起部100によって、温度上昇を効果的に抑制するためには、少なくともベルト層40の端部に最も近い溝部70に突起部100を設けることが好ましい。なお、突起部100の詳細な構成については、後述する。
 トレッド部10には、溝部70が形成されることによって、複数の陸部80が区画形成される。具体的に、溝部70のタイヤ幅方向TW内側に陸部81が形成され、溝部70のタイヤ幅方向TW外側に陸部82が形成される。なお、本実施形態では、陸部81及び陸部82を、単に陸部80として適宜説明する。
 トレッド部10のタイヤ径方向TD内側には、複数枚のベルト41によって構成されるベルト層40が設けられている。ベルト41の端部41eのタイヤ径方向TD外側には、トレッド部10に形成される溝部70が配置されている。
 また、ベルト層40のタイヤ径方向TD内側には、左右一対のビードコア51に跨がり、タイヤ1の骨格を形成するカーカス層52が設けられている。なお、カーカス層52の端部は、ビードコア51を包むように折り返される。
 (2)突起部の構成
 次に、突起部100の構成について、図面を参照して説明する。図2は、本発明の第1実施形態に係る溝部の一部破断斜視図である。図3は、本発明の第1実施形態に係る溝部のトレッド面視における形状を示す平面図である。図4は、本発明の第1実施形態に係る突起部の拡大平面図である。図5は、図3のF1方向から見た溝部のタイヤ幅方向及びタイヤ径方向に沿った断面図である。図6は、図3のA-A線とタイヤ径方向とに沿った突起部の断面図である。
 ここで、図2に示すように、本実施形態では、説明の便宜上、車両にタイヤ1を装着した場合に、車両の前進によってタイヤ1が回転する回転方向TRを規定する。なお、タイヤ1の車両装置時における回転方向TRは、特に指定されるものではない。
 図2~3に示すように、溝部70には、複数の突起部100が設けられている。突起部は、タイヤ周方向TCに所定間隔P毎に設けられている。
 突起部100は、第1突起部分110と第2突起部分120とによって構成される。第1突起部分110は、溝部70を形成する一方の溝壁71から溝部70を形成する他方の溝壁73に向けて延在し、他方の溝壁73よりも手前で終端する。
 なお、本実施形態において、一方の溝壁71は、溝部70のタイヤ幅方向TW内側の陸部81に形成され、他方の溝壁73は、溝部70のタイヤ幅方向TW外側の陸部82に形成される。
 具体的に、第1突起部分110の一方の溝壁71側の端部は、一方の溝壁71に連結する。第1突起部分110の他方の溝壁73側の端部は、他方の溝壁73よりも手前で終端する終端部110aを構成する。つまり、第1突起部分110の終端部110aは、一方の溝壁71と他方の溝壁73との間に位置する。
 第2突起部分120は、他方の溝壁73から一方の溝壁71に向けて延在し、一方の溝壁71よりも手前で終端する。第2突起部分120の他方の溝壁73側の端部は、他方の溝壁73に連結する。第2突起部分120の一方の溝壁71側の端部は、一方の溝壁71よりも手前で終端する終端部120aを構成する。つまり、第2突起部分120の終端部120aは、一方の溝壁71と他方の溝壁73との間に位置する。
 また、第1突起部分110の終端部110aは、第2突起部分120の終端部120aよりも、他方の溝壁73側に配置される。これにより、突起部100は、タイヤ周方向TCにおいて、第1突起部分110の一部と第2突起部分120の一部とが重複する重複部分(不図示)を有する。さらに、タイヤ径方向TD及びタイヤ幅方向TWに沿った溝部70の断面視において、突起部100は、第1突起部分110と第2突起部分120とによって、一方の溝壁71から他方の溝壁73まで連なるように構成される(図5参照)。
 本実施形態では、第1突起部分110の延在方向と第2突起部分120の延在方向とは、平行である。よって、第1突起部分110の中心線CL1と、第2突起部分120の中心線CL2とが、平行である。なお、中心線CL1は、第1突起部分110の幅方向中心を通る仮想線であり、中心線CL2は、第2突起部分120の幅方向中心を通る仮想線である。
 また、タイヤ1のトレッド面視において、溝部70の中央を通る溝中央線CL70に沿った突起部100の長さをLとし、突起部100を設けるタイヤ周方向TCの所定間隔をPとした場合、所定間隔Pは、長さLの0.75倍以上かつ10倍以下であることが好ましい。すなわち、所定間隔Pと長さLとは、0.75L≦P≦10Lの関係を満たすことが好ましい。
 なお、図3に示すように、溝中央線CL70は、溝部70の延在方向に直交する溝幅方向の中央を通る仮想線であり、本実施形態では、タイヤ周方向TCと平行である。また、長さLは、溝中央線CL70に沿った突起部100の一端から他端までの長さである。所定間隔Pは、溝中央線CL70に沿って隣接する2つの突起部100間の距離である。
 また、第1突起部分110の延在方向と第2突起部分120の延在方向とは、タイヤ周方向TCに対して、傾斜する。本実施形態では、第1突起部分110の延在方向とタイヤ周方向TCとのなす角度θ1、及び、第2突起部分120の延在方向とタイヤ周方向TCとのなす角度θ2は、10~60度の範囲内であることが好ましい。
 なお、第1突起部分110の延在方向は、第1突起部分110の中心線CL1に沿った方向であり、第2突起部分120の延在方向は、第2突起部分120の中心線CL2に沿った方向である。
 また、本実施形態では、角度θ1と角度θ2とが同一である。但し、角度θ1と角度θ2とは、必ずしも同一でなくてもよい。すなわち、上述の範囲内であれば、角度θ1と角度θ2とは、互いに異なっていてもよい。
 また、図4に示すように、溝部70の幅を溝幅Wとした場合、第1突起部分110の延在方向に直交する方向において、第1突起部分110と第2突起部分120との間隔Lxは、溝幅Wの0.1倍以上かつ0.3倍以下であることが好ましい。すなわち、間隔Lxと溝幅Wとは、0.1W≦Lx≦0.3Wの関係を満たすことが好ましい。なお、溝幅Wは、溝部70の延在方向に直交する溝幅方向における溝部70の幅である。本実施形態では、溝部70の延在方向が、タイヤ周方向TCであるため、溝幅Wは、タイヤ周方向TCに直交するタイヤ幅方向TWにおける溝部70の幅である。
 ここで、第1突起部分110の延在方向に直交する方向とは、第1突起部分110の中心線CL1に直交する方向である。
 また、溝部70の幅を溝幅Wとした場合、第1突起部分110の終端部110aと他方の溝壁73との溝壁間隔Lw1、及び、第2突起部分120の終端部120aと一方の溝壁71との溝壁間隔Lw2は、いずれも、溝幅Wの0.1倍以上かつ0.4倍以下であることが好ましい。すなわち、溝壁間隔Lw1(及び溝壁間隔Lw2)と溝幅Wとは、0.1W≦Lw1(及びLw2)≦0.4Wの関係を満たすことが好ましい。
 本実施形態では、溝壁間隔Lw1が、溝壁間隔Lw2と同一である。但し、溝壁間隔Lw1は、必ずしも、溝壁間隔Lw2と同一でなくともよい。例えば、一方の溝壁71が他方の溝壁73よりも変形量が大きい場合、溝壁間隔Lw1と溝壁間隔Lw2とは、Lw1>Lw2の関係を満たしてもよい。
 また、溝部70の幅を溝幅Wとした場合、タイヤ幅方向TWにおいて、第1突起部分110の終端部110aと第2突起部分120の終端部120aとの終端間隔Lwは、溝幅Wの0.2倍以上かつ0.6倍以下であることが好ましい。すなわち、終端間隔Lwと溝幅Wとは、0.2W≦Lw≦0.6Wの関係を満たすことが好ましい。
 また、本実施形態では、図5に示すように、タイヤ幅方向TWにおいて、第1突起部分110の終端部110aと溝中央線CL70との間隔Lx1と、第2突起部分120の終端部120aと溝中央線CL70との間隔Lx2とは、同一である。但し、間隔Lx1と間隔Lx2とは、必ずしも同一でなくてもよい。例えば、一方の溝壁71が他方の溝壁73よりも変形量が大きい場合、一方の溝壁71から延在する第1突起部分110の間隔Lx1と、他方の溝壁73から延在する第2突起部分120の間隔Lx2とは、Lx1>Lx2の関係を満たしてもよい。
 また、図5に示すように、第1突起部分110及び第2突起部分120の溝底72からの高さをHとし、溝部70のトレッド接地面11から溝底72(最深部)までの深さをDとした場合、高さHは、深さDの0.03倍よりも大きく、かつ0.4倍以下であることが好ましい。すなわち、高さHと深さDとは、0.03D<H≦0.4Dの関係を満たすことが好ましい。
 また、図6に示すように、本実施形態では、第1突起部分110の幅W110、及び、第2突起部分120の幅W120は、いずれも、1mm以上かつ4mm以下であることが好ましい。ここで、第1突起部分110の幅W110とは、第1突起部分110の延在方向に沿った中心線CL1に直交する方向における長さであり、第2突起部分120の幅W120とは、第2突起部分120の延在方向に沿った中心線CL2に直交する方向における長さである。
 本実施形態では、第1突起部分110の幅W110と第2突起部分120の幅W120とは、同一である。但し、第1突起部分110の幅W110と第2突起部分120の幅W120とは、必ずしも同一でなくてもよい。例えば、一方の溝壁71が他方の溝壁73よりも変形量が大きい場合、一方の溝壁71から延在する第1突起部分110の幅W110と、他方の溝壁73から延在する第2突起部分120の幅W120とは、W110>W120の関係を満たしてもよい。
 (3)作用・効果
 本実施形態に係るタイヤ1では、タイヤ周方向TCに延在する溝部70の溝底72において、突起部100が形成されているため、タイヤ1の回転によって回転方向TRとは反対向きの空気の流れAR1,AR2(相対風)が、溝部70に発生する(図4参照)。
 具体的に、溝部70の他方の溝壁73に沿った一部の空気の流れAR1は、進行方向に突起部100が位置するため、溝部70に沿って進めずに、突起部100を乗り越える。このとき、空気の流れAR1は、螺旋状(スワール状)の流れに変化する。また、空気の流れAR1は、周囲の空気を巻き込んで進むため、空気の流量が増大するとともに、空気の流れAR1の速度が上昇する。これにより、トレッド部10からの放熱が促進される。
 また、溝部70の一方の溝壁71に沿った一部の空気の流れAR2は、突起部100の延在方向に沿って進む。その後、空気の流れAR2は、溝部70の他方の溝壁73側で、溝部70の外部へ流れ出る。これにより、溝部70の内部を通過することにより熱を蓄えた空気が外部へ流れるため、トレッド部10からの放熱が促進される。
 また、本実施形態に係るタイヤ1では、突起部100が、第1突起部分110と第2突起部分120とによって構成されている。第1突起部分110は、一方の溝壁71から他方の溝壁73に向かって延在し、他方の溝壁73よりも手前で終端する。第2突起部分120は、他方の溝壁73から一方の溝壁71に向かって延在し、一方の溝壁71よりも手前で終端する。すなわち、第1突起部分110と第2突起部分120とは、いずれも、溝部70の溝壁71,73のうちの片側の溝壁71又は73と離間する構成である。
 本実施形態に係るタイヤ1によれば、タイヤ転動時において、溝部70の両側の陸部80が変形しても、第1突起部分110と第2突起部分120とは、いずれも、一方の陸部80からのみ圧縮力を受けるものの、両側の陸部80から圧縮力を受けることを防止できる。これにより、従来技術のように、突起部が、一方の溝壁71から他方の溝壁73まで直線状に連なる構成である場合に比べて、陸部80から受ける圧縮力によって、第1突起部分と第2突起部分とにせん断変形が発生することを抑制できる。
 従って、第1突起部分110と第2突起部分120とによって構成される突起部100にクラックが発生することを抑制できるため、突起部100によって意図した乱流を確実に発生させることができる。すなわち、突起部100のクラックの発生を抑制することによって突起部100の耐久性を高めつつ、トレッド部10の温度上昇を確実に抑制することができる。
 また、突起部100は、第1突起部分110と第2突起部分120とによって構成されるため、両側の陸部80から引張力を受ける場合にも、引張力による歪み(変形)に起因するクラックの発生も抑制できる。
 また、本実施形態に係るタイヤ1では、第1突起部分110の終端部110aは、第2突起部分120の終端部120aよりも、他方の溝壁73側に配置される。すなわち、突起部100では、タイヤ径方向TD及びタイヤ幅方向TWに沿った溝部70の断面視において、第1突起部分110と第2突起部分120とが一方の溝壁71から他方の溝壁73まで連なる。
 これにより、突起部100には、一方の溝壁71から他方の溝壁73までの間に、タイヤ周方向TCに貫通する隙間が形成されることを防止できるため、溝部70内をタイヤ周方向TCに流れる気流を突起部100に確実に衝突させて、溝部70内を冷却する乱流を確実に発生させることができる。よって、トレッド部10の温度上昇を抑制する効果を高めることができる。
 また、本実施形態に係るタイヤ1では、第1突起部分110の延在方向とタイヤ周方向TCとのなす角度θ1、及び、第2突起部分120の延在方向とタイヤ周方向TCとのなす角度θ2は、10度以上かつ60度以下であることが好ましい。
 ここで、図7には、タイヤ周方向に対する第1~2突起部分の延在方向の角度と溝部における熱伝達率(指数表示)との関係を測定した測定結果を示すグラフ図が示されている。なお、図7のグラフ図において、熱伝達率の値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)を示す。
 図7に示すように、角度θ1及び角度θ2が、10度以上であることにより、突起部100と一方の溝壁71(又は他方の溝壁73)により形成される鋭角部分によって、溝部70を流れる空気の流れAR1及びAR2が弱くなることを抑制できる。また、溝部70に突起部100を容易に製造することができるため、製造する上での利便性が高まる。
 一方で、角度θ1及び角度θ2が、60度以下であることにより、溝部70を流れる空気の流れAR2を螺旋状の流れに効率よく変化させることができる。このため、溝底72を通過する風量が増加し、トレッド部10から効率的に熱を放熱できる。
 なお、角度θ1及び角度θ2は、15度以上かつ40度以下であることがより好ましい。これにより、図7に示すように、実装時に確実に効果を発揮する熱伝達率の値「103」を上回ることができるため、トレッド部10の温度上昇を抑制する効果の確実性が高まる。
 また、本実施形態に係るタイヤ1では、タイヤ1のトレッド面視において、溝部70の中央を通る溝中央線CL70に沿った突起部100の長さをLとし、所定間隔をPとした場合、0.75L≦P≦10Lの関係を満たすことが好ましい。
 ここで、図8には、所定間隔Pを規定する突起部100の長さLに掛ける係数と、溝部70における熱伝達率との関係を測定した測定結果を示すグラフ図が示されている。なお、図7のグラフ図において、熱伝達率の値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)を示す。また、係数は、長さLに対する所定間隔Pの比、P/Lとも言い換えることができる。
 図8に示すように、突起部100は、0.75L≦Pの関係を満たすことにより、溝部70に設けられる突起部100の数が多くなりすぎず、溝部70を流れる空気の速度が低下することを抑制できる。突起部100は、P≦10Lの関係を満たすことにより、溝部70に設けられる突起部100の数が少なくなりすぎず、効率的に空気の流れAR1,AR2が、螺旋状(スワール状)の流れに変化する。
 また、1.25L<Pの関係を満たすことが好ましく、1.5L<Pの関係を満たすことがより好ましく、2.0L<Pの関係を満たすことがさらに好ましい。これらの関係を満たすことによって、溝部70に設けられる突起部100がより適切な数となる。また、空気の流れAR1,AR2が通過する溝底72の面積が小さくなりすぎないため、溝底72から熱が効率よく放熱される。これにより、図8に示すように、実装時に確実に効果を発揮する熱伝達率の値「103」を上回ることができるため、トレッド部10の温度上昇を抑制する効果の確実性が高まる。
 また、本実施形態に係るタイヤ1では、第1突起部分110及び第2突起部分120の溝底72からの高さをHとし、溝部70のトレッド接地面11から溝底72までの深さをDとした場合、0.03D<H≦0.4Dの関係を満たすことが好ましい。
 ここで、図9には、高さHを規定する溝深さDに掛ける係数と、溝部70における熱伝達率との関係を測定した測定結果を示すグラフ図が示されている。なお、図9のグラフ図において、熱伝達率の値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)を示す。また、係数は、溝深さDに対する高さHの比H/Dとも言い換えることができる。
 図9に示すように、0.03D<Hの関係を満たすことにより、第1突起部分110及び第2突起部分120の高さHが所定の高さ以上となるため、溝部70を流れる空気の流れAR1,AR2を螺旋状の流れに効率よく変化させることができる。このため、溝底72を通過する風量が増加し、トレッド部10から効率的に熱が放熱される。H≦0.4Dの関係を満たすことにより、螺旋状の流れに変化した空気の流れAR1,AR2が溝底72に到達しやすくなるため、溝底72から熱が効率よく放熱される。
 さらに、0.05D≦Hの関係を満たし、H≦0.35Dの関係を満たすことにより、図9に示すように、実装時に確実に効果を発揮する熱伝達率の値「103」を上回ることができるため、トレッド部10の温度上昇を抑制する効果の確実性が高まる。
 また、本実施形態に係るタイヤ1では、溝部70の幅を溝幅Wとした場合、第1突起部分110の延在方向に直交する方向において、第1突起部分110と第2突起部分120との間隔Lxは、溝幅Wの0.1倍以上かつ0.3倍以下であることが好ましい。
 ここで、図10には、間隔Lxを規定する溝幅Wに掛ける係数と、溝部70における熱伝達率との関係、及び、当該係数と第1~第2突起部分に生じた歪みとの関係を測定した測定結果示すグラフ図が示されている。なお、図10では、当該係数と熱伝達率との関係が「実線(×印)」で示されており、当該係数と歪みとの関係が「点線(四角印)」で示されている。また、図10のグラフ図において、熱伝達率の値「100」及び歪みの値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)及び歪み(基準値)を示す。また、係数は、溝幅Wに対する間隔Lxの比、Lx/Wとも言い換えることができる。
 第1突起部分110と第2突起部分120との間隔Lxが、溝幅Wの0.1倍以上であることにより、第1突起部分110と第2突起部分120とが陸部80から圧縮力を受けて変形しても、互いに接触することを防止できる。これにより、図10に示すように、第1突起部分110と第2突起部分120とに発生する歪みを抑制できる。一方で、第1突起部分110と第2突起部分120との間隔Lxが、溝幅Wの0.3倍以下であることにより、第1突起部分110と第2突起部分120との間(隙間)に空気の流れAR1,AR2が進入することを抑制して、突起部100を乗り越える空気の流れAR1,AR2をより確実に発生させることができる。
 なお、第1突起部分110と第2突起部分120との間隔Lxは、溝幅Wの0.2倍以上かつ0.3倍以下であることがより好ましい。
 また、本実施形態に係るタイヤ1では、第1突起部分110の終端部110aと他方の溝壁73との溝壁間隔Lw1、及び、第2突起部分120の終端部120aと一方の溝壁71との溝壁間隔Lw2は、溝幅Wの0.1倍以上かつ0.4倍以下であることが好ましい。
 ここで、図11には、溝壁間隔Lw1及び溝壁間隔Lw2を規定する溝幅Wに掛ける係数と、溝部70における熱伝達率との関係、及び、当該係数と第1~第2突起部分に生じた歪みとの関係を測定した測定結果示すグラフ図が示されている。なお、図11では、当該係数と熱伝達率との関係が「実線(×印)」で示されており、当該係数と歪みとの関係が「点線(四角印)」で示されている。また、図11のグラフ図において、熱伝達率の値「100」及び歪みの値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)及び歪み(基準値)を示す。また、係数は、溝幅Wに対する溝壁間隔Lw1の比、Lw1/Wとも言い換えることができるし、同様に、溝幅Wに対する溝壁間隔Lw2の比、Lw2/Wとも言い換えることができる。
 第1突起部分110の溝壁間隔Lw1が、溝幅Wの0.1倍以上であることにより、第1突起部分110が、溝底72を伝搬して、他方の溝壁73から受ける圧縮力をより確実に抑制できる。また、第2突起部分120の溝壁間隔Lw2においても、溝幅Wの0.1倍以上であることにより、第2突起部分120が、溝底72を伝搬して、一方の溝壁71から受ける圧縮力をより確実に抑制できる。これにより、図11に示すように、第1突起部分110と第2突起部分120とに発生する歪みを抑制できるため、第1突起部分110及び第2突起部分120に発生するクラックを抑制できる。
 一方、第1突起部分110の溝壁間隔Lw1及び第2突起部分120の溝壁間隔Lw2が、溝幅Wの0.4倍以下であることにより、第1突起部分110と第2突起部分120とが、一方の溝壁71と他方の溝壁73との変形に伴って、タイヤ幅方向TWに変形しても、第1突起部分110と第2突起部分120との間に、タイヤ周方向TCに貫通する隙間が形成されることを防止できる。これにより、突起部100を乗り越える空気の流れAR1,AR2をより確実に発生させることができるため、熱伝達率を確保して、トレッド部10の温度上昇を抑制することができる。
 なお、溝壁間隔Lw1及び溝壁間隔Lw2は、溝幅Wの0.3倍以上0.4倍以下であることがより好ましい。これにより、第1突起部分110及び第2突起部分120に発生するクラックをより確実に抑制しつつ、トレッド部10の温度上昇をより確実に抑制することができる。
 また、本実施形態に係るタイヤ1では、第1突起部分110の幅W110、及び、第2突起部分120の幅W120は、1mm以上かつ4mm以下であることが好ましい。
 ここで、図12には、第1突起部分110の幅W110(及び第2突起部分120の幅W120)と溝部70における熱伝達率との関係、及び、当該幅W110(及び幅W120)と第1~第2突起部分に生じた歪みとの関係を測定した測定結果を示すグラフ図が示されている。なお、図12では、幅W110(及び幅W120)と熱伝達率との関係が「実線(×印)」で示されており、幅W110(及び幅W120)と歪みとの関係が「点線(四角印)」で示されている。また、図12のグラフ図において、熱伝達率の値「100」及び歪みの値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)及び歪み(基準値)を示す。
 第1突起部分110の幅W110、及び、第2突起部分120の幅W120は、1mm以上であることにより、乱流を安定的に発生させるための突起部分自体の剛性を保つことができる。これにより、図12に示すように、熱伝達率を確保できる。また、タイヤ製造時にモールド欠けなどの成形不良の発生を抑制することもできる。
 一方で、第1突起部分110の幅W110、及び、第2突起部分120の幅W120は、4mm以下であることにより、第1突起部分110及び第2突起部分120以外の溝底72の領域面積をより広く確保できるため、空気の流れAR1,AR2によって、溝底72を冷却する効果を高めることができる。
 なお、第1突起部分110の幅W110、及び、第2突起部分120の幅W120は、1mm以上かつ2mm以下であることがより好ましい。これにより、トレッド部10の温度上昇をより確実に抑制しつつ、成形不良をより確実に抑制することができる。
 また、本実施形態に係るタイヤ1では、タイヤ幅方向TWにおいて、第1突起部分110の終端部110aと第2突起部分120の終端部120aとの終端間隔Lwは、溝幅Wの0.2倍以上かつ0.6倍以下であることが好ましい。
 ここで、図13には、終端間隔Lwを規定する溝幅Wに掛ける係数と、溝部70における熱伝達率との関係、及び、当該係数と第1~第2突起部に生じた歪みとの関係を測定した測定結果を示すグラフ図が示されている。なお、図13では、当該係数と熱伝達率との関係が「実線(×印)」で示されており、当該係数と歪みとの関係が「点線(四角印)」で示されている。また、図13のグラフ図において、熱伝達率の値「100」及び歪みの値「100」は、突起部100を設けていないタイヤの熱伝達率(基準値)及び歪み(基準値)を示す。また、係数は、溝幅Wに対する終端間隔Lwの比、Lw/Wとも言い換えることができる。
 終端間隔Lwが、溝幅Wの0.2倍以上であることにより、第1突起部分110と第2突起部分120とが、一方の溝壁71と他方の溝壁73との変形に伴って変形しても、第1突起部分110と第2突起部分120との間に、タイヤ周方向TCに貫通する隙間が形成されることを防止できる。これにより、図13に示すように、突起部100を乗り越える空気の流れAR1,AR2をより確実に発生させることができるため、熱伝達率を確保して、トレッド部10の温度上昇を抑制することができる。
 一方で、終端間隔Lwが、溝幅Wの0.6倍以下であることにより、第1突起部分110及び第2突起部分120による放熱効果を保ちつつ、第1突起部分110及び第2突起部分120の変形によるクラック発生を抑制することができる。
 なお、終端間隔Lwは、溝幅Wの0.2倍以上かつ0.3倍以下であることがより好ましい。
 [実施例]
 次に、本発明の実施形態に係るタイヤの効果を確認するために実施した実施例について説明する。まず、下記に示す比較例1~2と、実施例1とを準備した。
 比較例1に係るタイヤは、溝部に形成される突起部が一方の溝壁から他方の溝壁まで直線状に連なる構成のものを用いた。
 比較例2に係るタイヤは、溝部に形成される突起部が一方の溝壁から他方の溝壁の手前まで直線状に延びる構成のものを用いた。すなわち、比較例2は、突起部の一端部を溝壁に連結させるとともに、突起部の他端部を他方の溝壁から離間させたものを用いた。
 実施例1に係るタイヤは、上述の第1実施形態に係るタイヤを用いた。なお、比較例1~2及び実施例1のタイヤサイズとリム幅は、何れも下記の通りである。
 ・タイヤサイズ:11R22.5
 ・リム幅:8.25×22.5
 そして、準備した比較例1~2及び実施例1に、内圧700kPa(正規内圧)及び荷重3000kg(約110%load)を与えて、ドラム径1.7mのドラム試験装置を用いた転動試験を行った。また、転動試験では、速度65km/hによって、50000km転動させた後、突起部に発生するクラックの長さを測定した。
 また、比較例1~2及び実施例1による放熱性を評価した。具体的に、それぞれの熱伝導率を測定する試験を行うことによって得られた測定結果に基づいて、放熱性を評価した。
 なお、表1には、転動試験後の測定結果と、熱伝導率の測定結果が示されている。また、表1に示す熱伝導率は、比較例1を基準とした指数によって示されており、値が大きいほど、熱伝導率が高いことを示す。表1では、比較例1における熱伝導率が「100」として示されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1に係るタイヤは、比較例1~2に係るタイヤに比べて、突起部に発生するクラックの長さが大幅に抑制されていることが確認された。すなわち、実施例1に係るタイヤは、突起部にクラックが発生することを抑制できることが確認された。
 また、実施例1に係るタイヤは、比較例1~2に係るタイヤと同等に熱伝導率を確保でき、トレッド部10の温度上昇を十分に抑制できることも確認された。
 [その他の実施形態]
 次に、本発明のその他の実施形態について説明する。タイヤ1は、トラック又はバス(TB)に装着される重荷重用タイヤ(TBRタイヤ)に好適に用いられるが、タイヤ1は、例えば、砕石・鉱山・ダム現場を走行するダンプトラックやアーティキュレートダンプなどの建設車両用タイヤ(ORRタイヤ)に用いてもよいし、乗用車用タイヤに用いてもよい。
 上述した実施形態では、溝部70がタイヤ周方向TCに沿って平行に延びる場合を例に挙げて説明したが、溝部70は、タイヤ周方向TCに対して数度(例えば10度以下)傾斜していてもよい。
 上述した実施形態では、第1突起部分110の延在方向とタイヤ周方向TCとのなす角度θ1、及び、第2突起部分120の延在方向とタイヤ周方向TCとのなす角度θ2は、10~60度の範囲内である場合を例に挙げて説明したが、これに限定されるものではない。角度θ1及びθ2は、10~60度の範囲外であってもよい。
 上述した実施形態では、第1突起部分110と第2突起部分120との間隔Lxは、溝部70の溝幅Wとの関係によって規定したが、第1突起部分110の幅W110(及び第2突起部分120の幅W120)によって規定してもよい。例えば、第1突起部分110と第2突起部分120との間隔Lxは、第1突起部分110の幅W110(及び第2突起部分120の幅W120)と同等、又は、第1突起部分110の幅W110(及び第2突起部分120の幅W120)よりも小さくてもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合せにより、種々の発明を形成できる。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本出願は、2015年4月10日に出願された日本国特許願第2015-080721に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
 本発明によれば、溝部に形成した突起部に発生するクラックを抑制することによって突起部の耐久性を高めつつ、トレッド部の温度上昇を確実に抑制することが可能なタイヤを提供することができる。
 1…タイヤ、10…トレッド部、11…トレッド接地面、20…サイドウォール部、30…ビード部、40…ベルト層、52…カーカス層、60…溝部、70…溝部、71…溝壁、72…溝底、73…溝壁、80…陸部、81…陸部、82…陸部、100…突起部、110…第1突起部分、110a…終端部、120…第2突起部分、120a…終端部

Claims (7)

  1.  トレッド部にタイヤ周方向に延びる溝部が形成されるタイヤであって、
     前記溝部の溝底には、前記タイヤ周方向に交差する方向に延在する突起部が設けられており、
     前記突起部は、
     前記溝部を形成する一方の溝壁から前記溝部を形成する他方の溝壁に向けて延在し、前記他方の溝壁よりも手前で終端する第1突起部分と、
     前記他方の溝壁から前記一方の溝壁に向けて延在し、前記一方の溝壁よりも手前で終端する第2突起部分と、によって構成されており、
     前記他方の溝壁よりも手前で終端する前記第1突起部分の終端部は、前記一方の溝壁よりも手前で終端する前記第2突起部分の終端部よりも、前記他方の溝壁側に配置されること
    を特徴とするタイヤ。
  2.  請求項1に記載のタイヤであって、
     前記溝部の幅を溝幅Wとした場合、前記第1突起部分の延在方向に直交する方向において、前記第1突起部分と前記第2突起部分との間隔Lxは、前記溝幅Wの0.1倍以上かつ0.3倍以下であること
    を特徴とするタイヤ。
  3.  請求項1又は2に記載のタイヤであって、
     前記溝部の幅を溝幅Wとした場合、前記第1突起部分の終端部と前記他方の溝壁との溝壁間隔Lw1、及び、前記第2突起部分の終端部と前記一方の溝壁との溝壁間隔Lw2は、前記溝幅Wの0.1倍以上かつ0.4倍以下であること
    を特徴とするタイヤ。
  4.  請求項1乃至3の何れか一項に記載のタイヤであって、
     前記突起部は、前記タイヤ周方向TCに所定間隔ごとに複数設けられており、
     前記タイヤのトレッド面視において、前記溝部の中央を通る溝中央線に沿った前記突起部の長さをLとし、前記所定間隔をPとした場合、0.75L≦P≦10Lの関係を満たすこと
    を特徴とするタイヤ。
  5.  請求項1乃至4の何れか一項に記載のタイヤであって、
     前記第1突起部分の幅W110、及び、前記第2突起部分の幅W120は、1mm以上かつ4mm以下であること
    を特徴とするタイヤ。
  6.  請求項1乃至5の何れか一項に記載のタイヤであって、
     前記第1突起部分の延在方向と前記タイヤ周方向とのなす角度、及び、前記第2突起部分の延在方向と前記タイヤ周方向とのなす角度は、10~60度の範囲内であること
    を特徴とするタイヤ。
  7.  請求項1乃至6の何れか一項に記載のタイヤであって、
     前記溝部の幅を溝幅Wとした場合、タイヤ幅方向において、前記第1突起部分の終端部と前記第2突起部分の終端部との終端間隔Lwは、前記溝幅Wの0.2倍以上かつ0.6倍以下であること
    を特徴とするタイヤ。
PCT/JP2016/059869 2015-04-10 2016-03-28 タイヤ WO2016163256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680020378.5A CN107428207B (zh) 2015-04-10 2016-03-28 轮胎
US15/560,090 US20180304695A1 (en) 2015-04-10 2016-03-28 Tire
EP16776424.0A EP3281806B1 (en) 2015-04-10 2016-03-28 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015080721A JP6603470B2 (ja) 2015-04-10 2015-04-10 タイヤ
JP2015-080721 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163256A1 true WO2016163256A1 (ja) 2016-10-13

Family

ID=57072489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059869 WO2016163256A1 (ja) 2015-04-10 2016-03-28 タイヤ

Country Status (5)

Country Link
US (1) US20180304695A1 (ja)
EP (1) EP3281806B1 (ja)
JP (1) JP6603470B2 (ja)
CN (1) CN107428207B (ja)
WO (1) WO2016163256A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215400B2 (ja) * 2019-11-18 2023-01-31 横浜ゴム株式会社 空気入りタイヤ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819751A (en) * 1953-03-19 1958-01-14 Lloyd L Felker Tire tread
JPH03276802A (ja) * 1990-03-05 1991-12-09 Bridgestone Corp 空気入りタイヤ
WO2008114668A1 (ja) * 2007-03-12 2008-09-25 Bridgestone Corporation 空気入りタイヤ
JP2008222007A (ja) * 2007-03-12 2008-09-25 Bridgestone Corp 空気入りタイヤ
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
JP2012061899A (ja) * 2010-09-14 2012-03-29 Bridgestone Corp タイヤ
WO2012090917A1 (ja) * 2010-12-28 2012-07-05 株式会社ブリヂストン タイヤ
JP2014012478A (ja) * 2012-07-04 2014-01-23 Bridgestone Corp タイヤ
JP2014012477A (ja) * 2012-07-04 2014-01-23 Bridgestone Corp タイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815758B2 (ja) * 1997-10-06 2006-08-30 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP3672026B2 (ja) * 2001-11-21 2005-07-13 東洋ゴム工業株式会社 空気入りタイヤ
JP4540102B2 (ja) * 2004-08-10 2010-09-08 東洋ゴム工業株式会社 重荷重用空気入りタイヤ
JP4394161B1 (ja) * 2009-04-17 2010-01-06 横浜ゴム株式会社 空気入りタイヤ
CN104169105B (zh) * 2012-03-30 2018-07-31 米其林集团总公司 具有减小的底胎面厚度的轮胎胎面和形成翻新轮胎的方法
JP2013244854A (ja) * 2012-05-25 2013-12-09 Bridgestone Corp 空気入りタイヤ
JP6122258B2 (ja) * 2012-07-04 2017-04-26 株式会社ブリヂストン タイヤ
JP5690407B2 (ja) * 2012-07-04 2015-03-25 株式会社ブリヂストン タイヤ
JP2014218232A (ja) * 2013-05-11 2014-11-20 株式会社ブリヂストン タイヤ
CN203567480U (zh) * 2013-11-25 2014-04-30 山东龙跃橡胶有限公司 一种高排石性半钢轿车轮胎

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819751A (en) * 1953-03-19 1958-01-14 Lloyd L Felker Tire tread
JPH03276802A (ja) * 1990-03-05 1991-12-09 Bridgestone Corp 空気入りタイヤ
WO2008114668A1 (ja) * 2007-03-12 2008-09-25 Bridgestone Corporation 空気入りタイヤ
JP2008222007A (ja) * 2007-03-12 2008-09-25 Bridgestone Corp 空気入りタイヤ
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
JP2012061899A (ja) * 2010-09-14 2012-03-29 Bridgestone Corp タイヤ
WO2012090917A1 (ja) * 2010-12-28 2012-07-05 株式会社ブリヂストン タイヤ
JP2014012478A (ja) * 2012-07-04 2014-01-23 Bridgestone Corp タイヤ
JP2014012477A (ja) * 2012-07-04 2014-01-23 Bridgestone Corp タイヤ

Also Published As

Publication number Publication date
JP6603470B2 (ja) 2019-11-06
US20180304695A1 (en) 2018-10-25
CN107428207A (zh) 2017-12-01
EP3281806A4 (en) 2018-02-28
EP3281806B1 (en) 2020-05-06
JP2016199154A (ja) 2016-12-01
CN107428207B (zh) 2019-12-03
EP3281806A1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6273331B2 (ja) タイヤ
EP2974888B1 (en) Pneumatic tire
EP2871075B1 (en) Tire
BR112015002147B1 (pt) Pneu para cargas pesadas
RU2584637C1 (ru) Шина
EP2974889B1 (en) Pneumatic tire
EP2871073B1 (en) Tire
JP6603470B2 (ja) タイヤ
WO2014007317A1 (ja) タイヤ
WO2016163257A1 (ja) タイヤ
WO2017170208A1 (ja) タイヤ
EP2871074B1 (en) Tire
WO2014141715A1 (ja) 空気入りタイヤ
JP2014151690A (ja) タイヤ
JP2014156149A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE