WO2016163087A1 - 排出ガス浄化装置 - Google Patents

排出ガス浄化装置 Download PDF

Info

Publication number
WO2016163087A1
WO2016163087A1 PCT/JP2016/001666 JP2016001666W WO2016163087A1 WO 2016163087 A1 WO2016163087 A1 WO 2016163087A1 JP 2016001666 W JP2016001666 W JP 2016001666W WO 2016163087 A1 WO2016163087 A1 WO 2016163087A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
differential pressure
exhaust gas
flow rate
calculated
Prior art date
Application number
PCT/JP2016/001666
Other languages
English (en)
French (fr)
Inventor
真吾 中田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016001605.0T priority Critical patent/DE112016001605T5/de
Priority to US15/552,367 priority patent/US10287957B2/en
Publication of WO2016163087A1 publication Critical patent/WO2016163087A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine and flowing through an exhaust pipe.
  • Patent Document 1 describes a system equipped with a differential pressure sensor for the purpose of estimating the amount of particulate matter deposited on a filter and determining abnormality of the filter. Specifically, the system detects an abnormality of the filter based on the amount of change in the pressure difference between the upstream side and the downstream side of the filter (hereinafter also referred to as “filter differential pressure”). An offset error may occur in the differential pressure sensor, but the influence of the offset error is eliminated and detection accuracy is improved by performing a filter abnormality determination based on the amount of change in the differential pressure of the filter as in Patent Document 1 below. It is possible.
  • the differential pressure of the filter varies greatly with changes in the operating state of the internal combustion engine. Therefore, for example, when the filter abnormality determination is performed based on the comparison between the differential pressure of the filter and the threshold value, it is necessary to prepare a threshold value for each operating state of the internal combustion engine, and the determination algorithm may be complicated. It was.
  • An object of the present disclosure is to provide an exhaust gas purifying apparatus capable of performing filter abnormality determination with high accuracy based on a pressure difference between an upstream side and a downstream side of a filter.
  • the exhaust gas purification device is an exhaust gas purification device that purifies exhaust gas that is exhausted from an internal combustion engine and flows through an exhaust pipe, and is provided in the exhaust pipe and passes through the exhaust gas to form a particulate form.
  • a filter that collects substances an actual differential pressure acquisition unit that acquires the actual differential pressure that is an actual measurement of the pressure difference between the upstream side and downstream side of the filter, and a flow rate acquisition that acquires the flow rate of exhaust gas flowing into the filter Differential pressure calculation to calculate the calculated differential pressure, which is the calculated value of the pressure difference between the upstream side and downstream side of the filter when the exhaust gas with the flow rate acquired by the flow rate acquisition unit flows into the filter in the normal state
  • an abnormality determination unit that performs filter abnormality determination.
  • the abnormality determination unit performs filter abnormality determination based on a differential pressure change amount ratio that is a ratio of a change amount of the actual differential pressure and a change amount of the calculated differential pressure accompanying a change in the flow rate of the exhaust gas.
  • ⁇ ⁇ ⁇ ⁇ Filter abnormality is determined based on the differential pressure change ratio, which is the ratio of the actual differential pressure change and the calculated differential pressure change associated with the exhaust gas flow rate change.
  • the differential pressure change amount ratio is substantially constant regardless of the operating state of the internal combustion engine.
  • the differential pressure change amount ratio fluctuates. Therefore, by performing the abnormality determination of the filter based on the differential pressure change amount ratio, it is not necessary to prepare a threshold value for each operating state of the internal combustion engine, and the determination accuracy can be increased.
  • the differential pressure change ratio is the ratio ( ⁇ Pc / ⁇ Pr) of the calculated differential pressure change ( ⁇ Pc) to the actual differential pressure change ( ⁇ Pr) and the actual differential pressure change ( ⁇ Pc). Any of the ratio ( ⁇ Pr / ⁇ Pc) of the change amount ( ⁇ Pr) of the differential pressure may be used. That is, the differential pressure change amount ratio is determined by a relative ratio between the actual differential pressure change amount ( ⁇ Pr) and the calculated differential pressure change amount ( ⁇ Pc).
  • an exhaust gas purifying device capable of performing filter abnormality determination with high accuracy based on the pressure difference between the upstream side and the downstream side of the filter.
  • Exhaust gas purification apparatus CA purifies exhaust gas exhausted from gasoline engine 100 (hereinafter referred to as “engine 100”) mounted on vehicle GC.
  • engine 100 gasoline engine 100
  • vehicle GC the configuration of the vehicle GC will be described with reference to FIG.
  • the vehicle GC includes an engine 100, an intake pipe 200, and an exhaust pipe 300.
  • the engine 100 is a gasoline engine having four cylinders 101.
  • the engine 100 is a direct injection internal combustion engine in which gasoline as fuel is directly injected into the combustion chamber 102. Since the configuration of each cylinder 101 and the control executed are the same, only the single cylinder 101 is shown and described in the following description.
  • Each cylinder 101 is provided with an intake valve 151, an exhaust valve 152, an opening / closing adjustment mechanism 190, a spark plug 160, a piston 170, and an injector 180.
  • a combustion chamber 102 is formed inside the cylinder 101 as a space in which a mixture of fuel and air burns.
  • the intake valve 151 is a valve disposed at a connection portion between the intake pipe 200 and the cylinder 101.
  • the intake valve 151 is opened, the supply of air to the combustion chamber 102 is started.
  • the intake valve 151 is closed, the supply of air to the combustion chamber 102 is stopped.
  • the exhaust valve 152 is a valve disposed at a connection portion between the exhaust pipe 300 and the cylinder 101.
  • the exhaust valve 152 When the exhaust valve 152 is in an open state, discharge of exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is started. Further, when the intake valve 151 is closed, the discharge of the exhaust gas from the combustion chamber 102 to the exhaust pipe 300 is stopped.
  • the opening / closing adjustment mechanism 190 is a mechanism for opening and closing the intake valve 151 and the exhaust valve 152, respectively. By opening / closing the intake valve 151 and the exhaust valve 152 at appropriate timings by the opening / closing adjustment mechanism 190, so-called intake stroke, compression stroke, combustion stroke, and exhaust stroke are executed in each cylinder 101, respectively.
  • the opening / closing adjustment mechanism 190 is configured as a variable valve timing mechanism including a VVT pulley (not shown) and the like.
  • the opening / closing timings of the intake valve 151 and the exhaust valve 152 when the above-described four strokes are executed are not always fixed, but can be changed by the opening / closing adjustment mechanism 190.
  • the opening / closing adjustment is a shift (overlap) between the timing at which the exhaust valve 152 is closed and the exhaust stroke is ended and the timing at which the intake valve 151 is opened and the intake stroke is started.
  • the mechanism 190 can be adjusted.
  • the opening / closing operation of the intake valve 151 and the exhaust valve 152 is controlled by the control device 400.
  • the spark plug 160 performs spark ignition and ignites the fuel / air mixture present in the combustion chamber 102.
  • the timing at which spark ignition is performed by the spark plug 160 is controlled by the control device 400.
  • the piston 170 reciprocates up and down in the cylinder 101.
  • the aforementioned combustion chamber 102 is formed above the piston 170 in the space in the cylinder 101.
  • the volume of the combustion chamber 102 decreases as the piston 170 moves upward.
  • the piston 170 is pushed downward by the combustion (explosion) of the fuel in the combustion chamber 102.
  • a connecting rod 171 and a crankshaft 172 are disposed below the piston 170.
  • the reciprocating movement of the piston 170 is converted into a rotational motion by the crankshaft 172 and the like.
  • the explosive force generated in the combustion chamber 102 is converted into the driving force of the vehicle GC.
  • the injector 180 is an on-off valve for directly injecting fuel into the combustion chamber 102.
  • the timing and amount of fuel supplied to the combustion chamber 102 by the injector 180 are controlled by the control device 400.
  • the intake pipe 200 supplies air to the cylinder 101.
  • a throttle valve (not shown) is disposed in the intake pipe 200.
  • the flow rate of air supplied to the cylinder 101 is adjusted by opening and closing the throttle valve in accordance with the driver's accelerator operation.
  • the intake pipe 200 is provided with a flow sensor 211.
  • the flow sensor 211 is electrically connected to the control device 400.
  • the flow sensor 211 detects a flow rate (intake flow rate) of air supplied to the cylinder 101 via the intake pipe 200 and transmits a signal corresponding to the detected flow rate to the control device 400.
  • the term “electrically connected” is not limited to a state where they are connected by wire, and may include a state where they can communicate with each other wirelessly.
  • the exhaust pipe 300 is a manifold-like pipe that takes in exhaust gas discharged from each cylinder 101 of the engine 100, flows it into the interior, joins it, and guides it to the outside of the vehicle GC.
  • the exhaust pipe 300 is provided with a purification function unit 10, an air-fuel ratio sensor 311, an exhaust temperature sensor 312, a bypass pipe 320, and a differential pressure sensor 314.
  • the purification function unit 10 includes a three-way catalyst 11 and a filter 12.
  • the three-way catalyst 11 has a honeycomb shape, for example, and is configured to allow the exhaust gas flowing through the exhaust pipe 300 to pass therethrough.
  • the three-way catalyst 11 has a catalyst carrier (not shown) carrying platinum, palladium and rhodium which are metal catalysts.
  • the three-way catalyst 11 purifies by oxidizing or reducing harmful substances (hydrocarbon, carbon monoxide, nitrogen oxide) in the exhaust gas by the catalytic action of these metal catalysts.
  • the filter 12 is provided in the exhaust pipe 300 on the downstream side of the three-way catalyst 11.
  • the filter 12 has a honeycomb shape, for example, and is configured to allow exhaust gas flowing from the three-way catalyst 11 side to pass therethrough.
  • the filter 12 is also referred to as GPF (Gasoline Particle Filter), and removes the particulate matter in the exhaust gas that passes through it, thereby purifying the exhaust gas.
  • the air-fuel ratio sensor 311 is provided upstream of the purification function unit 10 in the exhaust pipe 300.
  • the air-fuel ratio sensor 311 detects the air-fuel ratio of exhaust gas that is exhausted from the engine 100 and flows through the exhaust pipe 300.
  • the air-fuel ratio sensor 311 is electrically connected to the control device 400 and transmits a signal corresponding to the detected air-fuel ratio to the control device 400.
  • the exhaust temperature sensor 312 is provided upstream of the purification function unit 10 in the exhaust pipe 300.
  • the exhaust temperature sensor 312 detects the temperature of exhaust gas that is exhausted from the engine 100 and flows through the exhaust pipe 300.
  • the exhaust temperature sensor 312 is electrically connected to the control device 400 and transmits a signal corresponding to the detected temperature to the control device 400.
  • the bypass pipe 320 is a tubular member that bypasses the purification function unit 10 from the exhaust pipe 300 on the upstream side of the purification function unit 10 and extends downstream.
  • the bypass pipe 320 and the exhaust pipe 300 are in communication with each other, and the pressure inside the exhaust pipe 300 is transmitted to the bypass pipe 320.
  • the differential pressure sensor 314 is provided in the middle of the bypass pipe 320.
  • the differential pressure sensor 314 detects the pressure of exhaust gas discharged from the engine 100 and flowing through the exhaust pipe 300. Further, the differential pressure sensor 314 also detects the difference between the pressure transmitted from the upstream side of the bypass pipe 320 and the pressure transmitted from the downstream side of the bypass pipe 320.
  • the differential pressure sensor 314 is electrically connected to the control device 400 and transmits a signal corresponding to the detected value to the control device 400.
  • the value detected by the differential pressure sensor 314 may cause an offset error that is a systematic error.
  • control device 400 will be described.
  • a part or all of the control device 400 is configured by an analog circuit or a digital processor.
  • a functional control block is configured in the control device 400 in order to perform a function of outputting a control signal based on the received signal.
  • FIG. 1 shows the control device 400 as a functional control block diagram. Note that the software module incorporated in the analog circuit or digital processor constituting the control device 400 does not necessarily have to be divided into the control blocks shown in FIG. 1, and is configured to function as a plurality of control blocks. However, it may be further subdivided. A person skilled in the art can appropriately change the actual configuration inside the control device 400 as long as the configuration described below can be executed.
  • the control device 400 is an electronic device that is electrically connected to various sensors such as the air-fuel ratio sensor 311 and various actuators such as the opening / closing adjustment mechanism 190 and controls the operation of the engine 100.
  • the control device 400 includes an actual differential pressure acquisition unit 401, a flow rate acquisition unit 402, a calculated differential pressure calculation unit 403, and an abnormality determination unit 404.
  • the actual differential pressure acquisition unit 401 performs a predetermined calculation based on a signal received from the differential pressure sensor 314, so that the pressure difference between the upstream side and the downstream side of the purification function unit 10, that is, the upstream side of the filter 12.
  • An actual differential pressure that is an actual measurement value of a pressure difference from the downstream side (hereinafter also referred to as “differential pressure of the filter 12”) is acquired.
  • the flow rate acquisition unit 402 calculates a flow rate of exhaust gas flowing through the exhaust pipe 300 and flowing into the filter 12 by performing a predetermined calculation based on a signal received from the differential pressure sensor 314. Specifically, the flow rate acquisition unit 402 stores in advance a table including the differential pressure of the filter 12 and the flow rate of exhaust gas corresponding to the differential pressure, and the signal received from the differential pressure sensor 314 is The flow rate of the exhaust gas is calculated by collating with the table. The table is based on the measured value of the differential pressure of the filter 12 and the measured value of the flow rate of the exhaust gas detected at the time of operating the engine 100 under various conditions before supplying the vehicle GC to the market. Created.
  • the calculated differential pressure calculating unit 403 calculates a calculated differential pressure that is a calculated value of the differential pressure of the filter 12 by performing a predetermined calculation based on the flow rate of the exhaust gas acquired by the flow rate acquiring unit 402. Specifically, the calculated differential pressure calculation unit 403 stores in advance a table including the flow rate of the exhaust gas flowing into the filter 12 and the differential pressure of the filter 12 corresponding to the flow rate, and the flow rate acquisition unit 402. The calculated differential pressure is calculated by collating the flow rate of the exhaust gas acquired by the above table with the table.
  • the table uses a normal state filter 12 in which particulate matter is not deposited at all and no melt damage or cracks occur before supplying the vehicle GC to the market. It is created based on the measured value of the flow rate of the exhaust gas detected at that time and the measured value of the differential pressure of the filter 12.
  • the abnormality determination unit 404 determines abnormality of the filter 12. Although details will be described later, the abnormality determination unit 404 first calculates the change amount of the actual differential pressure and the change amount of the calculated differential pressure, and the difference that is the ratio of the change amount of the calculated differential pressure to the change amount of the actual differential pressure. The pressure change amount ratio is calculated. Furthermore, the abnormality determination unit 404 determines whether an abnormality such as excessive accumulation of particulate matter, melting damage, or cracks has occurred in the filter 12 based on the differential pressure change amount ratio.
  • FIG. 2 shows fluctuations in the flow rate, actual differential pressure, and calculated differential pressure of the exhaust gas flowing into the filter 12 when the vehicle speed of the vehicle GC changes from the driving state 1 to the driving state 5. Further, the lowermost part of FIG. 2 shows the amount of change in the actual differential pressure and the calculated differential pressure in each operation state (difference between the maximum value and the minimum value in each operation state).
  • FIG. 3 shows a differential pressure change ratio that is a ratio of the calculated differential pressure change to the actual differential pressure change in each operating state.
  • Operation state 1 and operation state 2 show a case where the filter 12 is in a normal state.
  • the operation state 3, the operation state 4, and the operation state 5 show a case where the filter 12 is in an abnormal state where the filter 12 is melted.
  • the filter 12 since the filter 12 is in the normal state in the operation state 1, the fluctuation of the actual differential pressure calculated based on the signal received from the differential pressure sensor 314 is substantially equal to the fluctuation of the calculated differential pressure. . That is, the change amount ⁇ Pr1 of the actual differential pressure in the operating state 1 is substantially the same as the change amount ⁇ Pc1 of the calculated differential pressure. Therefore, the differential pressure change ratio ( ⁇ Pc1 / ⁇ Pr1) calculated by the abnormality determination unit 404 in the operating state 1 is approximately 1.0 as shown in FIG.
  • the differential pressure change amount ratio is the same as that in the driving state 1.
  • the differential pressure change amount ratio ( ⁇ Pc2 / ⁇ Pr2) calculated by the abnormality determination unit 404 in the operation state 2 is approximately 1.0.
  • the vehicle GC accelerates similarly to the driving state 1, and the flow rate of the exhaust gas flowing into the filter 12 increases by ⁇ Q3. Even so, the differential pressure change ratio becomes a different value. More specifically, first, the exhaust gas easily passes through the filter 12 due to melting damage of the filter 12, so that a pressure difference between the upstream side and the downstream side of the filter 12 is less likely to occur, and the actual difference in the operation state 3. The pressure is smaller than the actual differential pressure in the operating state 1.
  • the differential pressure change amount ratio ( ⁇ Pc3 / ⁇ Pr3) calculated by the abnormality determination unit 404 in the operation state 3 is a value larger than 1.0 as shown in FIG.
  • the differential pressure change amount ratio is the same as that in the driving state 3.
  • the differential pressure change amount ratio ( ⁇ Pc4 / ⁇ Pr4) calculated by the abnormality determination unit 404 in the operating state 4 is a value larger than 1.0.
  • the abnormality determination unit 404 changes the differential pressure. Do not calculate the quantity ratio. This is because in the operating state 5, the change ⁇ Q5 in the exhaust gas flow rate within a predetermined time is smaller than the threshold value ⁇ Q0, and the amount of change in the differential pressure of the filter 12 cannot be calculated accurately. Note that the threshold value ⁇ Q0 is larger than ⁇ Q5 and smaller than ⁇ Q4.
  • the abnormality determination unit 404 determines the abnormality of the filter 12 based on the differential pressure change amount ratio that varies as described above. That is, when the differential pressure change amount ratio is approximately 1.0, it is determined that no abnormality has occurred in the filter 12 (normal state). On the other hand, if the difference between the differential pressure change ratio and 1.0 is equal to or greater than the threshold, the abnormality determination unit 404 determines that an abnormality has occurred in the filter 12.
  • the differential pressure change ratio is 1.5 or more as in the operating state 3 and the operating state 4 (the difference between the differential pressure change ratio and 1.0 is 0.5 or more upward)
  • the filter 12 has an abnormality such as melting damage or crack.
  • the differential pressure change ratio is 0.5 or less (when the difference between the differential pressure change ratio and 1.0 is 0.5 or more downward)
  • it is compared with the calculated differential pressure. Since the actual differential pressure is large, it can be determined that an abnormality in which excessive particulate matter is deposited has occurred.
  • control device 400 acquires the actual differential pressure in step S111 of FIG. As described above, the control device 400 obtains the actual differential pressure by performing a predetermined calculation based on the signal received from the differential pressure sensor 314.
  • control device 400 acquires the intake air flow rate and the like in step S121 in parallel with the processing in step S111. Specifically, the control device 400 performs a predetermined calculation based on a signal received from the flow sensor 211 to acquire the intake air flow rate, and performs a predetermined calculation based on a signal received from the air-fuel ratio sensor 311. Get the air / fuel ratio. Further, the control device 400 performs a predetermined calculation based on a signal received from the exhaust temperature sensor 312 to acquire the temperature of the exhaust gas, and performs a predetermined calculation based on a signal received from the differential pressure sensor 314. Get the pressure of the exhaust gas.
  • control device 400 acquires the flow rate of the exhaust gas in step S122.
  • the control device 400 acquires the exhaust gas by a known method based on the intake air flow rate, the air-fuel ratio, the exhaust gas temperature, and the exhaust gas pressure acquired in step S121.
  • control device 400 acquires a calculated differential pressure in step S123. As described above, the control device 400 acquires the calculated differential pressure by comparing the flow rate of the exhaust gas acquired in step S122 with a previously stored table.
  • step S101 the control device 400 determines whether or not a change has occurred in the exhaust gas flow rate. If it is determined that there is no change in the flow rate of the exhaust gas (S101: No), the control device 400 ends the process. On the other hand, when it is determined that the flow rate of the exhaust gas has changed (S101: Yes), the control device 400 proceeds to the processing of step S112 and step S124.
  • step S112 the control device 400 calculates the amount of change in the actual differential pressure accompanying the change in the exhaust gas flow rate. That is, the control device 400 calculates the difference between the maximum value and the minimum value of the actual differential pressure when the flow rate of the exhaust gas changes.
  • control device 400 calculates the change amount of the calculated differential pressure accompanying the change of the exhaust gas flow rate in step S124. That is, the control device 400 calculates the difference between the maximum value and the minimum value of the calculated differential pressure when the flow rate of the exhaust gas changes.
  • step S102 the control device 400 determines whether or not the amount of change in the exhaust gas flow rate within a predetermined time is greater than or equal to the threshold value ⁇ Q0.
  • the control device 400 ends the process.
  • the control device 400 proceeds to the process of step S103.
  • step S103 the control device 400 calculates a differential pressure change amount ratio. That is, the differential pressure that is the ratio of the calculated differential pressure change amount to the actual differential pressure change amount based on the actual differential pressure change amount calculated in step S112 and the calculated differential pressure change amount calculated in step S124.
  • the change amount ratio is calculated.
  • step S104 the control device 400 determines whether the filter 12 is abnormal based on the differential pressure change amount ratio.
  • the differential pressure change ratio is 1.5 or more (when the difference between the differential pressure change ratio and 1.0 is 0.5 or more upward)
  • the control device 400 determines that the filter 12 has an abnormality such as melting or cracking.
  • the differential pressure change ratio is 0.5 or less (when the difference between the differential pressure change ratio and 1.0 is 0.5 or more downward)
  • it is compared with the calculated differential pressure. Therefore, the control device 400 determines that an abnormality in which excessive particulate matter is deposited on the filter 12 has occurred.
  • the abnormality determination unit 404 is based on the differential pressure change amount ratio that is the ratio of the actual differential pressure change amount and the calculated differential pressure change amount accompanying the exhaust gas flow rate change.
  • the abnormality determination of the filter 12 is performed.
  • the differential pressure change ratio is substantially constant at 1.0 regardless of the operating state of the engine 100.
  • the differential pressure change amount ratio fluctuates. Therefore, by performing abnormality determination of the filter 12 based on the differential pressure change amount ratio, it is not necessary to prepare a threshold value for each operating state of the engine 100, and the determination accuracy can be increased.
  • the abnormality determination unit 404 generates an abnormality in the filter 12 when the difference between the differential pressure change amount ratio and the predetermined value 1.0 is 0.5 or more. It is determined that When abnormalities such as excessive accumulation of particulate matter, melting damage, cracks, etc. occur in the filter 12, the change amount of the actual differential pressure fluctuates accordingly, and as a result, the differential pressure change amount ratio also fluctuates. Deviation from zero. In the present embodiment, by determining that an abnormality has occurred in the filter 12 based on this deviation amount, it is not necessary to prepare a threshold value for each operating state of the engine 100, and the determination accuracy may be high. it can.
  • the abnormality determination unit 404 determines the abnormality of the filter 12 when the flow rate of the exhaust gas changes by ⁇ Q0 or more within a predetermined time. Therefore, when the change in the flow rate of the exhaust gas is sufficiently large and the amount of change in the differential pressure of the filter 12 is accurately calculated, the determination accuracy can be increased by performing the abnormality determination of the filter 12.
  • the flow rate of the exhaust gas flowing through the exhaust pipe 300 is obtained by performing a predetermined calculation based on a signal received from the differential pressure sensor 314, but the present invention is not limited to this.
  • a flow sensor having excellent heat resistance may be provided in the exhaust pipe 300, and the flow rate of the exhaust gas may be directly detected by the flow sensor.
  • the differential pressure change amount ratio is defined as the ratio ( ⁇ Pc / ⁇ Pr) of the calculated differential pressure change amount ( ⁇ Pc) to the actual differential pressure change amount ( ⁇ Pr), but is not limited thereto. It is not something.
  • the differential pressure change amount ratio may be determined as the ratio ( ⁇ Pr / ⁇ Pc) of the actual differential pressure change amount ( ⁇ Pr) to the calculated differential pressure change amount ( ⁇ Pc). In this case, when the differential pressure change ratio deviates below 1.0, it is determined that an abnormality in which excessive particulate matter is deposited on the filter 12 occurs, and the differential pressure change ratio is 1. When deviating upward from 0, it can be determined that the filter 12 has an abnormality such as melting or cracking.
  • the said embodiment determines with the threshold value of the deviation
  • the threshold value of the deviation amount at the time of doing is set to the same value (0.5).
  • the present invention is not limited to this, and the respective threshold values can be set to different values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 排出ガス浄化装置は、フィルタ(12)の上流側と下流側との圧力差の実測値である実差圧を取得する実差圧取得部(401)と、フィルタに流入する排出ガスの流量を取得する流量取得部(402)と、正常状態のフィルタに、流量取得部によって取得した流量の排出ガスが流入した場合のフィルタの上流側と下流側との圧力差の計算値である計算差圧を算出する計算差圧算出部(403)と、フィルタの異常判定を行う異常判定部(404)と、を備える。異常判定部は、排出ガスの流量変化に伴う実差圧の変化量と計算差圧の変化量との比である差圧変化量比に基づいて、フィルタの異常判定を行う。

Description

排出ガス浄化装置 関連出願の相互参照
 本出願は、2015年4月6日に出願された日本特許出願2015-77642号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関から排出され排気配管を流れる排出ガスを浄化する排出ガス浄化装置に関する。
 近年、内燃機関から排出ガスとともに排出される粒子状物質(Particuculate Matter:PM)の低減が求められており、法規制の強化が進められている。そのため、ディーゼルエンジンでは、排出ガスの経路にフィルタを設けることで粒子状物質を除去することが一般的となっている。当該フィルタは、通過する排出ガス中の粒子状物質を捕集することによって除去する。このようなフィルタを用いた粒子状物質の除去は、ガソリンエンジンにおいても検討が進められている。
 フィルタは、捕集した粒子状物質が過度に堆積すると、排出ガスの通過が阻害され、その結果、内燃機関の燃費の悪化を招いてしまう。このため、粒子状物質がフィルタに過度に堆積する前に、フィルタに捕集された粒子状物質を燃焼させることで除去し、機能回復させる再生処理を行うことが必要となる。
 また、再生処理の際などに、フィルタが過度に昇温して溶損やクラックといった異常が生じた場合、粒子状物質の捕集が適切に行われなくなってしまう。したがって、再生処理と併せて、フィルタの異常検出も行うことが好ましい。
 これに対し、下記特許文献1には、フィルタに堆積した粒子状物質の量の推定や、フィルタの異常判定を目的として、差圧センサを搭載したシステムが記載されている。詳細には、当該システムは、フィルタの上流側と下流側との圧力差(以下、これを「フィルタの差圧」とも称する)の変化量に基づいてフィルタの異常を検出する。差圧センサはオフセット誤差が生じ得るが、下記特許文献1のようにフィルタの差圧の変化量に基づいてフィルタの異常判定を行うことで、このオフセット誤差の影響を排除し、検出精度を高めることが可能とされている。
特開2007-327392号公報
 フィルタの差圧は内燃機関の運転状態の変化とともに大きく変動する。したがって、例えば、フィルタの差圧と閾値との比較に基づいてフィルタの異常判定を行う場合、内燃機関の運転状態ごとに閾値を用意する必要が生じ、判定アルゴリズムが複雑なものとなるおそれがあった。
 これに対し、内燃機関が特定の運転状態にある場合に限ってフィルタの異常判定を行うことで、用意する閾値の数を少なくする方法も考えられる。しかしながら、この場合、異常判定を行える機会が不十分となり、その結果、異常判定の精度が低下するおそれがあった。
 本開示の目的は、フィルタの上流側と下流側との圧力差に基づいてフィルタの異常判定を高い精度で行うことが可能な排出ガス浄化装置を提供することにある。
 本開示の一態様において、排出ガス浄化装置は、内燃機関から排出され排気配管を流れる排出ガスを浄化する排出ガス浄化装置であって、排気配管に設けられ、排出ガスを通過させることで粒子状物質を補集するフィルタと、フィルタの上流側と下流側との圧力差の実測値である実差圧を取得する実差圧取得部と、フィルタに流入する排出ガスの流量を取得する流量取得部と、正常状態のフィルタに、流量取得部によって取得した流量の排出ガスが流入した場合のフィルタの上流側と下流側との圧力差の計算値である計算差圧を算出する計算差圧算出部と、フィルタの異常判定を行う異常判定部と、を備える。異常判定部は、排出ガスの流量変化に伴う実差圧の変化量と計算差圧の変化量との比である差圧変化量比に基づいて、フィルタの異常判定を行う。
 排出ガスの流量変化に伴う実差圧の変化量と計算差圧の変化量との比である差圧変化量比に基づいて、フィルタの異常判定を行う。粒子状物質の過度の堆積や、溶損等の異常がフィルタに生じていない場合、差圧変化量比は内燃機関の運転状態によらず略一定となる。一方、フィルタに上記異常が生じると、差圧変化量比が変動する。したがって、差圧変化量比に基づいてフィルタの異常判定を行うことで、内燃機関の運転状態毎に閾値を用意する必要が無いとともに、その判定精度を高いものとすることができる。
 ここで、差圧変化量比は、実差圧の変化量(ΔPr)に対する計算差圧の変化量(ΔPc)の比(ΔPc/ΔPr)、及び、計算差圧の変化量(ΔPc)に対する実差圧の変化量(ΔPr)の比(ΔPr/ΔPc)のいずれであってもよい。すなわち、差圧変化量比は、実差圧の変化量(ΔPr)と計算差圧の変化量(ΔPc)との相対的な比率によって定められる。
 これによれば、フィルタの上流側と下流側との圧力差に基づいてフィルタの異常判定を高い精度で行うことが可能な排出ガス浄化装置を提供することができる。
実施形態に係る排出ガス浄化装置が搭載された車両を示す模式図である。 図1の実差圧取得部によって取得された実差圧と計算差圧算出部によって算出された計算差圧の変動を示すグラフである。 図2の各運転状態における差圧変化量比を示すグラフである。 図1の制御装置が実行する処理の流れを示すフローチャートである。
 以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 実施形態に係る排出ガス浄化装置CAについて、図1を参照しながら説明する。排出ガス浄化装置CAは、車両GCに搭載されるガソリンエンジン100(以下、「エンジン100」と称する)から排出される排出ガスの浄化を行う。先ず、車両GCの構成について図1を参照しながら説明する。
 尚、図1では、車両GCのうちエンジン100及びその周辺の構成のみが模式的に示されており、その他の構成については図示が省略されている。図1に示されるように、車両GCは、エンジン100と、吸気配管200と、排気配管300と、を備えている。
 エンジン100は、4つの気筒101を備えたガソリンエンジンである。本実施形態においては、エンジン100は、燃料であるガソリンが燃焼室102内に直接噴射される直噴式の内燃機関である。各気筒101の構成及び実行される制御は互いに同一であるから、以下の説明においては単一の気筒101についてのみ図示及び説明を行う。
 各気筒101には、吸気バルブ151と、排気バルブ152と、開閉調整機構190と、点火プラグ160と、ピストン170と、インジェクタ180と、が設けられている。また、気筒101の内部には、燃料と空気との混合気が燃焼する空間として燃焼室102が形成されている。
 吸気バルブ151は、吸気配管200と気筒101との接続部分に配置されたバルブである。吸気バルブ151が開状態となることにより、燃焼室102に対する空気の供給が開始される。また、吸気バルブ151が閉状態となることにより、燃焼室102への空気の供給が停止される。
 排気バルブ152は、排気配管300と気筒101との接続部分に配置されたバルブである。排気バルブ152が開状態となることにより、燃焼室102から排気配管300への排出ガスの排出が開始される。また、吸気バルブ151が閉状態となることにより、燃焼室102から排気配管300への排出ガスの排出が停止される。
 開閉調整機構190は、吸気バルブ151及び排気バルブ152をそれぞれ開閉させるための機構である。開閉調整機構190により、吸気バルブ151及び排気バルブ152がそれぞれ適切なタイミングで開閉することで、各気筒101において所謂吸気行程、圧縮行程、燃焼行程及び排気行程がそれぞれ実行される。
 開閉調整機構190は、VVTプーリ(不図示)等を備えた可変バルブタイミング機構として構成されている。前述した4つの行程が実行される際の吸気バルブ151及び排気バルブ152の開閉タイミングは、常に固定されているのではなく、開閉調整機構190によって変更可能となっている。
 具体的には、排気バルブ152が閉状態となって排気行程が終了されるタイミングと、吸気バルブ151が開状態となって吸気行程が開始されるタイミングとのずれ(オーバーラップ)が、開閉調整機構190により調整可能となっている。吸気バルブ151及び排気バルブ152の開閉動作は、制御装置400によって制御される。
 点火プラグ160は、火花点火を行い、燃焼室102内に存在する燃料及び空気の混合気に点火する。点火プラグ160によって火花点火が行われるタイミング(点火時期)、すなわち燃焼行程が開始されるタイミングは、制御装置400によって制御される。
 ピストン170は、気筒101内において上下方向に往復移動する。前述した燃焼室102は、気筒101内の空間のうち、ピストン170の上方に形成されている。
 エンジン100の圧縮行程においては、ピストン170が上方に移動することによって、燃焼室102の容積が減少する。エンジン100の燃焼行程においては、燃焼室102における燃料の燃焼(爆発)によってピストン170が下方に押し下げられる。ピストン170の下方には、コンロッド171やクランクシャフト172が配置されている。ピストン170の往復移動は、これらクランクシャフト172等によって回転運動に変換される。これにより、燃焼室102において生じた爆発力が車両GCの駆動力に変換される。
 インジェクタ180は、燃焼室102内に燃料を直接噴射するための開閉弁である。インジェクタ180によって燃焼室102内に燃料が供給されるタイミングや供給量は、制御装置400により制御される。
 吸気配管200は、気筒101に空気を供給する。吸気配管200にはスロットルバルブ(不図示)が配置されている。運転者のアクセル操作に応じてスロットルバルブが開閉することで、気筒101に供給される空気の流量が調整される。また、吸気配管200には、フローセンサ211が設けられている。フローセンサ211は、制御装置400と電気的に接続されている。フローセンサ211は、吸気配管200を介して気筒101に供給される空気の流量(吸気流量)を検出し、検出した流量に対応する信号を制御装置400に送信する。尚、「電気的に接続」とは、有線によって接続された状態に限定される意味ではなく、無線により互いに通信可能とされた状態をも含みうる。
 排気配管300は、エンジン100の各気筒101から排出される排出ガスを取り入れて内部に流し、合流させて車両GCの外部へと導くマニホールド状の配管である。排気配管300には、浄化機能部10と、空燃比センサ311と、排気温センサ312と、バイパス管320と、差圧センサ314と、が設けられている。
 浄化機能部10は、三元触媒11と、フィルタ12とからなる。三元触媒11は、例えばハニカム状を呈し、排気配管300を流れる排出ガスを通過させることができるように構成されている。三元触媒11は、金属触媒であるプラチナ、パラジウム、ロジウムを担持した触媒担体(不図示)を内部に有している。三元触媒11は、これら金属触媒の触媒作用によって、排出ガス中の有害物質(炭化水素、一酸化炭素、窒素酸化物)を酸化又は還元することで浄化する。
 フィルタ12は、三元触媒11よりも下流側の排気配管300に設けられている。フィルタ12は、例えばハニカム状を呈し、三元触媒11側から流れてくる排出ガスを通過させることができるように構成されている。フィルタ12は、GPF(Gasoline Particle Filter)とも称され、通過する排出ガス中の粒子状物質を捕集することで除去し、排出ガスを浄化する。
 空燃比センサ311は、排気配管300のうち浄化機能部10よりも上流側に設けられている。空燃比センサ311は、エンジン100から排出され排気配管300を流れる排出ガスの空燃比を検出する。また、空燃比センサ311は、制御装置400と電気的に接続され、検出した空燃比に対応する信号を制御装置400に送信する。
 排気温センサ312は、排気配管300のうち浄化機能部10よりも上流側に設けられている。排気温センサ312は、エンジン100から排出され排気配管300を流れる排出ガスの温度を検出する。また、排気温センサ312は、制御装置400と電気的に接続され、検出した温度に対応する信号を制御装置400に送信する。
 バイパス管320は、浄化機能部10の上流側の排気配管300から浄化機能部10を迂回して下流側に延びる管状部材である。バイパス管320及び排気配管300は互いに連通しており、排気配管300の内部の圧力がバイパス管320に伝達されるように構成されている。
 差圧センサ314は、バイパス管320の途中に設けられている。差圧センサ314は、エンジン100から排出され排気配管300を流れる排出ガスの圧力を検出する。さらに、差圧センサ314は、バイパス管320の上流側から伝達される圧力と、バイパス管320の下流側から伝達される圧力との差分も検出する。差圧センサ314は、制御装置400と電気的に接続されており、検出した値に対応する信号を制御装置400に送信する。当該差圧センサ314が検出する値は、系統誤差であるオフセット誤差が生じ得る。
 次に、制御装置400について説明する。制御装置400は、その一部又は全部が、アナログ回路で構成されるか、デジタルプロセッサとして構成される。いずれにしても、受信した信号に基づいて制御信号を出力する機能を果たすため、制御装置400には機能的な制御ブロックが構成される。
 図1は、制御装置400を、機能的な制御ブロック図として示している。尚、制御装置400を構成するアナログ回路又はデジタルプロセッサに組み込まれるソフトウェアのモジュールは、必ずしも図1に示す制御ブロックに分割されている必要はなく、複数の制御ブロックの働きをするものとして構成されていても構わず、更に細分化されていても構わない。後述する処理を実行できるように構成されていれば、制御装置400の内部の実際の構成は当業者が適宜変更できる。
 制御装置400は、空燃比センサ311等の各種センサや、開閉調整機構190等の各種アクチュエータと電気的に接続されており、エンジン100の運転を制御する電子機器である。制御装置400は、実差圧取得部401と、流量取得部402と、計算差圧算出部403と、異常判定部404と、を有している。
 実差圧取得部401は、差圧センサ314から受信する信号に基づいて所定の演算を行うことで、浄化機能部10の上流側と下流側との圧力差、すなわち、フィルタ12の上流側と下流側との圧力差(以下、これを「フィルタ12の差圧」とも称する)の実測値である実差圧を取得する。
 流量取得部402は、差圧センサ314から受信する信号に基づいて所定の演算を行うことで、排気配管300を流れてフィルタ12に流入する排出ガスの流量を算出する。具体的には、流量取得部402は、フィルタ12の差圧と、当該差圧に対応する排出ガスの流量と、からなるテーブルを予め記憶しており、差圧センサ314から受信する信号を当該テーブルと照合することで、排出ガスの流量を算出する。当該テーブルは、車両GCを市場に供給する前にエンジン100を種々の条件で運転させ、その際に検出されるフィルタ12の差圧の実測値、及び、排出ガスの流量の実測値に基づいて作成される。
 計算差圧算出部403は、流量取得部402によって取得された排出ガスの流量に基づいて所定の演算を行うことで、フィルタ12の差圧の計算値である計算差圧を算出する。具体的には、計算差圧算出部403は、フィルタ12に流入する排出ガスの流量と、当該流量に対応するフィルタ12の差圧と、からなるテーブルを予め記憶しており、流量取得部402によって取得された排出ガスの流量を当該テーブルと照合することで、計算差圧を算出する。当該テーブルは、車両GCを市場に供給する前に、粒子状物質が全く堆積しておらず、且つ、溶損やクラック等も生じていない正常状態のフィルタ12を用いて、エンジン100を種々の条件で運転させ、その際に検出される排出ガスの流量の実測値、及び、フィルタ12の差圧の実測値に基づいて作成される。
 異常判定部404は、フィルタ12の異常判定を行う。詳細は後述するが、異常判定部404は、まず、実差圧の変化量及び計算差圧の変化量を算出するとともに、実差圧の変化量に対する計算差圧の変化量の比である差圧変化量比を算出する。さらに、異常判定部404は、当該差圧変化量比に基づいて、粒子状物質の過度の堆積、溶損、クラック等の異常がフィルタ12に生じているか否かを判定する。
 続いて、図2及び図3を参照しながら、実差圧及び計算差圧の変動について説明する。図2は、車両GCの車速が運転状態1から運転状態5に示されるように変化した場合におけるフィルタ12に流入する排出ガスの流量、実差圧及び計算差圧の変動を示している。また、図2の最下段には、各運転状態における実差圧及び計算差圧の変化量(各運転状態における最大値と最小値との差分)を示している。また、図3は、各運転状態における実差圧の変化量に対する計算差圧の変化量の比である差圧変化量比を示している。運転状態1及び運転状態2は、フィルタ12が正常な状態にある場合を示している。一方、運転状態3、運転状態4及び運転状態5は、フィルタ12が溶損した異常状態にある場合を示している。
 図2の運転状態1に示されるように、車両GCが加速して車速が上昇すると、それに伴って排気配管300を流れてフィルタ12に流入する排出ガスの流量がΔQ1だけ増加する。このため、実差圧及び計算差圧も増加する。
 ここで、前述したように運転状態1はフィルタ12が正常な状態であるから、差圧センサ314から受信する信号に基づいて算出される実差圧の変動は、計算差圧の変動と略等しい。すなわち、運転状態1における実差圧の変化量ΔPr1は、計算差圧の変化量ΔPc1と略同一となる。このため、運転状態1において異常判定部404によって算出される差圧変化量比(ΔPc1/ΔPr1)は、図3に示されるように略1.0となる。
 車両GCの運転状態1における加速が終了した後に、再度車両GCが加速し、フィルタ12に流入する排出ガスの流量がΔQ2だけ増加する運転状態2においても、差圧変化量比は運転状態1と同様の傾向を示す。すなわち、図3に示されるように、運転状態2において異常判定部404によって算出される差圧変化量比(ΔPc2/ΔPr2)は、略1.0となる。
 これに対し、フィルタ12に過度の粒子状物質が堆積している運転状態3においては、車両GCが運転状態1と同様に加速し、フィルタ12に流入する排出ガスの流量がΔQ3だけ増加した場合であっても、差圧変化量比は異なる値となる。詳述すると、まず、フィルタ12の溶損によって、排出ガスがフィルタ12を通過し易くなったことで、フィルタ12の上流側と下流側との圧力差が生じ難くなり、運転状態3における実差圧は運転状態1における実差圧よりも小さくなる。一方、計算差圧は、前述したようにフィルタ12が正常な状態にある場合のフィルタ12の差圧として算出されるから、運転状態3における計算差圧は運転状態1における計算差圧と同様の値となる。このため、運転状態3において異常判定部404によって算出される差圧変化量比(ΔPc3/ΔPr3)は、図3に示されるように1.0よりも大きい値となる。
 車両GCの運転状態3における加速が終了した後に、再度車両GCが加速し、フィルタ12に流入する排出ガスの流量がΔQ4だけ増加する運転状態4においても、差圧変化量比は運転状態3と同様の傾向を示す。すなわち、図3に示されるように、運転状態4において異常判定部404によって算出される差圧変化量比(ΔPc4/ΔPr4)は、1.0よりも大きい値となる。
 車両GCの運転状態4における加速が終了した後に、再度車両GCが僅かに加速し、フィルタ12に流入する排出ガスの流量がΔQ5だけ増加する運転状態5においては、異常判定部404は差圧変化量比の算出を行わない。これは、運転状態5においては、予め定められた時間内の排出ガスの流量の変化ΔQ5が閾値ΔQ0よりも小さく、フィルタ12の差圧の変化量を正確に算出することができないためである。尚、閾値ΔQ0は、ΔQ5よりも大きく、且つ、ΔQ4よりも小さい値である。
 異常判定部404は、以上のように変動する差圧変化量比に基づいて、フィルタ12の異常判定を行う。すなわち、差圧変化量比が略1.0である場合は、フィルタ12に異常が生じていない(正常状態)と判定する。一方、差圧変化量比と1.0との乖離量が閾値以上となった場合は、異常判定部404はフィルタ12に異常が生じていると判定する。
 例えば、運転状態3及び運転状態4のように、差圧変化量比が1.5以上となった場合(差圧変化量比と1.0との乖離量が上方側に0.5以上となった場合)は、フィルタ12に溶損やクラック等の異常が生じていると判定することができる。また、差圧変化量比が0.5以下となった場合(差圧変化量比と1.0との乖離量が下方側に0.5以上となった場合)は、計算差圧と比べて実差圧が大きくなっていることから、過度の粒子状物質が堆積する異常が生じていると判定することができる。
 続いて、図4を参照しながら、フィルタ12の異常判定の際に制御装置400が実行する処理の流れについて説明する。尚、以下では簡便のため、詳細には制御装置400の実差圧取得部401等の各部分において実行する処理も、総括して制御装置400が実行するとして説明する。
 まず、制御装置400は、図4のステップS111で、実差圧を取得する。前述したように、制御装置400は、差圧センサ314から受信する信号に基づいて所定の演算を行うことで、実差圧を取得する。
 また、制御装置400は、ステップS111の処理と並行して、ステップS121で、吸気流量等を取得する。具体的には、制御装置400は、フローセンサ211から受信する信号に基づいて所定の演算を行って吸気流量を取得するとともに、空燃比センサ311から受信する信号に基づいて所定の演算を行って空燃比を取得する。さらに、制御装置400は、排気温センサ312から受信する信号に基づいて所定の演算を行って排出ガスの温度を取得するとともに、差圧センサ314から受信する信号に基づいて所定の演算を行って排出ガスの圧力を取得する。
 次に、制御装置400は、ステップS122で、排出ガスの流量を取得する。ここでは、制御装置400は、ステップS121で取得した吸気流量、空燃比、排出ガスの温度及び排出ガスの圧力に基づいて、公知の手法によって排出ガスを取得する。
 次に、制御装置400は、ステップS123で、計算差圧を取得する。前述したように、制御装置400は、ステップS122で取得した排出ガスの流量を、予め記憶しているテーブルと照合することで、計算差圧を取得する。
 次に、制御装置400は、ステップS101で、排出ガスの流量に変化が生じたか否かを判定する。排出ガスの流量に変化が生じていないと判定した場合(S101:No)、制御装置400は、処理を終了する。一方、排出ガスの流量に変化が生じたと判定した場合(S101:Yes)、制御装置400は、ステップS112とステップS124の処理に進む。
 次に、制御装置400は、ステップS112で、排出ガスの流量変化に伴う実差圧の変化量を算出する。すなわち、制御装置400は、排出ガスが流量変化した際の、実差圧の最大値と最小値との差分を算出する。
 次に、制御装置400は、ステップS112の処理と並行して、ステップS124で、排出ガスの流量変化に伴う計算差圧の変化量を算出する。すなわち、制御装置400は、排出ガスが流量変化した際の、計算差圧の最大値と最小値との差分を算出する。
 次に、制御装置400は、ステップS102で、予め定められた時間内の排出ガスの流量の変化量が閾値ΔQ0以上か否かを判定する。排出ガスの流量の変化量が閾値ΔQ0以上ではないと判定した場合(S102:No)、すなわち、排出ガスの流量の変化が小さくフィルタ12の差圧の変化量を正確に算出することができない場合は、制御装置400は、処理を終了する。一方、排出ガスの流量の変化量が閾値ΔQ0以上であると判定した場合(S102:Yes)、制御装置400は、ステップS103の処理に進む。
 次に、制御装置400は、ステップS103で、差圧変化量比を算出する。すなわち、ステップS112で算出した実差圧の変化量と、ステップS124で算出した計算差圧の変化量とに基づいて、実差圧の変化量に対する計算差圧の変化量の比である差圧変化量比を算出する。
 次に、制御装置400は、ステップS104で、差圧変化量比に基づいてフィルタ12の異常判定を行う。ここでは、前述したように、差圧変化量比が1.5以上となった場合(差圧変化量比と1.0との乖離量が上方側に0.5以上となった場合)は、制御装置400は、フィルタ12に溶損やクラック等の異常が生じていると判定する。また、差圧変化量比が0.5以下となった場合(差圧変化量比と1.0との乖離量が下方側に0.5以上となった場合)は、計算差圧と比べて実差圧が大きくなっていることから、制御装置400は、フィルタ12に過度の粒子状物質が堆積する異常が生じていると判定する。
 以上のように、本実施形態によれば、異常判定部404は、排出ガスの流量変化に伴う実差圧の変化量及び計算差圧の変化量の比である差圧変化量比に基づいて、フィルタ12の異常判定を行う。粒子状物質の過度の堆積、溶損、クラック等の異常がフィルタ12に生じていない場合、差圧変化量比はエンジン100の運転状態によらず1.0で略一定となる。一方、フィルタ12に上記異常が生じると、差圧変化量比が変動する。したがって、差圧変化量比に基づいてフィルタ12の異常判定を行うことで、エンジン100の運転状態毎に閾値を用意する必要が無いとともに、その判定精度を高いものとすることができる。
 また、本実施形態では、異常判定部404は、差圧変化量比と予め定められた値である1.0との乖離量が0.5以上となった場合に、フィルタ12に異常が生じていると判定する。フィルタ12に粒子状物質の過度の堆積、溶損、クラック等の異常が生じた場合、それに伴って実差圧の変化量が変動し、この結果、差圧変化量比も変動して1.0から乖離する。本実施形態では、この乖離量に基づいてフィルタ12に異常が生じていると判定することで、エンジン100の運転状態毎に閾値を用意する必要が無く、その判定精度を高いものとすることができる。
 また、本実施形態では、異常判定部404は、排出ガスの流量が予め定められた所定時間内にΔQ0以上変化した場合に、フィルタ12の異常判定を行う。したがって、排出ガスの流量の変化が十分に大きく、フィルタ12の差圧の変化量を正確に算出する場合にフィルタ12の異常判定を行うことで、その判定精度を高いものとすることができる。
 以上、具体例を参照しつつ実施形態について説明した。しかし、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、これらの記載に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含む。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができる。
 上記実施形態では、排気配管300を流れる排出ガスの流量を、差圧センサ314から受信する信号に基づいて所定の演算を行うことで取得しているが、これに限定されるものではない。例えば、耐熱性に優れた流量センサを排気配管300に設け、当該流量センサによって排出ガスの流量を直接的に検出してもよい。
 また、上記実施形態では、差圧変化量比を、実差圧の変化量(ΔPr)に対する計算差圧の変化量(ΔPc)の比(ΔPc/ΔPr)と定めているが、これに限定されるものではない。例えば、差圧変化量比を、計算差圧の変化量(ΔPc)に対する実差圧の変化量(ΔPr)の比(ΔPr/ΔPc)と定めてもよい。この場合、差圧変化量比が1.0よりも下方側に乖離した場合に、フィルタ12に過度の粒子状物質が堆積する異常が生じていると判定し、差圧変化量比が1.0よりも上方側に乖離した場合に、フィルタ12に溶損やクラック等の異常が生じていると判定することができる。
 また、上記実施形態では、フィルタ12に溶損やクラック等の異常が生じていると判定する際の乖離量の閾値と、フィルタ12に過度の粒子状物質が堆積する異常が生じていると判定する際の乖離量の閾値とを、同一の値(0.5)に設定している。しかしながら、これに限定されるものではなく、各閾値を互いに異なる値に設定することもできる。

 

Claims (3)

  1.  内燃機関(100)から排出され排気配管(300)を流れる排出ガスを浄化する排出ガス浄化装置(CA)であって、
     前記排気配管に設けられ、排出ガスを通過させることで粒子状物質を補集するフィルタ(12)と、
     前記フィルタの上流側と下流側との圧力差の実測値である実差圧を取得する実差圧取得部(401)と、
     前記フィルタに流入する排出ガスの流量を取得する流量取得部(402)と、
     正常状態の前記フィルタに、前記流量取得部によって取得した流量の排出ガスが流入した場合の前記フィルタの上流側と下流側との圧力差の計算値である計算差圧を算出する計算差圧算出部(403)と、
     前記フィルタの異常判定を行う異常判定部(404)と、を備え、
     前記異常判定部は、排出ガスの流量変化に伴う前記実差圧の変化量と前記計算差圧の変化量との比である差圧変化量比に基づいて、前記フィルタの異常判定を行う排出ガス浄化装置。
  2.  前記異常判定部は、前記差圧変化量比と予め定められた値との乖離量が第1閾値以上となった場合に、前記フィルタに異常が生じていると判定する請求項1に記載の排出ガス浄化装置。
  3.  前記異常判定部は、排出ガスの流量が予め定められた所定時間内に第2閾値以上変化した場合に、前記フィルタの異常判定を行う請求項1又は2に記載の排出ガス浄化装置。

     
PCT/JP2016/001666 2015-04-06 2016-03-23 排出ガス浄化装置 WO2016163087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016001605.0T DE112016001605T5 (de) 2015-04-06 2016-03-23 Abgasreinigungsvorrichtung
US15/552,367 US10287957B2 (en) 2015-04-06 2016-03-23 Exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-077642 2015-04-06
JP2015077642A JP6387884B2 (ja) 2015-04-06 2015-04-06 排出ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2016163087A1 true WO2016163087A1 (ja) 2016-10-13

Family

ID=57072415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001666 WO2016163087A1 (ja) 2015-04-06 2016-03-23 排出ガス浄化装置

Country Status (4)

Country Link
US (1) US10287957B2 (ja)
JP (1) JP6387884B2 (ja)
DE (1) DE112016001605T5 (ja)
WO (1) WO2016163087A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075872A3 (fr) * 2017-12-27 2019-06-28 Renault S.A.S Methode et dispositif de determination du fonctionnement d'un filtre a particules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159982A1 (en) * 2021-10-04 2023-04-05 Volvo Truck Corporation Detection of differential pressure sensor replacement
CN114718707B (zh) * 2022-03-08 2023-04-07 潍柴动力股份有限公司 工程车辆的dpf故障诊断方法和车辆的控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327392A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp Pmトラッパの故障検出システム
JP2010222993A (ja) * 2009-03-19 2010-10-07 Yanmar Co Ltd 内燃機関の排気浄化装置
WO2014087536A1 (ja) * 2012-12-07 2014-06-12 トヨタ自動車株式会社 排気浄化装置の異常検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157200A (ja) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置の異常検出装置
JP2009103066A (ja) 2007-10-24 2009-05-14 Denso Corp 内燃機関の排気浄化装置
US20120023911A1 (en) * 2010-07-28 2012-02-02 Gm Global Technology Operations, Inc. Detection of exhaust particulate filter substrate failure
US8640441B2 (en) * 2012-06-07 2014-02-04 GM Global Technology Operations LLC Method of monitoring a differential pressure sensor of an exhaust gas treatment system
US9874124B2 (en) * 2015-01-16 2018-01-23 Ford Global Technologies, Llc Filter diagnostics and prognostics
JP2016156357A (ja) * 2015-02-26 2016-09-01 トヨタ自動車株式会社 排気装置の異常判定システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327392A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp Pmトラッパの故障検出システム
JP2010222993A (ja) * 2009-03-19 2010-10-07 Yanmar Co Ltd 内燃機関の排気浄化装置
WO2014087536A1 (ja) * 2012-12-07 2014-06-12 トヨタ自動車株式会社 排気浄化装置の異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075872A3 (fr) * 2017-12-27 2019-06-28 Renault S.A.S Methode et dispositif de determination du fonctionnement d'un filtre a particules

Also Published As

Publication number Publication date
JP2016196865A (ja) 2016-11-24
JP6387884B2 (ja) 2018-09-12
US10287957B2 (en) 2019-05-14
US20180038259A1 (en) 2018-02-08
DE112016001605T5 (de) 2018-01-04

Similar Documents

Publication Publication Date Title
US8459005B2 (en) Method and device for diagnosing a particle filter
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US10450932B2 (en) Particulate filter fault diagnosis method and device
JP6059272B2 (ja) 触媒劣化診断装置
CN104727915A (zh) 诊断scr催化剂的方法
CN105339637A (zh) 内燃机的诊断装置
WO2010064329A1 (ja) エンジンシステム制御装置
CN108138638B (zh) 用于内燃机的废气处理
CN105339634A (zh) 内燃机的诊断装置
WO2016163087A1 (ja) 排出ガス浄化装置
US10577998B2 (en) Method for controlling a regeneration of a particle filter of an internal combustion engine
US10072552B2 (en) Method and system of testing the proper functioning of a catalyzed particulate filter of an internal combustion engine
CN107339139A (zh) 用于碳烟传感器的系统和方法
WO2015107911A1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6769369B2 (ja) 内燃機関の制御装置
JP7389726B2 (ja) 再生制御装置および再生制御方法
JP6287896B2 (ja) 触媒の劣化診断装置
JP2015007386A (ja) 異常検出装置
JP2014034896A (ja) 内燃機関の異常検出装置
WO2017006511A1 (ja) 排気浄化装置
GB2559741A (en) Method of regenerating a particulate filter of an internal combustion engine
JP4716188B2 (ja) 内燃機関の触媒異常診断装置
JP6720889B2 (ja) 異常検出装置
JP7129187B2 (ja) 排気ガス浄化装置
JP5817996B2 (ja) 空燃比センサ異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001605

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776265

Country of ref document: EP

Kind code of ref document: A1