WO2016159463A1 - 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 - Google Patents
역극성/정극성 동작이 가능한 구조의 플라즈마 토치 Download PDFInfo
- Publication number
- WO2016159463A1 WO2016159463A1 PCT/KR2015/009777 KR2015009777W WO2016159463A1 WO 2016159463 A1 WO2016159463 A1 WO 2016159463A1 KR 2015009777 W KR2015009777 W KR 2015009777W WO 2016159463 A1 WO2016159463 A1 WO 2016159463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma torch
- axis
- torch
- plasma
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/08—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
- F23G5/085—High-temperature heating means, e.g. plasma, for partly melting the waste
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3421—Transferred arc or pilot arc mode
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3494—Means for controlling discharge parameters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/36—Circuit arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/44—Plasma torches using an arc using more than one torch
Definitions
- the present invention relates to a tooth plasma torch of a melting furnace for melting radioactive waste and general industrial waste, and more particularly, a cavity type rear electrode having one end blocked and hollow and a nozzle type front with both ends open.
- the present invention relates to a plasma torch having a structure capable of reverse polarity / positive polarity operation, which is configured as an electrode to enable reverse polarity or positive polarity according to electrical connection.
- a melting furnace using a chiplasma torch is a technique for reducing the volume and stably treating the disposal site by treating combustible and non-combustible materials such as metal or concrete among radioactive wastes generated in a nuclear power plant.
- Tooth plasma torch as described above is a device for generating and maintaining a plasma arc between the electrodes, serves to promote the ionization and state change reaction of the object by providing energy (mainly in the form of thermal energy) and reaction gas to the process used. .
- the plasma arc generated between the electrodes is generally injected into a variety of gases (argon, nitrogen, oxygen and compressed air, etc.) while adjusting the flow rate and flow rate to suit the application.
- gases argon, nitrogen, oxygen and compressed air, etc.
- the plasma torch as described above may be classified in various ways according to its structure and shape.
- the plasma torch may be classified into positive and reverse polarities, transition type and non-transformation type according to the arrangement of the electrodes.
- the industrial plasma torch for the purpose of waste treatment or melting is mainly adopted a cavity type, which has the advantage that the temperature is very high while being pollution-free and easy to control the temperature and speed of the plasma.
- the non-running torch is stably operated without being affected by the object, but the energy transfer efficiency is reduced.
- the transition torch has a high energy transfer efficiency of the object but can only operate when the object is conductive, and the operation is unstable because the arc is affected by the environment of the external gas.
- non-implemented torch is generally used as a means for heating nonmetals, and a transition torch is used as a means for heating metals.
- the plasma torch according to the prior art generally operates in a positive polarity by connecting the front electrode to the anode, the rear electrode to the cathode.
- the reverse polarity plasma torch has a configuration in which the rear electrode is connected to the anode and the front electrode is connected to the cathode, so that the replacement of the front electrode is relatively free and the operating voltage can be increased.
- the present invention has been made to solve all the problems of the prior art, reverse polarity / tablets to increase the throughput through a high-temperature melting operation for a variety of (conductive and non-conductive, etc.) waste, such as radioactive waste and industrial waste It is an object of the present invention to provide a plasma torch having a structure capable of polarity operation.
- Another object of the technology according to the present invention is to ensure the ease and stability and convenience of operation of the treatment plant by delivering energy uniformly and efficiently inside the melting furnace.
- Another object of the technique according to the present invention is to ensure an efficient and stable operation of the melting furnace utilizing the plasma torch.
- the technique according to the present invention has an object to enable economic and efficient treatment through long-term operation at high temperature when melting radioactive waste or general industrial waste in the plasma melting furnace.
- the technique according to the present invention has an object to improve the configuration, operation method and process of the plasma torch for efficient waste treatment.
- the plasma torch configured to achieve the above object is as follows. That is, in the plasma torch which is capable of reverse polarity / positive polarity operation according to the present invention, the plasma torch is coupled to the melting furnace and generates and maintains a plasma arc between the electrodes to melt waste materials such as radioactive waste or industrial waste.
- a plasma torch is installed inside the torch tube and is electrically connected to an anode or a cathode; And a front electrode which is installed adjacent to the front end of the rear electrode through the front end of the torch tube and is electrically connected to the cathode or the anode, and reverses the electrical connection of the rear electrode and the front electrode to reverse polarity plasma torch or positive plasma. It is configured to operate as a torch.
- the one-axis torch conveying means for linearly conveying the plasma torch may be further configured.
- the one-axis torch transfer means includes a one-axis LM guide for guiding the plasma torch in a straight line; A one-axis guide block fixedly supported on the one-axis LM guide and fixedly supporting the plasma torch through the upper portion; A one-axis ball screw that is screwed through the one-axis guide block and linearly moves the one-axis guide block back and forth through forward and reverse rotation; And connecting one end of the one-axis ball screw, but the forward and reverse rotation by the application of power can be made of a configuration of a single-axis servo motor for forward and reverse rotation of the one-axis ball screw.
- the configuration according to the present invention may further comprise a biaxial torch rotation angle adjusting means for adjusting the rotation angle of the plasma torch when the plasma torch is coupled to the melting furnace.
- the two-axis torch rotation angle adjusting means is a two-axis support which is installed at a certain height on one side of the melting furnace;
- a two-axis connecting link configured to be rotatably coupled to the upper end of the two-axis shore;
- a two-axis length adjusting means configured to be rotatably coupled to an end of the two-axis connecting link to adjust an angle of the plasma torch through length adjustment;
- both ends are coupled to the end of the two-axis length adjusting means and one side of the melting furnace is rotatably configured may be composed of a two-axis support link for supporting a single-axis torch transfer means.
- the two-axis length adjusting means is a two-axis connecting bar rotatably linked to the end of the two-axis connecting link; 2-axis LM guide coupled to the 2-axis connecting bar; A two-axis guide block installed on the two-axis LM guide so as to be movable back and forth linearly; A two-axis moving bar installed on the two-axis guide block and rotatably linked to the two-axis support link; A two-axis ball screw that is screwed through the two-axis guide block and linearly moves the two-axis guide block back and forth through forward and reverse rotation; And connecting one end of the two-axis ball screw can be made of a configuration of a two-axis servo motor for forward and reverse rotation by the application of power to rotate the two-axis ball screw forward and reverse.
- the plasma torch in the configuration according to the present invention may have a configuration in which the anode point is fixed to the surface of the rear electrode when acting in reverse polarity.
- the discharge length is injected by the discharge gas injected between the rear electrode and the front electrode so that the arc length can be extended by moving the pole point to a desired position through the flow of plasma gas when the plasma arc is generated. Can be done.
- Materials of the rear electrode and the front electrode in the configuration according to the present invention as described above are Oxygen Free Copper, Tungsten (W), Graphite, Molybdenum and Silver according to the application. It can be made of any one material.
- a water-cooled conductor coil designed to flow more than a few hundred A maximum of the current inside the rear electrode and the front electrode is designed as a multi-band electrode structure in which the coil is wound several times or more, thereby generating in the axial direction of the electrode.
- the strong magnetic field may be configured to induce high speed rotation and current density distribution of the arc point.
- the rear electrode and the front electrode in the configuration according to the present invention is made of a protruding or recessed type, but the rear electrode is made of a hollow type, one end is blocked and hollow, the front electrode may be made of a nozzle type with both ends open. .
- two plasma torches operating as one power supply for one melting furnace are operated and preheated respectively, so that when one plasma torch stops or decreases power, another plasma torch takes its role. It can be made in one configuration.
- the plasma torch of the configuration according to the present invention may be configured to be capable of treating conductive or non-conductive waste by operating in transitional or non-implementation or mixed type.
- the plasma torch according to the present invention may be configured to be initially ignited through argon gas as a discharge gas and converted to a non-runaway mode through nitrogen gas, but operated in a transitional or mixed mode at a constant current or higher.
- the technique according to the present invention may be made of a configuration that enables the demolition operation or melting operation of the waste drum charged into the melting furnace through a plasma torch.
- the plasma torch may be configured to be movable during operation of the plasma torch.
- even during operation of the plasma torch may be made of a configuration that can be freely adjusted within the melting furnace distance control.
- the plasma torch according to the present invention may be configured to be sealed and rotated by being connected through a ball joint bearing when installed in the melting furnace, and of course, the plasma torch may be configured to be freely switched during operation of reverse polarity and positive polarity. Can be done.
- a variety of (conductive and non-conductive, etc.) waste such as radioactive waste and industrial waste, can be improved through the high-temperature melting operation to increase the throughput of the waste.
- the technology according to the present invention can ensure the ease, stability and convenience of the operation of the treatment facility by delivering energy uniformly and efficiently inside the melting furnace, as well as ensuring the efficient and stable operation of the melting furnace utilizing the plasma torch. There is an advantage that it can.
- the technology according to the present invention has the advantage that it is possible to treat waste economically and efficiently through long-term operation at high temperature when melting radioactive waste or general industrial waste in the plasma melting furnace.
- the technique according to the present invention has the advantage that the efficient waste treatment through the improvement of the configuration, operation method and process of the plasma torch.
- FIG. 1 is a cross-sectional view showing a plasma torch of the structure capable of reverse polarity / positive polarity operation according to the present invention.
- Figure 2 is a side configuration view showing the transfer means before and after the plasma torch of the structure capable of reverse polarity / positive polarity operation according to the present invention.
- Figure 3 is a side configuration showing the angle adjusting means by one axis and two axes for forward and backward transport of the plasma torch of the structure capable of reverse polarity / positive polarity operation according to the present invention.
- FIG. 4 is a temperature distribution analysis result in a cavity type reverse polar plasma torch according to the present invention under an input current of 800 A and a gas flow rate of 1,500 slpm (output 1.10 MW).
- FIG. 5 is a temperature distribution analysis result in a cavity type reverse polar plasma torch according to the present invention under an input current of 1,000 A and a gas flow rate of 1,500 slpm (output 1.27 MW).
- FIG. 1 is a cross-sectional view showing a plasma torch having a structure capable of reverse polarity / positive operation according to the present invention
- Figure 2 is a side view showing a transport means before and after the plasma torch of the structure capable of reverse polarity / positive operation according to the present invention
- Figure 3 is a side configuration showing the angle adjusting means by one axis and two axes to forward and backward transfer the plasma torch of the structure capable of reverse polarity / positive polarity operation according to the present invention
- Figure 4 is an input current 800A, gas Analysis of the temperature distribution in the cavity-type reverse polarity plasma torch according to the present invention under the flow rate of 1,500 slpm (output 1.10 MW)
- FIG. 5 shows the cavity according to the present invention under the input current of 1,000 A and gas flow of 1,500 slpm (output 1.27 MW). This is the result of the temperature distribution analysis in the reverse polarity plasma torch.
- the plasma torch 100 capable of reverse polarity / positive polarity operation according to the present invention is a technique for operating in reverse polarity or positive polarity according to an electrical connection as described in the object. It is installed inside the torch tube 110 and is installed adjacent to the front end of the rear electrode 120 through the rear electrode 120 and the front end of the torch tube 110 to be electrically connected to the anode or the cathode. It is made of a configuration of the front electrode 130 is made of a configuration to operate as a reverse polarity plasma torch or a positive plasma torch by switching the electrical connection of the rear electrode 120 and the front electrode 130.
- the rear electrode 120 is formed in a hollow cavity with one end blocked and the front electrode 130 has both ends. It consists of an open nozzle. That is, the present invention may be referred to as a cavity type plasma torch having a cavity type rear electrode and a nozzle type front electrode.
- the plasma torch 100 according to the present invention configured as described above is a reverse polarity plasma that connects the front electrode 130 to the anode and the rear electrode 120, as opposed to the electrical connection of the common common type torch It consists of a torch structure to switch the electrical connection when operating as a positive plasma torch so that the plasma torch 100 is operated in a positive polarity.
- the plasma torch 100 capable of reverse polarity / positive polarity operation according to the present invention configured as described above is connected to the rear electrode 120 as an anode when the reverse polarity plasma torch 100 is operated.
- the electrode 130 is connected to the cathode so that the plasma torch 100 operates in reverse polarity.
- the plasma torch 100 capable of reverse polarity / positive polarity operation according to the present invention configured as described above is connected to the rear electrode 120 as a cathode when the polar torch 100 is operated as the positive electrode.
- 130 is connected to the anode so that the plasma torch 100 operates in reverse polarity.
- the reverse polarity plasma torch 100 which connects the rear electrode 120 to the anode and the front electrode 130 to the cathode, as opposed to the electrical connection of the common torch type common torch, can prolong the electrode life.
- the advantage is that the worn negative electrode can be replaced more easily.
- the configuration according to the invention further comprises a torch conveying means for conveying the plasma torch 100 for installation in the melting furnace 10.
- the one-axis torch conveying means is to linearly convey the plasma torch 100
- the one-axis torch conveying means is a one-axis LM guide 140
- the one-axis LM guide 140 to guide the plasma torch 100 in a straight line Is installed so as to be movable in a straight line through the one axis guide block 142 for holding and supporting the plasma torch 100 fixed through
- the one axis guide block 142 is screwed through the one axis guide block through forward and reverse rotation
- One-axis servo that connects one end of the one-axis ball screw 144 and the one-axis ball screw 144 to linearly move the 142 back and forth, but is rotated forward and backward by the application of a power source, and then rotates the one-axis ball screw 144 forward and backward.
- the configuration of the motor 146 is made.
- the uniaxial torch conveying means configured as described above is fixed according to the driving of the uniaxial servomotor 146 in a state in which the plasma torch 100 is disposed at a corresponding position of the fusion furnace 10 in order to install the fusion furnace 10.
- the one-axis guide block 142 is advanced along the one-axis LM guide 140 while the one-axis ball screw 144 is rotated forward. Accordingly, the tip of the plasma torch 100 installed on the uniaxial guide block 142 is mounted to the installation hole 12 on the melting furnace 10.
- the above-described one-axis torch transfer means when the plasma torch 100 is detached from the melting furnace 10 in a state in which it is mounted on the mounting hole 12 on the melting furnace 10, the reverse rotation drive of the one-axis servo motor 146
- the one-axis guide block 142 reverses along the one-axis LM guide 140 while the one-axis ball screw 144 is rotated in reverse. Accordingly, the tip of the plasma torch 100 installed on the uniaxial guide block 142 is separated from the installation port 12 on the melting furnace 10.
- the single-axis torch transfer means mounts the plasma torch 100 on the installation hole 12 of the melting furnace 10 or separates the plasma torch 100 mounted from the installation hole 12 of the melting furnace 10.
- the plasma torch 100 is mounted on the installation tool 12 of the melting furnace 10 or separated from the installation tool 12 through the forward and reverse driving of the single-axis servomotor 140 through the application of power.
- the technique according to the present invention is to adjust the rotation angle of the plasma torch 100 to mount the plasma torch 100 to the installation hole 12 of the melting furnace 10 or to place the separated plasma torch 100 in place.
- the shaft torch rotation angle adjusting means is further configured.
- the two-axis torch rotation angle adjusting means is a two-axis support 150, which is installed at a certain height on one side of the melting furnace 10, the two-axis connection link configured to be rotatably coupled to the top of the two-axis support 150 ( 152, two-axis connecting link 152 is configured to be rotatably coupled to the end of the two-axis length adjusting means 154 and the two-axis length adjusting means for adjusting the angle of the plasma torch 100 by adjusting the length ( Both ends of the end of the 154 and one side of the melting furnace 10 are coupled to the link rotatably consists of a two-axis support link 156 for supporting a single-axis torch transfer means.
- the two-axis length adjusting means 154 is a two-axis connecting bar 154-1 which is rotatably linked to the end of the two-axis connecting link 152.
- the two-axis moving bar (154-4) coupled to the two-axis support link 156 to be rotatably linked, screw through the two-axis guide block (154-3)
- the one end of the two-axis ball screw 154-5 and the two-axis ball screw 154-5 to be coupled but linearly moving the two-axis guide block 154-3 back and forth through forward and reverse rotation, but by applying power
- It is composed of a configuration of a two-axis servo motor (154-6) for forward and reverse rotation and forward and reverse rotation of the two-axis ball screw (154-5).
- the torch rotation angle adjusting means supports the axial torch conveying means through the two-axis support link 156 as shown in FIG. 3 to connect the plasma torch 100 to the installation hole 12 of the melting furnace 10.
- the torch rotation angle adjusting means supports the axial torch conveying means through the two-axis support link 156 as shown in FIG. 3 to connect the plasma torch 100 to the installation hole 12 of the melting furnace 10.
- the single axis ball screw 144 is rotated forward by forward rotation according to the driving of the single axis servomotor 146 of the torch conveying means. ) Is mounted to the mounting hole 12 on the melting furnace (10).
- the two-axis length adjusting means 154 allows the two-axis ball screw 154-5 to perform the forward rotation through the forward rotation of the two-axis servomotor 156-4, thereby providing two-axis guides.
- the biaxial support link 156 is rotated to one side by the advance of the biaxial movement bar 154-4, and the plasma torch 100 is installed at the installation hole 12 of the melting furnace 10. Ensure that the ends of the are aligned.
- the one-axis ball is driven by the reverse rotation driving of the one-axis servomotor 146.
- the screw 144 By rotating the screw 144 reversely so that the one-axis guide block 142 is reversed, the plasma torch 100 is separated from the installation hole 12 on the melting furnace 10, and then the length of the two-axis torch rotation angle adjusting means is adjusted.
- the length of the length adjusting means 154 By reducing the length of the length adjusting means 154 through the means 154 to rotate the support link 156 to the other side to the plasma torch 100 in place.
- the length adjusting means 154 is a single-axis ball screw (through the reverse rotation drive of the single-axis servo motor 156-4).
- the reverse rotation of the 154-5 allows the one-axis guide block 154-3 to be reversed so that the support link 156 is rotated to the other side by the retraction of the moving bar 154-4 to allow the reverse rotation of the melting furnace 10.
- the plasma torch 100 separated from the mounting fixture 12 may be returned to its original position.
- Plasma torch 100 capable of reverse polarity / positive polarity operation according to the present invention is a technology that can be used as the reverse polarity and the positive polarity according to the electrical connection as described above.
- Plasma torch 100 according to the present invention cathodes the front electrode 130 with the anode of the cavity type rear electrode 120 as opposed to the electrical connection of the common cavity torch to facilitate the extension of the life of the electrode and the replacement of worn cathodes.
- an arc is generated by the discharge gas injected between the two electrodes 120 and 130. It is fixed to the surface (120), it is possible to move the cathode point to the desired position through the flow of the discharge gas has the advantage that the arc length can be extended through the front electrode 130 to increase the operating voltage.
- the technique according to the present invention as described above is advantageous for increasing the output of the plasma while suppressing the increase in current which is the main cause of the erosion of the electrodes (120, 130), so high output such as melting of radioactive waste or general industrial waste, etc. It can be used in a variety of plasma applications.
- the rear electrode 120 connected to the anode and the front electrode 130 connected to the cathode are oxygen-free copper, tungsten (W), or the like, depending on the purpose. Any one of graphite, molybdenum and silver materials can be used appropriately in consideration of economics and process conditions. Depending on the material, water-cooled or non-cooled method may not be used. have.
- the apparatus to which the plasma torch 100 according to the present invention is applied uses argon and nitrogen as the plasma ignition gas and the forming gas, respectively, and the nitrogen gas flow rate during operation is 0 to 2,000 slpm and the plasma torch 100
- the plasma torch 100 with the maximum output power of 1.5 MW was realized by adjusting the current and voltage values applied in the range of 0 to 1,000 A and 0 to 1.5 kV, respectively.
- the technology according to the present invention is designed to show a thermal efficiency of more than 70% (input power 1.5MW) and more than 50% (input power 1.0MW) in the transition mode and non-execution mode, respectively.
- a strong magnetic field generated in the axial direction of the electrode by designing a multi-band type electrode structure in which a water-cooled conductor coil wound at least 10 times is designed to allow a maximum current of 500 A or more to be flowed in the corresponding operating conditions to achieve a long time operation.
- the high speed rotation and the current density dispersion of the arc point were induced by. Based on this, when operating the oxygen-free copper material front electrode 130 in 1.0MW non-transfer type, it was designed to show the characteristics of continuous operation for more than 3 hours and electrode loss rate of 0.05wt% or less without replacing the electrode 130.
- the technique according to the present invention optimized the structure of the plasma torch through thermal flow analysis based on variables such as input current and gas flow rate as shown in FIGS. 4 and 5 for efficiency of output, ease of process and stability. .
- FIG. 4 is a result of analyzing the temperature distribution in the cavity type reverse polar plasma torch 100 under the condition of an input current of 800 A and a gas flow rate of 1,500 slpm (output 1.10 MW).
- the plasma torch 100 according to the present invention can be operated in transition type, non-implementation type or mixed type.
- the non-conforming wastes are melted, and then the melt is formed, which generally ensures conductivity, which can be operated as a transitional or mixed type for the purpose of high power and stable processing.
- the transition type or mixed type may be operated after the non-implementation type operation or the melting type 10 may be directly driven to the transition type or mixed type if proper conductivity is secured to the inside.
- two plasma torch 100 according to the present invention is installed in one melting furnace 10 in the melting furnace 10 for melting the waste.
- the two plasma torches 100 according to the present invention operate in the operation and preheating states, respectively, and the other plasma torch 100 may take its place when the operation of the plasma torch 100 is stopped or the output is lowered. It is configured to.
- the plasma torch 100 has a feature capable of melting operation to form a melt, and also a destruction operation, which is a pretreatment process of destroying a waste drum charged into the melting furnace 10.
- a destruction operation which is a pretreatment process of destroying a waste drum charged into the melting furnace 10.
- an arc generated between the rear electrode 20 electrically connected to the anode and the front electrode 130 electrically connected to the cathode is increased to increase voltage while the arc electrode 120, 130) it is characterized in that it is injected in a way that can be stabilized so that it is not in direct contact with the inner surface.
- the present invention is designed so that arcing does not occur on the surface of the plasma torch 100 and the reaction with the melt even during reverse polarity operation.
- the technique according to the present invention torch conveying means and torch rotation angle to transfer the plasma torch 100 as shown in Figure 3 in order to efficiently transfer energy into the melting furnace 10 to ensure the ease of operation It consists of two axes of control means.
- the two-axis torch conveying device is capable of moving forward and backward in the melting furnace 10 and the angle change of about 30 degrees, thereby contributing to improving process ease and operation safety.
- the apparatus for moving forward and backward of the plasma torch 100 (one axis: torch conveying means) basically has a ball screw 144 and an LM guide 140 as shown in FIGS. 2 and 3.
- the motor to rotate the ball screw 144 was configured to control the speed and the forward and backward position by applying the servo motor 146.
- the biaxial apparatus for changing the angle of the plasma torch 100 has a forward and backward configuration of the torch rotation angle adjusting means and a torch conveying means of one axis as shown in FIG. 3.
- the rotation angle of the plasma torch 100 is adjusted by connecting the four-link link and moving the two-axis feeder forward and backward.
- the plasma torch 100 is installed to penetrate through the ball joint bearing 160, the angle change is more than 30 degrees and designed to be well sealed with the melting furnace 10.
- the plasma torch 100 may be configured to be movable during the operation of the plasma torch 100, as well as the distance within the melting furnace 10 even during the operation of the plasma torch 100. Adjustment is made of a freely adjustable configuration.
- the plasma torch 100 according to the present invention is connected to the ball joint bearing 160 when installed in the installation hole 12 of the melting furnace 10 can be configured to enable sealing and rotation, as well as reverse polarity
- the positive operation is configured to be freely switchable during operation.
- the torch conveying apparatus of one axis and two shafts for conveying the plasma torch 100 facilitates the formation of the molten metal in the melting furnace 10 and enables efficient operation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Plasma Technology (AREA)
- Gasification And Melting Of Waste (AREA)
- Furnace Details (AREA)
Abstract
본 발명은 역극성/정극성 동작이 가능한 구조의 플라즈마 토치에 관한 것으로, 방사성폐기물 및 산업폐기물 등의 다양한(전도성 및 비전도성 등) 폐기물을 대상으로 고온 용융 운전을 통해 처리량을 높일 수 있도록 함에 그 목적이 있다. 이를 위해 구성되는 본 발명은 용융로에 결합 설치되어지되 전극 사이에서 플라즈마 아크를 발생시키고 유지하여 방사성폐기물이나 산업체폐기물과 같은 폐기물질을 용융시키는 플라즈마 토치에 있어서, 플라즈마 토치는 토치관체의 내부에 설치되어 양극 또는 음극으로 전기결선되는 후방전극; 및 토치관체의 선단을 통해 후방전극의 선단에 인접되게 설치되어 음극 또는 양극으로 전기결선되는 전방전극의 구성으로 이루어지며, 후방전극과 전방전극의 전기결선을 전환시켜 역극성 플라즈마 토치 또는 정극성 플라즈마 토치로 동작되도록 한 구성으로 이루어진다.
Description
본 발명은 방사성폐기물 및 일반산업체 폐기물 등을 용융시키기 위한 용융로의 치플라즈마 토치에 관한 것으로, 더욱 상세하게는 한 쪽 끝이 막히고 속이 비어 있는 공동형 후방전극과 양끝이 개방된 노즐형(Nozzle) 전방전극으로 구성하여 전기 결선에 따라 역극성 또는 정극성으로 동작이 가능하도록 한 역극성/정극성 동작이 가능한 구조의 플라즈마 토치에 관한 것이다.
일반적으로, 치플라즈마 토치를 이용한 용융로는 원자력 발전소에서 발생된 방사성폐기물 중에서 금속이나 콘크리트 등의 가연성 및 비가연성 물질을 처리하여 부피를 저감하고 처분장에 안정적으로 처리하기 위한 기술이다.
전술한 바와 같은 치플라즈마 토치는 전극 사이에서 플라즈마 아크를 발생시키고 유지하는 장치로, 사용되는 공정에 에너지(주로 열에너지 형태)와 반응가스를 제공하여 대상물의 이온화 및 상태 변화 반응을 촉진시키는 역할을 한다.
한편, 전술한 바와 같이 전극 사이에서 발생된 플라즈마 아크는 일반적으로 다양한 기체(아르곤, 질소, 산소 및 압축 공기 등)를 유속과 유량을 조절하는 가운데 주입하여 해당 용도에 맞게 활용한다.
그리고, 전술한 바와 같은 플라즈마 토치는 그 구조와 형태에 따라 다양하게 분류할 수 있는데, 전극의 배치에 따라 정극성과 역극성 그리고 이행형과 비이행형 등으로 구분할 수 있다.
특히, 폐기물 처리 또는 용융을 목적으로 하는 산업용 플라즈마 토치는 공동형이 주로 채택되는데, 이는 온도가 매우 높으면서도 무오염원이고 플라즈마의 온도와 속도의 조절이 용이하다는 장점이 있다.
전술한 토치의 구조에서 비이행형 토치는 대상물의 영향을 받지 않아 안정적으로 동작하지만 에너지 전달 효율이 감소한다. 이행형 토치는 대상물의 에너지 전달 효율이 높지만 대상물이 전도성을 가질 때에만 동작할 수 있고, 아크가 외부 가스의 환경의 영향을 받기 때문에 동작이 불안정하다.
따라서, 전술한 바와 같은 단점을 극복하기 위해 일반적으로 비이행형 토치는 비금속류를 가열하기 위한 수단으로, 이행형 토치는 금속류를 가열하기 위한 수단으로 사용된다.
한편, 종래 기술에 따른 플라즈마 토치는 일반적으로 전방전극이 양극, 후방전극이 음극으로 연결되어 정극성으로 동작한다.
반면, 역극성 플라즈마 토치는 후방전극이 양극, 전방전극이 음극으로 연결되는 구성으로, 전방전극의 교체가 비교적 자유롭고 동작 전압을 증가시킬 수 있어 고출력 플라즈마 응용에 활용되고 있다.
현재, 플라즈마 토치를 활용한 폐기물 처리기술은 현재 스위스 즈윌락, 러시아 라돈, 일본 쓰루가 원전 등에서 다양하게 활용되고 있는데, 최근에는 다양한 폐기물을 효율적이고 안전하며 높은 수율로 처리하기 위하여 고출력 플라즈마 토치와 이를 활용한 기술들에 대한 연구가 이루어지고 있다.
[선행기술문헌]
[특허문헌]
1. 대한민국 등록특허 제10-1340439호(2013.12.11.자 공고)
2. 대한민국 공개특허 제2012-0029495호(2012.03.27.자 공개)
3. 대한민국 공개특허 특2001-0078636호(2001.08.21.자 공개)
본 발명은 종래 기술의 제반 문제점을 해결하기 위해 안출된 것으로, 방사성폐기물 및 산업폐기물 등의 다양한(전도성 및 비전도성 등) 폐기물을 대상으로 고온 용융 운전을 통해 처리량을 높일 수 있도록 한 역극성/정극성 동작이 가능한 구조의 플라즈마 토치를 제공함에 그 목적이 있다.
또한, 본 발명에 따른 기술의 다른 목적은 용융로 내부에 에너지를 균일하고 효율적으로 전달함으로써 처리설비 운전의 용이성과 안정성 및 편의성을 확보할 수 있도록 함에 그 목적이 있다.
아울러, 본 발명에 따른 기술의 또 다른 목적은 플라즈마 토치를 활용한 용융로의 효율적이고 안정적인 동작을 확보할 수 있도록 함에 그 목적이 있다.
나아가, 본 발명에 따른 기술은 플라즈마 용융로에서 방사성폐기물이나 일반 산업체폐기물 등을 용융시킬 때 고온의 장기 운전을 통해 경제적이며 효율적인 처리가 가능하도록 함에 그 목적이 있다.
또한, 본 발명에 따른 기술은 효율적인 폐기물 처리를 위해 플라즈마 토치의 구성이나 동작방법 및 공정 등을 향상시키는데 그 목적이 있다.
전술한 목적을 달성하기 위해 구성되는 본 발명은 다음과 같다. 즉, 본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치는 용융로에 결합 설치되어지되 전극 사이에서 플라즈마 아크를 발생시키고 유지하여 방사성폐기물이나 산업체폐기물과 같은 폐기물질을 용융시키는 플라즈마 토치에 있어서, 플라즈마 토치는 토치관체의 내부에 설치되어 양극 또는 음극으로 전기결선되는 후방전극; 및 토치관체의 선단을 통해 후방전극의 선단에 인접되게 설치되어 음극 또는 양극으로 전기결선되는 전방전극의 구성으로 이루어지며, 후방전극과 전방전극의 전기결선을 전환시켜 역극성 플라즈마 토치 또는 정극성 플라즈마 토치로 동작되도록 한 구성으로 이루어진다.
전술한 바와 같은 본 발명에 따른 구성에서 플라즈마 토치를 직선 이송시키는 1축 토치 이송수단이 더 구성될 수 있다. 이때, 1축 토치 이송수단은 플라즈마 토치를 직선으로 가이드하는 1축 LM가이드; 1축 LM가이드 상에 직선 이동가능하게 설치되어지되 상부를 통해 플라즈마 토치를 고정 지지하는 1축 가이드블록; 1축 가이드블록을 관통하여 나사 결합되어지되 정역 회전을 통해 1축 가이드블록을 전후로 직선 이동시키는 1축 볼스크류; 및 1축 볼스크류의 일단을 연결하되 전원의 인가에 의해 정역회전되어 1축 볼스크류를 정역회전시키는 1축 서보모터의 구성으로 이루어질 수 있다.
한편, 본 발명에 따른 구성에는 플라즈마 토치를 용융로에 결합시 플라즈마 토치의 회전 각도를 조절하는 2축 토치 회전각도 조절수단이 더 구성될 수 있다. 이때, 2축 토치 회전각도 조절수단은 용융로의 일측에 일정높이로 설치되는 2축 지주; 2축 지주의 상단에 링크 결합되어 회전 가능하게 구성되는 2축 연결링크; 2축 연결링크의 끝단에 링크 결합되어 회전 가능하게 구성되어 길이 조절을 통해 플라즈마 토치의 각도를 조절하는 2축 길이 조절수단; 및 2축 길이 조절수단의 끝단과 용융로의 일측에 양단이 링크 결합되어 회전 가능하게 구성되어지되 1축 토치 이송수단을 지지하는 2축 지지링크의 구성으로 이루어질 수 있다.
그리고, 전술한 바와 같은 2축 토치 회전각도 조절수단의 구성에서 2축 길이 조절수단은 2축 연결링크의 끝단에 회전 가능하게 링크 결합되는 2축 연결바; 2축 연결바에 결합되는 2축 LM가이드; 2축 LM가이드 상에 전후 직선 이동가능하게 설치되는 2축 가이드블록; 2축 가이드블록에 설치되어 2축 지지링크와 회전 가능하게 링크 결합되는 2축 이동바; 2축 가이드블록을 관통하여 나사 결합되어지되 정역 회전을 통해 2축 가이드블록을 전후로 직선 이동시키는 2축 볼스크류; 및 2축 볼스크류의 일단을 연결하되 전원의 인가에 의해 정역회전되어 2축 볼스크류를 정역회전시키는 2축 서보모터의 구성으로 이루어질 수 있다.
아울러, 본 발명에 따른 구성에서 플라즈마 토치는 역극성으로 작용시 양극점이 후방전극의 표면에 고정된 구성으로 이루어질 수 있다.
전술한 바와 같은 본 발명에 다른 구성에서 후방전극과 전방전극 사이로 주입되는 방전가스에 의해 플라즈마 아크의 발생시 플라즈마 기체의 유동을 통해 응극점을 원하는 위치로 이동시켜 아크 길이를 연장시킬 수 있도록 한 구성으로 이루어질 수 있다.
전술한 바와 같은 본 발명에 따른 구성에서 후방전극과 전방전극의 재질은 용도에 따른 사산소동(Oxygen Free Copper), 텅스텐(W), 흑연(Graphite), 몰리브데넘(Molybdenum) 및 은(Silver)의 재료 중 어느 하나의 재질로 이루어질 수 있다.
그리고, 본 발명에 따른 구성에서 후방전극과 전방전극의 내부에 최대 전류 수백A 이상을 흘려줄 수 있도록 설계된 수냉식 전도체 코일이 수회 이상 감겨 있는 다중 밴드형 전극 구조로 설계되어 전극의 축방향으로 발생하는 강한 자기장에 의해 아크점의 고속회전과 전류밀도 분산을 유도할 수 있도록 한 구성으로 이루어질 수 있다.
또한, 본 발명에 따른 구성에서 후방전극과 전방전극은 돌출형 또는 함몰형으로 이루어지되 후방전극은 일단이 막히고 속이 비어 있는 공동형으로 이루어지고, 전방전극은 양끝이 개방된 노즐형으로 이루어질 수 있다.
전술한 바와 같은 본 발명의 구성에서 용융로 하나에 대하여 하나의 전원장치로 동작하는 2기의 플라즈마 토치가 각각 동작 및 예열되어 하나의 플라즈마 토치가 정지 또는 출력 저하시 다른 플라즈마 토치가 그 역할을 대신할 수 있도록 한 구성으로 이루어질 수 있다.
아울러, 본 발명에 따른 구성의 플라즈마 토치는 이행형이나 비이행형 또는 혼합형으로 운전하여 전도성 또는 비전도성 폐기물을 처리할 수 있도록 구성될 수 있다.
더구나, 본 발명에 따른 플라즈마 토치는 방전가스로 아르곤 가스를 통해 초기 점화되어 질소 가스를 통해 비이행형 모드로 전환되어지되 일정한 전류 이상에서 이행형 또는 혼합형 모드로 운전되는 구성으로 이루어질 수 있다.
또한, 본 발명에 따른 기술은 플라즈마 토치 하나를 통해 용융로에 장입되는 폐기물 드럼을 파괴운전 또는 용융운전이 가능하도록 한 구성으로 이루어질 수 있다.
전술한 바와 같은 본 발명에 따른 구성에서 플라즈마 토치의 운전 중에 플라즈마 토치는 이동이 가능한 구성으로 이루어질 수 있다. 또한, 플라즈마 토치의 운전 중에도 용융로 내부에서 거리조절이 자유롭게 조절 가능한 구성으로 이루어질 수 있다.
아울러, 본 발명에 따른 플라즈마 토치는 용융로에 설치시 볼조인트 베어링을 통해 연결되어 밀봉 및 회전이 가능하게 구성될 수 있음은 물론, 플라즈마 토치는 역극성과 정극성의 동작이 운전 중에 자유롭게 전환 가능한 구성으로 이루어질 수 있다.
본 발명의 기술에 따르면 방사성폐기물 및 산업폐기물 등의 다양한(전도성 및 비전도성 등) 폐기물을 대상으로 고온 용융 운전을 통해 폐기물의 처리량을 높일 수 있다는 효과가 발현된다.
또한, 본 발명에 따른 기술은 용융로 내부에 에너지를 균일하고 효율적으로 전달함으로써 처리설비 운전의 용이성과 안정성 및 편의성을 확보할 수 있음은 물론, 플라즈마 토치를 활용한 용융로의 효율적이고 안정적인 동작을 확보할 수 있다는 장점이 있다.
아울러, 본 발명에 따른 기술은 플라즈마 용융로에서 방사성폐기물이나 일반 산업체폐기물 등을 용융시킬 때 고온의 장기 운전을 통해 경제적이며 효율적인 폐기물의 처리가 가능하다는 장점이 있다.
나아가, 본 발명에 따른 기술은 플라즈마 토치의 구성이나 동작방법 및 공정 등의 향상을 통해 효율적인 폐기물 처리가 가능하다는 장점이 있다.
도 1 은 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치를 보인 단면 구성도.
도 2 는 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 전후 이송수단을 보인 측면 구성도.
도 3 은 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치를 전후 이송시키는 1축과 2축에 의한 각도 조절수단을 보인 측면 구성도.
도 4 는 입력전류 800A, 가스유량 1,500 slpm(출력 1.10MW) 조건하에서 본 발명에 따른 공동형 역극성 플라즈마 토치 내 온도분포 해석결과.
도 5 는 입력전류 1,000A, 가스유량 1,500 slpm(출력 1.27MW) 조건에서 본 발명에 따른 공동형 역극성 플라즈마 토치 내 온도분포 해석결과.
이하에서는 도면을 참조하여 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치의 양호한 실시 예를 상세하게 설명하기로 한다.
도 1 은 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치를 보인 단면 구성도, 도 2 는 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 전후 이송수단을 보인 측면 구성도, 도 3 은 본 발명에 따른 역극성/정극성 동작이 가능한 구조의 플라즈마 토치를 전후 이송시키는 1축과 2축에 의한 각도 조절수단을 보인 측면 구성도, 도 4 는 입력전류 800A, 가스유량 1,500 slpm(출력 1.10MW) 조건하에서 본 발명에 따른 공동형 역극성 플라즈마 토치 내 온도분포 해석결과, 도 5 는 입력전류 1,000A, 가스유량 1,500 slpm(출력 1.27MW) 조건에서 본 발명에 따른 공동형 역극성 플라즈마 토치 내 온도분포 해석결과이다.
도 1 내지 도 3 에 도시된 바와 같이 본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치(100)는 목적에서도 밝힌 바와 같이 전기결선에 따라 역극성 또는 정극성으로 동작되도록 되도록 하는 기술로, 토치관체(110)의 내부에 설치되어 양극 또는 음극으로 전기결선되는 후방전극(120) 및 토치관체(110)의 선단을 통해 후방전극(120)의 선단에 인접되게 설치되어 음극 또는 양극으로 전기결선되는 전방전극(130)의 구성으로 이루어지되 후방전극(120)과 전방전극(130)의 전기결선을 전환시켜 역극성 플라즈마 토치 또는 정극성 플라즈마 토치로 동작되도록 한 구성으로 이루어진다.
전술한 바와 같은 본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치(100)의 구성에서 후방전극(120)은 일단이 막히고 속이 비어 있는 공동형으로 이루어지고, 전방전극(130)은 양끝이 개방된 노즐형(Nozzle)으로 이루어진다. 즉, 본 발명은 공동형 후방전극과 노즐형 전방전극이 구비된 공동형 플라즈마 토치라 할 수 있다.
한편, 전술한 바와 같이 구성되는 본 발명에 따른 플라즈마 토치(100)는 평상시 일반적인 공동형 토치의 전기결선과는 반대로 후방전극(120)을 양극으로 전방전극(130)을 음극으로 연결하는 역극성 플라즈마 토치 구조로 이루어져 정극성 플라즈마 토치로 동작시 전기결선을 전환시켜 플라즈마 토치(100)가 정극성으로 동작되도록 한다.
다시 말해서, 전술한 바와 같이 구성된 본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치(100)는 역극성 플라즈마 토치(100)로 동작되도록 하는 경우에는 후방전극(120)을 양극으로 결선하되 전방전극(130)은 음극으로 결선하여 플라즈마 토치(100)가 역극성으로 동작되도록 한다.
반면, 전술한 바와 같이 구성된 본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치(100)는 정극성 플라즈마 토치(100)로 동작되도록 하는 경우에는 후방전극(120)을 음극으로 결선하되 전방전극(130)은 양극으로 결선하여 플라즈마 토치(100)가 역극성으로 동작되도록 한다.
전술한 바와 같이 평상시 일반적인 공동형 토치의 전기결선과는 반대로 후방전극(120)을 양극으로 전방전극(130)을 음극으로 연결하는 역극성 플라즈마 토치(100)는 전극 수명을 연장시킬 수 있음은 물론, 마모된 음극 교체를 보다 용이하게 할 수 있다는 장점이 발현된다.
한편, 본 발명에 따른 구성에는 플라즈마 토치(100)를 용융로(10)로 설치하기 위해 이송시키는 토치 이송수단이 더 구성된다. 이러한 1축 토치 이송수단은 플라즈마 토치(100)를 직선 이송시키는 것으로, 1축 토치 이송수단은 플라즈마 토치(100)를 직선으로 가이드하는 1축 LM가이드(140), 1축 LM가이드(140) 상에 직선 이동가능하게 설치되어지되 상부를 통해 플라즈마 토치(100)를 고정 지지하는 1축 가이드블록(142), 1축 가이드블록(142)을 관통하여 나사 결합되어지되 정역 회전을 통해 1축 가이드블록(142)을 전후로 직선 이동시키는 1축 볼스크류(144) 및 1축 볼스크류(144)의 일단을 연결하되 전원의 인가에 의해 정역회전되어 1축 볼스크류(144)를 정역회전시키는 1축 서보모터(146)의 구성으로 이루어진다.
전술한 바와 같이 구성된 1축 토치 이송수단은 플라즈마 토치(100)를 용융로(10) 상에 설치하기 위하여 용융로(10)의 해당 위치에 배치된 상태에서 1축 서보모터(146)의 구동에 따른 정회전이 이루어지면 1축 볼스크류(144)의 정회전이 이루어지는 가운데 1축 가이드블록(142)이 1축 LM가이드(140)를 따라 전진하게 된다. 이에 따라, 1축 가이드블록(142) 상에 설치된 플라즈마 토치(100)의 선단이 용융로(10) 상의 설치구(12)로 장착된다.
반면, 전술한 1축 토치 이송수단은 용융로(10) 상의 설치구(12)에 장착된 상태에서 플라즈마 토치(100)를 용융로(10)로부터 분리하는 경우 1축 서보모터(146)의 역회전 구동시키게 되면 1축 볼스크류(144)의 역회전이 이루어지는 가운데 1축 가이드블록(142)이 1축 LM가이드(140)를 따라 후진하게 된다. 이에 따라, 1축 가이드블록(142) 상에 설치된 플라즈마 토치(100)의 선단이 용융로(10) 상의 설치구(12)로부터 분리된다.
전술한 바와 같이 1축 토치 이송수단은 용융로(10)의 설치구(12) 상에 플라즈마 토치(100)를 장착하거나 용융로(10)의 설치구(12)로부터 장착된 플라즈마 토치(100)를 분리하는 경우 전원의 인가를 통해 1축 서보모터(140)의 정역 구동을 통해 플라즈마 토치(100)를 용융로(10)의 설치구(12) 상에 장착되도록 하거나 설치구(12)로부터 분리하게 된다.
또한, 본 발명에 따른 기술에는 플라즈마 토치(100)를 용융로(10)의 설치구(12)에 장착하거나 분리된 플라즈마 토치(100)를 원위치시키기 위해 플라즈마 토치(100)의 회전 각도를 조절하는 2축 토치 회전각도 조절수단이 더 구성된다. 이러한 2축 토치 회전각도 조절수단은 용융로(10)의 일측에 일정높이로 설치되는 2축 지주(150), 2축 지주(150)의 상단에 링크 결합되어 회전 가능하게 구성되는 2축 연결링크(152), 2축 연결링크(152)의 끝단에 링크 결합되어 회전 가능하게 구성되어 길이 조절을 통해 플라즈마 토치(100)의 각도를 조절하는 2축 길이 조절수단(154) 및 2축 길이 조절수단(154)의 끝단과 용융로(10)의 일측에 양단이 링크 결합되어 회전 가능하게 구성되어지되 1축 토치 이송수단을 지지하는 2축 지지링크(156)의 구성으로 이루어진다.
그리고, 전술한 바와 같은 2축 토치 회전각도 조절수단의 구성에서 2축 길이 조절수단(154)은 2축 연결링크(152)의 끝단에 회전 가능하게 링크 결합되는 2축 연결바(154-1), 2축 연결바(154-1)에 결합되는 2축 LM가이드(154-2), 2축 LM가이드(154-2) 상에 전후 직선 이동가능하게 설치되는 2축 가이드블록(154-3), 2축 가이드블록(154-3)에 설치되어 2축 지지링크(156)와 회전 가능하게 링크 결합되는 2축 이동바(154-4), 2축 가이드블록(154-3)을 관통하여 나사 결합되어지되 정역 회전을 통해 2축 가이드블록(154-3)을 전후로 직선 이동시키는 2축 볼스크류(154-5) 및 2축 볼스크류(154-5)의 일단을 연결하되 전원의 인가에 의해 정역회전되어 2축 볼스크류(154-5)를 정역회전시키는 2축 서보모터(154-6)의 구성으로 이루어진다.
전술한 바와 같이 토치 회전각도 조절수단은 도 3 에 도시된 바와 같이 2축 지지링크(156)를 통해 1축 토치 이송수단을 지지하여 플라즈마 토치(100)를 용융로(10)의 설치구(12) 상에 장착하는 경우에는 2축 길이 조절수단(154)을 통해 2축 길이 조절수단(154)의 길이를 연장시켜 2축 지지링크(156)를 일측으로 회전시킴으로써 용융로(10)의 설치구(12)에 플라즈마 토치(100)의 선단이 일치되도록 한다.
한편, 전술한 바와 같이 2축 길이 조절수단(154)의 길이를 연장시켜 2축 지지링크(156)를 일측으로 회전시킴으로써 용융로(10)의 설치구(12)에 플라즈마 토치(100)의 선단이 일치되도록 한 다음에는 토치 이송수단의 1축 서보모터(146)의 구동에 따른 정회전을 통해 1축 볼스크류(144)를 정회전시켜 1축 가이드블록(142)의 전진을 통해 플라즈마 토치(100)의 선단이 용융로(10) 상의 설치구(12)로 장착되도록 한다.
전술한 바와 같은 구성에서 2축 길이 조절수단(154)은 2축 서보모터(156-4)의 정회전 구동을 통해 2축 볼스크류(154-5)의 정회전이 이루어질 수 있도록 하여 2축 가이드블록(154-3)을 전진시킴으로써 2축 이동바(154-4)의 전진에 의해 2축 지지링크(156)가 일측으로 회전되어 용융로(10)의 설치구(12)에 플라즈마 토치(100)의 선단이 일치되도록 한다.
반면, 도 3 에 도시된 바와 같이 플라즈마 토치(100)를 용융로(10)의 설치구(12)로부터 분리하여 원위치시키는 경우에는 먼저, 1축 서보모터(146)의 역회전 구동을 통해 1축 볼스크류(144)를 역회전시켜 1축 가이드블록(142)이 후진되도록 함으로써 플라즈마 토치(100)를 용융로(10) 상의 설치구(12)로부터 분리한 다음, 2축 토치 회전각도 조절수단의 길이 조절수단(154)을 통해 길이 조절수단(154)의 길이를 축소시켜 지지링크(156)를 타측으로 회전시킴으로써 플라즈마 토치(100)가 원위치되도록 한다.
전술한 바와 같이 플라즈마 토치(100)를 원위치시킬 때 길이 조절수단(154)의 작용을 살펴보면 길이 조절수단(154)은 1축 서보모터(156-4)의 역회전 구동을 통해 1축 볼스크류(154-5)의 역회전이 이루어질 수 있도록 하여 1축 가이드블록(154-3)을 후진시킴으로써 이동바(154-4)의 후진에 의해 지지링크(156)가 타측으로 회전되어 용융로(10)의 설치구(12)로부터 분리된 플라즈마 토치(100)가 원위치 될 수 있도록 한다.
본 발명에 따른 역극성/정극성 동작이 가능한 플라즈마 토치(100)는 앞서도 기술한 바와 같이 전기결선에 따라 역극성 및 정극성으로 사용이 가능한 기술이다. 본 발명의 플라즈마 토치(100)는 전극의 수명 연장과 마모된 음극 교체를 용이하게 하기 위해 일반적인 공동형 토치의 전기결선과는 반대로 공동형 후방전극(120)을 양극으로 전방전극(130)을 음극으로 연결하는 특징을 갖는다. 즉, 본 발명의 기술은 역극성 플라즈마 토치(100)라는 특징을 갖는다.
한편, 전술한 바와 같은 본 발명에 따른 플라즈마 토치(100)의 구성에서 두 전극(120, 130) 사이로 주입된 방전가스에 의해 아크가 발생되는데 역극성 방식의 플라즈마 토치(100)는 양극점이 후방전극(120) 표면에 고정되고, 방전가스의 유동을 통해 음극점을 원하는 위치로 이동시킬 수 있어 아크 길이를 전방전극(130)을 통해 연장시켜 동작 전압을 증가시킬 수 있다는 장점이 있다.
따라서, 전술한 바와 같은 본 발명에 따른 기술은 전극(120, 130)의 침식을 일으키는 주요 원인인 전류 증가를 억제하면서 플라즈마의 출력을 증가시키는데 유리하므로 방사성폐기물이나 일반산업체 폐기물 등의 용융과 같은 고출력 플라즈마 응용에 다양하게 활용될 수 있다.
그리고, 본 발명에 따른 플라즈마 토치(100)의 구성에서 양극으로 결선되는 후방전극(120)과 음극으로 결선되는 전방전극(130)은 용도에 따라 무산소동(Oxygen Free Copper), 텅스텐(W), 흑연(Graphite), 몰리브데넘(Molybdenum) 및 은(Silver)의 재료 중 어느 하나의 재료가 경제성과 공정조건을 고려하여 상황에 적합하게 사용될 수 있으며 재질에 따라 수냉식 또는 무냉각 방식을 적용할 수가 있다.
또한, 본전술한 바와 같은 발명에 따른 플라즈마 토치(100)가 적용되는 설비는 플라즈마 점화가스와 형성가스로 각각 아르곤과 질소를 사용하고, 운전시 질소 가스 유량을 0∼2,000 slpm, 플라즈마 토치(100)에 인가되는 전류와 전압의 값을 각각 0∼1,000A과 0∼1.5kV 범위에서 조절하여 최대 출력 1.5MW의 성능을 보이는 플라즈마 토치(100)를 구현하였다.
그리고, 본 발명에 따른 기술은 이행형 모드와 비이행형 모드에서 열효율이 각각 70% 이상(입력전력 1.5MW)과 50% 이상(입력전력 1.0MW)의 특성을 보이도록 설계하였다. 또한, 장시간 운전을 달성하기 위해 해당 운전 조건 범위에서 내부에 최대 전류 500A 이상을 흘려줄 수 있도록 설계된 수냉식 전도체 코일이 10회 이상 감겨 있는 다중 밴드형 전극 구조로 설계하여 전극 축방향으로 발생하는 강한 자기장에 의해 아크점의 고속회전과 전류밀도 분산을 유도하였다. 이를 바탕으로 무산소동 재질 전방전극(130)을 1.0MW 비이송식으로 운전할 때 전극(130)의 교체 없이 3시간 이상 연속 운전과 전극손실율 0.05wt% 이하의 특성을 보이도록 설계되었다.
아울러, 본 발명에 따른 기술은 출력의 효율화와 공정의 용이성 및 안정성을 위해 도 4 및 도 5 에서와 같이 입력전류 및 가스유량 등의 변수를 기반으로 열유동 해석을 통해 플라즈마 토치의 구조를 최적화하였다.
전술한 바와 같은 도 4 는 입력전류 800A, 가스유량 1,500 slpm(출력 1.10MW) 조건하에서 공동형 역극성 플라즈마 토치(100) 내 온도분포 해석결과이다.
그리고, 도 5 는 입력전류 1,000A, 가스유량 1,500 slpm(출력 1.27MW) 조건에서 공동형 역극성 플라즈마 토치 내 온도분포 해석결과이다.
한편, 본 발명에 따른 플라즈마 토치(100)는 이행형이나 비이행형 또는 혼합형으로 동작이 가능하다. 비전도성 폐기물을 처리하는 경우에는 비이행형으로 동작해 폐기물을 용융시킨 다음, 용융물이 형성되면 일반적으로 전도성이 확보되는데, 이 경우 고출력과 안정적인 공정을 목적으로 이행형 또는 혼합형으로 운전될 수 있다.
반면, 전도성 폐기물의 경우에는 상황에 따라 비이행형 동작 후 이행형 또는 혼합형으로 동작하거나 용융(10)로 내부에 적합한 전도성이 확보되는 경우 바로 이행형 또는 혼합형으로 운전할 수 있다.
아울러, 본 발명에 따른 플라즈마 토치(100)는 폐기물의 용융을 목적으로 하는 용융로(10)에서 하나의 용융로(10)에 2기가 설치된다. 이러한 본 발명에 따른 2기의 플라즈마 토치(100)는 각각 동작 및 예열상태로 동작하며, 동작하는 플라즈마 토치(100)의 정지 또는 출력 저하시 다른 플라즈마 토치(100)가 바로 그 역할을 대신할 수 있도록 구성된다.
한편, 본 발명에 따른 플라즈마 토치(100)는 용융물을 형성하는 용융운전이 가능하고 용융로(10)로 장입되는 폐기물 드럼을 파괴하는 전처리 과정인 파괴운전 역시 가능한 특징을 가진다. 그리고, 운전시 플라즈마 형성가스의 적합한 주입을 통해 양극으로 전기결선되는 후방전극(20)과 음극으로 전기결선되는 전방전극(130) 사이에 발생한 아크를 늘려 전압을 증가시키는 한편 아크가 전극(120, 130) 내면과는 직접적으로 닿지 못하게 안정화시킬 수 있는 방식으로 주입되는 것을 특징으로 한다. 그리고, 본 발명은 역극성 운전시에도 용융물과의 반응 및 플라즈마 토치(100) 표면에 아킹이 발생하지 않도록 설계하였다.
또한, 본 발명에 따른 기술은 용융로(10) 내부에 에너지를 효율적으로 전달하여 운전의 용이성을 확보하기 위해 도 3 에 도시된 바와 같이 플라즈마 토치(100)를 이송시키기 위해 토치 이송수단과 토치 회전각도 조절수단의 2축으로 구성하였다. 이처럼 2축으로 구성된 토치 이송장치는 용융로(10)에서 전후진이 가능하고 약 30도 각도 변화가 가능하여 공정 용이성과 운전 안전성을 향상시키는데 기여하게 된다.
전술한 바와 같은 구성에서 플라즈마 토치(100)의 전후진 이송을 하는 장치(1축 : 토치 이송수단)는 기본적으로 도 2 및 도 3 에 도시된 바와 같이 볼스크류(144)와 LM가이드(140)를 조합하여 구성하며, 볼스크류(144)를 회전시키는 모터는 서보모터(146)를 적용하여 속도와 전후진 위치를 제어할 수 있도록 구성하였다.
그리고, 본 발명에 따른 기술에서 플라즈마 토치(100) 각도 변화를 위한 2축 장치는 도 3 에서와 같이 토치 회전각도 조절수단의 전·후진 구성과 1축의 토치 이송수단을 구성하는 전·후진 구성을 4절 링크로 연결하여 2축용 이송장치를 전·후진시킴으로써 플라즈마 토치(100)의 회전각도를 조절하게 된다. 이를 위해, 플라즈마 토치(100)는 볼조인트 베어링(160)을 관통하여 설치되며, 각도 변화를 30도 이상으로 하고 용융로(10)와 밀봉이 잘 이루어지도록 설계하였다.
전술한 바와 같은 본 발명에 따른 기술은 플라즈마 토치(100)의 운전 중에 플라즈마 토치(100)는 이동이 가능한 구성으로 이루어질 수 있음은 물론, 플라즈마 토치(100)의 운전 중에도 용융로(10) 내부에서 거리조절이 자유롭게 조절 가능한 구성으로 이루어진다.
아울러, 본 발명에 따른 플라즈마 토치(100)는 용융로(10)의 설치구(12)에 설치시 볼조인트 베어링(160)을 통해 연결되어 밀봉 및 회전이 가능하게 구성될 수 있음은 물론, 역극성과 정극성의 동작이 운전 중에 자유롭게 전환 가능하게 구성된다.
이상에서와 같이 본 발명에 따른 플라즈마 토치(100) 이송시키는 1축과 2축의 토치 이송장치는 용융로(10) 내부 용탕 형성을 용이하게 하고 효율적인 운전을 가능하게 한다.
본 발명은 전술한 실시 예에 국한되지 않고 본 발명의 기술사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수가 있다.
[부호의 설명]
10 : 용융로 12. 설치구
100. 플라즈마 토치 110. 토치관체
120. 후방전극 130. 전방전극
140. 1축 LM가이드 142. 1축 가이드블록
144. 1축 볼스크류 146. 1축 서보모터
150. 2축 지주 152. 2축 연결링크
154. 2축 길이 조절수단 154-1. 2축 연결바
154-2. 2축 LM가이드 154-3. 2축 가이드블록
154-4. 이축 이동바 154-5. 2축 볼스크류
154-6. 2축 서보모터 156. 지지링크
160. 볼조인트 베어링
Claims (19)
- 용융로 상에 결합 설치되어지되 전극 사이에서 플라즈마 아크를 발생시키고 유지하여 방사성폐기물이나 산업체폐기물과 같은 폐기물질을 용융시키는 플라즈마 토치에 있어서,상기 플라즈마 토치는 토치관체의 내부에 설치되어 양극 또는 음극으로 전기결선되는 후방전극; 및상기 토치관체의 선단을 통해 상기 후방전극의 선단에 인접되게 설치되어 음극 또는 양극으로 전기결선되는 전방전극의 구성으로 이루어지며,상기 후방전극과 전방전극의 전기결선을 전환시켜 역극성 플라즈마 토치 또는 정극성 플라즈마 토치로 동작되도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치를 직선 이송시키는 1축 토치 이송수단이 더 구성된 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 2 항에 있어서, 상기 1축 토치 이송수단은 상기 플라즈마 토치를 직선으로 가이드하는 1축 LM가이드;상기 1축 LM가이드 상에 직선 이동가능하게 설치되어지되 상부를 통해 상기 플라즈마 토치를 고정 지지하는 1축 가이드블록;상기 1축 가이드블록을 관통하여 나사 결합되어지되 정역 회전을 통해 상기 1축 가이드블록을 전후로 직선 이동시키는 1축 볼스크류; 및상기 1축 볼스크류의 일단을 연결하되 전원의 인가에 의해 정역회전되어 상기 1축 볼스크류를 정역회전시키는 1축 서보모터의 구성으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 3 항에 있어서, 상기 플라즈마 토치를 상기 용융로에 결합시 상기 플라즈마 토치의 회전 각도를 조절하는 2축 토치 회전각도 조절수단이 더 구성된 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 4 항에 있어서, 상기 2축 토치 회전각도 조절수단은 상기 용융로의 일측에 일정높이로 설치되는 2축 지주;상기 2축 지주의 상단에 링크 결합되어 회전 가능하게 구성되는 2축 연결링크;상기 2축 연결링크의 끝단에 링크 결합되어 회전 가능하게 구성되어 길이 조절을 통해 상기 플라즈마 토치의 각도를 조절하는 2축 길이 조절수단; 및상기 2축 길이 조절수단의 끝단과 상기 용융로의 일측에 양단이 링크 결합되어 회전 가능하게 구성되어지되 상기 1축 토치 이송수단을 지지하는 2축 지지링크의 구성으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 5 항에 있어서, 상기 2축 길이 조절수단은 상기 2축 연결링크의 끝단에 회전 가능하게 링크 결합되는 2축 연결바;상기 2축 연결바에 결합되는 2축 LM가이드;상기 2축 LM가이드 상에 전후 직선 이동가능하게 설치되는 2축 가이드블록;상기 2축 가이드블록에 설치되어 상기 2축 지지링크와 회전 가능하게 링크 결합되는 2축 이동바;상기 2축 가이드블록을 관통하여 나사 결합되어지되 정역 회전을 통해 상기 2축 가이드블록을 전후로 직선 이동시키는 2축 볼스크류; 및상기 2축 볼스크류의 일단을 연결하되 전원의 인가에 의해 정역회전되어 상기 2축 볼스크류를 정역회전시키는 2축 서보모터의 구성으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치는 역극성으로 작용시 양극점이 상기 후방전극의 표면에 고정된 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 후방전극과 전방전극 사이로 주입되는 방전가스에 의해 플라즈마 아크의 발생시 플라즈마 기체의 유동을 통해 응극점을 원하는 위치로 이동시켜 아크 길이를 연장시킬 수 있도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 후방전극과 전방전극의 재질은 용도에 따른 사산소동(Oxygen Free Copper), 텅스텐(W), 흑연(Graphite), 몰리브데넘(Molybdenum) 및 은(Silver)의 재료 중 어느 하나의 재질로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 후방전극과 전방전극의 내부에 최대 전류 수백A 이상을 흘려줄 수 있도록 설계된 수냉식 전도체 코일이 수회 이상 감겨 있는 다중 밴드형 전극 구조로 설계되어 전극의 축방향으로 발생하는 강한 자기장에 의해 아크점의 고속회전과 전류밀도 분산을 유도할 수 있도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 후방전극과 전방전극은 돌출형 또는 함몰형으로 이루어지되 상기 후방전극은 일단이 막히고 속이 비어 있는 공동형으로 이루어지고, 상기 전방전극은 양끝이 개방된 노즐형으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 용융로 하나에 대하여 하나의 전원장치로 동작하는 2기의 상기 플라즈마 토치가 각각 동작 및 예열되어 하나의 플라즈마 토치가 정지 또는 출력 저하시 다른 플라즈마 토치가 그 역할을 대신할 수 있도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치는 이행형이나 비이행형 또는 혼합형으로 운전하여 전도성 또는 비전도성 폐기물을 처리할 수 있도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치는 방전가스로 아르곤 가스를 통해 초기 점화되어 질소 가스를 통해 비이행형 모드로 전환되어지되 일정한 전류 이상에서 이행형 또는 혼합형 모드로 운전되는 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치 하나를 통해 상기 용융로에 장입되는 폐기물 드럼을 파괴운전 또는 용융운전이 가능하도록 한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치의 운전 중에 상기 플라즈마 토치는 이동이 가능한 구성으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치의 운전 중에도 상기 용융로 내부에서 거리조절이 자유롭게 조절 가능한 구성으로 이루어진 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항에 있어서, 상기 플라즈마 토치는 상기 용융로에 설치시 볼조인트 베어링을 통해 연결되어 밀봉 및 회전이 가능하게 구성된 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
- 제 1 항 내지 제 18 항 중 어느 한 항에 있어서, 상기 플라즈마 토치는 역극성과 정극성의 동작이 운전 중에 자유롭게 전환 가능한 것을 특징으로 하는 역극성/정극성 동작이 가능한 구조의 플라즈마 토치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580078080.5A CN107432078A (zh) | 2015-03-27 | 2015-09-17 | 具有能够反极性/正极性操作的结构的等离子体喷枪 |
US15/559,588 US11032900B2 (en) | 2015-03-27 | 2015-09-17 | Plasma torch with structure capable of performing reversed polarity/straight polarity operation |
JP2017549777A JP6552635B2 (ja) | 2015-03-27 | 2015-09-17 | 逆極性/正極性動作が可能な構造のプラズマトーチ |
EP15887871.0A EP3277061B1 (en) | 2015-03-27 | 2015-09-17 | Plasma torch with structure capable of reversed polarity/straight polarity operation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150043103A KR101629683B1 (ko) | 2015-03-27 | 2015-03-27 | 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 |
KR10-2015-0043103 | 2015-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016159463A1 true WO2016159463A1 (ko) | 2016-10-06 |
Family
ID=56191962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/009777 WO2016159463A1 (ko) | 2015-03-27 | 2015-09-17 | 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11032900B2 (ko) |
EP (1) | EP3277061B1 (ko) |
JP (1) | JP6552635B2 (ko) |
KR (1) | KR101629683B1 (ko) |
CN (1) | CN107432078A (ko) |
WO (1) | WO2016159463A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107344243A (zh) * | 2017-06-29 | 2017-11-14 | 西安欧中材料科技有限公司 | 一种用于旋转电极雾化的双模式等离子弧装置及其方法 |
CN114097308A (zh) * | 2019-05-13 | 2022-02-25 | 普兰思公司 | 电极供给装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122936B1 (ko) * | 2017-11-30 | 2020-06-15 | 한국수력원자력 주식회사 | 플라즈마 토치를 기동하는 전원공급장치 |
KR102110377B1 (ko) | 2017-11-30 | 2020-05-15 | 한국수력원자력 주식회사 | 전방전극이 다중전극이면서 후방전극이 버튼형으로 구성된 플라즈마 토치 |
CN109401786A (zh) * | 2018-11-08 | 2019-03-01 | 山西普皓环保科技有限公司 | 一种处理医疗废物的等离子体装置 |
KR102198969B1 (ko) | 2019-04-04 | 2021-01-06 | 한국수력원자력 주식회사 | 돌출형 전방전극 보호노즐이 구비된 플라즈마 토치 |
KR102229254B1 (ko) | 2019-04-04 | 2021-03-17 | 한국수력원자력 주식회사 | 비이송식 토치 운전을 위한 가이드형 전방전극이 구비된 플라즈마 토치 |
KR20200117365A (ko) | 2019-04-04 | 2020-10-14 | 한국수력원자력 주식회사 | 돌출형 전방전극 보호노즐이 구비된 혼합형 플라즈마 토치 |
KR20200117364A (ko) | 2019-04-04 | 2020-10-14 | 한국수력원자력 주식회사 | 돌출형 전방전극 보호노즐이 구비된 혼합형 플라즈마 토치 |
JP7469613B2 (ja) * | 2020-03-02 | 2024-04-17 | 日本製鉄株式会社 | プラズマ加熱装置及びプラズマ加熱方法 |
LT7065B (lt) | 2022-07-11 | 2024-06-10 | Lietuvos Energetikos Institutas | Plazmos generatorius |
KR20240145108A (ko) | 2023-03-27 | 2024-10-07 | 주식회사 에스더블유케미컬즈 | 개선된 구조의 플라즈마 발생기 및 이를 포함하는 플라즈마 발생장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0839256A (ja) * | 1994-08-02 | 1996-02-13 | Nippon Steel Weld Prod & Eng Co Ltd | プラズマ切断装置 |
KR20070025139A (ko) * | 2005-08-31 | 2007-03-08 | (주) 플라즈닉스 | 고온 열플라즈마로 열분해를 시켜 카본 블랙을 얻는 방법및 이를 위한 간극을 갖는 역극성 공동형 토치 |
KR20100059378A (ko) * | 2008-11-26 | 2010-06-04 | 한국수력원자력 주식회사 | 플라즈마 토치 용융로의 용융물 출탕 장치 및 방법 |
KR20100079483A (ko) * | 2008-12-31 | 2010-07-08 | 한국수력원자력 주식회사 | 혼합형 플라즈마 토치의 전원 장치 |
JP2012040520A (ja) * | 2010-08-20 | 2012-03-01 | Toshiba Mitsubishi-Electric Industrial System Corp | 微粒子生成装置および微粒子生成方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3027446A (en) * | 1960-09-15 | 1962-03-27 | Thermal Dynamics Corp | Arc torch |
US3443732A (en) * | 1967-08-07 | 1969-05-13 | Nasa | Apparatus for welding torch angle and seam tracking control |
JP3229888B2 (ja) | 1991-09-06 | 2001-11-19 | 株式会社万養保全研究所 | 金属材料の処理装置及び処理方法 |
EP0625869B1 (en) * | 1993-05-19 | 2001-09-05 | Johns Manville International, Inc. | Method for the melting, combustion or incineration of materials and apparatus therefor |
US5548611A (en) * | 1993-05-19 | 1996-08-20 | Schuller International, Inc. | Method for the melting, combustion or incineration of materials and apparatus therefor |
US6355904B1 (en) * | 1996-06-07 | 2002-03-12 | Science Applications International Corporation | Method and system for high-temperature waste treatment |
JP3546139B2 (ja) * | 1998-06-24 | 2004-07-21 | 三菱重工業株式会社 | プラズマ溶融炉 |
EP1375628A3 (en) | 2000-01-21 | 2004-12-08 | Integrated Environmental Technologies, Llc. | Methods and apparatus for treating waste |
KR20010078636A (ko) | 2000-02-09 | 2001-08-21 | 김징완 | 플라즈마 아크 토치 |
US6693253B2 (en) * | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
JP2003302034A (ja) | 2002-04-11 | 2003-10-24 | Ebara Corp | 溶融炉及び焼却灰の溶融方法 |
JP2004156819A (ja) | 2002-11-06 | 2004-06-03 | Mitsubishi Heavy Ind Ltd | プラズマアーク式溶融炉 |
JP4283035B2 (ja) * | 2003-05-13 | 2009-06-24 | 株式会社荏原製作所 | 溶融炉及びプラズマアークの再着火方法 |
JP4397033B2 (ja) | 2004-08-16 | 2010-01-13 | 財団法人電力中央研究所 | 可搬式廃棄物処理用プラズマ溶融処理装置 |
JP2006292333A (ja) | 2005-04-14 | 2006-10-26 | Babcock Hitachi Kk | プラズマ式溶融炉の運転方法およびプラズマ式溶融炉 |
JP2008039256A (ja) * | 2006-08-03 | 2008-02-21 | Kazuyuki Ozaki | レンジフード付着油脂の処理方法 |
FR2940584B1 (fr) * | 2008-12-19 | 2011-01-14 | Europlasma | Procede de controle de l'usure d'au moins une des electrodes d'une torche a plasma |
CN201437713U (zh) | 2009-06-30 | 2010-04-14 | 徐州徐工筑路机械有限公司 | 钻架角度调节支撑机构 |
CN201634692U (zh) | 2010-03-29 | 2010-11-17 | 重庆钢铁(集团)有限责任公司 | 一种炉渣冷却水喷枪 |
CN101914643A (zh) * | 2010-09-13 | 2010-12-15 | 北京慧德盛节能科技有限公司 | 可调式膨胀渣珠溜槽 |
KR101152406B1 (ko) | 2010-09-16 | 2012-06-05 | 한국기계연구원 | 아크 플라즈마 토치 |
JP2012225747A (ja) * | 2011-04-19 | 2012-11-15 | Ihi Corp | 放射性廃棄物の処理方法及び処理装置 |
JP5956302B2 (ja) * | 2012-10-15 | 2016-07-27 | 清水電設工業株式会社 | プラズマ処理装置、ヘテロ膜の形成方法 |
CN203429195U (zh) | 2013-07-26 | 2014-02-12 | 中国一冶集团有限公司 | 高炉炉壳测量辅助固定装置 |
KR101340439B1 (ko) | 2013-10-02 | 2013-12-11 | 지에스플라텍 주식회사 | 플라즈마 용융로의 플라즈마 토치 결합부 구조, 이를 포함하는 플라즈마 용융로, 및 플라즈마 용융로의 보수 방법 |
CN104197308B (zh) | 2014-09-12 | 2016-03-23 | 宁夏电力建设工程公司 | 锅炉集箱或管道内杂物检查装置 |
CN104197328A (zh) | 2014-09-18 | 2014-12-10 | 山东安宇环保设备有限公司 | 一种火化机油枪角度调整装置 |
-
2015
- 2015-03-27 KR KR1020150043103A patent/KR101629683B1/ko active IP Right Grant
- 2015-09-17 CN CN201580078080.5A patent/CN107432078A/zh active Pending
- 2015-09-17 WO PCT/KR2015/009777 patent/WO2016159463A1/ko active Application Filing
- 2015-09-17 US US15/559,588 patent/US11032900B2/en active Active
- 2015-09-17 JP JP2017549777A patent/JP6552635B2/ja active Active
- 2015-09-17 EP EP15887871.0A patent/EP3277061B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0839256A (ja) * | 1994-08-02 | 1996-02-13 | Nippon Steel Weld Prod & Eng Co Ltd | プラズマ切断装置 |
KR20070025139A (ko) * | 2005-08-31 | 2007-03-08 | (주) 플라즈닉스 | 고온 열플라즈마로 열분해를 시켜 카본 블랙을 얻는 방법및 이를 위한 간극을 갖는 역극성 공동형 토치 |
KR20100059378A (ko) * | 2008-11-26 | 2010-06-04 | 한국수력원자력 주식회사 | 플라즈마 토치 용융로의 용융물 출탕 장치 및 방법 |
KR20100079483A (ko) * | 2008-12-31 | 2010-07-08 | 한국수력원자력 주식회사 | 혼합형 플라즈마 토치의 전원 장치 |
JP2012040520A (ja) * | 2010-08-20 | 2012-03-01 | Toshiba Mitsubishi-Electric Industrial System Corp | 微粒子生成装置および微粒子生成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3277061A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107344243A (zh) * | 2017-06-29 | 2017-11-14 | 西安欧中材料科技有限公司 | 一种用于旋转电极雾化的双模式等离子弧装置及其方法 |
CN114097308A (zh) * | 2019-05-13 | 2022-02-25 | 普兰思公司 | 电极供给装置 |
CN114097308B (zh) * | 2019-05-13 | 2024-03-12 | 普兰思公司 | 电极供给装置、设备和电极供给方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3277061A1 (en) | 2018-01-31 |
CN107432078A (zh) | 2017-12-01 |
EP3277061B1 (en) | 2020-08-12 |
JP6552635B2 (ja) | 2019-07-31 |
EP3277061A4 (en) | 2018-08-22 |
US20180049303A1 (en) | 2018-02-15 |
JP2018513972A (ja) | 2018-05-31 |
KR101629683B1 (ko) | 2016-06-14 |
US11032900B2 (en) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016159463A1 (ko) | 역극성/정극성 동작이 가능한 구조의 플라즈마 토치 | |
KR101017585B1 (ko) | 혼합형 플라즈마 토치의 전원 장치 | |
CN211240241U (zh) | 一种基于双电极结构的大功率等离子体炬装置 | |
KR101041026B1 (ko) | 공동형 플라즈마 토치, 플라즈마/가스 혼합형 연소장치 및이를 이용한 용융방법 | |
AU2024204876A1 (en) | Dc arc furnace for waste melting and gasification | |
US11057966B2 (en) | Device and method for plasma arc melting through magnetostatic soft-contact stirring and compounding | |
CN108770172A (zh) | 一种用于危险废弃物处理的直流电弧等离子体炬 | |
CN102625561A (zh) | 200kw非转移弧等离子发生器及引弧方法 | |
WO2010095980A1 (ru) | Электродуговой плазмотрон постоянного тока для установок по плазменной переработке твёрдых отходов | |
CN104384693A (zh) | 一体化手持式等离子熔覆设备 | |
CN112496009A (zh) | 垃圾焚烧飞灰处理装置及方法 | |
CN202503803U (zh) | 200kw非转移弧等离子发生器 | |
CN217989275U (zh) | 一种热等离子体反应器保护装置 | |
EP1399284B1 (en) | Plasma arc treatment method using a dual mode plasma arc torch | |
RU2123242C1 (ru) | Способ непрерывного изготовления электродов без примесей для дуговых электропечей | |
CN107702096A (zh) | 一种单阳极双介质气源等离子体燃烧器 | |
CN219107745U (zh) | 一种等离子体炬及具有其的等离子体炉 | |
CN109107492B (zh) | 一种金刚线切割硅粉的高温转移电弧造粒设备和方法 | |
CN113443814B (zh) | 用于坩埚的电源切换装置及设备 | |
JP3977164B2 (ja) | プラズマ溶融装置及びプラズマ溶融方法 | |
JP2004156819A (ja) | プラズマアーク式溶融炉 | |
JPS6330181A (ja) | プラズマト−チ | |
CN117685576A (zh) | 一种带有机械运动电极的转移弧等离子熔融飞灰设备 | |
CN113573457A (zh) | 一种用于废弃物熔融的新型转移式等离子体双炬系统 | |
Agapitov et al. | Investigation of the Conditions for the Occurrence of an Arc Discharge During Current Supply Through a Fuel-Plasma Jet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15887871 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15559588 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017549777 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |