WO2016159460A1 - 플렉서블기판 화학기상증착시스템 - Google Patents

플렉서블기판 화학기상증착시스템 Download PDF

Info

Publication number
WO2016159460A1
WO2016159460A1 PCT/KR2015/009509 KR2015009509W WO2016159460A1 WO 2016159460 A1 WO2016159460 A1 WO 2016159460A1 KR 2015009509 W KR2015009509 W KR 2015009509W WO 2016159460 A1 WO2016159460 A1 WO 2016159460A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
cooling
substrate
chemical vapor
vapor deposition
Prior art date
Application number
PCT/KR2015/009509
Other languages
English (en)
French (fr)
Inventor
이재호
Original Assignee
주식회사 선익시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150044402A external-priority patent/KR101650761B1/ko
Priority claimed from KR1020150044401A external-priority patent/KR101650753B1/ko
Priority claimed from KR1020150045417A external-priority patent/KR101650755B1/ko
Application filed by 주식회사 선익시스템 filed Critical 주식회사 선익시스템
Publication of WO2016159460A1 publication Critical patent/WO2016159460A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a chemical vapor deposition system capable of chemical vapor deposition on a flexible substrate, and more particularly, in a chemical vapor deposition system performing a deposition process on a flexible substrate using an initiator, the deposition on a flexible substrate
  • the present invention relates to a technique for increasing the cooling efficiency of a substrate while depositing a material with a uniform thickness.
  • a semiconductor device or a display device is manufactured through various manufacturing processes including a deposition process.
  • a process of depositing a deposition material using a chemical vapor deposition system is essential.
  • a technique is disclosed in which a metal belt is cooled to cool the flexible substrate, and the cooled metal belt is brought into contact with the lower side of the flexible substrate to cool.
  • An object of the present invention is to solve the above-described problems, chemical vapor deposition that can be deposited to a uniform thickness in the chemical vapor deposition system for depositing on a flexible substrate while improving the cooling efficiency for the substrate In providing a system.
  • Flexible substrate chemical vapor deposition system for achieving the above object is to evaporate the deposition material to be deposited on the flexible substrate, the evaporation source having a plurality of evaporation nozzles for ejecting the deposition material; A vacuum chamber incorporating the evaporation source and providing a space in which the deposition material is deposited; A substrate providing apparatus provided in the vacuum chamber and providing a substrate on which the deposition material is to be deposited; And a supporter provided in the vacuum chamber and supporting the substrate by receiving the substrate from the substrate providing apparatus so that the deposition material may be deposited on the substrate.
  • the outer surface of the supporter has a curved surface shape so that the distance between the plurality of evaporation nozzles and the substrate can be kept constant while being supported by, and the arrangement of the plurality of evaporation nozzles corresponds to the outer surface of the supporter.
  • one feature may be that a virtual curved surface is formed.
  • an activator is provided between the evaporation nozzle and the supporter, and activates the deposition material radiated through the evaporation nozzle of the evaporation source in a radical manner. You may.
  • the activator may include a plurality of heater lines, and the radical may be generated by thermal energy supplied from the heater lines.
  • the plurality of heater wires may be further characterized by being spaced apart from each other at a predetermined interval with respect to neighboring heater wires.
  • the heater wire may be further characterized by being arranged in a direction parallel to the curved surface.
  • the said supporter whose outer surface is formed in the shape of a curved surface may be further characterized by having the shape of a cylinder.
  • the supporter having a cylindrical shape may be another feature that the supporter is rotatable about a central axis of the cylinder.
  • the virtual curved surface formed by the arrangement of the plurality of evaporation nozzles is arranged at a predetermined distance with respect to the rotational center axis of the support controller, but the virtual curved surface whose cross section forms an arc of a fan shape. It may also be another feature to be.
  • the supporter may be characterized in that it further comprises a substrate cooling means for cooling the heat received while the deposition material is deposited on the substrate provided from the substrate providing apparatus.
  • the distribution pattern of the plurality of evaporation nozzles may be characterized in that the distribution density of the evaporation nozzles is increased from one end of the evaporation source to the other end.
  • each of the plurality of evaporation nozzles may be another feature that is formed so that the interval with the neighboring evaporation nozzles is constant.
  • the plurality of evaporation nozzles may be characterized in that the distribution density at both ends of the evaporation source and the distribution density in the center of the evaporation source are formed differently arranged.
  • the substrate providing apparatus a supply roller for providing the flexible substrate to the deposition position where the deposition material is deposited; A recovery roller for recovering the flexible substrate on which the deposition material is deposited; And a direction roller positioned between the supply roller and the recovery roller to assist the flexible substrate to be continuously supplied to the deposition position and to pass through the deposition position. It may be another feature to include a.
  • Flexible substrate chemical vapor deposition system for achieving the above object is an evaporation source for evaporating the deposition material to be deposited on the flexible (Flexible) substrate;
  • a vacuum chamber incorporating the evaporation source and providing a space for depositing the deposition material;
  • a substrate providing apparatus provided in the vacuum chamber and providing the flexible substrate;
  • a substrate cooling device provided below the flexible substrate in order to cool the heat received while the deposition material is deposited on the flexible substrate provided from the substrate providing device.
  • the substrate cooling device may include the flexible substrate. It is provided on the lower side, it may be characterized by cooling the flexible substrate with a cooling gas.
  • the substrate cooling device the cooling gas supply unit for supplying the cooling gas; And a cooling unit configured to receive the cooling gas from the cooling gas supply unit and to form a cooling space in which the cooling gas can directly or indirectly contact the flexible substrate so that the flexible substrate can be cooled. It may be another feature to include a.
  • a cooling gas pipe provided between the cooling unit and the cooling gas supply unit and guiding the cooling gas supplied from the cooling gas supply unit to be introduced into the cooling unit; It may also be another feature to include a further.
  • the upper side of the cooling unit may be opened to be exposed to the lower side of the flexible substrate, and the inner bottom surface of the cooling unit may be further characterized in that a plurality of cooling holes for ejecting the cooling gas are formed.
  • a cooling guide wall is formed in an upward direction with respect to the inner bottom surface of the cooling unit, and a predetermined distance is provided between the flexible substrate and the cooling guide wall to allow the cooling gas to flow out. You can also do
  • each of the plurality of cooling holes formed on the inner bottom surface of the cooling unit may be further characterized by being spaced apart from each other by a predetermined interval with respect to the neighboring cooling holes.
  • a plurality of cooling holes are formed on the inner bottom surface of the cooling unit, and the distribution density of the plurality of cooling holes may be further formed to increase or decrease from one side to the other side.
  • a cooling control unit for controlling the temperature of the cooling gas, the amount of the cooling gas is ejected through the cooling port or the rate at which the cooling gas is ejected through the cooling port so that the flexible substrate is cooled to a predetermined temperature. It may also be another feature to include;
  • the cooling gas ejected into the cooling unit through the cooling port is accumulated in the inner space of the cooling unit and accumulated upward along the cooling guide wall, and flows outward beyond the cooling guide wall.
  • the flexible substrate may be in contact with the cooling gas and the flexible substrate while the flexible substrate passes through an upper space of the cooling gas accumulated in the inner side, thereby cooling the flexible substrate.
  • the substrate providing apparatus a supply roller for providing the flexible substrate to the deposition position where the deposition material is deposited; A recovery roller for recovering the flexible substrate on which the deposition material is deposited; And a direction roller positioned between the supply roller and the recovery roller to assist the flexible substrate to be continuously supplied to the deposition position and to pass through the deposition position. It may be another feature to include a.
  • the substrate providing apparatus may further include a providing controller configured to adjust a moving speed at which the flexible substrate passes through the deposition position.
  • Flexible substrate chemical vapor deposition system for achieving the above object is an evaporation source for evaporating the deposition material to be deposited on the flexible (flexible) substrate;
  • a vacuum chamber incorporating the evaporation source and providing a space for depositing the deposition material;
  • a substrate providing apparatus provided in the vacuum chamber and providing the flexible substrate on which the deposition material is to be deposited;
  • a substrate cooling device provided on one side of the flexible substrate to cool the heat of the flexible substrate, wherein the substrate cooling device comprises: a cooling block contacting one side of the flexible substrate to cool the flexible substrate; And cooling block moving means for moving the cooling block to keep the cooling block in contact with one side of the flexible substrate and to move together with the flexible substrate. It may be characterized by including a.
  • the cooling block moving means of the substrate cooling device the cooling block coupled to the cooling block to support the cooling block, and moves along with the cooling block; And a rotating roller for rotating the cooling chain so that the cooling block can move position.
  • the cooling block moving means of the substrate cooling device the cooling belt coupled to the cooling block to support the cooling block, and moves along with the cooling block; And a rotating roller for rotating the cooling chain so that the cooling block can move position.
  • a plurality of the cooling blocks may be provided, and at least one or more of the cooling blocks may be in contact with one side of the substrate.
  • each of the plurality of cooling blocks may be further characterized by a built-in cooling device for cooling the cooling block.
  • the substrate cooling apparatus may further include a refrigerant supply device supplying a refrigerant to each of the plurality of cooling blocks.
  • the substrate providing apparatus a supply roller for supplying the flexible substrate to the deposition position where the deposition material is deposited; A recovery roller for recovering the flexible substrate on which the deposition material is deposited; And a direction roller positioned between the feed roller and the recovery roller to continuously provide the flexible substrate to the deposition position so as to pass through the deposition position. It may be another feature to include a.
  • the cooling block is in contact with one side of the flexible substrate, the control unit for adjusting to move at the same speed as the flexible substrate; may further include a further feature.
  • the support belt for supporting the cooling block in the lower side of the cooling block so that the load by the load of the cooling block in the cooling block moving means coupled to the cooling block; It may also be another feature to include a further.
  • the support belt may be further characterized in that it rotates at a speed equivalent to the moving speed of the cooling block in contact with the lower side of the cooling block.
  • each evaporation nozzle is disposed at a predetermined interval with respect to the flexible substrate surface at the deposition position, the deposition thickness of the deposition material deposited on the flexible substrate is deposited so that the production quality is high. It can improve the effect of reducing the defective rate of the product.
  • the cooling time for the substrate can be further shortened, thereby reducing the production process time.
  • FIG. 1 is a cross-sectional view schematically showing a flexible substrate chemical vapor deposition system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing some evaporation nozzles and a heater wire formed in an evaporation source in a flexible substrate chemical vapor deposition system according to an exemplary embodiment of the present invention.
  • FIG 3 is a view schematically showing an example of the arrangement of a plurality of evaporation nozzles formed in the evaporation source in the flexible substrate chemical vapor deposition system according to an embodiment of the present invention.
  • FIG. 4 is a view schematically showing another example of the arrangement of a plurality of evaporation nozzles formed in the evaporation source in the flexible substrate chemical vapor deposition system according to an embodiment of the present invention.
  • FIG. 5 is a view schematically showing the arrangement of a plurality of evaporation nozzles and heater wires in the flexible substrate chemical vapor deposition system according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a flexible substrate chemical vapor deposition system according to another embodiment of the present invention.
  • FIG. 7 is a schematic perspective view of a cooling unit of a substrate cooling apparatus of a flexible substrate chemical vapor deposition system according to another exemplary embodiment of the present invention.
  • FIG 8 and 9 are cross-sectional views schematically showing the cross-sectional view of the flexible substrate chemical vapor deposition system according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a flexible substrate chemical vapor deposition system according to an embodiment of the present invention.
  • a flexible substrate chemical vapor deposition system includes an evaporation source 100, a vacuum chamber 10, a substrate providing apparatus, and a supporter. More preferably, it may further comprise an activator.
  • FIGS. 2 to 5 Before the evaporation source 100 will be described herein, reference is made to FIGS. 2 to 5.
  • FIG. 2 is a perspective view schematically showing an evaporation source and a heater wire in which a plurality of evaporation nozzles are formed in a flexible substrate chemical vapor deposition system according to an embodiment of the present invention
  • FIG. 3 is a flexible substrate chemical vapor deposition system according to an embodiment of the present invention
  • Figure 4 is a view schematically showing an example of the arrangement of the plurality of evaporation nozzles formed in the evaporation source
  • Figure 4 is another embodiment of the arrangement of the plurality of evaporation nozzles formed in the evaporation source in a flexible substrate chemical vapor deposition system according to an embodiment of the present invention
  • 5 is a view schematically showing an example
  • FIG. 5 is a view schematically showing a configuration of a plurality of evaporation nozzles and heater lines in a flexible substrate chemical vapor deposition system according to an exemplary embodiment of the present invention.
  • the evaporation source 100 evaporates the deposition material to be deposited on the surface of the flexible substrate 20.
  • the evaporation source 100 basically includes a crucible containing a deposition material and a heater (not shown) for supplying heat to evaporate the deposition material.
  • a plurality of evaporation nozzles 110 are formed in the crucible.
  • the evaporation material 110 is evaporated through the evaporation nozzle 110 to fly toward the flexible substrate 20. (The movement path and the moving direction of the evaporated evaporation material are indicated by reference numeral 240 in FIG. 1).
  • distribution patterns of the plurality of evaporation nozzles 110 formed in the evaporation source 100 are possible.
  • each of the plurality of evaporating nozzles 110 may be formed in such a manner that a distance from the neighboring evaporating nozzles 110 is constant.
  • the plurality of evaporation nozzles 110 may be formed so as to be formed such that the distribution density at both ends of the evaporation source 100 and the distribution density at the center of the evaporation source 100 are different.
  • the distribution density of the evaporation nozzles at the center of the evaporation source 100 is high, and the distribution density of the evaporation nozzles at both ends of the evaporation source 100 is also possible.
  • the plurality of evaporation nozzles 110 may be formed in the evaporation source 100 such that the plurality of evaporation nozzles 110 have various distribution patterns in consideration of the thickness of the deposition material to be deposited on the flexible substrate 20.
  • the vacuum chamber 10 includes an evaporation source 100 and provides a space isolated from the outside so that a process of depositing a deposition material on the flexible substrate 20 can be performed.
  • the interior of the vacuum chamber 10 is in a vacuum state, and the deposition process is performed in a vacuum.
  • the vacuum chamber 10 is provided with a vacuum pump (not shown) for forming a vacuum state.
  • the substrate providing apparatuses 210, 220, 230, and 240 are provided in the vacuum chamber 10. And it provides a flexible substrate 20 on which the deposition material is to be deposited. That is, the flexible substrate 20 is transferred to the deposition position where the deposition material is deposited. Then, the flexible substrate 20 on which the deposition material is deposited is recovered.
  • the flexible substrate 20 is flexible and unlike the glass substrate, the flexible substrate 20 is continuous. Therefore, the flexible substrate 20 is transferred to the deposition position, and the flexible substrate 20 on which the deposition material is deposited is recovered from the deposition position. This process may be performed until all of the flexible substrates 20 wound on the rolls of one flexible substrate 20 are deposited.
  • the substrate providing apparatus includes a supply roller 210, a recovery roller 220, and direction rollers 230 and 240.
  • the supply roller 210 is wound around the flexible substrate 20 and is in a state before the deposition material is deposited. As the feed roller 210 rotates, the flexible substrate 20 wound up is released, and the flexible substrate 20 released from the feed roller 210 is moved to the deposition position.
  • the recovery roller 220 recovers the flexible substrate 20 on which the deposition material is deposited at the deposition position. In order to recover the flexible substrate 20, the recovery roller 220 is also rotated and recovered by winding the flexible substrate 20.
  • the direction rollers 230 and 240 are positioned between the supply roller 210 and the recovery roller 220 to assist the flexible substrate 20 to be continuously supplied to the deposition position and to pass through the deposition position. As shown in FIG. 1, the direction rollers 230 and 240 play an auxiliary role of positioning the flexible substrate 20 released from the supply roller 210 so as to pass through the deposition position.
  • the flexible substrate 20 is released from the supply roller 210 and is deposited while passing through the deposition position by the assistance of the direction rollers 230 and 240, and the deposited flexible substrate 20 is finally recovered the roller 220. It is recovered by winding it on).
  • the supporter is provided in the vacuum chamber 10.
  • the flexible substrate 20 is supported by receiving the flexible substrate 20 from the supply roller 210 side of the substrate providing apparatus so that the deposition material may be deposited on the flexible substrate 20.
  • the supporter is more preferably provided with a substrate cooling means for cooling the heat received while the deposition material is deposited on the flexible substrate 20.
  • the outer surface of the supporter has a curved surface shape so that the distance between the plurality of evaporation nozzles 110 and the flexible substrate 20 can be kept constant while the flexible substrate 20 is supported by the supporter, It is preferable that the arrangement
  • the supporter whose outer surface has the shape of a curved surface has the shape of a cylinder. More preferably, as shown in FIG. 1, the supporter having a cylindrical shape is preferably a support roller 300 that can rotate about a central axis of the cylinder.
  • the shape of the virtual curved surface formed by the arrangement of the plurality of evaporation nozzles are arranged at a predetermined distance with respect to the center of rotation of the support controller 300, the shape of the virtual curved surface of which the cross section forms an arc of a floating body. Is preferably. In this case, since the distance (distance) with the evaporation nozzle 110 is kept constant while the flexible substrate 20 supported by the support controller 300 is deposited, a more uniform deposition thickness can be realized.
  • the support controller 300 can rotate, damage to the lower side of the flexible substrate 20 is suppressed while supporting the flexible substrate 20 while being in contact with the flexible substrate 20.
  • the support controller 300 may further include a substrate cooling unit capable of cooling the heat received while the deposition material is deposited on the flexible substrate 20.
  • the coolant may pass through the support controller 300 along the rotational center axis so that the support controller 300 may cool the flexible substrate 20.
  • the activator is provided between the evaporation nozzle 110 and the supporter (or the support controller 300).
  • the deposition material ejected through the evaporation nozzle 110 of the evaporation source 100 is activated radically.
  • the deposition material is an initiator
  • the initiator is activated by the activator as a radical.
  • the activator may be configured to include a plurality of heater lines 150.
  • the deposition material is activated by radicals by the thermal energy supplied from the heater wire 150.
  • the plurality of heater wires 150 are preferably spaced apart from each other with respect to neighboring heater wires 150.
  • each of the plurality of heater wires 150 may be arranged as shown in FIG. 1 so as to correspond to each of the plurality of evaporating nozzles 110, and as shown in FIG. 5, regardless of the number of the plurality of evaporating nozzles. It is also possible to form a shape in which the distance between heater wires is uniformly distributed.
  • a plurality of heater wires 150 are also arranged in a direction parallel to the curved surface.
  • a plurality of evaporation nozzles 110 are arranged in an arch shape around the rotational center axis of the support controller 300, and a plurality of heater wires are also correspondingly arranged (see FIG. 1).
  • a plurality of heater wires are also correspondingly arranged (see FIG. 1).
  • the flexible substrate 20 in contact with the outer circumferential surface of the support controller 300 is moved at the same speed in response to the rotation of the support controller 300 and is recovered to the recovery roller 220 side, the flexible substrate 20 is cooled well. While being damaged, damage to the flexible substrate 20 is also suppressed.
  • the vapor deposition material is deposited on the flexible substrate.
  • the deposition thickness is deposited to be even, there is an advantage to improve the production quality.
  • FIG. 6 is a schematic cross-sectional view of a flexible substrate chemical vapor deposition system according to another embodiment of the present invention.
  • a flexible substrate chemical vapor deposition system includes an evaporation source 400, a vacuum chamber 40, a substrate providing device 510, 520, 530, 540, and a substrate cooling device ( 600).
  • the evaporation source 400 evaporates the deposition material to be deposited on the surface of the flexible substrate 50.
  • the evaporation source 400 basically includes a crucible containing a deposition material and a heater (not shown) for supplying heat to evaporate the deposition material. And at least one evaporation nozzle (not shown) is formed in the crucible. The evaporation material is evaporated through the evaporation nozzle to fly toward the flexible substrate 50. In FIG. 6, this is schematically illustrated as one evaporation source 400.
  • the vacuum chamber 40 includes the evaporation source 400 and provides a space isolated from the outside so that a process of depositing a deposition material on the flexible substrate 50 can be performed.
  • the interior of the vacuum chamber 40 is in a vacuum state, the deposition process is made in a vacuum.
  • the vacuum chamber 40 is provided with a vacuum pump (not shown) for forming a vacuum state.
  • the substrate providing apparatuses 510, 520, 530, and 540 are provided in the vacuum chamber 400. And it provides a flexible substrate 50 on which the deposition material is to be deposited. That is, the flexible substrate 50 is transferred to the deposition position where the deposition material is deposited. Then, the flexible substrate 50 on which the deposition material is deposited is recovered.
  • the flexible substrate 50 is flexible, and unlike the glass substrate, the flexible substrate 50 is continuous. Therefore, the flexible substrate 50 is transferred to the deposition position, and the flexible substrate 50 on which the deposition material is deposited is recovered at the deposition position. This process may be performed until all of the flexible substrates 50 wound on one flexible substrate 50 are deposited.
  • the substrate providing apparatus includes a supply roller 510, a recovery roller 520, and direction rollers 530 and 540.
  • the supply roller 510 is wound around the flexible substrate 50 and is in a state before the deposition material is deposited. As the feed roller 510 rotates, the flexible substrate 50 wound up is released and the flexible substrate 50 released from the feed roller 510 is moved to the deposition position.
  • the recovery roller 520 recovers the flexible substrate 50 on which the deposition material is deposited at the deposition position. In order to recover the flexible substrate 50, the recovery roller 520 is also rotated and recovered by winding the flexible substrate 50.
  • the direction rollers 530 and 540 are positioned between the supply roller 510 and the recovery roller 520 to assist the flexible substrate 50 to be continuously supplied to the deposition position and to pass through the deposition position. As shown in FIG. 6, the direction rollers 530 and 540 play an auxiliary role of positioning the flexible substrate 50 released from the supply roller 510 so as to pass through the deposition position.
  • the flexible substrate 50 is released from the supply roller 510 and is deposited while passing through the deposition position by the assistance of the direction rollers 530 and 540, and the finished flexible substrate 50 is finally recovered by the recovery roller 520. It is recovered by winding it on).
  • the substrate providing apparatus may further include a providing control unit (not shown) for adjusting the moving speed of the flexible substrate 50 passes through the deposition position.
  • the substrate cooling apparatus 600 is provided below the flexible substrate 50 to cool the heat received while the deposition material is deposited on the flexible substrate 50 provided from the substrate providing apparatuses 510, 520, 530, and 540.
  • the substrate cooling device 600 is provided below the flexible substrate 50 and cools the flexible substrate 50 with a cooling gas.
  • the substrate cooling device 600 includes a cooling gas supply unit 610 and a cooling unit 650, and more preferably further includes a cooling tube 630 connecting the cooling gas supply unit 610 and the cooling unit 650. You may.
  • the cooling gas supply unit 610 supplies a cooling gas to cool the flexible substrate 50. It is preferable to use an inert gas as the cooling gas, and after cooling the cooling gas to a predetermined temperature, the cooling gas is supplied to the cooling unit 650 to cool the flexible substrate 50 by the cooling gas in the cooling unit 650. . Therefore, a cooling device (not shown) for cooling the cooling gas may be provided in the cooling gas supply unit 610.
  • FIG. 7 is a perspective view schematically showing a cooling unit of a substrate cooling apparatus of a flexible substrate chemical vapor deposition system according to another embodiment of the present invention.
  • the cooling unit 650 receives cooling gas from the cooling gas supply unit 610 to cool the gas to the flexible substrate 50 so that the flexible substrate 50 can be cooled. Create a cooling space that can be indirectly contacted.
  • the cooling unit 650 is opened at an upper side thereof and exposed to a lower side of the flexible substrate 50, and the side surface is surrounded by a cooling guide wall 653, and a cooling gas is blown out at the bottom surface thereof. It is preferable that the cooling port 655 is formed. Here, it can be said that it is more preferable that a plurality of cooling holes 655 are formed.
  • the cooling gas flows out, that is, the cooling gas flows to the cooling guide wall 653. It is preferable that a predetermined interval is provided. That is, it is preferable to space the predetermined interval so that the cooling gas flows between the cooling guide wall 653 and the flexible substrate 50.
  • each of the plurality of cooling holes 655 formed on the inner bottom surface of the cooling unit 650 is formed on the inner bottom surface of the cooling unit 650.
  • the amount of cooling gas ejected from the plurality of cooling ports 655 may be equal, which is preferable.
  • the distribution density of the plurality of cooling holes 655 formed on the inner bottom surface of the cooling unit 650 may be increased or decreased from one side to the other side.
  • the distribution density of the plurality of cooling holes 655 is formed to be distinguished into dense and small portions in the cooling unit 650, cooling by the cooling gas in the region where the distribution density of the plurality of cooling holes 655 is high.
  • the temperature is formed low but does not rise easily.
  • the amount of cooling gas is not large, but the temperature may be sufficiently lowered even if the flexible substrate 50 is cooled to some extent.
  • the cooling unit 650 may be formed by changing the distribution density of the plurality of cooling holes 655 in consideration of the temperature gradient of the flexible substrate 50 passing through the upper side of the cooling unit 650.
  • the cooling gas ejected through the cooling port 655 into the cooling unit 650 accumulates in the inner space of the cooling unit and accumulates upward along the cooling guide wall 653. Then, the flexible substrate 50 is in contact with the flexible gas 50 while the flexible substrate 50 passes through the upper space of the cooling gas accumulated inside the cooling unit 650 to flow beyond the cooling guide wall 653 to the outside. Cooling of the substrate 50 is made.
  • the cooling gas pipe 630 is provided between the cooling unit 650 and the cooling gas supply unit 610.
  • the cooling gas supplied from the cooling gas supply unit 610 side is guided to be introduced into the cooling unit 650. Therefore, the cooling gas is introduced into the cooling unit 650 from the cooling gas supply unit 610 through the cooling gas pipe 630 and discharged through the cooling port 655.
  • the temperature of the cooling gas, the amount of the cooling gas is ejected through the cooling port 655, and the cooling gas are ejected through the cooling port 655 so that the flexible substrate 50 can be cooled to a predetermined temperature. It may be made by further comprising a cooling control unit (not shown) for controlling the speed.
  • the flexible substrate chemical vapor deposition system can continuously cool without directly contacting the flexible substrate, so that the lower side of the flexible substrate is not damaged and thus the defective rate of the product. Can be reduced.
  • the cooling efficiency can be maintained, and the cooling time can be further shortened, thereby reducing the production process time.
  • FIG. 8 is a schematic cross-sectional view of a flexible substrate chemical vapor deposition system according to another embodiment of the present invention.
  • a flexible substrate chemical vapor deposition system includes an evaporation source 700, a vacuum chamber 70, a substrate providing apparatus 810, 820, 830, 840, and a substrate cooling apparatus. 900 is made.
  • the evaporation source 700 evaporates the deposition material to be deposited on the surface of the flexible substrate 80.
  • the evaporation source 700 basically includes a crucible containing a deposition material and a heater (not shown) for supplying heat to evaporate the deposition material. And at least one evaporation nozzle (not shown) is formed in the crucible. The evaporation material is evaporated through the evaporation nozzle to fly toward the flexible substrate 80. In FIG. 8, this is schematically illustrated as one evaporation source 700.
  • the vacuum chamber 70 includes an evaporation source 700, and provides a space isolated from the outside so that a process of depositing a deposition material on the flexible substrate 80 may be performed.
  • the interior of the vacuum chamber 70 is in a vacuum state, and the deposition process is performed in a vacuum.
  • the vacuum chamber 70 is provided with a vacuum pump (not shown) for forming a vacuum state.
  • Substrate providing devices 810, 820, 830, and 840 are provided in the vacuum chamber 70. And it provides a flexible substrate 80 on which the deposition material is to be deposited. That is, the flexible substrate 80 is transferred to the deposition position where the deposition material is deposited. Then, the flexible substrate 80 on which the deposition material is deposited is recovered.
  • the flexible substrate 80 is flexible, and unlike the glass substrate, the flexible substrate 80 is continuous. Therefore, the flexible substrate 80 is transferred to the deposition position, and the flexible substrate 80 on which the deposition material is deposited is recovered from the deposition position. This process may be performed until all of the flexible substrates 80 wound on the roll of one flexible substrate 80 are deposited.
  • the substrate providing apparatus includes a supply roller 810, a recovery roller 820, and direction rollers 830 and 840.
  • the supply roller 810 is wound around the flexible substrate 80 and is in a state before the deposition material is deposited. As the feed roller 810 rotates, the flexible substrate 80 wound up is released, and the flexible substrate 80 released from the feed roller 810 is moved to the deposition position.
  • the recovery roller 820 recovers the flexible substrate 80 on which the deposition material is deposited at the deposition position. In order to recover the flexible substrate 80, the recovery roller 820 is also rotated and recovered by winding the flexible substrate 80.
  • the direction rollers 830 and 840 are positioned between the supply roller 810 and the recovery roller 820 to assist the flexible substrate 80 to be continuously supplied to the deposition position and to pass through the deposition position. As shown in FIG. 8, the direction rollers 830 and 840 serve as an assisting position for allowing the flexible substrate 80 released from the supply roller 810 to pass through the deposition position.
  • the flexible substrate 80 is released from the supply roller 810 and is deposited while passing through the deposition position by the assistance of the direction rollers 830 and 840, and the finished flexible substrate 80 is finally recovered by the recovery roller 820. It is recovered by winding it on).
  • the substrate cooling apparatus 900 is provided on one side of the flexible substrate 80 in the vacuum chamber 70 to cool the heat received while the deposition material is deposited on the flexible substrate 80 provided from the substrate providing apparatuses 810, 820, 830 and 840. do.
  • the substrate cooling apparatus 900 includes a cooling block 910 and a cooling block moving means.
  • the cooling block 910 cools the flexible substrate 80 in contact with one side of the flexible substrate 80.
  • One or more cooling blocks 910 are provided, and at least one cooling block 910 is preferably in contact with one side of the flexible substrate 80.
  • 8 schematically illustrates a plurality of cooling blocks 910 contacting the lower side of the flexible substrate 80.
  • the cooling block 910 is in contact with the flexible substrate 80 to cool the flexible substrate 80. That is, it is a cooling method using the thermal conductivity phenomenon. In order to steadily cool the flexible substrate 80, the cooling block 910 is preferably maintained at a low temperature which is continuously cooled.
  • a cooling device for cooling the cooling block 910 may be provided.
  • a cooling device is separately provided for each of the plurality of cooling blocks 910 and is built in the cooling block 910.
  • the externally cooled low temperature refrigerant is steadily supplied to each of the plurality of cooling blocks 910, and heat is supplied to the refrigerant.
  • a refrigerant supply device (not shown) that continuously recovers is provided separately.
  • the cooling block 910 be able to continuously cool the flexible substrate 80 while maintaining a steady low temperature.
  • the cooling block moving means 920 moves the cooling block 910 so that the cooling block can move together with the flexible substrate 80 while maintaining the state in contact with one side of the flexible substrate 80.
  • the cooling block moving means 920 may have a variety of forms, among which there may be a form comprising a rotating roller 923 and the cooling chain 921 or a form including a rotating roller and a cooling belt. . 8 schematically illustrates a configuration including a rotating roller 923 and a cooling chain 921.
  • the cooling chain 921 of the cooling block moving unit 920 is combined with the cooling block 910 to support the cooling block 910. And moves with the cooling block 910.
  • the rotation roller 923 rotates the cooling chain 921 so that the cooling chain 921 rotates so that the cooling block 910 moves.
  • the cooling chain 921 meshes with the cooling roller 921 and rotates within a predetermined section.
  • the predetermined section may be referred to as a section in which a deposition material is deposited on the surface of the flexible substrate 80.
  • the cooling chain 921 is circulated by the rotation roller 923, the cooling block 910 fastened and supported by the cooling chain 921 is also circulated in rotation. Therefore, at least one cooling block 910 is to rotate in conjunction with the cooling chain (921).
  • At least one cooling block 910 is in contact with the lower side while the deposition material is deposited on the upper side of the flexible substrate 80. And while the flexible substrate 80 is moved, the cooling block 910 is moved together while maintaining the state in contact with the flexible substrate (80).
  • the cooling block 910 is moved by the cooling chain and the rotating roller 921 at the same speed as the moving speed of the flexible substrate 80. Since the flexible substrate 80 and the cooling block 910 are in contact with each other and move at the same speed, damage to the lower side of the flexible substrate 80 is not caused.
  • the cooling block moving means 920 includes the cooling chain 921 and the rotating roller 923
  • the cooling block moving means includes the cooling belt and the rotating roller as the cooling block moving means 920.
  • the cooling chain 921 rotates as gear rotates in engagement with the rotary roller 923
  • the cooling belt is different in that it rotates using a force pushed against the outer circumferential surface of the rotary roller, and basically a cooling block. Repetitive description will be omitted since it is the same in that 910 can be rotated in a circular manner.
  • the cooling block 910 is coupled to the cooling block moving unit 920 so that the load (stress) due to the load of the cooling block is not applied to the cooling block moving unit 920. It is also preferable to further include a support belt 1010 for supporting 910.
  • FIG. 9 is a schematic cross-sectional view of a structure including a support belt and a support belt circulation roller in the flexible substrate chemical vapor deposition system according to another embodiment of the present invention. It is also preferable that the support belt 1010 supports the cooling block 910 as referred to in FIG.
  • the support belt 1010 is preferably in contact with the lower side of the cooling block 910 to rotate at a speed equivalent to the moving speed of the cooling block 910.
  • the support belt circulation roller 1020 for circulating the support belt 1010 is preferably provided.
  • the support belt 1010 rotates at the same speed as the cooling block 910 while being in contact with the lower side of the cooling block 910, the support belt 1010 does not damage the outer surface of the cooling block 910. This can further reduce the likelihood of indirect damage.
  • the cooling block 910 is preferable because it can be stably rotated without stress.
  • a controller (not shown) may be further included in the flexible substrate chemical vapor deposition system of the present invention in order to control or adjust the moving speed of the flexible substrate 80 and the moving speed of the cooling block 910 to be equal.
  • the flexible substrate chemical vapor deposition system according to the present invention can cool the block according to the heat conduction in contact with one surface of the flexible substrate, thereby further reducing the cooling time and reducing the production process time.
  • the cooling block is continuously cooled even in the state of being in contact with the flexible substrate, thereby improving cooling efficiency, and since the cooling block is uniformly cooled throughout the substrate, damage to the substrate due to uneven cooling can be suppressed.
  • the flexible substrate moves at the same speed, it does not damage one surface of the flexible substrate, thereby increasing production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 플렉서블기판을 이용하는 화학기상증착시스템에 관한 것으로, 본 발명에 따르면 플렉서블기판에 증착시킬 증착물질을 증발시키며, 상기 증착물질이 분출되는 증발노즐을 다수개 구비하고 있는 증발원; 상기 증발원을 내재하고 있으며, 상기 증착물질이 증착되는 공간을 제공하는 진공챔버; 상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 플렉서블기판을 제공하는 기판제공장치; 및 상기 진공챔버 내에 마련되며, 상기 증착물질이 상기 플렉서블기판에 증착될 수 있도록 상기 기판제공장치 측으로부터 상기 기판을 전달받아서 상기 플렉서블기판을 지지하는 서포터(supporter);를 포함하되, 상기 플렉서블기판이 상기 서포터에 의해 지지되는 동안에 다수개의 상기 증발노즐과 상기 플렉서블기판 사이의 간격이 일정하게 유지될 수 있도록 상기 서포터의 외면이 곡면의 형태를 갖추고 있고, 다수개의 상기 증발노즐의 배치형태가 상기 서포터의 상기 외면에 대응하여 가상의 곡면을 형성하고 있기 때문에 플렉서블기판에 증착되는 증착물질의 증착두께가 고르게 되도록 증착되어 생산품질을 향상시킬 수 있다.

Description

플렉서블기판 화학기상증착시스템
본 발명은 플렉서블기판에 대하여 화학기상증착을 할 수 있는 화학기상증착시스템에 관한 것으로, 보다 상세하게는 개시제를 이용하여 플렉서블기판에 증착공정을 수행하는 화학기상증착시스템에 있어서, 플렉서블기판에 대하여 증착물질을 균일한 두께로 증착시키면서 기판에 대한 냉각효율 또한 높일 수 있는 기술에 관한 것이다.
근래의 반도체소자 또는 디스플레이 장치 등은 증착공정 등을 포함한 여러 가지 제조공정과정을 거치면서 제조된다. 이러한 여러 제조과정 중에는 화학기상증착시스템을 이용하여 증착물질을 증착시키는 공정이 필수적으로 이루어지고 있다.
이에 화학기상증착시스템(Chemical vapor deposition)에 관련하여 많은 기술들이 제안되고, 적용되어 왔다.
이러한 종래의 기술들 중에는 대한민국 공개특허 제10-2014-0143589호(발명의 명칭 : 플렉서블 WOLED 디스플레이와 플렉서블 OLED 조명용 박막 대량생산 제조용 롤투롤 증착기. 이하 선행기술1 이라 함.) 등이 있다.
선행기술 1에 따르면, 플렉서블기판을 냉각시키기 위하여 금속벨트를 냉각시키고, 냉각된 금속벨트를 플렉서블기판의 하측면에 접하도록 하여 냉각시키는 것을 특징으로 하는 기술이 개시되어 있다.
그러나 선행기술 1 등과 같은 종래의 기술에 있어서 증착물질이 증착되는 두께를 균일하게 증착이 잘 되지 않는 경우가 많았다. 따라서, 증착물질을 균일한 두께로 증착시킬 수 있으며 기판에 대한 냉각효율도 높일 수 있는 기술이 요구되어 왔다.
본 발명의 목적은 상기한 종래의 문제점을 해결하기 위한 것으로, 플렉서블기판에 증착하는 화학기상증착시스템에서 증착물질이 균일한 두께로 증착될 수 있으면서 기판에 대한 냉각효율을 증진시킬 수 있는 화학기상증착시스템을 제공함에 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 플렉서블기판 화학기상증착시스템은 플렉서블기판에 증착시킬 증착물질을 증발시키며, 상기 증착물질이 분출되는 증발노즐을 다수개 구비하고 있는 증발원; 상기 증발원을 내재하고 있으며, 상기 증착물질이 증착되는 공간을 제공하는 진공챔버; 상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 기판을 제공하는 기판제공장치; 및 상기 진공챔버 내에 마련되며, 상기 증착물질이 상기 기판에 증착될 수 있도록 상기 기판제공장치 측으로부터 상기 기판을 전달받아서 상기 기판을 지지하는 서포터(supporter);를 포함하되, 상기 기판이 상기 서포터에 의해 지지되는 동안에 다수개의 상기 증발노즐과 상기 기판 사이의 간격이 일정하게 유지될 수 있도록 상기 서포터의 외면이 곡면의 형태를 갖추고 있고, 다수개의 상기 증발노즐의 배치형태가 상기 서포터의 상기 외면에 대응하여 가상의 곡면을 형성하고 있는 것을 하나의 특징으로 할 수도 있다.
여기서, 상기 증발노즐과 상기 서포터 사이에 마련되며, 상기 증발원의 상기 증발노즐을 통해 분출된 상기 증착물질을 라디칼(radical)로 활성화시켜주는 액티베이터(activator);를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 상기 액티베이터는, 다수개의 히터선(heater line)을 포함하여 이루어지며, 상기 라디칼은 상기 히터선으로부터 공급되는 열에너지에 의해 생성되는 것을 또 하나의 특징으로 할 수도 있다.
더 나아가, 상기 다수개의 히터선은, 이웃하는 히터선에 대하여 일정간격을 두고 이격되어 배치된 것을 또 하나의 특징으로 할 수도 있다.
더 나아가, 상기 히터선은 상기 곡면에 대하여 평행한 방향으로 배치된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 외면이 곡면의 형태를 갖추고 있는 상기 서포터는, 원기둥의 형상을 갖추고 있는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 상기 원기둥의 형상을 갖춘 상기 서포터는, 상기 원기둥의 중심축을 중심으로 회전가능한 서포트롤러인 것을 또 하나의 특징으로 할 수도 있다.
나아가, 다수개의 상기 증발노즐의 배치형태에 의해 형성되는 가상의 상기 곡면의 형태는, 상기 서포트롤러의 회전중심축에 대하여 일정 거리를 두고 배치되되, 단면이 부채꼴의 호를 이루는 가상의 곡면의 형태인 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 서포터는, 상기 기판제공장치로부터 제공되는 상기 기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜 주기 위한 기판냉각수단을 구비하고 있는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 다수개의 상기 증발노즐의 분포양상은, 상기 증발원의 일측단에서 타측단으로 갈수록 상기 증발노즐의 분포밀도가 높아지도록 형성된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 다수개의 상기 증발노즐 각각은, 이웃하는 증발노즐과의 간격이 일정하도록 형성된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 다수개의 상기 증발노즐은, 상기 증발원의 양 끝단에서의 분포밀도와 상기 증발원의 가운데에서의 분포밀도가 다르게 형성되어 배치된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 기판제공장치는, 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 제공하는 공급롤러; 상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및 상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템은 플렉서블(Flexible)기판에 증착시킬 증착물질을 증발시키는 증발원; 상기 증발원을 내재하고 있으며, 상기 증착물질을 증착시킬 공간을 제공하는 진공챔버; 상기 진공챔버 내에 마련되며, 상기 플렉서블(flexible)기판을 제공하는 기판제공장치; 및 상기 기판제공장치로부터 제공되는 상기 플렉서블기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜주기 위하여 상기 플렉서블기판의 하측에 마련되는 기판냉각장치 ;를 포함하되, 상기 기판냉각장치는, 상기 플렉서블기판의 하측에 마련되며, 상기 플렉서블기판을 냉각가스로 냉각시키는 것을 하나의 특징으로 할 수도 있다.
여기서, 상기 기판냉각장치는, 상기 냉각가스를 공급하는 냉각가스공급부; 및 상기 냉각가스공급부측으로부터 상기 냉각가스를 공급받아서, 상기 플렉서블기판이 냉각될 수 있도록, 상기 냉각가스가 상기 플렉서블기판에 직접 또는 간접적으로 접촉할 수 있는 냉각공간을 형성하는 냉각부; 를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 상기 냉각부와 상기 냉각가스공급부 사이에 마련되며, 상기 냉각가스공급부측으로부터 공급되는 상기 냉각가스가 상기 냉각부의 내측으로 인입될 수 있도록 가이드하는 냉각가스관; 을 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각부의 상측은 개방되어 상기 플렉서블기판의 하측면에 노출되고, 상기 냉각부의 내측 바닥면에는 상기 냉각가스가 분출되는 냉각구가 다수개 형성되어있는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각부의 상기 내측 바닥면에 대하여 상측방향으로 냉각가이드벽이 형성되어 있고, 상기 플렉서블기판과 상기 냉각가이드벽 사이에 상기 냉각가스가 유출될 수 있도록 소정의 간격이 마련된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각부의 상기 내측 바닥면에 형성된 다수개의 냉각구 각각은, 이웃하는 냉각구에 대하여 일정 간격만큼 이격되어 형성된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각부의 상기 내측 바닥면에 다수개의 냉각구가 형성되되, 다수개의 상기 냉각구의 분포밀도가 일측에서 타측으로 갈수록 증가 또는 감소 되도록 형성된 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 플렉서블기판이 소정의 온도로 냉각될 수 있도록 상기 냉각가스의 온도, 상기 냉각가스가 상기 냉각구를 통해 분출되는 양 또는 상기 냉각가스가 상기 냉각구를 통해 분출되는 속도를 제어하는 냉각제어부;를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각부의 내측으로 상기 냉각구를 통해 분출되는 상기 냉각가스는 상기 냉각부의 내측공간에 쌓이면서 상기 냉각가이드벽을 따라 상측으로 축적되며, 상기 냉각가이드벽을 넘어서 외측으로 흘러넘치도록 상기 냉각부의 내측에 쌓인 상기 냉각가스의 상측공간을 상기 플렉서블기판이 통과하면서 상기 냉각가스와 상기 플렉서블기판이 접촉되어 상기 플렉서블기판의 냉각이 이루어지는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 기판제공장치는, 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 제공하는 공급롤러; 상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및 상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 상기 기판제공장치는, 상기 플렉서블기판이 상기 증착위치를 통과하는 이동속도를 조절하는 제공제어부;를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 또 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템은 플렉서블(flexible)기판에 증착시킬 증착물질을 증발시키는 증발원; 상기 증발원을 내재하고 있으며, 상기 증착물질을 증착시킬 공간을 제공하는 진공챔버; 상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 상기 플렉서블기판을 제공하는 기판제공장치; 및 상기 플렉서블 기판의 열을 냉각시켜주기 위하여 상기 플렉서블 기판의 일측에 마련된 기판냉각장치 ;를 포함하되, 상기 기판냉각장치는, 상기 플렉서블 기판의 일측면에 접하여 상기 플렉서블 기판을 냉각시키는 냉각블록; 및 상기 냉각블록이 상기 플렉서블 기판의 일측면에 접한 상태를 유지하며 상기 플렉서블 기판과 함께 이동할 수 있도록 상기 냉각블록을 이동시켜주는 냉각블록이동수단; 을 포함하는 것을 하나의 특징으로 할 수도 있다.
여기서, 상기 기판냉각장치의 상기 냉각블록이동수단은, 상기 냉각블록과 결합하여 상기 냉각블록을 지지하며, 상기 냉각블록과 함께 이동하는 냉각체인; 및 상기 냉각블록이 위치이동을 할 수 있도록 상기 냉각체인이 순환하는 회전을 시켜주는 회전롤러;를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 기판냉각장치의 상기 냉각블록이동수단은, 상기 냉각블록과 결합하여 상기 냉각블록을 지지하며, 상기 냉각블록과 함께 이동하는 냉각벨트; 및 상기 냉각블록이 위치이동을 할 수 있도록 상기 냉각체인이 순환하는 회전을 시켜주는 회전롤러;를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각블록은 다수개가 마련되고, 적어도 하나 이상의 상기 냉각블록이 상기 기판의 일측면에 접하는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 다수개의 상기 냉각블록 각각에는,상기 냉각블록을 냉각시키는 냉각장치가 내재되어 있는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 기판냉각장치는,다수개의 상기 냉각블록 각각에 대하여 냉매를 공급해주는 냉매공급장치;를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 기판제공장치는, 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 공급하는 공급롤러; 상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및 상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 제공되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각블록이 상기 플렉서블기판의 일측면에 접하여 상기 플렉서블기판과 동등한 속도로 이동되도록 조정하는 제어부;를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
여기서, 상기 냉각블록과 결합된 상기 냉각블록이동수단에 상기 냉각블록의 하중에 의한 무리가 가지 않도록 상기 냉각블록의 하측에서 상기 냉각블록을 지지하는 지지벨트; 를 더 포함하는 것을 또 하나의 특징으로 할 수도 있다.
나아가, 상기 지지벨트는, 상기 냉각블록의 하측에서 접하여 상기 냉각블록의 이동속도와 동등한 속도로 순환 회전하는 것을 또 하나의 특징으로 할 수도 있다.
본 발명에 따른 플렉서블기판 화학기상증착시스템은, 각각의 증발노즐이 증착위치에서 플렉서블기판면에 대하여 일정한 이격간격을 두고 배치되어 있으므로 플렉서블기판에 증착되는 증착물질의 증착두께가 고르게 되도록 증착되어 생산품질을 향상시킬 수 있으며, 제품의 불량률을 감소시키는 효과가 있다.
또한, 서포터가 플렉서블기판의 하측면에서 지속적으로 냉각시켜주기 때문에 불균일한 냉각으로 인한 기판의 손상 등을 억제할 수 있다.
그리고, 기판에 대한 냉각시간을 좀 더 단축시킬 수 있게 되어 생산공정시간을 감축시킬 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템을 개략적으로 나타낸 단면도이다.
도 2는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 증발원에 형성된 일부 증발노즐들 및 히터선을 개략적으로 나타낸 사시도이다.
도 3은 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 증발원에 형성된 다수개의 증발노즐들의 배치형태의 일 예를 개략적으로 나타낸 도면이다.
도 4는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 증발원에 형성된 다수개의 증발노즐들의 배치형태의 다른 예를 개략적으로 나타낸 도면이다.
도 5는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 다수의 증발노즐 및 히터선의 배치형태를 개략적으로 나타낸 도면이다.
도 6은 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템을 개략적으로 나타낸 단면도이다.
도 7은 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템의 기판냉각장치의 냉각부를 개략적으로 나타낸 사시도이다.
도 8 및 도 9는 본 발명의 또 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템의 단면의 모습을 개략적으로 나타낸 단면도이다.
이하에서는 본 발명에 대하여 보다 구체적으로 이해할 수 있도록 첨부된 도면을 참조한 바람직한 실시 예를 들어 설명하기로 한다.
도 1은 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템을 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템은 증발원(100), 진공챔버(10), 기판제공장치 및 서포터를 포함하여 이루어진다. 좀 더 바람직하게는 액티베이터(activator)를 더 포함하여 이루어질 수도 있다.
여기서 증발원(100)에 대하여 설명하기에 앞서 도 2 내지 도 5를 더 참조하기로 한다.
도 2는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 다수개의 증발노즐이 형성된 증발원 및 히터선을 개략적으로 나타낸 사시도이고, 도 3은 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 증발원에 형성된 다수개의 증발노즐들의 배치형태의 일 예를 개략적으로 나타낸 도면이며, 도 4는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 증발원에 형성된 다수개의 증발노즐들의 배치형태의 다른 예를 개략적으로 나타낸 도면이고, 도 5는 본 발명의 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 다수의 증발노즐 및 히터선의 배치형태를 개략적으로 나타낸 도면이다.
먼저, 증발원(100)은 플렉서블기판(20)의 면상에 증착시킬 증착물질을 증발시킨다. 이러한 증발원(100)은 기본적으로 증착물질을 내재하고 있는 도가니와 증착물질이 증발될 수 있도록 열을 공급하는 히터(미도시)를 포함하여 이루어진다.
그리고 도가니에는 다수개의 증발노즐(110)이 형성되어 있다. 증발노즐(110)을 통해 증착물질이 증발되어 플렉서블기판(20)측으로 날아가게 된다.(증발된 증착물질의 이동경로 내지 이동방향을 도 1의 도면부호 240으로 나타내었다.)
증발원(100)에 형성된 다수개의 증발노즐(110)의 분포양상으로는 다양한 형태가 가능하다. 예를 들면, 도 3에 도시된 바와 같이 증발원(100)의 일측단에서 타측단으로 갈수록 증발노즐의 분포밀도가 높아지도록 형성된 증발노즐(110)의 분포양상이 있을 수 있다.
또는, 도 1 내지 도 2 및 도 5에 도시된 바와 같이 다수개의 증발노즐(110)의 각각이 이웃하는 증발노즐(110)과의 간격이 일정하도록 형성된 형태 또한 가능하다.
도 4에 도시된 바와 같이, 다수개의 증발노즐(110)은 증발원(100)의 양 끝단에서의 분포밀도와 증발원(100)의 가운데에서의 분포밀도가 다르도록 형성되어 배치된 형태 또한 가능하다. 예를 들면, 도 4에 도시된 바와 같이 증발원(100)의 가운데 부분의 증발노즐들의 분포밀도는 높고, 증발원(100)의 양 끝단 부분의 증발노즐들의 분포밀도는 낮은 형태 또한 가능하다는 것이다.
이와 같이 플렉서블기판(20)에 증착될 증착물질의 두께 등을 고려하여 다수개의 증발노즐(110)들이 다양한 분포양상을 가지도록 증발원(100)에 다수의 증발노즐(110)들을 형성시킬 수 있다.
진공챔버(10)는 증발원(100)을 내재하고 있으며, 플렉서블기판(20)에 증착물질이 증착되는 공정이 이루어질 수 있도록 외부로부터 격리된 공간을 제공한다. 진공챔버(10)의 내부는 진공상태로 있게 되며, 진공 속에서 증착공정이 이루어지게 된다. 이러한 진공챔버(10)에는 진공상태를 조성해주기 위한 진공펌프(미도시) 등이 구비되어 있다.
기판제공장치(210,220,230,240)는 진공챔버(10) 내에 마련된다. 그리고 증착물질이 증착될 플렉서블기판(20)을 제공한다. 즉, 플렉서블기판(20)이 증착물질이 증착되는 위치인 증착위치로 전달한다. 그리고, 증착물질이 증착된 플렉서블기판(20)을 회수한다.
통상의 기판과 달리 플렉서블기판(20)은 유연성이 있으며, 글라스기판과 달리 연속적으로 되어 있다. 따라서 플렉서블기판(20)을 증착위치로 전달하고, 증착위치에서 증착물질이 증착된 플렉서블기판(20)을 회수한다. 이러한 과정은 하나의 플렉서블기판(20)롤에 감겨있는 플렉서블기판(20)이 모두 증착될 때까지 이루어질 수 있다.
이러한 기판제공장치는 공급롤러(210), 회수롤러(220) 및 방향롤러(230, 240)를 포함하여 이루어진다.
공급롤러(210)는 플렉서블기판(20)이 감겨져 있으며, 증착물질이 증착되기 전의 상태이다. 공급롤러(210)가 회전하면서 감겨있던 플렉서블기판(20)이 풀려서 나오게 되며, 공급롤러(210)로부터 풀려서 나온 플렉서블기판(20)이 증착위치로 이동된다.
회수롤러(220)는 증착위치에서 증착물질의 증착이 이루어진 플렉서블기판(20)을 회수한다. 플렉서블기판(20)을 회수하기 위하여 회수롤러(220) 또한 회전하여 플렉서블기판(20)을 감아들임으로써 회수한다.
방향롤러(230, 240)는 공급롤러(210)와 회수롤러(220) 사이에 위치하여 플렉서블기판(20)이 증착위치로 연속적으로 공급되어 증착위치를 통과할 수 있도록 보조한다. 도 1에 도시된 바와 같이 공급롤러(210)로부터 풀려나오는 플렉서블기판(20)이 증착위치를 지나갈 수 있도록 위치를 잡아주는 보조적인 역할을 방향롤러(230, 240)가 한다.
이와 같이 플렉서블기판(20)은 공급롤러(210)로부터 풀려나와서 방향롤러(230, 240)의 보조에 의해 증착위치를 지나면서 증착되고, 증착이 끝난 플렉서블기판(20)은 최종적으로 회수롤러(220)에 감기면서 회수된다.
서포터는 진공챔버(10)내에 마련된다. 그리고 증착물질이 플렉서블기판(20)에 증착될 수 있도록 기판제공장치의 공급롤러(210)측으로부터 플렉서블기판(20)을 전달받아서 플렉서블기판(20)을 지지한다. 그리고 서포터에는 플렉서블기판(20)에 증착물질이 증착되면서 받은 열을 냉각시켜줄 수 있는 기판냉각수단이 구비되어 있는 것이 더욱 바람직하다.
여기서 플렉서블기판(20)이 서포터에 의해 지지되는 동안에 다수개의 증발노즐(110)과 플렉서블기판(20) 사이의 간격이 일정하게 유지될 수 있도록 서포터의 외면이 곡면을 형태를 갖추고 있고, 다수개의 증발노즐(110)의 배치형태가 서포터의 외면에 대응하여 가상의 곡면을 형성하고 있는 것이 바람직하다.
외면이 곡면의 형태를 갖추고 있는 서포터는 원기둥의 형상을 갖추고 있는 것이 바람직하다. 여기서 더욱 바람직하게는 도 1에 도시된 바와 같이 원기둥의 형상을 갖춘 서포터는 원기둥의 중심축을 중심으로 회전할 수 있는 서포트롤러(supporter roller)(300)인 것이 바람직하다.
여기서, 다수개의 증발노즐의 배치형태에 의해 형성되는 가상의 곡면의 형태는 서포트롤러(300)의 회전중심축에 대하여 일정 거리를 두고 배치되되, 단면이 부체꼴의 호를 이루는 가상의 곡면의 형태인 것이 바람직하다. 이러한 경우 서포트롤러(300)에 의해 지지되는 플렉서블기판(20)이 증착되는 동안에 증발노즐(110)과의 간격(거리가) 일정하게 유지되므로, 보다 균일한 증착두께를 실현할 수 있게 된다.
서포트롤러(300)가 회전할 수 있으므로 플렉서블기판(20)을 접하면서 지지하는 동안에 플렉서블기판(20)의 하측면에 대한 손상이 억제된다.
그리고 서포트롤러(300)에는 플렉서블기판(20)에 증착물질이 증착되면서 받은 열을 냉각시켜줄 수 있는 기판냉각수단이 구비되어 있는 것이 더욱 바람직하다.
예를 들어 기판냉각수단으로서 차가운 냉매가 서포트롤러(300)를 회전중심축에 따라서 지나가도록 하여 서포트롤러(300)가 플렉서블기판(20)을 냉각시켜줄 수 있는 것을 예로 들을 수 있다.
다음으로 액티베이터(activator)에 대하여 설명하기로 한다.
액티베이터는 증발노즐(110)과 서포터( 또는 서포트롤러(300) ) 사이에 마련된다. 그리고 증발원(100)의 증발노즐(110)을 통해 분출된 증착물질을 라디칼(radical)로 활성화시켜준다. 여기서 증착물질이 개시제(initiator)인 경우, 액티베이터에 의해 개시제가 라디칼로 활성화 된다.
여기서 액티베이터는 다수개의 히터선(heater line)(150)을 포함하여 이루어진 형태도 바람직하다. 이러한 경우 히터선(150)으로부터 공급되는 열에너지에 의해 증착물질은 라디칼로 활성화된다.
그리고 도 1, 도 2 및 도 5에서 참조되는 바와 같이, 다수개의 히터선(150)은 이웃하는 히터선(150)에 대하여 일정 간격을 두고 이격되어 배치되어 있는 것이 바람직하다. 여기서 다수개의 히터선(150) 각각이 다수개의 증발노즐(110) 각각에 대응되도록 도 1에 도시된 바와 같이 배치될 수도 있으며, 도 5에 도시된 바와 같이 다수개의 증발노즐의 개수와는 상관없이 히터선 간의 간격이 일정하게 분포된 형태 또한 가능하다.
또한, 증발원(100)과 서포터가 곡면의 형태를 갖추고 있는 경우, 도 1 및 도 2에 도시된 바와 같이 다수개의 히터선(150) 또한 곡면에 대하여 평행한 방향으로 배치되어 있는 것이 바람직하다.
이와 같이 서포트롤러(300)의 회전중심축을 중심으로 하여 아치(arch)형태로 증발노즐(110)이 다수 배열되고, 다수의 히터선 또한 이에 대응하여 배열되며(도 1참조), 서포트롤러(300)의 외주면에 플렉서블기판(20)이 놓임으로써 각 노즐과 플렉서블기판(20) 사이의 거리가 동등하게 된다.
또한 서포트롤러(300)의 외주면에 접하는 플렉서블기판(20)이 서포트롤러(300)의 회전에 대응되어 동등속도로 이동되어 회수롤러(220)측으로 회수되므로 플렉서블기판(20)에 대한 냉각이 잘 이루어지면서 플렉서블기판(20)에 대한 손상도 억제된다.
이상에서 설명한 바와 같이 본 발명의 실시 예에 따른 개시제를 이용한 화학기상증착시스템은 증착위치에서 플렉서블기판의 면에 대하여 각각의 증발노즐이 일정한 이격간격을 두고 배치되어 있으므로 플렉서블기판에 증착되는 증착물질의 증착두께가 고르게 되도록 증착되어 생산품질을 향상시킬 수 있는 장점이 있다.
또한, 서포터가 플렉서블기판의 하측면에서 지속적으로 냉각시켜주기 때문에 불균일한 냉각으로 인한 기판의 손상 등을 억제할 수 있는 장점도 있다.
다음으로 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템에 대하여 설명하기로 한다.
도 6은 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템을 개략적으로 나타낸 단면도이다.
먼저 도 6을 참조하면, 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템은 증발원(400), 진공챔버(40), 기판제공장치(510, 520, 530, 540) 및 기판냉각장치(600)를 포함하여 이루어진다.
증발원(400)은 플렉서블기판(50)의 면상에 증착시킬 증착물질을 증발시킨다. 이러한 증발원(400)은 기본적으로 증착물질을 내재하고 있는 도가니와 증착물질이 증발될 수 있도록 열을 공급하는 히터(미도시)를 포함하여 이루어진다. 그리고 도가니에는 적어도 하나 이상의 증발노즐(미도시)이 형성되어 있다. 증발노즐을 통해 증착물질이 증발되어 플렉서블기판(50)측으로 날아가게 된다. 도 6에서는 이를 개략적으로 증발원(400) 하나로 도시하였다.
진공챔버(40)는 증발원(400)을 내재하고 있으며, 플렉서블기판(50)에 증착물질이 증착되는 공정이 이루어질 수 있도록 외부로부터 격리된 공간을 제공한다. 진공챔버(40)의 내부는 진공상태로 있게 되며, 진공 속에서 증착공정이 이루어지게 된다. 이러한 진공챔버(40)에는 진공상태를 조성해주기 위한 진공펌프(미도시) 등이 구비되어 있다.
기판제공장치(510,520,530,540)는 진공챔버(400) 내에 마련된다. 그리고 증착물질이 증착될 플렉서블기판(50)을 제공한다. 즉, 플렉서블기판(50)이 증착물질이 증착되는 위치인 증착위치로 전달한다. 그리고, 증착물질이 증착된 플렉서블기판(50)을 회수한다.
통상의 기판과 달리 플렉서블기판(50)은 유연성이 있으며, 글라스기판과 달리 연속적으로 되어 있다. 따라서 플렉서블기판(50)을 증착위치로 전달하고, 증착위치에서 증착물질이 증착된 플렉서블기판(50)을 회수한다. 이러한 과정은 하나의 플렉서블기판(50)롤에 감겨있는 플렉서블기판(50)이 모두 증착될 때까지 이루어질 수 있다.
이러한 기판제공장치는 공급롤러(510), 회수롤러(520) 및 방향롤러(530, 540)를 포함하여 이루어진다.
공급롤러(510)는 플렉서블기판(50)이 감겨져 있으며, 증착물질이 증착되기 전의 상태이다. 공급롤러(510)가 회전하면서 감겨있던 플렉서블기판(50)이 풀려서 나오게 되며, 공급롤러(510)로부터 풀려서 나온 플렉서블기판(50)이 증착위치로 이동된다.
회수롤러(520)는 증착위치에서 증착물질의 증착이 이루어진 플렉서블기판(50)을 회수한다. 플렉서블기판(50)을 회수하기 위하여 회수롤러(520) 또한 회전하여 플렉서블기판(50)을 감아들임으로써 회수한다.
방향롤러(530, 540)는 공급롤러(510)와 회수롤러(520) 사이에 위치하여 플렉서블기판(50)이 증착위치로 연속적으로 공급되어 증착위치를 통과할 수 있도록 보조한다. 도 6에 도시된 바와 같이 공급롤러(510)로부터 풀려나오는 플렉서블기판(50)이 증착위치를 지나갈 수 있도록 위치를 잡아주는 보조적인 역할을 방향롤러(530, 540)가 한다.
이와 같이 플렉서블기판(50)은 공급롤러(510)로부터 풀려나와서 방향롤러(530, 540)의 보조에 의해 증착위치를 지나면서 증착되고, 증착이 끝난 플렉서블기판(50)은 최종적으로 회수롤러(520)에 감기면서 회수된다.
한 편 여기서 좀 더 바람직하게는, 기판제공장치에는 플렉서블기판(50)이 증착위치를 통과하는 이동속도를 조절하는 제공제어부(미도시) 가 더 포함될 수도 있다.
다음으로, 기판냉각장치(600)는 기판제공장치(510,520,530,540)로부터 제공되는 플렉서블기판(50)에 증착물질이 증착되면서 받은 열을 냉각시켜주기 위하여 플렉서블기판(50)의 하측에 마련된다. 이러한 기판냉각장치(600)는 플렉서블기판(50)의 하측에 마련되며, 플렉서블기판(50)을 냉각가스로 냉각시켜준다.
기판냉각장치(600)는 냉각가스공급부(610) 및 냉각부(650)를 포함하며, 좀 더 바람직하게는 냉각가스공급부(610)와 냉각부(650)를 이어주는 냉각관(630)을 더 포함할 수도 있다.
냉각가스공급부(610)는 플렉서블기판(50)을 냉각시킬 냉각가스를 공급한다. 냉각가스로는 불활성가스를 이용하는 것이 바람직하며, 냉각가스를 소정의 온도로 냉각시킨 후 냉각부(650)로 공급하여 냉각부(650)에서 냉각가스에 의한 플렉서블기판(50)의 냉각이 이루어지도록 한다. 따라서, 냉각가스를 냉각시키기 위한 냉각장치(미도시)가 냉각가스공급부(610)에 구비되어 있을 수도 있다.
여기서, 냉각부를 설명하기 위하여 도 7을 더 참조하기로 한다.
도 7는 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템의 기판냉각장치의 냉각부를 개략적으로 나타낸 사시도이다.
도 6 및 도 7에서 참조되는 바와 같은 냉각부(650)는 냉각가스공급부(610)측으로부터 냉각가스를 공급받아서 플렉서블기판(50)이 냉각될 수 있도록 냉각가스가 플렉서블기판(50)에 직접 또는 간접적으로 접촉할 수 있는 냉각공간을 형성한다.
이러한 냉각공간을 형성하기 위하여 냉각부(650)는 상측이 개방되어 플렉서블기판(50)의 하측면에 노출되고, 측면은 냉각가이드벽(653)으로 둘러싸여져 있으며, 바닥면에는 냉각가스가 분출되는 냉각구(655)가 형성되어 있는 것이 바람직하다. 여기서 냉각구(655)가 다수개 형성되어 있는 것이 더욱 바람직하다고 할 수 있다.
냉각부(650)의 내측 바닥면에 대하여 상측방향으로 형성된 냉각가이드벽(653)과 플렉서블기판(50) 사이에는 냉각가스가 유출 즉, 냉각가스가 냉각가이드벽(653)에 대하여 흘러넘칠 수 있도록 소정의 간격이 마련된 것이 바람직하다. 즉, 냉각가이드벽(653)과 플렉서블기판(50) 사이로 냉각가스가 흘러나갈 수 있도록 일정간격 이격되도록 하는 것이 바람직하다는 것이다.
그리고, 냉각부(650)의 내측 바닥면에 형성된 다수개의 냉각구(655) 각각은,
이웃하는 냉각구(655)에 대하여 일정 간격만큼 이격되어 형성된 것이 바람직하다. 다수개의 냉각구(655)로부터 분출되는 냉각가스의 양이 균등할수 있으므로 바람직하다.
또는 냉각부(650)의 내측 바닥면에 형성된 다수개의 냉각구(655)의 분포밀도가 일측에서 타측으로 갈수록 증가 또는 감소 되도록 형성된 것 또한 바람직하다.
냉각부(650) 내에서 다수개의 냉각구(655)의 분포밀도가 밀한 부분과 소한 부분으로 구별될 수 있게 형성되면, 다수개의 냉각구(655)의 분포밀도가 높은 영역에서는 냉각가스에 의한 냉각온도가 낮게 형성되되 쉽게 상승되지 않게 된다.
반면 다수개의 냉각구(655)의 분포밀도가 낮은 영역에서는 냉각가스의 양이 많지 않지만, 어느 정도 냉각된 플렉서블기판(50)에 접하더라도 충분히 온도를 낮출 수도 있다.
따라서, 냉각부(650)의 상측을 통과하는 플렉서블기판(50)의 온도구배를 감안하여 다수개의 냉각구(655)의 분포밀도에 변화를 주어 냉각부(650)를 형성시킬 수도 있다는 것이다.
이와 같이 냉각부(650)의 내측으로 냉각구(655)를 통해 분출되는 냉각가스는 냉각부의 내측공간에 쌓이면서 냉각가이드벽(653)을 따라 상측으로 축적된다. 그리고, 냉각가이드벽(653)을 넘어서 외측으로 흘러넘치도록 냉각부(650)의 내측에 쌓인 냉각가스의 상측공간을 플렉서블기판(50)이 통과하면서 냉각가스와 플렉서블기판(50)이 접촉되어 플렉서블기판(50)의 냉각이 이루어지게 되는 것이다.
한 편, 냉각가스관(630)은 냉각부(650)와 냉각가스공급부(610) 사이에 마련되며. 냉각가스공급부(610)측으로부터 공급되는 냉각가스가 냉각부(650)의 내측으로 인입될 수 있도록 가이드한다. 따라서, 냉각가스가 냉각가스공급부(610)로부터 냉각가스관(630)을 지나서 냉각부(650)에 인입되어 냉각구(655)를 통해 배출된다.
그리고 좀 더 바람직하게는 플렉서블기판(50)이 소정의 온도로 냉각될 수 있도록 냉각가스의 온도, 냉각가스가 냉각구(655)를 통해 분출되는 양, 냉각가스가 냉각구(655)를 통해 분출되는 속도를 제어하는 냉각제어부(미도시)를 더 포함하여 이루어질 수도 있다.
이상에서 설명한 바와 같이 본 발명의 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템은 플렉서블기판에 직접 접촉하지 않으면서도 지속적으로 냉각을 시킬 수 있으므로, 플렉서블기판의 하측면에 손상을 주지 않게 되어 제품의 불량률을 감소시킬 수 있다. 그리고, 지속적으로 냉각시킬 수 있으므로, 냉각효율을 유지할 수 있으며, 냉각시간이 좀 더 단축시킬 수 있게 되어 생산공정시간을 감축시킬 수 있는 장점이 있다.
또한, 증착공정이 이루어지는 증착위치에서 지속적으로 플렉서블기판의 전반에 걸쳐 고르게 냉각시키므로 불균일한 냉각으로 인한 기판의 손상 등을 억제할 수 있는 장점이 있다.
다음으로 본 발명의 또 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템에 대하여 설명하기로 한다.
도 8은 본 발명의 또 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템을 개략적으로 나타낸 단면도이다.
도 8을 참조하면, 본 발명의 실시 예에 따른 플렉서블(flexible)기판 화학기상증착시스템은 증발원(700), 진공챔버(70), 기판제공장치(810, 820, 830, 840) 및 기판냉각장치(900)를 포함하여 이루어진다.
증발원(700)은 플렉서블기판(80)의 면상에 증착시킬 증착물질을 증발시킨다. 이러한 증발원(700)은 기본적으로 증착물질을 내재하고 있는 도가니와 증착물질이 증발될 수 있도록 열을 공급하는 히터(미도시)를 포함하여 이루어진다. 그리고 도가니에는 적어도 하나 이상의 증발노즐(미도시)이 형성되어 있다. 증발노즐을 통해 증착물질이 증발되어 플렉서블기판(80)측으로 날아가게 된다. 도 8에서는 이를 개략적으로 증발원(700) 하나로 도시하였다.
진공챔버(70)는 증발원(700)을 내재하고 있으며, 플렉서블기판(80)에 증착물질이 증착되는 공정이 이루어질 수 있도록 외부로부터 격리된 공간을 제공한다. 진공챔버(70)의 내부는 진공상태로 있게 되며, 진공 속에서 증착공정이 이루어지게 된다. 이러한 진공챔버(70)에는 진공상태를 조성해주기 위한 진공펌프(미도시) 등이 구비되어 있다.
기판제공장치(810,820,830,840)는 진공챔버(70) 내에 마련된다. 그리고 증착물질이 증착될 플렉서블기판(80)을 제공한다. 즉, 플렉서블기판(80)이 증착물질이 증착되는 위치인 증착위치로 전달한다. 그리고, 증착물질이 증착된 플렉서블기판(80)을 회수한다.
통상의 기판과 달리 플렉서블기판(80)은 유연성이 있으며, 글라스기판과 달리 연속적으로 되어 있다. 따라서 플렉서블기판(80)을 증착위치로 전달하고, 증착위치에서 증착물질이 증착된 플렉서블기판(80)을 회수한다. 이러한 과정은 하나의 플렉서블기판(80)롤에 감겨있는 플렉서블기판(80)이 모두 증착될 때까지 이루어질 수 있다.
이러한 기판제공장치는 공급롤러(810), 회수롤러(820) 및 방향롤러(830, 840)를 포함하여 이루어진다.
공급롤러(810)는 플렉서블기판(80)이 감겨져 있으며, 증착물질이 증착되기 전의 상태이다. 공급롤러(810)가 회전하면서 감겨있던 플렉서블기판(80)이 풀려서 나오게 되며, 공급롤러(810)로부터 풀려서 나온 플렉서블기판(80)이 증착위치로 이동된다.
회수롤러(820)는 증착위치에서 증착물질의 증착이 이루어진 플렉서블기판(80)을 회수한다. 플렉서블기판(80)을 회수하기 위하여 회수롤러(820) 또한 회전하여 플렉서블기판(80)을 감아들임으로써 회수한다.
방향롤러(830, 840)는 공급롤러(810)와 회수롤러(820) 사이에 위치하여 플렉서블기판(80)이 증착위치로 연속적으로 공급되어 증착위치를 통과할 수 있도록 보조한다. 도 8에 도시된 바와 같이 공급롤러(810)로부터 풀려나오는 플렉서블기판(80)이 증착위치를 지나갈 수 있도록 위치를 잡아주는 보조적인 역할을 방향롤러(830, 840)가 한다.
이와 같이 플렉서블기판(80)은 공급롤러(810)로부터 풀려나와서 방향롤러(830, 840)의 보조에 의해 증착위치를 지나면서 증착되고, 증착이 끝난 플렉서블기판(80)은 최종적으로 회수롤러(820)에 감기면서 회수된다.
기판냉각장치(900)는 기판제공장치(810,820,830,840)로부터 제공되는 플렉서블기판(80)에 증착물질이 증착되면서 받은 열을 냉각시켜주기 위하여 진공챔버(70) 내에서 플렉서블기판(80)의 일측에 마련된다.
이러한 기판냉각장치(900)는 냉각블록(910) 및 냉각블록이동수단을 포함하여 이루어진다.
냉각블록(910)은 플렉서블기판(80)의 일측면에 접하여 플렉서블기판(80)을 냉각시켜준다. 이러한 냉각블록(910)은 하나 이상인 다수개가 마련되고, 적어도 하나 이상의 냉각블록(910)이 플렉서블기판(80)의 일측면에 접하는 것이 바람직하다. 도 8에서는 다수개의 냉각블록(910)이 플렉서블기판(80)의 하측면에 접하고 있는 모습을 개략적으로 도시하였다.
냉각블록(910)은 플렉서블기판(80)에 접하여서 플렉서블기판(80)을 냉각시킨다. 즉, 열전도현상을 이용한 냉각방식인 것이다. 플렉서블기판(80)에 대한 꾸준한 냉각을 위하여 냉각블록(910)은 지속적으로 냉각된 저온의 상태를 유지하는 것이 바람직하다.
냉각블록(910)이 냉각된 저온의 상태를 유지할 수 있도록 하기 위하여, 냉각블록(910)을 냉각시키는 냉각장치(미도시)가 구비되어 있을 수도 있다. 이러한 경우 다수개의 냉각블록(910) 각각마다 냉각장치가 별도로 구비되어 냉각블록(910) 내에 내장되어 있다.
또는, 냉각블록(910)이 냉각된 저온의 상태를 유지할 수 있도록 하기 위하여 외부에서 냉각된 저온의 냉매를 다수개의 냉각블록(910) 각각에 대하여 꾸준히 공급하고, 열을 받아서 온도가 상승된 냉매를 꾸준히 회수하는 냉매공급장치(미도시)가 별도로 마련된 형태 또한 있을 수도 있다.
이와 같이 냉각블록(910)이 꾸준하게 저온의 상태를 유지하면서 지속적으로 플렉서블기판(80)에 대한 냉각을 시켜줄 수 있는 것이 바람직하다.
냉각블록이동수단(920)은 냉각블록이 플렉서블기판(80)의 일측면에 접한 상태를 유지하면서 플렉서블기판(80)과 함께 이동할 수 있도록 냉각블록(910)을 이동시켜준다.
이러한 냉각블록이동수단(920)으로는 다양한 형태가 있을 수 있는데, 그 중에서 회전롤러(923)와 냉각체인(921)을 포함하여 이루어진 형태 또는 회전롤러와 냉각벨트를 포함하여 이루어지는 형태가 있을 수 있다. 도 8에서는 개략적으로 회전롤러(923)와 냉각체인(921)를 포함하여 이루어지는 형태를 도시하였다.
먼저, 냉각블록이동수단(920)의 냉각체인(921)은 냉각블록(910)과 결합하여 냉각블록(910)을 지지한다. 그리고 냉각블록(910)과 함께 이동한다. 그리고 냉각블록(910)이 위치이동을 할 수 있도록 냉각체인(921)이 순환하는 회전을 할 수 있도록 회전롤러(923)가 냉각체인(921)을 회전시킨다.
회전롤러(923)가 회전하면서 냉각체인(921)이 이에 맞물려서 소정의 구간 내에서 회전하는 이동을 하게 된다. 여기서 소정의 구간은 플렉서블기판(80)의 면상에 증착물질이 증착되는 과정이 이루어지는 구간이라고 할 수 있다.
냉각체인(921)이 회전롤러(923)에 의해 순환회전을 하면서 냉각체인(921)에 체결되어 지지되는 냉각블록(910) 또한 함께 순환회전을 하게 된다. 따라서 적어도 하나 이상의 냉각블록(910)이 냉각체인(921)과 함께 순환회전을 하게 된다.
여기서, 플렉서블기판(80)의 상측 면에 증착물질이 증착되는 동안에 하측 면으로는 적어도 하나 이상의 냉각블록(910)이 접한다. 그리고 플렉서블기판(80)이 이동하는 동안에 냉각블록(910)이 플렉서블기판(80)에 접한 상태를 유지하면서 함께 이동된다.
여기서, 냉각블록(910)이 플렉서블기판(80)의 이동속도와 같은 속도로 냉각체인 및 회전롤러(921)에 의해 이동하게 된다. 플렉서블기판(80)과 냉각블록(910)이 접한 상태에서 둘이 같은 속도로 이동하므로 플렉서블기판(80)의 하측면에 손상이 유발되지 않게 된다.
냉각블록이동수단(920)으로 냉각체인(921)과 회전롤러(923)를 포함하는 경우를 설명한 바와 같이 냉각블록이동수단으로 냉각벨트와 회전롤러를 포함하는 경우 또한 대동소이하다. 다만 냉각체인(921)은 회전롤러(923)에 맞물려서 기어회전하듯이 회전하지만, 냉각벨트는 회전롤러의 외주면에 접하여 밀려지는 힘을 이용하여 회전하는 것이라는 점 정도에서 차이가 있으며, 기본적으로 냉각블록(910)을 순환 회전시켜줄 수 있다는 점에서는 같으므로 반복적인 설명은 생략하기로 한다.
그리고, 냉각블록(910)과 결합된 냉각블록이동수단(920)에 냉각블록의 하중에 의한 무리(스트레스)가 냉각블록이동수단(920)에 가해지지 않도록 냉각블록(910)의 하측에서 냉각블록(910)을 지지하는 지지벨트(1010)를 더 포함하는 것 또한 바람직하다.
도 9는 본 발명의 또 다른 실시 예에 따른 플렉서블기판 화학기상증착시스템에서 지지벨트와 지지벨트순환롤러를 더 포함하는 형태를 개략적으로 나타낸 단면도이다. 도 9에서 참조되는 바와 같이 냉각블록(910)을 지지벨트(1010)가 지지하여 주는 것 또한 바람직하다.
여기서, 지지벨트(1010)는 냉각블록(910)의 하측에서 접하여 냉각블록(910)의 이동속도와 동등한 속도로 회전하는 것이 바람직하다. 이를 위해 지지벨트(1010)을 순환회전 시키기 위한 지지벨트순환롤러(1020)이 마련되어 있는 것이 바람직하다.
이처럼 지지벨트(1010)가 냉각블록(910)의 하측에서 접한 상태에서 냉각블록(910)과 동등한 속도로 회전하게 되면 냉각블록(910)의 외면에 대한 손상을 주지 않으므로, 플렉서블기판(80)에 대한 간접적 손상을 줄 가능성을 좀 더 줄일 수 있다. 그리고, 냉각블록(910)에 대하여 스트레스를 주지 않고 안정적으로 순환회전할 수 있게 하므로 바람직하다.
그리고, 플렉서블기판(80)의 이동속도와 냉각블록(910)의 이동속도가 동등하도록 제어 또는 조정하기 위하여 제어부(미도시)가 본 발명의 따른 플렉서블기판 화학기상증착시스템에 더 포함될 수도 있다.
이상에서 설명한 바와 같이 본 발명에 따른 플렉서블기판 화학기상증착시스템은 냉각블록이 플렉서블기판의 일 면에 접하여 열전도에 따른 냉각을 시킬 수 있으므로 냉각시간이 좀 더 단축시킬 수 있게 되어 생산공정시간을 감축시킬 수 있는 장점이 있다.
그리고, 플렉서블기판에 접한 상태에서도 냉각블록이 지속적으로 냉각되어 냉각효율을 증진시킬 수 있으며, 기판의 전반에 걸쳐 고르게 냉각시키므로 불균일한 냉각으로 인한 기판의 손상 등을 억제할 수 있다.
또한, 플렉서블기판과 함께 동등한 속도로 이동하므로 플렉서블기판의 일 면에 손상을 주지 않으므로 생산효율을 증진시키는 장점이 있다.
이상에서 설명된 바와 같이, 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시 예들에 의해서 이루어졌지만, 상술한 실시 예들은 본 발명의 바람직한 실시 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시 예에만 국한되는 것으로 이해되어져서는 아니되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.

Claims (34)

  1. 플렉서블(Flexible)기판에 증착시킬 증착물질을 증발시키며, 상기 증착물질이 분출되는 증발노즐을 다수개 구비하고 있는 증발원;
    상기 증발원을 내재하고 있으며, 상기 증착물질이 증착되는 공간을 제공하는 진공챔버;
    상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 플렉서블기판을 제공하는 기판제공장치; 및
    상기 진공챔버 내에 마련되며, 상기 증착물질이 상기 플렉서블기판에 증착될 수 있도록 상기 기판제공장치 측으로부터 상기 플렉서블기판을 전달받아서 상기 플렉서블기판을 지지하는 서포터(supporter);를 포함하되,
    상기 플렉서블기판이 상기 서포터에 의해 지지되는 동안에 다수개의 상기 증발노즐과 상기 플렉서블기판 사이의 간격이 일정하게 유지될 수 있도록 상기 서포터의 외면이 곡면의 형태를 갖추고 있고,
    다수개의 상기 증발노즐의 배치형태가 상기 서포터의 상기 외면에 대응하여 가상의 곡면을 형성하고 있는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  2. 제 1항에 있어서,
    상기 증발노즐과 상기 서포터 사이에 마련되며, 상기 증발원의 상기 증발노즐을 통해 분출된 상기 증착물질을 라디칼(radical)로 활성화시켜주는 액티베이터(activator);를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  3. 제 2항에 있어서,
    상기 액티베이터는,
    다수개의 히터선(heater line)을 포함하여 이루어지며, 상기 라디칼은 상기 히터선으로부터 공급되는 열에너지에 의해 생성되는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  4. 제 3항에 있어서,
    상기 다수개의 히터선은, 이웃하는 히터선에 대하여 일정간격을 두고 이격되어 배치된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  5. 제 3항에 있어서,
    상기 히터선은 상기 곡면에 대하여 평행한 방향으로 배치된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  6. 제 1항에 있어서,
    외면이 곡면의 형태를 갖추고 있는 상기 서포터는,
    원기둥의 형상을 갖추고 있는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  7. 제 6항에 있어서,
    상기 원기둥의 형상을 갖춘 상기 서포터는,
    상기 원기둥의 중심축을 중심으로 회전가능한 서포트롤러인 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  8. 제 7항에 있어서,
    다수개의 상기 증발노즐의 배치형태에 의해 형성되는 가상의 상기 곡면의 형태는,
    상기 서포트롤러의 회전중심축에 대하여 일정 거리를 두고 배치되되, 단면이 부채꼴의 호를 이루는 가상의 곡면의 형태인 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  9. 제 1항에 있어서,
    상기 서포터는,
    상기 기판제공장치로부터 제공되는 상기 플렉서블기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜 주기 위한 기판냉각수단을 구비하고 있는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  10. 제 1항에 있어서,
    다수개의 상기 증발노즐의 분포양상은,
    상기 증발원의 일측단에서 타측단으로 갈수록 상기 증발노즐의 분포밀도가 높아지도록 형성된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  11. 제 1항에 있어서,
    다수개의 상기 증발노즐 각각은,
    이웃하는 증발노즐과의 간격이 일정하도록 형성된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  12. 제 1항에 있어서,
    다수개의 상기 증발노즐은,
    상기 증발원의 양 끝단에서의 분포밀도와 상기 증발원의 가운데에서의 분포밀도가 다르게 형성되어 배치된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  13. 제 1항에 있어서,
    상기 기판제공장치는,
    상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 제공하는 공급롤러;
    상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및
    상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  14. 플렉서블(flexible)기판에 증착시킬 증착물질을 증발시키는 증발원;
    상기 증발원을 내재하고 있으며, 상기 증착물질을 증착시킬 공간을 제공하는 진공챔버;
    상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 플렉서블기판을 제공하는 기판제공장치; 및
    상기 기판제공장치로부터 제공되는 상기 플렉서블기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜주기 위하여 상기 플렉서블기판의 하측에 마련되는 기판냉각장치 ;를 포함하되,
    상기 기판냉각장치는,
    상기 플렉서블기판의 하측에 마련되며, 상기 플렉서블기판을 냉각가스로 냉각시키는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  15. 제 14항에 있어서,
    상기 기판냉각장치는,
    상기 냉각가스를 공급하는 냉각가스공급부; 및
    상기 냉각가스공급부측으로부터 상기 냉각가스를 공급받아서, 상기 플렉서블기판이 냉각될 수 있도록, 상기 냉각가스가 상기 플렉서블기판에 직접 또는 간접적으로 접촉할 수 있는 냉각공간을 형성하는 냉각부; 를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  16. 제 15항에 있어서,
    상기 냉각부와 상기 냉각가스공급부 사이에 마련되며, 상기 냉각가스공급부측으로부터 공급되는 상기 냉각가스가 상기 냉각부의 내측으로 인입될 수 있도록 가이드하는 냉각가스관; 을 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  17. 제 15항에 있어서,
    상기 냉각부의 상측은 개방되어 상기 플렉서블기판의 하측면에 노출되고, 상기 냉각부의 내측 바닥면에는 상기 냉각가스가 분출되는 냉각구가 다수개 형성되어있는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  18. 제 17항에 있어서,
    상기 냉각부의 상기 내측 바닥면에 대하여 상측방향으로 냉각가이드벽이 형성되어 있고, 상기 플렉서블기판과 상기 냉각가이드벽 사이에 상기 냉각가스가 유출될 수 있도록 소정의 간격이 마련된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  19. 제 17항에 있어서,
    상기 냉각부의 상기 내측 바닥면에 형성된 다수개의 냉각구 각각은,
    이웃하는 냉각구에 대하여 일정 간격만큼 이격되어 형성된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  20. 제 17항에 있어서,
    상기 냉각부의 상기 내측 바닥면에 다수개의 냉각구가 형성되되,
    다수개의 상기 냉각구의 분포밀도가 일측에서 타측으로 갈수록 증가 또는 감소 되도록 형성된 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  21. 제 15항에 있어서,
    상기 플렉서블기판이 소정의 온도로 냉각될 수 있도록 상기 냉각가스의 온도, 상기 냉각가스가 상기 냉각구를 통해 분출되는 양 또는 상기 냉각가스가 상기 냉각구를 통해 분출되는 속도를 제어하는 냉각제어부;를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  22. 제 17항에 있어서,
    상기 냉각부의 내측으로 상기 냉각구를 통해 분출되는 상기 냉각가스는 상기 냉각부의 내측공간에 쌓이면서 상기 냉각가이드벽을 따라 상측으로 축적되며,
    상기 냉각가이드벽을 넘어서 외측으로 흘러넘치도록 상기 냉각부의 내측에 쌓인 상기 냉각가스의 상측공간을 상기 플렉서블기판이 통과하면서 상기 냉각가스와 상기 플렉서블기판이 접촉되어 상기 플렉서블기판의 냉각이 이루어지는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  23. 제 14항에 있어서,
    상기 기판제공장치는,
    상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 제공하는 공급롤러;
    상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및
    상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  24. 제 23항에 있어서,
    상기 기판제공장치는,
    상기 플렉서블기판이 상기 증착위치를 통과하는 이동속도를 조절하는 제공제어부;를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  25. 플렉서블(flexible)기판에 증착시킬 증착물질을 증발시키는 증발원;
    상기 증발원을 내재하고 있으며, 상기 증착물질을 증착시킬 공간을 제공하는 진공챔버;
    상기 진공챔버 내에 마련되며, 상기 증착물질이 증착될 상기 플렉서블기판을 제공하는 기판제공장치; 및
    상기 플렉서블 기판의 열을 냉각시켜주기 위하여 상기 플렉서블 기판의 일측에 마련된 기판냉각장치 ;를 포함하되,
    상기 기판냉각장치는,
    상기 플렉서블 기판의 일측면에 접하여 상기 플렉서블 기판을 냉각시키는 냉각블록; 및
    상기 냉각블록이 상기 플렉서블 기판의 일측면에 접한 상태를 유지하며 상기 플렉서블 기판과 함께 이동할 수 있도록 상기 냉각블록을 이동시켜주는 냉각블록이동수단; 을 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  26. 제 25항에 있어서,
    상기 기판냉각장치의 상기 냉각블록이동수단은,
    상기 냉각블록과 결합하여 상기 냉각블록을 지지하며, 상기 냉각블록과 함께 이동하는 냉각체인; 및
    상기 냉각블록이 위치이동을 할 수 있도록 상기 냉각체인이 순환하는 회전을 시켜주는 회전롤러;를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  27. 제 25항에 있어서,
    상기 기판냉각장치의 상기 냉각블록이동수단은,
    상기 냉각블록과 결합하여 상기 냉각블록을 지지하며, 상기 냉각블록과 함께 이동하는 냉각벨트; 및
    상기 냉각블록이 위치이동을 할 수 있도록 상기 냉각체인이 순환하는 회전을 시켜주는 회전롤러;를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  28. 제 25항에 있어서,
    상기 냉각블록은 다수개가 마련되고, 적어도 하나 이상의 상기 냉각블록이 상기 기판의 일측면에 접하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  29. 제 28항에 있어서,
    다수개의 상기 냉각블록 각각에는,
    상기 냉각블록을 냉각시키는 냉각장치가 내재되어 있는 것을 특징으로 하는 플랙서블기판 화학기상증착시스템.
  30. 제 28항에 있어서,
    상기 기판냉각장치는,
    다수개의 상기 냉각블록 각각에 대하여 냉매를 공급해주는 냉매공급장치;를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  31. 제 25항에 있어서,
    상기 기판제공장치는,
    상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블기판을 공급하는 공급롤러;
    상기 증착물질이 증착된 상기 플렉서블기판을 회수하는 회수롤러; 및
    상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블기판이 상기 증착위치로 연속적으로 제공되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 를 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  32. 제 25항에 있어서,
    상기 냉각블록이 상기 플렉서블기판의 일측면에 접하여 상기 플렉서블기판과 동등한 속도로 이동되도록 조정하는 제어부;를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  33. 제 25항에 있어서,
    상기 냉각블록과 결합된 상기 냉각블록이동수단에 상기 냉각블록의 하중에 의한 무리가 가지 않도록 상기 냉각블록의 하측에서 상기 냉각블록을 지지하는 지지벨트; 를 더 포함하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
  34. 제 33항에 있어서,
    상기 지지벨트는,
    상기 냉각블록의 하측에서 접하여 상기 냉각블록의 이동속도와 동등한 속도로 순환 회전하는 것을 특징으로 하는 플렉서블기판 화학기상증착시스템.
PCT/KR2015/009509 2015-03-30 2015-09-10 플렉서블기판 화학기상증착시스템 WO2016159460A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020150044402A KR101650761B1 (ko) 2015-03-30 2015-03-30 플렉서블기판 화학기상증착시스템
KR10-2015-0044401 2015-03-30
KR1020150044401A KR101650753B1 (ko) 2015-03-30 2015-03-30 플렉서블기판 화학기상증착시스템
KR10-2015-0044402 2015-03-30
KR1020150045417A KR101650755B1 (ko) 2015-03-31 2015-03-31 개시제를 이용하는 화학기상증착시스템
KR10-2015-0045417 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159460A1 true WO2016159460A1 (ko) 2016-10-06

Family

ID=57006109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009509 WO2016159460A1 (ko) 2015-03-30 2015-09-10 플렉서블기판 화학기상증착시스템

Country Status (1)

Country Link
WO (1) WO2016159460A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369531B2 (ja) * 2008-02-20 2009-11-25 パナソニック株式会社 薄膜形成装置および薄膜形成方法
KR20100094553A (ko) * 2007-12-05 2010-08-26 파나소닉 주식회사 박막 형성 장치 및 박막 형성 방법
JP2010255045A (ja) * 2009-04-24 2010-11-11 Panasonic Corp 薄膜形成装置及び薄膜形成方法
JP2012248486A (ja) * 2011-05-31 2012-12-13 Hitachi Zosen Corp 真空蒸着装置および真空蒸着方法
KR20140049296A (ko) * 2012-10-17 2014-04-25 한국전기연구원 하이브리드 증착법을 이용한 eddc 자속고정점 형성 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100094553A (ko) * 2007-12-05 2010-08-26 파나소닉 주식회사 박막 형성 장치 및 박막 형성 방법
JP4369531B2 (ja) * 2008-02-20 2009-11-25 パナソニック株式会社 薄膜形成装置および薄膜形成方法
JP2010255045A (ja) * 2009-04-24 2010-11-11 Panasonic Corp 薄膜形成装置及び薄膜形成方法
JP2012248486A (ja) * 2011-05-31 2012-12-13 Hitachi Zosen Corp 真空蒸着装置および真空蒸着方法
KR20140049296A (ko) * 2012-10-17 2014-04-25 한국전기연구원 하이브리드 증착법을 이용한 eddc 자속고정점 형성 장치

Similar Documents

Publication Publication Date Title
WO2014109526A1 (ko) 반도체 웨이퍼의 연속 처리 장치 및 방법
WO2010082755A2 (en) Evaporation apparatus, thin film depositing apparatus and method for feeding source material of the same
WO2014098458A1 (ko) 이온성 액체를 이용한 유기소재 정제방법 및 정제장치
WO2014098489A1 (ko) 가열 장치 및 이를 포함하는 코팅 기구
WO2016204424A1 (en) Hybrid substrate processing system for dry and wet process and substrate processing method thereof
WO2018135792A1 (en) Transfer module, substrate processing system having transfer chamber, and substrate processing method using substrate transfer system
WO2013191421A1 (ko) 기판 처리 장치
WO2016006740A1 (ko) 복수의 도가니를 갖는 박막 증착장치
WO2018128332A2 (ko) 유리 성형 장치
WO2016159460A1 (ko) 플렉서블기판 화학기상증착시스템
WO2020130608A2 (ko) 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
WO2016104865A1 (ko) 압연방법, 연주압연방법 및 연주압연장치
WO2018110946A1 (ko) 압연설비 및 압연방법
WO2019083261A1 (ko) 증착 장치
WO2011136604A2 (ko) 기판 처리 장치
WO2016186386A1 (ko) 유기막 증착 장치와, 방법 및 유기막 장치
WO2020130355A1 (ko) 기판처리장치
WO2021206351A1 (ko) 기판 처리 장치 및 방법
WO2018186634A1 (ko) 면증발원을 이용한 고해상도 amoled 소자의 양산장비
WO2018135858A1 (en) Deposition source and deposition apparatus having the same
WO2023128434A1 (ko) 전극 시트의 건조 설비, 이를 포함하는 전극 시트의 제조 시스템 및 전극 시트의 건조 방법
WO2016186389A1 (ko) 유기 발광 소자의 인라인 제조 시스템과, 인라인 제조 방법과, 유기막 장치 및 도너 기판 세트
WO2012148069A1 (ko) 수증기 차단장치
KR101581770B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
JP2002313700A (ja) 加熱装置及び冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887868

Country of ref document: EP

Kind code of ref document: A1