WO2018128332A2 - 유리 성형 장치 - Google Patents

유리 성형 장치 Download PDF

Info

Publication number
WO2018128332A2
WO2018128332A2 PCT/KR2017/015678 KR2017015678W WO2018128332A2 WO 2018128332 A2 WO2018128332 A2 WO 2018128332A2 KR 2017015678 W KR2017015678 W KR 2017015678W WO 2018128332 A2 WO2018128332 A2 WO 2018128332A2
Authority
WO
WIPO (PCT)
Prior art keywords
mold
rotating plate
cooling
heating
unit
Prior art date
Application number
PCT/KR2017/015678
Other languages
English (en)
French (fr)
Other versions
WO2018128332A3 (ko
Inventor
한동희
하재호
Original Assignee
한동희
세향산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한동희, 세향산업 주식회사 filed Critical 한동희
Publication of WO2018128332A2 publication Critical patent/WO2018128332A2/ko
Publication of WO2018128332A3 publication Critical patent/WO2018128332A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0307Press-bending involving applying local or additional heating, cooling or insulating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/902Devices for picking-up and depositing articles or materials provided with drive systems incorporating rotary and rectilinear movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0086Heating devices specially adapted for re-forming shaped glass articles in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0093Tools and machines specially adapted for re-forming shaped glass articles in general, e.g. chucks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0305Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/20Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by gripping tongs or supporting frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass molding apparatus, and more particularly, to a glass molding apparatus that can be used for molding glass mounted on an electronic device.
  • Glass materials are rapidly used in various industries such as solar cell covers, thin film transistor-liquid crystal displays, flat panel displays such as organic electroluminescent devices, and covers of various mobile electronic devices. have.
  • Tempered glass which is used as a cover of a mobile electronic device, is generally formed by putting an object in a mold, heating it to a high temperature, and cooling it.
  • Conventional glass forming apparatuses are each preheated, heated and cooled in a plurality of chambers. Therefore, since each mold has to be transferred each time to perform the next process after each process is completed, it is difficult to reduce the tac time and there is a problem that productivity is lowered.
  • the heating of the glass is made by a conventional electric heater that generates heat by the electrical resistance, this electric heater has a problem that it is difficult to lower the production cost due to the large power consumption.
  • One embodiment of the present invention is to provide a glass forming apparatus that can reduce the tack time.
  • one embodiment of the present invention is to provide a glass molding apparatus that can reduce the energy consumption.
  • one embodiment of the present invention is to provide a glass molding apparatus that is excellent in uniform quality of the glass to be molded.
  • Glass forming apparatus is at least one heating unit for heating the mold containing the glass, supplying the mold to the heating unit from the outside or discharged to the outside the mold is completed heating in the at least one heating unit to the outside At least one transfer unit and a plurality of seating member for receiving the mold conveyed from the heating unit by the transfer unit is received, and includes a cooling unit to allow the mold to be cooled while the plurality of seating member is rotated do.
  • the heating unit the chamber member is formed an internal space;
  • a heating unit positioned in an inner space of the chamber member to form a heating space in which the mold may be positioned, and heating the mold in a high frequency manner;
  • a pressurizing part which is formed to be accessible to a portion of the heating part and pressurizes the mold in a state where the mold is located in the heating space.
  • the heating unit includes a base member formed to surround the heating space; And a heat generating member inserted into the portion surrounding the heating space of the base member so as not to be exposed to the outside, through which a high frequency current flows.
  • the upper side of the base member is formed with at least one entrance hole penetrating in the vertical direction
  • the pressing portion is formed to have a length is located in the interior of the chamber member in the vertical direction, and the entrance hole by the external force At least one moving member which is moved upward and downward through and presses the mold in the lowered state;
  • a power member positioned outside the chamber member and connected to the movable member to generate power for lifting the movable member.
  • the conveying unit is coupled to one side of the gripping member, a gripping member including a base portion and a plurality of support portions extending from the side of the base portion toward the outside and formed at a predetermined angle with respect to the center of the base portion;
  • the second sliding member may be coupled to one side of the first sliding member and the first sliding member to move the first sliding member in a second direction perpendicular to the first direction.
  • the transfer unit a gripping member comprising a base portion having a length, a support portion coupled to each of the both ends of the base portion slidably, a lifting member coupled to one side of the gripping member to elevate the gripping member and It may include a rotating member coupled to one side of the elevating member to rotate the elevating member.
  • the two transfer units are positioned side by side in the up and down direction so that if one transfer unit discharges the heated mold from the heating unit, the other transfer unit is not heated to the heating unit. Can be supplied.
  • the seating member is formed to surround the mold, the body portion is formed so that the one side is opened so as to have a length along the direction in which the mold enters and exits the bottom surface of the body portion to be opened so that the mold can go in and out It may include wealth.
  • the inside of the seating member may be provided with a cooling tube that can be filled or transported coolant.
  • the cooling unit is formed in a circular shape along the edge of the upper surface of the first rotating plate and the first rotating member which is coupled to the first rotating plate and the first rotating plate located at regular intervals to rotate the first rotating plate It may include.
  • the cooling unit further includes a cooling member positioned adjacent to the seating member so that the first rotating plate is rotated and moved so as to contact the mold while the rotation is stopped for a predetermined time to cool the mold. can do.
  • the cooling unit the first rotation plate is formed in a circular shape along the edge of the upper surface of the seating member is located at regular intervals, the first power member coupled to the first rotation plate to rotate the first rotation plate, A second rotating plate coupled to the first rotating plate by a rotational axis, spaced upwardly from the first rotating plate, and rotatably coupled to the lower side of the second rotating plate and being rotated together with the first rotating plate; And a cooling member positioned to correspond to the seating member and lowered to contact the mold to cool the mold.
  • the cooling unit the first rotation plate is formed in a circular shape along the edge of the upper surface of the seating member is located at regular intervals, the first power member coupled to the first rotation plate to rotate the first rotation plate, A second rotating plate coupled to the first rotating plate by a rotating shaft and spaced upwardly from the first rotating plate and rotating together with the first rotating plate, coupled to a lower side of the second rotating plate, and seated
  • the second rotating plate positioned to correspond to the member, and coupled to a cooling member for cooling the mold when contacted with the mold, and a rotational axis of the second rotating plate, such that the cooling member is in contact with or away from the mold.
  • a second power member for elevating the rotating shaft is provided to the rotating shaft.
  • the heating unit is a plurality, the plurality of heating units may be located side by side while being spaced apart from each other in the lateral direction.
  • the two heating units there are two heating units, and the two heating units may be located in opposite regions with respect to the transfer unit, respectively.
  • the heating unit may include at least one of an electric heater and a high frequency heater.
  • the mold heated in the heating unit can be sequentially moved to the cooling unit by the transfer unit. That is, the cooling process, which takes a relatively longer time than the heating process, is carried out separately in the cooling unit, so that the overall time for forming the glass can be shortened.
  • the tack time can be reduced than the conventional glass forming apparatus which performs the movement for each process.
  • the glass forming apparatus can reduce the cost of forming the glass by lowering the power consumption than when the glass is heated only by the electric heater, by heating the glass with a high frequency heater.
  • the mold may be uniformly cooled in the seating member so that the glass structure is stably formed.
  • FIG. 1 is a view showing a glass molding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the heating unit and the transfer unit in the glass forming apparatus of FIG. 1.
  • FIG. 3 is a perspective view illustrating an extraction of a cooling unit in the glass forming apparatus of FIG. 1.
  • FIG. 4 is a view illustrating a heating unit of the glass forming apparatus of FIG. 1
  • FIG. 5 is a cross-sectional view taken along the line II-II ′ of FIG. 4
  • FIG. 6 is a process in which the mold enters and exits the heating unit by a transfer unit.
  • Figure is a diagram.
  • FIG. 7 is a perspective view illustrating the mounting member in the cooling unit of FIG. 3.
  • FIG. 8 is a view showing a state in which the mold is cooled by the cooling member.
  • FIG. 9 is a perspective view illustrating a first modification of the cooling unit.
  • FIG. 10 is a perspective view illustrating a second modification of the cooling unit.
  • FIG. 11 is a perspective view illustrating a modification of the mounting member.
  • FIG. 12 is a perspective view showing a modification of the transfer unit together with a heating unit and a cooling unit.
  • FIG. 13 is a view showing a glass molding apparatus according to another embodiment of the present invention.
  • FIG. 14 is a view showing a glass molding apparatus according to another embodiment of the present invention.
  • FIG. 1 is a view showing a glass forming apparatus according to an embodiment of the present invention
  • Figure 2 is a perspective view showing an extract of the heating unit and the transfer unit in the glass forming apparatus of Figure 1
  • Figure 3 is the glass of Figure 1 It is a perspective view which extracts and shows a cooling unit from a shaping
  • the glass forming apparatus 100 includes a heating unit 110, a transfer unit 120, and a cooling unit 130.
  • the heating unit 110 may heat the mold M in which the glass is accommodated. 4 to 6, a space for accommodating the unmolded glass having a flat plate shape is formed in the mold M, and the space may be formed in a shape corresponding to the shape of the desired glass. .
  • the mold M may be separated into an upper portion M1 (see FIG. 8) and a lower portion M2 (see FIG. 8) so that the manufactured glass may be easily separated.
  • An inner space may be formed in the chamber member 111.
  • the heating unit 113 to be described later may be located in the internal space.
  • the chamber member 111 may be, for example, a hexahedron, but is not limited thereto.
  • One side of the chamber member 111 may be formed with at least one entrance door through which the mold (M) can be entered.
  • the entrance door 112 may be configured to rotate or slide on the chamber member 111 to allow the mold M to enter and exit.
  • the heating part 113 may be located in the inner space of the chamber member 111. In the heating part 113, a heating space in which the mold M may be located may be formed. The heating unit 113 may heat the mold M in a high frequency manner.
  • the heating unit 113 may be a high frequency heater.
  • a high frequency heater has a relatively low power consumption compared to a general electric heater.
  • high frequency heaters can generate the same heat while consuming about 50% less power than electric heaters.
  • the heating unit 110 heats the glass with a high frequency heater, thereby lowering the power consumption than the conventional heating unit 110 that heats the glass only with the electric heater, which is required to mold the glass. You can save money.
  • the glass forming apparatus according to the present invention can reduce the manufacturing time by the time generated while moving the mold to perform another process by carrying out the preheating and heating in the heating unit collectively.
  • the time to reach the temperature at which the glass can be formed can be significantly shortened. That is, the glass forming apparatus according to the present invention can reduce the tack time than the conventional glass forming apparatus.
  • the heating part 113 may include, for example, a base member 113a and a heat generating member 113b.
  • the base member 113a may be formed to surround the heating space.
  • the shape of the vertical cross section of the base member 113a may be a tube shape.
  • a portion of the base member 113a on which the mold M is seated may be flat.
  • the base member 113a may be made of ceramic.
  • the base member 113a may be made of refractory cement.
  • the heat generating member 113b may be inserted into a portion surrounding the heating space of the base member 113a so as not to be exposed to the outside so that a high frequency current may flow.
  • a high frequency current is applied to the heat generating member 113b, heat is generated by the induced current, and the heat may be transferred to the mold M.
  • the heat generating member 113b may be, for example, a coil or a copper tube.
  • the heat generating member 113b may be inserted into the base member 113a in a spring shape.
  • the base member 113a described above may not only prevent the mold M from directly contacting the heat generating member 113b, but also allow the heat generated from the heat generating member 113b to be uniformly transferred to the mold M. have. That is, when the glass is manufactured using the heating unit 110 according to the present invention, the mold M is uniformly heated in the heating space of the heating unit 113 so that the glass structure is stably formed, thereby the quality of the glass produced. This can be even better.
  • the pressing unit 114 may be formed to be accessible to a portion of the heating unit 113.
  • the pressing unit 114 may press the mold M in a state in which the mold M is located in the heating space.
  • the pressing unit 114 may include, for example, at least one moving member 114a and a power member 114b. At least one access hole 113h penetrating in the vertical direction may be formed on the upper side of the base member 113a.
  • the moving member 114a may be formed to have a length and positioned in the vertical direction in the chamber member 111.
  • the moving member 114a may be one or two or more. When there are two moving parts 114a, the two moving members 114a may be spaced apart from each other. The two moving members 114a spaced in this way may press the left and right regions of the mold M, respectively.
  • the moving member 114a may be moved upward and downward through the access hole 113h by an external force.
  • the moving member 114a may press the mold M in the lowered state.
  • the power member 114b may be located outside the chamber member 111 and may be connected to the movable member 114a to generate power for raising and lowering the movable member 114a.
  • the power member 114b for this may be any one selected from, for example, a linear motor, a hydraulic cylinder and a pneumatic cylinder, but is not limited thereto.
  • the power member 114b may move the moving member 114a up and down. Either way is fine.
  • the pressing unit 114 may form the glass inside the mold M more stably by pressing the mold M in a state in which the mold M is located in the heating space.
  • the pressing part 114 presses the upper part of the mold M according to the degree to which the glass is heated so that the pressing force is transmitted to the glass inside the mold, so that the glass having the desired shape can be formed more stably. . Therefore, the reliability of glass molding can be improved.
  • the heating unit 110 may include a seating member (115).
  • the mounting member 115 may be positioned on the bottom surface of the heating part 113 to mount the mold M.
  • the shape of the seating member 115 may be, for example, a hexahedron having a size corresponding to that of the mold M. FIG.
  • the mold M Since the mold M is spaced apart from the bottom surface of the heating part 113 by the mounting member 115 by a predetermined height, the mold M may be positioned in the center of the heating space of the heating part 113 with respect to the vertical direction. have. To this end, the thickness of the seating member 115 may be similar to the distance from the upper side of the mold M to the base member 113a.
  • the mold M may be transferred by the transfer unit 120.
  • the transfer unit 120 may move the mold M into the chamber member 111 or move the mold M from the chamber member 111 to another place.
  • the specific structure of this transfer unit 180 will be described later.
  • an inlet groove drawn along the longitudinal direction of the seating member 115 may be inserted into an upper surface on which the mold M is seated in the seating member 115.
  • 115h can be formed.
  • the retracting groove 115h may be formed from one end to the other end of the seating member 115, and the retracting groove 115h may be formed at various positions such as an upper surface center portion of the seating member 115, an eccentric position at the center portion, or an upper edge thereof. Can be formed.
  • the holding member 121 included in the transfer unit 120 is inserted into the inlet groove 115h, and then the mold M is raised by a predetermined height to move the mold from the heating part 113 to the outside of the chamber member 111. Can be transported
  • the heating unit 110 can be carried out more quickly of the transfer of the mold (M) by the mounting member 115 is formed with the recess groove (115h).
  • the heating unit 110 may include a power supply unit 116.
  • the power supply unit 116 may supply power to the heating unit 113.
  • the power supply unit 116 may generate heat for heating the mold M by supplying a high frequency current to the heating unit 113.
  • the heating unit 110 may be a conventional heater in addition to the above-described structure. That is, in addition to the above-described structure, various types of heaters may be applied to the heating unit 110, such as a combination of a conventional electric heater, an electric heater, and a high frequency heater.
  • the cooling unit 130 includes a plurality of seating members 134 in which the mold M transferred from the heating unit 110 is accommodated by the transfer unit 120.
  • the mold M may be cooled while being rotated.
  • the cooling of the mold M may be a method by heat exchange at room temperature, and a method of cooling by installing a cooling tube through which cooling water flows inside the seating member 134.
  • the mold M heated in the heating unit 110 may be sequentially moved to the cooling unit 130 by the transfer unit 120. That is, since the cooling process, which takes a relatively longer time than the heating process, is performed separately in the cooling unit 130, the overall time for forming the glass can be shortened.
  • the mold M heated in the heating unit 110 is transferred to the cooling unit 130 only once by the transfer unit 120, so that each The tack time can be reduced compared to the conventional glass forming apparatus which moves by process.
  • the glass forming apparatus 100 according to the present invention can reduce the manufacturing time by the time generated while moving the mold to perform another process by performing preheating and heating in the heating unit 110 collectively. . And, since the heat loss generated while moving the mold between different processes can be minimized, the time to reach the temperature at which the glass can be formed can be significantly shortened. That is, the glass forming apparatus 100 according to the present invention can significantly reduce the tack time than the conventional glass forming apparatus.
  • the transfer unit 120 for this purpose may include, for example, a gripping member 121, a lifting member 122, a rotating member 123, a first sliding member 124, and a second sliding member 125. .
  • the holding member 121 may include a base portion 121a and a support portion 121b.
  • the base portion 121a may be, for example, a plate shape made of a circle or a polygon.
  • the support part 121b may extend from the side surface of the base part 121a toward the outside.
  • the support part 121b may be formed at a predetermined angle with respect to the center of the base part 121a.
  • the overall shape of the gripping member 121 may be a plus (+) shape that is an operation symbol.
  • the support part 121b may support the lower side of the mold M in which the heating is completed in the heating unit 110.
  • the shape of the support part 121b may be formed such that two members having a rod shape are parallel to each other, but are not limited thereto.
  • the elevating member 122 may be coupled to one side of the gripping member 121 to elevate the gripping member 121. In the state where the mold M is located at the support portion 121b of the gripping member 121, the elevating member 122 may raise or lower the gripping member 121. Accordingly, the mold M may be in a movable state from the heating unit 110, and the mold M may be seated on the cooling unit 130 described later.
  • the rotating member 123 may be coupled to one side of the elevating member 122 to rotate the elevating member 122.
  • the rotating member 123 may rotate the gripping member 121 so that each of the plurality of support parts 121b faces the heating unit 110 or the cooling unit 130.
  • the rotating member 123 may be, for example, a rotating motor, but is not limited thereto.
  • the first sliding member 124 may be coupled to one side of the rotating member 123 to move the rotating member 123 in a first direction closer to or farther from the heating unit 110.
  • the first sliding member 124 may be a rail or an LM guide.
  • the first sliding member 124 is not limited thereto and may be any one that can move the rotating member 123.
  • the second sliding member 125 may be coupled to one side of the first sliding member 124.
  • the second sliding member 125 may move the first sliding member 124 in a second direction perpendicular to the first direction.
  • the heating unit 110 is provided in plurality, and the plurality of heating units 110a and 110b may be positioned side by side while being spaced apart from each other in the lateral direction.
  • the second sliding member 125 may move the first sliding member 124 in a direction parallel to the direction in which the heating unit 110 is disposed. Accordingly, the gripping member 121 may be positioned to correspond to each heating unit 110 by the second sliding member 125.
  • the second sliding member 125 may be a rail or an LM guide similarly to the first sliding member 124, but the present invention is not limited thereto, and the second sliding member 125 may move the first sliding member 124. It can be alright.
  • the elevating member 122 is coupled to one side of the gripping member 121
  • the rotating member 123 is coupled to one side of the elevating member 122
  • the first sliding member 124 is the rotating member 123.
  • the second sliding member 125 is described as being coupled to one side of the first sliding member 124, but is not limited thereto. That is, the elevating member 122, the rotating member 123, the first sliding member 124, and the second sliding member 125 are used to move the holding member 121 in the lifting, rotating, and first and second directions. As such, the order and structure in which they are coupled to the gripping member 121 may be variously changed, which is the same in the following embodiments.
  • the support 121b included in the holding member 121 is completed in the heating unit 110 by the first sliding member 124 in the mold Can be moved downward of (M).
  • the holding member 121 is lifted by the elevating member 122, and the first sliding member 124 moves the holding member 121 in a direction away from the heating unit 110.
  • the second sliding member 125 moves the holding member 121 to the cooling unit 130, and the rotating member 123 rotates the holding member 121 at an angle.
  • the elevating member 122 lowers the holding member 121 to position the mold M in the cooling unit 130.
  • the gripping member 121 may be transferred to the heating unit 110 and then repeatedly perform the above-described operation. That is, the mold M heated in the plurality of heating units 110 may be quickly transferred to the cooling unit 130 by the transfer unit 120.
  • the aforementioned cooling unit 130 may include, for example, a first rotating plate 131 and a first power member 132.
  • the first rotating plate 131 may be circular.
  • the mounting member 134 may be positioned at the predetermined intervals along the edge of the upper surface of the first rotating plate 131.
  • the cooling unit 130 includes eight seating members 134, the seating members 134 may be positioned every 45 degrees with respect to the central portion of the circular first rotating plate 131. have.
  • the first power member 132 may be coupled to the first rotating plate 131 to rotate the first rotating plate 131.
  • the first power member 132 may be coupled to the lower side of the first rotation plate 131 to rotate the first rotation plate 131 in a clockwise or counterclockwise direction.
  • the mold M may be located on the seating member 134 and cooled.
  • the shape of the seating member 134 may be, for example, a hexahedron having a size corresponding to the mold (M).
  • the shape of the top surface of the seating member 134 may also be a corresponding rectangle.
  • FIG. 8 is a view showing a state in which the mold is cooled by the cooling member.
  • the cooling unit 130 may further include a cooling member 133.
  • the cooling member 133 is positioned adjacent to the seating member 134 so that the first rotating plate 131 is rotated and moved so as to contact the mold M while the rotation is stopped for a predetermined time.
  • (M) can be cooled.
  • the cooling member 133 is moved in the vertical direction or the left and right directions. It may be in contact with the mold (M).
  • a separate power source 133a may be coupled to the upper side of the cooling member 133.
  • the power source 133a may be, for example, any one selected from a linear motor, a hydraulic cylinder, and a pneumatic cylinder, but is not limited thereto.
  • eight seating members 134 may be positioned on the first rotating plate 131, and eight cooling members 133 may be positioned to overlap the seating members 134 in the vertical direction.
  • three cooling members 133 may be provided, and three cooling members 133 may be formed to correspond to three mounting members 134 among the eight mounting members 134. That is, one or more cooling members 133 may be installed.
  • the method of cooling the mold M by the cooling member 133 may be based on a method in which a cooling tube capable of filling or transporting the angled water is installed in the cooling member 133.
  • the compressed air or fine spray (water-mist) cooled by the mold M may be injected into the mold M to cool the mold M, but is not limited thereto.
  • a cooling tube C may be installed in the seating member 134 in which coolant may be filled or transferred.
  • the cooling water for example, the cooled refrigerant
  • FIG. 9 is a perspective view illustrating a first modification of the cooling unit.
  • the cooling unit 230 may include a first rotating plate 131, a first power member 132, a second rotating plate 235, and a cooling member 133. Can be.
  • first rotating plate 131 and the first power member 132 are the first rotating plate 131 (see FIG. 3) and the first power member 132 included in the aforementioned cooling unit 130 (see FIG. 3). , See FIG. 3), a description thereof will be omitted.
  • the second rotating plate 235 may be coupled to the first rotating plate 131 by the rotating shaft 236.
  • the second rotating plate 235 may be spaced upwardly from the first rotating plate 131 and rotated together with the first rotating plate 131.
  • the second rotating plate 235 may have the same size and width as the first rotating plate 131.
  • the upper end of the rotation shaft 236 may be coupled to the center of the second rotation plate 235, and the lower end may be coupled to the center of the first rotation plate 131.
  • the cooling member 133 may be coupled to the lower side of the second rotating plate 235 to be liftable.
  • the cooling member 133 may be positioned to correspond to the seating member.
  • the cooling member 133 may be lowered to contact the mold M to cool the mold M.
  • the power source 133a coupled to the upper side of the cooling member 133 may be coupled to the lower side of the second rotating plate 235.
  • the cooling unit 230 according to the first modification may selectively cool only the mold M requiring cooling while the plurality of cooling members 133 are individually elevated. For example, the order in which each of the molds M is supplied to the cooling unit 230 may be different. Therefore, among the plurality of cooling members 133, there may be a mold M cooled first.
  • cooling members 133 only one cooling member 133 corresponding to the mold M to which cooling is completed and the glass inside is removed is lifted to stop cooling of the mold M, and the rest The cooling members 133 may continue to cool the mold M.
  • FIG. It is also possible to cool the mold M while the rotating plate is rotating.
  • FIG. 10 is a perspective view illustrating a second modification of the cooling unit.
  • the cooling unit 330 may include the first rotating plate 131, the first power member 132, the second rotating plate 335, the cooling member 133, and the second. It may include a power member 337.
  • first rotating plate 131, the first power member 132, and the second rotating plate 335 may refer to the first rotating plate 131 (FIG. 9) included in the cooling unit 230 (see FIG. 9). ), The first power member 132 (see FIG. 9) and the second rotating plate 235 (see FIG. 9), so a description thereof will be omitted.
  • the cooling member 133 may be coupled to the lower side of the second rotating plate 335, positioned to correspond to the seating member, and cool the mold M when contacted with the mold M.
  • the second power member 337 is coupled to the rotation shaft 336 of the second rotating plate 335 so that the cooling member 133 is in contact with or away from the mold M.
  • the rotating shaft 336 of the rotating plate 335 may be raised and lowered. That is, when the second power member 337 lifts the second rotation plate 335, the cooling member 133 described above may be lifted together with the second rotation plate 335. Therefore, the cooling unit 330 according to the second modification can be collectively lifted up and down by one second power member 337.
  • the cooling unit 230 (see FIG. 9) according to the first modification described above includes a separate power source 133a (see FIG. 9) for lifting and lowering the cooling member 133 (see FIG. 9) for each cooling member 133. .
  • the cooling unit 330 according to the second modification does not need each power source 133a (see FIG. 9) to lift and lower the cooling member 133, the structure can be simplified. Therefore, the manufacturing operation of the cooling unit 330 can be easily performed.
  • the cooling unit is provided with a power member capable of raising and lowering the rotating plate 131 below the rotating plate 131, and by the operation of the power member the rotating plate It is also possible to raise the contact with the contact member 133 and to cool.
  • FIG. 11 is a perspective view illustrating a modification of the mounting member.
  • the seating member 234 may include a body portion 234b and an inlet portion 234a as a modification.
  • Body portion 234b may be formed to surround the mold (M).
  • the body portion 234b may be formed so that one side thereof is opened to allow the mold M to enter and exit.
  • the body portion 234b may be a hexahedron having one side opened.
  • the mold M may enter and exit through one opened side of the body portion 234b.
  • the inlet part 234a may be formed to have a length along the direction in which the mold M enters and exits from the bottom surface of the body part 234b. That is, the inlet 234a may be formed from one end to the other end opened in the body 234b.
  • the support part 121b included in the gripping member 121 described above may be inserted into the inlet part 234a. To this end, the lead portion 234a may have a size that allows the support portion 121b to be inserted smoothly.
  • a cooling tube through which cooling water flows may be formed in the seating member 234.
  • a plurality of nozzles may be formed in a portion of the seating member 234 facing the mold M to spray cooled compressed air or water spray into the mold M. It is not limited to this.
  • the mounting member 234 cools the mold M in the state in which the mold M is wrapped, the glass inside the mold M may be uniformly cooled. This can be excellent.
  • FIG. 12 is a perspective view showing a modification of the transfer unit together with a heating unit and a cooling unit.
  • the transfer unit 220 may include a gripping member 121, a lifting member 222, and a rotating member 223 as a modification.
  • the holding member 121 may include a base portion 221a and a support portion 221b.
  • the base portion 221a may be formed to have a length.
  • the support part 221b may be coupled to each of both ends of the base part 221a so as to be slidable.
  • the support 221b may move closer to or away from the mold M located inside the heating unit 110 while slidingly moving relative to the base 221a. That is, in the above-described transfer unit 220, the base portion 221a and the support portion 221b are integrally formed, but the holding member 121 included in the transfer unit 220 according to the modification has the base portion 221b. It may be coupled to move relative to the portion (221a).
  • the elevating member 222 may be coupled to one side of the gripping member 121 to elevate the gripping member 121.
  • the holding member 121 may be raised by the lifting member 222 by a predetermined height in a state in which the supporting portion 221b of the holding member 121 supports the lower side of the mold M. As shown in FIG.
  • the rotating member 223 may be coupled to one side of the elevating member 222 to rotate the elevating member 222.
  • the rotating member 223 and the elevating member 222 are the rotating member 123 (see FIG. 2) and the elevating member 122 (see FIG. 2) included in the transfer unit 120 (see FIG. 2) according to the above-described embodiment. Since it may be similar to the detailed description thereof will be omitted.
  • the heating unit 110 may be located on the opposite side of the cooling unit 130 with the transfer unit 220 interposed therebetween. That is, the heating unit 110, the transfer unit 220 and the cooling unit 130 may be located side by side.
  • the support portion 221b included in the holding member 121 is the base portion 221a Is moved away from with respect to the heating unit 110 may be moved to the lower side of the completed mold (M).
  • the holding member 121 is lifted by the elevating member 222, and the supporting member 221b may be moved to be closer to the base portion 221a.
  • the support 221b on which the mold M is seated may be positioned adjacent to the cooling unit 130.
  • the support 221b is moved away from the base 221a again so that the mold M is positioned on the seating member 134 of the cooling unit 130, the support 221b is moved by the elevating member 222. Can be lowered. Finally, the support part 221b is moved to approach the base part 221a so that the transfer of the mold M may be completed.
  • the transfer unit 220 transfers the mold M heated in the heating unit 110 to the cooling unit 130 by performing only a rotation operation and a lifting operation, and thus, the transfer unit 220 according to the above-described embodiment.
  • the transfer of the mold M can proceed more quickly.
  • FIG. 13 is a view showing a glass molding apparatus according to another embodiment of the present invention.
  • the glass forming apparatus 200 may include two transfer units 120.
  • the two transfer units 120 may be located side by side in the vertical direction.
  • the other transfer unit 120 When one of the two transfer units 120 transfers the heated mold M from the heating unit 110, the other transfer unit 120 is not heated to the heating unit 110. Mold M can be supplied. That is, the glass forming apparatus 200 according to another embodiment of the present invention may be supplied at the same time as the mold M is discharged from the heating unit 110, so that the overall tack time may be reduced as compared with the above-described embodiment. .
  • FIG. 14 is a view showing a glass molding apparatus according to another embodiment of the present invention.
  • the glass forming apparatus 300 may include two heating units 110c and 110d. Two heating units 110c and 110d may be located in opposite regions with respect to the transfer unit 120, respectively.
  • the heating units 110c and 110d are positioned relatively farther than the glass forming apparatus 100 (refer to FIG. 1) according to the above-described embodiment. Therefore, it is possible to prevent the operation of the high frequency heaters from being smooth due to the high frequency of each other when the high frequency is generated when the high frequency heaters included in the two heating units 110 operate.
  • the shape of the upper and lower cross-section of the glass produced by the glass molding apparatus 100 according to an embodiment of the present invention is an example, the overall curved shape, the center is flat and the curved shape of only one of both ends and both ends are curved
  • the shape may be any one selected.
  • the glass forming apparatus 100 according to an embodiment of the present invention does not manufacture only the glass as described above, but may also manufacture various shapes of glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

본 기재의 유리 성형 장치는 유리가 수용된 몰드를 가열하는 적어도 하나의 가열 유닛, 외부에서 상기 가열 유닛으로 상기 몰드를 공급하거나 상기 적어도 하나의 가열 유닛에서 가열이 완료된 몰드를 외부로 배출하는 적어도 하나의 이송 유닛 및 상기 이송 유닛에 의해 상기 가열 유닛으로부터 이송된 몰드가 수용되는 복수의 안착 부재를 포함하며, 상기 복수의 안착 부재가 회전되면서 상기 몰드가 냉각될 수 있게 하는 냉각 유닛을 포함한다.

Description

유리 성형 장치
본 발명은 유리 성형 장치에 관한 것으로, 보다 상세하게는 전자기기에 탑재되는 유리를 성형하는데 사용할 수 있는 유리 성형 장치에 관한 것이다.
유리 소재는 태양전지 커버, 박막 액정표시장치(thin film transistor-liquid crystal display), 유기 전계 발광 소자(organic electro luminescent) 등과 같은 평판 디스플레이, 각종 모바일 전자 기기의 커버 등 다양한 산업분야에서 사용이 급증하고 있다.
모바일 전자 기기의 커버로 사용되는 강화 유리는 몰드에 대상물을 넣고 고열로 가열하였다가 냉각시켜서 성형하는 것이 일반적이다. 종래의 유리 성형 장치는 복수의 챔버 각각에서 예열, 가열 및 냉각 단계가 각각 실시된다. 따라서, 각각의 공정이 완료된 이후에 다음 공정을 실시하기 위하여 몰드를 매번 이송해야 함으로써, 택 타임(Tact time)을 감소시키기 어려워 생산성이 저하되는 문제가 있었다.
또한, 유리의 가열이 전기 저항에 의하여 열을 발생시키는 통상의 전기 히터에 의하여 이루어지는데, 이러한 전기 히터는 전력 소비가 커서 생산비를 낮추기 어려운 문제가 있었다.
본 발명의 일 실시예는 택 타임이 감소될 수 있는 유리 성형 장치를 제공하고자 한다.
또한 본 발명의 일 실시예는 에너지 소모를 감소시킬 수 있는 유리 성형 장치를 제공하고자 한다.
또한 본 발명의 일 실시예는 성형되는 유리의 품질이 균일하면서도 우수한 유리 성형 장치를 제공하고자 한다.
본 발명의 일 측면에 따른 유리 성형 장치는 유리가 수용된 몰드를 가열하는 적어도 하나의 가열 유닛, 외부에서 상기 가열 유닛으로 상기 몰드를 공급하거나 상기 적어도 하나의 가열 유닛에서 가열이 완료된 몰드를 외부로 배출하는 적어도 하나의 이송 유닛 및 상기 이송 유닛에 의해 상기 가열 유닛으로부터 이송된 몰드가 수용되는 복수의 안착 부재를 포함하며, 상기 복수의 안착 부재가 회전되면서 상기 몰드가 냉각될 수 있게 하는 냉각 유닛을 포함한다.
한편 상기 가열 유닛은, 내부 공간이 형성된 챔버 부재; 상기 챔버 부재의 내부 공간에 위치되어 상기 몰드가 위치될 수 있는 가열 공간이 형성되며, 고주파 방식으로 상기 몰드를 가열하는 가열부; 및 상기 가열부의 일부분에 출입 가능하게 형성되어 상기 몰드가 상기 가열 공간에 위치된 상태에서 상기 몰드를 가압하는 가압부;를 포함한다.
상기 가열부는, 가열 공간을 감싸도록 형성된 베이스 부재; 및 외부로 노출되지 않도록 상기 베이스 부재의 가열 공간을 감싸는 부분의 내부에 삽입되어 고주파 전류가 흐르는 발열 부재;를 포함한다.
한편, 상기 베이스 부재의 상측에는 상하방향으로 관통된 적어도 하나의 출입홀이 형성되고, 상기 가압부는, 길이를 갖도록 형성되어 상기 챔버 부재의 내부에 상하 방향으로 위치되고, 외력에 의해 상기 출입홀을 통하여 상하 방향으로 이동되며, 하강된 상태에서 상기 몰드를 가압하는 적어도 하나의 이동 부재; 및 상기 챔버 부재의 외부에 위치되고, 상기 이동 부재에 연결되어 상기 이동 부재를 승강시킬 수 있는 동력을 발생하는 동력 부재;를 포함한다.
한편, 상기 이송 유닛은, 베이스부와, 상기 베이스부의 측면으로부터 외부를 향하여 연장 형성되되 상기 베이스부의 중심을 기준으로 일정 각도마다 형성된 복수의 지지부를 포함하는 파지 부재, 상기 파지 부재의 일측에 결합되어 상기 파지 부재를 승강시키는 승강 부재, 상기 승강 부재의 일측에 결합되어 상기 승강 부재를 회전시키는 회전 부재, 상기 회전 부재의 일측에 결합되어 상기 가열 유닛에 가까워지거나 멀어지는 제1 방향으로 상기 회전 부재를 이동시키는 제1 슬라이딩 부재 및 상기 제1 슬라이딩 부재의 일측에 결합되어 상기 제1 방향에 직교하는 제2 방향으로 상기 제1 슬라이딩 부재를 이동시키는 제2 슬라이딩 부재를 포함할 수 있다.
한편, 상기 이송 유닛은, 길이를 갖도록 이루어진 베이스부와, 상기 베이스부의 양단 각각에 슬라이딩 가능하도록 결합된 지지부를 포함하는 파지 부재, 상기 파지 부재의 일측에 결합되어 상기 파지 부재를 승강시키는 승강 부재 및 상기 승강 부재의 일측에 결합되어 상기 승강 부재를 회전시키는 회전 부재를 포함할 수 있다.
한편, 상기 이송 유닛은 두 개이며, 상기 두 개의 이송 유닛은 서로 상하 방향으로 나란하게 위치되어 어느 하나의 이송 유닛이 가열 유닛으로부터 가열된 몰드를 배출하면 나머지 하나의 이송 유닛이 가열 유닛에 가열되지 않은 몰드를 공급할 수 있다.
한편, 상기 안착 부재는, 상기 몰드를 감싸도록 형성되되, 상기 몰드가 출입 가능하도록 일측이 개구되게 형성된 몸체부 및 상기 몸체부의 바닥면에 상기 몰드가 출입되는 방향을 따라서 길이를 갖도록 인입되게 형성된 인입부를 포함할 수 있다.
한편, 상기 안착 부재의 내부에는 냉각수가 채워지거나 이송될 수 있는 냉각관이 설치될 수 있다.
한편, 상기 냉각 유닛은, 원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트 및 상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재를 포함할 수 있다.
한편, 상기 냉각 유닛은, 상기 안착 부재에 인접하게 위치되어 상기 제1 회전 플레이트가 회전되다가 회전이 일정 시간 정지된 상태에서 상기 몰드에 접촉될 수 있도록 이동되어 상기 몰드를 냉각시키는 냉각 부재를 더 포함할 수 있다.
한편, 상기 냉각 유닛은, 원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트, 상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재, 상기 제1 회전 플레이트에 회전축에 의해 결합되어 상기 제1 회전 플레이트로부터 상방으로 이격되게 위치되어 상기 제1 회전 플레이트와 함께 회전되는 제2 회전 플레이트 및 상기 제2 회전 플레이트의 하측에 승강가능하도록 결합되고, 상기 안착 부재와 대응되도록 위치되며, 상기 몰드에 접촉되도록 하강되어 상기 몰드를 냉각시키는 냉각 부재를 포함할 수 있다.
한편, 상기 냉각 유닛은, 원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트, 상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재, 상기 제1 회전 플레이트에 회전축에 의해 결합되어 상기 제1 회전 플레이트로부터 상방으로 이격되게 위치되어 상기 제1 회전 플레이트와 함께 회전되는 제2 회전 플레이트, 상기 제2 회전 플레이트의 하측에 결합되고, 상기 안착 부재와 대응되도록 위치되며, 상기 몰드에 접촉되면 상기 몰드를 냉각시키는 냉각 부재 및 상기 제2 회전 플레이트의 회전축에 결합되어 상기 냉각 부재가 상기 몰드에 접촉되거나 상기 몰드로부터 멀어지도록 상기 제2 회전 플레이트의 회전축을 승강시키는 제2 동력 부재;를 포함할 수 있다.
한편, 상기 가열 유닛은 복수개이며, 상기 복수의 가열 유닛은 측방향으로 서로 이격되면서 나란하게 위치될 수 있다.
한편, 상기 가열 유닛은 두 개이며, 상기 두 개의 가열 유닛은 상기 이송 유닛을 기준으로 반대 영역에 각각 위치될 수 있다.
한편, 상기 가열 유닛은, 전기 히터 및 고주파 히터 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 유리 성형 장치는 가열 유닛에서 가열된 몰드가 이송 유닛에 의해 순차적으로 냉각 유닛으로 이동될 수 있다. 즉, 가열 공정보다 상대적으로 시간이 오래 소요되는 냉각 공정이 냉각 유닛에서 별도로 실시됨으로써, 유리를 성형하기 위한 전체적인 시간이 단축될 수 있다.
그리고, 본 발명에 따른 유리 성형 장치는 가열 유닛에서 가열된 몰드가 이송 유닛에 의해 한번만 냉각 유닛으로 이송됨으로써, 각각의 공정별로 이동을 실시하는 종래의 유리 성형 장치보다 택 타임이 감소될 수 있다.
또한, 본 발명에 따른 유리 성형 장치는 고주파 히터로 유리를 가열함으로써, 전기 히터만으로 유리를 가열하는 경우보다 소비 전력을 낮춰서 유리를 성형하는데 소요되는 비용을 절감할 수 있다.
그리고, 본 발명에 따른 유리 성형 장치를 사용하여 유리를 제조하는 경우, 안착 부재 안에서 몰드가 균일하게 냉각되어 유리 조직이 안정적으로 형성됨으로써 제조된 유리의 품질이 더욱 우수할 수 있다.
도 1은 본 발명의 일실시예에 따른 유리 성형 장치를 도시한 도면이다.
도 2는 도 1의 유리 성형 장치에서 가열 유닛과 이송 유닛을 발췌하여 도시한 사시도이다.
도 3은 도 1의 유리 성형 장치에서 냉각 유닛을 발췌하여 도시한 사시도이다.
도 4는 도 1의 유리 성형 장치의 가열 유닛을 도시한 도면이며, 도 5는 도 4의 Ⅱ-Ⅱ'라인을 따라 취한 단면도이고, 도 6은 몰드가 이송 유닛에 의해 가열부에 출입되는 과정을 도시한 도면이다.
도 7은 도 3의 냉각 유닛에서 안착 부재를 발췌하여 도시한 사시도이다.
도 8은 몰드가 냉각 부재에 의해 냉각되는 상태를 도시한 도면이다.
도 9는 냉각 유닛의 제1 변형예를 도시한 사시도이다.
도 10은 냉각 유닛의 제2 변형예를 도시한 사시도이다.
도 11은 안착 부재의 변형예를 도시한 사시도이다.
도 12는 이송 유닛의 변형예를 가열 유닛 및 냉각 유닛과 함께 도시한 사시도이다.
도 13은 본 발명의 다른 일실시예에 따른 유리 성형 장치를 도시한 도면이다.
도 14는 본 발명의 또 다른 일실시예에 따른 유리 성형 장치를 도시한 도면이다.
<부호의 설명>
100, 200, 300: 유리 성형 장치
110: 가열 유닛
111: 챔버 부재
112: 출입 도어
113: 가열부
114: 가압부
120, 220: 이송 유닛
121, 221: 파지 부재
121a, 221a: 베이스부
121b, 221b: 지지부
122,222: 승강 부재
123,223: 회전 부재
124: 제1 슬라이딩 부재
125: 제2 슬라이딩 부재
130: 냉각 유닛
131: 제1 회전 플레이트
132: 제1 동력 부재
133: 냉각 부재
134, 234: 안착 부재
234b: 몸체부
234a: 인입부
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 여러 실시예들에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적인 실시예에서만 설명하고, 그 외의 다른 실시예에서는 대표적인 실시예와 다른 구성에 대해서만 설명하기로 한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함하는 것을 의미할 수 있다.
도 1은 본 발명의 일실시예에 따른 유리 성형 장치를 도시한 도면이고, 도 2는 도 1의 유리 성형 장치에서 가열 유닛과 이송 유닛을 발췌하여 도시한 사시도이며, 도 3은 도 1의 유리 성형 장치에서 냉각 유닛을 발췌하여 도시한 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 일실시예에 따른 유리 성형 장치(100)는 가열 유닛(110), 이송 유닛(120) 및 냉각 유닛(130)을 포함한다.
가열 유닛(110)은 유리가 수용된 몰드(M)를 가열할 수 있다. 도 4 내지 도 6을 참조하면, 몰드(M)의 내부에는 주로 평판 형태를 갖는 미성형 유리가 수용될 수 있는 공간이 형성되며, 상기 공간은 목적하는 유리의 형상과 대응되는 형상으로 이루어질 수 있다. 몰드(M)는 상부(M1, 도 8 참조)와 하부(M2, 도 8 참조)로 분리되어 제조된 유리가 용이하게 분리되도록 할 수 있다.
챔버 부재(111)에는 내부 공간이 형성될 수 있다. 상기 내부 공간에는 후술할 가열부(113)가 위치될 수 있다. 챔버 부재(111)는 일례로 육면체일 수 있으나, 이에 한정하지는 않는다.
이러한 챔버 부재(111)의 일측에는 몰드(M)가 출입될 수 있는 적어도 하나의 출입 도어가 형성될 수 있다. 출입 도어(112)는 챔버 부재(111)에 회전 또는 슬라이딩 되도록 이루어져서 몰드(M)가 출입될 수 있도록 할 수 있다.
가열부(113)는 상기 챔버 부재(111)의 내부 공간에 위치될 수 있다. 가열부(113)에는 상기 몰드(M)가 위치될 수 있는 가열 공간이 형성될 수 있다. 가열부(113)는 고주파 방식으로 상기 몰드(M)를 가열할 수 있다.
예를 들어, 가열부(113)는 고주파 히터일 수 있다. 이와 같은 고주파 히터는 일반적인 전기 히터와 비교하여 상대적으로 전력 소비가 낮다. 예를 들어, 고주파 히터는 전기 히터보다 대략 50% 정도 낮은 전력을 소비하면서 동일한 열을 발생시킬 수 있다.
이와 같이, 본 발명의 일실시예에 따른 가열 유닛(110)은 고주파 히터로 유리를 가열함으로써, 전기 히터만으로 유리를 가열하는 종래의 가열 유닛(110)보다 소비 전력을 낮춰서 유리를 성형하는데 소요되는 비용을 절감할 수 있다.
또한, 본 발명에 따른 유리 성형 장치는 가열부에서 예열과 가열을 일괄적으로 실시함으로써, 다른 공정을 실시하기 위하여 몰드를 이동하면서 발생되는 시간만큼 제조 시간을 감소시킬 수 있다. 뿐만 아니라, 다른 공정간 몰드를 이동하면서 발생되는 열손실을 방지할 수 있으므로, 유리의 성형이 가능한 온도에 이르기까지의 시간이 현저하게 단축될 수 있다. 즉, 본 발명에 따른 유리 성형 장치는 종래의 유리 성형 장치보다 택 타임을 감소시킬 수 있다.
이러한 가열부(113)는 일례로, 베이스 부재(113a) 및 발열 부재(113b)를 포함할 수 있다.
베이스 부재(113a)는 가열 공간을 감싸도록 형성될 수 있다. 예를 들어, 베이스 부재(113a)의 수직 단면의 형상은 튜브 형상일 수 있다. 그리고, 베이스 부재(113a)에서 몰드(M)가 안착되는 부분은 평평할 수 있다. 상기 베이스 부재(113a)는 세라믹으로 이루어질 수 있다. 이와 다르게, 베이스 부재(113a)는 내화성 시멘트로 이루어질 수도 있다.
발열 부재(113b)는 외부로 노출되지 않도록 상기 베이스 부재(113a)의 가열 공간을 감싸는 부분의 내부에 삽입되어 고주파 전류가 흐를 수 있다. 발열 부재(113b)에 고주파 전류가 인가되면, 유도 전류에 의하여 열이 발생되고, 이러한 열이 몰드(M)에 전달될 수 있다. 발열 부재(113b)는 일례로 코일 또는 동관일 수 있다. 이러한 발열 부재(113b)는 베이스 부재(113a) 내부에 스프링 형상으로 삽입될 수 있다.
전술한 베이스 부재(113a)는 몰드(M)가 발열 부재(113b)에 직접적으로 접촉되는 것을 방지할 뿐만 아니라, 발열 부재(113b)에서 발생된 열이 몰드(M)로 균일하게 전달되도록 할 수 있다. 즉, 본 발명에 따른 가열 유닛(110)을 사용하여 유리를 제조하는 경우, 가열부(113)의 가열 공간 안에서 몰드(M)가 균일하게 가열되어 유리 조직이 안정적으로 형성됨으로써 제조된 유리의 품질이 더욱 우수할 수 있다.
상기 가압부(114)는 상기 가열부(113)의 일부분에 출입 가능하게 형성될 수 있다. 가압부(114)는 상기 몰드(M)가 상기 가열 공간에 위치된 상태에서 상기 몰드(M)를 가압할 수 있다.
가압부(114)는 일례로, 적어도 하나의 이동 부재(114a) 및 동력 부재(114b)를 포함할 수 있다. 상기 베이스 부재(113a)의 상측에는 상하방향으로 관통된 적어도 하나의 출입홀(113h)이 형성될 수 있다.
이동 부재(114a)는 길이를 갖도록 형성되어 상기 챔버 부재(111)의 내부에 상하 방향으로 위치될 수 있다. 이동 부재(114a)는 하나 또는 두 개 이상 일 수 있다. 이동 부개(114a)가 두 개인 경우, 두 개의 이동 부재(114a)는 서로 이격될 수 있다. 이렇게 이격된 두 개의 이동 부재(114a)는 몰드(M)의 좌측 영역 및 우측 영역 각각을 가압할 수 있다.
이동 부재(114a)는 외력에 의해 상기 출입홀(113h)을 통하여 상하 방향으로 이동될 수 있다. 이동 부재(114a)는 하강된 상태에서 상기 몰드(M)를 가압할 수 있다.
동력 부재(114b)는 상기 챔버 부재(111)의 외부에 위치되고, 상기 이동 부재(114a)에 연결되어 상기 이동 부재(114a)를 승강시킬 수 있는 동력을 발생할 수 있다. 이를 위한 동력 부재(114b)는 일례로 선형 모터, 유압 실린더 및 공압 실린더 중 선택된 어느 하나일 수 있으나, 이에 한정하지는 않으며, 동력 부재(114b)는 이동 부재(114a)를 상하로 이동시킬 수 있는 것이면 어느 것이든 무방할 수 있다.
이와 같은 가압부(114)는 몰드(M)가 상기 가열 공간에 위치된 상태에서 상기 몰드(M)를 가압함으로써, 몰드(M) 내부의 유리를 보다 안정적으로 성형할 수 있다. 다시 말해, 유리가 가열되는 정도에 따라 가압부(114)가 몰드(M)의 상부를 가압하여 몰드 내부의 유리에 그 가압력이 전달되도록 하여, 목적하는 형상의 유리를 보다 안정적으로 성형할 수 있다. 그러므로, 유리 성형의 신뢰성이 향상될 수 있다.
한편, 본 발명의 일실시예에 따른 가열 유닛(110)은 안착 부재(115)를 포함할 수 있다.
안착 부재(115)는 상기 가열부(113)의 바닥면에 위치되어 상기 몰드(M)가 안착될 수 있다. 안착 부재(115)의 형상은 일례로 상기 몰드(M)와 대응되는 크기로 이루어진 육면체일 수 있다.
몰드(M)가 안착 부재(115)에 의해 가열부(113)의 바닥면으로부터 일정 높이 이격됨으로써, 몰드(M)는 상하방향을 기준으로 가열부(113)의 가열 공간의 가운데에 위치될 수 있다. 이를 위하여 안착 부재(115)의 두께는 몰드(M)의 상측에서부터 베이스 부재(113a)까지의 거리와 유사할 수 있다.
이에 따라, 가열부(113)에서 발생된 열이 몰드(M)에 균일하게 가해짐으로써, 몰드(M)의 특정 부분만 가열되는 것을 방지할 수 있다. 그러므로, 몰드(M) 내부의 유리가 균일하게 가열될 수 있다.
한편, 몰드(M)는 이송 유닛(120)에 의해 이송될 수 있다. 이송 유닛(120)은 몰드(M)를 챔버 부재(111) 내부로 이동시키거나, 챔버 부재(111)로부터 몰드(M)를 다른 장소로 이동시킬 수 있다. 이러한 이송 유닛(180)의 구체적인 구조에 대해서는 후술한다.
이송 유닛(180)에 의한 몰드의 이송이 원활하게 실시될 수 있도록, 상기 안착 부재(115)에서 상기 몰드(M)가 안착되는 상면에는 상기 안착 부재(115)의 길이 방향을 따라 인입된 인입홈(115h)이 형성될 수 있다. 인입홈(115h)은 안착 부재(115)의 일단에서 타단까지 형성될 수 있으며, 인입홈(115h)은 안착 부재(115)의 상면 중앙부위, 중앙부위에서 편심된 위치 또는 상면 가장자리 등의 다양한 위치에 형성될 수 있다.
이송 유닛(120)에 포함된 파지 부재(121)가 인입홈(115h)에 삽입된 다음, 몰드(M)를 일정 높이만큼 상승시켜서 가열부(113)로부터 챔버 부재(111)의 외부로 몰드를 이송할 수 있다.
이와 같이 본 발명의 일실시예에 따른 가열 유닛(110)은 인입홈(115h)이 형성된 안착 부재(115)에 의해 몰드(M)의 이송의 보다 신속하게 실시될 수 있다.
한편, 본 발명의 일실시예에 따른 가열 유닛(110)은 전원 공급 유닛(116)을 포함할 수 있다. 전원 공급 유닛(116)은 상기 가열부(113)로 전원을 공급할 수 있다. 예를 들어, 전원 공급 유닛(116)은 가열부(113)로 고주파 전류를 공급하여 몰드(M)를 가열하기 위한 열을 발생시킬 수 있다.
본 발명에 있어서, 가열 유닛(110)은 상술한 구조 이외에 통상의 히터가 이용될 수도 있다. 즉, 상술한 구조를 이외에 통상의 전기 히터, 전기 히터와 고주파 히터가 결합된 형태 등 다양한 형태의 히터를 가열 유닛(110)으로 적용할 수 있다.
냉각 유닛(130)은 상기 이송 유닛(120)에 의해 상기 가열 유닛(110)으로부터 이송된 몰드(M)가 수용되는 복수의 안착 부재(134)를 포함하며, 상기 복수의 안착 부재(134)가 회전되면서 상기 몰드(M)가 냉각될 수 있도록 할 수 있다. 몰드(M)의 냉각은 상온에서 열교환에 의한 방법이 될 수 있고, 안착 부재(134) 내부에 냉각수가 흐르는 냉각관을 설치하여 냉각하는 방법도 가능할 수 있다.
이와 같은 본 발명의 일실시예에 따른 유리 성형 장치(100)는 가열 유닛(110)에서 가열된 몰드(M)가 이송 유닛(120)에 의해 순차적으로 냉각 유닛(130)으로 이동될 수 있다. 즉, 가열 공정보다 상대적으로 시간이 오래 소요되는 냉각 공정이 냉각 유닛(130)에서 별도로 실시됨으로써, 유리를 성형하기 위한 전체적인 시간이 단축될 수 있다.
뿐만 아니라, 본 발명의 일실시예에 따른 유리 성형 장치(100)는 가열 유닛(110)에서 가열된 몰드(M)가 이송 유닛(120)에 의해 한번만 냉각 유닛(130)으로 이송됨으로써, 각각의 공정별로 이동을 실시하는 종래의 유리 성형 장치보다 택 타임이 감소될 수 있다.
또한, 본 발명에 따른 유리 성형 장치(100)는 가열 유닛(110)에서 예열과 가열을 일괄적으로 실시함으로써, 다른 공정을 실시하기 위하여 몰드를 이동하면서 발생되는 시간만큼 제조 시간을 감소시킬 수 있다. 그리고, 다른 공정간 몰드를 이동하면서 발생되는 열손실을 최소화할 수 있으므로, 유리의 성형이 가능한 온도에 이르기까지의 시간이 현저하게 단축될 수 있다. 즉, 본 발명에 따른 유리 성형 장치(100)는 종래의 유리 성형 장치보다 택 타임을 현저하게 감소시킬 수 있다.
이를 위한 상기 이송 유닛(120)은 일례로, 파지 부재(121), 승강 부재(122), 회전 부재(123), 제1 슬라이딩 부재(124) 및 제2 슬라이딩 부재(125)를 포함할 수 있다.
파지 부재(121)는 베이스부(121a)와, 지지부(121b)를 포함할 수 있다.
베이스부(121a)는 일례로 원형 또는 다각형으로 이루어진 판(plate) 형상일 수 있다. 지지부(121b)는 상기 베이스부(121a)의 측면으로부터 외부를 향하여 연장 형성될 수 있다. 그리고, 지지부(121b)는 상기 베이스부(121a)의 중심을 기준으로 일정 각도마다 형성될 수 있다. 예를 들어, 파지 부재(121)의 전체적인 형상은 연산 기호인 플러스(+) 형상일 수 있다.
이러한 지지부(121b)는 가열 유닛(110)에서 가열이 완료된 몰드(M)의 하측을 지지할 수 있다. 이를 위한 지지부(121b)의 형상은 일례로 막대 형상의 두 개의 부재가 서로 평행을 이루도록 형성된 것일 수 있으나, 이에 한정하지는 않는다.
승강 부재(122)는 상기 파지 부재(121)의 일측에 결합되어 상기 파지 부재(121)를 승강시킬 수 있다. 몰드(M)가 파지 부재(121)의 지지부(121b)에 위치된 상태에서, 승강 부재(122)는 파지 부재(121)를 상승 또는 하강시킬 수 있다. 이에 따라, 몰드(M)가 가열 유닛(110)으로부터 이동 가능한 상태가 될 수도 있고, 몰드(M)가 후술한 냉각 유닛(130)에 안착될 수도 있다.
회전 부재(123)는 상기 승강 부재(122)의 일측에 결합되어 상기 승강 부재(122)를 회전시킬 수 있다. 회전 부재(123)는 파지 부재(121)를 회전시켜서 복수의 지지부(121b) 각각이 가열 유닛(110) 또는 냉각 유닛(130)을 향하도록 할 수 있다. 회전 부재(123)는 일례로 회전 모터일 수 있으나, 이에 한정하지는 않는다.
제1 슬라이딩 부재(124)는 상기 회전 부재(123)의 일측에 결합되어 상기 가열 유닛(110)에 가까워지거나 멀어지는 제1 방향으로 상기 회전 부재(123)를 이동시킬 수 있다. 이를 위한 제1 슬라이딩 부재(124)는 일례로 레일 또는 LM가이드 일 수 있으나, 이에 한정하지는 않으며, 회전 부재(123)를 이동시킬 수 있는 것이면 어느 것이든 무방할 수 있다.
제2 슬라이딩 부재(125)는 상기 제1 슬라이딩 부재(124)의 일측에 결합될 수 있다. 상기 제2 슬라이딩 부재(125)는 제1 방향에 직교하는 제2 방향으로 상기 제1 슬라이딩 부재(124)를 이동시킬 수 있다.
예를 들어, 본 발명의 일실시예에 따른 유리 성형 장치(100)에서 상기 가열 유닛(110)은 복수개이며, 상기 복수의 가열 유닛(110a, 110b)은 측방향으로 서로 이격되면서 나란하게 위치될 수 있다. 제2 슬라이딩 부재(125)는 가열 유닛(110)이 배치된 방향과 평행한 방향으로 제1 슬라이딩 부재(124)를 이동시킬 수 있다. 이에 따라, 파지 부재(121)가 제2 슬라이딩 부재(125)에 의하여 각각의 가열 유닛(110)에 대응되도록 위치될 수 있다.
이를 위한 제2 슬라이딩 부재(125)는 일례로 제1 슬라이딩 부재(124)와 마찬가지로 레일 또는 LM가이드 일 수 있으나, 이에 한정하지는 않으며, 제1 슬라이딩 부재(124)를 이동시킬 수 있는 것이면 어느 것이든 무방할 수 있다.
본 실시예에서 승강 부재(122)는 파지 부재(121)의 일측에 결합되고, 회전 부재(123)는 승강 부재(122)의 일측에 결합되며, 제1 슬라이딩 부재(124)는 회전 부재(123)의 일측에 결합되고, 제2 슬라이딩 부재(125)는 제1 슬라이딩 부재(124)의 일측에 결합되는 것으로 예시하여 설명하였으나, 이에 한정되지 않는다. 즉, 승강 부재(122), 회전 부재(123), 제1 슬라이딩 부재(124), 제2 슬라이딩 부재(125)는 파지 부재(121)를 승강, 회전, 제1 및 제2 방향으로 이동시키기 위한 것으로서, 파지 부재(121)에 이들이 결합되는 순서 및 구조는 다양하게 변경될 수 있으며, 이는 이하의 실시예에서도 동일하다.
이하에서는 전술한 이송 유닛(120)의 동작 과정을 설명한다.
우선, 가열 유닛(110)에서 몰드(M)의 가열을 실시한 다음, 파지 부재(121)에 포함된 지지부(121b)가 제1 슬라이딩 부재(124)에 의하여 가열 유닛(110)에서 가열이 완료된 몰드(M)의 하측으로 이동될 수 있다. 파지 부재(121)는 승강 부재(122)에 의하여 상승되고, 제1 슬라이딩 부재(124)는 파지 부재(121)를 가열 유닛(110)에서 멀어지는 방향으로 이동시킨다.
제2 슬라이딩 부재(125)는 파지 부재(121)를 냉각 유닛(130)으로 이동시키고, 회전 부재(123)는 파지 부재(121)를 일정 각도 회전시킨다. 승강 부재(122)는 파지 부재(121)를 하강시켜서 몰드(M)를 냉각 유닛(130)에 위치시킨다. 그리고, 파지 부재(121)는 가열 유닛(110)으로 이송된 다음 전술한 동작을 반복적으로 실시할 수 있다. 즉, 복수의 가열 유닛(110)에서 가열된 몰드(M)가 이송 유닛(120)에 의해 냉각 유닛(130)으로 신속하게 이송될 수 있다.
전술한 냉각 유닛(130)은 일례로 제1 회전 플레이트(131) 및 제1 동력 부재(132)를 포함할 수 있다.
제1 회전 플레이트(131)는 원형으로 이루어질 수 있다. 안착 부재(134)가 제1 회전 플레이트(131)의 상면의 가장자리를 따라 상기 일정 간격 마다 위치될 수 있다. 예를 들어, 냉각 유닛(130)이 8개의 안착 부재(134)를 포함하는 경우, 안착 부재(134)는 원형의 제1 회전 플레이트(131)의 중앙 부분을 기준으로 45도 각도마다 위치될 수 있다.
제1 동력 부재(132)는 상기 제1 회전 플레이트(131)에 결합되어 상기 제1 회전 플레이트(131)를 회전시킬 수 있다. 제1 동력 부재(132)는 제1 회전 플레이트(131)의 하측에 결합되어 제1 회전 플레이트(131)를 시계 방향 또는 반시계 방향으로 회전시킬 수 있다. 몰드(M)는 안착 부재(134) 상에 위치되어 냉각될 수 있다.
여기서, 안착 부재(134)의 형상은 일례로 상기 몰드(M)와 대응되는 크기로 이루어진 육면체일 수 있다. 예를 들어, 몰드(M)의 하면이 직사각형인 경우, 안착 부재(134)의 상면의 형상도 이와 대응되는 직사각형일 수 있다.
도 8은 몰드가 냉각 부재에 의해 냉각되는 상태를 도시한 도면이다.
도 8을 참조하면, 상기 냉각 유닛(130)은 냉각 부재(133)를 더 포함할 수 있다.
냉각 부재(133)는 상기 안착 부재(134)에 인접하게 위치되어 상기 제1 회전 플레이트(131)가 회전되다가 회전이 일정 시간 정지된 상태에서 상기 몰드(M)에 접촉될 수 있도록 이동되어 상기 몰드(M)를 냉각시킬 수 있다. 예를 들어, 안착 부재(134) 상에 몰드(M)가 위치된 상태에서 제1 회전 플레이트(131)의 회전이 일정 시간 정지된 상태에서 냉각 부재(133)가 상하 방향 또는 좌우 방향으로 이동되어 몰드(M)에 접촉될 수 있다.
예를 들어, 냉각 부재(133)가 상하 방향으로 이동되도록 이루어진 경우, 냉각 부재(133)의 상측에는 별도의 동력원(133a)이 결합될 수 있다. 이러한 동력원(133a)은 일례로 리니어 모터, 유압 실린더 및 공압 실린더 중 선택된 어느 하나일 수 있으나, 이에 한정하지는 않는다.
도 3으로 되돌아가서 제1 회전 플레이트(131) 상에 8개의 안착 부재(134)가 위치되고 8개의 냉각 부재(133)가 안착 부재(134)와 상하 방향으로 중첩되도록 위치될 수 있다. 이와 다르게, 냉각 부재(133)는 3개일 수 있으며, 3개의 냉각 부재(133)는 8개의 안착 부재(134)들 중에서 3개의 안착 부재(134)와 대응되도록 이루어질 수도 있다. 즉, 냉각 부재(133)는 하나 또는 복수개가 설치될 수 있다.
한편, 냉각 부재(133)가 몰드(M)를 냉각하는 방법은 상기 냉각 부재(133)의 내부에 낭각수가 채워지거나 이송될 수 있는 냉각관이 설치되는 방식에 의할 수 있다. 상기의 방식 이외에 몰드(M)로 냉각된 압축 공기 또는 미세 분무(water-mist)를 몰드(M)로 분사하여 몰드(M)를 냉각할 수 있으나, 이에 한정하지는 않는다.
또한, 도 7에 도시된 바와 같이, 상기 안착 부재(134)의 내부에는 냉각수가 채워지거나 이송될 수 있는 냉각관(C)이 설치될 수 있다. 이러한 냉각관(C)을 통하여 냉각수, 예컨대 냉각된 냉매가 이동하면서 안착 부재(134)의 온도를 지속적으로 낮춤으로써, 몰드(M)의 열이 낮아질 수 있다.
도 9는 냉각 유닛의 제1 변형예를 도시한 사시도이다.
도 9를 참조하면, 제1 변형예에 따른 냉각 유닛(230)은 제1 회전 플레이트(131), 제1 동력 부재(132), 제2 회전 플레이트(235) 및 냉각 부재(133)를 포함할 수 있다.
여기서, 제1 회전 플레이트(131)와 제1 동력 부재(132)는 전술한 냉각 유닛(130, 도 3 참조)에 포함된 제1 회전 플레이트(131, 도 3 참조)와 제1 동력 부재(132, 도 3 참조)와 동일할 수 있으므로, 이에 대한 설명은 생략한다.
제2 회전 플레이트(235)는 회전축(236)에 의해 상기 제1 회전 플레이트(131)에 결합될 수 있다. 제2 회전 플레이트(235)는 상기 제1 회전 플레이트(131)로부터 상방으로 이격되게 위치되어 상기 제1 회전 플레이트(131)와 함께 회전될 수 있다.
예를 들어, 제2 회전 플레이트(235)는 제1 회전 플레이트(131)와 동일한 크기 및 넓이로 이루어질 수 있다. 그리고, 회전축(236)의 상단은 제2 회전 플레이트(235)의 중심에 결합되고, 하단은 제1 회전 플레이트(131)의 중심에 결합될 수 있다.
냉각 부재(133)는 상기 제2 회전 플레이트(235)의 하측에 승강가능하도록 결합될 수 있다. 냉각 부재(133)는 상기 안착 부재와 대응되도록 위치될 수 있다. 냉각 부재(133)는 상기 몰드(M)에 접촉되도록 하강되어 상기 몰드(M)를 냉각시킬 수 있다. 이를 위하여 냉각 부재(133)의 상측에 결합된 동력원(133a)이 제2 회전 플레이트(235)의 하측에 결합될 수 있다.
이와 같은 제1 변형예에 따른 냉각 유닛(230)은 복수의 냉각 부재(133)가 개별적으로 승강되면서 냉각이 필요한 몰드(M)만 선택적으로 냉각시킬 수 있다. 예를 들어, 몰드(M)들 각각이 냉각 유닛(230)에 공급된 순서가 상이할 수 있다. 따라서, 복수의 냉각 부재(133)중에서 먼저 냉각된 몰드(M)가 존재할 수 있다.
그러므로, 복수의 냉각 부재(133)중에서 냉각이 완료되어 내부의 유리가 제거되어야 하는 몰드(M)에 대응되는 어느 하나의 냉각 부재(133)만 상승하여 몰드(M)의 냉각을 중단하고, 나머지 냉각 부재(133)들은 몰드(M)의 냉각을 계속 실시할 수 있다. 또한 회전 플레이트가 회전하는 동안에도 몰드(M)를 냉각할 수 있게 된다.
도 10은 냉각 유닛의 제2 변형예를 도시한 사시도이다.
도 10을 참조하면, 제2 변형예에 따른 냉각 유닛(330)은 제1 회전 플레이트(131), 제1 동력 부재(132), 제2 회전 플레이트(335), 냉각 부재(133) 및 제2 동력 부재(337)를 포함할 수 있다.
여기서, 제1 회전 플레이트(131), 제1 동력 부재(132) 및 제2 회전 플레이트(335)는 전술한 냉각 유닛(230, 도 9 참조)에 포함된 제1 회전 플레이트(131, 도 9 참조), 제1 동력 부재(132, 도 9 참조) 및 제2 회전 플레이트(235, 도 9 참조)와 동일할 수 있으므로, 이에 대한 설명은 생략한다.
냉각 부재(133)는 상기 제2 회전 플레이트(335)의 하측에 결합되고, 상기 안착 부재와 대응되도록 위치되며, 상기 몰드(M)에 접촉되면 상기 몰드(M)를 냉각시킬 수 있다.
제2 동력 부재(337)는 상기 제2 회전 플레이트(335)의 회전축(336)에 결합되어 상기 냉각 부재(133)가 상기 몰드(M)에 접촉되거나 상기 몰드(M)로부터 멀어지도록 상기 제2 회전 플레이트(335)의 회전축(336)을 승강시킬 수 있다. 즉, 제2 동력 부재(337)가 제2 회전 플레이트(335)를 승강시키면, 앞서 설명한 냉각 부재(133)는 제2 회전 플레이트(335)와 함께 승강될 수 있다. 그러므로, 제2 변형예에 따른 냉각 유닛(330)은 하나의 제2 동력 부재(337)에 의해 일괄적으로 승강될 수 있다.
전술한 제1 변형예에 따른 냉각 유닛(230, 도 9 참조)은 냉각 부재(133)마다 냉각 부재(133, 도 9 참조)를 승강하기 위한 별도의 동력원(133a, 도 9 참조)이 포함되었다. 그러나, 제2 변형예에 따른 냉각 유닛(330)은 냉각 부재(133)를 승강하기 위한 각각의 동력원(133a, 도 9 참조)을 필요로 하지 않으므로, 구조가 간소화될 수 있다. 따라서, 냉각 유닛(330)의 제조 작업이 용이하게 실시될 수 있다.
또한, 도시하지는 않았지만 상술한 구조 이외에 상기 냉각 유닛은 회전 플레이트(131)의 하부에 상기 회전 플레이트(131)를 상승 및 하강시킬 수 있는 동력 부재를 설치하고, 상기 동력 부재의 동작에 의하여 상기 회전 플레이트를 상승시켜 밀착 부재(133)와 접촉시켜 냉각시키는 구성도 가능하다.
도 11은 안착 부재의 변형예를 도시한 사시도이다.
도 11을 참조하면, 상기 안착 부재(234)는 변형예로 몸체부(234b)와 인입부(234a)를 포함할 수 있다.
몸체부(234b)는 상기 몰드(M)를 감싸도록 형성될 수 있다. 몸체부(234b)는 상기 몰드(M)가 출입 가능하도록 일측이 개구되게 형성될 수 있다. 예를 들어, 몸체부(234b)는 일측이 개구된 육면체일 수 있다. 몰드(M)는 몸체부(234b)의 개구된 일측을 통하여 출입될 수 있다.
인입부(234a)는 상기 몸체부(234b)의 바닥면에 상기 몰드(M)가 출입되는 방향을 따라서 길이를 갖도록 인입되게 형성될 수 있다. 즉, 인입부(234a)는 몸체부(234b)에서 개구된 일단에서부터 타단까지 형성될 수 있다. 이러한 인입부(234a)에 전술한 파지 부재(121)에 포함된 지지부(121b)가 삽입될 수 있다. 이를 위하여 인입부(234a)는 지지부(121b)가 원활하게 삽입될 수 있는 크기로 이루어질 수 있다.
이러한 안착 부재(234)가 몰드(M)를 냉각하는 방법은 일례로, 안착 부재(234)의 내부에 냉각수가 흐르는 냉각관이 형성될 수 있다. 이와 다르게, 안착 부재(234)에서 상기 몰드(M)와 마주하는 부분에 다수의 노즐을 형성하여 냉각된 압축 공기 또는 미세 분무(water-mist)를 몰드(M)로 분사하는 방법일 수 있으나, 이에 한정하지는 않는다.
이와 같은 안착 부재(234)는 몰드(M)를 감싼 상태에서 몰드(M)를 냉각시킴으로써 몰드(M) 내부의 유리가 균일하게 냉각될 수 있으므로, 유리 조직이 안정적으로 형성됨으로써 제조된 유리의 품질이 우수할 수 있다.
도 12는 이송 유닛의 변형예를 가열 유닛 및 냉각 유닛과 함께 도시한 사시도이다.
도 12를 참조하면, 상기 이송 유닛(220)은 변형예로, 파지 부재(121)와, 승강 부재(222) 및 회전 부재(223)를 포함할 수 있다.
파지 부재(121)는 베이스부(221a)와 지지부(221b)를 포함할 수 있다. 베이스부(221a)는 길이를 갖도록 이루어질 수 있다. 지지부(221b)는 상기 베이스부(221a)의 양단 각각에 슬라이딩 가능하도록 결합될 수 있다. 이러한 지지부(221b)는 베이스부(221a)에 대해 슬라이딩 이동되면서 가열 유닛(110)의 내부에 위치된 몰드(M)에 가까워지거나 몰드(M)로부터 멀어질 수 있다. 즉, 전술한 이송 유닛(220)은 베이스부(221a)와 지지부(221b)가 일체로 형성되었으나, 변형예에 따른 이송 유닛(220)에 포함된 파지 부재(121)는 지지부(221b)가 베이스부(221a)에 상대 이동되도록 결합될 수 있다.
승강 부재(222)는 상기 파지 부재(121)의 일측에 결합되어 상기 파지 부재(121)를 승강시킬 수 있다. 파지 부재(121)의 지지부(221b)가 몰드(M)의 하측을 지지하는 상태에서 승강 부재(222)에 의해 파지 부재(121)가 일정 높이 상승할 수 있다.
회전 부재(223)는 상기 승강 부재(222)의 일측에 결합되어 상기 승강 부재(222)를 회전시킬 수 있다. 이러한 회전 부재(223) 및 승강 부재(222)는 전술한 실시예에 따른 이송 유닛(120, 도 2 참조)에 포함된 회전 부재(123, 도 2 참조) 및 승강 부재(122, 도 2 참조)와 유사할 수 있으므로, 이에 대한 상세한 설명은 생략한다.
이러한 변형예에 의하면, 가열 유닛(110)은 이송 유닛(220)을 사이에 두고 냉각 유닛(130)의 반대측에 위치될 수 있다. 즉, 가열 유닛(110), 이송 유닛(220) 및 냉각 유닛(130)이 나란하게 위치될 수 있다.
앞서 설명한 이송 유닛(220)의 동작 과정을 설명하면, 우선, 가열 유닛(110)에서 몰드(M)의 가열을 실시한 다음, 파지 부재(121)에 포함된 지지부(221b)가 베이스부(221a)에 대해 멀어지도록 이동되어 가열 유닛(110)에서 가열이 완료된 몰드(M)의 하측으로 이동될 수 있다. 파지 부재(121)는 승강 부재(222)에 의하여 상승되고, 지지부(221b)가 베이스부(221a)에 대해 가까워지도록 이동될 수 있다.
회전 부재(223)가 파지 부재(121)를 대략 180도 회전시키면, 몰드(M)가 안착된 지지부(221b)는 냉각 유닛(130)에 인접하게 위치될 수 있다. 지지부(221b)가 베이스부(221a)에 대해 재차 멀어지도록 이동되어 몰드(M)가 냉각 유닛(130)의 안착 부재(134) 상에 위치되면, 지지부(221b)는 승강 부재(222)에 의해 하강될 수 있다. 최종적으로, 지지부(221b)가 베이스부(221a)에 가까워지도록 이동되어 몰드(M)의 이송이 완료될 수 있다.
이와 같은 이송 유닛(220)은 가열 유닛(110)에서 가열된 몰드(M)를 회전 동작과 승강 동작만 실시하여 냉각 유닛(130)으로 이송함으로써, 전술한 실시예에서 따른 이송 유닛(220)보다 몰드(M)의 이송이 더욱 신속하게 진행될 수 있다.
도 13은 본 발명의 다른 일실시예에 따른 유리 성형 장치를 도시한 도면이다.
도 13을 참조하면, 본 발명의 다른 일실시예에 따른 유리 성형 장치(200)는 두 개의 이송 유닛(120)을 포함할 수 있다. 상기 두 개의 이송 유닛(120)은 서로 상하 방향으로 나란하게 위치될 수 있다.
두 개의 이송 유닛(120) 중 어느 하나의 이송 유닛(120)이 가열 유닛(110)으로부터 가열된 몰드(M)를 배출하면, 나머지 하나의 이송 유닛(120)이 가열 유닛(110)에 가열되지 않은 몰드(M)를 공급할 수 있다. 즉, 본 발명의 다른 일실시예에 따른 유리 성형 장치(200)는 몰드(M)가 가열 유닛(110)으로부터 배출됨과 동시에 공급됨으로써, 전술한 실시예와 비교하여 전체적인 택 타임이 감소될 수 있다.
도 14는 본 발명의 또 다른 일실시예에 따른 유리 성형 장치를 도시한 도면이다.
도 14를 참조하면, 본 발명의 또 다른 일실시예에 따른 유리 성형 장치(300)는 두 개의 가열 유닛(110c, 110d)을 포함할 수 있다. 두 개의 가열 유닛(110c, 110d)은 상기 이송 유닛(120)을 기준으로 반대 영역에 각각 위치될 수 있다.
이러한 본 발명의 또 다른 일실시예에 따른 유리 성형 장치(300)는 가열 유닛(110c, 110d)들이 전술한 실시예에 따른 유리 성형 장치(100, 도 1 참조)보다 상대적으로 멀리 위치되어 있다. 그러므로, 두 개의 가열 유닛(110)에 포함된 고주파 히터의 동작시 고주파 발생시 서로의 고주파에 의해 고주파 히터의 동작이 원활하지 않게 될 수 있는 것을 방지할 수 있다.
한편, 본 발명의 일실시예에 따른 유리 성형 장치(100)에 의해 제조된 유리의 상하 단면의 형상은 일례로, 전체적으로 휘어진 형상, 중앙은 평평하고 양단 중 어느 하나만 라운드지게 휘어진 형상 및 양단 모두 휘어진 형상 중 선택된 어느 하나의 형상일 수 있다. 다만, 본 발명의 일실시예에 따른 유리 성형 장치(100)가 상기와 같은 유리만 제조하는 것은 아니며, 다양한 형상의 유리도 제조할 수 있다.
이상에서 본 발명의 여러 실시예에 대하여 설명하였으나, 지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (18)

  1. 유리가 수용된 몰드를 가열하는 적어도 하나의 가열 유닛;
    외부에서 상기 가열 유닛으로 상기 몰드를 공급하거나 상기 적어도 하나의 가열 유닛에서 가열이 완료된 몰드를 외부로 배출하는 적어도 하나의 이송 유닛; 및
    상기 이송 유닛에 의해 상기 가열 유닛으로부터 이송된 몰드가 수용되는 복수의 안착 부재를 포함하며, 상기 복수의 안착 부재가 회전되면서 상기 몰드가 냉각될 수 있게 하는 냉각 유닛;을 포함하는 유리 성형 장치.
  2. 제1항에 있어서,
    상기 가열 유닛은,
    내부 공간이 형성된 챔버 부재;
    상기 챔버 부재의 내부 공간에 위치되어 상기 몰드가 위치될 수 있는 가열 공간이 형성되며, 고주파 방식으로 상기 몰드를 가열하는 가열부; 및
    상기 가열부의 일부분에 출입 가능하게 형성되어 상기 몰드가 상기 가열 공간에 위치된 상태에서 상기 몰드를 가압하는 가압부;를 포함하는 유리 성형 장치.
  3. 제2항에 있어서,
    상기 가열부는,
    가열 공간을 감싸도록 형성된 베이스 부재; 및
    외부로 노출되지 않도록 상기 베이스 부재의 가열 공간을 감싸는 부분의 내부에 삽입되어 고주파 전류가 흐르는 발열 부재;를 포함하는 유리 성형 장치.
  4. 제3항에 있어서,
    상기 베이스 부재의 상측에는 상하방향으로 관통된 적어도 하나의 출입홀이 형성되고,
    상기 가압부는,
    길이를 갖도록 형성되어 상기 챔버 부재의 내부에 상하 방향으로 위치되고, 외력에 의해 상기 출입홀을 통하여 상하 방향으로 이동되며, 최대로 하강된 상태에서 상기 몰드를 가압하는 적어도 하나의 이동 부재; 및
    상기 챔버 부재의 외부에 위치되고, 상기 이동 부재에 연결되어 상기 이동 부재를 승강시킬 수 있는 동력을 발생하는 동력 부재;를 포함하는 유리 성형 장치.
  5. 제1항에 있어서,
    상기 이송 유닛은,
    베이스부와, 상기 베이스부의 측면으로부터 외부를 향하여 연장 형성되되 상기 베이스부의 중심을 기준으로 일정 각도마다 형성된 복수의 지지부를 포함하는 파지 부재; 및
    상기 파지 부재를 승강시키는 승강 부재, 상기 파지 부재를 회전시키는 회전 부재, 상기 파지 부재를 가열 유닛에 가까워지거나 멀어지는 제 1 방향으로 이동시키는 제1 슬라이딩 부재, 상기 파지 부재를 제 1 방향에 직교하는 제2 방향으로 이동시키는 제2 슬라이딩 부재 중에서 적어도 하나를 포함하는 유리 성형 장치.
  6. 제5항에 있어서,
    상기 복수의 지지부는 상기 베이스부에 슬라이딩 가능하도록 결합되는 것을 특징으로 하는 유리 성형 장치.
  7. 제1항에 있어서,
    상기 이송 유닛은,
    베이스부와, 상기 베이스부의 측면으로부터 외부를 향하여 연장 형성되되 상기 베이스부의 중심을 기준으로 일정 각도마다 형성된 복수의 지지부를 포함하는 파지 부재;
    상기 파지 부재의 일측에 결합되어 상기 파지 부재를 승강시키는 승강 부재;
    상기 승강 부재의 일측에 결합되어 상기 승강 부재를 회전시키는 회전 부재;
    상기 회전 부재의 일측에 결합되어 상기 가열 유닛에 가까워지거나 멀어지는 제1 방향으로 상기 회전 부재를 이동시키는 제1 슬라이딩 부재; 및
    상기 제1 슬라이딩 부재의 일측에 결합되어 상기 제1 방향에 직교하는 제2 방향으로 상기 제1 슬라이딩 부재를 이동시키는 제2 슬라이딩 부재;를 포함하는 유리 성형 장치.
  8. 제1항에 있어서,
    상기 이송 유닛은,
    길이를 갖도록 이루어진 베이스부와, 상기 베이스부의 양단 각각에 슬라이딩 가능하도록 결합된 지지부를 포함하는 파지 부재;
    상기 파지 부재의 일측에 결합되어 상기 파지 부재를 승강시키는 승강 부재; 및
    상기 승강 부재의 일측에 결합되어 상기 승강 부재를 회전시키는 회전 부재;를 포함하는 유리 성형 장치.
  9. 제1항에 있어서,
    상기 이송 유닛은 두 개이며,
    상기 두 개의 이송 유닛은 서로 상하 방향으로 나란하게 위치되어 어느 하나의 이송 유닛이 가열 유닛으로부터 가열된 몰드를 배출하면 나머지 하나의 이송 유닛이 가열 유닛에 가열되지 않은 몰드를 공급하는 유리 성형 장치.
  10. 제1항에 있어서,
    상기 안착 부재는,
    상기 몰드를 감싸도록 형성되되, 상기 몰드가 출입 가능하도록 일측이 개구되게 형성된 몸체부; 및
    상기 몸체부의 바닥면에 상기 몰드가 출입되는 방향을 따라서 길이를 갖도록 인입되게 형성된 인입부;를 포함하는 유리 성형 장치.
  11. 제1항 또는 제10항에 있어서,
    상기 안착 부재의 내부에는 냉각수가 채워지거나 이송될 수 있는 냉각관이 설치된 유리 성형 장치.
  12. 제1항에 있어서,
    상기 냉각 유닛은,
    원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트; 및
    상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재;를 포함하는 유리 성형 장치.
  13. 제12항에 있어서,
    상기 냉각 유닛은,
    상기 안착 부재에 인접하게 위치되어 상기 제1 회전 플레이트가 회전되다가 회전이 일정 시간 정지된 상태에서 상기 몰드에 접촉될 수 있도록 이동되어 상기 몰드를 냉각시키는 냉각 부재;를 더 포함하는 유리 성형 장치.
  14. 제12항에 있어서,
    상기 냉각 유닛은,
    상기 안착 부재의 상부에 위치하는 냉각 부재; 및 상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 상승 또는 하강시킬 수 있는 동력 부재;를 더 포함하는 유리 성형 장치.
  15. 제1항에 있어서,
    상기 냉각 유닛은,
    원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트;
    상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재;
    상기 제1 회전 플레이트에 회전축에 의해 결합되어 상기 제1 회전 플레이트로부터 상방으로 이격되게 위치되어 상기 제1 회전 플레이트와 함께 회전되는 제2 회전 플레이트; 및
    상기 제2 회전 플레이트의 하측에 승강가능하도록 결합되고, 상기 안착 부재와 대응되도록 위치되며, 상기 몰드에 접촉되도록 하강되어 상기 몰드를 냉각시키는 냉각 부재;를 포함하는 유리 성형 장치.
  16. 제1항에 있어서,
    상기 냉각 유닛은,
    원형으로 이루어져서 상면의 가장자리를 따라 상기 안착 부재가 일정 간격 마다 위치된 제1 회전 플레이트;
    상기 제1 회전 플레이트에 결합되어 상기 제1 회전 플레이트를 회전시키는 제1 동력 부재;
    상기 제1 회전 플레이트에 회전축에 의해 결합되어 상기 제1 회전 플레이트로부터 상방으로 이격되게 위치되어 상기 제1 회전 플레이트와 함께 회전되는 제2 회전 플레이트; 및
    상기 제2 회전 플레이트의 하측에 결합되고, 상기 안착 부재와 대응되도록 위치되며, 상기 몰드에 접촉되면 상기 몰드를 냉각시키는 냉각 부재; 및
    상기 제2 회전 플레이트의 회전축에 결합되어 상기 냉각 부재가 상기 몰드에 접촉되거나 상기 몰드로부터 멀어지도록 상기 제2 회전 플레이트의 회전축을 승강시키는 제2 동력 부재;를 포함하는 유리 성형 장치.
  17. 제1항에 있어서,
    상기 가열 유닛은 복수개이며,
    상기 복수의 가열 유닛은 측방향으로 나란하게 위치된 유리 성형 장치.
  18. 제1항에 있어서,
    상기 가열 유닛은 두 개이며,
    상기 두 개의 가열 유닛은 상기 이송 유닛을 기준으로 반대 영역에 각각 위치된 유리 성형 장치.
PCT/KR2017/015678 2017-01-09 2017-12-28 유리 성형 장치 WO2018128332A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170002771A KR101804395B1 (ko) 2017-01-09 2017-01-09 유리 성형 장치
KR10-2017-0002771 2017-01-09

Publications (2)

Publication Number Publication Date
WO2018128332A2 true WO2018128332A2 (ko) 2018-07-12
WO2018128332A3 WO2018128332A3 (ko) 2018-08-30

Family

ID=60921511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015678 WO2018128332A2 (ko) 2017-01-09 2017-12-28 유리 성형 장치

Country Status (2)

Country Link
KR (1) KR101804395B1 (ko)
WO (1) WO2018128332A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702445A (zh) * 2018-12-30 2019-05-03 珠海格力智能装备有限公司 取料机构及具有其的液晶屏装配装置
CN109721224A (zh) * 2019-02-21 2019-05-07 东旭科技集团有限公司 热弯机
CN109531616B (zh) * 2018-12-30 2020-10-23 珠海格力智能装备有限公司 装配机构及具有其的液晶屏装配装置
CN113654357A (zh) * 2021-07-29 2021-11-16 扬州美德莱医疗用品有限公司 一种人造牙烧结炉及其烧结方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201888B2 (ja) * 1993-06-28 2001-08-27 キヤノン株式会社 光学素子の製造方法
EP0635459A3 (en) * 1993-07-19 1995-06-14 Corning Inc Method and device for pressing glass objects.
KR200183941Y1 (ko) * 1999-12-09 2000-06-01 세향산업주식회사 고주파 유도가열용 히터 스테이션
JP2010254519A (ja) * 2009-04-24 2010-11-11 Konica Minolta Opto Inc ガラス成形体の製造装置、及びガラス成形体の製造方法
KR101735974B1 (ko) * 2012-09-28 2017-05-15 도시바 기카이 가부시키가이샤 성형 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702445A (zh) * 2018-12-30 2019-05-03 珠海格力智能装备有限公司 取料机构及具有其的液晶屏装配装置
CN109702445B (zh) * 2018-12-30 2019-12-31 珠海格力电器股份有限公司 取料机构及具有其的液晶屏装配装置
CN109531616B (zh) * 2018-12-30 2020-10-23 珠海格力智能装备有限公司 装配机构及具有其的液晶屏装配装置
CN109721224A (zh) * 2019-02-21 2019-05-07 东旭科技集团有限公司 热弯机
CN109721224B (zh) * 2019-02-21 2022-02-08 四川涪盛科技有限公司 热弯机
CN113654357A (zh) * 2021-07-29 2021-11-16 扬州美德莱医疗用品有限公司 一种人造牙烧结炉及其烧结方法

Also Published As

Publication number Publication date
WO2018128332A3 (ko) 2018-08-30
KR101804395B1 (ko) 2017-12-04

Similar Documents

Publication Publication Date Title
WO2018128332A2 (ko) 유리 성형 장치
WO2018199402A1 (ko) 곡면 글라스의 제조 방법
WO2014109526A1 (ko) 반도체 웨이퍼의 연속 처리 장치 및 방법
WO2014073831A1 (ko) 기판 트레이 및 이를 포함하는 기판처리장치
WO2015064882A1 (ko) 모바일 기기용 곡면 윈도우 글라스 제조방법
WO2014148857A1 (ko) 기판과 기판 반송용 트레이 반송장치 및 반송방법
WO2019221347A1 (ko) 비정형 곡면패널 성형장치 및 이를 이용한 비정형 곡면패널 성형방법
WO2014109528A1 (ko) 반도체 웨이퍼의 연속 처리방법
WO2019231036A1 (ko) 도어 이동부를 구비한 멀티 챔버형 가열기
WO2014157827A1 (ko) 챔버타입의 원자층 고속 증착장치
WO2016098974A1 (ko) 글래스 곡면 성형장치 및 이를 이용한 글래스 곡면 성형방법
WO2019093609A1 (ko) 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치
WO2019231035A1 (ko) 멀티 챔버형 가열기
WO2018143581A1 (ko) 면취 장치 및 면취 방법
WO2022124780A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2019066126A1 (en) CURVED DISPLAY PANEL CONNECTING APPARATUS
WO2018128331A1 (ko) 유리 성형 장치
KR20180069991A (ko) 분리형 웨이퍼 서셉터 및 이를 포함하는 반도체 공정 챔버 장비
WO2011136604A2 (ko) 기판 처리 장치
WO2016039563A1 (ko) 독립형 2열 도자구조체
WO2016186386A1 (ko) 유기막 증착 장치와, 방법 및 유기막 장치
WO2016117756A1 (ko) 단결정 성장용 히터 및 이를 이용한 단결정 성장장치 및 성장방법
WO2020130608A2 (ko) 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
WO2017007065A1 (ko) 다단으로 탈포가 가능한 오토클레이브 장치
WO2017183872A1 (ko) 건식 에칭장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889925

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889925

Country of ref document: EP

Kind code of ref document: A2