WO2016159392A1 - 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法 - Google Patents

熱間圧延棒線材、部品および熱間圧延棒線材の製造方法 Download PDF

Info

Publication number
WO2016159392A1
WO2016159392A1 PCT/JP2016/061635 JP2016061635W WO2016159392A1 WO 2016159392 A1 WO2016159392 A1 WO 2016159392A1 JP 2016061635 W JP2016061635 W JP 2016061635W WO 2016159392 A1 WO2016159392 A1 WO 2016159392A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
hot
content
less
fatigue strength
Prior art date
Application number
PCT/JP2016/061635
Other languages
English (en)
French (fr)
Inventor
聡 志賀
久保田 学
一 長谷川
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177027440A priority Critical patent/KR102010684B1/ko
Priority to EP16773271.8A priority patent/EP3279361B1/en
Priority to CN201680018922.2A priority patent/CN107429359B/zh
Priority to JP2017510277A priority patent/JP6465206B2/ja
Priority to US15/562,321 priority patent/US20180355455A1/en
Publication of WO2016159392A1 publication Critical patent/WO2016159392A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a hot-rolled bar wire, a part, and a method for manufacturing a hot-rolled bar wire.
  • Mechanical parts such as gears and pulleys are used in automobiles or industrial machines. Many of these mechanical parts are manufactured in the following manner. Prepare a material made of alloy steel for machine structure.
  • the material is, for example, a hot-rolled bar wire having a chemical composition corresponding to JIS standard SCr420, SCM420, or SNCM420.
  • Surface hardening treatment is performed on the cut intermediate product.
  • the surface hardening treatment is, for example, carburizing quenching, carbonitriding quenching, or induction quenching. Tempering is carried out at a tempering temperature of 200 ° C. or lower on the surface-cured intermediate product.
  • a shot peening treatment is performed on the intermediate product after tempering as necessary.
  • a machine part is manufactured by the above process.
  • Patent Document 1 describes gear steel with Si: 0.1% or less and P: 0.01% or less.
  • the gear steel described in Patent Document 1 is said to have high strength, toughness and high reliability by reducing Si and P.
  • Patent Document 2 contains Cr: 1.50 to 5.0%, and if necessary, 7.5%> 2.2 ⁇ Si (%) + 2.5 ⁇ Mn (%) + Cr (% ) + 5.7 ⁇ Mo (%) and Si: 0.40 to 1.0%, steel for gears is described.
  • the gear steel described in Patent Document 2 is said to have excellent tooth surface strength by having such a chemical composition.
  • Patent Document 3 discloses a carburized gear steel containing Si: 0.35 to 3.0% or less, V: 0.05 to 0.5%, or the like.
  • the steel for carburized gears described in Patent Document 3 is said to have high bending fatigue strength and high surface fatigue strength by having such a chemical composition.
  • Patent Document 4 discloses a case-hardened steel that improves the machinability by controlling the solidification rate during casting and finely dispersing sulfides in order to suppress the coarsening of sulfides.
  • Patent Document 5 includes a steel bar and a wire rod for hot forging containing Si: 0.30 to 0.60%, Cr: 1.60 to 2.00%, and further defining a Cr content and a Mo content. Is disclosed. The hot forging steel bar and wire described in Patent Document 5 are said to achieve both fatigue strength and machinability.
  • Patent Document 6 discloses a case-hardening steel having excellent low cycle fatigue strength accompanied by large strain by strictly controlling the alloy elements to improve plastic deformation resistance and grain boundary strength.
  • the gear steel described in Patent Document 1 has not been studied for surface fatigue strength, and thus may have low surface fatigue strength. Moreover, since the steel for gears of patent document 2 is not examined about bending fatigue strength, bending fatigue strength may be low.
  • the carburized gear steel described in Patent Document 3 contains V, V increases the hardness of the steel after hot rolling or hot forging, so that the steel is cut after hot rolling or hot forging. May decrease.
  • the case hardening steel of patent document 4 is not examined about surface fatigue strength and bending fatigue strength, and the case where these are low is considered.
  • the steel bar for hot forging described in Patent Document 5 has both high bending fatigue strength, surface fatigue strength, and machinability by specifying the total amount of Cr and Mo contents.
  • no consideration is given to segregation, and therefore machinability may be insufficient in large-scale mass production.
  • case-hardened steel described in Patent Document 6 only low cycle fatigue strength is mentioned, and bending fatigue strength, surface fatigue strength, wear resistance, and machinability are not studied.
  • Patent Documents 1 to 6 do not disclose steels having excellent bending fatigue strength, surface fatigue strength, wear resistance, and excellent machinability.
  • the present invention has been made in view of the above-described problems, and the subject of the present invention is a hot-rolled rod and wire having excellent bending fatigue strength, surface fatigue strength, wear resistance and machinability, It is to provide a component and a manufacturing method thereof.
  • Mn is microsegregated in the steel during continuous casting, and this microsegregation exists in the steel without disappearing during rolling and forging. Micro segregation of Mn promotes the formation of bainite structure in addition to ferrite structure and pearlite structure in steel after hot rolling or hot forging, or even after normalizing, resulting in hardening. Machinability decreases.
  • Mn in the equation (2) is the content of Mn in the steel (mass%)
  • Mn max is the Mn content of between trees of the primary arms of dendrite of the slab. Mn max /Mn ⁇ 2.4 (2) Mn max is obtained by the following method.
  • test piece having a width of 50 mm, a length of 50 mm and a thickness of 8 mm is taken in the thickness direction from the surface layer of the manufactured continuous cast slab.
  • a surface having a width of 50 mm and a length of 50 mm is defined as a “test surface”. After filling the test piece with resin, the test surface is mirror-polished.
  • EPMA Electro Probe Micro Analyzer
  • the beam diameter at the time of measurement by EPMA is 1 ⁇ m, and line analysis is performed in a range of 50 mm parallel to the surface at a position 15 mm away from the slab surface.
  • the distribution of Mn content between the primary arms of dendrite is measured by line analysis with EPMA, and the maximum value of the measured Mn content is defined as the Mn content between dendrite trees.
  • Formula (2) was defined as a value obtained by dividing the Mn content between dendritic trees measured by line analysis by the Mn average content of the slab measured in advance.
  • the hot-rolled bar wire of the present invention has been completed based on the above findings.
  • the hot-rolled bar wire according to the present invention will be described in detail.
  • “%” of the content of elements constituting the chemical composition means “mass%”.
  • the present invention is mass%, C: 0.05 to 0.30% Si: 0.30 to 0.60%, Mn: 0.40 to 1.0%, S: 0.008 to less than 0.040%, Cr: 1.60 to 2.00% Mo: 0 to 0.1%, Al: 0.025 to 0.05%, N: 0.010 to 0.025%, Ti: 0 to 0.003%, Bi: 0.0001 to 0.0050% And containing
  • the balance consists of Fe and impurities, and P and O in the impurities are respectively P: 0.025% or less and O: 0.002% or less, It relates to a hot-rolled rod and wire material characterized in that it has a chemical composition as follows, the structure is composed of ferrite pearlite or ferrite pearlite bainite, and satisfies the formula (1). 1.70 ⁇ Cr + 2 ⁇ Mo ⁇ 2.10 (1) Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  • the present invention relates to the hot-rolled rod and wire according to (1), which contains Nb: 0.08% or less in mass% instead of part of Fe.
  • the present invention is the hot-rolled rod and wire according to (1) or (2), wherein instead of part of the Fe, Cu: 0.40% or less, and Ni: 0.80%
  • the present invention relates to a hot-rolled rod and wire containing at least one selected from the following.
  • the present invention relates to a component obtained by cutting the hot-rolled rod and wire according to any one of (1) to (3).
  • the production method of the present invention comprises the chemical component according to any one of (1) to (3), and the Mn content Mn max between the dendrite primary arms and the steel A hot-rolling characterized in that a slab satisfying the following formula (2) with a ratio to Mn content (Mn max / Mn) is produced by a continuous casting method or an ingot-making method, and the slab is hot-rolled
  • Mn max /Mn Mn content (mass%) of the steel is substituted for Mn in the formula (2), and the Mn content between the primary arms of the dendrite of the slab is substituted for Mn max .
  • the hot-rolled bar wire of the present invention has excellent bending fatigue strength, surface fatigue strength, wear resistance and machinability.
  • FIG. 1 is a side view of a small roller test piece for a roller pitching test produced in the example.
  • FIG. 2 is a side view of the Ono rotary bending fatigue test piece with a notch produced in the example.
  • FIG. 3 is a diagram illustrating carburizing and quenching conditions in the examples.
  • FIG. 4 is a front view of a large roller for a roller pitching test in the embodiment.
  • the hot-rolled bar wire according to the present invention will be described in more detail.
  • the content of the component elements of the hot-rolled bar wire will be described.
  • “%” for the component is mass%.
  • C 0.05-0.30%
  • Carbon (C) increases the tensile strength and fatigue strength of steel.
  • the C content is 0.05 to 0.30%.
  • the C content is preferably 0.10 to 0.28%, and more preferably 0.15 to 0.25%.
  • Si Si: 0.30-0.60%)
  • Si increases the hardenability of the steel. Si further increases the temper softening resistance of the steel. Therefore, Si increases the surface fatigue strength and wear resistance of steel.
  • Si if Si is contained excessively, the strength after hot rolling or hot forging of steel becomes excessively high. As a result, the machinability of steel decreases. If Si is excessively contained, the bending fatigue strength further decreases. Therefore, the Si content is 0.30 to 0.60%.
  • the minimum of preferable Si content is higher than 0.30%, More preferably, it is 0.40% or more, More preferably, it is 0.45% or more.
  • the upper limit of the Si content is preferably less than 0.60%, more preferably 0.57% or less, and further preferably 0.55% or less.
  • Mn Manganese
  • Mn increases the hardenability of the steel and increases the strength of the steel. Therefore, Mn increases the strength of the core of machine parts that have been carburized or carbonitrided.
  • Mn is contained excessively, the machinability of the steel after hot rolling or hot forging is lowered. Furthermore, Mn is easily segregated between dendrite trees, and segregation tends to generate hard bainite, which lowers machinability. Therefore, the Mn content is 0.40 to 1.0%.
  • the minimum of preferable Mn content is more than 0.50%, More preferably, it is 0.55% or more, More preferably, it is 0.60% or more.
  • the upper limit with preferable Mn content is less than 1.0%, More preferably, it is 0.95% or less, More preferably, it is 0.9% or less.
  • S Sulfur
  • MnS increases the machinability of steel.
  • coarse MnS is formed.
  • Coarse MnS lowers the bending fatigue strength and surface fatigue strength of steel. Therefore, the S content is 0.008 to less than 0.040%.
  • the minimum of preferable S content is more than 0.008%, More preferably, it is 0.009% or more, More preferably, it is 0.010% or more.
  • the upper limit of the preferable S content is 0.030% or less, more preferably less than 0.030%, and still more preferably less than 0.020%.
  • Chromium (Cr) increases the hardenability of the steel and the temper softening resistance of the steel. Therefore, Cr increases the bending fatigue strength, surface fatigue strength, and wear resistance of steel. On the other hand, if Cr is contained excessively, the formation of bainite is promoted in the steel after hot rolling, after hot forging, or after normalizing. Therefore, the machinability of the steel is reduced. Therefore, the Cr content is 1.60 to 2.00%.
  • the lower limit of the preferable Cr content is more than 1.60%, more preferably 1.70% or more, and further preferably 1.80% or more.
  • the upper limit of preferable Cr content is less than 2.00%, More preferably, it is 1.95% or less, More preferably, it is 1.90% or less.
  • Molybdenum (Mo) may or may not be contained. Mo increases the hardenability and temper softening resistance of the steel. Therefore, Mo increases the bending fatigue strength, surface fatigue strength, and wear resistance of steel. On the other hand, if Mo is contained excessively, bainite generation is promoted in steel after hot rolling, after hot forging, or after normalization. Therefore, the machinability of the steel is reduced. Therefore, the Mo content is 0 to 0.10%. The minimum of preferable Mo content is 0.02% or more. The upper limit of the preferable Mo content is less than 0.10%, more preferably 0.08% or less, and still more preferably 0.05% or less.
  • Al 0.025 to 0.05%)
  • Aluminum (Al) deoxidizes steel. Al further combines with N to form AlN. AlN suppresses the coarsening of austenite crystal grains due to carburizing heating. On the other hand, if Al is contained excessively, a coarse Al oxide is formed. Coarse Al oxide reduces the bending fatigue strength of steel. Therefore, the Al content is 0.025 to 0.05%.
  • the minimum of preferable Al content is more than 0.025%, More preferably, it is 0.027% or more, More preferably, it is 0.030% or more.
  • the upper limit of the preferable Al content is less than 0.05%, more preferably 0.045% or less, and further preferably 0.04% or less.
  • N Nitrogen (N: 0.010 to 0.025%) Nitrogen (N) combines with Al or Nb to form AlN or NbN. AlN or NbN suppresses the coarsening of austenite crystal grains due to carburizing heating. On the other hand, if N is contained excessively, it becomes difficult to produce stably in the steel making process. Therefore, the N content is 0.010 to 0.025%.
  • the minimum of preferable N content is more than 0.010%, More preferably, it is 0.012% or more, More preferably, it is 0.013% or more.
  • the upper limit of the preferable N content is less than 0.025%, more preferably 0.020% or less, and still more preferably 0.018% or less.
  • the Ti content is 0 to 0.003%.
  • the upper limit of the Ti content is preferably less than 0.003%, more preferably 0.002% or less.
  • Bi 0.0001% to less than 0.0050%
  • Bi is an important element in the present invention.
  • a small amount of Bi serves as an inoculation nucleus for coagulation, and has the effect of reducing the interval between dendritic arms during coagulation and refining the coagulated tissue.
  • segregation of easily segregated elements such as Mn is reduced, the formation of bainite structure due to microsegregation is suppressed, and machinability is improved.
  • the Bi content needs to be 0.0001% or more.
  • the Bi content is set to 0.0001% or more and less than 0.0050%. In order to further improve the machinability, the Bi content is preferably set to 0.0010% or more.
  • Phosphorus (P) is an impurity. P decreases the fatigue strength and hot workability of steel. Therefore, it is preferable that the P content is small.
  • the P content is 0.025% or less.
  • a preferable P content is less than 0.025%, and more preferably 0.020% or less.
  • Oxygen (O) combines with Al to form oxide inclusions. Oxide inclusions reduce the bending fatigue strength of steel. Therefore, it is preferable that the O content is as low as possible.
  • the O content is 0.002% or less.
  • the preferable O content is less than 0.002%, and more preferably 0.001% or less. It is further desirable to reduce it as much as possible within a range that does not increase the cost in the steel making process.
  • the chemical composition of the hot-rolled bar wire according to the present embodiment may contain Nb instead of a part of Fe.
  • Niobium (Nb) is a selective element. Nb combines with C and N to form Nb carbide, Nb nitride or Nb carbonitride. Nb carbide, Nb nitride, and Nb carbonitride suppress the coarsening of austenite crystal grains during carburizing heating, as with Al nitride. If Nb is contained even a little, the above effect can be obtained. On the other hand, if Nb is contained excessively, Nb carbonitride, Nb nitride and Nb carbonitride become coarse. Therefore, coarsening of austenite crystal grains cannot be suppressed during carburizing heating. Therefore, the Nb content is 0.08% or less. The minimum with preferable Nb content is 0.01% or more. The upper limit of the preferable Nb content is less than 0.08%, and more preferably 0.05% or less.
  • the balance of the chemical composition of the hot-rolled bar wire according to the present embodiment is Fe and impurities.
  • the impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
  • the impurity is, for example, copper (Cu), nickel (Ni), or the like.
  • the contents of Cu and Ni as impurities are similar to the contents of Cu and Ni in the SCr steel and SCM steel defined in JIS G4053 alloy steel for machine structural use, and the Cu content is 0.40% or less. Yes, the Ni content is 0.80% or less.
  • Nickel (Ni) has an effect of improving hardenability and is an effective element for increasing fatigue strength. Therefore, nickel (Ni) may be contained as necessary.
  • the Ni content is excessively contained, not only the effect of increasing the fatigue strength by improving the hardenability is saturated, but also in the steel after hot rolling, after hot forging or after normalizing treatment. A bainite structure is easily formed. Therefore, the amount of Ni in the case of inclusion is set to 0.80% or less.
  • the amount of Ni is preferably 0.60% or less.
  • the amount of Ni when contained is preferably 0.10% or more.
  • F1 defined by the formula (1) is 1.70 to 2.10.
  • F1 Cr + 2 ⁇ Mo (1)
  • the content (mass%) of the corresponding element is substituted for the element symbol in Formula F1.
  • F1 is less than 1.70, at least one of the bending fatigue strength, surface fatigue strength, and wear resistance of the steel is low. On the other hand, if F1 exceeds 2.10, the formation of bainite is promoted in the steel after hot rolling, after hot forging or after normalization. Therefore, the machinability of the steel is reduced. If F1 is 1.70 to 2.10, it is possible to increase the bending fatigue strength, surface fatigue strength, and wear resistance of the steel while suppressing deterioration of the machinability of the steel. A preferred lower limit of F1 is 1.80 or more. The preferable upper limit of F1 is less than 2.00.
  • the hot-rolled bar wire of the present invention has a ferrite / pearlite structure or a ferrite / pearlite / bainite structure.
  • [Production method] A method for manufacturing a hot-rolled bar wire according to an embodiment of the present invention will be described.
  • Continuous casting process A slab that satisfies the above chemical composition and has a ratio (Mn max / Mn) between the Mn content Mn max between the dendritic primary arms and the Mn content in the steel satisfies the formula (2).
  • Steel having the above chemical composition may be made into a slab by a continuous casting method, or may be made into an ingot (steel ingot) by an ingot-making method.
  • the casting conditions are, for example, using a 220 ⁇ 220 mm square mold, the superheat of the molten steel in the tundish is 10 to 50 ° C., and the casting speed is 1.0 to 1.5 m / min.
  • the average cooling rate is desirably 100 ° C./min or more and 500 ° C./min or less.
  • the average cooling rate within the temperature range from the liquidus temperature to the solidus temperature at a depth of 15 mm from the slab surface is obtained by etching the cross section of the obtained slab with picric acid and a depth of 15 mm from the slab surface.
  • the average cooling rate in the above temperature range is less than 100 ° C./min, solidification is too slow, the dendrite trees spread, Mn segregates, and a bainite structure due to microsegregation is generated, resulting in machinability. descend.
  • the solidified structure becomes non-uniform, and there is a possibility that cracking due to the non-uniform structure may occur.
  • the temperature range from the liquidus temperature to the solidus temperature is the temperature range from the start of solidification to the end of solidification. Therefore, the average cooling temperature in this temperature range means the average solidification rate of the slab.
  • the average cooling rate can be achieved by, for example, controlling the mold cross-sectional size, casting speed, etc. to appropriate values, or increasing the amount of cooling water used for water cooling immediately after casting. This is applicable to both continuous casting and ingot casting methods.
  • the manufactured slab is charged into a heating furnace, heated at a heating temperature of 1250 to 1300 ° C. for 10 hours or more, and then subjected to ingot rolling to manufacture a steel slab.
  • said heating temperature means the average temperature in a furnace
  • heating time means in-furnace time.
  • the steel slab thus obtained is charged into a heating furnace, heated at a heating temperature of 1250 to 1300 ° C. for 1.5 hours or more, and then hot-rolled at a finishing temperature of 900 to 1100 ° C. After finish rolling, it cools in air
  • the finish rolling After the finish rolling, it may be cooled to room temperature under the condition that the cooling rate is equal to or less than the above-described cooling, but in order to increase productivity, air cooling is performed when the temperature reaches 600 ° C. It is preferable to cool by appropriate means such as mist cooling and water cooling.
  • the above heating temperature and heating time also mean the average temperature and the in-furnace time in the furnace, respectively.
  • the finishing temperature of hot rolling means the surface temperature of the bar wire material at the final stand exit of a rolling mill provided with a plurality of stands.
  • the cooling rate after finish rolling refers to the cooling rate on the surface of the bar wire.
  • the area reduction rate (RD) represented by the following formula (3) is 87.5% or more.
  • RD ⁇ 1- (cross-sectional area of steel bar or wire / cross-sectional area of steel slab) ⁇ ⁇ 100 (3)
  • said cross-sectional area means the area in a cross section perpendicular
  • Steels 1 to 15 in Table 1 are steels having a chemical composition defined in the present invention.
  • Steels 16 to 35 are comparative steels whose chemical compositions deviate from the conditions specified in the present invention, comparative steels whose average cooling rate deviates from the desired range, or those in which the F1 value or F2 value is desirable. It is steel of the comparative example which has come off.
  • the underline of the numerical value in Table 1 shows that it is out of the range of the rolled bar wire for hot forging by this Embodiment.
  • the slab of each mark was heated at 1250 ° C. for 2 hours.
  • the heated slab was hot-rolled to produce a plurality of round bars having a diameter of 35 mm. After hot rolling, the round bar was allowed to cool in the atmosphere.
  • Various hot-rolled bar wires were manufactured as described above.
  • the manufactured slab was charged into a heating furnace, heated at a heating temperature of 1250 to 1300 ° C. for 10 hours or more, and then batch-rolled.
  • the hot rolling the steel pieces after the block rolling are charged into a heating furnace, heated at a heating temperature of 1250 to 1300 ° C for 1.5 hours or more, and then hot rolled at a finishing temperature of 900 to 1100 ° C. did.
  • After the finish rolling it was cooled in the air under the condition that the cooling rate was not higher than the cooling rate.
  • the area reduction ratio (RD) from the steel slab to hot rolling was 87.5% or more.
  • the presence or absence of surface cracks during casting was determined visually and listed in Table 1.
  • Mn max was determined by the following method. A test piece having a width of 50 mm, a length of 50 mm, and a thickness of 8 mm was taken in the thickness direction from the surface layer of the produced slab, and the surface having a width of 50 mm and a length of 50 mm was defined as a “test surface”. After filling the test piece with resin, the test surface was mirror-polished. EPMA was used to measure the distribution of Mn content. The beam diameter at the time of measurement by EPMA was 1 ⁇ m, and line analysis was performed in a range of 50 mm parallel to the surface at a position 15 mm away from the slab surface.
  • Mn content Distribution of Mn content between primary arms of dendrite was measured by line analysis using EPMA, and the maximum value of the measured Mn content was defined as Mn content (Mn max ) between dendrite trees. And the value which remove
  • a round bar having a diameter of 35 mm of each steel number is machined, and a roller pitching small roller test piece (hereinafter, simply referred to as a small roller test piece) shown in FIG. 1 and a notched ono type rotary bending fatigue test shown in FIG. A piece (both in FIG. 1 and FIG. 2, the unit of dimensions in the drawing is mm) was produced.
  • the small roller test piece shown in FIG. 1 was provided with a test part (a cylindrical part having a diameter of 26 mm and a width of 28 mm) at the center.
  • Carburizing and quenching was performed on the prepared test pieces under the conditions shown in FIG. 3 using a gas carburizing furnace. After quenching, tempering was performed at 150 ° C. for 1.5 hours. For the small roller test piece and the Ono type rotating bending fatigue test piece, the gripping part was finished for the purpose of removing heat treatment strain.
  • the large roller shown in FIG. 4 is made of steel satisfying the standard of JIS standard SCM420 (steel number 17), and is a general manufacturing process, that is, normalization, specimen processing, eutectoid carburization with a gas carburizing furnace, low temperature tempering. And polishing.
  • a roller pitching test using a small roller test piece and a large roller was performed under the conditions shown in Table 2.
  • the rotation speed of the small roller test piece was 1000 rpm
  • the slip ratio was -40%
  • the contact surface pressure between the large roller and the small roller test piece under test was 4000 MPa
  • the number of repetitions was 2.0 ⁇ 10. 7 times.
  • a lubricant commercial oil for automatic transmission
  • the number of tests in the roller pitching test was six.
  • an SN diagram was prepared with the surface pressure on the vertical axis and the number of repetitions until the occurrence of pitching on the horizontal axis.
  • the highest surface pressure was defined as the surface fatigue strength of the steel number.
  • the area of the largest thing became 1 mm ⁇ 2 > or more among the places where the surface of a small roller test piece was damaged, it defined as generating pitting.
  • Table 3 shows the surface fatigue strength obtained by the test.
  • the surface fatigue strength of steel number 16 carburized steel 16 that satisfies the standard of JIS standard SCr420H, which is a general-purpose steel type was defined as a reference value (100%).
  • the surface fatigue strength of each test number was shown by ratio (%) with respect to a reference value. If the surface fatigue strength was 120% or more, it was judged that excellent surface fatigue strength was obtained.
  • the bending fatigue strength test was determined by an Ono type rotating bending fatigue test.
  • the number of tests in the Ono type rotating bending fatigue test was 8 steel numbers.
  • the rotational speed at the time of the test was 3000 rpm, and the others were tested by ordinary methods. Among those that did not break until the number of repetitions of 1.0 ⁇ 10 4 times and 1.0 ⁇ 10 7 times, the highest stress was defined as medium cycle and high cycle rotational bending fatigue strength, respectively.
  • Table 3 shows the bending fatigue strength of medium and high cycles.
  • the standard value (100%) is the bending fatigue strength of medium number and high cycle steel No. 16 carburized steel 16 that meets the standard of JIS standard SCr420H, which is a general-purpose steel type. It was.
  • the bending fatigue strength of the middle cycle and the high cycle of each steel number was shown by ratio (%) with respect to a reference value. It was judged that an excellent bending fatigue strength was obtained when the bending fatigue strength was 115% or more in both the middle cycle and the high cycle.
  • a cutting test was conducted to evaluate machinability.
  • a cutting specimen was obtained by the following method. Each steel number 70 mm diameter steel bar was heated at a heating temperature of 1250 ° C. for 30 minutes. The heated steel bar was hot forged at a finishing temperature of 950 ° C. or higher to obtain a round bar having a diameter of 60 mm. A cutting test piece having a diameter of 55 mm and a length of 450 mm was obtained from this round bar by machining. A cutting test was performed using the cutting test piece under the following conditions.
  • Cutting test (turning) Insert Base material material Carbide P20 grade, coating None condition: peripheral speed 200m / min, feed 0.30mm / rev, cutting 1.5mm, water-soluble cutting oil used Measurement item: flank after 10 minutes cutting time Main cutting edge wear amount
  • Table 3 shows the amount of main cutting edge wear obtained.
  • the main cutting edge wear amount of steel number 17 that satisfies the standard of JIS standard SCM420H, which is general as a general-purpose steel type, was defined as a reference value (100%).
  • the amount of main cutting edge wear of each steel number was shown by ratio (%) to a standard value. If the main cutting edge wear amount was 70% or less, which is the main cutting edge wear amount of Steel No. 16, it was judged that excellent machinability was obtained.
  • Table 3 shows the average cooling rate, F2 value, occurrence of cracks during casting, microstructure, medium cycle bending fatigue strength, high cycle bending fatigue strength, surface fatigue strength, wear amount, and main cutting edge wear amount.
  • the underline in Table 3 means that the condition and target of the formula (2) of the present invention are not satisfied.
  • the chemical composition of steels 1 to 15 is within the range of the chemical composition of the hot forging rolled steel bar or wire according to the present embodiment, and the formula (1) and Equation (2) was satisfied. As a result, Steels 1 to 15 had excellent bending fatigue strength, surface fatigue strength, wear resistance and machinability.
  • steel 16 is SCR420 specified in JIS
  • Si is SCR420 specified in JIS
  • Cr amount is out of the scope of the present invention
  • steel 17 is SCM420 specified in JIS.
  • Cr, Mo amount and F2 value are out of the scope of the present invention, and any of the target bending fatigue strength, surface fatigue strength, and machinability is not obtained.
  • Steel 18 exceeded the upper limit of the Mn content and the Mo content of the hot-rolled bar wire according to the present embodiment.
  • the Mo content was large, and the bending fatigue strength and the surface fatigue strength were more than specified.
  • F1 exceeded the upper limit of formula (1) and Mn was excessively contained, a lot of hard bainite was generated and machinability was lowered.
  • Steel 19 exceeded the upper limit of the Mo content of the hot-rolled rod and wire according to the present embodiment and was below the lower limit of the Al content. Although the Al content was low and the austenite crystal grains were coarsened, the Mo content was excessive, and a decrease in bending fatigue strength was avoided.
  • the value of F1 exceeded the upper limit of formula (1), and the machinability became low.
  • Steel 20 was lower than the Cr content of the hot-rolled bar wire according to the present embodiment, and exceeded the upper limits of the Mn content and the Mo content. Steel 20 had a high Mo content, and bending fatigue strength and surface fatigue strength were more than specified. However, since the value of F1 exceeded the upper limit of formula (1) and Mn was excessively contained, a lot of hard bainite was generated and machinability was lowered. Steel 21 exceeded the upper limit of the Cr content of the hot-rolled bar wire according to the present embodiment. Therefore, F1 value exceeded the upper limit of Formula (1), and machinability became low.
  • Steel 22 was within the chemical component range of the hot-rolled bar wire according to the present embodiment. However, the value of F1 of steel 22 was below the lower limit of formula (1), and the fatigue strength was low.
  • Steel 23 was below the lower limit of the Cr content of the hot-rolled rod and wire according to the present embodiment, and further exceeded the upper limits of the Mn content and the Mo content. Despite excessive Mo content, the Cr content was below the lower limit, and the value of F1 was below the lower limit of formula (1). For this reason, as a result, bending fatigue strength and surface fatigue strength were lowered.
  • Steel 24 was below the lower limit of the Si content of the hot-rolled rod and wire according to the present embodiment, and the Mn content exceeded the upper limit. As a result, the steel 24 had low surface fatigue strength and low machinability.
  • Steel 25 exceeded the upper limit of the Si content and the Mn content of the hot-rolled bar wire according to the present embodiment. As a result, the steel 25 has low machinability.
  • Steel 29 was below the lower limit of the Mn content of the hot-rolled bar wire according to the present embodiment. As a result, bending fatigue strength and surface fatigue strength were lowered. It is considered that since the Mn content is small, the core strength is insufficient, and the bending fatigue strength and the surface fatigue strength are reduced.
  • Steel 30 exceeded the upper limit of the Mn content of the hot-rolled bar wire according to the present embodiment. As a result, bending fatigue strength, surface fatigue strength, wear resistance and machinability were low. Since Mn is excessively contained, the depth of the carburized abnormal layer is increased, bending fatigue strength and surface fatigue strength are decreased, and since Mn is excessively contained, a lot of hard bainite is generated, and machinability. Is thought to have declined.
  • Steel 31 is an example in which the Bi content exceeds the range specified in the present invention. For this reason, hot workability deteriorated and cracking occurred during casting.
  • Steel 32 was within the chemical composition range of the hot-rolled bar wire according to the present embodiment. However, since the value of F1 exceeded the upper limit of the formula (1), the machinability was lowered.
  • Steel 33 was within the chemical composition range of the hot-rolled bar wire according to the present embodiment. However, the average cooling rate is not less than the desired upper limit, the solidified structure becomes non-uniform, and there is a risk that cracking due to the non-uniform structure may occur. For this reason, hot workability fell and the crack arose.
  • Steel 34 was within the chemical composition range of the hot-rolled bar wire according to the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、C:0.05〜0.30%、Si:0.30〜0.60%、Mn:0.40〜1.0%、S:0.008〜0.040%未満、Cr:1.60〜2.00%、Mo:0.1%以下、Al:0.025〜0.05%、N:0.010〜0.025%、Ti:0.003%以下、Bi:0.0001〜0.0050%を含有するとともに、残部がFe及び不純物からなり、不純物中のP及びOがそれぞれ、P:0.025%以下及びO:0.002%以下である化学組成を有し、組織がフェライト・パーライトまたはフェライト・パーライト・ベイナイトからなり、かつ、式(1)を満たす熱間圧延棒線材を採用する。1.70≦Cr+2×Mo≦2.10 …(1)

Description

熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
 本発明は、熱間圧延棒線材、部品および熱間圧延棒線材の製造方法に関する。
 本願は、2015年3月31日に、日本に出願された特願2015−071714号に基づき優先権を主張し、その内容をここに援用する。
 歯車、プーリなどの機械部品は、自動車又は産業機械に利用される。これらの機械部品の多くは、次の方法で製造される。機械構造用合金鋼からなる素材を準備する。素材はたとえば、JIS規格のSCr420、SCM420又はSNCM420に相当する化学組成を有する熱間圧延棒線材である。まず、素材に対して必要に応じて焼きならしを実施する。次に、素材に対して切削加工を実施する。切削された中間品に対して表面硬化処理を実施する。表面硬化処理はたとえば、浸炭焼入れ、浸炭窒化焼入れ、又は高周波焼入れである。表面硬化処理された中間品に対して200℃以下の焼戻し温度で焼戻しを実施する。焼戻し後の中間品に対して、必要に応じてショットピーニング処理を実施する。以上の工程により機械部品が製造される。
近年、自動車の燃費向上やエンジンの高出力化に対応するために、機械部品が軽量化され、小型化されている。機械部品にかかる負荷は従来と比較して増加している。そのため、機械部品には、優れた曲げ疲労強度、面疲労強度(接触疲労強度)及び耐摩耗性が求められている。
 特許文献1には、Si:0.1%以下、P:0.01%以下である歯車用鋼が記載されている。特許文献1に記載の歯車用鋼は、SiおよびPを低減することで、高い強度を有し、強靱で信頼性が高くなるとされている。
特許文献2には、Cr:1.50~5.0%を含有し、さらに必要に応じて、7.5%>2.2×Si(%)+2.5×Mn(%)+Cr(%)+5.7×Mo(%)を満たし、Si:0.40~1.0%を含有する歯車用鋼が記載されている。特許文献2に記載の歯車用鋼では、このような化学組成を有することにより、優れた歯面強度を有するとされている。
 特許文献3には、Si:0.35~3.0%以下、V:0.05~0.5%等を含有する浸炭歯車用鋼が開示されている。特許文献3に記載の浸炭歯車用鋼では、このような化学組成を有することにより、高い曲げ疲労強度と、高い面疲労強度とを有するとされている。
 特許文献4には、硫化物の粗大化を抑制するために、鋳造時の凝固速度を制御し、硫化物を微細に分散させることにより被削性を向上させる肌焼鋼が開示されている。
 特許文献5には、Si:0.30~0.60%、Cr:1.60~2.00%、を含有し、さらにCr含有量とMo含有量を規定した熱間鍛造用棒鋼及び線材が開示されている。特許文献5に記載の熱間鍛造用棒鋼及び線材では、疲労強度及び被削性を両立するとされている。
 特許文献6には、合金元素を厳密に制御して塑性変形抵抗能と粒界強度の向上を図ることによって、大きな歪を伴う低サイクル疲労強度の優れた肌焼鋼が開示されている。
日本国特開昭60−21359号公報 日本国特開平7−242994号公報 日本国特開平7−126803号公報 日本国特許第5114689号公報 日本国特許第5561436号公報 日本国特開平10−259450号公報
しかしながら、特許文献1に記載の歯車用鋼は、面疲労強度について検討されていないため、面疲労強度が低い場合がある。また、特許文献2に記載の歯車用鋼は、曲げ疲労強度について検討されていないため、曲げ疲労強度が低い場合がある。特許文献3に記載の浸炭歯車用鋼はVを含有するが、Vは、熱間圧延または熱間鍛造後の鋼の硬さを高めるため、熱間圧延または熱間鍛造後の鋼の被削性が低下する場合がある。
また、特許文献4に記載の肌焼鋼は、面疲労強度及び曲げ疲労強度について検討されておらず、これらが低い場合が考えられる。特許文献5に記載の熱間鍛造用棒鋼は、Cr及びMo含有量の総量を規定することにより、高い曲げ疲労強度、面疲労強度及び被削性を両立している。しかしながら、特許文献5に記載の熱間鍛造用棒鋼では、偏析に対する考慮がなされていないので、大規模な量産の場合、被削性が不十分になる恐れがある。特許文献6に記載の肌焼鋼は、低サイクル疲労強度向上のみ言及されており、曲げ疲労強度、面疲労強度、耐摩耗性、被削性について検討されていない。
以上のように、特許文献1~特許文献6には、優れた曲げ疲労強度、面疲労強度及び耐摩耗性を有し、かつ、優れた被削性を有する鋼が開示されていない。
 本発明は、上述した問題点に鑑みてなされたものであって、本発明の課題は、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有する、熱間圧延棒線材、部品およびその製造方法を提供することである。
 従来、Si、CrおよびMo含有量の調整などによって、浸炭または浸炭窒化後の曲げ・面疲労強度に優れた鋼材を得られることが知られていた。しかし、一般には相反する曲げ・面疲労強度と被削性とを高いレベルで両立することはできていなかった。そこで、曲げ・面疲労強度と被削性とを高いレベルで両立することのできる、熱間圧延棒線材の開発を目標に調査・研究を重ね、その結果、下記の知見を得た。
(a)Si含有量が高ければ、鋼の面疲労強度及び耐摩耗性が高くなる。さらに、Cr含有量及びMo含有量が高ければ、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性が高くなる。
(b)Mo含有量を高めると、熱間圧延または熱間鍛造後、あるいはさらに焼きならしを行った後に、フェライト組織、パーライト組織に加えてベイナイト組織の生成が促進されて鋼が硬くなるため、被削性が低下する。また、Moを添加しない場合でもCr含有量が多くなり過ぎると、同様にベイナイト組織の生成が促進されて、被削性が低下する。
(c)以上より、熱間圧延棒線材において、優れた曲げ疲労強度、面疲労強度、耐摩耗性、及び被削性を得るためには、Si、Cr及びMoの各含有量の限定に加えて、Cr含有量及びMo含有量との総量を調整するのが好ましいことを知見した。具体的には、鋼の化学組成が下記の式(1)を満たせば、優れた曲げ疲労強度、面疲労強度、耐摩耗性、及び被削性が得られることが判明した。式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 1.70≦Cr+2×Mo≦2.10 ・・・(1)
(d)上述のとおり、熱間圧延棒線材において、被削性を高めるには、熱間鍛造後、あるいはさらに焼きならしを行った後のベイナイト組織の生成を抑制することが必要である。ベイナイト生成を抑制するには、焼入れ性を高める元素であるCr、Mo含有量を調整することが好ましい。
(e)一方、熱間圧延棒線材のMnのミクロ偏析が大きい場合、被削性が低下する傾向があった。Cr、Mo含有量を調整したとしても、大規模な量産の場合、Mnのミクロ偏析によりベイナイト生成量が増え、被削性が不十分になる恐れがある。
(f)連続鋳造時に鋼中にMnがミクロ偏析し、このミクロ偏析が圧延、鍛造時に消えることなく鋼中に存在する。Mnがミクロ偏析することにより、熱間圧延または熱間鍛造後、あるいはさらに焼ならしを行った後も鋼中においてフェライト組織、パーライト組織に加えてベイナイト組織の生成が促進されて、硬くなるため被削性が低下する。
(g)溶鋼から鋳造した鋳片におけるMnのミクロ偏析を減らすことにより、熱間圧延棒線材においてミクロ偏析に起因した硬質なベイナイト組織の生成を抑制し,被削性が向上する。より具体的には、鋳片が次の式(2)を満たせば、熱間圧延棒線材の被削性が高まる。なお、式(2)中のMnは、鋼中のMnの含有量(質量%)であり、Mnmaxは、鋳片のデンドライトの1次アームの樹間のMn含有率である。
 Mnmax/Mn<2.4     ・・・(2)
 Mnmaxは、次の方法で求められる。製造した連続鋳造鋳片の表層から厚さ方向に幅50mm×長さ50mm×厚さ8mmの試験片を採取する。幅50mm×長さ50mmの表面を「被検面」とする。試験片を樹脂埋めした後、被検面を鏡面研磨する。
 Mn含有率の分布の測定にはEPMA(Electron Probe Micro Analyzer)を使用する。EPMAによる測定時のビーム径は1μmとし、鋳片表面から15mm離れた位置において表面と平行に50mmの範囲で線分析を行う。
 EPMAによる線分析によって、デンドライトの一次アーム間のMn含有率の分布を測定し、測定されたMn含有率の最大値をデンドライト樹間のMn含有率とする。式(2)は、線分析で測定されたデンドライト樹間のMn含有率を、あらかじめ測定した鋳片のMn平均含有率で除した値と定義した。
 式(2)が1.0の場合には、鋳片のデンドライト1次アームの樹芯と樹間でMn含有率に差がなく、Mnの偏析のない理想的な状態を示す。Mn偏析比が大きいほど、鋳片のデンドライト1次アームの樹芯と樹間のMn含有率の差が大きく、多くの硬質なベイナイト組織を生成し、被削性が低下することを示す。
 本発明の熱間圧延棒線材は、上述の知見に基づいて完成された。以下、本発明による熱間圧延棒線材について詳しく説明する。以下、化学組成を構成する元素の含有量の「%」は「質量%」を意味する。
 (1)本発明は、質量%で、
C:0.05~0.30%、
Si:0.30~0.60%、
Mn:0.40~1.0%、
S:0.008~0.040%未満、
Cr:1.60~2.00%、
Mo:0~0.1%、
Al:0.025~0.05%、
N:0.010~0.025%、
Ti:0~0.003%、
Bi:0.0001~0.0050%
を含有するとともに、
残部がFe及び不純物からなり、不純物中のP及びOがそれぞれ、
P:0.025%以下及び、
O:0.002%以下、
である化学組成を有し、組織がフェライト・パーライトまたはフェライト・パーライト・ベイナイトからなり、かつ、式(1)を満たすことを特徴とする熱間圧延棒線材に関する。
 1.70≦Cr+2×Mo≦2.10  …(1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
(2)本発明は、Feの一部に代えて、質量%で、Nb:0.08%以下を含有する、(1)に記載の熱間圧延棒線材に関する。
(3)本発明は、(1)又は(2)に記載の熱間圧延棒線材であって、前記Feの一部に代えて、Cu:0.40%以下、及びNi:0.80%以下から選ばれる1種以上を含有する、熱間圧延棒線材に関する。
(4)本発明は、(1)乃至(3)の何れか一項に記載の熱間圧延棒線材を切削加工して得られた部品に関する。
(5)本発明の製造方法は、(1)乃至(3)の何れか一項に記載の化学成分を有し、かつデンドライトの1次アームの樹間のMn含有率Mnmaxと鋼中のMn含有率との比(Mnmax/Mn)が下記式(2)を満たす鋳片を連続鋳造法または造塊法で製造し、前記鋳片を熱間圧延することを特徴とする熱間圧延棒線材の製造方法に関する。
 Mnmax/Mn<2.4 … (2)
 ここで、式(2)中のMnには、鋼のMn含有量(質量%)が代入され、Mnmaxは、鋳片のデンドライトの1次アームの樹間のMn含有率が代入される。
 本発明の熱間圧延棒線材は、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有する。
図1は、実施例で作製したローラピッチング試験用の小ローラ試験片の側面図である。 図2は、実施例で作製した切欠き付き小野式回転曲げ疲労試験片の側面図である。 図3は、実施例における浸炭焼入れ条件を示す図である。 図4は、実施例におけるローラピッチング試験用の大ローラの正面図である。
以下本発明の熱間圧延棒線材を更に詳細に説明する。
 熱間圧延棒線材の成分元素の含有量について説明する。ここで、成分についての「%」は質量%である。
(C:0.05~0.30%)
 炭素(C)は、鋼の引張強度及び疲労強度を高める。一方、C含有量が多すぎれば、鋼の被削性が低下する。したがって、C含有量は0.05~0.30%である。好ましいC含有量は0.10~0.28%であり、さらに好ましくは、0.15~0.25%である。
(Si:0.30~0.60%)
 シリコン(Si)は、鋼の焼入れ性を高める。Siはさらに、鋼の焼戻し軟化抵抗を高める。したがって、Siは、鋼の面疲労強度及び耐摩耗性を高める。一方、Siが過剰に含有されれば、鋼の熱間圧延または熱間鍛造後の強度が過剰に高くなる。その結果、鋼の被削性が低下する。Siが過剰に含有されればさらに、曲げ疲労強度が低下する。したがって、Si含有量は0.30~0.60%である。好ましいSi含有量の下限は0.30%よりも高く、さらに好ましくは0.40%以上であり、さらに好ましくは0.45%以上である。好ましいSi含有量の上限は0.60%未満であり、さらに好ましくは0.57%以下であり、さらに好ましくは0.55%以下である。
(Mn:0.40~1.0%)
 マンガン(Mn)は、鋼の焼入れ性を高め、鋼の強度を高める。したがって、Mnは、浸炭焼入れ又は浸炭窒化焼入れされた機械部品の芯部の強度を高める。一方、Mnが過剰に含有されれば、熱間圧延または熱間鍛造後の鋼の被削性が低下する。さらに、Mnはデンドライト樹間で偏析し易く、偏析することにより硬質なベイナイトを生成しやすく被削性が低下する。したがって、Mn含有量は、0.40~1.0%である。好ましいMn含有量の下限は0.50%超であり、さらに好ましくは0.55%以上であり、さらに好ましくは0.60%以上である。Mn含有量の好ましい上限は1.0%未満であり、さらに好ましくは0.95%以下であり、さらに好ましくは0.9%以下である。
(S:0.008~0.040%未満)
 硫黄(S)はMnと結合してMnSを形成する。MnSは鋼の被削性を高める。一方、Sが過剰に含有されれば、粗大なMnSが形成される。粗大なMnSは鋼の曲げ疲労強度及び面疲労強度を低下する。したがって、S含有量は、0.008~0.040%未満である。好ましいS含有量の下限は0.008%超であり、さらに好ましくは0.009%以上であり、さらに好ましくは0.010%以上である。好ましいS含有量の上限は0.030%以下であり、さらに好ましくは0.030%未満であり、さらに好ましくは0.020%未満である。
(Cr:1.60~2.00%)
 クロム(Cr)は、鋼の焼入れ性、及び、鋼の焼戻し軟化抵抗を高める。そのため、Crは鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高める。一方、Crが過剰に含有されれば、熱間圧延後、熱間鍛造後、又は、焼きならし後の鋼でベイナイトの生成が促進される。そのため、鋼の被削性が低下する。したがって、Cr含有量は1.60~2.00%である。好ましいCr含有量の下限は1.60%超であり、さらに好ましくは1.70%以上であり、さらに好ましくは1.80%以上である。好ましいCr含有量の上限は2.00%未満であり、さらに好ましくは1.95%以下であり、さらに好ましくは1.90%以下である。
(Mo:0~0.10%(0.10%以下、0%を含む))
 モリブデン(Mo)は、含有されなくても含有されてもよい。Moは鋼の焼入れ性及び焼戻し軟化抵抗を高める。そのため、Moは鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高める。一方、Moが過剰に含有されれば、熱間圧延後、熱間鍛造後、又は、焼きならし後の鋼でベイナイト生成が促進される。そのため、鋼の被削性が低下する。したがって、Mo含有量は0~0.10%である。好ましいMo含有量の下限は0.02%以上である。好ましいMo含有量の上限は0.10%未満であり、さらに好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。
(Al:0.025~0.05%)
 アルミニウム(Al)は鋼を脱酸する。Alはさらに、Nと結合してAlNを形成する。AlNは、浸炭加熱によるオーステナイト結晶粒の粗大化を抑制する。一方、Alが過剰に含有されれば、粗大なAl酸化物を形成する。粗大なAl酸化物は、鋼の曲げ疲労強度を低下する。したがって、Al含有量は0.025~0.05%である。好ましいAl含有量の下限は0.025%超であり、さらに好ましくは0.027%以上であり、さらに好ましくは0.030%以上である。好ましいAl含有量の上限は0.05%未満であり、さらに好ましくは0.045%以下であり、さらに好ましくは0.04%以下である。
(N:0.010~0.025%)
 窒素(N)は、Al又はNbと結合して、AlN又はNbNを形成する。AlN又はNbNは、浸炭加熱によるオーステナイト結晶粒の粗大化を抑制する。一方、Nが過剰に含有されれば、製鋼工程において安定して製造しにくくなる。したがって、N含有量は0.010~0.025%である。好ましいN含有量の下限は0.010%超であり、さらに好ましくは0.012%以上であり、さらに好ましくは0.013%以上である。好ましいN含有量の上限は0.025%未満であり、さらに好ましくは0.020%以下であり、さらに好ましくは0.018%以下である。
(Ti:0~0.003%(0.003%以下、0%を含む))
 チタン(Ti)は、Nと結合して粗大なTiNを形成する。粗大なTiNは、鋼の疲労強度を低下する。したがって、Ti含有量はなるべく低い方が好ましい。Ti含有量は0~0.003%である。好ましいTi含有量の上限は0.003%未満であり、さらに好ましくは0.002%以下である。
(Bi:0.0001%~0.0050%未満)
 Biは、本発明において重要な元素である。微量のBiは、凝固の接種核となって、凝固時のデンドライトアーム間隔を小さくし、凝固組織を微細化する作用がある。その結果、Mn等の偏析し易い元素の偏析を軽減し、ミクロ偏析起因のベイナイト組織の生成を抑制し、被削性を向上する。凝固組織の微細化効果を得るには、Biの含有率を0.0001%以上とする必要がある。しかし、Biの含有率が0.0050%以上になると、凝固組織の微細化効果が飽和し、かつ鋼の熱間加工性が劣化し、熱間圧延が困難となる。これらのことから、本発明では、Bi含有率を0.0001%以上0.0050%未満とする。被削性をさらに向上させるには、Bi含有率を0.0010%以上とすることが好ましい。
(P:0.025%以下)
 燐(P)は不純物である。Pは鋼の疲労強度や熱間加工性を低下する。したがって、P含有量は少ない方が好ましい。P含有量は0.025%以下である。好ましいP含有量は0.025%未満であり、さらに好ましくは、0.020%以下である。
(O(酸素):0.002%以下)
 酸素(O)は、Alと結合して酸化物系介在物を形成する。酸化物系介在物は、鋼の曲げ疲労強度を低下する。したがって、O含有量はなるべく低い方が好ましい。O含有量は0.002%以下である。好ましいO含有量は0.002%未満であり、さらに好ましくは0.001%以下である。製鋼工程でのコスト上昇をきたさない範囲で、できる限り少なくすることがさらに望ましい。
 本実施の形態による熱間圧延棒線材の化学組成は、Feの一部に代えて、Nbを含有してもよい。
(Nb:0~0.08%、(0.08%以下、0を含む))
 ニオブ(Nb)は選択元素である。Nbは、C、Nと結合してNb炭化物、Nb窒化物又はNb炭窒化物を形成する。Nb炭化物、Nb窒化物及びNb炭窒化物は、Al窒化物と同様に、浸炭加熱時においてオーステナイト結晶粒が粗大化するのを抑制する。Nbが少しでも含有されれば、上記効果が得られる。一方、Nbが過剰に含有されれば、Nb炭窒化物、Nb窒化物及びNb炭窒化物が粗大化する。そのため、浸炭加熱時においてオーステナイト結晶粒の粗大化を抑制できない。したがって、Nb含有量は、0.08%以下である。好ましいNb含有量の下限は0.01%以上である。好ましいNb含有量の上限は、0.08%未満であり、さらに好ましくは、0.05%以下である。
 本実施の形態による熱間圧延棒線材の化学組成の残部は、Fe及び不純物である。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、あるいは製造過程の環境等から混入する元素をいう。本実施の形態において、不純物はたとえば、銅(Cu)、ニッケル(Ni)等である。不純物であるCu及びNi含有量は、JIS G4053機械構造用合金鋼鋼材に規定されたSCr鋼及びSCM鋼中のCu及びNi含有量と同程度であり、Cu含有量は0.40%以下であり、Ni含有量は0.80%以下である。
(Ni:0~0.8%、(0.8%以下、0%を含む))
 ニッケル(Ni)は、焼入れ性を高める効果があり、より疲労強度を高めるために有効な元素であるので、必要に応じて含有させてもよい。しかしながら、Niの含有量が過剰に含有されると、焼入れ性の向上による疲労強度を高める効果が飽和するだけでなく、熱間圧延後、熱間鍛造後又は焼準処理後において、鋼中にベイナイト組織が生成しやすくなる。そのため、含有させる場合のNiの量を0.80%以下とした。含有させる場合のNiの量は0.60%以下であることが好ましい。さらに、Niの焼入れ性向上による疲労強度を高める効果を安定して得るためには、含有させる場合のNiの量は0.10%以上であることが好ましい。
(Cu:0~0.40%、(0.40%以下、0%を含む))
 銅(Cu)は、焼入れ性を高める効果があり、より疲労強度を高めるために有効な元素であるので、必要に応じて含有させてもよい。しかしながら、Cuの含有量が過剰に含有されると、熱間延性及び熱間加工性の低下が顕著となる。そのため、含有させる場合のCuの量を0.40%以下とした。さらに、含有させる場合のCuの量は0.30%以下であることが好ましい。好ましいCu含有量の下限は0.1%以上である。
[式(1)について]
 本発明の実施形態による熱間圧延棒線材の化学組成においてさらに、式(1)で定義されるF1は、1.70~2.10である。
 F1=Cr+2×Mo …(1)
 ここで、式F1中の元素記号には、対応する元素の含有量(質量%)が代入される。
 上述のとおり、Cr及びMoはともに、鋼の焼入れ性及び焼戻し軟化抵抗を高め、面疲労強度及び耐摩耗性を高める。さらに、Cr及びMoは、鋼の曲げ疲労強度を高める。MoとCrとを比較して、MoはCrの半分の含有量で、Crと同程度の効果(曲げ疲労強度、面疲労強度及び耐摩耗性の向上)を奏する。したがって、F1=Cr+2×Moと定義する。F1中の各元素記号には、対応する元素(Cr及びMo)の含有量(質量%)が代入される。
 F1が1.70未満であれば、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性のうちの少なくとも1種以上が低くなる。一方、F1が2.10を超えれば、熱間圧延後、熱間鍛造後又は焼きならし後の鋼中でベイナイトの生成が促進される。そのため、鋼の被削性が低下する。F1が1.70~2.10であれば、鋼の被削性の低下を抑えつつ、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高めることができる。F1の好ましい下限は1.80以上である。F1の好ましい上限は2.00未満である。
 [式(2)について]
 本発明の熱間圧延棒線材を熱間圧延によって製造する際に用いる鋼鋳片においてMnがミクロ偏析すると、熱間圧延後の鋼組織中において硬質なベイナイト組織の生成を助長し、被削性が低下する。したがって、鋼鋳片においてMnのミクロ偏析を抑制することが好ましい。式(1)を満たしても、Mnのミクロ偏析が大きければ、硬質なベイナイト組織の量が増え、被削性が低下する。
 そこで、式(2)を満たせば、Mnのミクロ偏析が小さく、硬質なベイナイト組織の生成が抑制され、被削性が向上する。
 Mnmax/Mn<2.4 … (2)
 式(2)の左辺をF2=Mnmax/Mnと定義する。F2の値が、式(2)を満たさない場合、Mnのミクロ偏析が大きければ、鋼材中に硬質なベイナイト組織の量が増え、被削性が低下する。要するにF1の値が式(1)を満たしても、F2の値が式(2)を満たさなければ、Mnのミクロ偏析による、硬質なベイナイト組織生成が助長され、被削性が目標値を満たさない。
 [ミクロ組織]
 熱間圧延棒線材の組織(相)がマルテンサイトを含む場合には、マルテンサイトが硬質で延性が低いことに起因して、熱間圧延棒鋼または線材の矯正や運搬時に割れが発生しやすくなる。従って本発明の熱間圧延棒線材は、フェライト・パーライト組織またはフェライト・パーライト・ベイナイト組織とする。
 [製造方法]
 本発明の一実施形態による熱間圧延棒線材の製造方法を説明する。
 [連続鋳造工程]
 上記化学組成を満たし、かつデンドライトの1次アームの樹間のMn含有率Mnmaxと鋼中のMn含有率との比(Mnmax/Mn)が式(2)を満たす鋳片を製造する。上記化学組成を有する鋼を連続鋳造法により鋳片にしてもよく、造塊法によりインゴット(鋼塊)にしてもよい。鋳造条件は例えば、220×220mm角の鋳型を用いて、タンディッシュ内の溶鋼のスーパーヒートを10~50℃とし、鋳込み速度を1.0~1.5m/分とする。
 更に、鋳造工程で生じる、Mn偏析を抑制するために、上記化学組成を有する溶鋼を鋳造する際に、鋳片表面から15mmの深さにおける液相線温度から固相線温度までの温度域内の平均冷却速度を100℃/min以上500℃/min以下とすることが望ましい。鋳片表面から15mmの深さにおける液相線温度から固相線温度までの温度域内の平均冷却速度は、得られた鋳片の断面をピクリン酸でエッチングし、鋳片表面から15mmの深さの位置におけるデンドライト1次アーム間隔λ(μm)を測定し、次式に基づいて、その値から溶鋼の液相線温度から固相線温度までの温度域内の平均冷却速度A(℃/min)を求めることができる。
 λ=710×A−0.39
 上記温度域での平均冷却速度が100℃/min未満では、凝固が遅すぎるため、デンドライト樹間が広がり、Mnが偏析し、ミクロ偏析起因のベイナイト組織が生成しすぎてしまい、被削性が低下する。一方、500℃/min以上では、凝固組織が不均一となり、不均一組織を起因とした割れが発生してしまう恐れがある。
 液相線温度から固相線温度までの温度域とは、凝固開始から凝固終了までの温度域のことである。したがって、この温度域での平均冷却温度とは、鋳片の平均凝固速度を意味する。上記の平均冷却速度は、例えば、鋳型断面の大きさ、鋳込み速度等は適正な値に制御すること、または鋳込み直後において、水冷に用いる冷却水量を増大させるなどの手段により達成できる。これは、連続鋳造法及び造塊法共に適用可能である。
 次いで、製造した鋳片を加熱炉に装入し、1250~1300℃の加熱温度で10時間以上加熱した後、分塊圧延して鋼片を製造する。なお、上記の加熱温度は炉内の平均温度を意味し、加熱時間は在炉時間を意味する。
 このようにして得た鋼片を加熱炉に装入し、1250~1300℃の加熱温度で1.5時間以上加熱した後、仕上げ温度を900~1100℃として熱間圧延する。仕上げ圧延を行った後は、大気中で、冷却速度が放冷以下となる条件で冷却する。
 仕上げ圧延を行った後は、冷却速度が上記の放冷以下となる条件で、室温に至るまで冷却しても構わないが、生産性を高めるためには、600℃に至った時点で、空冷、ミスト冷却及び水冷など、適宜の手段で冷却することが好ましい。
 なお、上記の加熱温度及び加熱時間もそれぞれ、炉内の平均温度及び在炉時間を意味する。また、熱間圧延の仕上げ温度は、複数のスタンドを備える圧延機の最終スタンド出口での棒線材の表面温度を意味する。仕上げ圧延を行った後の冷却速度は、棒線材の表面での冷却速度を指す。
 鋼片から熱間圧延によって熱間圧延棒線材に加工する際、下記の式(3)で表される減面率(RD)を、87.5%以上にすることが好ましい。
RD={1−(棒鋼または線材の断面積/鋼片の断面積)}×100…(3)
なお、上記の断面積は、長手方向に対して垂直な断面における面積、つまり、横断面の面積を意味する。
 このようにして、本実施形態の熱間圧延棒線材が製造される。
 また、必要に応じて熱間圧延棒線材に焼きならしを行い、更に表面効果処理を行い、表面硬化処理後の中間品を機械加工により所定の形状に切削することで、熱間圧延棒線材からなる部品を製造する。
 表1に示す化学組成を有する鋼1~35を270ton転炉で溶製し、連続鋳造機を用いて連続鋳造を実施し、220×220mm角の鋳片を製造した。なお、連続鋳造の凝固途中の段階で圧下を加えた。鋳造条件は、220×220mm角の鋳型を用いて、タンディッシュ内の溶鋼のスーパーヒートを10~50℃とし、鋳込み速度を1.0~1.5m/分とした。また、連続鋳造において、鋳片の表面から15mmの深さの位置における液相線温度から固相線温度までの温度域内の平均冷却速度の変更は、鋳型の冷却水量を変更することによって行った。
 表1の鋼1~15は、本発明で規定する化学組成を有する鋼である。鋼16~35は、化学組成が本発明で規定する条件から外れた比較例の鋼、平均冷却速度を望ましい範囲から外れた比較例の鋼、あるいは、F1の値かF2の値が望ましい範囲から外れた比較例の鋼である。なお、表1中の数値の下線は、本実施の形態による熱間鍛造用圧延棒線材の範囲外であることを示す。
 連続鋳造により得られた鋳片を素材として、分塊圧延及び熱間圧延を行い、棒鋼(熱間圧延棒線材)の試作を行った。本実施例では、Mnmax測定用の試験片を採取するために、鋳片を一旦室温まで冷却した。
 その後、各マークの鋳片を1250℃で2時間加熱した。加熱後の鋳片を熱間圧延して、直径35mmの複数の丸棒を製造した。熱間圧延後、丸棒を大気中で放冷した。以上のようにして、各種の熱間圧延棒線材を製造した。
 なお、分塊圧延は、製造した鋳片を加熱炉に装入し、1250~1300℃の加熱温度で10時間以上加熱した後、分塊圧延した。また、熱間圧延は、分塊圧延後の鋼片を加熱炉に装入し、1250~1300℃の加熱温度で1.5時間以上加熱した後、仕上げ温度を900~1100℃として熱間圧延した。仕上げ圧延後は、大気中で、冷却速度が放冷以下となる条件で冷却した。鋼片から熱間圧延までの減面率(RD)は87.5%以上とした。
 また、鋳造時の表面割れ発生の有無を目視にて判定し、表1に記載した。
[Mnmaxの測定方法]
 Mnmaxは次の方法で求めた。製造した鋳片の表層から厚さ方向に幅50mm×長さ50mm×厚さ8mmの試験片を採取し、幅50mm×長さ50mmの表面を「被検面」とした。試験片を樹脂埋めした後、被検面を鏡面研磨した。Mn含有率の分布の測定にはEPMAを使用した。EPMAによる測定時のビーム径は1μmとし、鋳片表面から15mm離れた位置において表面と平行に50mmの範囲で線分析を行った。EPMAによる線分析によって、デンドライトの一次アーム間のMn含有率の分布を測定し、測定されたMn含有率の最大値をデンドライト樹間のMn含有率(Mnmax)とした。そして、線分析で測定されたデンドライト樹間のMn含有率を、鋳片のMn平均含有率で除した値をF2値とした。
[ミクロ組織観察方法]
 直径35mmの各棒鋼について、長手方向に垂直、かつ、中心部を含む断面(横断面)を切り出した後、鏡面研磨してナイタールで腐食した試験片を、光学顕微鏡を用い倍率400倍で、表層の脱炭層を除いた領域から、ランダムに各15視野観察して組織調査を行った。なお、各視野の大きさは250μm×250μmである。
[面疲労強度試験片及び曲げ疲労強度試験片の作製]
 各鋼番号の直径35mmの丸棒を機械加工して、図1に示すローラピッチング小ローラ試験片(以下、単に小ローラ試験片という)と、図2に示す切欠き付き小野式回転曲げ疲労試験片(図1及び図2ともに、図中の寸法の単位はmm)を作製した。図1に示す小ローラ試験片は、中央に試験部(直径26mm、幅28mmの円柱部)を備えた。
 作成された各試験片に対して、ガス浸炭炉を用いて、図3に示す条件で浸炭焼入れを実施した。焼入れ後、150℃で1.5時間の焼戻しを実施した。小ローラ試験片、及び、小野式回転曲げ疲労試験片に対して、熱処理ひずみを除く目的で、つかみ部の仕上げ加工を実施した。
 [面疲労強度試験]
 ローラピッチング試験では、上記の小ローラ試験片と、図4に示す形状の大ローラ(図中の寸法の単位はmm)とを組合せた。図4に示す大ローラは、JIS規格SCM420(鋼番号17)の規格を満たす鋼からなり、一般的な製造工程、つまり、焼きならし、試験片加工、ガス浸炭炉による共析浸炭、低温焼戻し及び研磨、の工程によって作製された。
 小ローラ試験片と大ローラとを用いたローラピッチング試験を表2に示す条件で行った。
 表2に示すとおり、小ローラ試験片の回転数を1000rpmとし、すべり率を−40%、試験中の大ローラと小ローラ試験片との接触面圧を4000MPa、繰り返し数を2.0×10回とした。大ローラの回転速度をV1(m/sec)、小ローラ試験片の回転速度をV2(m/sec)としたとき、すべり率(%)は、以下の式により求めた。
 すべり率=(V2−V1)/V2×100
 試験中、潤滑剤(市販のオートマチックトランスミッション用オイル)を油温90℃の条件で、大ローラと小ローラ試験片との接触部分(試験部の表面)に回転方向と反対の方向から吹き付けた。以上の条件でローラピッチング試験を実施し、面疲労強度を評価した。
 各鋼番号について、ローラピッチング試験における試験数は6とした。試験後、縦軸に面圧、横軸にピッチング発生までの繰り返し数をとったS−N線図を作成した。繰り返し数2.0×10回までピッチングが発生しなかったもののうち、最も高い面圧を、その鋼番号の面疲労強度と定義した。なお、小ローラ試験片の表面が損傷している箇所のうち、最大のものの面積が1mm以上になった場合をピッチング発生と定義した。
 表3に、試験により得られた面疲労強度を示す。表3中の面疲労強度では、汎用鋼種として一般的な、JIS規格SCr420Hの規格を満たす鋼16を浸炭した鋼番号16の面疲労強度を基準値(100%)とした。そして、各試験番号の面疲労強度を、基準値に対する比(%)で示した。面疲労強度が120%以上であれば、優れた面疲労強度が得られたと判断した。
 [耐摩耗性評価]
 ローラピッチング試験において、繰り返し数が1.0×10回となった小ローラ試験片の試験部の摩耗量を測定した。具体的には、JIS B0601(2001)に準拠して、最大高さ粗さ(Rz)を求めた。Rz値が小さいほど、耐摩耗性が高いことを示す。摩耗量の測定には、粗さ計を用いた。表3に、摩耗量を示す。表3中の摩耗量では、鋼番号16の摩耗量を基準値(100%)とした。そして、各鋼番号の摩耗量を基準値に対する比(%)で示した。摩耗量が80%以下であれば、優れた耐摩耗性が得られたと判断した。
 [曲げ疲労強度試験]
 曲げ疲労強度は、小野式回転曲げ疲労試験により求めた。小野式回転曲げ疲労試験での試験数は各鋼番号8個とした。試験時の回転数は3000rpmとし、その他は通常の方法により試験を行った。繰り返し数1.0×10回、及び1.0×10回まで破断しなかったもののうち、最も高い応力をそれぞれ中サイクル、及び高サイクル回転曲げ疲労強度と定義した。
 表3に、中サイクル及び高サイクルの曲げ疲労強度を示す。中サイクル及び高サイクルの曲げ疲労強度では、汎用鋼種として一般的な、JIS規格SCr420Hの規格を満たす鋼16を浸炭した鋼番号16の中サイクル及び高サイクルの曲げ疲労強度を基準値(100%)とした。そして、各鋼番号の中サイクル及び高サイクルの曲げ疲労強度を、基準値に対する比(%)で示した。中サイクル及び高サイクルともに、曲げ疲労強度が115%以上であれば、優れた曲げ疲労強度が得られたと判断した。
 [切削試験]
 切削試験を実施し、被削性を評価した。以下の方法により切削試験片を得た。各鋼番号の直径70mmの棒鋼を1250℃の加熱温度で30分加熱した。加熱された棒鋼を950℃以上の仕上げ温度で熱間鍛造し、直径60mmの丸棒を得た。この丸棒から機械加工によって、直径55mm、長さ450mmの切削試験片を得た。切削試験片を用いて、下記の条件で切削試験を行った。
 切削試験(旋削)
 チップ:母材材質 超硬P20種グレード、コーティング なし
条件:周速200m/分、送り0.30mm/rev、切り込み1.5mm、水溶性切削油を使用
 測定項目:切削時間10分後の逃げ面の主切刃摩耗量
 表3に、得られた主切刃摩耗量を示す。表3では、汎用鋼種として一般的な、JIS規格SCM420Hの規格を満たす鋼番号17の主切刃摩耗量を基準値(100%)とした。そして、各鋼番号の主切刃摩耗量を、基準値に対する比(%)で示した。主切刃摩耗量が鋼番号16の主切刃摩耗量である70%以下であれば、優れた被削性が得られたと判断した。
 表3に、平均冷却速度、F2値、鋳造時の割れ発生有無、ミクロ組織、中サイクル曲げ疲労強度、高サイクル曲げ疲労強度、面疲労強度、摩耗量及び主切刃摩耗量を示す。
ここで、表3中の下線は、本発明の式(2)の条件及び目標を満足しないことを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び表3を参照して、鋼1~15の鋼の化学組成は、本実施の形態による熱間鍛造用圧延棒鋼又は線材の化学組成の範囲内であり、かつ、式(1)及び式(2)を満たした。その結果、鋼1~15は、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有した。
 表3に示す通り、鋼16は、JISに規定するSCR420であり、Si,Cr量、F1およびF2値が本発明の範囲から外れており、鋼17は、JISに規定するSCM420であり、Si,Cr,Mo量およびF2値が本発明の範囲から外れており、目標とする曲げ疲労強度、面疲労強度、及び被削性のいずれかが得られていない。
 鋼18は、本実施の形態による熱間圧延棒線材のMn含有量及びMo含有量の上限を超えた。Mo含有量が多く、曲げ疲労強度及び面疲労強度は規定以上であった。しかしながら、F1の値が式(1)の上限を超え、更にMnが過剰に含有されたため、硬質なベイナイトが多く生成し、被削性が低下した。
 鋼19は、本実施の形態による熱間圧延棒線材のMo含有量の上限を超え、Al含有量の下限以下であった。Al含有量が少なく、オーステナイト結晶粒が粗大化したが、Mo含有量が過剰であり、曲げ疲労強度の低下は避けられた。しかしながら、F1の値が式(1)の上限を超え、被削性が低くなった。
 鋼20は本実施の形態による熱間圧延棒線材のCr含有量を下回り、Mn含有量及びMo含有量の上限を超えた。鋼20はMo含有量が多く、曲げ疲労強度及び面疲労強度は規定以上であった。しかしながら、F1の値が式(1)の上限を超え、更にMnが過剰に含有されたため、硬質なベイナイトが多く生成し、被削性が低下した。鋼21は、本実施の形態による熱間圧延棒線材のCr含有量の上限を超えた。そのため、F1値が式(1)の上限を超え、被削性が低くなった。
 鋼22は、本実施の形態による熱間圧延棒線材の化学成分範囲内であった。しかしながら、鋼22のF1の値が式(1)の下限を下回り、疲労強度が低くなった。
 鋼23は、本実施の形態による熱間圧延棒線材のCr含有量の下限以下であり、更にMn含有量及びMo含有量の上限を超えた。Moが過剰に含有されているにもかかわらずCr含有量が下限以下であり、F1の値が式(1)の下限を下回った。このため、その結果、曲げ疲労強度及び面疲労強度が低くなった。
 鋼24は、本実施の形態による熱間圧延棒線材のSi含有量の下限以下であり、Mn含有量が上限を超えた。その結果、鋼24は面疲労強度が低く、被削性も低くなった。
 鋼25は、本実施の形態による熱間圧延棒線材のSi含有量及びMn含有量の上限を超えた。その結果、鋼25は被削性が低くなった。
 鋼26は、本実施の形態による熱間圧延棒線材のSi含有量、Mo含有量及びMn含有量の上限を超え、Al含有量の下限以下であった。Al含有量が少なく、オーステナイト結晶粒が粗大化したが、Mo含有量が過剰であり、曲げ疲労強度の低下は避けられた。しかしながら、F1の値が式(1)の上限を超え、被削性が低くなった。
 鋼27および鋼28は、Biを含有しなかった。Bi含有量以外は本実施の形態による熱間圧延棒線材の化学成分範囲内であり、式(1)を満たした。しかしながら、式(2)の上限を超えた。その結果、被削性が低かった。具体的には、Biを含有しなかったため、Mnのミクロ偏析が大きく、硬質なベイナイトが生成し、被削性が低下したと推測される。
 鋼29は、本実施の形態による熱間圧延棒線材のMn含有量の下限以下であった。その結果、曲げ疲労強度及び面疲労強度が低くなった。Mn含有量が少ないため、芯部強度が不足し、曲げ疲労強度及び面疲労強度が低下したと考えられる。
 鋼30は、本実施の形態による熱間圧延棒線材のMn含有量の上限を超えた。その結果、曲げ疲労強度、面疲労強度、耐摩耗性及び被削性が低かった。Mnが過剰に含有されたため、浸炭異常層の深さが大きくなり、曲げ疲労強度及び面疲労強度が低下し、さらに、Mnが過剰に含有されたため、硬質なベイナイトが多く生成し、被削性が低下したと考えられる。
 鋼31は、Biの含有量が本発明規定の範囲を上回った例である。このため熱間加工性が低下し、鋳造時に割れが生じた。
 鋼32は、本実施の形態による熱間圧延棒線材の化学成分範囲内であった。しかしながら、F1の値が式(1)の上限を超えたため、被削性が低くなった。
 鋼33は、本実施の形態による熱間圧延棒線材の化学成分範囲内であった。しかしながら、平均冷却速度が望ましい上限値以上であり、凝固組織が不均一となり、不均一組織を起因とした割れが発生してしまう恐れがある。このため熱間加工性が低下し、割れが生じた。
 鋼34は、本実施の形態による熱間圧延棒線材の化学成分範囲内であった。しかしながら、平均冷却速度が下限未満であり、凝固が遅すぎるため、デンドライト樹間が広がり、Mnが偏析し、結果としてF2の値が式(2)の上限を超え、被削性が低下した。
 鋼35は、本実施の形態による熱間圧延棒線材のAl含有量の上限を超えた。この結果、粗大なAl酸化物が生成し、曲げ疲労強度が低くなった。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。

Claims (5)

  1.  質量%で、
    C:0.05~0.30%、
    Si:0.30~0.60%、
    Mn:0.40~1.0%、
    S:0.008~0.040%未満、
    Cr:1.60~2.00%、
    Mo:0~0.1%以下、
    Al:0.025~0.05%、
    N:0.010~0.025%、
    Ti:0~0.003%、
    Bi:0.0001~0.0050%
    を含有するとともに、
    残部がFe及び不純物からなり、不純物中のP及びOがそれぞれ、
    P:0.025%以下及び、
    O:0.002%以下、
    である化学組成を有し、組織がフェライト・パーライトまたはフェライト・パーライト・ベイナイトからなり、かつ、式(1)を満たす熱間圧延棒線材。
     1.70≦Cr+2×Mo≦2.10 … (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  Feの一部に代えて、質量%で、Nb:0.08%以下を含有する、請求項1に記載の熱間圧延棒線材。
  3.  請求項1又は請求項2に記載の熱間圧延棒線材であって、前記Feの一部に代えて、Cu:0.40%以下、及びNi:0.80%以下から選ばれる1種以上を含有する、熱間圧延棒線材。
  4.  請求項1乃至請求項3の何れか一項に記載の熱間圧延棒線材を切削加工して得られた部品。
  5.  請求項1乃至請求項3の何れか一項に記載の化学成分を有し、かつデンドライトの1次アームの樹間のMn含有率Mnmaxと鋼中のMn含有率との比(Mnmax/Mn)が下記式(2)を満たす鋳片を連続鋳造法または造塊法で製造し、前記鋳片を熱間圧延することを特徴とする熱間圧延棒線材の製造方法。
     Mnmax/Mn<2.4 … (2)
     ここで、式(2)中のMnには、鋼のMn含有量(質量%)が代入され、Mnmaxは、鋳片のデンドライトの1次アームの樹間のMn含有率が代入される。
PCT/JP2016/061635 2015-03-31 2016-03-31 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法 WO2016159392A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177027440A KR102010684B1 (ko) 2015-03-31 2016-03-31 열간 압연 봉선재, 부품 및 열간 압연 봉선재의 제조 방법
EP16773271.8A EP3279361B1 (en) 2015-03-31 2016-03-31 Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod
CN201680018922.2A CN107429359B (zh) 2015-03-31 2016-03-31 热轧棒线材、部件及热轧棒线材的制造方法
JP2017510277A JP6465206B2 (ja) 2015-03-31 2016-03-31 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
US15/562,321 US20180355455A1 (en) 2015-03-31 2016-03-31 Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071714 2015-03-31
JP2015-071714 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159392A1 true WO2016159392A1 (ja) 2016-10-06

Family

ID=57005169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061635 WO2016159392A1 (ja) 2015-03-31 2016-03-31 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法

Country Status (6)

Country Link
US (1) US20180355455A1 (ja)
EP (1) EP3279361B1 (ja)
JP (1) JP6465206B2 (ja)
KR (1) KR102010684B1 (ja)
CN (1) CN107429359B (ja)
WO (1) WO2016159392A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906884B (zh) * 2018-06-22 2020-08-14 大冶特殊钢有限公司 一种高性能20CrMnTi齿轮钢的低温轧制生产方法
CN113680816B (zh) * 2021-07-08 2023-08-15 天津钢铁集团有限公司 一种拉丝用普碳钢盘条

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018879A (ja) * 2002-06-12 2004-01-22 Kobe Steel Ltd 切屑処理性に優れた冷間鍛造用鋼
JP2007154290A (ja) * 2005-12-08 2007-06-21 Sumitomo Metal Ind Ltd 析出物が微細分散した鋼材および鋼材用鋳片の連続鋳造方法
JP2007197784A (ja) * 2006-01-27 2007-08-09 Daido Steel Co Ltd 合金鋼
JP2011099149A (ja) * 2009-11-06 2011-05-19 Sumitomo Metal Ind Ltd 熱処理用鋼板およびその製造方法
JP2011157597A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材
WO2013031587A1 (ja) * 2011-08-31 2013-03-07 新日鐵住金株式会社 熱間鍛造用圧延棒鋼又は線材
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114689A (en) 1974-07-25 1976-02-05 Mitsubishi Heavy Ind Ltd Suiryokuyusonyoru suratsujijokyosochi
JPS5561436A (en) 1978-11-02 1980-05-09 Kanegafuchi Chem Ind Co Ltd Block molding method and its mold
JPS6021359A (ja) 1983-07-15 1985-02-02 Daido Steel Co Ltd 歯車用鋼
JPH07126803A (ja) 1993-11-08 1995-05-16 Daido Steel Co Ltd 浸炭歯車用鋼
JP3308377B2 (ja) 1994-03-09 2002-07-29 大同特殊鋼株式会社 歯面強度の優れた歯車およびその製造方法
JPH10259450A (ja) 1997-03-19 1998-09-29 Mitsubishi Motors Corp 低サイクル疲労強度の優れた肌焼鋼
JP3888333B2 (ja) 2003-06-13 2007-02-28 住友金属工業株式会社 高強度鋼材及びその製造方法
JP4295314B2 (ja) * 2006-12-28 2009-07-15 株式会社神戸製鋼所 高速冷間加工用鋼及びその製造方法、並びに高速冷間加工部品の製造方法
JP4888277B2 (ja) * 2007-08-24 2012-02-29 住友金属工業株式会社 熱間圧延棒鋼または線材
JP2009091655A (ja) * 2007-09-19 2009-04-30 Daido Steel Co Ltd フェライト系快削ステンレス鋼
WO2012073896A1 (ja) * 2010-11-29 2012-06-07 住友金属工業株式会社 熱間鍛造用圧延棒鋼または線材
MX2014011861A (es) * 2012-04-05 2014-11-21 Nippon Steel & Sumitomo Metal Corp Alambron de acero o barra de acero que tienen una excelente capacidad de forjado en frio.
JP5857913B2 (ja) * 2012-08-20 2016-02-10 新日鐵住金株式会社 熱間成形鋼板部材およびその製造方法ならびに熱間成形用鋼板
JP6241136B2 (ja) * 2013-08-26 2017-12-06 新日鐵住金株式会社 肌焼鋼鋼材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018879A (ja) * 2002-06-12 2004-01-22 Kobe Steel Ltd 切屑処理性に優れた冷間鍛造用鋼
JP2007154290A (ja) * 2005-12-08 2007-06-21 Sumitomo Metal Ind Ltd 析出物が微細分散した鋼材および鋼材用鋳片の連続鋳造方法
JP2007197784A (ja) * 2006-01-27 2007-08-09 Daido Steel Co Ltd 合金鋼
JP2011099149A (ja) * 2009-11-06 2011-05-19 Sumitomo Metal Ind Ltd 熱処理用鋼板およびその製造方法
JP2011157597A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材
WO2013031587A1 (ja) * 2011-08-31 2013-03-07 新日鐵住金株式会社 熱間鍛造用圧延棒鋼又は線材
JP2015007278A (ja) * 2013-06-26 2015-01-15 新日鐵住金株式会社 プラスチック成型用金型鋼の製造方法およびプラスチック成型用金型

Also Published As

Publication number Publication date
KR20170121267A (ko) 2017-11-01
EP3279361B1 (en) 2020-04-29
EP3279361A4 (en) 2018-10-24
EP3279361A1 (en) 2018-02-07
US20180355455A1 (en) 2018-12-13
JP6465206B2 (ja) 2019-02-06
JPWO2016159392A1 (ja) 2018-02-08
KR102010684B1 (ko) 2019-08-13
CN107429359B (zh) 2020-05-19
CN107429359A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6384626B2 (ja) 高周波焼入れ用鋼
JP5333682B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP6384629B2 (ja) 高周波焼入れ用鋼
JP6384630B2 (ja) 高周波焼入れ用鋼
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
JP5790517B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP6384627B2 (ja) 高周波焼入れ用鋼
JP5561436B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP6384628B2 (ja) 高周波焼入れ用鋼
JP2013040364A (ja) 熱間鍛造用圧延棒鋼又は線材
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6521089B2 (ja) 機械構造用鋼及び高周波焼入鋼部品
JP5737154B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP7135485B2 (ja) 浸炭用鋼及び部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510277

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177027440

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE