WO2016159174A1 - 金属インク組成物、配線板及び配線の形成方法 - Google Patents

金属インク組成物、配線板及び配線の形成方法 Download PDF

Info

Publication number
WO2016159174A1
WO2016159174A1 PCT/JP2016/060549 JP2016060549W WO2016159174A1 WO 2016159174 A1 WO2016159174 A1 WO 2016159174A1 JP 2016060549 W JP2016060549 W JP 2016060549W WO 2016159174 A1 WO2016159174 A1 WO 2016159174A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
metal
silver
group
metal ink
Prior art date
Application number
PCT/JP2016/060549
Other languages
English (en)
French (fr)
Inventor
健太郎 木村
関口 卓也
久美 廣瀬
Original Assignee
トッパン・フォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015070903A external-priority patent/JP6528270B2/ja
Priority claimed from JP2016038423A external-priority patent/JP6678475B2/ja
Priority claimed from JP2016038422A external-priority patent/JP6650295B2/ja
Application filed by トッパン・フォームズ株式会社 filed Critical トッパン・フォームズ株式会社
Publication of WO2016159174A1 publication Critical patent/WO2016159174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a metal ink composition, a wiring board, and a method for forming a wiring.
  • the present application includes Japanese Patent Application No. 2015-070903 filed on March 31, 2015, Japanese Patent Application No. 2015-070904 filed on March 31, 2015, Japanese Patent Application No. 2015-071989 filed on March 31, 2015. Claiming priority based on Japanese Patent Application No. 2016-38422 filed on February 29, 2016 and Japanese Patent Application No. 2016-38423 filed on February 29, 2016, the contents of which are incorporated herein by reference.
  • Patent Documents 1 to 5 disclose conductive inks adjusted to viscoelasticity suitable for printing.
  • a wiring board having conductive thin wires formed on a substrate is widely used as a member such as a transparent electrode, an electromagnetic wave shield, and a touch panel in various electronic devices.
  • demand for touch panels is rapidly increasing in various display elements including information communication devices such as mobile phones, and a wiring board using a transparent substrate is an important member.
  • a circuit board provided with wiring for example, a pattern is formed with conductive ink containing conductive particles such as metal by screen printing or the like, and this is subjected to heat treatment at a relatively low temperature of about 150 ° C. Is disclosed by manufacturing a wiring pattern, and it is also disclosed that a wiring having a line width of about 50 to 70 ⁇ m can be formed and applied to the manufacture of a touch panel (see Patent Document 6). .
  • the conductive inks described in Patent Documents 1 to 5 are all resin components for dispersing the particles in the ink, adjusting the viscosity, holding the particles after drying, and ensuring the adhesion to the substrate. Contains. Containing a resin component becomes a factor that inhibits conductivity. Further, since a relatively large component of submicron or more is used, the conductivity is poor, and further, for example, when forming a fine wiring of 20 ⁇ m or less, the ink is hardened on a fine plate when continuously printed. It was supposed to promote so-called plate clogging.
  • Some embodiments of the present invention provide a metal ink composition having a small change in line width stably even when a fine pattern is continuously printed, and a wiring board using the metal ink composition. Is an issue. Some embodiments of the present invention provide a metal ink composition capable of stably forming a fine metal wire having a line width of 20 ⁇ m or less even when a plate having a deep groove is used. Let it be an issue. It is an object of some embodiments of the present invention to provide a wiring board on which conductive thin wires having appropriate surface roughness, which can be manufactured by a simple method, are formed.
  • the first aspect of the present invention is a metal ink composition
  • a metal ink composition comprising a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms and containing metal particles.
  • the ratio of the blending amount of the second nitrogen-containing compound to the blending amount of the first nitrogen-containing compound is greater than 0 mol% and less than 18 mol%.
  • the resin component content is less than 0.5% by mass
  • the metal ink composition is a metal ink composition having a viscosity of 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • a second aspect of the present invention is a metal ink composition
  • a metal ink composition comprising a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms and containing metal particles.
  • the metal ink composition has a loss coefficient (tan ⁇ ) of 0.7 or more and 5.0 or less when the temperature is 25 ° C. and the angular frequency is 0.1 rad / s, and the resin component of the metal ink composition is contained.
  • the metal ink composition is a metal ink composition having an amount of less than 0.5% by mass and a viscosity of 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • the metal particles are obtained by blending the first nitrogen-containing compound and the second nitrogen-containing compound, the metal silver forming material and the reducing agent. Good.
  • a thin metal wire is provided on a substrate, and the thin metal wire is formed using the metal ink composition according to the embodiment of the present invention.
  • the wiring board has a width of 20 ⁇ m or less in a cross section perpendicular to the long direction.
  • the fourth aspect of the present invention is a method in which the groove width a and the groove depth b are perpendicular to the line length direction by an intaglio printing method using a plate satisfying the relationship of b / a> 1.
  • the composition is a metal ink composition having a loss coefficient (tan ⁇ ) of 0.7 or more and 50.0 or less at a temperature of 25 ° C. and an angular frequency of 0.1 rad / s.
  • a fine metal wire is provided on a substrate, the fine metal wire is formed using the metal ink composition according to an embodiment of the invention, and the fine metal wire has a length of the wire.
  • a sixth aspect of the present invention is a method of forming a wiring having a line width of 20 ⁇ m or less on a substrate, wherein the relationship between the groove width a and the groove depth b is b / a> 1.
  • the metal ink composition has a resin component content of less than 0.5% by mass, a temperature of 25 ° C.,
  • the loss coefficient (tan ⁇ ) at an angular frequency of 0.1 rad / s is 0.7 or more and 50.0 or less.
  • a seventh aspect of the present invention includes a silver fine wire formed by a printing method on a substrate, and the silver fine wire has a width of 20 ⁇ m or less in a cross section in a direction perpendicular to the line length direction.
  • the silver thin wire has an aspect ratio of 0.013 or more and 0.025 or less, the top is narrower than the contact portion with the substrate, and the surface roughness of the silver thin wire is 0.25 ⁇ m or more and 0.35 ⁇ m. It is the following wiring board.
  • the volume resistivity of the thin silver wire is preferably 15 ⁇ ⁇ cm or less.
  • a metal ink composition having a small change in line width stably and a wiring board using the metal ink composition are provided. can do.
  • 1 is a front view schematically showing an example of a wiring board according to the present invention, and a cross-sectional view taken along line II of the wiring board.
  • 1 is a front view schematically showing an example of a wiring board according to the present invention, and a cross-sectional view taken along line II of the wiring board.
  • It is sectional drawing which shows typically an example of the metal thin wire of the other shape in this invention. It is sectional drawing which shows typically an example of the metal thin wire of the other shape in this invention. It is sectional drawing which shows typically an example of the metal thin wire of the other shape in this invention. It is sectional drawing which shows typically an example of the metal fine wire formed by the etching method. It is sectional drawing which shows typically an example of the intaglio printing plate in which this invention is used.
  • the metal ink composition of the present embodiment contains metal particles, and contains a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms.
  • the ratio of the blending amount of the second nitrogen-containing compound to the blending amount of the first nitrogen-containing compound is greater than 0 mol% and less than 18 mol%.
  • the resin component content of the metal ink composition of the present embodiment is less than 0.5% by mass. The detail of each component which comprises the metal ink composition of this embodiment is mentioned later.
  • the viscosity of the metal ink composition of this embodiment is 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • the viscosity of the metal ink composition is 25 Pa and the viscosity at a shear rate of 0.1 to 1000 s ⁇ 1 is 1 Pa ⁇ s or more, characteristics suitable for the gravure offset printing method can be obtained.
  • the physical properties of the metal ink composition of the present embodiment can be adjusted by, for example, the compounding components and the manufacturing method of the metal ink composition.
  • the metal ink composition of the present embodiment contains metal particles, and contains a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms.
  • the metal ink composition of the present embodiment is a metal ink composition having a loss coefficient (tan ⁇ ) of 0.7 or more and 5.0 or less at a temperature of 25 ° C. and an angular frequency of 0.1 rad / s.
  • the resin component content of the metal ink composition of the present embodiment is less than 0.5% by mass. The detail of each component which comprises the metal ink composition of this embodiment is mentioned later.
  • the viscosity of the metal ink composition of this embodiment is 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • the viscosity of the metal ink composition is 25 Pa and the viscosity at a shear rate of 0.1 to 1000 s ⁇ 1 is 1 Pa ⁇ s or more, characteristics suitable for the gravure offset printing method can be obtained.
  • the physical properties of the metal ink composition of the present embodiment can be adjusted by, for example, the compounding components and the manufacturing method of the metal ink composition.
  • FIG. 4 shows an example of an intaglio printing plate in which the metal ink composition of this embodiment can be used.
  • FIG. 4 is a cross-sectional view in a direction orthogonal to the longitudinal direction of the groove in the fine line pattern forming portion of the plate 20.
  • Reference numeral 21 denotes a peripheral pattern non-formation portion.
  • the metal ink composition of the present embodiment uses a plate that satisfies the relationship b / a> 1 between the groove width a and the groove depth b shown in FIG. Is used to form a fine metal wire having a thickness of 20 ⁇ m or less.
  • the metal ink composition of this embodiment is applied to an intaglio printing method typified by gravure printing as a printing method, and a gravure offset printing method is most preferably applicable.
  • the printing apparatus to which the metal ink composition of the present embodiment can be applied can employ a known printing apparatus as used in an intaglio printing method typified by gravure printing, and has a groove that is made of metal and forms a metal fine wire mold on the surface. The thing provided with the intaglio which has can be used.
  • As the offset roll a metal cylinder whose surface is covered with a blanket material can be used.
  • an elastic material such as a silicone resin, a fluororesin, a urethane resin, a synthetic rubber, or a natural rubber is used.
  • silicone resin is particularly preferable in that it has high durability and oil resistance, and has moderate elasticity as well as sufficient elasticity, and performs gravure offset printing on a hard substrate Is particularly suitable.
  • the metal ink composition of the present embodiment is a case where a groove width a and a groove depth b satisfy a relationship of b / a> 1, in other words, when a plate having a deep groove is used. Even if it exists, the metal clogging which does not produce plate clogging and whose line width is 20 ⁇ m or less can be formed.
  • b / a is preferably 1.5 or more, more preferably 2.0 or more, and particularly preferably 2.5 or more. Further, b / a is preferably 5 or less, more preferably 4.5 or less, and particularly preferably 4 or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the side surface 23 of the groove and the bottom surface 24 of the groove are flat in the example shown in FIG. 4, but the side surface 23 of the groove and the bottom surface 24 of the groove are non-planar such as a curved surface and an uneven surface. Also good.
  • the groove width “a” and the groove depth “b” vary depending on the part, the maximum values of “a” and “b” are adopted.
  • the metal ink compositions of the second and third embodiments are 0.1 rad / s to 10 rad / s at 25 ° C. using a rheometer (for example, MCR series manufactured by Anton Paar, HAAKE MARS series manufactured by Thermo Scientific, etc.). It is preferable that the storage elastic modulus (Pa) and the loss elastic modulus (Pa) when sine vibration is performed at each frequency of s (when frequency dispersion measurement is performed) are 100 Pa or less, respectively. At this time, the strain applied during measurement is within the linear strain range.
  • the metal ink composition of the second embodiment and the third embodiment has a storage elastic modulus (Pa) and a loss elastic modulus (Pa) of 50 Pa or less at a frequency of 0.1 rad / s, respectively. More preferably, it is more preferably 25 Pa or less, and particularly preferably 10 Pa or less.
  • the storage elastic modulus (Pa) and the loss elastic modulus (Pa) at a frequency of 1 rad / s are more preferably 50 Pa or less, respectively. , 25 Pa or less is more preferable, and 15 Pa or less is particularly preferable.
  • the storage elastic modulus (Pa) at a frequency of 10 rad / s is more preferably 60 Pa or less, and more preferably 40 Pa or less. It is preferably 30 Pa or less.
  • the loss elastic modulus (Pa) at a frequency of 10 rad / s is more preferably 90 Pa or less, more preferably 80 Pa or less, and particularly preferably 75 Pa or less.
  • the metal ink composition of the second embodiment has a loss coefficient (tan ⁇ ) calculated from the storage elastic modulus (Pa) and loss elastic modulus (Pa) when the temperature is 25 ° C. and the angular frequency is 0.1 rad / s.
  • Loss modulus / storage modulus is 0.7 or more and 5.0 or less.
  • the loss coefficient (tan ⁇ ) (loss elastic modulus / storage elastic modulus) is preferably 0.8 or more and 4.0 or less, and particularly preferably 0.9 or more and 2.0 or less.
  • the loss coefficient when the angular frequency is other than 0.1 rad / s may be 0.7 or more and 75 or less.
  • the loss coefficient (tan ⁇ ) when the angular frequency is 1.0 rad / s is preferably 1.0 or more and 7.5 or less, and more preferably 1.2 or more and 3.0 or less.
  • the loss coefficient (tan ⁇ ) when the angular frequency is 10 rad / s is preferably 1.5 or more and 75 or less, more preferably 2.0 or more and 50 or less, particularly preferably 20 or less, and extremely preferably 10 or less. preferable.
  • the loss coefficient (tan ⁇ ) of the metal ink composition of the second embodiment is in the above range, high fluidity can be secured in the metal ink composition, an appropriate viscosity can be imparted, and the line width can be obtained even when continuous printing is performed. Change can be reduced, and a thin metal wire having a line width of 20 ⁇ m or less can be stably formed.
  • the metal ink composition of the third embodiment is sine vibrated at a frequency of 0.1 rad / s at 25 ° C. using a rheometer (for example, MCR series manufactured by Anton Paar, HAAKE MARS series manufactured by Thermo Scientific, etc.)
  • the loss coefficient (tan ⁇ ) (loss elastic modulus / storage elastic modulus) calculated from the storage elastic modulus (Pa) and the loss elastic modulus (Pa) is 0.7 or more and 50.0 or less.
  • the loss coefficient (tan ⁇ ) (loss elastic modulus / storage elastic modulus) is preferably 0.8 or more and 40.0 or less, and particularly preferably 0.9 or more and 30.0 or less.
  • the loss coefficient (tan ⁇ ) of the metal ink composition of the third embodiment is in the above range, a high fluidity is ensured in the metal ink composition, an appropriate viscosity can be imparted, and a plate with a deep groove is obtained. Even if it is used, plate clogging does not occur, and a fine metal wire having a line width of 20 ⁇ m or less can be stably formed.
  • the metal ink composition of the third embodiment may have a loss coefficient of 0.7 or more and 75 or less when the angular frequency is other than 0.1 rad / s.
  • the loss coefficient (tan ⁇ ) when the angular frequency is 1.0 rad / s is preferably 1.0 or more and 75 or less, and is 1.2 or more and 40 or less. More preferred.
  • the loss coefficient (tan ⁇ ) when the angular frequency is 10 rad / s is preferably 1.5 or more and 75 or less, and more preferably 2.0 or more and 50 or less. For example, it may be 20 or less or 10 or less, but these are examples.
  • the loss coefficient (tan ⁇ ) is a metal ink composition having the above predetermined range
  • the plate is clogged even when a plate having a deep groove is used.
  • a fine metal wire having a line width of 20 ⁇ m or less can be stably formed.
  • the viscosity of the metal ink composition of the first and second embodiments is 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • the viscosity of the metal ink composition is 1 Pa ⁇ s or more at 25 ° C. and a shear rate of 0.1 to 1000 s ⁇ 1 .
  • it is a characteristic suitable for an intaglio printing method typified by gravure printing, particularly a gravure offset printing method. It can be.
  • the physical properties of the metal ink compositions of the first to third embodiments can be adjusted by, for example, the compounding components and the manufacturing method of the metal ink composition.
  • the thixotropy index defined by the following formula (T1) is preferably 10 or less, more preferably 8.0 or less, and 5. 0 or less is particularly preferable.
  • Thixotropic index (viscosity measured at 25 ° C., shear rate 0.1 s ⁇ 1 ) / (viscosity measured at 25 ° C., shear rate 10 s ⁇ 1 ) (T1)
  • the viscosity for calculating the thixotropy index can be measured using, for example, a viscoelasticity measuring device (rheometer).
  • rheometer a viscoelasticity measuring device
  • shear viscosity the viscosity at a specific shear rate
  • the thixotropy index is in the above range, for example, it is suitable for printing a metal ink composition in a designed width.
  • the metal ink composition of the first to third embodiments can be obtained, for example, by blending components other than the metal forming material and the metal forming material.
  • the metal forming material may be any material that has a metal atom (element) and generates a metal by structural change such as decomposition, such as a metal salt, a metal complex, an organometallic compound (compound having a metal-carbon bond), etc. Can be illustrated.
  • the metal salt and the metal complex may be any of a metal compound having an organic group and a metal compound having no organic group.
  • the metal forming material is preferably one that decomposes by heating to form a metal, and is preferably a metal salt.
  • Examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”.
  • one kind of silver carboxylate may be used alone, or two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is represented by the following general formula (1) ⁇ -ketocarboxylate silver (hereinafter sometimes abbreviated as “ ⁇ -ketocarboxylate (1)”) and the following general formula (4). It is preferably one or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)").
  • the term “silver carboxylate” includes not only “silver ⁇ -ketocarboxylate (1)” and “silver carboxylate (4)” but also includes these unless otherwise specified.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”; Y 1 each independently represents a fluorine atom, a chlorine atom, a bromine atom, or a hydrogen atom; R 1 represents 1 to 19 carbon atoms; R 2 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms; R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 4 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is an aliphatic
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C ( ⁇ O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.
  • the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
  • R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the linear or branched alkyl group in R include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4- Methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group 1-ethyl-1-methylpropyl group,
  • Examples of the cyclic alkyl group in R include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
  • alkenyl group in R examples include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH).
  • one single bond (C—C) between carbon atoms of the alkyl group in R such as ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), etc. ) Is substituted with a triple bond (C ⁇ C).
  • one or more hydrogen atoms may be substituted with a substituent, and preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • one or more hydrogen atoms may be substituted with a substituent.
  • the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms.
  • a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—), C 6 H 5 ) and the like can be exemplified, and the number and position of substituents are not particularly limited.
  • the plural substituents may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group that is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
  • a plurality of Y 1 s may be the same or different from each other. May be.
  • R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —), and the aliphatic hydrocarbon group in R 1 has 1 to 19 carbon atoms. Except for this point, the same aliphatic hydrocarbon groups as those in R can be exemplified.
  • R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R.
  • R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R except that the carbon number is 1 to 16.
  • R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same as or different from each other, and examples thereof are the same as the aliphatic hydrocarbon group for R except that the number of carbon atoms is 1 to 18.
  • R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”. The aliphatic hydrocarbon group in R 6 has 1 to Except for being 19, the same aliphatic hydrocarbon groups as those described above for R can be exemplified.
  • R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 1 2 —”, a hydroxyl group, or a phenyl group.
  • R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
  • each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C ( ⁇ O) — ”or“ R 7 —C ( ⁇ O) —O— ”.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
  • Examples of the halogen atom in X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), A nitro group (—NO 2 ) and the like can be exemplified, and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —);
  • Examples of the aliphatic hydrocarbon group for R 7 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 10 carbon atoms.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • R 7 is a thienyl group or a diphenyl group
  • the bonding position of these groups with an adjacent group or atom oxygen atom, sulfur atom, carbonyl group, carbonyloxy group
  • the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
  • two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
  • Examples thereof include a group represented by the formula “ ⁇ CH—C 6 H 4 —NO 2 ”.
  • X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
  • the ⁇ -ketocarboxylate (1) can further reduce the concentration of the remaining raw materials and impurities in the conductor (metal silver) formed by solidification treatment such as drying treatment or heating (firing) treatment.
  • solidification treatment such as drying treatment or heating (firing) treatment.
  • the ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. It is possible to form metallic silver. When used in combination with a reducing agent, it decomposes at a lower temperature to form metallic silver. The reducing agent will be described later.
  • the silver ⁇ -ketocarboxylate (1) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate (4) is represented by the general formula (4).
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C ( ⁇ O) —OAg”.
  • Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —)
  • one or more of the methylene groups may be substituted with a carbonyl group.
  • the number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group.
  • the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
  • Silver carboxylate (4) includes silver pyruvate (CH 3 —C ( ⁇ O) —C ( ⁇ O) —OAg), silver acetate (CH 3 —C ( ⁇ O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C ( ⁇ O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C ( ⁇ O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C ( ⁇ O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C ( ⁇ O) —OAg), Shu It is preferably silver oxide (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) or silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg).
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) and silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg)
  • silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • —COOAg one of the groups represented by the formula “—COOH” (HO—C ( ⁇ O) —C ( ⁇ O) —OAg, HO)
  • —C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg is —COOH
  • silver carboxylate (4) is also used in the conductor (metal silver) formed by solidification treatment such as drying treatment or heating (firing) treatment.
  • concentration can be further reduced.
  • a reducing agent it decomposes at a lower temperature to form metallic silver.
  • the silver carboxylate (4) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferably at least one selected from the group consisting of silver oxide and silver malonate.
  • silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with the nitrogen-containing compounds described below (especially amine compounds) and are particularly suitable for increasing the concentration of the metal ink composition.
  • the content of silver derived from the metal silver forming material is preferably 5% by mass or more, and preferably 10% by mass. More preferably. By being in such a range, the formed conductor (metal silver) becomes superior in quality.
  • the upper limit of the silver content is not particularly limited as long as the effects of the above-described embodiment of the metal ink composition are not impaired, but it is preferably 25% by mass in consideration of handleability and the like. Further, the content of silver derived from the metal forming material is preferably less than 50% by mass, and more preferably 48% by mass or less.
  • silver derived from a metallic silver forming material means silver in the metallic silver forming material blended at the time of producing the metal ink composition, unless otherwise specified.
  • the concept includes both silver constituting the metal silver forming material, and silver in the decomposition product produced by decomposition of the metal silver forming material after blending and silver itself.
  • blended with the metal ink composition in embodiment of a metal ink composition is demonstrated.
  • the metal ink composition of the first embodiment and the second embodiment includes a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms, among the nitrogen-containing compounds described later. It is blended.
  • the metal ink composition of the third embodiment includes a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms, among the nitrogen-containing compounds described later. May be.
  • the ratio of the blending amount of the second nitrogen-containing compound to the blending amount of the first nitrogen-containing compound is greater than 0 mol% and less than 18 mol%.
  • the ratio of the blending amount of the second nitrogen-containing compound to the blending amount of the first nitrogen-containing compound is greater than 0 mol% and 18 mol%. It is preferable that it is less than.
  • the loss elastic modulus and storage elastic modulus at a frequency of 0.1 rad / s can each be 100 Pa or less, and the loss coefficient (tan ⁇ ) calculated by “loss elastic modulus / storage elastic modulus” is 0.7 or more. can do. Thereby, high fluidity is ensured in the metal ink compositions of the first embodiment and the second embodiment, an appropriate viscosity can be imparted, and a change in line width can be reduced even when continuous printing is performed. A fine metal wire having a width of 20 ⁇ m or less can be stably formed.
  • metal ink composition of the third embodiment high fluidity is ensured in the metal ink composition of the third embodiment, an appropriate viscosity can be imparted, and even when a plate having a deep groove is used, plate clogging does not occur.
  • a fine metal wire having a line width of 20 ⁇ m or less can be stably formed.
  • the upper limit of the ratio of the blending amount of the second nitrogen-containing compound to the blending amount of the first nitrogen-containing compound is 25 mol% or less. Preferably, it is 20 mol% or less, more preferably 15 mol% or less. Further, the lower limit of the ratio of the amount of the second nitrogen-containing compound to the amount of the first nitrogen-containing compound is preferably 1 mol% or more, more preferably 5 mol% or more, and more preferably 10 mol. % Or more is particularly preferable.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the metal ink composition of the first embodiment to the third embodiment can be manufactured by a “metal ink composition manufacturing method” described later, but the first nitrogen-containing compound before the step of adding the reducing agent is used. It is preferable that the ratio of the blending amount of the second nitrogen-containing compound with respect to the blending amount is in the predetermined range.
  • the nitrogen-containing compound is an amine compound having a carbon number of 25 or less (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having a carbon number of 25 or less (hereinafter abbreviated as “quaternary ammonium salt”).
  • Ammonia an ammonium salt formed by reaction of an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid. 1 or more selected from the group consisting of ammonium salts (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”).
  • the nitrogen-containing compound to be blended may be only one kind, or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • a nitrogen-containing compound having 8 or more carbon atoms is referred to as a first nitrogen-containing compound
  • a nitrogen-containing compound having 7 or less carbon atoms is referred to as a second nitrogen-containing compound, and the same applies hereinafter.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
  • Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples thereof are the same as the alkyl group in R, and are linear or branched having 1 to 19 carbon atoms. It is preferably a chain alkyl group or a cyclic alkyl group having 3 to 7 carbon atoms.
  • Specific examples of preferable monoalkylamine include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, and 3-amino.
  • Examples include pentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, and 1,2-dimethyl-n-propylamine.
  • 2-ethylhexylamine is preferable as the first nitrogen-containing compound
  • isobutylamine is preferable as the second nitrogen-containing compound.
  • Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group, and preferably has 6 to 10 carbon atoms.
  • the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton, and the heteroatom includes a nitrogen atom, a sulfur atom, an oxygen atom, and a boron atom. Can be illustrated.
  • the number of the said hetero atom which comprises an aromatic ring skeleton is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
  • the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
  • Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, tetrazolyl group A pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, and a piperazinyl group, which are preferably 3- to 8-membered rings, and more preferably 5- to 6-membered rings.
  • Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
  • it is a 5- to 6-membered ring.
  • the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, and a thiazolidinyl group, and is a 3- to 8-membered ring.
  • a 5- to 6-membered ring is preferable.
  • Examples of the polyaryl having 1 to 5 nitrogen atoms as the heteroaryl group include indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group, tetra Examples thereof include a zolopyridyl group, a tetrazolopyridazinyl group, and a dihydrotriazolopyridazinyl group, preferably a 7-12 membered ring, and more preferably a 9-10 membered ring.
  • Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithiaphthalenyl group and a benzothiophenyl group, preferably a 7 to 12 membered ring, preferably a 9 to 10 membered ring. More preferably, it is a ring.
  • Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzooxadiazolyl group. Preferably, it is a 9 to 10 membered ring.
  • Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group and a benzothiadiazolyl group, and is a 7 to 12 membered ring. Preferably, it is a 9 to 10 membered ring.
  • the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
  • the preferred diamine in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group.
  • the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane.
  • secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
  • a cyclic alkyl group is preferred.
  • Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
  • Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
  • the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Further, two aryl groups in one molecule of diarylamine may be the same as or different from each other.
  • the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
  • Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
  • tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
  • the cyclic alkyl group is preferably.
  • the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
  • Preferable examples of the trialkylamine include N, N-dimethyl-n-octadecylamine and N, N-dimethylcyclohexylamine.
  • the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
  • the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
  • examples of the quaternary ammonium salt include a tetraalkylammonium halide in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
  • the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
  • halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine and iodine.
  • Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
  • the nitrogen atom constituting the amine moiety or ammonium salt moiety is a ring skeleton structure (complex).
  • a heterocyclic compound which is a part of a ring skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
  • the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, a pyridine can be illustrated as a preferable thing.
  • the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
  • the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
  • the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
  • Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the monoalkylamine has a substituent
  • the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
  • a cyclic alkyl group having 3 to 7 carbon atoms having an alkyl group having 1 to 5 carbon atoms is preferable, and a monoalkylamine having such a substituent is specifically 2-phenylethylamine. , Benzylamine, and 2,3-dimethylcyclohexylamine.
  • aryl group and the alkyl group which are substituents may further have one or more hydrogen atoms substituted with halogen atoms, and as monoalkylamines having such substituents substituted with halogen atoms, And 2-bromobenzylamine.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group constituting the monoarylamine has a substituent
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as the substituent, and the monoaryl having such a substituent
  • Specific examples of the amine include bromophenylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the dialkylamine has a substituent
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent.
  • Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
  • the amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclo
  • 2-ethylhexylamine is excellent in compatibility with the silver carboxylate, particularly suitable for increasing the concentration of the metal ink composition, and particularly suitable for reducing the surface roughness of the fine metal wire. It is mentioned as a thing.
  • the ammonium salt derived from the amine compound is an ammonium salt obtained by reacting the amine compound with an acid, and the acid includes hydrochloric acid, sulfuric acid, nitric acid, and the like. Inorganic acids or organic acids such as acetic acid may be used, and the type of acid is not particularly limited.
  • the ammonium salt derived from the amine compound include, but are not limited to, n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride and the like.
  • the ammonia-derived ammonium salt is an ammonium salt obtained by reacting ammonia with an acid, and the acid is an ammonium salt derived from the amine compound.
  • the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
  • the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound, and the ammonium salt derived from ammonia may be used alone. Two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the nitrogen-containing compound one kind selected from the group consisting of the amine compound, a quaternary ammonium salt, an ammonium salt derived from an amine compound and an ammonium salt derived from ammonia may be used alone, or two or more kinds may be used. May be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the blending amount of the nitrogen-containing compound (when a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound is employed as the nitrogen-containing compound, the first nitrogen-containing compound and the second nitrogen-containing compound are used.
  • the total amount of nitrogen-containing compounds is greater than 0 mol%, preferably 0.3 to 15 mol, more preferably 0.3 to 5 mol, per mol of the metal forming material. .
  • the nitrogen-containing compound (when a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound is employed as the nitrogen-containing compound, the total amount of the first nitrogen-containing compound and the second nitrogen-containing compound)
  • the blending amount is within such a range, the stability of the metal ink composition is further improved, and the quality of the conductor (metal) is further improved.
  • the conductor can be formed more stably without performing heat treatment at a high temperature.
  • the metal ink composition according to the first to third embodiments employs a mixture of the metal forming material and the nitrogen-containing compound (as the nitrogen-containing compound, a first nitrogen-containing compound and a second nitrogen-containing compound).
  • the nitrogen-containing compound as the nitrogen-containing compound, a first nitrogen-containing compound and a second nitrogen-containing compound.
  • the metal ink composition can more easily form a metal, and for example, a conductor (metal) having sufficient conductivity can be formed even by heat treatment at a low temperature.
  • the reducing agent is one or more reducing compounds selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”). (Hereinafter, sometimes simply abbreviated as “reducing compound”).
  • compound (5) a compound represented by the following general formula (5) (hereinafter, sometimes simply abbreviated as “reducing compound”).
  • the reducing compound is at least one selected from the group consisting of oxalic acid (HOOC—COOH), hydrazine (H 2 N—NH 2 ) and the compound represented by the general formula (5) (compound (5)). It is. That is, the reducing compound to be blended may be only one kind, or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic, and is the same as the alkyl group in R in the general formula (1) The thing can be illustrated.
  • the alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms, and examples thereof include monovalent groups in which the alkyl group in R 21 is bonded to an oxygen atom.
  • the N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. Each alkyl group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
  • the alkyl group bonded to the nitrogen atom may be linear, branched or cyclic, respectively, and the alkyl group in R of the general formula (1) except that it has 1 to 19 carbon atoms. The thing similar to group can be illustrated.
  • hydrazine may be monohydrate (H 2 N—NH 2 .H 2 O).
  • Preferred examples of the reducing compound include formic acid (HC ( ⁇ O) —OH); methyl formate (HC ( ⁇ O) —OCH 3 ), ethyl formate (HC ( ⁇ O) —OCH). 2 CH 3 ), formic acid esters such as butyl formate (HC ( ⁇ O) —O (CH 2 ) 3 CH 3 ); propanal (HC ( ⁇ O) —CH 2 CH 3 ), butanal (H Aldehydes such as —C ( ⁇ O) — (CH 2 ) 2 CH 3 ) and hexanal (HC ( ⁇ O) — (CH 2 ) 4 CH 3 ); formamide (HC ( ⁇ O) —NH 2 ), N, N-dimethylformamide (HC ( ⁇ O) —N (CH 3 ) 2 ) and other formamides (groups represented by the formula “HC ( ⁇ O) —N (—) —”) And oxalic acid.
  • formic acid esters such as butyl formate
  • the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and preferably 0.06 to 2.5 mol per mol of the metal forming material. More preferred. When the blending amount of the reducing agent is within such a range, the metal ink composition can form a conductor (metal) more easily and more stably.
  • the metal ink composition according to the first to third embodiments employs the metal forming material, the nitrogen-containing compound (as the nitrogen-containing compound, a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound).
  • the nitrogen-containing compound as the nitrogen-containing compound, a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound.
  • the alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the acetylene alcohol (2) is represented by the general formula (2).
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group having 1 to 20 carbon atoms in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ′′ include the same alkyl groups as in R.
  • Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic carbon Examples thereof include a monovalent group formed by bonding a hydrogen group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like, and the hydrogen atom of the phenyl group in R may be substituted. This is the same as the substituent.
  • the number and position of the substituents are not particularly limited, and when the number of substituents is plural, the plurality of substituents may be the same as or different from each other.
  • R ′ and R ′′ are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Preferred acetylenic alcohols (2) include 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 2-propyne Examples include -1-ol, 4-ethyl-1-octyn-3-ol, and 3-ethyl-1-heptin-3-ol.
  • the amount of acetylene alcohol (2) in the metal ink composition is preferably 0.03 to 0.7 mole per mole of the metal forming material, The amount is more preferably 0.03 to 0.3 mol, and may be 0.05 to 0.3 mol. When the blending amount of acetylene alcohol (2) is within such a range, the stability of the metal ink composition is further improved.
  • the said alcohol may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the metal ink composition of the first to third embodiments employs the metal forming material, the nitrogen-containing compound (as the nitrogen-containing compound, a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound).
  • the nitrogen-containing compound as the nitrogen-containing compound, a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound.
  • other components other than the reducing agent and alcohol may be blended.
  • the other components in the metal ink composition can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples thereof include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of compounding components. it can.
  • the said other component in a metal ink composition may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • Solvents other than the alcohol can be arbitrarily selected according to the type and amount of the compounding components.
  • Preferred solvents include, for example, aromatic hydrocarbons such as toluene, o-xylene, m-xylene and p-xylene; pentane, hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane
  • Aliphatic hydrocarbons such as ethanol and 2-propanol
  • halogenated hydrocarbons such as dichloromethane and chloroform
  • esters such as ethyl acetate, monomethyl glutarate and dimethyl glutarate
  • Ethers such as 1,2-dimethoxyethane (dimethyl cellosolve); ketones such as acetone,
  • the compounding quantity of the said other component in a metal ink composition is a solvent other than alcohol
  • the blending amount of the solvent may be selected according to the purpose, such as the viscosity of the silver ink composition, but with respect to 1 mol of the metal forming material, The amount is preferably 0.5 mol to 5.0 mol, more preferably 0.5 mol to 3.5 mol, and particularly preferably 0.5 to 2.0 mol.
  • the ratio of the blended amount of the other component with respect to the total amount of the blended components in the metal ink composition is preferably 10% by mass or less. % Or less is more preferable.
  • the ratio of the blended amount of the other components to the total amount of the blended components is 0 mass, that is, even if the other components are not blended, the metal ink composition exhibits its effect sufficiently.
  • the ratio of the blended amount of the other components to the total amount of the blended components is preferably 10% by mass or less, more preferably 5% by mass or less, and 0 mass, ie other components. Even if it is not added, the metal ink composition exhibits its effect sufficiently.
  • the metal ink composition of the third embodiment is more preferably a mixture of the silver carboxylate, the first and second nitrogen-containing compounds, the reducing agent, and the alcohol.
  • the metal ink composition includes any one of the metal forming material, a nitrogen-containing compound (the metal ink compositions of the first and second embodiments are the first and second nitrogen-containing compounds), a reducing agent, and an alcohol.
  • One or both are preferably blended, and the silver carboxylate, the nitrogen-containing compound (the metal ink compositions of the first and second embodiments are the first and second nitrogen-containing compounds), and the reducing agent More preferably, one or both of alcohol and alcohol are blended.
  • all the compounding components may be dissolved, or a part or all of the components may be dispersed without dissolving, but it is preferable that all the compounding components are dissolved.
  • the undissolved component is preferably dispersed uniformly.
  • the metal ink composition of 1st Embodiment to 3rd Embodiment contains a resin component as another component
  • content of a resin component is less than 0.5 mass%.
  • the content of the resin component is preferably less than 0.25% by mass, more preferably less than 0.1% by mass, and particularly preferably 0% by mass.
  • the content of the resin component is in the above range, it is possible to contribute to improvement in conductivity of the fine metal wire formed using the metal ink composition.
  • the resin component include an epoxy resin, an acrylic resin, and a urethane resin.
  • the metal ink composition can be obtained by blending components other than the metal forming material and the metal forming material. After blending each component, the obtained product may be used as it is as a metal ink composition, or a product obtained by performing a known refining operation as necessary may be used as a metal ink composition.
  • a product obtained by performing a known refining operation as necessary may be used as a metal ink composition.
  • impurities that impede conductivity are not generated when the above components are blended.
  • Metal 1 for producing metal ink composition One embodiment of the method for producing a metal ink composition is obtained by blending a metal forming material and one or more selected from the group consisting of nitrogen-containing compounds, reducing agents, alcohols and other components. Among these, in the embodiment of the metal ink composition, each component is sequentially added in the order of adding the metal-forming material to the nitrogen-containing compound, then adding the reducing agent, and then adding the alcohol. It is preferable to mix.
  • the first step of adding the metal forming material to the nitrogen-containing compound, and further the reducing agent It is preferable to manufacture by the manufacturing method which has the 2nd process to add and the 3rd process which adds alcohol and another component as needed.
  • the metal forming material added in the first step is preferably the total amount of the metal forming material used in this manufacturing method.
  • the reducing agent added in the second step is preferably the total amount of reducing agent used in this production method.
  • the alcohol and other components added in the third step are preferably the total amount of alcohol and other components used in this production method.
  • Metal 2 for producing metal ink composition As an aspect of the method for producing the metal ink composition other than the method 1 for producing the metal ink composition, a metal forming material is dissolved or dispersed in a solvent, then a nitrogen-containing compound is added, and then a reducing agent. It is also possible to suitably employ a method in which the respective components are sequentially added and mixed in the order of adding alcohol and then adding alcohol.
  • the first step of dissolving or dispersing the metal forming material in the solvent, and further the nitrogen-containing compound It is preferable to manufacture by the manufacturing method which has the 2nd process which adds this, the 3rd process which further adds a reducing agent, and the 4th process which adds alcohol and another component further as needed.
  • the metal forming material dissolved or dispersed in the solvent in the first step is preferably the total amount of the metal forming material used in this production method.
  • the nitrogen-containing compound added in the second step is preferably the total amount of the nitrogen-containing compound used in this production method.
  • the reducing agent added in the third step is preferably the total amount of reducing agent used in this production method.
  • the alcohol and other components added in the fourth step are preferably the total amount of alcohol and other components used in this production method.
  • the first nitrogen-containing compound when a mixture of the first nitrogen-containing compound and the second nitrogen-containing compound is adopted as the nitrogen-containing compound, the first nitrogen-containing compound is added after the first step.
  • the ratio of the amount of the second nitrogen-containing compound to the amount is preferably greater than 0 mol% and less than 18 mol%.
  • the reducing agent is preferably added dropwise, and the metal surface roughness tends to be further reduced by suppressing fluctuations in the dropping speed.
  • the mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
  • the metal ink composition when the undissolved component is uniformly dispersed, it is preferable to apply, for example, the above-described method using three rolls, a kneader, or a bead mill.
  • the temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C.
  • the temperature at the time of blending may be appropriately adjusted according to the kind and amount of the blending components so that the mixture obtained by blending has a viscosity that allows easy stirring.
  • the blending time is not particularly limited as long as each blending component does not deteriorate, but it is preferably 10 minutes to 36 hours.
  • the metal ink composition may be further supplied with carbon dioxide.
  • a metal ink composition has a high viscosity and is suitable for application to a printing method that requires thickening of ink, such as a flexographic printing method, a screen printing method, a gravure offset printing method, and a pad printing method. is there.
  • Carbon dioxide may be supplied at any time during the production of the metal ink composition.
  • carbon dioxide may be supplied before the reducing agent is added, and can be arbitrarily selected according to the purpose.
  • Carbon dioxide (CO 2 ) supplied during mixing of the components may be either gaseous or solid (dry ice), or both gaseous and solid. By supplying carbon dioxide, it is estimated that this carbon dioxide dissolves in the first mixture and acts with each component, thereby increasing the viscosity of the resulting mixture of each component.
  • Carbon dioxide gas may be supplied by various known methods of blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in the first mixture, the other end is connected to a carbon dioxide gas supply source, and the carbon dioxide gas is supplied to the first mixture through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
  • a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in the first mixture
  • the supply amount of carbon dioxide gas may be appropriately adjusted according to the viscosity of the target metal ink composition, and is not particularly limited.
  • the viscosity at 20 to 25 ° C. of the metal ink composition has been described, but the temperature at the time of use of the metal ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected.
  • the flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the mixture of each component, and is 1 mL / min or more. It is more preferable that The upper limit of the flow rate is not particularly limited, but it is preferably 40 mL / min per 1 g of the mixture of each component in consideration of handleability and the like.
  • the supply time of the carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas and the flow rate.
  • the temperature of the mixture of each component at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C, more preferably 7 to 60 ° C, and particularly preferably 10 to 50 ° C.
  • carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit, a metal ink composition with better quality with fewer impurities can be obtained.
  • the flow rate and supply time of the carbon dioxide gas, and the temperature at the time of supplying the carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a good quality metal ink is obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
  • the carbon dioxide gas is preferably supplied while stirring the mixture of the components. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the mixture of each component, and carbon dioxide can be supplied more efficiently.
  • the stirring method at this time may be the same as in the case of the mixing method at the time of manufacturing the metal ink composition without using carbon dioxide.
  • the supply of dry ice may be performed by adding dry ice to the mixture of each component.
  • the total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed). What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
  • it is preferable to stir the mixture of each component For example, it is preferable to stir in the same manner as in the production of the above metal ink composition without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
  • the temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas.
  • stirring time suitably according to stirring temperature.
  • the metal ink composition supplied with carbon dioxide preferably has a viscosity at 20 to 25 ° C. of 1 Pa ⁇ s or more.
  • the resulting blend (metal ink composition) is relatively easy to generate heat.
  • this compound is in a state similar to that at the time of heat treatment of the metal ink composition to be described later. It is presumed that metal formation may start in at least a part of the forming material.
  • a metal ink composition containing such a metal may be able to form a conductor by performing post-treatment under milder conditions than the metal ink composition not containing a metal at the time of forming the conductor. Further, even when the amount of the reducing agent is sufficiently large, the conductor may be formed by performing the post-treatment under the same mild conditions.
  • the conductor can be obtained by post-treatment, either by heat treatment at a lower temperature, or only by drying at room temperature without performing heat treatment. Sometimes it can be formed.
  • the metal ink composition containing such a metal can be handled in the same manner as the metal ink composition not containing a metal, and the handleability is not particularly inferior.
  • the metal ink composition adhered (printed) on the substrate When drying (printing) the metal ink composition adhered (printed) on the substrate, it may be carried out by a known method, for example, under normal pressure, reduced pressure, or blowing conditions, The reaction may be performed under any of the lower atmosphere and the inert gas atmosphere.
  • the drying temperature is not particularly limited, and may be either heat drying or room temperature drying.
  • a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
  • the conditions may be adjusted as appropriate according to the type of compounding component of the metal ink composition.
  • the heating temperature is preferably 60 to 200 ° C, more preferably 70 to 180 ° C.
  • the heating time may be adjusted according to the heating temperature, but usually it is preferably 0.2 to 12 hours, more preferably 0.4 to 10 hours.
  • the silver carboxylate, particularly ⁇ -ketocarboxylate (1) is different from the metal forming material such as silver oxide, for example, without using a reducing agent known in the art. Also decomposes at low temperatures.
  • the metal ink composition can form a metal at an extremely lower temperature than the conventional one as described above.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C. It is particularly preferred that
  • the method for heat treatment of the metal ink composition is not particularly limited, and for example, heating by an electric furnace, heating by a thermal head, heating by far infrared irradiation, high pressure gas spraying, and the like can be performed.
  • the heat treatment of the metal ink composition may be performed in the air, in an inert gas atmosphere, or may be performed under humidified conditions.
  • the reaction may be performed under normal pressure, reduced pressure, or increased pressure.
  • humidity means that the humidity is artificially increased unless otherwise specified, and preferably the relative humidity is 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, the relative humidity of 5% is clearly artificially increased.
  • the relative humidity is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, 70% It is particularly preferable that it be 90% or more, or 100%.
  • the heat treatment under humidified conditions may be performed by spraying high-pressure steam heated to 100 ° C. or higher. Thus, by heat-processing under humidification conditions, a highly purified metal can be formed in a short time.
  • the heat treatment of the metal ink composition may be performed in two stages.
  • the metal ink composition is mainly dried instead of the metal formation, and the metal formation is performed to the end in the second stage heat treatment.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the metal ink composition, but is preferably 60 to 110 ° C, more preferably 70 to 100 ° C. preferable.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the metal ink composition so that the metal is satisfactorily formed, but is preferably 60 to 200 ° C. 70 to 180 ° C. is more preferable.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
  • the heating temperature in the first stage and second stage heat treatment is preferably less than 130 ° C.
  • the temperature is more preferably 125 ° C. or lower, and particularly preferably 120 ° C. or lower.
  • the heat treatment of the metal ink composition described above is performed in the gas phase.
  • the second-stage heat treatment may be performed in the liquid phase instead of in the gas phase.
  • the metal ink composition that has been completely or partially dried through the first stage heat treatment can be subjected to the second stage heat treatment by bringing it into contact with the heated liquid without damaging its shape.
  • the heat treatment in the second-stage liquid phase after the first-stage heat treatment of the metal ink composition is preferably performed by immersing the metal ink composition in the heated liquid.
  • the heating temperature and heating time in the heat treatment in the liquid phase are the same as the heating temperature and heating time in the second-stage heat treatment described above.
  • the heated liquid is preferably hot water (heated water), and the second stage heat treatment is performed by immersing the metal ink composition that has been subjected to the first stage heat treatment in hot water, that is, by hot water bathing. Preferably it is done.
  • the second heat treatment is performed in the liquid phase, the metal or metal silver formed by this heat treatment may be further dried.
  • the first stage heat treatment of the metal ink composition is preferably performed under non-humidified conditions.
  • non-humidification means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and the relative humidity is preferably less than 5%.
  • the heat treatment of the metal ink composition is performed by drying the metal ink composition instead of forming a metal as described above under non-humidified conditions in the first-stage heat treatment.
  • the second stage heat treatment it is particularly preferable to carry out the two-stage method in which the metal is formed to the end as described above under humidified conditions.
  • the heating temperature during the heat treatment under the first stage non-humidified conditions is preferably 60 to 120 ° C, and preferably 70 to 100 ° C. More preferred.
  • the heating time is preferably 5 seconds to 1 hour, more preferably 30 seconds to 30 minutes, and particularly preferably 30 seconds to 10 minutes.
  • the heating temperature during the heat treatment under the second-stage humidification condition, which is performed after the heat treatment under the first-stage non-humidification conditions is preferably 60 to 140 ° C, and preferably 70 to 130 ° C. Is more preferable.
  • the heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and particularly preferably 120 ° C or less.
  • the wiring board of 1st Embodiment is equipped with the metal fine wire on the board
  • the said metal fine wire is the wire length.
  • the width in a cross section perpendicular to the direction is 20 ⁇ m or less.
  • the wiring board according to the second embodiment includes a metal fine wire on a substrate and is formed using the metal ink composition according to the third embodiment, and the metal fine wire is perpendicular to the wire length direction.
  • the width in the cross section in the various directions is 20 ⁇ m or less.
  • the wiring board according to the third embodiment includes a silver fine wire formed on a substrate by a printing method, and the silver fine wire has a width of 20 ⁇ m or less in a cross section in a direction perpendicular to the line length direction.
  • the ratio is 0.013 to 0.025, the top is smaller in width than the contact portion with the substrate, and the surface roughness of the silver thin wire is 0.25 ⁇ m or more and 0.35 ⁇ m or less.
  • a pattern is formed on a substrate by a printing method using a silver ink composition for forming a fine silver wire, and solidification treatment such as drying treatment or heating (firing) treatment is appropriately selected. Can be formed.
  • the heat treatment may be performed also as a drying treatment.
  • a known method can be applied as a printing method, and intaglio printing represented by the gravure printing method is preferable, and the gravure offset printing method is most preferably applied.
  • the printing apparatus used for the wiring board of the third embodiment may also be a known one. For example, if intaglio printing represented by gravure printing is used, an intaglio having a groove made of a metal and having a silver wire pattern on the surface is used. What is provided can be used.
  • As the offset roll a metal cylinder whose surface is covered with a blanket material can be used.
  • an elastic material such as a silicone resin, a fluororesin, a urethane resin, a synthetic rubber, or a natural rubber is used.
  • silicone resin is particularly preferable in that it has high durability and oil resistance, and has moderate elasticity as well as sufficient elasticity, and performs gravure offset printing on a hard substrate Is particularly suitable.
  • the metal silver forming material may be any material that has silver atoms (elements) and generates metallic silver by structural change such as decomposition, and is a silver salt, a silver complex, an organic silver compound (a compound having a silver-carbon bond) ) Etc. can be illustrated.
  • the silver salt and the silver complex may be either a silver compound having an organic group or a silver compound having no organic group.
  • a material for forming metallic silver is preferably one that decomposes by heating to form metallic silver, and is preferably a silver salt.
  • the silver ink composition is preferably one in which a metallic silver forming material is uniformly dispersed.
  • the silver ink composition used for the wiring board of the third embodiment is not limited to the metal ink composition of the first to third embodiments.
  • a composition in which the metal silver forming material, nitrogen-containing compound, reducing agent, alcohol and other optional components are blended can be used as appropriate.
  • the wiring boards according to the first to third embodiments have a narrow silver wire width, have the specific shape described above, and are suitable as members such as an electromagnetic wave shield and a touch panel in various electronic devices.
  • FIG. 1A is a front view schematically showing an example of the wiring board according to the first to third embodiments
  • FIG. 1B is a cross-sectional view of the wiring board shown in FIG. It is sectional drawing of a direction perpendicular
  • the wiring board 1 shown here is provided with a plurality of linear fine metal wires 12 on the surface (one main surface) 11a of the substrate 11, and these plural fine metal wires 12 are orthogonal to each other. Arranged parallel to the direction, forming a mesh
  • the substrate 11 is preferably in the form of a film or a sheet, and preferably has a thickness of 0.5 to 5000 ⁇ m, more preferably 0.5 to 2500 ⁇ m.
  • the material of the substrate 11 is not particularly limited and may be selected according to the purpose. However, the substrate 11 preferably has heat resistance that does not change when the metal thin wire 12 is formed by heat treatment of the metal ink composition described later, and has light transmittance. Those are preferred.
  • the material of the substrate 11 is polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), Acrylic resins such as polyvinyl acetate (PVAc) and polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide, polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate ( PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PE) ), Polyether ketone (PEK), polyether ether ketone (PEEK), polycarbonate (PC), polyurethane, polyphenylene
  • the substrate 11 may be composed of a single layer or may be composed of two or more layers.
  • the plurality of layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different.
  • the combination of these layers is not particularly limited.
  • the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
  • the total thickness of each layer may be set to the preferred thickness of the substrate 11 described above.
  • metal fine wire 12 In the following description, in the description of the wiring boards of the first embodiment and the second embodiment, “12” in FIGS. 1A and 1B is described as “metal fine wire 12”, and the wiring board of the third embodiment is described. In the description, “12” in FIGS. 1A and 1B is described as “silver thin wire 12”.
  • the thin metal wires 12 in the wiring boards of the first and second embodiments and the silver thin wires 12 in the wiring boards of the third embodiment (hereinafter referred to as “metal thin wires 12 or silver thin wires 12”) have their wire lengths. In a cross section perpendicular to the direction, the width, that is, the width W shown in FIG. 1B is 20 ⁇ m or less.
  • the width W shown in FIG. 1B is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
  • a groove having a width equal to or narrower than the desired metal fine wire by about several ⁇ m in order to form the fine metal wires 12 or the fine silver wires 12 having the above-mentioned range of width.
  • a plate having a groove having a width of 17 ⁇ m is preferable, and for forming a fine metal wire having a width W of about 8 to 10 ⁇ m.
  • a plate having a groove having a width of 7 ⁇ m is preferable in order to form the fine metal wire 12 or the thin silver wire 12 having a width W of about 5 to 6 ⁇ m.
  • the said cross-sectional shape of the metal fine wire 12 or the silver fine wire 12 is a semi-elliptical shape by which the half area
  • the fine metal wire 12 or the fine silver wire 12 has a smaller width at the top than the contact portion with the substrate 11 in the cross section.
  • the silver thin wire 12 of the third embodiment has a ratio of the height H to the width W (H / W), that is, an aspect ratio of 0.013 to 0.025. In the present embodiment, it is more preferably 0.015 or more, and particularly preferably 0.016 or more.
  • wire with which the wiring board of this embodiment is provided has a high aspect ratio as mentioned above. For this reason, even if it is a fine silver fine wire with a small line width, it can be set as the silver fine wire which has favorable electroconductivity.
  • the silver thin wire 12 is more suitable as a member such as an electromagnetic wave shield and a touch panel in various electronic devices by having such a shape.
  • the cross-sectional shape of the fine metal wire 12 or the fine silver wire 12 is not limited to this.
  • the shape may be other shapes such as a composite shape in which two or more types are combined as shown in FIG. 2C, or may be a shape with rounded corners in FIGS. 2A to 2C.
  • FIG. 2B in the cross section, when the top of the thin metal wire 12 or the thin silver wire 12 is non-planar, naturally, the top of the thin metal wire 12 or the thin silver wire 12 is more than the contact portion with the substrate 11.
  • the width is small (the width is zero).
  • the width of the flat portion is the same as the width of the thin metal wire 12 or the thin silver wire 12 with the substrate 11. It is smaller than the width of the contact part.
  • the said cross-sectional shape of the metal fine wire 12 or the silver fine wire 12 is left-right symmetric toward the paper surface here, in embodiment of a wiring board, it is not limited to this, A left-right asymmetric may be sufficient.
  • the cross section of the fine metal wire 12 or the fine silver wire 12 is schematically shown, and the surface of the fine metal wire 12 or the fine silver wire 12 is smooth, but the embodiment of the wiring board is not limited to this.
  • the surface of the metal fine wire 12 or the silver fine wire 12 may be a regular or irregular irregular surface. That is, the cross-sectional shape of the thin metal wire 12 or the thin silver wire 12 shown in FIG. 1A, FIG. 1B, FIG. 2A, FIG. 2B, and FIG. As long as it has, the said cross-sectional shape of the metal fine wire 12 or the silver fine wire 12 is not specifically limited.
  • the metal thin wire 12 or the silver thin wire 12 has a region whose width becomes narrower as the height from the surface 11 a of the substrate 11 becomes higher in the height direction of the metal thin wire 12 or the silver thin wire 12. %, More preferably 85% or more, still more preferably 90% or more, particularly preferably 95% or more, and may account for 100%. It is preferable that the metal thin wire 12 or the silver thin wire 12 has such a cross section in the entire region in the wire length direction.
  • the metal fine wire 12 or the silver fine wire 12 is typically formed by a printing method, preferably a gravure offset printing method, and typically has a unique shape as described above.
  • the fine metal wire formed by the etching method typically has the inverted trapezoidal shape as shown in FIG.
  • the cross-sectional shape of the fine metal wires is as shown in FIG. In the vicinity region of the base portion (contact portion with the substrate) of the fine metal wire indicated by reference sign S, a coating layer cannot be formed and a void portion is likely to occur.
  • the metal fine wire 12 or the silver fine wire 12 has a shape as shown in FIG. 1A, FIG. 1B, FIG. 2A, FIG. 2B and FIG. .
  • the structure of the coating layer can be stably maintained. The effect can be maintained for a long time.
  • the pitch (distance between adjacent fine metal wires 12) P of the fine metal wires 12 or the fine silver wires 12 can be arbitrarily set according to the purpose.
  • the wiring board 1 is used as a member such as an electromagnetic wave shield or a touch panel.
  • the pitch P of the fine metal wires 12 or the fine silver wires 12 may all be the same, may all be different, or may be only partially different.
  • the pitch P of the fine metal wires 12 or the fine silver wires 12 may be the same or different from each other in two orthogonal directions.
  • the thin metal wire 12 or the thin silver wire 12 has a variation rate of the width W ( ⁇ [maximum value of W] ⁇ [minimum value of W] ⁇ / [average value of W] ⁇ 100) in the wire length (longitudinal) direction. It is preferably 20% or less, and more preferably 10% or less.
  • the fine metal wire 12 or the fine silver wire 12 is mainly composed of a metal, and the ratio of the metal is high enough that it can be regarded as consisting of only the metal, and the ratio of the metal in the fine metal wire 12 or the fine silver wire 12 Is preferably 99% by mass or more.
  • the upper limit of the metal ratio of the fine metal wires 12 is, for example, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, 99.4% by mass, It can be selected from any of 99.3% by mass, 99.2% by mass and 99.1% by mass.
  • the fine metal wire 12 or the fine silver wire 12 has high conductivity, and the fine metal wire 12 or the fine silver wire 12 preferably has a volume resistivity of 15 ⁇ ⁇ cm or less, more preferably 12 ⁇ ⁇ cm or less, and more preferably 10 ⁇ ⁇ cm. It is particularly preferred that
  • the surface roughness of the silver thin wires is 0.25 ⁇ m or more and 0.35 ⁇ m or less.
  • the surface roughness is based on JIS B0601: 2001 (ISO4287: 1997), which means arithmetic average roughness (Ra), and only the reference length l is extracted from the roughness curve in the direction of the average line.
  • Ra arithmetic average roughness
  • y Z (x)
  • the value obtained by the following formula (II) is Displayed in units of micrometers ( ⁇ m).
  • the surface roughness (Ra) of the silver thin wire is preferably 0.34 ⁇ m or less, and more preferably 0.33 ⁇ m or less.
  • the surface roughness of the silver wire provided in the wiring board of the third embodiment is equal to or more than the above lower limit value, an appropriate roughness can be realized, so that the silver wire is not too smooth. It is possible to moderate the reflection of light when it is applied. For this reason, the visibility of the wiring by reflection of light can be suppressed.
  • the surface roughness is not more than the above upper limit value, appropriate wettability can be imparted to the wiring. For example, when other substances are laminated on the wiring, good wettability can be obtained.
  • the silver thin wires 12 are mainly composed of metallic silver, and the ratio of metallic silver is sufficiently high so that it can be regarded as consisting of only metallic silver.
  • the ratio of metallic silver is preferably 99% by mass or more.
  • the upper limit value of the ratio of metallic silver in the thin silver wire 12 is, for example, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, 99.4% by mass. , 99.3% by mass, 99.2% by mass, and 99.1% by mass.
  • the silver thin wire 12 has high conductivity, and the silver thin wire 12 preferably has a volume resistivity of 15 ⁇ ⁇ cm or less, more preferably 12 ⁇ ⁇ cm or less, and more preferably 10 ⁇ ⁇ cm. It is especially preferable that it is cm or less.
  • the wiring board 1 has a difference between the light transmittance and the light transmittance of the substrate 11 on which the metal thin wires 12 or the silver thin wires 12 are not formed, being 15% or less for light of the same wavelength. Preferably, it is 12% or less, more preferably 10% or less.
  • the wiring board 1 becomes more suitable as a member such as an electromagnetic wave shield and a touch panel in various electronic devices by satisfying such a condition.
  • the “light transmittance of the wiring board” means the thickness direction of the wiring board in an arbitrary region including both the formation place and the non-formation place (that is, the substrate) of the thin metal line of the wiring board.
  • the light transmission is calculated from the light transmittance in the area affected by the fine metal wires on the wiring board and the light transmittance in the area not affected by the fine metal wires on the wiring board. It can be said that it is an average value of the rate or an approximation to this average value.
  • the light for measuring the transmittance is visible light, and its wavelength is preferably 360 to 830 nm.
  • the above-described difference in light transmittance is obtained with light having the same wavelength.
  • the difference between the light transmittance of the above-mentioned wiring board and the light transmittance of the substrate on which the fine metal wire or the fine silver wire is not formed (the substrate not affected by the fine metal wire) Although the degree of the decrease in light transmission due to the provision of the fine wire is reflected, it is suppressed to a small value because the fine metal wire is fine.
  • the wiring board 1 has one or two or more other configurations within the range that does not impair the effects of the above-described embodiment of the wiring board other than the substrate 11 and the fine metal wires 12 or the fine silver wires 12. You may have.
  • the other configurations can be arbitrarily selected according to the purpose.
  • the angle at which a plurality of fine metal wires or fine silver wires intersect is not 90 ° as described above, but an angle other than 90 °, metal
  • Some or all of the fine wires or silver fine wires are not straight but curved, or are arranged without intersecting a plurality of fine metal wires or silver fine wires (in one direction without intersecting a plurality of fine metal wires) For example, when the stripes are arranged in parallel, a striped pattern is formed.
  • the pattern of the metal fine wire or silver fine wire possessed by the wiring board may be only one type, or two or more types, and in the case of two or more types, the combination can be arbitrarily selected.
  • the first embodiment of the wiring forming method is a method of forming a wiring having a line width of 20 ⁇ m or less on a substrate, where the groove width a and the groove depth b are b / a> 1.
  • the loss coefficient (tan ⁇ ) at 0.7 ° C. and an angular frequency of 0.1 rad / s is 0.7 or more and 50.0 or less.
  • the metal ink composition of the second embodiment is used.
  • the explanation about the metal ink composition and the explanation about the plate in which the groove width a and the groove depth b satisfy the relationship of b / a> 1 were explained in the metal ink composition of the second embodiment. It is the same as the contents.
  • the description of the substrate in the wiring board forming method of the first embodiment is the same as the description of the substrate described in the description of the wiring board.
  • the substrate is an electronic device, a data transmitter / receiver, a transparent conductive material. It may be a housing (exterior material) such as a film.
  • a metal ink composition is supplied to a plate groove in which the groove width a and the groove depth b satisfy the relationship b / a> 1.
  • the metal ink composition supplied in a plate shape is spread (doctored) using a doctor blade, and the groove portion of the plate is filled with the metal ink composition. Thereafter, excess metal ink composition is removed.
  • the metal ink composition is transferred from the plate to a transfer material.
  • a method direct gravure printing method
  • a printing material is directly brought into contact with a plate
  • a method an offset printing method
  • an intermediate transfer member such as a roll rubber blanket
  • the transfer material onto which the metal ink composition has been transferred is dried to form a conductive film.
  • the transfer material onto which the metal ink composition is transferred is dried on the substrate described in the description of the method for producing the metal ink composition according to the second embodiment.
  • the conditions similar to the conditions for the drying treatment of the metal ink composition may be performed.
  • a known method can be applied as a printing method, in particular, a gravure printing method is preferable, and a gravure offset printing method can also be applied.
  • the printing apparatus used in the method for manufacturing the wiring board of the first embodiment may also be a known one.
  • a gravure printing method a printing apparatus having a metal intaglio having a groove serving as a metal thin wire mold on the surface. Can be used.
  • the offset roll a metal cylinder whose surface is covered with a blanket material can be used.
  • an elastic material such as a silicone resin, a fluororesin, a urethane resin, a synthetic rubber, or a natural rubber is used.
  • silicone resin is particularly preferable in that it has high durability and oil resistance, and has moderate elasticity as well as sufficient elasticity, and performs gravure offset printing on a hard substrate Is particularly suitable.
  • a wiring board formed using the metal ink composition of the present embodiment is suitable for constituting various electronic devices such as a data transmitter / receiver, a transparent conductive film, and the like.
  • the electronic device can be configured to use the wiring board and include the base material as a casing (exterior material), and at least a part of the casing (exterior material) is configured by the base material in the wiring board. Except for the points described above, the configuration can be the same as that of a known electronic device.
  • a flat or curved surface portion of an exterior material in an electronic device such as a mobile phone is used as the base material, and the metal thin wire is formed directly on the exterior material (base material), and the metal thin wire is used as a circuit.
  • a wiring board can be used as a circuit board.
  • a mobile phone can be configured by combining the wiring board with a voice input unit, a voice output unit, an operation switch, a display unit, and the like.
  • the said wiring board can be made into an antenna structure by using the said patterned metal fine wire as an antenna.
  • the data receiving / transmitting body can be configured to use the wiring board and include the metal thin wire as an antenna, and has the same configuration as a known data receiving / transmitting body except that the wiring board is used as an antenna structure. can do.
  • a non-contact type data receiving / transmitting body can be configured by providing an IC chip electrically connected to the thin metal wire on the base material as an antenna portion.
  • the transparent conductive film can be configured to use the wiring board and include the metal fine wire as an ultra fine wire or an ultra thin wire, except that the metal thin wire is provided as an ultra fine wire or an ultra thin wire. It can be set as the structure similar to a transparent conductive film.
  • a touch panel or an optical display can be configured by combining with a transparent substrate or the like.
  • the thickness of the ultra-thin wiring is preferably 5 nm to 10 ⁇ m, more preferably 7 nm to 5 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the fine metal wires can be formed at a low temperature, and a wide selection of materials such as a base material can be selected.
  • a wide selection of materials such as a base material can be selected.
  • electronic devices, transparent conductive films Etc. can be made more rational structures.
  • the above electronic devices, transparent conductive films, and the like can maintain high performance over a long period of time.
  • Example 1 Production of metal ink composition 1>
  • 2-ethylhexylamine (1.26 mole amount relative to silver 2-methylacetoacetate described later) and isobutylamine (0.19 mole amount relative to silver 2-methylacetoacetate described later) were added.
  • Mix and stir for 1 minute using a mechanical stirrer 52.9 g of silver 2-methylacetoacetate and formic acid (0.38-fold molar amount with respect to silver 2-methylacetoacetate) were added dropwise over 10 minutes so that the liquid temperature was 40 ° C. or less.
  • DMHO 3,5-dimethyl-1-hexyn-3-ol
  • DMHO 3,5-dimethyl-1-hexyn-3-ol
  • Example 2 Production of Metal Ink Composition 2
  • 2-ethylhexylamine (1.26 mole amount relative to silver 2-methylacetoacetate described later) and isobutylamine (0.19 mole amount relative to silver 2-methylacetoacetate described later) were added.
  • Mix and stir for 1 minute using a mechanical stirrer 52.9 g of silver 2-methylacetoacetate and formic acid (0.48-fold molar amount with respect to silver 2-methylacetoacetate) were added dropwise over 10 minutes so that the liquid temperature was 40 ° C. or less.
  • Example 3 Production of Metal Ink Composition 3
  • 52.9 g of silver 2-methylacetoacetate and hexane (1.63 times mole amount relative to silver 2-methylacetoacetate) were placed, and stirred for 1 minute using a mechanical stirrer.
  • 2-ethylhexylamine (1.45-fold molar amount with respect to silver 2-methylacetoacetate)
  • formic acid 0.5-fold molar amount with respect to silver 2-methylacetoacetate
  • Example 4 Production of Metal Ink Composition 4
  • a beaker 52.9 g of silver 2-methylacetoacetate and hexane (1.63 times mole amount relative to silver 2-methylacetoacetate) were placed, and stirred for 1 minute using a mechanical stirrer.
  • 2-ethylhexylamine (1.45-fold molar amount with respect to silver 2-methylacetoacetate)
  • formic acid 0.5-fold molar amount with respect to silver 2-methylacetoacetate
  • Example 5 Production of metal ink composition 5>
  • a beaker 52.9 g of silver 2-methylacetoacetate and hexane (1.63 times mole amount relative to silver 2-methylacetoacetate) were placed, and stirred for 1 minute using a mechanical stirrer.
  • 2-ethylhexylamine (1.45-fold molar amount with respect to silver 2-methylacetoacetate) and formic acid (0.5-fold molar amount with respect to silver 2-methylacetoacetate) were added dropwise over 10 minutes. Thereafter, stirring was continued for 1.5 hours, and then DMHO (0.036-fold molar amount with respect to silver 2-methylacetoacetate) was added and mixed, and further stirred for 5 minutes. Thereby, a metal ink composition 5 was obtained.
  • the following items were measured.
  • the measurement since the influence of the shearing history at the time of production increases immediately after the production, the measurement was conducted after curing until the next day after the production.
  • Tan ⁇ (loss elastic modulus / storage elastic modulus) was determined from the storage elastic modulus and loss elastic modulus at the respective frequencies of the angular frequencies of 0.1 rad / s, 1 rad / s, and 10 rad / s measured as described above. The results are listed in Table 1.
  • ⁇ Manufacture of wiring boards> Using the gravure offset (intaglio offset) printing method, printing is performed on one main surface (surface) of a polycarbonate substrate (thickness 1 mm) using the metal ink composition obtained above, as shown in FIG. 1A.
  • a reticulated print pattern was formed. More specifically, it is as follows. The following was used as a printing apparatus. That is, as the intaglio plate, a plate made of metal and having a metal thin wire mold on its surface and having a groove with a width of 4 ⁇ m and a depth of 10 ⁇ m was used.
  • As the offset roll a metal cylinder whose surface was covered with a silicone resin blanket material was used.
  • the above metal ink composition is supplied to the intaglio, the excess metal ink composition is removed by a doctor blade, and the metal ink composition filled in the groove is removed from the blanket material of the offset roll. After transferring to the surface of the substrate, printing was performed with this metal ink composition on the surface of the substrate conveyed by the belt conveyor unit. Next, the obtained printed pattern was dried at 100 ° C. for 10 minutes, and this substrate was placed in a steam atmosphere at 100 ° C. and 100% relative humidity for 10 minutes to be heated (baked) to obtain a wiring board.
  • Examples 7 to 8 Production of silver ink composition 7> In a beaker, 2-ethylhexylamine (1.3-fold molar amount with respect to silver 2-methylacetoacetate described later) and isobutylamine (0.2-fold molar amount with respect to silver 2-methylacetoacetate described later). Mix and stir for 1 minute using a mechanical stirrer.
  • ⁇ Reference Example 1 Production of silver ink composition 8> In a beaker, 2-ethylhexylamine (0.7-fold molar amount with respect to silver 2-methylacetoacetate described later) and isobutylamine (0.3-fold molar amount with respect to silver 2-methylacetoacetate described later). Mix and stir for 1 minute using a mechanical stirrer. To this, 52.9 g of silver 2-methylacetoacetate and formic acid (0.6 times mole amount with respect to silver 2-methylacetoacetate) were added and mixed so that the liquid temperature was 25 ° C. or less. The mixture was stirred for 2 hours using a stirrer. As a result, a first ink was obtained.
  • the intaglio plate a metal plate having a groove line width of 4 ⁇ m and a groove depth of 10 ⁇ m, which is a silver thin wire mold on the surface thereof, was used.
  • the offset roll a metal cylinder whose surface was covered with a silicone resin blanket material was used.
  • the above-mentioned silver ink composition is supplied to the intaglio, the excess silver ink composition is removed by a doctor blade, and the silver ink composition filled in the grooves is used as a blanket material for an offset roll. Then, the surface of the substrate conveyed by the belt conveyor unit was printed with the silver ink composition.
  • the removal speed by the doctor blade is shown in Table 3 as “doctor speed (mm / s)”. Further, the surface transfer amount of the blanket material is shown in Table 3 as “Blank indentation amount ( ⁇ m)”.
  • the obtained printed pattern was dried at 100 ° C. for 10 minutes, and this substrate was placed in a steam atmosphere at 100 ° C. and 100% relative humidity for 10 minutes to be heated (baked) to obtain a wiring board.
  • the present invention can be used as a member in various electronic devices such as an electromagnetic wave shield and a touch panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

炭素数が8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合され、金属粒子を含有してなる金属インク組成物であって、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満であり、前記金属インク組成物の樹脂成分の含有量が0.5質量%未満であり、前記金属インク組成物は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である金属インク組成物。

Description

金属インク組成物、配線板及び配線の形成方法
本発明は金属インク組成物、配線板及び配線の形成方法に関する。
本願は、2015年3月31日に出願された特願2015-070903、2015年3月31日に出願された特願2015-070904、2015年3月31日に出願された特願2015-071989、2016年2月29日に出願された特願2016-38422、2016年2月29日に出願された特願2016-38423に基づき優先権を主張し、その内容をここに援用する。
 近年、ITO代替の金属メッシュ電極形成用や、有機半導体の電極形成用材料として、数ミクロンレベルの微細配線パターンを印刷するのに適した導電性インクの需要が高まっている。上記用途で形成される配線の線幅は、10ミクロン以下のごく微細なものであり、これを連続的に安定して印刷するには、一つの手段としてインクの粘弾性を制御することが必要となる。
特許文献1~5には、印刷に適した粘弾性に調整された導電性インク類が開示されている。
一方、基板上に導電性細線が形成された配線板は、各種電子機器における透明電極、電磁波シールド、タッチパネル等の部材として汎用されている。特に、タッチパネルは、携帯電話等の情報通信機器をはじめとする各種表示素子において需要が急増しており、透明基板を用いた配線板は、重要な部材となっている。
 他方、配線を備えた回路基板としては、例えば、スクリーン印刷法等により、金属等の導電性粒子を含む導電性インクでパターンを形成し、これを150℃程度の比較的低温で加熱処理することにより、配線パターンを形成して製造されたものが開示されており、配線として線幅が50~70μm程度のものを形成でき、タッチパネルの製造へ応用できることも開示されている(特許文献6参照)。
 特許文献1~5に記載の導電性インク類は、いずれもインク中での粒子分散や、粘度調整、及び乾燥後の粒子の保持、基材との密着性の確保等のために、樹脂成分を含有している。樹脂成分を含有していることは、導電性を阻害する要因となる。また、サブミクロン以上の比較的大きな成分を用いているため、導電性が不良となり、さらには、例えば20μm以下の微細配線を形成する際には、連続印刷した場合に微細な版にインクが固まる、いわゆる版詰まりを促進することとなっていた。
特に、溝の深さが幅に対して相対的に深い版を用いた場合に版詰まりは生じやすく、溝の深い版を用いた場合であっても版詰まりが発生しない、又は版詰まりが低減される金属インク組成物が求められる。
さらに、特許文献1~5に記載の導電性インク類は、いずれもスクリーン印刷適性が付与されたものであり、微細配線印刷を目的とした凹版印刷での適性については検討されていなかった。
また、上述のようなタッチパネル等で用いられる最近の配線板では、配線の線幅が50μm程度では不十分であり、例えば、線幅が20μm以下等のより微細な細線を連続的に安定して形成することが求められる。特許文献6で開示されている方法では、このような導電性細線の形成は難しく、エッチング法に頼らざるを得ないが、エッチング法を適用した場合には、工程が複雑になるだけでなく、廃液処理等の余分の工程も必要となり、配線板の製造方法が煩雑になるという問題点があった。
さらに、タッチパネル等の配線では、光の反射による視認が抑制され、かつ他の層を積層し易くするために、適度な表面粗さを有することが求められる。
特開2003-124052号公報 特開2007-26934号公報 特開2010-106203号公報 特開2013-114836号公報 特開2014-49380号公報 特開2012-253172号公報
 本発明は、上記事情に鑑みてなされたものである。
本発明のいくつかの実施形態は、微細パターンを連続印刷した場合であっても、安定して線幅の変化が小さい金属インク組成物及び前記金属インク組成物を用いた配線板を提供することを課題とする。
本発明のいくつかの実施形態は、溝の深い版を用いた場合であっても、線幅が20μm以下である金属細線を安定的に形成することができる金属インク組成物を提供することを課題とする。
本発明のいくつかの実施形態は、簡便な方法で製造可能な、適度な表面粗さを有する導電性細線が形成された配線板を提供することを課題とする。
本発明の第1の態様は、炭素数が8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合され、金属粒子を含有してなる金属インク組成物であって、前記金属インク組成物において、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満であり、前記金属インク組成物の樹脂成分の含有量が0.5質量%未満であり、前記金属インク組成物は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である金属インク組成物である。
本発明の第2の態様は、炭素数8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合され、金属粒子を含有してなる金属インク組成物であって、前記金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上5.0以下であり、前記金属インク組成物の樹脂成分の含有量が、0.5質量%未満であり、前記金属インク組成物は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である金属インク組成物である。
本発明の第1の態様と第2に態様において、前記金属粒子が、前記第1含窒素化合物及び第2含窒素化合物、並びに金属銀の形成材料及び還元剤を配合して得られているとよい。
本発明の第3の態様は、基板上に金属細線を備え、前記金属細線は前記本発明の一実施形態の金属インク組成物を用いて形成されたものであり、前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である配線板である。
本発明の第4の態様は、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版を用いて、凹版印刷法により、線長方向に対して垂直な方向の断面における幅が、20μm以下である金属細線を形成するための金属インク組成物であって、前記金属インク組成物の樹脂成分の含有量が0.5質量%未満であり、前記金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上50.0以下である金属インク組成物である。
本発明の第5の態様は、基板上に金属細線を備え、前記金属細線は本発明の一実施形態の金属インク組成物を用いて形成されたものであり、前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である配線板である。
本発明の第6の態様は、基板上に、線幅が20μm以下である配線を形成する方法であって、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版の溝に、金属インク組成物を供給する工程と、余剰の金属インク組成物を除去する工程と、前記版から転写材へ前記金属インク組成物を転写する工程と、前記金属インク組成物を転写した転写材を乾燥し、導電性の被膜を形成する工程と、を有し、   前記金属インク組成物が、樹脂成分の含有量が0.5質量%未満であり、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上50.0以下である、配線の形成方法である。
本発明の第7の態様は、基板上に印刷法によって形成された銀細線を備え、前記銀細線は、その線長方向に対して垂直な方向の断面において、幅が20μm以下であり、前記銀細線は、アスペクト比が0.013以上0.025以下であり、頂上が前記基板との接触部よりも幅が小さくなっており、前記銀細線の表面粗さが0.25μm以上0.35μm以下である配線板である。
本発明の第7の態様において、前記銀細線の体積抵抗率が15μΩ・cm以下であるとよい。
本発明のいくつかの実施形態によれば、微細パターンを連続印刷した場合であっても、安定して線幅の変化が小さい金属インク組成物及び前記金属インク組成物を用いた配線板を提供することができる。
本発明のいくつかの実施形態によれば、溝の深い版を用いた場合であっても、線幅が20μm以下である金属細線を安定的に形成することができる金属インク組成物を提供することができる。
本発明のいくつかの実施形態によれば、簡便な方法で製造可能な、適度な表面粗さを有する導電性細線が形成された配線板を提供することができる。
本発明に係る配線板の一例を模式的に示す正面図及び、配線板のI-I線における断面図である。 本発明に係る配線板の一例を模式的に示す正面図及び、配線板のI-I線における断面図である。 本発明における他の形状の金属細線の一例を模式的に示す断面図である。 本発明における他の形状の金属細線の一例を模式的に示す断面図である。 本発明における他の形状の金属細線の一例を模式的に示す断面図である。 エッチング法で形成された金属細線の一例を模式的に示す断面図である。 本発明が用いられる凹版印刷版の一例を模式的に示す断面図である。
<金属インク組成物>
≪第1実施形態≫
本実施形態の金属インク組成物は、金属粒子を含有してなり、炭素数が8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合されている。
本実施形態の金属インク組成物は、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満である。さらに、本実施形態の金属インク組成物の樹脂成分の含有量が0.5質量%未満である。本実施形態の金属インク組成物を構成する各成分の詳細については後述する。
本実施形態の金属インク組成物の粘度は、25℃、せん断速度0.1~1000s-1における粘度1Pa・s以上である。
金属インク組成物の粘度が、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上であると、グラビアオフセット印刷法に適した特性とすることができる。
本実施形態の金属インク組成物の物性は、例えば、金属インク組成物の配合成分、製造方法により調整できる。
≪第2実施形態≫
本実施形態の金属インク組成物は、金属粒子を含有してなり、炭素数が8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合されている。
本実施形態の金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上5.0以下である金属インク組成物である。さらに、本実施形態の金属インク組成物の樹脂成分の含有量が0.5質量%未満である。本実施形態の金属インク組成物を構成する各成分の詳細については後述する。
本実施形態の金属インク組成物の粘度は、25℃、せん断速度0.1~1000s-1における粘度1Pa・s以上である。
金属インク組成物の粘度が、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上であると、グラビアオフセット印刷法に適した特性とすることができる。
本実施形態の金属インク組成物の物性は、例えば、金属インク組成物の配合成分、製造方法により調整できる。
≪第3実施形態≫
本実施形態の金属インク組成物は、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版を用いた、凹版印刷法に用いられる。
図4に、本実施形態の金属インク組成物を用いることができる凹版印刷版の一例を示す。図4に示すのは、版20の細線パターン形成部における溝の長手方向に直交する方向の断面図である。符号21は、周辺のパターン非形成部を示す。凹版印刷法により、溝部22中にインクを充填し、印刷基材にその溝部22中のインクを転写する。
本実施形態の金属インク組成物は、印刷版の溝において、例えば図4に示す溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版を用い、線幅が20μm以下である金属細線を形成するために用いられる。
本実施形態の金属インク組成物は、印刷法としてグラビア印刷に代表される凹版印刷法に適用するものであり、グラビアオフセット印刷法が最も好ましく適用できる。
本実施形態の金属インク組成物が適用できる印刷装置は、グラビア印刷に代表される凹版印刷法に用いるものとして、公知の印刷装置を採用でき、金属製で表面に金属細線の型となる溝を有する凹版を備えたものを用いることができる。オフセットロールとしては、金属製の筒体の表面がブランケット材で被覆されたものを用いることができ、ブランケット材の材質としては、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、合成ゴム、天然ゴム等の弾性材が例示でき、これらの中でも、耐久性、耐油性が高く、さらに十分な弾性とともに適度にコシを有している点で、特にシリコーン樹脂が好ましく、硬質の基板に対してグラビアオフセット印刷を行うのに特に好適である。
本実施形態の金属インク組成物は、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす、換言すれば、溝の深さが深い版を用いた場合であっても、版詰まりを生ずることが無く、線幅が20μm以下である金属細線を形成することができる。
本実施形態において用いる版は、b/aが1.5以上であることが好ましく、2.0以上であることがより好ましく、2.5以上であることが特に好ましい。
また、b/aは5以下であることが好ましく、4.5以下であることがより好ましく、4以下であることが特に好ましい。
上記上限値と下限値は任意に組み合わせることができる。
 印刷版は、図4に示す一例においては溝の側面23と、溝の底面24は平面であるが、溝の側面23と、溝の底面24は、曲面、凹凸面等の非平面であってもよい。
溝の幅aと、溝の深さbとが部位によって変動する場合には、a及びbとしてそれぞれの最大値を採用するものとする。
 前記第2実施形態及び第3実施形態の金属インク組成物は、レオメータ(例えばAnton Paar社製MCRシリーズ、Thermo Scientific社製 HAAKE MARSシリーズ等)を用いて25℃で0.1rad/s~10rad/sの各周波数で正弦振動させたとき(周波数分散測定を行ったとき)の貯蔵弾性率(Pa)と損失弾性率(Pa)が、それぞれ100Pa以下であることが好ましい。この時、測定時に与える歪は線形歪範囲内とする。
前記第2実施形態及び第3実施形態の金属インク組成物は、例えば、0.1rad/sの周波数における、貯蔵弾性率(Pa)と損失弾性率(Pa)は、それぞれ50Pa以下であることがより好ましく、25Pa以下であることがより好ましく、10Pa以下であることが特に好ましい。
前記第2実施形態及び第3実施形態の金属インク組成物は、例えば、1rad/sの周波数における、貯蔵弾性率(Pa)と損失弾性率(Pa)は、それぞれ50Pa以下であることがより好ましく、25Pa以下であることがより好ましく、15Pa以下であることが特に好ましい。
前記第2実施形態及び第3実施形態の金属インク組成物は、例えば、10rad/sの周波数における、貯蔵弾性率(Pa)は、60Pa以下であることがより好ましく、40Pa以下であることがより好ましく、30Pa以下であることが特に好ましい。
10rad/sの周波数における、損失弾性率(Pa)は、90Pa以下であることがより好ましく、80Pa以下であることがより好ましく、75Pa以下であることが特に好ましい。
第2実施形態の金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の、上記貯蔵弾性率(Pa)と損失弾性率(Pa)から算出される損失係数(tanδ)(損失弾性率/貯蔵弾性率)が、0.7以上5.0以下である。
角周波数0.1rad/sの場合の、損失係数(tanδ)(損失弾性率/貯蔵弾性率)は、0.8以上4.0以下が好ましく、0.9以上2.0以下が特に好ましい。
また、角周波数が0.1rad/s以外の場合の損失係数が、0.7以上75以下であってもよい。
例えば、角周波数が1.0rad/sの場合の損失係数(tanδ)は、1.0以上7.5以下が好ましく、1.2以上3.0以下であることがより好ましい。
例えば、角周波数が10rad/sの場合の損失係数(tanδ)は、1.5以上75下が好ましく、2.0以上50以下であることがより好ましく、20以下が特に好ましく、10以下が極めて好ましい。
第2実施形態の金属インク組成物の損失係数(tanδ)が上記の範囲であると、金属インク組成物に高い流動性が確保され、適度な粘性を付与でき、連続印刷をした際でも線幅の変化を小さくすることができ、線幅が20μm以下である金属細線を安定して形成することができる。
第3実施形態の金属インク組成物は、レオメータ(例えばAnton Paar社製MCRシリーズ、Thermo Scientific社製 HAAKE MARSシリーズ等)を用いて、25℃で0.1rad/sの周波数で正弦振動させたときの貯蔵弾性率(Pa)と損失弾性率(Pa)から算出される損失係数(tanδ)(損失弾性率/貯蔵弾性率)が、0.7以上50.0以下である。
 角周波数0.1rad/sの場合の、損失係数(tanδ)(損失弾性率/貯蔵弾性率)は、0.8以上40.0以下が好ましく、0.9以上30.0以下が特に好ましい。
第3実施形態の金属インク組成物の損失係数(tanδ)が上記の範囲であると、金属インク組成物に高い流動性が確保され、適度な粘性を付与でき、溝の深さが深い版を用いた場合であっても、版詰まりを生ずることが無く、線幅が20μm以下である金属細線を安定して形成することができる。
また、第3実施形態の金属インク組成物は、角周波数が0.1rad/s以外の場合の損失係数が、0.7以上75以下であってもよい。
第3実施形態の金属インク組成物は、例えば、角周波数が1.0rad/sの場合の損失係数(tanδ)は、1.0以上75以下が好ましく、1.2以上40以下であることがより好ましい。
第3実施形態の金属インク組成物は、例えば、角周波数が10rad/sの場合の損失係数(tanδ)は、1.5以上75下が好ましく、2.0以上50以下であることがより好ましく、例えば、20以下や10以下等であってもよいが、これらは一例である。
第3実施形態の金属インク組成物は、損失係数(tanδ)が上記所定の範囲である金属インク組成物とすることにより、溝の深さが深い版を用いた場合であっても、版詰まりを生ずることが無く、線幅が20μm以下である金属細線を安定的に形成することができる。
また、第1実施形態及び第2実施形態の金属インク組成物の粘度は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である。金属インク組成物の粘度は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上であると、グラビア印刷に代表される凹版印刷法、特にグラビアオフセット印刷法に適した特性とすることができる。
第1実施形態から第3実施形態の金属インク組成物の物性は、例えば、金属インク組成物の配合成分、製造方法により調整できる。
また、金属インク組成物の粘度の評価方法として、チキソトロピー指数がある。第1実施形態から第3実施形態の態様の金属インク組成物は、例えば、下記式(T1)で定義されるチキソトロピー指数が10以下であることが好ましく、8.0以下がより好ましく、5.0以下が特に好ましい。
チキソトロピー指数=(25℃、せん断速度0.1s-1で測定した粘度)/(25℃、せん断速度10s-1で測定した粘度)…(T1)
チキソトロピー指数を算出するための粘度は、例えば粘弾性測定装置(レオメータ)を用いて測定することができる。本明細書においては、特定のせん断速度での粘度を「せん断粘度」と略記することがある。
チキソトロピー指数が上記の範囲であると、例えば、金属インク組成物を設計通りの幅に印刷するのに好適である。
以下、金属インク組成物を構成する各成分について説明する。
第1実施形態から第3実施形態の金属インク組成物は、例えば、金属の形成材料及び金属の形成材料以外の成分を配合することにより、得ることができる。
前記金属の形成材料は、金属原子(元素)を有し、分解等の構造変化によって金属を生じるものであればよく、金属塩、金属錯体、有機金属化合物(金属-炭素結合を有する化合物)等が例示できる。前記金属塩及び金属錯体は、有機基を有する金属化合物及び有機基を有しない金属化合物のいずれでもよい。なかでも金属の形成材料は、加熱によって分解し、金属を形成するものが好ましく、金属塩であることが好ましい。
金属の形成材料を用いることで、前記材料から金属が生じ、この金属を含む金属細線が形成される。この場合の金属細線は、先に説明したように、金属を主成分とするものであり、金属の比率が十分に高い。
[カルボン酸銀]
金属銀の形成材料としては、式「-COOAg」で表される基を有するカルボン酸銀が例示できる。
金属インク組成物の実施形態において、カルボン酸銀は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。
前記カルボン酸銀は、下記一般式(1)で表わされるβ-ケトカルボン酸銀(以下、「β-ケトカルボン酸銀(1)」と略記することがある)及び下記一般式(4)で表されるカルボン酸銀(以下、「カルボン酸銀(4)」と略記することがある)からなる群から選択される一種以上であることが好ましい。
本明細書においては、単なる「カルボン酸銀」との記載は、特に断りの無い限り、「β-ケトカルボン酸銀(1)」及び「カルボン酸銀(4)」だけではなく、これらを包括する、「式「-COOAg」で表される基を有するカルボン酸銀」を意味するものとする。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基又は式「-C(=O)-OAg」で表される基であり、前記脂肪族炭化水素基がメチレン基を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。)
(β-ケトカルボン酸銀(1))
β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基である。
Rにおける炭素数1~20の脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状(脂肪族環式基)のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。また、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。前記脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6であることがより好ましい。Rにおける好ましい前記脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基が例示できる。
Rにおける直鎖状又は分枝鎖状の前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。
Rにおける環状の前記アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示できる。
Rにおける前記アルケニル基としては、ビニル基(エテニル基、-CH=CH)、アリル基(2-プロペニル基、-CH-CH=CH)、1-プロペニル基(-CH=CH-CH)、イソプロペニル基(-C(CH)=CH)、1-ブテニル基(-CH=CH-CH-CH)、2-ブテニル基(-CH-CH=CH-CH)、3-ブテニル基(-CH-CH-CH=CH)、シクロヘキセニル基、シクロペンテニル基等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換された基が例示できる。
Rにおける前記アルキニル基としては、エチニル基(-C≡CH)、プロパルギル基(-CH-C≡CH)等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基が例示できる。
Rにおける炭素数1~20の脂肪族炭化水素基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、フッ素原子、塩素原子、臭素原子が例示できる。また、置換基の数及び位置は特に限定されない。置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一であってもよいし、すべての置換基が異なっていてもよく、一部の置換基のみが異なっていてもよい。
Rにおけるフェニル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基(-OH)、シアノ基(-C≡N)、フェノキシ基(-O-C)等が例示でき、置換基の数及び位置は特に限定されない。置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
置換基である前記脂肪族炭化水素基としては、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるYは、それぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子である。一般式「R-CY -」、「CY -」及び「R-C(=O)-CY -」においては、それぞれ複数個のYは、互いに同一でも異なっていてもよい。
RにおけるRは、炭素数1~19の脂肪族炭化水素基又はフェニル基(C-)であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるRは、炭素数1~20の脂肪族炭化水素基であり、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるRは、炭素数1~16の脂肪族炭化水素基であり、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。RにおけるR及びRは、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R及びRは、互いに同一でも異なっていてもよく、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるRは、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
Rは、上記の中でも、直鎖状若しくは分枝鎖状のアルキル基、一般式「R-C(=O)-CY -」で表される基、水酸基又はフェニル基であることが好ましい。Rは、直鎖状若しくは分枝鎖状のアルキル基、水酸基又は式「AgO-」で表される基であることが好ましい。
一般式(1)において、Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基(C-CH-)、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基(C-O-CH=CH-)、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基である。
における炭素数1~20の脂肪族炭化水素基としては、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
におけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO)等が例示でき、置換基の数及び位置は特に限定されない。置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
におけるRは、炭素数1~10の脂肪族炭化水素基、チエニル基(CS-)、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基(ビフェニル基、C-C-)である。Rにおける前記脂肪族炭化水素基としては、炭素数が1~10である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。また、Rにおけるフェニル基及びジフェニル基の前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が例示でき、置換基の数及び位置は特に限定されない。置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
がチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
一般式(1)において、2個のXは、2個のカルボニル基で挟まれた炭素原子と二重結合を介して1個の基として結合していてもよく、このようなものとしては式「=CH-C-NO」で表される基が例示できる。
  Xは、上記の中でも、水素原子、直鎖状若しくは分枝鎖状のアルキル基、ベンジル基、又は一般式「R-C(=O)-」で表される基であることが好ましく、少なくとも一方のXが水素原子であることが好ましい。
β-ケトカルボン酸銀(1)は、2-メチルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、アセト酢酸銀(CH-C(=O)-CH-C(=O)-OAg)、2-エチルアセト酢酸銀(CH-C(=O)-CH(CHCH)-C(=O)-OAg)、プロピオニル酢酸銀(CHCH-C(=O)-CH-C(=O)-OAg)、イソブチリル酢酸銀((CHCH-C(=O)-CH-C(=O)-OAg)、ピバロイル酢酸銀((CHC-C(=O)-CH-C(=O)-OAg)、カプロイル酢酸銀(CH(CHCH-C(=O)-CH-C(=O)-OAg)、2-n-ブチルアセト酢酸銀(CH-C(=O)-CH(CHCHCHCH)-C(=O)-OAg)、2-ベンジルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、ベンゾイル酢酸銀(C-C(=O)-CH-C(=O)-OAg)、ピバロイルアセト酢酸銀((CHC-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、イソブチリルアセト酢酸銀((CHCH-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、2-アセチルピバロイル酢酸銀((CHC-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、2-アセチルイソブチリル酢酸銀((CHCH-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、又はアセトンジカルボン酸銀(AgO-C(=O)-CH-C(=O)-CH-C(=O)-OAg)であることが好ましい。
β-ケトカルボン酸銀(1)は、乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。原料や不純物が少ない程、例えば、形成された金属銀同士の接触が良好となり、導通が容易となり、抵抗率が低下する。
β-ケトカルボン酸銀(1)は、後述するように、当該分野で公知の還元剤等を使用しなくても、好ましくは60~210℃、より好ましくは60~200℃という低温で分解し、金属銀を形成することが可能である。還元剤と併用することで、より低温で分解して金属銀を形成する。還元剤については後ほど説明する。
金属インク組成物の実施形態において、β-ケトカルボン酸銀(1)は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
(カルボン酸銀(4))
カルボン酸銀(4)は、前記一般式(4)で表される。
式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基(-COOH)又は式「-C(=O)-OAg」で表される基である。
における前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。ただし、Rにおける前記脂肪族炭化水素基は、炭素数が1~15であることが好ましく、1~10であることがより好ましい。
における前記脂肪族炭化水素基がメチレン基(-CH-)を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。カルボニル基で置換されていてもよいメチレン基の数及び位置は特に限定されず、すべてのメチレン基がカルボニル基で置換されていてもよい。ここで「メチレン基」とは、単独の式「-CH-」で表される基だけでなく、式「-CH-」で表される基が複数個連なったアルキレン基中の1個の式「-CH-」で表される基も含むものとする。
カルボン酸銀(4)は、ピルビン酸銀(CH-C(=O)-C(=O)-OAg)、酢酸銀(CH-C(=O)-OAg)、酪酸銀(CH-(CH-C(=O)-OAg)、イソ酪酸銀((CHCH-C(=O)-OAg)、2-エチルへキサン酸銀(CH-(CH-CH(CHCH)-C(=O)-OAg)、ネオデカン酸銀(CH-(CH-C(CH-C(=O)-OAg)、シュウ酸銀(AgO-C(=O)-C(=O)-OAg)、又はマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)であることが好ましい。また、上記のシュウ酸銀(AgO-C(=O)-C(=O)-OAg)及びマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)の2個の式「-COOAg」で表される基のうち、1個が式「-COOH」で表される基となったもの(HO-C(=O)-C(=O)-OAg、HO-C(=O)-CH-C(=O)-OAg)も好ましい。
カルボン酸銀(4)も、β-ケトカルボン酸銀(1)と同様に、乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。還元剤と併用することで、より低温で分解して金属銀を形成する。
金属インク組成物の実施形態において、カルボン酸銀(4)は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記カルボン酸銀は、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、カプロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、アセトンジカルボン酸銀、ピルビン酸銀、酢酸銀、酪酸銀、イソ酪酸銀、2-エチルへキサン酸銀、ネオデカン酸銀、シュウ酸銀及びマロン酸銀からなる群から選択される一種以上であることが好ましい。
これらカルボン酸銀の中でも、2-メチルアセト酢酸銀及びアセト酢酸銀は、後述する含窒素化合物(なかでもアミン化合物)との相溶性に優れ、金属インク組成物の高濃度化に、特に適したものとして挙げられる。
金属インク組成物において、金属インク組成物が金属銀インク組成物である場合には、前記金属銀の形成材料に由来する銀の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。このような範囲であることで、形成された導電体(金属銀)は品質により優れたものとなる。前記銀の含有量の上限値は、上述の金属インク組成物の実施形態の効果を損なわない限り特に限定されないが、取り扱い性等を考慮すると25質量%であることが好ましい。
また、金属の形成材料に由来する銀の含有量は、50質量%未満であることが好ましく、48質量%以下であることがより好ましい。
 銀の含有量が上記範囲であると、貯蔵弾性率、損失弾性率及びtanδを高すぎず、適度な粘度とすることができる。
本明細書において、「金属銀の形成材料に由来する銀」とは、特に断りの無い限り、金属インク組成物の製造時に配合された前記金属銀の形成材料中の銀を意味し、配合後に引き続き金属銀の形成材料を構成している銀と、配合後に金属銀の形成材料が分解して生じた分解物中の銀及び銀自体と、の両方を含む概念とする。
[含窒素化合物]
金属インク組成物の実施形態において金属インク組成物に配合されていてもよい、含窒素化合物について説明する。
第1実施形態と第2実施形態の金属インク組成物は、後述する含窒素化合物のうち、炭素数が8以上の第1含窒素化合物と、炭素数が7以下の第2含窒素化合物とが配合されている。
また、第3実施形態の金属インク組成物は、後述する含窒素化合物のうち、炭素数が8以上の第1含窒素化合物と、炭素数が7以下の第2含窒素化合物とが配合されていてもよい。
第1実施形態の金属インク組成物においては、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満である。
また、第2実施形態及び第3実施形態の金属インク組成物においては、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満であることが好ましい。
第1含窒素化合物の配合量に対する第2含窒素化合物の配合量が0モル%より大きく、18モル%未満であると、金属インク組成物の貯蔵弾性率と損失弾性率を温度25℃、角周波数0.1rad/sの場合の損失弾性率及び貯蔵弾性率をそれぞれ100Pa以下とすることができ、「損失弾性率/貯蔵弾性率」により算出される損失係数(tanδ)を0.7以上とすることができる。
これにより、第1実施形態と第2実施形態の金属インク組成物に高い流動性が確保され、適度な粘性を付与でき、連続印刷をした際でも線幅の変化を小さくすることができ、線幅が20μm以下である金属細線を安定して形成することができる。
また、第3実施形態の金属インク組成物に高い流動性が確保され、適度な粘性を付与でき、溝の深さが深い版を用いた場合であっても、版詰まりを生ずることが無く、線幅が20μm以下である金属細線を安定的に形成することができる。
第1実施形態から第3実施形態の金属インク組成物においては、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合の上限値は25モル%以下であることが好ましく、20モル%以下であることがより好ましく、15モル%以下であることが特に好ましい。また、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合の下限値は1モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることが特に好ましい。上記の上限値及び下限値は任意に組み合わせることができる。
第1実施形態から第3実施形態の金属インク組成物は、後述する「金属インク組成物の製造方法」によって製造することができるが、還元剤を添加する工程の前における第1含窒素化合物の配合量に対する第2含窒素化合物の配合量の割合が上記所定の範囲であることが好ましい。
含窒素化合物は、炭素数25以下のアミン化合物(以下、「アミン化合物」と略記することがある)、炭素数25以下の第4級アンモニウム塩(以下、「第4級アンモニウム塩」と略記することがある)、アンモニア、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩(以下、「アミン化合物由来のアンモニウム塩」と略記することがある)、及びアンモニアが酸と反応してなるアンモニウム塩(以下、「アンモニア由来のアンモニウム塩」と略記することがある)からなる群から選択される一種以上である。すなわち、配合される含窒素化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
これらのなかでも、炭素数が8以上含窒素化合物を第1含窒素化合物とし、炭素数が7以下の含窒素化合物を第2含窒素化合物とし、以下においても同様とする。
(アミン化合物、第4級アンモニウム塩)
前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
前記第1級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、モノアリールアミン、モノ(ヘテロアリール)アミン、ジアミン等が例示できる。
前記モノアルキルアミンを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、Rにおける前記アルキル基と同様のものが例示でき、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。
好ましい前記モノアルキルアミンとして、具体的には、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン(2-アミノヘプタン)、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミンが例示できる。
これらの中でも、第1含窒素化合物としては、2-エチルヘキシルアミンが好ましく、第2含窒素化合物としては、イソブチルアミンが好ましい。
前記モノアリールアミンを構成するアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が例示でき、炭素数が6~10であることが好ましい。
前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基は、芳香族環骨格を構成する原子として、ヘテロ原子を有するものであり、前記ヘテロ原子としては、窒素原子、硫黄原子、酸素原子、ホウ素原子が例示できる。また、芳香族環骨格を構成する前記へテロ原子の数は特に限定されず、1個でもよいし、2個以上でもよい。2個以上である場合、これらへテロ原子は互いに同一でも異なっていてもよい。すなわち、これらへテロ原子は、すべて同じでもよいし、すべて異なっていてもよく、一部だけ異なっていてもよい。
 前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
前記ヘテロアリール基で、窒素原子を1~4個有する単環状のものとしては、ピロリル基、ピロリニル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、ピロリジニル基、イミダゾリジニル基、ピペリジニル基、ピラゾリジニル基、ピペラジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、フラニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、チエニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、チアゾリル基、チアジアゾリル基、チアゾリジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、ジチアナフタレニル基、ベンゾチオフェニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾチアゾリル基、ベンゾチアジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ジアミンは、アミノ基を2個有していればよく、2個のアミノ基の位置関係は特に限定されない。好ましい前記ジアミンとしては、前記モノアルキルアミン、モノアリールアミン又はモノ(ヘテロアリール)アミンにおいて、アミノ基(-NH)を構成する水素原子以外の1個の水素原子が、アミノ基で置換されたものが例示できる。
前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしてはエチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタンが例示できる。
前記第2級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいジアルキルアミン、ジアリールアミン、ジ(ヘテロアリール)アミン等が例示できる。
前記ジアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
好ましい前記ジアルキルアミンとして、具体的には、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミンが例示できる。
前記ジアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。また、 ジアリールアミン一分子中の2個のアリール基は、互いに同一でも異なっていてもよい。
前記ジ(ヘテロアリール)アミンを構成するヘテロアリール基は、前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基と同様であり、6~12員環であることが好ましい。また、ジ(ヘテロアリール)アミン一分子中の2個のヘテロアリール基は、互いに同一でも異なっていてもよい。
前記第3級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、ジアルキルモノアリールアミン等が例示できる。
前記トリアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。 また、トリアルキルアミン一分子中の3個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、3個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
好ましい前記トリアルキルアミンとして、具体的には、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミンが例示できる。
前記ジアルキルモノアリールアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~6の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルモノアリールアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
第1実施形態から第3実施形態の金属インク組成物において、前記第4級アンモニウム塩としては、1個以上の水素原子が置換基で置換されていてもよいハロゲン化テトラアルキルアンモニウム等が例示できる。前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。
また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示できる。
好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、ドデシルトリメチルアンモニウムブロミドが例示できる。
ここまでは、主に鎖状のアミン化合物及び第4級アンモニウム塩について説明したが、前記アミン化合物及び第4級アンモニウム塩は、アミン部位又はアンモニウム塩部位を構成する窒素原子が環骨格構造(複素環骨格構造)の一部であるようなヘテロ環化合物であってもよい。すなわち、前記アミン化合物は環状アミンでもよく、前記第4級アンモニウム塩は環状アンモニウム塩でもよい。この時の環(アミン部位又はアンモニウム塩部位を構成する窒素原子を含む環)構造は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されず、脂肪族環及び芳香族環のいずれでもよい。
環状アミンであれば、好ましいものとして、ピリジンが例示できる。
前記第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム塩において、「置換基で置換されていてもよい水素原子」とは、アミン部位又はアンモニウム塩部位を構成する窒素原子に結合している水素原子以外の水素原子である。この時の置換基の数は特に限定されず、1個でもよいし、2個以上でもよく、前記水素原子のすべてが置換基で置換されていてもよい。置換基の数が複数の場合には、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、複数個の置換基はすべて同じでもよいし、すべて異なっていてもよく、一部だけが異なっていてもよい。また、置換基の位置も特に限定されない。
前記アミン化合物及び第4級アンモニウム塩における前記置換基としては、アルキル基、アリール基、ハロゲン原子、シアノ基、ニトロ基、水酸基、トリフルオロメチル基(-CF)等が例示できる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 前記モノアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基としてアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は置換基として好ましくは炭素数が1~5のアルキル基を有する、炭素数が3~7の環状のアルキル基が好ましく、このような置換基を有するモノアルキルアミンとして、具体的には、2-フェニルエチルアミン、ベンジルアミン、2,3-ジメチルシクロヘキシルアミンが例示できる。
また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよく、このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、2-ブロモベンジルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
前記モノアリールアミンを構成するアリール基が置換基を有する場合、かかるアリール基は、置換基としてハロゲン原子を有する、炭素数が6~10のアリール基が好ましく、このような置換基を有するモノアリールアミンとして、具体的には、ブロモフェニルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
前記ジアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基として水酸基又はアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基が好ましく、このような置換基を有するジアルキルアミンとして、具体的には、ジエタノールアミン、N-メチルベンジルアミンが例示できる。
前記アミン化合物は、n-プロピルアミン、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、2-フェニルエチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、N-メチルベンジルアミン、ジ(2-エチルへキシル)アミン、1,2-ジメチル-n-プロピルアミン、N,N-ジメチル-n-オクタデシルアミン又はN,N-ジメチルシクロヘキシルアミンであることが好ましい。
これらアミン化合物の中でも、2-エチルヘキシルアミンは、前記カルボン酸銀との相溶性に優れ、金属インク組成物の高濃度化に特に適しており、さらに金属細線の表面粗さの低減に特に適したものとして挙げられる。
(アミン化合物由来のアンモニウム塩)
第1実施形態から第3実施形態の金属インク組成物において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩であり、前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。前記アミン化合物由来のアンモニウム塩としては、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が例示できるが、これらに限定されない。
(アンモニア由来のアンモニウム塩)
第1実施形態から第3実施形態の金属インク組成物において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩であり、ここで酸としては、前記アミン化合物由来のアンモニウム塩の場合と同じものが例示できる。
前記アンモニア由来のアンモニウム塩としては、塩化アンモニウム等が例示できるが、これに限定されない。
第1実施形態から第3実施形態の金属インク組成物においては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩は、それぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
金属インク組成物において、前記含窒素化合物の配合量(含窒素化合物として、第1含窒素化合物と、第2含窒素化合物との混合物を採用する場合には、第1含窒素化合物と、第2含窒素化合物の合計量)は、前記金属の形成材料の配合量1モルあたり0モル%より大きく、0.3~15モルであることが好ましく、0.3~5モルであることがより好ましい。前記含窒素化合物(含窒素化合物として、第1含窒素化合物と、第2含窒素化合物との混合物を採用する場合には、第1含窒素化合物と、第2含窒素化合物の合計量)の前記配合量がこのような範囲であることで、金属インク組成物は安定性がより向上し、導電体(金属)の品質がより向上する。さらに、高温による加熱処理を行わなくても、より安定して導電体を形成できる。
[還元剤]
第1実施形態から第3実施形態の金属インク組成物は、前記金属の形成材料と前記含窒素化合物(含窒素化合物として、第1含窒素化合物と、第2含窒素化合物との混合物を採用する場合には、第1含窒素化合物と、第2含窒素化合物の合計量)以外に、さらに還元剤が配合されてなるものが好ましい。還元剤を配合することで、前記金属インク組成物は、金属をより形成し易くなり、例えば、低温での加熱処理でも十分な導電性を有する導電体(金属)を形成できる。
前記還元剤は、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される一種以上の還元性化合物(以下、単に「還元性化合物」と略記することがある)であることが好ましい。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
(還元性化合物)
前記還元性化合物は、シュウ酸(HOOC-COOH)、ヒドラジン(HN-NH)及び前記一般式(5)で表される化合物(化合物(5))からなる群から選択される一種以上である。すなわち、配合される還元性化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
21における炭素数20以下のアルキル基は、炭素数が1~20であり、直鎖状、分岐鎖状及び環状のいずれでもよく、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
21における炭素数20以下のアルコキシ基は、炭素数が1~20であり、R21における前記アルキル基が酸素原子に結合してなる一価の基が例示できる。
21における炭素数20以下のN,N-ジアルキルアミノ基は、炭素数が2~20であり、窒素原子に結合している2個のアルキル基は、互いに同一でも異なっていてもよく、前記アルキル基はそれぞれ炭素数が1~19である。ただし、これら2個のアルキル基の炭素数の合計値が2~20である。
窒素原子に結合している前記アルキル基は、それぞれ直鎖状、分岐鎖状及び環状のいずれでもよく、炭素数が1~19である点以外は、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
前記還元性化合物として、ヒドラジンは、一水和物(HN-NH・HO)を用いてもよい。
前記還元性化合物で好ましいものとしては、ギ酸(H-C(=O)-OH);ギ酸メチル(H-C(=O)-OCH)、ギ酸エチル(H-C(=O)-OCHCH)、ギ酸ブチル(H-C(=O)-O(CHCH)等のギ酸エステル;プロパナール(H-C(=O)-CHCH)、ブタナール(H-C(=O)-(CHCH)、ヘキサナール(H-C(=O)-(CHCH)等のアルデヒド;ホルムアミド(H-C(=O)-NH)、N,N-ジメチルホルムアミド(H-C(=O)-N(CH)等のホルムアミド類(式「H-C(=O)-N(-)-」で表される基を有する化合物);シュウ酸が例示できる。
金属インク組成物において、還元剤の配合量は、前記金属の形成材料の配合量1モルあたり0.04~3.5モルであることが好ましく、0.06~2.5モルであることがより好ましい。還元剤の前記配合量がこのような範囲であることで、金属インク組成物は、より容易に、より安定して導電体(金属)を形成できる。
[アルコール]
第1実施形態から第3実施形態の金属インク組成物は、前記金属の形成材料、前記含窒素化合物(含窒素化合物として、第1含窒素化合物と、第2含窒素化合物との混合物を採用する場合には、第1含窒素化合物と、第2含窒素化合物の合計量)、還元剤以外に、さらにアルコールが配合されてなるものが好ましい。
前記アルコールは、下記一般式(2)で表されるアセチレンアルコール類(以下、「アセチレンアルコール(2)」と略記することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R’及びR’’は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。)
(アセチレンアルコール(2))
アセチレンアルコール(2)は、前記一般式(2)で表される。
式中、R’及びR’’は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。
R’及びR’’における炭素数1~20のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。 R’及びR’’における前記アルキル基としては、Rにおける前記アルキル基と同様のものが例示できる。
R’及びR’’におけるフェニル基の水素原子が置換されていてもよい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基、シアノ基、フェノキシ基等が例示でき、Rにおけるフェニル基の水素原子が置換されていてもよい前記置換基と同様である。置換基の数及び位置は特に限定されず、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
R’及びR’’は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。
好ましいアセチレンアルコール(2)としては、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、2-プロピン-1-オール、4-エチル-1-オクチン-3-オール、3-エチル-1-ヘプチン-3-オールが例示できる。
アセチレンアルコール(2)を用いる場合、金属インク組成物において、アセチレンアルコール(2)の配合量は、前記金属の形成材料の配合量1モルあたり0.03~0.7モルであることが好ましく、0.03~0.3モルであることがより好ましく、0.05~0.3モルであってもよい。アセチレンアルコール(2)の前記配合量がこのような範囲であることで、金属インク組成物の安定性がより向上する。
前記アルコールは、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。
[その他の成分]
第1実施形態から第3実施形態の金属インク組成物は、前記金属の形成材料、前記含窒素化合物(含窒素化合物として、第1含窒素化合物と、第2含窒素化合物との混合物を採用する場合には、第1含窒素化合物と、第2含窒素化合物の合計量)、還元剤並びにアルコール以外の、その他の成分が配合されてなるものでもよい。
金属インク組成物における前記その他の成分は、目的に応じて任意に選択でき、特に限定されず、好ましいものとしては、アルコール以外の溶媒が例示でき、配合成分の種類や量に応じて任意に選択できる。
金属インク組成物における前記その他の成分は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。
前記アルコール以外の溶媒は、配合成分の種類や量に応じて任意に選択できる。好ましい溶媒としては、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン等の芳香族炭化水素;ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン等の脂肪族炭化水素;エタノール、2-プロパノール等の飽和脂肪族アルコール;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;酢酸エチル、グルタル酸モノメチル、グルタル酸ジメチル等のエステル;ジエチルエーテル、テトラヒドロフラン(THF)、1,2-ジメトキシエタン(ジメチルセロソルブ)等のエーテル;アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン;アセトニトリル等のニトリル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等のアミド等が挙げられるが、これらに限定されない。
金属インク組成物における前記その他の成分の配合量は、前記その他の成分の種類に応じて、適宜選択すればよい。
例えば、前記その他の成分がアルコール以外の溶媒である場合、前記溶媒の配合量は、銀インク組成物の粘度等、目的に応じて選択すればよいが、金属の形成材料1モルに対して、0.5モル~5.0モルであることが好ましく、0.5モル~3.5モルであることがより好ましく、0.5~2.0モルであることが特に好ましい。
また、前記その他の成分が前記溶媒以外の成分である場合、金属インク組成物において、配合成分の総量に対する前記その他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
配合成分の総量に対する前記その他の成分の配合量の割合が0質量、すなわちその他の成分を配合しなくても、金属インク組成物は十分にその効果を発現する。
金属インク組成物において、配合成分の総量に対する前記その他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量、すなわちその他の成分を配合しなくても、金属インク組成物は十分にその効果を発現する。
第3実施形態の金属インク組成物は、前記カルボン酸銀、第1及び第2の含窒素化合物、還元剤並びにアルコールが配合されてなるものがより好ましい。
金属インク組成物は、前記金属の形成材料、含窒素化合物(第1実施形態及び第2実施形態の金属インク組成物は第1及び第2の含窒素化合物)、並びに還元剤及びアルコールのいずれか一方又は両方が配合されてなるものが好ましく、前記カルボン酸銀、含窒素化合物(第1実施形態及び第2実施形態の金属インク組成物は第1及び第2の含窒素化合物)、並びに還元剤及びアルコールのいずれか一方又は両方が配合されてなるものがより好ましい。
金属インク組成物は、配合成分がすべて溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。
第1実施形態から第3実施形態の金属インク組成物は、その他の成分として、樹脂成分を含有する場合、樹脂成分の含有量は0.5質量%未満である。樹脂成分の含有量は、0.25質量%未満が好ましく、0,1質量%未満であることがより好ましく、0質量%であることが特に好ましい。樹脂成分の含有量が上記の範囲であると、金属インク組成物を用いて形成した金属細線の導電性の向上に寄与できる。
樹脂成分としては、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。
[金属インク組成物の製造方法]
金属インク組成物は、前記金属の形成材料、及び前記金属の形成材料以外の成分を配合することで得られる。各成分の配合後は、得られたものをそのまま金属インク組成物としてもよいし、必要に応じて引き続き公知の精製操作を行って得られたものを金属インク組成物としてもよい。金属インク組成物の実施形態においては、特に前記金属の形成材料としてβ-ケトカルボン酸銀(1)を用いた場合、上記の各成分の配合時において、導電性を阻害する不純物が生成しないか、又はこのような不純物の生成量を極めて少量に抑制できるため、精製操作を行っていない金属インク組成物を用いても、十分な導電性を有する導電体(金属)が得られる。
(金属インク組成物の製造方法1)
金属インク組成物の製造方法の一態様としては、金属の形成材料、並びに含窒素化合物、還元剤、アルコール及びその他の成分からなる群から選択される一種以上を配合することによって得られる。
なかでも、金属インク組成物の実施形態においては、含窒素化合物に、金属の形成材料を添加し、次に還元剤を添加し、次にアルコールを添加するという順序で各成分を順次添加し、混合することが好ましい。
つまり、金属インク組成物の実施形態において、金属インク組成物を金属インク組成物の製造方法1により得る場合には、含窒素化合物に金属の形成材料を添加する第1工程と、さらに還元剤を添加する第2工程と、さらにアルコール及び必要に応じてその他の成分を添加する第3工程と、を有する製造方法によって製造されることが好ましい。第1工程で添加する金属の形成材料は、この製造方法で用いる金属の形成材料の全量であることが好ましい。第2工程で添加する還元剤は、この製造方法で用いる還元剤の全量であることが好ましい。第3工程で添加するアルコール及びその他の成分は、この製造方法で用いるアルコール及びその他の成分の全量であることが好ましい。
(金属インク組成物の製造方法2)
 上記金属インク組成物の製造方法1以外の、金属インク組成物の製造方法の一態様としては、金属の形成材料を溶媒に溶解又は分散させ、次に含窒素化合物を添加し、次に還元剤を添加し、次にアルコールを添加するという順序で各成分を順次添加し、混合する方法も好適に採用できる。
つまり、金属インク組成物の実施形態において、金属インク組成物を金属インク組成物の製造方法2により得る場合には、金属の形成材料を溶媒に溶解又は分散させる第1工程と、さらに含窒素化合物を添加する第2工程と、さらに還元剤を添加する第3工程と、さらにアルコール及び必要に応じてその他の成分を添加する第4工程と、を有する製造方法によって製造されることが好ましい。第1工程で溶媒に溶解又は分散させる金属の形成材料は、この製造方法で用いる金属の形成材料の全量であることが好ましい。第2工程で添加する含窒素化合物は、この製造方法で用いる含窒素化合物の全量であることが好ましい。第3工程で添加する還元剤は、この製造方法で用いる還元剤の全量であることが好ましい。第4工程で添加するアルコール及びその他の成分は、この製造方法で用いるアルコール及びその他の成分の全量であることが好ましい。
金属インク組成物の実施形態において、含窒素化合物として、第1の含窒素化合物と第2の含窒素化合物との混合物を採用する場合には、第1工程後において、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満であることが好ましい。
金属インク組成物の実施形態においては、前記還元剤は滴下により配合することが好ましく、さらに滴下速度の変動を抑制することで、金属の表面粗さをより低減できる傾向にある。混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。金属インク組成物において、溶解していない成分を均一に分散させる場合には、例えば、上記の三本ロール、ニーダー又はビーズミル等を用いて分散させる方法を適用するのが好ましい。
配合時の温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。配合時の温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。
また、配合時間も、各配合成分が劣化しない限り特に限定されないが、10分~36時間であることが好ましい。
[二酸化炭素]
金属インク組成物は、さらに二酸化炭素が供給されてなるものでもよい。このような金属インク組成物は高粘度となり、例えば、フレキソ印刷法、スクリーン印刷法、グラビアオフセット印刷法、パッド印刷法等の、インクを厚盛りすることが必要な印刷法への適用に好適である。
二酸化炭素は、金属インク組成物製造時のいずれの時期に供給してもよい。金属インク組成物の実施形態においては、例えば、還元剤を添加する前に二酸化炭素を供給してもよく、目的に応じて任意に選択できる。
各成分の混合の際に供給される二酸化炭素(CO)は、ガス状及び固形状(ドライアイス)のいずれでもよく、ガス状及び固形状の両方でもよい。二酸化炭素が供給されることにより、この二酸化炭素が第一の混合物に溶け込み、各成分と作用することで、得られる各成分の混合物の粘度が上昇すると推測される。
二酸化炭素ガスの供給は、液体中にガスを吹き込む公知の各種方法で行えばよく、適した供給方法を適宜選択すればよい。例えば、配管の一端を第一の混合物中に浸漬し、他端を二酸化炭素ガスの供給源に接続して、この配管を通じて二酸化炭素ガスを第一の混合物に供給する方法が例示できる。この時、配管の端部から直接二酸化炭素ガスを供給してもよいが、例えば、多孔質性のものなど、ガスの流路となり得る空隙部が多数設けられ、導入されたガスを拡散させて微小な気泡として放出することが可能なガス拡散部材を配管の端部に接続し、このガス拡散部材を介して二酸化炭素ガスを供給してもよい。また、第一の混合物の製造時と同様の方法で、第一の混合物を撹拌しながら二酸化炭素ガスを供給してもよい。このようにすることで、効率的に二酸化炭素を供給できる。
二酸化炭素ガスの供給量は、目的とする金属インク組成物の粘度に応じて適宜調節すればよく、特に限定されない。例えば、20~25℃における粘度が5Pa・s以上である金属インク組成物を100~1000g程度得るためには、二酸化炭素ガスを100L以上供給することが好ましく、200L以上供給することがより好ましい。ここでは金属インク組成物の20~25℃における粘度について説明したが、金属インク組成物の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。
二酸化炭素ガスの流量は、必要とされる二酸化炭素ガスの供給量を考慮して適宜調節すればよいが、各成分の混合物1gあたり0.5mL/分以上であることが好ましく、1mL/分以上であることがより好ましい。流量の上限値は特に限定されないが、取り扱い性等を考慮すると、各成分の混合物1gあたり40mL/分であることが好ましい。
二酸化炭素ガスの供給時間は、必要とされる二酸化炭素ガスの供給量や、流量を考慮して適宜調節すればよい。
二酸化炭素ガス供給時の各成分の混合物の温度は、5~70℃であることが好ましく、7~60℃であることがより好ましく、10~50℃であることが特に好ましい。前記温度が前記下限値以上であることで、より効率的に二酸化炭素を供給でき、前記温度が前記上限値以下であることで、不純物が少ないより良好な品質の金属インク組成物が得られる。
二酸化炭素ガスの流量及び供給時間、並びに二酸化炭素ガス供給時の前記温度は、それぞれの値を相互に考慮しながら適した範囲に調節すればよい。例えば、前記温度を低めに設定しても、二酸化炭素ガスの流量を多めに設定するか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。また、二酸化炭素ガスの流量を少なめに設定しても、前記温度を高めにするか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。すなわち、二酸化炭素ガスの流量、二酸化炭素ガス供給時の前記温度として例示した上記数値範囲の中の数値を、二酸化炭素ガスの供給時間も考慮しつつ柔軟に組み合わせることで、良好な品質の金属インク組成物が効率的に得られる。
二酸化炭素ガスの供給は、各成分の混合物を撹拌しながら行うことが好ましい。このようにすることで、供給した二酸化炭素ガスがより均一に各成分の混合物中に拡散し、より効率的に二酸化炭素を供給できる。
この時の撹拌方法は、二酸化炭素を用いない上記の金属インク組成物の製造時における前記混合方法の場合と同様でよい。
ドライアイス(固形状二酸化炭素)の供給は、各成分の混合物中にドライアイスを添加することで行えばよい。ドライアイスは、全量を一括して添加してもよいし、分割して段階的に(添加を行わない時間帯を挟んで連続的に)添加してもよい。ドライアイスの使用量は、上記の二酸化炭素ガスの供給量を考慮して調節すればよい。
ドライアイスの添加中及び添加後は、各成分の混合物を撹拌することが好ましく、例えば、二酸化炭素を用いない上記の金属インク組成物の製造時と同様の方法で撹拌することが好ましい。このようにすることで、効率的に二酸化炭素を供給できる。
撹拌時の温度は、二酸化炭素ガス供給時と同様でよい。また、撹拌時間は、撹拌温度に応じて適宜調節すればよい。
二酸化炭素が供給されてなる金属インク組成物は、20~25℃における粘度が、1Pa・s以上であることが好ましい。
例えば、還元剤の配合時には、得られる配合物(金属インク組成物)は比較的発熱し易い。還元剤の配合時の温度が高い場合、この配合物は、後述する金属インク組成物の加熱処理時と同様の状態になるため、還元剤による前記金属の形成材料の分解促進作用によって、金属の形成材料の少なくとも一部において金属の形成が開始されることがあると推測される。このような金属を含有する金属インク組成物は、導電体形成時において、金属を含有しない金属インク組成物よりも温和な条件で後処理を行うことにより、導電体を形成できることがある。また、還元剤の配合量が十分に多い場合にも、同様に温和な条件で後処理を行うことにより、導電体を形成できることがある。このように、金属の形成材料の分解を促進する条件を採用することで、後処理として、より低温での加熱処理で、あるいは加熱処理を行わずに常温での乾燥処理のみで、導電体を形成できることがある。また、このような金属を含有する金属インク組成物は、金属を含有しない金属インク組成物と同様に取り扱うことができ、特に取り扱い性が劣ることもない。
基板上に付着させた(印刷した)金属インク組成物を乾燥処理する場合には、公知の方法で行えばよく、例えば、常圧下、減圧下及び送風条件下のいずれで行ってもよく、大気下及び不活性ガス雰囲気下のいずれでおこなってもよい。乾燥温度も特に限定されず、加熱乾燥及び常温乾燥のいずれでもよい。加熱処理が不要な場合の好ましい乾燥方法としては、18~30℃で大気下において乾燥させる方法が例示できる。
基板上に付着させた金属インク組成物を加熱(焼成)処理する場合、その条件は、金属インク組成物の配合成分の種類に応じて適宜調節すればよい。通常は、加熱温度が60~200℃であることが好ましく、70~180℃であることがより好ましい。加熱時間は、加熱温度に応じて調節すればよいが、通常は、0.2~12時間であることが好ましく、0.4~10時間であることがより好ましい。前記金属の形成材料の中でも前記カルボン酸銀、特にβ-ケトカルボン酸銀(1)は、例えば、酸化銀等の金属の形成材料とは異なり、当該分野で公知の還元剤等を使用しなくても、低温で分解する。このような分解温度を反映して、前記金属インク組成物は、上記のように、従来のものより極めて低温で金属を形成できる。
金属インク組成物を、耐熱性が低い基板上に付着させて加熱(焼成)処理する場合には、加熱温度は130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
金属インク組成物の加熱処理の方法は特に限定されず、例えば、電気炉による加熱、感熱方式の熱ヘッドによる加熱、遠赤外線照射による加熱、高圧ガスの吹き付け等で行うことができる。また、金属インク組成物の加熱処理は、大気下で行ってもよいし、不活性ガス雰囲気下で行ってもよく、加湿条件下で行ってもよい。常圧下、減圧下及び加圧下のいずれで行ってもよい。
本明細書において「加湿」とは、特に断りのない限り、湿度を人為的に増大させることを意味し、好ましくは相対湿度を5%以上とすることである。加熱処理時には、処理温度が高いことによって、処理環境での湿度が極めて低くなるため、5%という相対湿度は、明らかに人為的に増大されたといえる。
 金属インク組成物の加熱処理を加湿条件下で行う場合の相対湿度は、10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることが特に好ましく、90%以上であってもよいし、100%であってもよい。加湿条件下での加熱処理は、100℃以上に加熱した高圧水蒸気の吹き付けにより行ってもよい。このように加湿条件下で加熱処理することにより、短時間でより高純度の金属を形成できる。
金属インク組成物(金属インク組成物が上述の銀インク組成物の場合には銀インク組成物)の加熱処理は、二段階で行ってもよい。例えば、一段階目の加熱処理では、金属の形成ではなく金属インク組成物の乾燥を主に行い、二段階目の加熱処理で、金属の形成を最後まで行う方法が例示できる。
一段階目の加熱処理において、加熱温度は、金属インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~110℃であることが好ましく、70~100℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、5秒~12時間であることが好ましく、30秒~2時間であることがより好ましい。
二段階目の加熱処理において、加熱温度は、金属が良好に形成されるように、金属インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~200℃であることが好ましく、70~180℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~12時間であることが好ましく、1分~10時間であることがより好ましい。
金属インク組成物を、耐熱性が低い基板上に付着させて加熱(焼成)処理する場合には、一段階目及び二段階目の加熱処理における加熱温度は、130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
ここまでで説明した金属インク組成物(金属インク組成物が上述の銀インク組成物の場合には銀インク組成物)の加熱処理は、いずれも気相中で行うが、金属インク組成物の加熱処理を二段階で行う場合、二段階目の加熱処理は、気相中ではなく液相中で行ってもよい。一段階目の加熱処理を経て、完全に又はある程度乾燥した金属インク組成物は、加熱した液体と接触させることで、その形状を損なうことなく、二段階目の加熱処理を行うことができる。金属インク組成物の、一段階目の加熱処理を行った後の二段階目の液相中での加熱処理は、加熱した液体に金属インク組成物を浸漬することで行うことが好ましい。この液相中での加熱処理における加熱温度及び加熱時間は、先に説明した二段階目の加熱処理における加熱温度及び加熱時間と同じである。
上記の加熱した液体は湯(加熱した水)であることが好ましく、二段階目の加熱処理は、一段階目の加熱処理を行った金属インク組成物を湯中に浸漬すること、すなわち湯煎によって行うことが好ましい。
二段階目の加熱処理を液相中で行った場合には、この加熱処理によって形成された金属又は金属銀を、さらに乾燥させればよい。
金属インク組成物の二段階目の加熱処理を液相中で行う場合、金属インク組成物の一段階目の加熱処理は、非加湿条件下で行うことが好ましい。
本明細書において「非加湿」とは、上述の「加湿」を行わないこと、すなわち、湿度を人為的に増大させないことを意味し、好ましくは相対湿度を5%未満とすることである。
加湿条件下での加熱処理を採用する場合、金属インク組成物の加熱処理は、一段階目の加熱処理において、非加湿条件下で、上述のように金属の形成ではなく金属インク組成物の乾燥を主に行い、二段階目の加熱処理において、加湿条件下で、上述のように金属の形成を最後まで行う、二段階の方法で行うことが特に好ましい。
二段階目の加熱処理を加湿条件下で行う場合、一段階目の非加湿条件下での加熱処理時の加熱温度は、60~120℃であることが好ましく、70~100℃であることがより好ましい。また、加熱時間は、5秒~1時間であることが好ましく、30秒~30分であることがより好ましく、30秒~10分であることが特に好ましい。一段階目の非加湿条件下での加熱処理に次いで行う、二段階目の加湿条件下での加熱処理時の加熱温度は、60~140℃であることが好ましく、70~130℃であることがより好ましい。また、加熱時間は、1分~2時間であることが好ましく、1分~1時間であることがより好ましく、1分~30分であることが特に好ましい。銀インク組成物を耐熱性が低い基材に付着させて加熱(焼成)処理する場合には、一段階目の非加湿条件下での加熱処理及び二段階目の加湿条件下での加熱処理における加熱温度は、いずれも130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
<配線板>
≪第1実施形態≫
 第1実施形態の配線板は、基板上に金属細線を備え、前記第1実施形態又は第2実施形態の金属インク組成物を用いて形成されたものであり、前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である。
≪第2実施形態≫
 第2実施形態の配線板は、基板上に金属細線を備え、前記第3実施形態の金属インク組成物を用いて形成されたものであり、前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である。
≪第3実施形態≫
 第3実施形態の配線板は、基板上に印刷法によって形成された銀細線を備え、前記銀細線は、その線長方向に対して垂直な方向の断面において、幅が20μm以下であり、アスペクト比が0.013~0.025であり、頂上が前記基板との接触部よりも幅が小さくなっており、前記銀細線の表面粗さが0.25μm以上0.35μm以下である。
 第3実施形態の配線板は、銀細線を形成するための銀インク組成物を用いて基板上に印刷法によってパターンを形成し、乾燥処理や加熱(焼成)処理等の固化処理を適宜選択して行うことで形成できる。加熱処理は、乾燥処理を兼ねて行ってもよい。
第3実施形態の配線板においては、印刷法として公知の方法を適用でき、なかでもグラビア印刷法に代表される凹版印刷が好ましく、グラビアオフセット印刷法が最も好ましく適用できる。
第3実施形態の配線板で用いる印刷装置も、公知のものでよく、例えば、グラビア印刷法に代表される凹版印刷であれば、金属製で表面に銀細線の型となる溝を有する凹版を備えたものを用いることができる。オフセットロールとしては、金属製の筒体の表面がブランケット材で被覆されたものを用いることができ、ブランケット材の材質としては、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、合成ゴム、天然ゴム等の弾性材が例示でき、これらの中でも、耐久性、耐油性が高く、さらに十分な弾性とともに適度にコシを有している点で、特にシリコーン樹脂が好ましく、硬質の基板に対してグラビアオフセット印刷を行うのに特に好適である。
第3実施形態の配線板においては、金属銀の形成材料が配合されてなる銀インク組成物を用いることが好ましい。
前記金属銀の形成材料は、銀原子(元素)を有し、分解等の構造変化によって金属銀を生じるものであればよく、銀塩、銀錯体、有機銀化合物(銀-炭素結合を有する化合物)等が例示できる。前記銀塩及び銀錯体は、有機基を有する銀化合物及び有機基を有しない銀化合物のいずれでもよい。なかでも金属銀の形成材料は、加熱によって分解し、金属銀を形成するものが好ましく、銀塩であることが好ましい。
金属銀の形成材料を用いることで、前記材料から金属銀が生じ、この金属銀を含む銀細線が形成される。この場合の銀細線は、先に説明したように、金属銀を主成分とするものであり、金属銀の比率が十分に高い。
前記銀インク組成物としては、金属銀の形成材料が均一に分散されたものが好ましい。
第3実施形態の配線板に用いる銀インク組成物は、前記第1実施形態から第3実施形態の金属インク組成物には限定されない。
 第3実施形態の配線板に用いる銀インク組成物は、前記金属銀の形成材料、含窒素化合物、還元剤、アルコール及びその他の任意成分が配合されてなるものを適宜用いることができる。
第1実施形態~第3実施形態の配線板は、銀細線の線幅が小さく、上述の特定の形状を有し、各種電子機器における電磁波シールド、タッチパネル等の部材として好適である。
図1Aは、第1実施形態~第3実施形態の配線板の一例を模式的に示す正面図であり、図1Bは、図1Aに示す配線板のI-I線における断面図(金属細線の線長(長手)方向に対して垂直な方向の断面図)である。
ここに示す配線板1は、基板11の表面(一方の主面)11a上に、直線状の金属細線12を複数本備えてなるものであり、これら複数本の金属細線12は、直交する2方向に平行して配置され、網目を形成している
[基板]
基板11は、フィルム状又はシート状であることが好ましく、厚さが0.5~5000μmであることが好ましく、0.5~2500μmであることがより好ましい。
基板11の材質は特に限定されず、目的に応じて選択すればよいが、後述する金属インク組成物の加熱処理による金属細線12形成時に変質しない耐熱性を有するものが好ましく、光透過性を有するものが好ましい。
基板11の材質として具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリメチルペンテン(PMP)、ポリシクロオレフィン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂、AS樹脂、ABS樹脂、ポリアミド(PA)、ポリイミド、ポリアミドイミド(PAI)、ポリアセタール、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリフェニレンスルファイド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリウレタン、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル(m-PPE)、ポリアリレート、エポキシ樹脂、メラミン樹脂、フェノール樹脂、尿素樹脂等の合成樹脂が例示できる。
また、基板11の材質としては、上記以外にも、ガラス、シリコン等のセラミックスが例示できる。
また、基板11は、ガラスエポキシ樹脂、ポリマーアロイ等の、二種以上の材質を併用したものでもよい。
基板11は、単層からなるものでもよいし、二層以上の複数層からなるものでもよい。
基板11が複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよい。
すなわち、すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが異なっていてもよい。複数層が互いに異なる場合、これら複数層の組み合わせは特に限定されない。ここで、複数層が互いに異なるとは、各層の材質及び厚さの少なくとも一方が互いに異なることを意味する。
基板11が複数層からなる場合には、各層の合計の厚さが、上記の好ましい基板11の厚さとなるようにするとよい。
[金属細線]
 以下の説明において、第1実施形態及び第2実施形態の配線板の説明においては、図1A、図1B中の「12」は「金属細線12」として説明し、第3実施形態の配線板の説明においては、図1A、図1B中の「12」は「銀細線12」として説明する。
第1実施形態及び第2実施形態の配線板における金属細線12、第3実施形態の配線板における銀細線12(以下、「金属細線12又は銀細線12」と記載する。)は、その線長方向に対して垂直な方向の断面において、幅、即ち、図1Bに示す幅Wが20μm以下である。配線板の実施形態においては、図1Bに示す幅Wが15μm以下であることが好ましく、10μm以下であることがより好ましく、7μm以下であることが特に好ましい。
第1実施形態から第3実施形態の配線板において、上記範囲の線幅の金属細線12又は銀細線12を形成するためには、所望の金属細線の幅と同等又は数μm程度狭い幅の溝を有する版を用いて形成すればよい。
例えば、幅Wが18~20μm程度の金属細線12又は銀細線12を形成するためには、幅が17μmの溝を有する版が好ましく、幅Wが8~10μm程度の金属細線を形成するためには、幅が7μmの溝を有する版が好ましく、幅Wが5~6μm程度の金属細線12又は銀細線12を形成するためには、幅が4μmの溝を有する版が好ましい。
また、金属細線12又は銀細線12の前記断面形状は、図1Bに示すように、楕円の短軸方向のほぼ半分の領域が切り取られた半楕円形状である。配線板の実施形態においては、このように金属細線12又は銀細線12は、前記断面において、頂上が基板11との接触部よりも幅が小さくなっている。
第3実施形態の銀細線12は、前記断面において、幅Wに対する高さHの比(H/W)、すなわちアスペクト比が0.013以上0.025以下である。本実施形態においては、0.015以上であることがより好まく、0.016以上であることが特に好ましい。本実施形態の配線板が備える銀細線は、上記のように高いアスペクト比を有している。このため、線幅が小さく、より微細な銀細線であっても、良好な導電性を有する銀細線とすることができる。銀細線12は、このような形状であることにより、各種電子機器における電磁波シールド、タッチパネル等の部材としてより好適なものとなる。
第1実施形態から第3実施形態の配線板において、金属細線12又は銀細線12の前記断面形状はこれに限定されず、例えば、図2Aに示すような台形状、図2Bに示すような三角形状、図2Cに示すような二種以上の形状が組み合わされた複合形状等、他の形状でもよく、また、図2A~図2Cにおいて、角部が丸められた形状であってもよい。図2Bに示すように、前記断面において、金属細線12又は銀細線12の頂上が非平面である場合には、当然に、金属細線12又は銀細線12の頂上は基板11との接触部よりも幅が小さい(幅がゼロである)。図2A及び図2Cに示すように、前記断面において、金属細線12又は銀細線12の頂上が平面である場合には、その平面部の幅は、金属細線12又は銀細線12の基板11との接触部の幅よりも小さい。
また、ここでは、金属細線12又は銀細線12の前記断面形状は、紙面に向かって左右対称であるが、配線板の実施形態においては、これに限定されず、左右非対称であってもよい。また、ここでは、金属細線12又は銀細線12の前記断面を模式的に示しており、金属細線12又は銀細線12の表面は滑らかであるが、配線板の実施形態においては、これに限定されず、金属細線12又は銀細線12の表面が規則的又は非規則的な凹凸面であってもよい。
すなわち、図1A、図1B、図2A、図2B及び図2Cに示す金属細線12又は銀細線12の前記断面形状は、ごく一部の例に過ぎず、上述した配線板の実施形態の特徴を有している限り、金属細線12又は銀細線12の前記断面形状は特に限定されない。
金属細線12又は銀細線12は、前記断面において、基板11の表面11aからの高さが高くなるにしたがって、幅が狭くなっている領域が、金属細線12又は銀細線12の高さ方向において80%以上を占めることが好ましく、85%以上を占めることがより好ましく、90%以上を占めることがさらに好ましく、95%以上を占めることが特に好ましく、100%を占めていてもよい。金属細線12又は銀細線12は、その線長方向の全領域において、このような断面を有することが好ましい。
金属細線12又は銀細線12は、印刷法、好ましくはグラビアオフセット印刷法によって形成されることで、典型的には、上述のような特有の形状を有する。
一方、エッチング法で形成された金属細線は、典型的には、前記断面形状が図3に示すような逆台形状か、または四角形状に近い逆台形状となる。
例えば、金属細線12又は銀細線12を覆うように基板11の表面11a上に被覆層(図示略)を形成する場合には、金属細線の前記断面形状が図3に示すような形状であると、符号Sで示す金属細線の根元部位(基板との接触部)の近傍領域は、被覆層を形成できずに空隙部を生じ易い。これに対して、金属細線12又は銀細線12が図1A、図1B、図2A、図2B及び図2Cに示すような形状であると、上述のような空隙部の発生が高度に抑制される。また、特に金属細線12又は銀細線12の表面が図1Bに示すように尖った形状を有していない場合には、被覆層の構造を安定して保持できるため、被覆層を設けたことによる効果を長期間維持できる。
金属細線12又は銀細線12のピッチ(隣り合う金属細線12間の距離)Pは、目的に応じて任意に設定できるが、例えば、配線板1を電磁波シールド、タッチパネル等の部材として利用する場合には、50~320μmであることが好ましく、70~260μmであることがより好ましい。
金属細線12又は銀細線12のピッチPは、すべて同じでもよいし、すべて異なっていてもよく、一部のみ異なっていてもよい。例えば、金属細線12又は銀細線12のピッチPは、直交する2方向において、互いに同じでもよいし、異なっていてもよい。
金属細線12又は銀細線12は、その線長(長手)方向において、幅Wの変動率({[Wの最大値]-[Wの最小値]}/[Wの平均値]×100)が20%以下であることが好ましく、10%以下であることがより好ましい。
金属細線12又は銀細線12は、金属を主成分とするものであり、金属の比率が、見かけ上金属だけからなるとみなし得る程度に十分に高く、金属細線12又は銀細線12中の金属の比率は、好ましくは99質量%以上である。金属細線12の金属の比率の上限値は、例えば、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかから選択できる。
金属細線12又は銀細線12は導電性が高く、金属細線12又は銀細線12は、体積抵抗率が15μΩ・cm以下であることが好ましく、12μΩ・cm以下であることがより好ましく、10μΩ・cm以下であることが特に好ましい。
第3実施形態の配線板において、銀細線の表面粗さは0.25μm以上0.35μm以下である。表面粗さは、JIS B0601:2001(ISO4287:1997)に基づくものであり、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さlだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=Z(x)で表したときに、以下の式(II)によって求められた値をマイクロメートル(μm)単位で表示した。
Figure JPOXMLDOC01-appb-M000004
第3実施形態の配線板において、銀細線の表面粗さ(Ra)は、0.34μm以下であることが好ましく、0.33μm以下であることがより好ましい。
第3実施形態の配線板が備える銀細線は、表面粗さが上記下限値以上であると、適度な粗さが実現できるため平滑過ぎず、例えばタッチパネル等に使用した場合に、特定方向から目視した際の光の反射を適度に抑えることができる。このため、光の反射による配線の視認性を抑制できる。
また、表面粗さが上記上限値以下であると、配線に適度な濡れ性を付与でき、例えば、配線上に他の物質を積層する場合に、良好な濡れ性とすることができる。
第3実施形態の配線板において、銀細線12は、金属銀を主成分とするものであり、金属銀の比率が、見かけ上金属銀だけからなるとみなし得る程度に十分に高く、銀細線12中の金属銀の比率は、好ましくは99質量%以上である。銀細線12の金属銀の比率の上限値は、例えば、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかから選択できる。
第3実施形態の配線板において、銀細線12は導電性が高く、銀細線12は、体積抵抗率が15μΩ・cm以下であることが好ましく、12μΩ・cm以下であることがより好ましく、10μΩ・cm以下であることが特に好ましい。
図1A、図1B中、配線板1は、光の透過率と、金属細線12又は銀細線12が形成されていない基板11の光の透過率との差が、同一波長の光で15%以下であることが好ましく、12%以下であることがより好ましく、10%以下であることが特に好ましい。配線板1は、このような条件を満たすことにより、各種電子機器における電磁波シールド、タッチパネル等の部材としてより好適なものとなる。
配線板の実施形態において、「配線板の光の透過率」とは、配線板の金属細線の形成箇所及び非形成箇所(すなわち基板)を共に含む任意の領域における、配線板の厚さ方向での光の透過率を意味し、配線板の金属細線の影響を受ける領域における光の透過率と、配線板の金属細線の影響を受けない領域における光の透過率とから求められる、光の透過率の平均値か、又はこの平均値に近似可能なものといえる。
配線板の実施形態において、透過率を測定する光は、可視光であり、その波長は好ましくは360~830nmである。上述の光の透過率の差は、同じ波長の光で求める。
配線板の実施形態において、上述の配線板の光の透過率と、金属細線又は銀細線が形成されていない基板(金属細線の影響を受けない基板)の光の透過率との差は、金属細線を備えたことによる光の透過性の低下の程度を反映するが、金属細線が微細であることで、小さい値に抑制される。
図1A、図1B中、配線板1は、基板11及び金属細線12若しくは銀細線12以外に、上述した配線板の実施形態の効果を損なわない範囲内において、一又は二以上のその他の構成を備えていてもよい。前記その他の構成は、目的に応じて任意に選択できる。
 ここでは、配線板として、複数本の金属細線が直交する2方向に平行して配置され、網目を形成している例を示しているが、配線板の実施形態はこれに限定されず、金属細線又は銀細線が他のパターンを形成していてもよい。金属細線又は銀細線が形成する他のパターンとしては、複数本の金属細線又は銀細線が交差する(交わる)角度が、上述のような90°ではなく、90°以外の角度であるもの、金属細線又は銀細線の一部又はすべてが直線ではなく曲線であるもの、複数本の金属細線又は銀細線が交差することなく配置されているもの(複数本の金属細線が交差することなく1方向に平行して配置されている場合等、縞模様を形成しているもの)等が例示できる。
配線板が有する金属細線又は銀細線のパターンは、一種のみでもよいし、二種以上でもよく、二種以上である場合、その組み合わせは任意に選択できる。
<配線板の形成方法>
≪第1実施形態≫
配線の形成方法の第1実施形態は、基板上に、線幅が20μm以下である配線を形成する方法であって、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版の溝に、金属インク組成物を供給する工程と、余剰の金属インク組成物を除去する工程と、前記版から転写材へ前記金属インク組成物を転写する工程と、前記金属インク組成物を転写した転写材を乾燥し、導電性の被膜を形成する工程と、を有し、前記金属インク組成物が、樹脂成分の含有量が0.5質量%未満であり、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上50.0以下である。
第1実施形態の配線板の形成方法においては、前記第2実施形態の金属インク組成物を用いる。金属インク組成物に関する説明と、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版についての説明は、前記第2実施形態の金属インク組成物において説明した内容と同様である。
第1実施形態の配線板の形成方法における基板についての説明は、前記配線板の説明において記載した基板についての説明と同様であり、さらには、基板は、電子機器、データ受送信体、透明導電膜等の筐体(外装材)であってもよい。
 第1実施形態の配線板の形成方法においては、まず、溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版の溝に、金属インク組成物を供給し、ドクターブレードを用いて版状に供給された金属インク組成物を広げ(ドクタリングし、)版の溝部に金属インク組成物を充填させる。この後、余剰の金属インク組成物を除去する。
次に、前記版から転写材へ前記金属インク組成物を転写する。第1実施形態においては、直接版に被印刷物を接触させて転写する方法(ダイレクトグラビア印刷法)を用いてもよく、ロール状のゴムブランケット等の中間転写体を用いる方法(オフセット印刷法)をもちいてもよい。
次に、前記金属インク組成物を転写した転写材を乾燥し、導電性の被膜を形成する。
第1実施形態の配線板の形成方法における、金属インク組成物を転写した転写材を乾燥条件は、前記第2実施形態の金属インク組成物の製造方法の説明において説明した、基板上に付着させた金属インク組成物の乾燥処理についての条件と同様の条件で行えばよい。
第1実施形態の配線板の製造方法においては、印刷法として公知の方法を適用でき、なかでもグラビア印刷法が好ましく、グラビアオフセット印刷法も適用できる。
第1実施形態の配線板の製造方法で用いる印刷装置も、公知のものでよく、例えば、グラビア印刷法であれば、金属製で表面に金属細線の型となる溝を有する凹版を備えたものを用いることができる。オフセットロールとしては、金属製の筒体の表面がブランケット材で被覆されたものを用いることができ、ブランケット材の材質としては、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、合成ゴム、天然ゴム等の弾性材が例示でき、これらの中でも、耐久性、耐油性が高く、さらに十分な弾性とともに適度にコシを有している点で、特にシリコーン樹脂が好ましく、硬質の基板に対してグラビアオフセット印刷を行うのに特に好適である。
<<電子機器、データ受送信体、透明導電膜>>
本実施形態の金属インク組成物を用いて形成した配線板は、データ受送信体等の各種電子機器、透明導電膜等を構成するのに好適である。
例えば、前記電子機器は、前記配線板を用い、前記基材を筐体(外装材)として備えるように構成でき、前記配線板中の基材で筐体(外装材)の少なくとも一部を構成した点以外は、公知の電子機器と同様の構成とすることができる。例えば、携帯電話機等の電子機器における外装材の平面又は曲面部分を前記基材とし、この外装材(基材)上に直接前記金属細線が形成され、この金属細線を回路とすることで、前記配線板を回路基板として用いることができる。例えば、前記配線板に、音声入力部、音声出力部、操作スイッチ、表示部等を組み合わせることにより、携帯電話機を構成できる。また、パターニングされた前記金属細線をアンテナとすることで、前記配線板をアンテナ構造体とすることができる。
前記データ受送信体は、前記配線板を用い、前記金属細線をアンテナとして備えるように構成でき、前記配線板をアンテナ構造体として用いた点以外は、公知のデータ受送信体と同様の構成とすることができる。例えば、前記配線板において、基材上に前記金属細線と電気的に接続されたICチップを設けてアンテナ部とすることにより、非接触型データ受送信体を構成できる。
前記透明導電膜は、前記配線板を用い、前記金属細線を極微細配線又は極薄配線として備えるように構成でき、前記金属細線を極微細配線又は極薄配線として備えた点以外は、公知の透明導電膜と同様の構成とすることができる。例えば、前記配線板に加え、透明基材等と組合せることにより、タッチパネルや光学ディスプレイを構成できる。
極薄配線の厚さは、5nm~10μmであることが好ましく、7nm~5μmであることがより好ましく、10nm~1μmであることが特に好ましい。
また、前記配線板においては、前記金属細線を低温で形成することも可能であり、基材等の材質を幅広く選択できるので、設計の自由度が飛躍的に向上し、電子機器、透明導電膜等をより合理的な構造とすることも可能である。
上記のような電子機器、透明導電膜等は、長期に渡って高い性能を維持することが可能である。
以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
<実施例1;金属インク組成物1の製造>
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、1.26倍モル量)と、イソブチルアミン(後述する2-メチルアセト酢酸銀に対して、0.19倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が40℃以下となるように、52.9gの2-メチルアセト酢酸銀、ギ酸(2-メチルアセト酢酸銀に対して、0.38倍モル量)を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、3,5-ジメチル-1-ヘキシン-3-オール(エアープロダクツジャパン社製「サーフィノール61」、以下、「DMHO」と略記することがある)(2-メチルアセト酢酸銀に対して、0.036倍モル量)を添加して混合し、さらに5分間撹拌した。これにより、金属インク組成物1を得た。
金属インク組成物1の、2-エチルヘキシルアミンに対するイソブチルアミンの配合量の割合は、15モル%であった。
<実施例2;金属インク組成物2の製造>
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、1.26倍モル量)と、イソブチルアミン(後述する2-メチルアセト酢酸銀に対して、0.19倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が40℃以下となるように、52.9gの2-メチルアセト酢酸銀、ギ酸(2-メチルアセト酢酸銀に対して、0.48倍モル量)を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、DMHO(2-メチルアセト酢酸銀に対して、0.036倍モル量)を添加して混合し、さらに5分間撹拌した。これにより、金属インク組成物2を得た。
金属インク組成物2の、2-エチルヘキシルアミンに対するイソブチルアミンの配合量の割合は、15モル%であった。
<実施例3;金属インク組成物3の製造>
ビーカー中に52.9gの2-メチルアセト酢酸銀とヘキサン(2-メチルアセト酢酸銀に対して1.63倍モル量)とを入れ、メカニカルスターラーを用いて1分間撹拌した。ここに、2-エチルヘキシルアミン(2-メチルアセト酢酸銀に対して1.45倍モル量)を添加し、次いで、ギ酸(2-メチルアセト酢酸銀に対して、0.5倍モル量)を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、DMHO(2-メチルアセト酢酸銀に対して、0.032倍モル量)と、4-エチル‐1-オクチン‐3-オール(2-メチルアセト酢酸銀に対して0.004倍モル量)との混合物を添加して混合し、さらに5分間撹拌した。 これにより、金属インク組成物3を得た。
<実施例4;金属インク組成物4の製造>
ビーカー中に52.9gの2-メチルアセト酢酸銀とヘキサン(2-メチルアセト酢酸銀に対して1.63倍モル量)とを入れ、メカニカルスターラーを用いて1分間撹拌した。ここに、2-エチルヘキシルアミン(2-メチルアセト酢酸銀に対して1.45倍モル量)を添加し、次いで、ギ酸(2-メチルアセト酢酸銀に対して、0.5倍モル量)を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、DMHO(2-メチルアセト酢酸銀に対して、0.024倍モル量)と、4-エチル‐1-オクチン‐3-オール(2-メチルアセト酢酸銀に対して0.012倍モル量)との混合物を添加して混合し、さらに5分間撹拌した。これにより、金属インク組成物4を得た。
<実施例5;金属インク組成物5の製造>
ビーカー中に52.9gの2-メチルアセト酢酸銀とヘキサン(2-メチルアセト酢酸銀に対して1.63倍モル量)とを入れ、メカニカルスターラーを用いて1分間撹拌した。ここに、2-エチルヘキシルアミン(2-メチルアセト酢酸銀に対して1.45倍モル量)と、ギ酸(2-メチルアセト酢酸銀に対して、0.5倍モル量)を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、DMHO(2-メチルアセト酢酸銀に対して、0.036倍モル量)を添加して混合し、さらに5分間撹拌した。これにより、金属インク組成物5を得た。
<比較例1;金属インク組成物6の製造>
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、0.88倍モル量)と、イソブチルアミン(後述する2-メチルアセト酢酸銀に対して、0.38倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が40℃以下となるように、52.9gの2-メチルアセト酢酸銀、ギ酸(2-メチルアセト酢酸銀に対して、0.48倍モル量を10分かけて滴下したのちに1.5時間撹拌を続け、次いで、DMHO(2-メチルアセト酢酸銀に対して、0.036倍モル量)を添加して混合し、さらに5分間撹拌した。これにより、金属インク組成物6を得た。
金属インク組成物6の、2-エチルヘキシルアミンに対するイソブチルアミンの配合量の割合は、44モル%であった。
上記で得られた金属インク組成物1~6について、以下の項目について測定した。尚、測定にあたっては、作製直後においては製造時のせん断履歴の影響が大きくなるため、作製後翌日まで養生した後測定した。
[400℃加熱残渣]
金属インク組成物1~6をそれぞれ0.5gについて、電気炉を用いて400℃で3時間加熱した。加熱後の残渣量(質量%)を測定した。その結果を表1に示す。
[希釈時最大吸収波長]
金属インク組成物1~6をそれぞれ、n-ヘキシルアルコールで1万倍に希釈したときの、最大吸収波長(nm)を紫外・可視により測定した。400nm付近に最大吸収波長が観測されると、プラズモン現象により系中に1~50nm程度の金属微粒子が存在することが示唆される。その結果を表1に記載する。
[せん断粘度]
金属インク組成物1~6をそれぞれ、レオメータ(Anton Paar社製「MCR-301」)を用いて、25℃で、せん断速度0.1s-1~1000s-1である場合のせん断粘度を測定した。その結果を表1に記載する。
レオメータによる測定条件は以下の通りである。
コーンプレート:CP-25
測定温度:25℃
<せん断速度設定>
開始0.1/s(取得時間60s)
終了1000/s(取得時間2s)
対数昇降(6点/桁)
[貯蔵弾性率及び損失弾性率]
金属インク組成物1~6のそれぞれについて、弾性測定器(Anton Paar社製「MCR-301」)を用い、25℃の条件で、角度周波数0.1rad/s、1rad/s、10rad/sの周波数で正弦振動させたときの貯蔵弾性率及び損失弾性率を測定した。その結果を表1に記載する。
弾性測定器による測定条件は以下の通りである。
コープレートCP-25
<ひずみ設定>
開始0.01%、終了1%、対数昇降
<周波数>
開始100rad/s, 0.1rad/s, 対数昇降(5点/桁)
[tanδ]
上記で測定した角度周波数0.1rad/s、1rad/s、10rad/sのそれぞれの周波数における貯蔵弾性率及び損失弾性率から、tanδ(損失弾性率/貯蔵弾性率)を求めた。その結果を表1に記載する。
Figure JPOXMLDOC01-appb-T000005
<配線板の製造>
グラビアオフセット(凹版オフセット)印刷法により、上記で得られた金属インク組成物を用いて、ポリカーボネート製基板(厚さ1mm)の一方の主面(表面)上に印刷を行い、図1Aに示すような網目状の印刷パターンを形成した。より具体的には、以下のとおりである。
印刷装置としては、以下のものを用いた。すなわち、凹版としては、金属製でその表面に金属細線の型となる、幅が4μm、深さ10μmの溝を有する版を用いた。オフセットロールとしては、金属製の筒体の表面がシリコーン樹脂製のブランケット材で被覆されたものを用いた。
このような印刷装置を用いて、凹版に上記の金属インク組成物を供給して、余分の金属インク組成物をドクターブレードによって除去し、溝に充填された金属インク組成物をオフセットロールのブランケット材の表面に転写した後、ベルトコンベヤユニットで運搬されてきた基板の表面に対して、この金属インク組成物で印刷を行った。
次いで、得られた印刷パターンを、100℃で10分間乾燥させ、さらに、100℃、相対湿度100%の水蒸気雰囲気下にこの基板を10分間置いて加熱(焼成)処理し、配線板とした。
<配線板の評価>
得られた配線板について、1枚目の線幅(W1:μm)と、50枚目の線幅(W50:μm)を測定し、変化率((W50-W1)÷W1×100)を算出した。その結果を表2に記載する。
Figure JPOXMLDOC01-appb-T000006
<実施例7~8:銀インク組成物7の製造>
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、1.3倍モル量)と、イソブチルアミン(後述する2-メチルアセト酢酸銀に対して、0.2倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が25℃以下となるように、52.9gの2-メチルアセト酢酸銀、ギ酸(2-メチルアセト酢酸銀に対して、0.4倍モル量)、3,5-ジメチル-1-ヘキシン-3-オール(エアープロダクツジャパン社製「サーフィノール61」、以下、「DMHO」と略記することがある)(2-メチルアセト酢酸銀に対して、0.04倍モル量)をこの順で添加して混合し、メカニカルスターラーを用いて2時間撹拌した。これにより、金属インク組成物7を得た。
<参考例1:銀インク組成物8の製造>
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、0.7倍モル量)と、イソブチルアミン(後述する2-メチルアセト酢酸銀に対して、0.3倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が25℃以下となるように、52.9gの2-メチルアセト酢酸銀、ギ酸(2-メチルアセト酢酸銀に対して、0.6倍モル量)を添加して混合し、メカニカルスターラーを用いて2時間撹拌した。これにより、第1のインクを得た。
ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して、2.24倍モル量)と、DMHO(後述する2-メチルアセト酢酸銀に対して、0.1倍モル量)を混合し、メカニカルスターラーを用いて1分間撹拌した。ここに、液温が5℃以下となるように、1モルの2-メチルアセト酢酸銀を添加して混合し、メカニカルスターラーを用いて30分間撹拌した。これにより、第2のインクを得た。
上記第1のインクを55質量部と、上記第2のインクを45質量部混合し、銀インク組成物8を得た。
<配線板の製造>
グラビアオフセット印刷法により、上記で得られた銀インク組成物を用いて、ポリカーボネート製基板(厚さ1mm)の一方の主面(表面)上に印刷を行い、図1Aに示すような網目状の印刷パターンを形成した。
実施例7~8は、上記銀インク組成物7を用い、参考例1として、上記銀インク組成物8を用いた。また、比較例2として、市販の銀ペースト(銀インク「TEC-PA-010」(インクテック社製、銀の含有量55質量%))を用いた。
実施例8~10は、上記銀インク組成物3~5を用いた。
より具体的には、以下のとおりである。
印刷装置としては、以下のものを用いた。すなわち、凹版としては、金属製でその表面に銀細線の型となる、溝の線幅4μmかつ溝の深さ10μmであるもの用いた。オフセットロールとしては、金属製の筒体の表面がシリコーン樹脂製のブランケット材で被覆されたものを用いた。
このような印刷装置を用いて、凹版に上記の銀インク組成物を供給して、余分の銀インク組成物をドクターブレードによって除去し、溝に充填された銀インク組成物をオフセットロールのブランケット材の表面に転写した後、ベルトコンベヤユニットで運搬されてきた基板の表面に対して、この銀インク組成物で印刷を行った。
ドクターブレードによる除去速度を「ドクター速度(mm/s)」として表3に記載する。また、ブランケット材の表面転写量を「ブラン押し込み量(μm)」として表3に記載する。次いで、得られた印刷パターンを、100℃で10分間乾燥させ、さらに、100℃、相対湿度100%の水蒸気雰囲気下にこの基板を10分間置いて加熱(焼成)処理し、配線板とした。
<配線板の評価>
[銀細線の幅及びアスペクト比]
 得られた配線板について、形状測定レーザマイクロスコープ(キーエンス社製「VKX-100」)を用いて、銀細線の幅と高さを測定した。測定は、銀配線の9ヶ所で行い、その平均値を算出した。結果を「線幅(μm)」として表3に示す。また、得られた配線板について、断面において、幅Wに対する高さHの比(H/W)、すなわちアスペクト比を算出した。その結果を「アスペクト比」として表3に記載する。
[表面粗さ]
表面粗さは、JIS B0601:2001(ISO4287:1997)に基づくものであり、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さlだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=Z(x)で表したときに、以下の式(II)によって求められた値をマイクロメートル(μm)単位で表示した。その結果を「表面粗さ(Ra)(μm)」として、表3に記載する。
Figure JPOXMLDOC01-appb-M000007
[体積抵抗率]
また、得られた配線板について、銀細線の線抵抗値R(Ω)、断面積A(cm)、及び線長L(cm)を測定し、式「ρ=R×A/L」により、体積抵抗率ρ(Ω・cm)を算出した。線抵抗値Rはデジタルマルチメータ(三和電気計器社製「PC5000a」)を用いて測定し、断面積Aは形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて測定した。結果を「体積抵抗率(μΩ・cm)」として表3に示す。比較例2は、銀細線が断線してしまい、体積抵抗率を測定することができなかった。
Figure JPOXMLDOC01-appb-T000008
本発明は、電磁波シールド、タッチパネル等、各種電子機器における部材に利用可能である。
 1 配線板
 11 基板
 11a 基板の表面(一方の主面)
 12 金属細線
W 金属細線の幅
H 金属細線の高さ
P 金属細線のピッチ

Claims (9)

  1. 炭素数が8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合され、金属粒子を含有してなる金属インク組成物であって、
    前記金属インク組成物において、前記第1含窒素化合物の配合量に対する前記第2含窒素化合物の配合量の割合が0モル%より大きく、18モル%未満であり、
    前記金属インク組成物の樹脂成分の含有量が0.5質量%未満であり、
    前記金属インク組成物は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である金属インク組成物。
  2. 炭素数8以上の第1含窒素化合物、及び炭素数が7以下の第2含窒素化合物が配合され、金属粒子を含有してなる金属インク組成物であって、
    前記金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上5.0以下であり、
    前記金属インク組成物の樹脂成分の含有量が、0.5質量%未満であり、
    前記金属インク組成物は、25℃、せん断速度0.1~1000s-1における粘度が1Pa・s以上である金属インク組成物。
  3. 前記金属粒子が、前記第1含窒素化合物及び第2含窒素化合物、並びに金属銀の形成材料及び還元剤を配合して得られた、請求項1又は2に記載の金属インク組成物。
  4. 基板上に金属細線を備え、
    前記金属細線は請求項1~3のいずれか1項に記載の金属インク組成物を用いて形成されたものであり、
    前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である配線板。
  5. 溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版を用いて、凹版印刷法により、線長方向に対して垂直な方向の断面における幅が、20μm以下である金属細線を形成するための金属インク組成物であって、
    前記金属インク組成物は樹脂成分の含有量が0.5質量%未満であり、
    前記金属インク組成物は、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上50.0以下である金属インク組成物。
  6. 基板上に金属細線を備え、
    前記金属細線は請求項5に記載の金属インク組成物を用いて形成されたものであり、
    前記金属細線は、その線長方向に対して垂直な方向の断面における幅が20μm以下である配線板。
  7. 基板上に、線幅が20μm以下である配線を形成する方法であって、
    溝の幅aと、溝の深さbとが、b/a>1の関係を満たす版の溝に、金属インク組成物を供給する工程と、
    余剰の金属インク組成物を除去する工程と、
    前記版から転写材へ前記金属インク組成物を転写する工程と、
    前記金属インク組成物を転写した転写材を乾燥し、導電性の被膜を形成する工程と、を有し、
    前記金属インク組成物が、樹脂成分の含有量が0.5質量%未満であり、温度25℃、角周波数0.1rad/sの場合の損失係数(tanδ)が、0.7以上50.0以下である、配線の形成方法。
  8. 基板上に印刷法によって形成された銀細線を備え、
    前記銀細線は、その線長方向に対して垂直な方向の断面において、幅が20μm以下であり、
    前記銀細線のアスペクト比が0.013以上0.025以下であり、
    前記銀細線の頂上が前記基板との接触部よりも幅が小さくなっており、
    前記銀細線の表面粗さが0.25μm以上0.35μm以下である配線板。
  9. 前記銀細線の体積抵抗率が15μΩ・cm以下である、請求項8に記載の配線板。
PCT/JP2016/060549 2015-03-31 2016-03-30 金属インク組成物、配線板及び配線の形成方法 WO2016159174A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015-070903 2015-03-31
JP2015070903A JP6528270B2 (ja) 2015-03-31 2015-03-31 金属インク組成物及び配線板
JP2015-070904 2015-03-31
JP2015071989 2015-03-31
JP2015070904 2015-03-31
JP2015-071989 2015-03-31
JP2016-038423 2016-02-29
JP2016038423A JP6678475B2 (ja) 2015-03-31 2016-02-29 金属インク組成物、配線板及び配線の形成方法
JP2016038422A JP6650295B2 (ja) 2015-03-31 2016-02-29 配線板
JP2016-038422 2016-02-29

Publications (1)

Publication Number Publication Date
WO2016159174A1 true WO2016159174A1 (ja) 2016-10-06

Family

ID=57006907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060549 WO2016159174A1 (ja) 2015-03-31 2016-03-30 金属インク組成物、配線板及び配線の形成方法

Country Status (1)

Country Link
WO (1) WO2016159174A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109351A (ja) * 2003-10-01 2005-04-21 Hitachi Maxell Ltd 電磁波遮蔽体およびその製造方法、並びにディスプレイ用前面板
JP2009238625A (ja) * 2008-03-27 2009-10-15 Mitsuboshi Belting Ltd 金属ナノ粒子ペースト及びパターン形成方法
JP2010500475A (ja) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド 銀ナノ粒子の製造方法及びこれにより製造される銀ナノ粒子を含む銀インク組成物
WO2014051066A1 (ja) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 銀インク組成物、導電体及び通信機器
WO2014188918A1 (ja) * 2013-05-24 2014-11-27 富士フイルム株式会社 透明導電膜及び透明導電膜の製造方法
WO2015111715A1 (ja) * 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 配線板
JP2016005909A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
JP2016005908A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
JP2016027203A (ja) * 2014-06-30 2016-02-18 トッパン・フォームズ株式会社 金属銀

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109351A (ja) * 2003-10-01 2005-04-21 Hitachi Maxell Ltd 電磁波遮蔽体およびその製造方法、並びにディスプレイ用前面板
JP2010500475A (ja) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド 銀ナノ粒子の製造方法及びこれにより製造される銀ナノ粒子を含む銀インク組成物
JP2009238625A (ja) * 2008-03-27 2009-10-15 Mitsuboshi Belting Ltd 金属ナノ粒子ペースト及びパターン形成方法
WO2014051066A1 (ja) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 銀インク組成物、導電体及び通信機器
WO2014188918A1 (ja) * 2013-05-24 2014-11-27 富士フイルム株式会社 透明導電膜及び透明導電膜の製造方法
WO2015111715A1 (ja) * 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 配線板
JP2016005909A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
JP2016005908A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
JP2016027203A (ja) * 2014-06-30 2016-02-18 トッパン・フォームズ株式会社 金属銀

Similar Documents

Publication Publication Date Title
WO2015111715A1 (ja) 配線板
JP6289841B2 (ja) 銀インク組成物の製造方法
JP2017119423A (ja) 積層体及び積層体の製造方法
JP2014110514A (ja) アンテナ構造体、通信機器及びアンテナ構造体の製造方法
JP6650295B2 (ja) 配線板
JP6678475B2 (ja) 金属インク組成物、配線板及び配線の形成方法
JP6712949B2 (ja) 金属銀、金属銀の製造方法及び積層体
JP6346486B2 (ja) 積層体、データ受送信体、通信機器及び透明導電膜
JP6421383B2 (ja) 積層体及び電子機器
WO2016159174A1 (ja) 金属インク組成物、配線板及び配線の形成方法
JP2016005908A (ja) 積層体及び電子機器
JP6587092B2 (ja) 積層体及び電子機器
JP6432096B2 (ja) 積層体及び電子機器
JP6816982B2 (ja) 銀インク組成物
JP6322019B2 (ja) 積層体及び電子機器
JP6596783B2 (ja) 積層体、データ受送信体及び電子機器
JP6515418B2 (ja) 積層体及び電子機器
WO2017057188A1 (ja) 銀インク組成物、その製造方法及び積層体
JP6081120B2 (ja) 積層体、データ受送信体及び通信機器
JP6230781B2 (ja) 積層体、データ受送信体、通信機器及び積層体の製造方法
JP6528270B2 (ja) 金属インク組成物及び配線板
JP6289988B2 (ja) 銀インク組成物の製造方法
WO2017110787A1 (ja) 積層体及び積層体の製造方法
JP2015208926A (ja) 積層体及びその製造方法
JP6816981B2 (ja) 銀インク組成物の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773055

Country of ref document: EP

Kind code of ref document: A1