WO2016159156A1 - プローバ - Google Patents

プローバ Download PDF

Info

Publication number
WO2016159156A1
WO2016159156A1 PCT/JP2016/060521 JP2016060521W WO2016159156A1 WO 2016159156 A1 WO2016159156 A1 WO 2016159156A1 JP 2016060521 W JP2016060521 W JP 2016060521W WO 2016159156 A1 WO2016159156 A1 WO 2016159156A1
Authority
WO
WIPO (PCT)
Prior art keywords
test head
wafer chuck
wafer
probe card
pogo frame
Prior art date
Application number
PCT/JP2016/060521
Other languages
English (en)
French (fr)
Inventor
拓郎 田邨
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016066460A external-priority patent/JP6041175B2/ja
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Publication of WO2016159156A1 publication Critical patent/WO2016159156A1/ja
Priority to US15/717,819 priority Critical patent/US10338101B2/en

Links

Images

Definitions

  • the present invention relates to a prober for inspecting electrical characteristics of a plurality of semiconductor devices (chips) formed on a semiconductor wafer, and more particularly, to a prober having a plurality of measurement units stacked in a multistage manner.
  • the semiconductor manufacturing process has a large number of processes, and various inspections are performed in various manufacturing processes in order to guarantee quality and improve yield. For example, when a plurality of chips of a semiconductor device are formed on a semiconductor wafer, electrode pads of the semiconductor device of each chip are connected to a test head, a power supply and a test signal are supplied from the test head, and the semiconductor device outputs A wafer level inspection is performed in which a signal is measured by a test head to electrically inspect whether it operates normally.
  • the wafer After wafer level inspection, the wafer is attached to the frame and cut into individual chips with a dicer. For each chip that has been cut, only chips that have been confirmed to operate normally are packaged in the next assembly process, and defective chips are excluded from the assembly process. Further, a shipping inspection is performed on the packaged final product.
  • the wafer level inspection is performed using a prober in which a probe is brought into contact with an electrode pad of each chip on the wafer (see, for example, Patent Document 1).
  • the probe is electrically connected to the terminals of the test head, and power and test signals are supplied from the test head to each chip through the probe, and whether the output signal from each chip is detected by the test head and is operating normally Measure.
  • the wafer In the semiconductor manufacturing process, in order to reduce the manufacturing cost, the wafer is increased in size and further miniaturized (integrated), and the number of chips formed on one wafer becomes very large. ing. Along with this, the time required for inspecting a single wafer with a prober has also become longer, and an improvement in throughput is required. Therefore, in order to improve the throughput, multi-probing is performed in which a large number of probes are provided so that a plurality of chips can be inspected simultaneously. In recent years, the number of chips to be inspected at the same time has increased, and attempts have been made to inspect all chips on a wafer at the same time. For this reason, the tolerance of alignment when the electrode pad and the probe are brought into contact with each other is small, and it is required to improve the positional accuracy of the movement in the prober.
  • Patent Document 2 proposes a prober having a plurality of measurement units stacked in a multi-stage shape.
  • a plurality of measurement units have a multi-layered structure (multi-stage structure)
  • wafer level inspection can be performed for each measurement unit, suppressing an increase in installation area and an increase in apparatus cost. Throughput can be improved.
  • the test head is held by a holding body and rotated from a retracted position away from the top plate (head stage) of the prober main body to a horizontal posture position. Is transferred to an elevating support mechanism provided in the prober main body, and the test head is lowered by the elevating support mechanism to attach the test head to the prober main body.
  • a probe card is attached to this head stage, and in order to accurately inspect each probe on the probe card by contacting each probe on the wafer chip, it is necessary to ensure parallelism between the probe card and the wafer. There is. In particular, in the case of the so-called collective contact method in which all the chips on the wafer are inspected at the same time, the accuracy of the parallelism between the probe card and the wafer is required to bring each probe of the probe card into uniform contact with the electrode pad of each chip of the wafer. Become.
  • the test head may be mount directly on the head stage.
  • the load of the test head on the head stage exceeds the allowable range, the deformation of the head stage increases, and the parallelism between the probe card and the wafer is increased. I can't keep it. As a result, the measurement accuracy of the wafer level inspection is a factor that decreases.
  • the prober disclosed in Patent Document 2 is configured to draw the wafer chuck toward the probe card by reducing the internal space formed between the probe card and the wafer chuck.
  • the wafer chuck may be tilted or misaligned due to the influence of the unbalanced load or the like caused by these components.
  • the parallelism between the probe card and the wafer deteriorates, and each probe of the probe card cannot be uniformly contacted with the electrode pad of each chip of the wafer, so that the measurement accuracy of the wafer level inspection is lowered. Result.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a prober capable of maintaining the parallelism between the probe card and the wafer and performing the wafer level inspection with high accuracy. .
  • one aspect of a prober is a prober having a plurality of measurement units stacked in a multistage shape
  • the measurement unit includes a test head, a probe card having a probe, and A pogo frame interposed between the test head and the probe card, a head stage having a pogo frame mounting portion to which the pogo frame is mounted, a frame member that supports the head stage, a frame member that is supported by the frame member, and holds the test head
  • a test head holding portion a wafer chuck for holding a wafer, a first suction fixing portion for fixing the test head and the pogo frame by suction, a second suction fixing portion for fixing the probe card and the pogo frame by suction, Wafer chuck fixing part for detachably fixing the wafer chuck, and wafer chuck fixing part
  • Mechanical lifting and lowering means for lifting and lowering the fixed wafer chuck, an annular seal member that forms a sealed space between the wafer chuck and the probe card, and the reduced pressure
  • the load of the test head is not directly applied to the head stage, the deformation of the pogo frame is prevented, the parallelism between the wafer and the probe card can be easily ensured, and the wafer level inspection is performed. It is possible to improve the accuracy.
  • the test head holding unit includes an elevating mechanism that moves the test head up and down, a guide unit that has a regulating surface that guides the test head when the test head moves up and down, and a test head.
  • a buffer portion having a spring member biased to the opposite side of the pogo frame.
  • the test head holding part has the lifting mechanism, the guide part, and the buffer part, and the test head is supported by the frame member by the test head holding part. Therefore, when the test head is moved up and down between the mounting position and the retracted position by the lifting mechanism, the guide section guides the lifting movement while the position and orientation of the test head are regulated, and the buffer section tests the test head. The distance and parallelism between the head and the pogo frame are maintained appropriately. Therefore, the load of the test head is not directly applied to the head stage, and the deformation of the pogo frame is prevented. The parallelism between the wafer and the probe card can be easily ensured, and the accuracy of wafer level inspection can be improved.
  • a plurality of buffer portions are provided at positions equidistant from the center of gravity of the test head. According to this aspect, since the load of the test head is evenly distributed, the horizontal posture of the test head can be maintained appropriately, and the effect of the present invention becomes more remarkable.
  • the pogo frame mounting portion has a suction surface for sucking and fixing the pogo frame.
  • the pogo frame is securely fixed to the head stage.
  • the pogo frame mounting portion is preferably provided with positioning means such as a positioning pin for positioning the pogo frame with respect to the head stage.
  • the test head and the pogo frame are fixed by suction, and the probe card and the pogo frame are fixed by suction. According to this aspect, it is possible to secure a contact pressure necessary for electrically connecting between the test head and the pogo frame and between the probe card and the pogo frame, and to connect them. It is possible to suppress the influence due to terminal variation.
  • the probe can be brought into contact with the electrode pad of each chip of the wafer with an appropriate contact pressure, and the accuracy of wafer level inspection can be improved.
  • another aspect of the prober according to the present invention is provided with a wafer chuck for holding a wafer, and a probe at a position corresponding to each electrode pad of the wafer provided to face the wafer chuck.
  • Guide means for guiding movement of the wafer chuck while restricting movement in a direction orthogonal to the movement direction of the wafer chuck when moving toward the probe card.
  • the movement of the wafer chuck is guided while the movement of the wafer chuck in the direction perpendicular to the moving direction of the wafer chuck is regulated by the guide means when the wafer chuck is pulled toward the probe card by the decompression of the internal space by the decompression means. Therefore, it is possible to prevent the wafer chuck from being displaced or tilted. Therefore, the parallelism between the wafer and the probe card can be easily ensured, and the accuracy of wafer level inspection can be improved.
  • the guide means preferably includes a bearing portion provided on the wafer chuck and a guide shaft portion that is detachably fixed to the head stage and is pivotally supported by the bearing portion.
  • This aspect shows one specific configuration of the guide means.
  • At least three guide means are provided at different positions in a direction perpendicular to the moving direction of the wafer chuck. According to this aspect, it is possible to reliably prevent the wafer chuck from tilting in a direction orthogonal to the moving direction of the wafer chuck.
  • the wafer chuck in another aspect of the prober according to the present invention, it is preferable to include a height detection sensor that detects a relative distance between the wafer chuck and the wafer chuck when the internal space is decompressed by the decompression means. According to this aspect, when the wafer chuck is pulled toward the probe card by the decompression of the internal space by the decompression means, the wafer chuck can be set to an appropriate height.
  • At least three height detection sensors are provided at different positions in a direction perpendicular to the moving direction of the wafer chuck. According to this aspect, when the wafer chuck is pulled toward the probe card by the decompression of the internal space by the decompression means, the confirmation of the probe crushing amount (overdrive amount), the inclination of the wafer chuck, the state change at the time of measurement, etc. It is possible to accurately determine whether or not the measurement is correctly performed by monitoring.
  • the test head holding unit includes an elevating mechanism for moving the test head up and down, a guide unit having a regulation surface for guiding the test head when the test head moves up and down, and a test head It is preferable to have a buffer portion having a spring member that urges the frame toward the opposite side of the pogo frame.
  • the lifting and lowering movement is guided in a state where the position and orientation of the test head are regulated by the guide unit, The distance between the test head and the pogo frame and the parallelism are appropriately maintained by the buffer portion. Therefore, the parallelism between the wafer and the probe card can be easily ensured, and the accuracy of wafer level inspection can be improved.
  • a plurality of buffer parts are provided at positions equidistant from the center of gravity of the test head. According to this aspect, since the load of the test head is evenly distributed, the horizontal posture of the test head can be maintained appropriately, and the effect of the present invention becomes more remarkable.
  • the pogo frame mounting portion has a suction surface for sucking and fixing the pogo frame.
  • the pogo frame is securely fixed to the head stage.
  • the pogo frame mounting portion is preferably provided with positioning means such as a positioning pin for positioning the pogo frame with respect to the head stage.
  • the parallelism between the probe card and the wafer can be maintained, and the wafer level inspection can be performed with high accuracy.
  • FIG. 1 is an external view showing an overall configuration of a prober according to an embodiment of the present invention.
  • the top view which showed the prober shown in FIG. Schematic diagram showing the configuration of the measurement unit
  • Schematic diagram showing the configuration of the measurement unit The figure which showed the state after a wafer chuck was delivered to the head stage side Plan view showing the planar layout of the test head holder Side view of the test head holder viewed from the side
  • 1 and 2 are an external view and a plan view showing the overall configuration of the prober according to the embodiment of the present invention.
  • the prober 10 of the present embodiment includes a loader unit 14 that supplies and recovers a wafer W (see FIG. 4) to be inspected, and a measurement unit that is disposed adjacent to the loader unit 14. 12.
  • the measurement unit 12 has a plurality of measurement units 16.
  • the measurement unit 16 inspects the electrical characteristics of each chip of the wafer W. (Wafer level inspection) is performed.
  • the wafer W inspected by each measurement unit 16 is collected by the loader unit 14.
  • the prober 10 also includes an operation panel 21 and a control device (not shown) that controls each unit.
  • the loader unit 14 includes a load port 18 on which the wafer cassette 20 is placed, and a transfer unit 22 that transfers the wafer W between each measurement unit 16 of the measurement unit 12 and the wafer cassette 20.
  • the transport unit 22 includes a transport unit drive mechanism (not shown), is configured to be movable in the X and Z directions, and is configured to be rotatable in the ⁇ direction (around the Z direction). Further, the transport unit 22 includes a transport arm 24 that is configured to be extendable back and forth by the transport unit driving mechanism.
  • a suction pad (not shown) is provided on the upper surface of the transfer arm 24, and the transfer arm 24 holds the wafer W by vacuum-sucking the back surface of the wafer W with this suction pad.
  • the wafer W in the wafer cassette 20 is taken out by the transfer arm 24 of the transfer unit 22 and transferred to each measurement unit 16 of the measurement unit 12 while being held on the upper surface thereof. Further, the inspected wafer W that has been inspected is returned from each measuring unit 16 to the wafer cassette 20 through the reverse path.
  • FIG. 3 is a diagram showing the configuration of the measurement unit 12.
  • the measurement unit 12 has a stacked structure (multi-stage structure) in which a plurality of measurement units 16 are stacked in multiple stages, and each measurement unit 16 is 2 in the X direction and the Z direction. Dimensionally arranged. In the present embodiment, as an example, four measurement units 16 in the X direction are stacked in three stages in the Z direction. Each measurement unit 16 has the same configuration, and includes a wafer chuck 50, a probe card 56, and the like, as will be described in detail later.
  • the measurement unit 12 includes a housing (not shown) having a lattice shape in which a plurality of frames are combined in a lattice shape. This casing is formed by combining a plurality of frames extending in the X direction, the Y direction, and the Z direction in a lattice shape, and each of the components surrounded by these frames is a component of the measuring unit 16. Is placed.
  • FIG. 4 is a schematic diagram illustrating the configuration of the measurement unit 16.
  • the measurement unit 16 includes a wafer chuck 50, a head stage 52, a test head 54, a probe card 56, and a pogo frame 58.
  • the test head 54 is supported above the head stage 52 by a test head holding unit 80 which will be described in detail later.
  • the test head 54 is electrically connected to the probe 66 of the probe card 56, supplies power and test signals to each chip for electrical inspection, and operates normally by detecting output signals from each chip. Measure.
  • the head stage 52 is supported by a frame member 34 that constitutes a part of the casing, and has a pogo frame mounting portion 53 formed of a circular opening corresponding to the planar shape of the pogo frame 58.
  • the pogo frame mounting portion 53 has a positioning pin (not shown), and the pogo frame 58 is fixed to the pogo frame mounting portion 53 in a state of being positioned by the positioning pin.
  • the pogo frame mounting portion 53 has a suction surface for sucking and fixing the pogo frame 58, and the pogo frame 58 is sucked to the pogo frame mounting portion 53 by suction means (not shown). Adsorbed to the surface and fixed. As a result, the pogo frame 58 is securely fixed to the head stage 52.
  • the method for fixing the pogo frame 58 is not limited to the present embodiment, and for example, a mechanical fixing means such as a screw may be used.
  • the pogo frame 58 electrically connects each terminal formed on the lower surface of the test head 54 (surface facing the pogo frame 58) and each terminal formed on the upper surface of the probe card 56 (surface facing the pogo frame 58).
  • ring-shaped seal members (not shown) are formed on the outer peripheral portions of the upper surface (the surface facing the test head 54) and the lower surface (the surface facing the probe card 56) of the pogo frame 58, respectively.
  • the space surrounded by the test head 54, the pogo frame 58, and the upper surface side seal member, and the space surrounded by the probe card 56, the pogo frame 58, and the lower surface side seal member are decompressed by suction means (not shown).
  • the test head 54, the pogo frame 58, and the probe card 56 are integrated.
  • the upper surface and the lower surface of the pogo frame 58 are examples of a first suction fixing portion and a second suction fixing portion, respectively.
  • the probe card 56 is provided with a plurality of probes 66 such as cantilevers and spring pins arranged corresponding to the electrodes of each chip of the wafer W to be inspected.
  • Each probe 66 is formed to project downward from the lower surface of the probe card 56 (surface facing the wafer chuck 50), and each terminal provided on the upper surface of the probe card 56 (surface facing the pogo frame 58). Is electrically connected. Therefore, when the test head 54, the pogo frame 58, and the probe card 56 are integrated, each probe 66 is electrically connected to each terminal of the test head 54 via the pogo frame 58.
  • the probe card 56 of this example includes a large number of probes 66 corresponding to the electrodes of all the chips of the wafer W to be inspected, and each measuring unit 16 has all the chips on the wafer W held by the wafer chuck 50. Simultaneous inspection is performed.
  • the wafer chuck 50 sucks and fixes the wafer W by vacuum suction or the like.
  • the wafer chuck 50 is detachably supported and fixed to an alignment apparatus 70 described later.
  • the alignment device 70 moves the wafer chuck 50 in the X, Y, Z, and ⁇ directions to perform relative alignment between the wafer W held on the wafer chuck 50 and the probe card 56.
  • an elastic ring-shaped seal member (hereinafter referred to as “chuck seal rubber”) 64 is provided on the outer peripheral portion of the upper surface (wafer mounting surface) of the wafer chuck 50.
  • chuck seal rubber When the wafer chuck 50 is moved (raised) toward the probe card 56 by a Z-axis moving / rotating unit 72 described later, the chuck seal rubber 64 comes into contact with the lower surface of the head stage 52, whereby the wafer chuck 50, the probe card An internal space S (see FIG. 5) surrounded by 56 (head stage 52) and chuck seal rubber 64 is formed.
  • the internal space S is depressurized by a suction unit (decompression unit) (not shown), whereby the wafer chuck 50 is drawn toward the probe card 56.
  • each probe 66 of the probe card 56 comes into contact with the electrode pad of each chip of the wafer W so that the inspection can be started.
  • the chuck seal rubber 64 is an example of an annular seal member.
  • heating / cooling as a heating / cooling source is performed so that electrical characteristics can be inspected in a high temperature state (for example, a maximum of 150 ° C.) or a low temperature state (for example, a minimum of ⁇ 40 ° C.).
  • a mechanism (not shown) is provided.
  • the heating / cooling mechanism a known appropriate heater / cooler can be adopted.
  • a heating / cooling mechanism having a double layer structure of a heating layer of a surface heater and a cooling layer provided with a passage for cooling fluid Various devices such as a heating / cooling device having a single layer structure in which a cooling pipe around which a heater is wound are embedded in a conductor are conceivable.
  • a thermal fluid may be circulated, and a Peltier element may be used.
  • the alignment device 70 includes an alignment device 70 that detachably supports the wafer chuck 50 by vacuum suction or the like. As described above, the alignment device 70 performs relative alignment between the wafer W held on the wafer chuck 50 and the probe card 56.
  • the wafer chuck 50 is detachably supported and fixed.
  • a Z-axis movement / rotation unit 72 that moves in the Z-axis direction and rotates in the ⁇ direction about the Z-axis
  • an X-axis movement table 74 that supports the Z-axis movement / rotation unit 72 and moves in the X-axis direction
  • a Y-axis moving table 76 that supports the X-axis moving table 74 and moves in the Y-axis direction.
  • Each of the Z-axis movement / rotation unit 72, the X-axis movement table 74, and the Y-axis movement table 76 is configured such that the wafer chuck 50 can be moved or rotated in a predetermined direction by a mechanical drive mechanism including at least a motor.
  • a mechanical drive mechanism for example, a ball screw drive mechanism in which a servo motor and a ball screw are combined is used.
  • a linear motor drive mechanism or a belt drive mechanism may be used.
  • the Z-axis moving / rotating unit 72 is an example of a mechanical lifting / lowering unit.
  • the alignment device 70 is provided for each stage (see FIG. 3), and is configured to be movable between a plurality of measurement units 16 arranged in each stage by an alignment device driving mechanism (not shown). . That is, the alignment device 70 is shared among a plurality of (four in this example) measurement units 16 arranged on the same stage, and moves between the plurality of measurement units 16 arranged on the same stage. To do.
  • the alignment device 70 moved to each measuring section 16 is fixed in a state where it is positioned at a predetermined position by a positioning and fixing device (not shown), and the wafer chuck 50 is moved in the X, Y, Z, and ⁇ directions by the alignment device driving mechanism described above.
  • the alignment apparatus 70 is configured to detect a relative positional relationship between the chip electrode of the wafer W held on the wafer chuck 50 and the probe 66, and a needle position detection camera and a wafer alignment camera. And.
  • alignment device 70 Z-axis movement / rotation unit 72 has a suction port (an example of a wafer chuck fixing unit) on its upper surface, and sucks wafer chuck 50 by suction means (not shown).
  • a suction port an example of a wafer chuck fixing unit
  • suction means not shown.
  • the alignment apparatus 70 is preferably provided with a positioning member (not shown) so that the relative positional relationship with the wafer chuck 50 is always constant.
  • a chuck guide mechanism 90 for guiding the wafer chuck 50 in the Z direction (vertical direction) is provided.
  • the chuck guide mechanism 90 is an example of a guide means.
  • a plurality of chuck guide mechanisms 90 are provided in parallel in the circumferential direction of the peripheral portion of the wafer chuck 50, specifically, the outer peripheral portion of the chuck guide holding portion 94 integrated with the wafer chuck 50.
  • the chuck guide mechanism 90 sucks and fixes a chuck guide 98, which will be described later, to the head stage 52 by vacuum suction or the like before the operation of pulling the wafer chuck 50 toward the probe card 56 by the decompression of the internal space S is performed.
  • it functions as a guide mechanism for moving the wafer chuck 50 in parallel with the Z direction while restricting movement of the wafer chuck 50 in the horizontal direction.
  • the wafer chuck 50 (chuck guide holding portion 94) is provided with at least three chuck guide mechanisms 90 at different positions in the horizontal direction (X, Y direction) perpendicular to the moving direction (Z direction) of the wafer chuck 50.
  • the chuck guide holding portion 94 is provided with three chuck guide mechanisms 90 at regular intervals (every 120 degrees) along the circumferential direction (only one is shown in FIG. 4). .
  • the chuck guide mechanism 90 is movable in the Z direction (vertical direction) in a state where movement in the X and Y directions (horizontal direction) is restricted by the bearing portion 96 formed in the chuck guide holding portion 94 and the bearing portion 96.
  • the chuck guide (guide shaft portion) 98 is configured.
  • the bearing portion 96 is configured by, for example, a ball bearing.
  • the chuck guide 98 is rotatably supported by the bearing portion 96, and a fixing portion 100 for detachably fixing the chuck guide 98 to the head stage 52 is provided on the upper portion thereof.
  • a ring-shaped seal member (hereinafter referred to as “chuck guide seal rubber”) 102 is provided on the upper surface of the fixed portion 100, and a suction port (not shown) connected to a suction means (not shown) is provided inside the chuck guide seal rubber 102.
  • a clearance holding member 104 for keeping the distance (gap) between the fixed portion 100 and the head stage 52 constant.
  • the shape of the clearance holding member 104 is not particularly limited as long as it can maintain a certain gap between the fixed portion 100 and the head stage 52.
  • the wafer chuck 50 is moved to a predetermined height by the Z-axis moving / rotating unit 72, the chuck guide seal rubber 102 is brought into contact with the head stage 52, and then the chuck guide seal rubber 102 and the head stage 52 are sucked by a suction means (not shown).
  • a suction means not shown.
  • the fixed portion 100 of the chuck guide 98 is attracted to the head stage 52 and fixed.
  • a certain gap is secured between the clearance holding member 104 and the head stage 52, so that excessive chucking by the fixing portion 100 of the chuck guide 98 is suppressed, and the chuck guide fixed to the head stage 52. An inclination of 98 can be prevented.
  • the chuck guide 98 fixed to the head stage 52 moves the wafer chuck 50 in the Z direction while restricting movement in the X and Y directions. It becomes possible to move. As a result, it is possible to prevent tilting and misalignment due to an uneven load due to the components of the wafer chuck 50, and it is possible to stably perform the delivery operation of the wafer chuck 50 while maintaining parallelism. Good contact can be realized between the electrode pad and the probe 66.
  • a height detection sensor 92 that detects the relative distance between the head stage 52 and the wafer chuck 50 is provided on the head stage 52.
  • the height detection sensor 92 is provided to monitor the height position and the inclination of the wafer chuck 50 when the wafer chuck 50 is drawn toward the probe card 56 by reducing the internal space S. Therefore, the head stage 52 is provided with at least three height detection sensors 92 at different positions in the X and Y directions (horizontal direction) orthogonal to the Z direction (vertical direction) that is the moving direction of the wafer chuck 50. (Only one is shown in FIG. 4). According to this configuration, the height position and inclination of the wafer chuck 50 can be monitored from the detection results of the height detection sensors 92.
  • FIGS. 6 is a plan view showing a planar arrangement relationship of the test head holding unit 80
  • FIG. 7 is a side view of the test head holding unit 80 as viewed from the side.
  • the test head 54 is shown by a broken line.
  • the test head holding part 80 is provided between the receiving part 54a provided on the upper surface side of the test head 54 and the frame member 34. As shown in FIG. The lower end of the test head holding portion 80 is installed on the frame member 34, and the upper end thereof supports the receiving portion 54 a of the test head 54. That is, the test head 54 is supported by the frame member 34 by the test head holding unit 80, and the load of the test head 54 is not directly applied to the head stage 52, and the parallelism between the probe card 56 and the wafer W Therefore, wafer level inspection can be performed with high accuracy.
  • the specific configuration of the test head holding unit 80 is as follows.
  • the test head holding unit 80 includes an elevating mechanism 82 that raises and lowers the test head 54 in the Z direction, a guide unit 84 that guides the movement of the test head 54 in the Z direction when the test head 54 is raised and lowered by the elevating mechanism 82, A buffer portion 86 is provided that keeps the distance (clearance) and parallelism between the head 54 and the probe card 56 constant.
  • the elevating mechanism 82 is constituted by, for example, an air cylinder or an electric mechanism, and elevates the test head 54 in the Z direction.
  • the lower end of the elevating mechanism 82 is fixed to the frame member 34, and the upper end thereof supports the receiving portion 54 a of the test head 54.
  • the number and arrangement of the elevating mechanisms 82 are not particularly limited as long as the test head 54 can be raised and lowered in the Z direction.
  • two lifting mechanisms 82A and 82B are provided corresponding to the receiving portion 54a of the test head 54. Thereby, since the load of the test head 54 is distributed to each of the lifting mechanisms 82A and 82B, the test head 54 can be lifted and lowered in the Z direction stably and reliably.
  • the receiving portion 54 a of the test head 54 has a flange surface (protruding surface) that protrudes laterally (X direction) from the upper end portion of the test head 54, and this flange surface is supported by the upper end of the lifting mechanism 82. Is done.
  • the guide portion 84 has a restriction surface 85 that faces the side surface (surface perpendicular to the X direction) of the test head 54, and the side surface of the receiving portion 54 a of the test head 54 abuts on the restriction surface 85, thereby The movement of the test head 54 in the Z direction is guided in a state where the movement in the horizontal direction (X, Y direction) is restricted.
  • the number and arrangement of the guide portions 84 are not particularly limited as long as the position and orientation of the test head 54 can be regulated. In the present embodiment, as an example, four guide portions 84A to 84D are provided so as to sandwich the side surfaces of the receiving portions 54a on both sides of the test head 54.
  • the guide portions 84A and 84B are disposed on both sides of the lifting mechanism 82A, and the guide portions 84C and 84D are disposed on both sides of the lifting mechanism 82B.
  • the guide portion 84A and the guide portion 84C, and the guide portion 84B and the guide portion 84D are disposed at positions facing each other with the test head 54 interposed therebetween. Accordingly, when the test head 54 is moved up and down in the vertical direction, the test head 54 is moved up and down in a state where the horizontal movement (position and orientation) of the test head 54 is regulated by the guide portions 84 (84A to 84D). Guided.
  • the buffer portion 86 has a spring member 88 interposed between a spring receiving portion 87 fixed to the frame member 34 and a receiving portion 54a of the test head 54.
  • the spring member 88 has a biasing force that biases the test head 54 upward (that is, on the side opposite to the pogo frame 58), so that the distance and parallelism between the test head 54 and the pogo frame 58 are appropriately adjusted. Has the function to keep.
  • a plurality of buffer portions 86A to 86D are provided, and each buffer portion 86A to 86D supports the end portion of the receiving portion 54a of the test head 54.
  • each of the buffer portions 86A to 86D is arranged at a position that is equidistant from the center of gravity of the test head 54. As a result, the load of the test head 54 is evenly distributed, and the horizontal posture of the test head 54 can be maintained appropriately.
  • the test head 54 is guided in the Z direction (by the elevating mechanism 82 (82A, 82B) while being guided in a state where the movement in the X and Y directions (horizontal direction) is restricted by the guide portions 84 (84A to 84D). Move vertically). As a result, the test head 54 can move stably between the retracted position and the mounting position.
  • the distance and parallelism between the test head 54 and the pogo frame 58 by the spring member 88 of the buffer portion 86 (86A to 86D). can be kept appropriate. Therefore, once the parallel adjustment between the test head 54 and the pogo frame 58 is performed at the initial setting, the parallelism is always maintained even when the test head 54 is moved up and down, so that the parallel adjustment of the test head 54 becomes unnecessary. The time and labor required for adjustment can be reduced.
  • an integration process for integrating the test head 54, the pogo frame 58, and the probe card 56 is performed. Specifically, the integration process is performed as follows.
  • the pogo frame 58 is sucked and fixed to the head stage 52 by vacuum suction or the like, and then the probe card 56 is sucked and fixed to the pogo frame 58 by vacuum suction or the like.
  • the test head 54 is moved to the mounting position by the lifting mechanism 82 while the movement of the test head 54 in the X and Y directions (horizontal direction) is restricted by the guide portion 84.
  • the test head 54 is not in contact with the pogo frame 58, and the distance (clearance) and parallelism between the test head 54 and the pogo frame 58 are increased by the spring member 88 of the buffer portion 86 (86A to 86D). It is kept properly.
  • the test head 54 is sucked and fixed to the pogo frame 58 by vacuum suction or the like.
  • the test head 54, the pogo frame 58, and the probe card 56 are integrated.
  • the prober 10 After the integration process is performed in this way, the prober 10 performs the following operations.
  • the wafer W in the wafer cassette 20 is taken out by the transfer arm 24 of the transfer unit 22 and transferred to each measurement unit 16 of the measurement unit 12 while being held on the upper surface of the transfer arm 24.
  • the alignment device 70 provided for each stage moves to a predetermined measurement unit 16, positions the wafer chuck 50 on the upper surface of the alignment device 70, and fixes it by suction.
  • the alignment apparatus 70 moves the wafer chuck 50 to a predetermined delivery position.
  • the wafer W is delivered from the transfer unit 22 of the loader unit 14, the wafer W is held on the upper surface of the wafer chuck 50.
  • the alignment device 70 moves the wafer chuck 50 holding the wafer W to a predetermined alignment position, and the electrode of the chip of the wafer W held on the wafer chuck 50 by a needle position detection camera and wafer alignment camera (not shown).
  • the relative positional relationship between the probe 66 and the probe 66 is detected, the wafer chuck 50 is moved in the X, Y, Z, and ⁇ directions based on the detected positional relationship, and the wafer W held on the wafer chuck 50 and the probe Relative alignment with the card 56 is performed.
  • the alignment apparatus 70 moves the wafer chuck 50 to a predetermined measurement position (position facing the probe card 56), and the chuck guide seal rubber is moved by the Z-axis movement / rotation unit 72 of the alignment apparatus 70.
  • the wafer chuck 50 is raised until the height 102 comes into contact with the head stage 52.
  • each probe 66 of the probe card 56 contacts the electrode pad of each chip of the wafer W in the overdrive state, so that the tip of the probe 66 is hard to get into the surface of the electrode pad, Form needle marks.
  • the oxide film formed on the electrode pad can be removed by the contact of the probe 66, and disturbance (vibration) generated when the wafer chuck 50 is transferred from the alignment device 70 to the head stage 52 (probe card 56 side).
  • positional deviation (lateral deviation) of the probe 66 in the X and Y directions (horizontal direction) can be prevented.
  • the height of the raised wafer chuck 50 may be lower than the tip position (contact position) of the probe 66 (clearance height). .
  • the chuck guide 98 of the chuck guide mechanism 90 is fixed to the head stage 52. Specifically, after the chuck guide seal rubber 102 contacts the head stage 52 as described above, it is formed inside the chuck guide seal rubber 102, the head stage 52, and the fixed portion 100 by a suction means (pressure reduction means) (not shown). The fixed portion 100 is sucked and fixed to the head stage 52 by reducing the pressure of the internal space Q.
  • the head position is detected while detecting the height position of the wafer chuck 50 by the plurality of height detection sensors 92 provided on the head stage 52.
  • the internal space S surrounded by the stage 52 (probe card 56), the wafer chuck 50, and the chuck seal rubber 64 is decompressed by suction means (not shown).
  • the chuck guide 98 (fixed portion 100) of the chuck guide mechanism 90 is attracted and fixed to the head stage 52 as described above, so that the wafer chuck 50 is moved in the X and Y directions (horizontal direction) by the chuck guide 98. Is guided while moving in the Z direction (vertical direction).
  • the wafer chuck 50 is drawn toward the probe card 56 without tilting or misalignment, and the probe card 56 and the wafer chuck 50 are brought into close contact with each other, and each probe 66 of the probe card 56 has a uniform contact pressure to the wafer. It contacts the electrode pad of each chip of W.
  • the height position and inclination of the wafer chuck 50 are obtained based on the detection results of the height detection sensors 92, and processing for determining whether or not these values are in an appropriate range is performed. It has come to be.
  • This determination process is performed by the control device described above. As a result, when the wafer chuck 50 is drawn toward the probe card 56 due to the decompression of the internal space S, confirmation of the crushing amount (overdrive amount) of the probe 66, inclination of the wafer chuck 50, monitoring of state changes during measurement, etc. In addition, it is possible to accurately determine whether or not the measurement is correctly performed.
  • the wafer chuck 50 is transferred from the alignment apparatus 70 (Z-axis movement / rotation unit 72) to the head stage 52 (probe card 56 side), as shown in FIG.
  • the frame 58, the probe card 56, and the wafer chuck 50 are integrated, and the probes 66 of the probe card 56 are in contact with the electrode pads of the chips of the wafer W with a uniform contact pressure.
  • the wafer level inspection can be started. Thereafter, power and a test signal are supplied from the test head 54 to each chip of the wafer W via each probe 66, and an electric operation test is performed by detecting a signal output from each chip.
  • the alignment device 70 moves to another measurement unit 16 and measures the measurement.
  • a contact operation is performed in the same procedure, and wafer level inspection is sequentially performed.
  • the test head 54 is supported by the frame member 34 by interposing the test head holding portion 80 between the receiving portion 54 a of the test head 54 and the frame member 34. It is the composition which becomes. Therefore, the load of the test head 54 is not directly applied to the head stage 52 and the deformation of the pogo frame 58 is prevented, so that the parallelism between the wafer W and the probe card 56 can be easily ensured. The accuracy of wafer level inspection can be improved.
  • the test head holding unit 80 includes the elevating mechanism 82 and the guide unit 84, the test head 54 is in a state in which horizontal movement (position and orientation) is regulated by the guide unit 84. It is possible to move stably between the retracted position and the mounting position while being guided by the. Thereby, the maintenance workability of the test head 54 is improved.
  • test head holding part 80 includes the buffer part 86 having the spring member 88, the distance and parallelism between the test head 54 and the pogo frame 58 can be properly maintained. Thereby, the test head 54 can be stably moved between the mounting position and the retracted position.
  • the pogo frame 58 is fixed to the head stage 52 by suction, and the test head 54, the pogo frame 58, and the probe card 56 are fixed by suction.
  • the contact pressure necessary to electrically connect between the test head 54 and the pogo frame 58 and between the probe card 56 and the pogo frame 58 can be secured, and the connection between them can be established. It is possible to suppress the influence due to the variation of terminals to be performed.
  • the wafer level inspection is performed in a state where the test head 54, the pogo frame 58, the probe card 56, and the wafer chuck 50 are integrated with the head stage 52 as a reference. Therefore, it is possible to facilitate a contact operation in which the probe 66 is brought into contact with the electrode pad of each chip of the wafer W while maintaining the parallelism between the wafer W and the probe card 56. That is, the probe 66 can be brought into contact with the electrode pad of each chip of the wafer W with an appropriate contact pressure, and the accuracy of wafer level inspection can be improved.
  • the wafer chuck 50 is guided along the chuck guide 98 in the Z direction while the chuck guide 98 (fixed portion 100) of the chuck guide mechanism 90 is fixed to the head stage 52 by vacuum suction or the like.
  • a chuck guide mechanism 90 is provided.
  • the head stage 52 is provided with at least three height detection sensors 92 for detecting the relative distance from the wafer chuck 50, the detection result of each height detection sensor 92 is used. It becomes possible to monitor the height position and inclination of the wafer chuck 50. As a result, when the wafer chuck 50 is drawn toward the probe card 56 due to the decompression of the internal space S, confirmation of the crushing amount (overdrive amount) of the probe 66, inclination of the wafer chuck 50, monitoring of state changes during measurement, etc. In addition, it is possible to accurately determine whether or not the measurement is correctly performed.
  • a suction method such as vacuum suction is shown as a method for fixing the chuck guide mechanism 90.
  • various known types can be used as long as the chuck guide 98 can be detachably fixed to the head stage 52.
  • the system can be adopted, and a mechanical system such as a clamp may be used.
  • the chuck guide mechanism 90 is provided on the wafer chuck 50 side and the chuck guide 98 (fixed portion 100) is adsorbed on the head stage 52 side.
  • the chuck guide mechanism 90 is disposed on the head stage.
  • the chuck guide 98 (fixed portion 100) may be adsorbed on the wafer chuck 50 side.
  • the configuration in which the height detection sensor 92 is provided on the head stage 52 has been described.
  • any device that can detect the relative distance between the wafer chuck 50 and the head stage 52 may be used.
  • the height detection sensor 92 may be provided on the wafer chuck 50.
  • Test head holding unit 82 ... Elevating mechanism, 84 ... Guide unit, 85 ... Regulating surface, 86 ... Buffering unit, 88 ... Spring member 90 ... Chuck guide mechanism 92 ... Height detection sensor 94 ... Chuck guide holding part 96 ... Bearing part 98 ... Chuck guide 100 ... Tough, 102 ... chuck guide seal rubber, 104 ... clearance retaining member

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 プローブカードとウエハとの平行度を保つことができ、ウエハレベル検査を高精度に行うことができるプローバを提供する。テストヘッド保持部80にテストヘッド54が保持され、ヘッドステージ52に取り付けられたポゴフレーム58にはテストヘッド54、プローブカード56が吸着固定される。ウエハチャック50はZ軸・移動回転部72に着脱自在に固定された状態でプローブカード56側に移動し、ウエハチャック50とプローブカード56との間に形成された密閉空間を減圧手段によって減圧することで、ウエハチャック50をプローブカード56に向かって引き寄せ、ヘッドステージ52を基準にして、テストヘッド54、ポゴフレーム58、プローブカード56、及びウエハチャック50を一体化した状態でウエハWの電気的な検査を行う。

Description

プローバ
 本発明は、半導体ウエハ上に形成された複数の半導体装置(チップ)の電気的特性の検査を行うプローバに関し、特に、多段状に積層された複数の測定部を有するプローバに関する。
 半導体製造工程は、多数の工程を有し、品質保証及び歩留まりの向上のために、各種の製造工程で各種の検査が行われる。例えば、半導体ウエハ上に半導体装置の複数のチップが形成された段階で、各チップの半導体装置の電極パッドをテストヘッドに接続し、テストヘッドから電源及びテスト信号を供給し、半導体装置の出力する信号をテストヘッドで測定して、正常に動作するかを電気的に検査するウエハレベル検査が行われている。
 ウエハレベル検査の後、ウエハはフレームに貼り付けられ、ダイサで個別のチップに切断される。切断された各チップは、正常に動作することが確認されたチップのみが次の組み立て工程でパッケージ化され、動作不良のチップは組み立て工程から除かれる。更に、パッケージ化された最終製品には、出荷検査が行われる。
 ウエハレベル検査は、ウエハ上の各チップの電極パッドにプローブを接触させるプローバを使用して行われる(例えば、特許文献1参照)。プローブはテストヘッドの端子に電気的に接続され、テストヘッドからプローブを介して各チップに電源及びテスト信号が供給されると共に各チップからの出力信号をテストヘッドで検出して正常に動作するかを測定する。
 半導体製造工程においては、製造コストの低減のために、ウエハの大型化や一層の微細化(集積化)が進められており、1枚のウエハ上に形成されるチップの個数が非常に大きくなっている。それに伴って、プローバでの1枚のウエハの検査に要する時間も長くなっており、スループットの向上が求められている。そこで、スループットの向上を図るため、多数のプローブを設けて複数個のチップを同時に検査できるようにするマルチプロービングが行われている。近年、同時に検査するチップ数は益々増加し、ウエハ上のすべてのチップを同時に検査する試みも行われている。そのため、電極パッドとプローブを接触させるときの位置合わせの許容誤差が小さくなっており、プローバにおける移動の位置精度を高めることが求められている。
 一方、スループットを増加するもっとも簡単な方法として、プローバの台数を増加させることが考えられるが、プローバの台数を増加させると、製造ラインにおけるプローバの設置面積も増加するという問題を生じる。また、プローバの台数を増加させると、その分装置コストも増加することになる。そのため、設置面積の増加や装置コストの増加を抑えてスループットを増加させることが求められている。
 このような問題に対し、特許文献2は、多段状に積層された複数の測定部を有するプローバを提案している。このプローバでは、複数の測定部が多段状に積層された積層構造(多段構造)を有するため、ウエハレベル検査を測定部毎に行うことができ、設置面積の増加や装置コストの増加を抑えてスループットを向上させることができる。
特開2009-60037号公報 特開2014-150168号公報
 ところで、特許文献1に開示されたプローバでは、テストヘッドを保持体により保持して、プローバ本体の天板(ヘッドステージ)から離れた退避位置から水平姿勢の位置まで回転させた後、このテストヘッドをプローバ本体に設けられた昇降支持機構に引き渡し、この昇降支持機構によりテストヘッドを下降させて、プローバ本体にテストヘッドを装着させる。
 このヘッドステージにはプローブカードが取り付けられており、プローブカードの各プローブをウエハの各チップの電極パッドに接触させて精度よく検査を行うためにはプローブカードとウエハとの平行度を確保する必要がある。特にウエハの全チップを同時に検査するいわゆる一括コンタクト方式の場合、プローブカードの各プローブをウエハの各チップの電極パッドに均一に接触させるためにプローブカードとウエハとの平行度の精度がより必要になる。
 しかしながら、特許文献2に開示されたプローバは、多段状に積層された複数の測定部を有するため、特許文献1に開示されたような構成を採用することはレイアウト上実現することが困難である。
 例えば、テストヘッドをヘッドステージに直接搭載することも考えられるが、ヘッドステージにかかるテストヘッドの荷重が許容範囲を超えた場合、ヘッドステージの変形が大きくなり、プローブカードとウエハとの平行度を保つことができなくなる。その結果、ウエハレベル検査の測定精度が低下する要因となる。
 また、特許文献2に開示されたプローバでは、プローブカードとウエハチャックとの間に形成される内部空間を減圧することにより、ウエハチャックをプローブカードに向かって引き寄せる構成となっているが、ウエハチャックの構成部品による偏荷重等の影響によってウエハチャックに傾きや位置ずれが生じてしまう可能性がある。この場合、プローブカードとウエハとの平行度が悪くなり、プローブカードの各プローブをウエハの各チップの電極パッドに均一に接触させることができなくなるため、ウエハレベル検査の測定精度が低下してしまう結果になる。
 本発明は、このような事情に鑑みてなされたもので、プローブカードとウエハとの平行度を保つことができ、ウエハレベル検査を高精度に行うことができるプローバを提供することを目的とする。
 上記目的を達成するために、本発明に係るプローバの一態様は、多段状に積層された複数の測定部を有するプローバであって、測定部は、テストヘッドと、プローブを有するプローブカードと、テストヘッドとプローブカードとの間に介在するポゴフレームと、ポゴフレームが取り付けられるポゴフレーム取付部を有するヘッドステージと、ヘッドステージを支持するフレーム部材と、フレーム部材に支持され、テストヘッドを保持するテストヘッド保持部と、ウエハを保持するウエハチャックと、テストヘッドとポゴフレームとを吸着により固定する第1吸着固定部と、プローブカードとポゴフレームとを吸着により固定する第2吸着固定部と、ウエハチャックを着脱自在に固定するウエハチャック固定部を有し、ウエハチャック固定部に固定されたウエハチャックを昇降させる機械的昇降手段と、ウエハチャックとプローブカードとの間に密閉空間を形成する環状のシール部材と、ウエハチャックがプローブカードに向かって引き寄せられるように密閉空間を減圧する減圧手段と、を備え、ヘッドステージを基準にして、テストヘッド、ポゴフレーム、プローブカード、及びウエハチャックを一体化した状態でウエハの電気的検査を行う。
 上記態様によれば、テストヘッドの荷重がヘッドステージに直接的にかかることがなく、ポゴフレームの変形が防止され、ウエハとプローブカードとの平行度を容易に確保することができ、ウエハレベル検査の精度を向上させることが可能となる。
 本発明に係るプローバの一態様において、テストヘッド保持部は、テストヘッドを昇降移動させる昇降機構と、テストヘッドが昇降移動する際にテストヘッドを案内する規制面を有するガイド部と、テストヘッドをポゴフレームとは反対側に付勢するバネ部材を有する緩衝部と、を備える。
 上記態様によれば、テストヘッド保持部は昇降機構、ガイド部、及び緩衝部を有しており、このテストヘッド保持部によりテストヘッドがフレーム部材に支持される構成となっている。そのため、昇降機構によりテストヘッドを装着位置と退避位置との間で昇降移動させる際に、ガイド部によりテストヘッドの位置や向きが規制された状態で昇降移動が案内されるとともに、緩衝部によりテストヘッドとポゴフレームの距離及び平行度が適正に保たれる。したがって、テストヘッドの荷重がヘッドステージに直接的にかかることがなく、ポゴフレームの変形が防止され。ウエハとプローブカードとの平行度を容易に確保することができ、ウエハレベル検査の精度を向上させることが可能となる。
 本発明に係るプローバの一態様において、緩衝部は、テストヘッドの重心から等距離離れた位置に複数設けられることが好ましい。この態様によれば、テストヘッドの荷重が均等に分散されるので、テストヘッドの水平姿勢を適正に保つことができ、本発明の効果がより一層顕著なものとなる。
 本発明に係るプローバの一態様において、ポゴフレーム取付部は、ポゴフレームを吸着して固定する吸着面を有することが好ましい。この態様によれば、ヘッドステージに対してポゴフレームが確実に固定される。なお、ポゴフレーム取付部には、ヘッドステージに対するポゴフレームの位置決めを行うために位置決めピンなどの位置決め手段が設けられていることが好ましい。
 本発明に係るプローバの一態様において、テストヘッドとポゴフレームとを吸着により固定し、かつプローブカードとポゴフレームとを吸着により固定することが好ましい。この態様によれば、テストヘッドとポゴフレームとの間、及びプローブカードとポゴフレームとの間をそれぞれ電気的に導通させる際に必要な接触圧を確保することができ、これらの間を接続する端子のばらつきによる影響を抑えることが可能となる。
 本発明に係るプローバの一態様において、ウエハチャックとプローブカードとを吸着により一体化した状態でウエハの電気的検査を行うことが好ましい。この態様によれば、ウエハの各チップの電極パッドにプローブを適正な接触圧で接触させることができ、ウエハレベル検査の精度を向上させることが可能となる。
 また、上記目的を達成するために、本発明に係るプローバの他の態様は、ウエハを保持するウエハチャックと、ウエハチャックと対向するように設けられ、ウエハの各電極パッドと対応する位置にプローブを有するプローブカードと、テストヘッド保持部によりプローブカードのウエハチャックとは反対側に保持されたテストヘッドと、プローブカードとテストヘッドとの間に介在され、テストヘッドとプローブカードとを電気的に接続するポゴフレームと、ポゴフレームが取り付けられるポゴフレーム取付部を有するヘッドステージと、ウエハチャックに設けられ、ウエハチャックに保持されたウエハを取り囲むように形成された環状のシール部材と、ウエハチャックを着脱自在に固定するウエハチャック固定部を有し、ウエハチャック固定部に固定されたウエハチャックを昇降させる機械的昇降手段と、プローブカード、ウエハチャック、及びシール部材により形成された内部空間を減圧する減圧手段と、減圧手段による内部空間の減圧によりウエハチャックをプローブカードに向かって移動させるときにウエハチャックの移動方向に直交する方向の移動を規制しつつウエハチャックの移動を案内するガイド手段と、を備える。
 上記態様によれば、減圧手段による内部空間の減圧によりウエハチャックをプローブカードに向かって引き寄せる際に、ガイド手段によりウエハチャックの移動方向に直交する方向の移動が規制されつつウエハチャックの移動が案内されるので、ウエハチャックの位置ずれや傾きを防止することができる。したがって、ウエハとプローブカードとの平行度を容易に確保することができ、ウエハレベル検査の精度を向上させることが可能となる。
 本発明に係るプローバの他の態様において、ガイド手段は、ウエハチャックに設けられた軸受部と、ヘッドステージに着脱自在に固定され軸受部に軸支されるガイド軸部とを有することが好ましい。この態様は、ガイド手段の具体的な構成の1つを示したものである。
 本発明に係るプローバの他の態様において、ガイド手段は、ウエハチャックの移動方向に直交する方向における互いに異なる位置に少なくとも3つ設けられることが好ましい。この態様によれば、ウエハチャックの移動方向に直交する方向におけるウエハチャックの傾きを確実に防止することが可能となる。
 本発明に係るプローバの他の態様において、減圧手段による内部空間の減圧が行われる際にウエハチャックとウエハチャックとの相対距離を検出する高さ検出センサを備えることが好ましい。この態様によれば、減圧手段による内部空間の減圧によりウエハチャックをプローブカードに向かって引き寄せる際に、ウエハチャックを適正な高さとすることが可能となる。
 本発明に係るプローバの他の態様において、高さ検出センサは、ウエハチャックの移動方向に直交する方向における互いに異なる位置に少なくとも3つ設けられることが好ましい。この態様によれば、減圧手段による内部空間の減圧によりウエハチャックをプローブカードに向かって引き寄せる際に、プローブの潰し量(オーバードライブ量)の確認やウエハチャックの傾き、測定時の状態変化等の監視や、正しく測定が行われているか否かを正確に判定することが可能となる。
 本発明に係るプローバの他の態様において、テストヘッド保持部は、テストヘッドを昇降移動させる昇降機構と、テストヘッドが昇降移動する際にテストヘッドを案内する規制面を有するガイド部と、テストヘッドをポゴフレームとは反対側に付勢するバネ部材を有する緩衝部と、を有することが好ましい。この態様によれば、昇降機構によりテストヘッドを装着位置と退避位置との間で昇降移動させる際に、ガイド部によりテストヘッドの位置や向きが規制された状態で昇降移動が案内されるとともに、緩衝部によりテストヘッドとポゴフレームの距離及び平行度が適正に保たれる。したがって、ウエハとプローブカードとの平行度を容易に確保することができ、ウエハレベル検査の精度を向上させることが可能となる。
 本発明に係るプローバの他の態様において、緩衝部は、テストヘッドの重心から等距離離れた位置に複数設けられることが好ましい。この態様によれば、テストヘッドの荷重が均等に分散されるので、テストヘッドの水平姿勢を適正に保つことができ、本発明の効果がより一層顕著なものとなる。
 本発明に係るプローバの他の態様において、ポゴフレーム取付部は、ポゴフレームを吸着して固定する吸着面を有することが好ましい。この態様によれば、ヘッドステージに対してポゴフレームが確実に固定される。なお、ポゴフレーム取付部には、ヘッドステージに対するポゴフレームの位置決めを行うために位置決めピンなどの位置決め手段が設けられていることが好ましい。
 本発明によれば、プローブカードとウエハとの平行度を保つことができ、ウエハレベル検査を高精度に行うことができる。
本発明の一実施形態に係るプローバの全体構成を示した外観図 図1に示したプローバを示した平面図 測定ユニットの構成を示した概略図 測定部の構成を示した概略図 ウエハチャックがヘッドステージ側に受け渡された後の状態を示した図 テストヘッド保持部の平面的な配置関係を示した平面図 テストヘッド保持部を側面側から見た側面図
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。
 図1及び図2は、本発明の実施形態に係るプローバの全体構成を示した外観図と平面図である。
 図1及び図2に示すように、本実施の形態のプローバ10は、検査するウエハW(図4参照)を供給及び回収するローダ部14と、ローダ部14に隣接して配置された測定ユニット12とを備えている。測定ユニット12は、複数の測定部16を有しており、ローダ部14から各測定部16にウエハWが供給されると、各測定部16でそれぞれウエハWの各チップの電気的特性の検査(ウエハレベル検査)が行われる。そして、各測定部16で検査されたウエハWはローダ部14により回収される。なお、プローバ10は、操作パネル21、各部を制御する制御装置(不図示)等も備えている。
 ローダ部14は、ウエハカセット20が載置されるロードポート18と、測定ユニット12の各測定部16とウエハカセット20との間でウエハWを搬送する搬送ユニット22とを有する。搬送ユニット22は、図示しない搬送ユニット駆動機構を備えており、X、Z方向に移動可能に構成されるとともに、θ方向(Z方向周り)に回転可能に構成されている。また、搬送ユニット22は、上記搬送ユニット駆動機構により前後に伸縮自在に構成された搬送アーム24を備えている。搬送アーム24の上面部には図示しない吸着パッドが設けられており、搬送アーム24は、この吸着パッドでウエハWの裏面を真空吸着してウエハWを保持する。これにより、ウエハカセット20内のウエハWは、搬送ユニット22の搬送アーム24によって取り出され、その上面に保持された状態で測定ユニット12の各測定部16に搬送される。また、検査の終了した検査済みのウエハWは逆の経路で各測定部16からウエハカセット20に戻される。
 図3は、測定ユニット12の構成を示した図である。
 図3に示すように、測定ユニット12は、複数の測定部16が多段状に積層された積層構造(多段構造)を有しており、各測定部16はX方向及びZ方向に沿って2次元的に配列されている。本実施の形態では、一例として、X方向に4つの測定部16がZ方向に3段積み重ねられている。なお、各測定部16は、いずれも同一の構成を有しており、詳細を後述するように、ウエハチャック50やプローブカード56等を備えて構成される。
 測定ユニット12は、複数のフレームを格子状に組み合わせた格子形状を有する筐体(不図示)を備えている。この筐体は、X方向、Y方向、Z方向にそれぞれ延びる複数のフレームを格子状に組み合わせて形成されたものであり、これらのフレームで囲まれた各空間部にそれぞれ測定部16の構成要素が配置される。
 次に、測定部16の構成について説明する。図4は、測定部16の構成を示した概略図である。
 図4に示すように、測定部16は、ウエハチャック50と、ヘッドステージ52と、テストヘッド54と、プローブカード56と、ポゴフレーム58とを備えている。
 テストヘッド54は、詳細を後述するテストヘッド保持部80によりヘッドステージ52の上方に支持されている。テストヘッド54は、プローブカード56のプローブ66に電気的に接続され、電気的検査のために各チップに電源及びテスト信号を供給するとともに、各チップからの出力信号を検出して正常に動作するかを測定する。
 ヘッドステージ52は、筐体の一部を構成するフレーム部材34に支持されており、ポゴフレーム58の平面形状に対応した円形状の開口からなるポゴフレーム取付部53を有する。ポゴフレーム取付部53は位置決めピン(不図示)を有しており、ポゴフレーム58は位置決めピンにより位置決めされた状態でポゴフレーム取付部53に固定される。本実施の形態では、一例として、ポゴフレーム取付部53は、ポゴフレーム58を吸着して固定する吸着面を有しており、図示しない吸引手段により、ポゴフレーム58をポゴフレーム取付部53の吸着面に吸着させて固定している。これにより、ヘッドステージ52に対してポゴフレーム58が確実に固定される。なお、ポゴフレーム58の固定方法としては、本実施の形態に限定されず、例えば、ネジ等の機械的な固定手段を用いてもよい。
 ポゴフレーム58は、テストヘッド54の下面(ポゴフレーム58に対向する面)に形成される各端子とプローブカード56の上面(ポゴフレーム58に対向する面)に形成される各端子とを電気的に接続する多数のポゴピン(不図示)を備えている。また、ポゴフレーム58の上面(テストヘッド54に対向する面)及び下面(プローブカード56に対向する面)の外周部には、それぞれリング状のシール部材(不図示)が形成されている。そして、図示しない吸引手段により、テストヘッド54とポゴフレーム58と上面側シール部材で囲まれた空間、及びプローブカード56とポゴフレーム58と下面側シール部材で囲まれた空間が減圧されることにより、テストヘッド54、ポゴフレーム58、及びプローブカード56が一体化される。なお、ポゴフレーム58の上面、下面はそれぞれ第1吸着固定部、第2吸着固定部の一例である。
 プローブカード56は、検査するウエハWの各チップの電極に対応して配置された、カンチレバーやスプリングピン等の複数のプローブ66が設けられている。各プローブ66は、プローブカード56の下面(ウエハチャック50に対向する面)から下方に向けて突出して形成されており、プローブカード56の上面(ポゴフレーム58に対向する面)に設けられる各端子に電気的に接続されている。したがって、テストヘッド54、ポゴフレーム58、及びプローブカード56が一体化されると、各プローブ66は、ポゴフレーム58を介してテストヘッド54の各端子に電気的に接続される。なお、本例のプローブカード56は、検査するウエハWの全チップの電極に対応した多数のプローブ66を備えており、各測定部16ではウエハチャック50に保持されたウエハW上の全チップの同時検査が行われる。
 ウエハチャック50は、真空吸着等によりウエハWを吸着して固定する。ウエハチャック50は、後述するアライメント装置70に着脱自在に支持固定される。アライメント装置70は、ウエハチャック50をX、Y、Z、θ方向に移動することで、ウエハチャック50に保持されたウエハWとプローブカード56との相対的な位置合わせを行う。
 また、ウエハチャック50の上面(ウエハ載置面)の外周部には弾性を有するリング状のシール部材(以下、「チャックシールゴム」という。)64が設けられている。後述するZ軸移動・回転部72によりウエハチャック50をプローブカード56に向かって移動(上昇)させたときに、チャックシールゴム64がヘッドステージ52の下面に接触することで、ウエハチャック50、プローブカード56(ヘッドステージ52)、及びチャックシールゴム64により囲まれた内部空間S(図5参照)が形成される。そして、図示しない吸引手段(減圧手段)により、前述の内部空間Sが減圧されることにより、ウエハチャック50がプローブカード56に向かって引き寄せられる。これにより、プローブカード56の各プローブ66がウエハWの各チップの電極パッドに接触して検査を開始可能な状態となる。なお、チャックシールゴム64は環状のシール部材の一例である。
 ウエハチャック50の内部には、チップを高温状態(例えば、最高で150℃)、又は低温状態(例えば最低で-40℃)で電気的特性検査が行えるように、加熱/冷却源としての加熱冷却機構(不図示)が設けられている。加熱冷却機構としては、公知の適宜の加熱器/冷却器が採用できるものであり、例えば、面ヒータの加熱層と冷却流体の通路を設けた冷却層との二重層構造にしたものや、熱伝導体内に加熱ヒータを巻き付けた冷却管を埋設した一層構造の加熱/冷却装置など、様々のものが考えられる。また、電気加熱ではなく、熱流体を循環させるものでもよく、またペルチエ素子を使用してもよい。
 アライメント装置70は、ウエハチャック50を真空吸着等により着脱自在に支持するアライメント装置70を備えている。アライメント装置70は、上述したようにウエハチャック50に保持されたウエハWとプローブカード56との相対的な位置合わせを行うものであり、ウエハチャック50を着脱自在に支持固定してウエハチャック50をZ軸方向に移動すると共にZ軸を回転中心としてθ方向に回転するZ軸移動・回転部72と、Z軸移動・回転部72を支持してX軸方向に移動するX軸移動台74と、X軸移動台74を支持してY軸方向に移動するY軸移動台76とを備えている。
 Z軸移動・回転部72、X軸移動台74、及びY軸移動台76は、それぞれ、少なくともモータを含む機械的な駆動機構によりウエハチャック50を所定の方向に移動自在もしくは回転自在に構成される。機械的な駆動機構としては、例えば、サーボモータとボールネジとを組み合わせたボールネジ駆動機構により構成される。また、ボールネジ駆動機構に限らず、リニアモータ駆動機構やベルト駆動機構等で構成されていてもよい。なお、Z軸移動・回転部72は機械的昇降手段の一例である。
 アライメント装置70は、それぞれの段毎に設けられており(図3参照)、図示しないアライメント装置駆動機構によって、各段に配置された複数の測定部16間で相互に移動可能に構成されている。すなわち、アライメント装置70は、同一の段に配置される複数(本例では4つ)の測定部16間で共有されており、同一の段に配置された複数の測定部16間を相互に移動する。各測定部16に移動したアライメント装置70は図示しない位置決め固定装置により所定位置に位置決めされた状態で固定され、上述したアライメント装置駆動機構によりウエハチャック50をX、Y、Z、θ方向に移動させて、ウエハチャック50に保持されたウエハWとプローブカード56との相対的な位置合わせを行う。なお、図示は省略したが、アライメント装置70は、ウエハチャック50に保持したウエハWのチップの電極とプローブ66との相対的な位置関係を検出するために、針位置検出カメラと、ウエハアライメントカメラとを備えている。
 なお、本実施の形態では、アライメント装置70(Z軸移動・回転部72)は、その上面に吸引口(ウエハチャック固定部の一例)を有し、図示しない吸引手段によりウエハチャック50を吸着して固定するが、ウエハチャック50の固定方式としては、ウエハチャック50を着脱自在に固定できるものであれば周知の様々な方式を採用でき、クランプ等による機械的な方式であってもかまわない。また、アライメント装置70には、ウエハチャック50との相対的な位置関係が常に一定となるように位置決め部材(不図示)が設けられていることが好ましい。
 本実施の形態では、上述した構成に加え、さらに、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、ウエハチャック50のX、Y方向(水平方向)の位置ずれや傾きを防止するための構成として、ウエハチャック50をZ方向(鉛直方向)に案内するチャックガイド機構90を備えている。チャックガイド機構90はガイド手段の一例である。
 チャックガイド機構90は、ウエハチャック50の周縁部、具体的にはウエハチャック50と一体化されたチャックガイド保持部94の外周部の周方向にわたって複数並列に設けられている。チャックガイド機構90は、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる動作が行われる前に、後述するチャックガイド98をヘッドステージ52に真空吸着等により吸着して固定することで、ウエハチャック50の水平方向の移動を規制しつつZ方向に平行に移動させるガイド機構として機能する。そのため、ウエハチャック50(チャックガイド保持部94)にはウエハチャック50の移動方向(Z方向)に直交する水平方向(X、Y方向)において互いに異なる位置に少なくとも3つのチャックガイド機構90が設けられる。なお、本例では、図示を省略したが、チャックガイド保持部94には3つのチャックガイド機構90が周方向に沿って等間隔(120度毎)に設けられる(図4では1つのみ図示)。
 ここで、チャックガイド機構90の構成について詳しく説明する。
 チャックガイド機構90は、チャックガイド保持部94に形成された軸受部96と、軸受部96によりX、Y方向(水平方向)の移動が規制された状態でZ方向(鉛直方向)に移動可能に構成されたチャックガイド(ガイド軸部)98とを有する。軸受部96は、例えばボールベアリング等で構成される。
 チャックガイド98は軸受部96に回転自在に軸支され、その上部には、ヘッドステージ52に対してチャックガイド98を着脱自在に固定する固定部100を備えている。固定部100の上面にはリング状のシール部材(以下、「チャックガイドシールゴム」という。)102が設けられるとともに、チャックガイドシールゴム102の内側には、図示しない吸引手段に接続される吸引口(不図示)と、固定部100とヘッドステージ52との間の距離(間隙)を一定に保つためのクリアランス保持部材104とが設けられている。クリアランス保持部材104は、固定部100とヘッドステージ52との間に一定の間隙を保つことができるものであれば、その形状は特に限定されるものではない。
 かかる構成により、Z軸移動・回転部72によりウエハチャック50を所定の高さまで移動させ、チャックガイドシールゴム102をヘッドステージ52に接触させた後、図示しない吸引手段によりチャックガイドシールゴム102とヘッドステージ52と固定部100との間に形成された内部空間Qを減圧すると、チャックガイド98の固定部100がヘッドステージ52に吸着して固定された状態となる。このとき、上述したクリアランス保持部材104によりヘッドステージ52との間に一定の間隙が確保されるので、チャックガイド98の固定部100による吸着し過ぎが抑制され、ヘッドステージ52に固定されたチャックガイド98の傾きを防止することができる。そして、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、ヘッドステージ52に固定されたチャックガイド98によりウエハチャック50はX、Y方向の移動が規制されつつZ方向に移動することが可能となる。これにより、ウエハチャック50の構成部品による偏荷重による傾きや位置ずれを防止することができ、平行度を保った状態でウエハチャック50の受け渡し動作を安定して行うことが可能となり、ウエハW上の電極パッドとプローブ66との間で良好なコンタクトを実現することが可能となる。
 また、本実施の形態では、ヘッドステージ52とウエハチャック50との相対距離を検出する高さ検出センサ92がヘッドステージ52に設けられている。この高さ検出センサ92は、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、ウエハチャック50の高さ位置や傾きを監視するために設けられたものである。そのため、ヘッドステージ52には、ウエハチャック50の移動方向であるZ方向(鉛直方向)に直交するX、Y方向(水平方向)において互いに異なる位置に少なくとも3つの高さ検出センサ92が設けられている(図4では1つのみ図示)。この構成によれば、各高さ検出センサ92の検出結果からウエハチャック50の高さ位置や傾きを監視することが可能となる。したがって、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、プローブ66の潰し量(オーバードライブ量)の確認やウエハチャック50の傾き、測定時の状態変化等を監視することができ、正しく測定が行われているか否かを正確に判定することが可能となる。
 次に、図4~図7を参照して、テストヘッド保持部80の構成について詳しく説明する。なお、図6はテストヘッド保持部80の平面的な配置関係を示した平面図であり、図7はテストヘッド保持部80を側面側から見た側面図である。図6では、説明の便宜上、テストヘッド54を破線で図示している。
 図4~図7に示すように、テストヘッド保持部80は、テストヘッド54の上面側に設けられる受け部54aとフレーム部材34との間に介在して設けられる。テストヘッド保持部80の下端はフレーム部材34上に据え付けられており、その上端はテストヘッド54の受け部54aを支持する。すなわち、テストヘッド54は、テストヘッド保持部80によってフレーム部材34に支持されており、ヘッドステージ52にはテストヘッド54の荷重が直接的にかからず、プローブカード56とウエハWとの平行度を保つことができ、ウエハレベル検査を高精度に行うことが可能となっている。テストヘッド保持部80の具体的な構成は、以下のとおりである。
 テストヘッド保持部80は、テストヘッド54をZ方向に昇降させる昇降機構82と、昇降機構82によりテストヘッド54を昇降させるときにテストヘッド54のZ方向の移動を案内するガイド部84と、テストヘッド54とプローブカード56との距離(クリアランス)及び平行度を一定に保つ緩衝部86とを備えている。
 昇降機構82は、例えばエアーシリンダや電動機構により構成され、テストヘッド54をZ方向に昇降させる。この昇降機構82の下端はフレーム部材34に固定され、その上端はテストヘッド54の受け部54aを支持する。昇降機構82の数や配置はテストヘッド54をZ方向に昇降させることができれば特に限定されるものではない。なお、本実施の形態では、一例として、テストヘッド54の受け部54aに対応して2つの昇降機構82A、82Bが設けられる。これにより、テストヘッド54の荷重が各昇降機構82A、82Bに分散されるので、テストヘッド54を安定かつ確実にZ方向に昇降させることができる。なお、テストヘッド54の受け部54aは、テストヘッド54の上端部から側方(X方向)に突出したフランジ面(突出面)を有しており、このフランジ面が昇降機構82の上端によって支持される。
 ガイド部84は、テストヘッド54の側面(X方向に垂直な面)に向かい合う規制面85を有し、この規制面85にテストヘッド54の受け部54aの側面が当接することによりテストヘッド54の水平方向(X、Y方向)の動きを規制した状態でテストヘッド54のZ方向の移動を案内する。ガイド部84の数や配置はテストヘッド54の位置や向きを規制できるものであれば特に限定されるものではない。本実施の形態では、一例として、4つのガイド部84A~84Dがテストヘッド54の両側の受け部54aの側面を挟むように設けられている。具体的には、ガイド部84A、84Bは昇降機構82Aを挟んだ両側に配置され、ガイド部84C、84Dは昇降機構82Bを挟んだ両側に配置される。換言すれば、ガイド部84Aとガイド部84C、及びガイド部84Bとガイド部84Dは、それぞれ、テストヘッド54を挟んで互いに対向する位置に配置される。これにより、テストヘッド54を上下方向に昇降させる際に各ガイド部84(84A~84D)によりテストヘッド54の水平方向の動き(位置や向き)が規制された状態でテストヘッド54の上下動が案内される。
 緩衝部86は、フレーム部材34に固定されるバネ受け部87とテストヘッド54の受け部54aとの間に介在されるバネ部材88を有する。このバネ部材88は、テストヘッド54を上方(すなわち、ポゴフレーム58とは反対側)に付勢する付勢力を有し、テストヘッド54とポゴフレーム58との間の距離及び平行度を適正に保つ機能を有する。本実施の形態では、一例として、複数の緩衝部86A~86Dを有しており、各緩衝部86A~86Dはテストヘッド54の受け部54aの端部をそれぞれ支持している。すなわち、各緩衝部86A~86Dは、テストヘッド54の重心から等距離離れた位置に配置されている。これにより、テストヘッド54の荷重が均等に分散され、テストヘッド54の水平姿勢を適正に保つことが可能となっている。
 以上の構成により、テストヘッド54は、ガイド部84(84A~84D)によりX、Y方向(水平方向)の動きを規制した状態で案内されながら、昇降機構82(82A、82B)によりZ方向(鉛直方向)に移動する。これにより、テストヘッド54は退避位置と装着位置との間で安定して移動可能となる。
 また、昇降機構82(82A、82B)によってテストヘッド54が装着位置まで移動したとき、緩衝部86(86A~86D)のバネ部材88によりテストヘッド54とポゴフレーム58との間の距離及び平行度を適正に保つことができる。したがって、初期設定時にテストヘッド54とポゴフレーム58との平行調整を一度行えば、テストヘッド54を昇降させても平行度は常に保たれるため、テストヘッド54の再度の平行調整が不要となり、調整に必要な時間と労力を削減することができる。
 次に、本実施の形態のプローバ10を用いた検査方法について説明する。
 本実施の形態のプローバ10を用いた検査方法では、事前の準備として、テストヘッド54、ポゴフレーム58、及びプローブカード56を一体化する一体化工程が実施される。具体的には、以下のようにして一体化工程が行われる。
 一体化工程では、まず最初に、ヘッドステージ52にポゴフレーム58を真空吸着等により吸着固定した後、プローブカード56をポゴフレーム58に真空吸着等により吸着固定する。続いて、ガイド部84によりテストヘッド54のX、Y方向(水平方向)の動きを規制しながら、昇降機構82によりテストヘッド54を装着位置まで移動させる。このとき、テストヘッド54は、ポゴフレーム58とは接しておらず、緩衝部86(86A~86D)のバネ部材88によりテストヘッド54とポゴフレーム58との間の距離(クリアランス)及び平行度が適正に保たれている。そして、テストヘッド54をポゴフレーム58に真空吸着等により吸着固定する。これにより、テストヘッド54、ポゴフレーム58、及びプローブカード56が一体化された状態となる。
 このようにして一体化工程が行われた後、プローバ10では以下の動作が実施される。
 まず、ローダ部14では、ウエハカセット20内のウエハWが搬送ユニット22の搬送アーム24によって取り出され、搬送アーム24の上面に保持された状態で測定ユニット12の各測定部16に搬送される。
 一方、測定ユニット12では、各段ごとに設けられたアライメント装置70は所定の測定部16に移動し、アライメント装置70の上面にウエハチャック50を位置決めして吸着により固定する。
 続いて、アライメント装置70は、ウエハチャック50を所定の受渡し位置に移動させる。そして、ローダ部14の搬送ユニット22からウエハWが受け渡されると、そのウエハWはウエハチャック50の上面に保持される。
 次に、アライメント装置70は、ウエハWを保持したウエハチャック50を所定のアライメント位置に移動させ、図示しない針位置検出カメラ及びウエハアライメントカメラにより、ウエハチャック50に保持されたウエハWのチップの電極とプローブ66との相対的な位置関係を検出し、検出した位置関係に基づいて、ウエハチャック50をX、Y、Z、θ方向に移動させて、ウエハチャック50に保持されたウエハWとプローブカード56との相対的な位置合わせを行う。
 この位置合わせが行われた後、アライメント装置70は、ウエハチャック50を所定の測定位置(プローブカード56に対向する位置)に移動させ、アライメント装置70のZ軸移動・回転部72によりチャックガイドシールゴム102がヘッドステージ52に接触する高さとなるまでウエハチャック50を上昇させる。このとき、上昇後のウエハチャック50の高さ(ウエハチャック50の上面高さ)としては、プローブ66の先端位置(コンタクト位置)よりも高い位置である態様が好ましい。この態様の場合、プローブカード56の各プローブ66はオーバードライブの状態でウエハWの各チップの電極パッドに接触するので、プローブ66の先端が電極パッドの表面にくい込み、その電極パッドの表面にそれぞれ針跡を形成する。電極パッドに形成された酸化膜をプローブ66の接触によって除去することができると共に、ウエハチャック50をアライメント装置70からヘッドステージ52(プローブカード56側)に受け渡す際に発生する外乱(振動)に対して、プローブ66のX、Y方向(水平方向)の位置ずれ(横ずれ)を防ぐことができる。なお、電極パッドに形成された酸化膜による影響が小さい場合には、上昇後のウエハチャック50の高さは、プローブ66の先端位置(コンタクト位置)よりも低い位置(クリアランス高さ)としてもよい。
 次に、チャックガイド機構90のチャックガイド98をヘッドステージ52に固定する。具体的には、上述のようにしてチャックガイドシールゴム102がヘッドステージ52に接触した後、図示しない吸引手段(減圧手段)により、チャックガイドシールゴム102、ヘッドステージ52、及び固定部100の内部に形成された内部空間Qを減圧することによって、固定部100をヘッドステージ52に吸着固定する。
 次に、Z軸移動・回転部72によるウエハチャック50の吸着固定を解除した後、ヘッドステージ52に設けられた複数の高さ検出センサ92によりウエハチャック50の高さ位置を検出しながら、ヘッドステージ52(プローブカード56)とウエハチャック50とチャックシールゴム64とで囲まれた内部空間Sを、図示しない吸引手段で減圧する。このとき、上述したようにチャックガイド機構90のチャックガイド98(固定部100)はヘッドステージ52に吸着固定されているので、ウエハチャック50はチャックガイド98によりX、Y方向(水平方向)の移動が規制されつつZ方向(鉛直方向)への移動が案内される。これにより、ウエハチャック50は傾きや位置ずれが生じることなくプローブカード56に向かって引き寄せられ、プローブカード56とウエハチャック50は密着状態となり、プローブカード56の各プローブ66は均一な接触圧でウエハWの各チップの電極パッドに接触する。
 また、本実施の形態では、各高さ検出センサ92の検出結果に基づいてウエハチャック50の高さ位置や傾きを求め、これらの値が適正な範囲であるか否かを判定する処理を行われるようになっている。なお、この判定処理は上述した制御装置によって行われる。これにより、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、プローブ66の潰し量(オーバードライブ量)の確認やウエハチャック50の傾き、測定時の状態変化等の監視や、正しく測定が行われているか否かを正確に判定することが可能となる。
 以上のようにして、ウエハチャック50をアライメント装置70(Z軸移動・回転部72)からヘッドステージ52(プローブカード56側)に受け渡されると、図5に示すように、テストヘッド54、ポゴフレーム58、プローブカード56、及びウエハチャック50が一体化された状態となり、プローブカード56の各プローブ66は均一な接触圧でウエハWの各チップの電極パッドに接触した状態となる。これにより、ウエハレベル検査を開始可能な状態となる。その後、テストヘッド54から各プローブ66を介してウエハWの各チップに電源及びテスト信号が供給され、各チップから出力される信号を検出して電気的な動作検査が行われる。
 なお、ウエハチャック50がアライメント装置70(Z軸移動・回転部72)からヘッドステージ52(プローブカード56側)に受け渡された後、アライメント装置70は他の測定部16に移動し、その測定部16において同様の手順でコンタクト動作が行われ、ウエハレベル検査が順次行われる。
 以上説明したように、本実施の形態によれば、テストヘッド54の受け部54aとフレーム部材34との間にテストヘッド保持部80を介在させることにより、テストヘッド54がフレーム部材34に支持される構成となっている。そのため、テストヘッド54の荷重がヘッドステージ52に直接的にかかることがなく、ポゴフレーム58の変形が防止されるので、ウエハWとプローブカード56との平行度を容易に確保することが可能となり、ウエハレベル検査の精度を向上させることができる。
 特に本実施の形態によれば、テストヘッド保持部80は、昇降機構82及びガイド部84を備えたので、テストヘッド54は、ガイド部84により水平方向の動き(位置や向き)を規制した状態で案内されながら退避位置と装着位置との間で安定して移動可能となる。これによって、テストヘッド54のメンテナンス作業性が向上する。
 さらに、このテストヘッド保持部80は、バネ部材88を有する緩衝部86を備えたので、テストヘッド54とポゴフレーム58との間の距離及び平行度を適正に保つことができる。これにより、テストヘッド54を装着位置と退避位置との間で安定して移動させることが可能となる。
 また、本実施の形態では、ヘッドステージ52にポゴフレーム58が吸着により固定され、さらに、テストヘッド54、ポゴフレーム58、及びプローブカード56が吸着により固定される。これにより、テストヘッド54とポゴフレーム58との間、及びプローブカード56とポゴフレーム58との間をそれぞれ電気的に導通させる際に必要な接触圧を確保することができ、これらの間を接続する端子のばらつきによる影響を抑えることが可能となる。
 また、本実施の形態では、ヘッドステージ52を基準にして、テストヘッド54、ポゴフレーム58、プローブカード56、及びウエハチャック50が一体化された状態でウエハレベル検査が行われる。したがって、ウエハWとプローブカード56との平行度を保ったまま、ウエハWの各チップの電極パッドにプローブ66を接触させるコンタクト動作を容易なものとすることができる。すなわち、ウエハWの各チップの電極パッドにプローブ66を適正な接触圧で接触させることができ、ウエハレベル検査の精度を向上させることが可能となる。
 また、本実施の形態では、チャックガイド機構90のチャックガイド98(固定部100)をヘッドステージ52に真空吸着等により吸着固定した状態でウエハチャック50をチャックガイド98に沿ってZ方向に案内するチャックガイド機構90を備える。これにより、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、ウエハチャック50の位置ずれや傾きを防止することができる。したがって、ウエハチャック50の構成部品による偏荷重による傾きや位置ずれを防止することができ、平行度を保った状態でウエハチャック50の受け渡し動作を安定して行うことが可能となり、ウエハW上の電極パッドとプローブ66との間で良好なコンタクトを実現することが可能となる。
 また、本実施の形態では、ヘッドステージ52にはウエハチャック50との相対距離を検出する高さ検出センサ92が少なくとも3つ設けられているので、各高さ検出センサ92の検出結果に基づいてウエハチャック50の高さ位置や傾きを監視することが可能となる。これにより、内部空間Sの減圧によりウエハチャック50をプローブカード56に向かって引き寄せる際に、プローブ66の潰し量(オーバードライブ量)の確認やウエハチャック50の傾き、測定時の状態変化等の監視や、正しく測定が行われているか否かを正確に判定することが可能となる。
 なお、上述した実施の形態では、チャックガイド機構90の固定方式として、真空吸着等の吸着方式を示したが、ヘッドステージ52にチャックガイド98を着脱自在に固定できるものであれば周知の様々な方式を採用でき、クランプ等による機械的な方式であってもかまわない。
 また、上述した実施の形態では、チャックガイド機構90をウエハチャック50側に設けてヘッドステージ52側にチャックガイド98(固定部100)を吸着させる構成を示したが、チャックガイド機構90をヘッドステージ52側に設けてウエハチャック50側にチャックガイド98(固定部100)を吸着させる構成としてもよい。
 また、上述した実施の形態では、高さ検出センサ92をヘッドステージ52に設けた構成を示したが、ウエハチャック50とヘッドステージ52との相対距離を検出できるものであればよく、例えば、高さ検出センサ92をウエハチャック50に設けるようにしてもよい。
 以上、本発明のプローバについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
 10…プローバ、12…測定ユニット、14…ローダ部、16…測定部、18…ロードポート、20…ウエハカセット、21…操作パネル、22…搬送ユニット、24…搬送アーム、30…筐体、32A、32B、32C…分離筐体、50…ウエハチャック、52…ヘッドステージ、54…テストヘッド、56…プローブカード、58…ポゴフレーム、64…チャックシールゴム、66…プローブ、70…アライメント装置、72…Z軸移動・回転部、74…X軸移動台、76…Y軸移動台、80…テストヘッド保持部、82…昇降機構、84…ガイド部、85…規制面、86…緩衝部、88…バネ部材、90…チャックガイド機構、92…高さ検出センサ、94…チャックガイド保持部、96…軸受部、98…チャックガイド、100…固定部、102…チャックガイドシールゴム、104…クリアランス保持部材

Claims (12)

  1.  多段状に積層された複数の測定部を有するプローバであって、
     前記測定部は、
     テストヘッドと、
     プローブを有するプローブカードと、
     前記テストヘッドと前記プローブカードとの間に介在するポゴフレームと、
     前記ポゴフレームが取り付けられるポゴフレーム取付部を有するヘッドステージと、
     前記ヘッドステージを支持するフレーム部材と、
     前記フレーム部材に支持され、前記テストヘッドを保持するテストヘッド保持部と、
     ウエハを保持するウエハチャックと、
     前記テストヘッドと前記ポゴフレームとを吸着により固定する第1吸着固定部と、
     前記プローブカードと前記ポゴフレームとを吸着により固定する第2吸着固定部と、
     前記ウエハチャックを着脱自在に固定するウエハチャック固定部を有し、前記ウエハチャック固定部に固定された前記ウエハチャックを昇降させる機械的昇降手段と、
     前記ウエハチャックと前記プローブカードとの間に密閉空間を形成する環状のシール部材と、
     前記ウエハチャックが前記プローブカードに向かって引き寄せられるように前記密閉空間を減圧する減圧手段と、
     を備え、
     前記ヘッドステージを基準にして、前記テストヘッド、ポゴフレーム、プローブカード、及びウエハチャックを一体化した状態で前記ウエハの電気的検査を行う、
    プローバ。
  2.  前記テストヘッド保持部は、
     前記テストヘッドを昇降移動させる昇降機構と、
     前記テストヘッドが昇降移動する際に前記テストヘッドを案内する規制面を有するガイド部と、
     前記テストヘッドを前記ポゴフレームとは反対側に付勢するバネ部材を有する緩衝部と、
     を備える請求項1に記載のプローバ。
  3.  前記緩衝部は、前記テストヘッドの重心から等距離離れた位置に複数設けられる、
     請求項2に記載のプローバ。
  4.  前記ポゴフレーム取付部は、前記ポゴフレームを吸着して固定する吸着面を有する、
     請求項1~3のいずれか1項に記載のプローバ。
  5.  ウエハを保持するウエハチャックと、
     前記ウエハチャックと対向するように設けられ、前記ウエハの各電極パッドと対応する位置にプローブを有するプローブカードと、
     テストヘッド保持部により前記プローブカードの前記ウエハチャックとは反対側に保持されたテストヘッドと、
     前記プローブカードと前記テストヘッドとの間に介在され、前記テストヘッドと前記プローブカードとを電気的に接続するポゴフレームと、
     前記ポゴフレームが取り付けられるポゴフレーム取付部を有するヘッドステージと、
     前記ウエハチャックに設けられ、前記ウエハチャックに保持された前記ウエハを取り囲むように形成された環状のシール部材と、
     前記ウエハチャックを着脱自在に固定するウエハチャック固定部を有し、前記ウエハチャック固定部に固定された前記ウエハチャックを昇降させる機械的昇降手段と、
     前記プローブカード、前記ウエハチャック、及び前記シール部材により形成された内部空間を減圧する減圧手段と、
     前記減圧手段による前記内部空間の減圧により前記ウエハチャックを前記プローブカードに向かって移動させるときに前記ウエハチャックの移動方向に直交する方向の移動を規制しつつ前記ウエハチャックの移動を案内するガイド手段と、
     を備えるプローバ。
  6.  前記ガイド手段は、前記ウエハチャックに設けられた軸受部と、前記ヘッドステージに着脱自在に固定され前記軸受部に軸支されるガイド軸部とを有する、
     請求項5に記載のプローバ。
  7.  前記ガイド手段は、前記ウエハチャックの移動方向に直交する方向における互いに異なる位置に少なくとも3つ設けられる、
     請求項5又は6に記載のプローバ。
  8.  前記減圧手段による前記内部空間の減圧が行われる際に前記ウエハチャックと前記ウエハチャックとの相対距離を検出する高さ検出センサを備える、
     請求項5~7のいずれか1項に記載のプローバ。
  9.  前記高さ検出センサは、前記ウエハチャックの移動方向に直交する方向における互いに異なる位置に少なくとも3つ設けられる、
     請求項8に記載のプローバ。
  10.  前記テストヘッド保持部は、
     前記テストヘッドを昇降移動させる昇降機構と、
     前記テストヘッドが昇降移動する際に前記テストヘッドを案内する規制面を有するガイド部と、
     前記テストヘッドを前記ポゴフレームとは反対側に付勢するバネ部材を有する緩衝部と、
     を有する請求項5~9のいずれか1項に記載のプローバ。
  11.  前記緩衝部は、前記テストヘッドの重心から等距離離れた位置に複数設けられる、
     請求項10に記載のプローバ。
  12.  前記ポゴフレーム取付部は、前記ポゴフレームを吸着して固定する吸着面を有する、
     請求項5~11のいずれか1項に記載のプローバ。
PCT/JP2016/060521 2015-03-30 2016-03-30 プローバ WO2016159156A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/717,819 US10338101B2 (en) 2015-03-30 2017-09-27 Prober

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-069272 2015-03-30
JP2015069272 2015-03-30
JP2016-066460 2016-03-29
JP2016066460A JP6041175B2 (ja) 2015-03-30 2016-03-29 プローバ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/717,819 Continuation US10338101B2 (en) 2015-03-30 2017-09-27 Prober

Publications (1)

Publication Number Publication Date
WO2016159156A1 true WO2016159156A1 (ja) 2016-10-06

Family

ID=57004667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060521 WO2016159156A1 (ja) 2015-03-30 2016-03-30 プローバ

Country Status (1)

Country Link
WO (1) WO2016159156A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041838A (ja) * 2016-09-07 2018-03-15 株式会社東京精密 プローバ
CN108181568A (zh) * 2018-01-11 2018-06-19 上海华虹宏力半导体制造有限公司 晶圆测试保护垫及测试方法
WO2018163675A1 (ja) * 2017-03-07 2018-09-13 東京エレクトロン株式会社 検査装置およびコンタクト方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034482A (ja) * 2008-07-31 2010-02-12 Tokyo Electron Ltd 検査装置
JP2011089891A (ja) * 2009-10-22 2011-05-06 Micronics Japan Co Ltd 電気的接続装置及びこれを用いる試験装置
JP2014075420A (ja) * 2012-10-03 2014-04-24 Tokyo Electron Ltd ウエハ取り付け方法及びウエハ検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034482A (ja) * 2008-07-31 2010-02-12 Tokyo Electron Ltd 検査装置
JP2011089891A (ja) * 2009-10-22 2011-05-06 Micronics Japan Co Ltd 電気的接続装置及びこれを用いる試験装置
JP2014075420A (ja) * 2012-10-03 2014-04-24 Tokyo Electron Ltd ウエハ取り付け方法及びウエハ検査装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041838A (ja) * 2016-09-07 2018-03-15 株式会社東京精密 プローバ
WO2018163675A1 (ja) * 2017-03-07 2018-09-13 東京エレクトロン株式会社 検査装置およびコンタクト方法
JP2018148066A (ja) * 2017-03-07 2018-09-20 東京エレクトロン株式会社 検査装置およびコンタクト方法
KR20190117788A (ko) * 2017-03-07 2019-10-16 도쿄엘렉트론가부시키가이샤 검사 장치 및 콘택트 방법
KR102282694B1 (ko) 2017-03-07 2021-07-27 도쿄엘렉트론가부시키가이샤 검사 장치 및 콘택트 방법
US11099236B2 (en) 2017-03-07 2021-08-24 Tokyo Electron Limited Inspection device and contact method
CN108181568A (zh) * 2018-01-11 2018-06-19 上海华虹宏力半导体制造有限公司 晶圆测试保护垫及测试方法
CN108181568B (zh) * 2018-01-11 2021-04-06 上海华虹宏力半导体制造有限公司 晶圆测试保护垫及测试方法

Similar Documents

Publication Publication Date Title
JP7245984B2 (ja) プローバ
JP5664938B2 (ja) プローバ及びプローブ検査方法
JP5904428B1 (ja) プロービング装置及びプローブコンタクト方法
JP2017183423A (ja) プローバ及びプローブコンタクト方法
WO2016024346A1 (ja) プローバ及びプローブ検査方法
JP5747428B2 (ja) 位置決め固定装置
JP2017183422A (ja) プローバ
WO2016159156A1 (ja) プローバ
JP2024014956A (ja) プローバ及びプローブ検査方法
JP6620990B2 (ja) プローバ及びプローブコンタクト方法
JP6801166B2 (ja) プローバ及びプローブ検査方法
JP7474407B2 (ja) プローバ及びプローブ検査方法
JP6854419B2 (ja) プローバ
JP7352812B2 (ja) プローバ及びプローブ検査方法
JP7277845B2 (ja) プローバ
JP2023083568A (ja) プローバ及びプローブ検査方法
JP2019106447A (ja) プローバ及びプローブ検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773037

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773037

Country of ref document: EP

Kind code of ref document: A1