WO2016158543A1 - 導電部付きシートおよびその利用 - Google Patents

導電部付きシートおよびその利用 Download PDF

Info

Publication number
WO2016158543A1
WO2016158543A1 PCT/JP2016/058893 JP2016058893W WO2016158543A1 WO 2016158543 A1 WO2016158543 A1 WO 2016158543A1 JP 2016058893 W JP2016058893 W JP 2016058893W WO 2016158543 A1 WO2016158543 A1 WO 2016158543A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
resin layer
sheet
solar cell
resin
Prior art date
Application number
PCT/JP2016/058893
Other languages
English (en)
French (fr)
Inventor
哲也 京極
有史 上田
正孝 上田
久成 尾之内
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016158543A1 publication Critical patent/WO2016158543A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sheet with a conductive part.
  • it is related with the sheet
  • Solar cell modules that convert light energy into electric power are widely used as clean power generators.
  • the solar cell module includes a solar cell and a wiring connected to the cell, and the power generated in the cell through the wiring is configured to be supplied to the outside.
  • Patent documents 1 to 7 are cited as documents disclosing this type of prior art.
  • Patent Documents 1 to 5 relate to a solar cell module in which an n-type electrode is partially disposed on the front surface side of the solar battery cell and a p-type electrode is disposed on the back surface side.
  • the present invention relates to a solar cell module that employs a back contact method in which both electrodes are arranged on the back side.
  • Patent Document 5 discloses a sealing sheet in which a metal wiring is provided on the surface of a transparent sheet made of an ethylene vinyl acetate copolymer.
  • the structures disclosed in Patent Documents 1 and 2 require that the wiring of solar cells must be individually joined using solder etc. And takes time. When heating is performed at the time of bonding, such as solder bonding, the characteristics of the cell may be reduced by heating, or the cell may be warped or cracked. Solder joints also have a problem of flux contamination.
  • the solar cell modules disclosed in Patent Documents 3 and 4 also have the same problems as Patent Documents 1 and 2 because the wires serving as the conductive paths are soldered. Moreover, the said wire is arrange
  • the solar cell module described in Patent Document 5 is provided with a pair of sealing sheets having metal wiring on the surface, and sandwiching a plurality of solar cells between the pair of sealing sheets, and the metal wiring and the solar cell.
  • a plurality of solar battery cells are electrically connected without requiring solder bonding.
  • the resin constituting the encapsulating sheet can damage the contact state between the metal wiring and the solar battery cells, for example, during the pressing and heating at the time of constructing the solar battery module, and can cause a decrease in current collection efficiency.
  • the present invention has been created in view of the above circumstances, and an object thereof is to provide a sheet with a conductive part that can improve the productivity and durability of a solar cell module. Another related object is to provide a solar cell module including a sheet with a conductive part.
  • a sheet with a conductive part comprising a resin layer A, a conductive part, and a resin layer B disposed between the resin layer A and the conductive part.
  • the conductive part constitutes a part of the surface of the sheet with the conductive part.
  • the storage elastic modulus (frequency: 1 Hz, strain: 0.1%, 150 ° C.) of the resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4.
  • the productivity (typically wiring workability) of the solar cell module is improved.
  • positioned between the resin layer A and the electrically conductive part becomes a conductive part and a solar cell. Maintains contact with the cell. As a result, a decrease in current collection efficiency is suppressed, and a solar cell module with excellent durability is realized.
  • the resin layer A is typically a sealing resin layer.
  • the surface of the resin layer B has adhesiveness, and The conductive portion is partially formed on the surface of the resin layer B.
  • an electroconductive part is fixed to the resin layer B favorably.
  • one surface of the sheet with the conductive part is composed of the conductive part and the exposed surface of the resin layer B, and the exposed surface of the resin layer B can be bonded to the solar battery cell when the solar battery module is constructed. . Therefore, the resin layer B can exhibit a favorable fixing function with respect to the solar battery cell. This is advantageous in that the contact state between the solar battery cell and the conductive portion is maintained.
  • the resin layer B is preferably an acrylic resin layer.
  • the conductive portion is composed of at least one conductive path unit.
  • one said conductive path unit has a photovoltaic cell contact part located in a photovoltaic cell opposing area
  • the said photovoltaic cell contact part has a shape extended toward the said connection part, and it is preferable that the said connection part connects with the end of this photovoltaic cell contact part. . Thereby, a wiring structure excellent in current collection efficiency is preferably realized.
  • the solar cell contact portion is composed of a plurality of conductive wires arranged at intervals.
  • the said connection part has a strip
  • the conductive portion is formed of a metal material.
  • productivity can be improved.
  • the conductive portion substantially made of metal has an advantage of lower resistance.
  • a solar cell module including any of the sheets with a conductive portion disclosed herein.
  • seat with an electroconductive part can become the thing excellent in productivity and durability.
  • the solar cell module provided by the present invention includes at least one solar cell, a resin layer A that covers at least one surface of the at least one solar cell, and a conductive portion that contacts the at least one solar cell. And a resin layer B disposed between the resin layer A and the conductive portion.
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the sheet with a conductive portion in FIG. It is a perspective view which shows typically the one aspect
  • FIG. 1 is a top view schematically showing a main part of a sheet with a conductive part according to an embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II of the sheet with a conductive part in FIG.
  • FIG. 3 is a perspective view schematically showing one embodiment of a sheet with a conductive part.
  • the sheet 1 with a conductive portion includes a sealing resin layer 10 as a resin layer A, a resin layer B20, and a conductive portion 30.
  • seat 1 with an electroconductive part is also called a current collection sealing sheet from a functional surface.
  • the sealing resin layer 10 as the resin layer A seals solar cells (not shown) in the solar cell module.
  • a resin layer B ⁇ b> 20 is disposed on the first surface 10 ⁇ / b> A of the sealing resin layer 10.
  • the second surface (the surface where the resin layer B is not formed) 10B of the sealing resin layer 10 is not provided with the resin layer B or the conductive portion, and this surface constitutes the outer surface of the sheet 1 with the conductive portion. .
  • the resin layer B20 is laminated on the sealing resin layer 10 and is disposed between the sealing resin layer 10 and the conductive portion 30. Specifically, the conductive portion 30 is partially disposed on the surface (first surface) 20A of the resin layer B20, and the resin layer B20 is disposed between the sealing resin layer 10 and the conductive portion at the position where the conductive portion 30 is disposed. Between 30 and 30. In this embodiment, the resin layer B20 is overlaid so as to cover almost the entire surface of the first surface 10A of the sealing resin layer 10.
  • the conductive portion 30 is partially disposed on the first surface 1A of the sheet 1 with the conductive portion, and constitutes a part of the first surface 1A of the sheet 1 with the conductive portion. Further, a portion where the conductive portion 30 is not formed on the first surface 20A of the resin layer B20 (a portion where the conductive portion is not formed) is exposed as the outer surface of the sheet 1 with the conductive portion, and the first portion of the sheet 1 with the conductive portion is exposed. A part of one surface 1A is formed.
  • the first surface 1 ⁇ / b> A of the sheet 1 with a conductive part is composed of a resin layer B ⁇ b> 20 (part where the conductive part is not formed) and a conductive part 30.
  • the conductive part 30 is composed of a plurality of conductive path units 40a and 40b.
  • the conductive path units 40a and 40b are arranged so as to correspond to the solar cells when the solar cell module is constructed.
  • the conductive path units 40a and 40b exist separately from each other, and each has a continuous structure.
  • seat 1 with an electroconductive part are the area
  • the conductive path unit 40a includes, on the first surface 1A of the sheet 1 with a conductive portion, a solar cell contact portion 50a located in the solar cell facing region 5a, a connection portion 60a located in the solar cell non-facing region 7, Have The solar cell contact portion 50a is a portion that contacts (typically abuts) the solar cell when sealing the solar cell. In the sheet 1 with the conductive portion, the solar cell contact portion 50a This means the part where contact is planned.
  • the solar cell contact portion 50a has a shape extending toward the connection portion 60a, and the solar cell contact portion 50a is connected to the connection portion 60a at one end thereof (specifically, Fixed). Moreover, the photovoltaic cell contact part 50a is comprised in the 1st surface 1A of the sheet
  • the plurality of conductive lines 55a are arranged at intervals. In this embodiment, the conductive lines 55a extend in a straight line and are arranged in parallel at a predetermined interval. In FIG. 1, only three conductive lines 55a are shown for simplicity.
  • connection portion 60a of the conductive path unit 40a has a strip shape extending in a direction intersecting (specifically, substantially orthogonal) with the longitudinal direction of the conductive line 55a.
  • One end of the conductive wire 55a is connected (specifically fixed) to the connection portion 60a. That is, one end of each of the plurality of conductive lines 55a is connected to the connection portion 60a to be a fixed end.
  • no connection portion is arranged on the other end side of each of the plurality of conductive lines 55a, and the other end of the conductive line 55a is a free end in the conductive path unit 40a.
  • Such a conductive path unit 40a has a comb shape when viewed from above. In other words, the conductive path unit 40a has a comb shape in which a plurality of conductive lines 55a extend in a tooth shape from the connection portion 60a serving as a base.
  • connection part 60a is typically disposed in a non-contact state with the solar battery cell when the solar battery cell is sealed with the sheet 1 with the conductive part. Therefore, it is preferable that the connection part 60a has a strip
  • the conductive path unit 40b is arranged next to the conductive path unit 40a with a distance from the conductive path unit 40a. Specifically, the conductive path units 40a and 40b are arranged at intervals (in the arrangement direction of the solar cells) so as to correspond to the solar cell facing regions 5a and 5b, respectively. Regarding other matters, the conductive path unit 40b has the same shape, structure, arrangement relationship and the like as the conductive path unit 40a. Briefly speaking, the conductive path unit 40b has a solar cell contact portion 50b and a connection portion 60b, like the conductive path unit 40a, and the solar cell contact portion 50b and the connection portion 60b are solar cells.
  • each of the contact portion 50a and the connection portion 60a has the same shape, structure, arrangement relationship, and the like. Therefore, the conductive wire 55b included in the solar cell contact portion 50b also has the same shape, structure, arrangement relationship, and the like as the conductive wire 55a.
  • a conductive portion pattern including the conductive path units 40a and 40b is formed on the first surface 1A of the sheet 1 with the conductive portion.
  • a pattern in which a plurality of conductive path units 40 a and 40 b having a comb shape are arranged in a plurality of rows at a predetermined interval is a sheet 1 with a conductive part. Is formed on the first surface 1A.
  • the productivity typically wiring workability of the solar battery module including the solar battery cells is improved.
  • the productivity typically wiring workability
  • the productivity can be dramatically improved. it can.
  • maintains the contact state of a photovoltaic cell and an electroconductive part favorably. Therefore, it is possible to efficiently manufacture a solar cell module that is prevented from lowering current collection efficiency and has excellent durability.
  • seat with an electroconductive part disclosed here can also be used only for the one surface side of a photovoltaic cell. In that case, what is necessary is just to electrically connect the other surface side of a photovoltaic cell by conventionally well-known methods, such as solder joint wiring.
  • the conductive part and the conductive path unit are not limited to the shape, structure, and the like of the above-described embodiment.
  • various shapes, structures, and the like that can realize electrical connection of solar cells using the conductive portion can be employed. Therefore, when the conductive part has a conductive path unit, and further has a solar cell contact part and a connection part, they take various shapes and structures within a range in which the effects of the technology disclosed herein can be realized. obtain.
  • the conductive lines constituting the conductive path unit are a plurality of conductive lines that extend linearly and are arranged in parallel to each other.
  • the conductive lines may extend in a curved line. Alternatively, they may be non-parallel to each other (for example, they may cross each other or are not parallel to the extent that they do not contact each other).
  • the number of conductive lines in one conductive path unit is preferably 2 or more (typically 2 to 20, more preferably 4 to 12, more preferably 6 to 10), or 1 It may be a book.
  • the shape of the conductive portion is not particularly limited, and may be, for example, curved or annular.
  • the conductive portion may have a pattern such as a lattice shape or a shape in which a plurality of rings are connected. Accordingly, the shape and the like of the conductive path unit that can constitute the conductive portion are not particularly limited.
  • the conductive path unit When arranging the sheet with the conductive part on the back surface side of the solar battery cell, the conductive path unit may not have a thin wire shape such as a conductive wire, and the conductive path unit has a rectangular shape covering the entire back surface of the solar battery cell. It may be a thing.
  • connection portion can take various arrangement states and shapes as long as the connection function with other wiring members (other conductive path units, extraction electrodes, etc.) is exhibited.
  • connection portion may be the solar cell non-facing region portion in a shape in which the solar cell contact portion (typically conductive wire) extends to the solar cell non-facing region.
  • the number of conductive path units basically corresponds to the number of solar cells sealed with a sheet with a conductive part. Therefore, for example, a pair of sheets with a conductive portion seals one solar cell, and a plurality of this configuration (that is, a configuration in which a solar cell is sandwiched between a pair of sheets with a conductive portion) is connected to construct a solar cell module. In this case, for example, as shown in FIG. 13 described later, one conductive path unit 40 is provided in one sheet 1 with a conductive portion.
  • a plurality of solar cells are sealed with a pair of sheets with a conductive part and batch wiring of the plurality of solar battery cells is performed, for example, as shown in FIG.
  • the number of the conductive path units 40a and 40b provided in is corresponding to the number of solar cells and is 5 or more (for example, 30 or more, typically 50 or more), and may actually be about 50 to 60.
  • a plurality of solar cells for example, 2 to 20 solar cells arranged in a row at intervals
  • a plurality of (about 2 to 10) configurations are combined. It is also possible to construct a solar cell module.
  • FIG. 4 is a top view schematically showing the main part of the sheet with the first conductive part according to the embodiment
  • FIG. 5 is a top view schematically showing the main part of the sheet with the second conductive part according to the embodiment.
  • seat with an electroconductive part is demonstrated with reference to FIG.
  • seat 201 with a 2nd electroconductive part shown in FIG. 5 is utilized as the other of a pair of sheet
  • seat 101 with an electroconductive part is a sheet
  • the sheet 101 with the first conductive portion As the sheet 101 with the first conductive portion, the above-described sheet 1 with the conductive portion is used. Therefore, the sheet 101 with the first conductive portion has the same shape and structure as the above-described sheet 1 with the conductive portion.
  • the first sealing resin layer 110, the first resin layer B120, and the first conductive portion 130 as the first resin layer A included in the sheet 101 with the first conductive portion are also used as the resin layer A in the above-described sheet 1 with the conductive portion.
  • the sealing resin layer 10, the resin layer B20, and the conductive portion 30 have the same shape, structure, arrangement relationship, and the like.
  • the conductive path units 40a and 40b in the sheet with conductive portion 1 are the first conductive path units 140a and 140b in the sheet 101 with the first conductive portion, and the solar cell contact portions 50a and 50b, the conductive lines 55a and 55b, and the connection portions.
  • 60a and 60b are denoted by reference numerals 150a, 150b, 155a, 155b and 160a, 160b, respectively.
  • the solar cell facing regions 5a and 5b and the solar cell non-facing region 7 are indicated by solar cell facing regions 105a and 105b and a solar cell non-facing region 107, respectively.
  • the first surface of the sheet 101 with the first conductive portion is denoted by reference numeral 101A
  • the first surface of the first resin layer B120 is denoted by reference numeral 120A.
  • the sheet 201 with a 2nd electroconductive part is a sheet
  • the sheet 201 with the second conductive portion As the sheet 201 with the second conductive portion, the above-described sheet 1 with the conductive portion is used. Therefore, the sheet 201 with the second conductive portion has the same shape and structure as the above-described sheet 1 with the conductive portion.
  • the second sealing resin layer 210, the second resin layer B220, and the second conductive portion 230 as the second resin layer A included in the sheet 201 with the second conductive portion are also used as the resin layer A in the above-described sheet 1 with the conductive portion.
  • the sealing resin layer 10, the resin layer B20, and the conductive portion 30 have the same shape, structure, arrangement relationship, and the like.
  • the conductive path units 40a and 40b in the sheet 1 with the conductive part are the second conductive path units 240a and 240b in the sheet 201 with the second conductive part, and the solar cell contact parts 50a and 50b, the conductive lines 55a and 55b, and the connection parts.
  • 60a and 60b are denoted by reference numerals 250a, 250b, 255a, 255b and 260a, 260b, respectively.
  • the solar cell facing regions 5a and 5b and the solar cell non-facing region 7 are indicated by solar cell facing regions 205a and 205b and a solar cell non-facing region 207, respectively.
  • the first surface of the sheet 201 with the second conductive portion is denoted by reference numeral 201A
  • the first surface of the second resin layer B220 is denoted by reference numeral 220A.
  • the sheet 101 with the first conductive part and the sheet 201 with the second conductive part are both the sheet 1 with the conductive part, but the technology disclosed here is not limited thereto.
  • the sheet with the first conductive part and the sheet with the second conductive part may have the same shape, structure, or the like, or may have different shapes, structures, or the like.
  • the shape and structure of the first conductive part constituting the sheet with the first conductive part may be the same as or different from the shape and structure of the second conductive part constituting the sheet with the second conductive part. Also good.
  • the shape or the like of the first conductive pattern based on the first conductive portion on the surface of the sheet with the first conductive portion is the shape or the like of the second conductive pattern based on the second conductive portion on the surface of the sheet with the second conductive portion. It may be the same or different.
  • the area of the solar cell contact portion in the second conductive path unit on the surface of the sheet with the second conductive portion is the sun in the first conductive path unit on the corresponding sheet surface with the first conductive portion. It may be larger than the area of the battery cell contact portion, and the area of the conductive line in the second conductive path unit may be larger than the area of the conductive line in the corresponding first conductive path unit.
  • the 2nd conductive path unit of a sheet with the 2nd conductive part may be arranged in the almost whole region of the photovoltaic cell opposing field in the sheet surface with the 2nd conductive part.
  • seat with a 2nd electroconductive part each protects at least one surface (typically both surfaces) to a peelable support body (release liner) before incorporating in a solar cell module.
  • FIG. 6 is an exploded cross-sectional view schematically showing the structure of the main part of the solar cell module according to one embodiment.
  • a solar cell module constructed using a pair of sheets with conductive portions will be described with reference to FIG.
  • the solar cell module 300 includes a plurality of solar cells including solar cells 305a and 305b. Moreover, the solar cell module 300 is provided with the sheet 101 with a 1st electroconductive part which covers the surface of solar cell 305a, 305b, and the sheet 201 with the 2nd electroconductive part which covers the back surface of solar cell 305a, 305b. Furthermore, the solar cell module 300 includes a surface covering member 320 disposed on the outer side (upper side) of the sheet 101 with the first conductive portion and a rear surface disposed on the outer side (lower side) of the sheet 201 with the second conductive portion. A covering member 330. The surface covering member 320 and the back surface covering member 330 constitute the front (front) surface and the back (back) surface of the solar cell module 300, respectively.
  • Solar cell group 302 composed of a plurality of solar cells including solar cells 305a and 305b is arranged in a straight line at a predetermined interval.
  • An n-type electrode (surface electrode) is partially formed on the surface of the solar battery cells 305a and 305b, and a p-type electrode (back electrode) is formed on the back surface.
  • the solar cell modules 300 are arranged in a row so as to be parallel to the arrangement direction of the solar cell groups 302 in addition to the solar cell groups 302 arranged in a row as described above.
  • the solar battery cell group is provided.
  • the first conductive path units 140a and 140b constituting the first conductive portion 130 are arranged at a predetermined interval in the arrangement direction of the solar battery cell group 302. It is arranged separately.
  • the first conductive path units 140a and 140b are arranged so as to face and come into contact with the surfaces (more specifically, surface electrodes) of two adjacent solar cells 305a and 305b, respectively.
  • the first conductive path unit 140a is not in contact with solar cells other than the solar cells 305a
  • the first conductive path unit 140b is not in contact with solar cells other than the solar cells 305b.
  • the bus bar typically, solder-coated copper wire
  • the first conductive path unit 140a has a solar cell contact portion 150a that faces the solar cell 305a.
  • the first conductive path unit 140a extends from the solar cell contact portion 150a along the arrangement direction of the solar cells 305a and 305b and protrudes into a region located between the solar cells 305a and 305b.
  • the connection portion 160a is provided in the part.
  • the first conductive path unit 140a has a solar cell contact portion 150a and a portion that protrudes into a region located between the solar cells 305a and 305b, and the protruding portion has a connection portion 160a. .
  • the protruding portion is provided in the first conductive path unit 140 a, and the connecting portion 160 a is disposed in the protruding portion, so that the first conductive path unit 140 a of the first conductive portion 130 is the second conductive portion 230.
  • the second conductive path unit 240b is easily electrically connected.
  • the first conductive path unit 140a has a plurality of conductive lines 155a as described above and shown in FIG. These conductive lines 155a extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 302, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, each of the conductive lines 155a has a linearly extending shape, and is disposed so as to be spaced from and parallel to each other.
  • the conductive wire 155a is arranged in the region 105a facing the solar battery cell 305a on the first surface 101A of the sheet 101 with the first conductive part, and is linear to the region located between the solar battery cells 305a and 305b. And is connected to the connection portion 160a.
  • the connecting portion 160a of the first conductive path unit 140a is disposed in the solar cell non-facing region 107 between the plurality of solar cells 305a and 305b on the surface 101A of the sheet 101 with the first conductive portion. Moreover, the connection part 160a is arrange
  • the first conductive path unit positioned at the end in the arrangement direction among the plurality of first conductive path units arranged at intervals.
  • the connecting portion of can be in contact with the extraction electrode (not shown) in the solar cell non-facing region outside the solar cell facing region.
  • the first conductive path unit 140b is basically configured in the same manner as the first conductive path unit 140a, and the solar cell contact portion 150b, the conductive line 155b, and the connection portion 160b are also the solar cell contact portion 150a and the conductive line, respectively. Since the configuration is basically the same as 155a and the connection portion 160a, overlapping description is omitted.
  • the second conductive path units 240a and 240b constituting the second conductive portion 230 are arranged at a predetermined interval in the arrangement direction of the solar cell group 302. It is arranged separately.
  • the second conductive path units 240a and 240b are arranged so as to face and come in contact with the back surfaces (more specifically, back electrode) of the two adjacent solar cells 305a and 305b.
  • the second conductive path unit 240a is not in contact with solar cells other than the solar cells 305a
  • the second conductive path unit 240b is not in contact with solar cells other than the solar cells 305b.
  • a bus bar typically, a solder-coated copper wire
  • the second conductive path unit 240b includes a solar battery cell contact portion 250b that faces the solar battery 305b.
  • the second conductive path unit 240b extends from the solar cell contact portion 250b along the arrangement direction of the solar cells 305a and 305b and protrudes into a region located between the solar cells 305a and 305b.
  • the connection part 260b is provided in the part.
  • the second conductive path unit 240b has a solar cell contact portion 250b and a portion that protrudes into a region located between the solar cells 305a and 305b, and the protruding portion has a connection portion 260b. .
  • the protruding portion is provided in the second conductive path unit 240 b, and the connection portion 260 b is disposed in the protruding portion, so that the second conductive path unit 240 b of the second conductive portion 230 is connected to the first conductive portion 130.
  • the first conductive path unit 140a is easily electrically connected.
  • the second conductive path unit 240b has a plurality of conductive lines 255b as described above and shown in FIG. These conductive lines 255b extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 302, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, the conductive lines 255b each have a linearly extending shape, and are arranged so as to be spaced apart from and parallel to each other.
  • the conductive wire 255b is arranged in a region 205b facing the solar battery cell 305b on the first surface 201A of the sheet 201 with the second conductive part, and is linear to the region located between the solar battery cells 305a and 305b. And is connected to the connection portion 260b.
  • connection portion 260b of the second conductive path unit 240b is disposed in the solar cell non-facing region 207 between the plurality of solar cells 305a and 305b on the surface 201A of the sheet 201 with the second conductive portion. Moreover, the connection part 260b is arrange
  • connection portion 260b contacts the connection portion 160a of the first conductive path unit 140a that is in contact with the solar battery cell 305a between the solar battery cells 305a and 305b.
  • the second conductive path unit located at the end in the arrangement direction among the plurality of second conductive path units arranged at intervals.
  • the connecting portion of can be in contact with the extraction electrode (not shown) in the solar cell non-facing region outside the solar cell facing region.
  • the second conductive path unit 240a is basically configured in the same manner as the second conductive path unit 240b, and the solar cell contact portion 250a, the conductive line 255a, and the connection portion 260a are also the solar cell contact portion 250b and the conductive line, respectively. Since the configuration is basically the same as 255b and the connection portion 260b, a duplicate description is omitted.
  • the first conductive portion 130 and the second conductive portion 230 have one surface of two adjacent solar cells (for example, the surface of the solar cell 305a) and the other.
  • the conductive path between the back surfaces (for example, the back surface of the solar battery cell 305b) is formed.
  • the first conductive portion 130 and the second conductive portion 230 can electrically connect the front and back surfaces of the solar cells alternately.
  • the electric power generated in the solar cell group 302 passes through terminal bars (not shown) as extraction electrodes arranged at both ends of the solar cell module 300 in the arrangement direction of the solar cell group 302, and then the solar cell module. 300 is supplied to the outside. Since the technique disclosed here can be implemented basically using a conventionally known configuration except that a sheet with a conductive portion is used, there is no need to replace the entire equipment, and there is a great practical advantage. .
  • the solar cell unit is configured such that the conductive part forming surfaces face each other in the pair of conductive sheet sheets 100 including the first conductive part-attached sheet 101 and the second conductive part-attached sheet 201. 305a and 305b are sandwiched.
  • the first conductive part 130 of the first conductive part sheet 101 and the second conductive part 230 of the second conductive part sheet 201 are:
  • the solar cell contact portion 150a of the first conductive path unit 140a and the solar cell contact portion 250a of the second conductive path unit 240a abut on the solar cell 305a.
  • the solar cell contact portion 150b of the first conductive path unit 140b and the solar cell contact portion 250b of the second conductive path unit 240b are in contact with the solar cell 305b.
  • the connection portion 160a of the first conductive path unit 140a and the connection portion 260b of the second conductive path unit 240b abut.
  • the connection portion 160b of the first conductive path unit 140b abuts on the connection portion of the second conductive path unit arranged on the right side of the second conductive path unit 240b in FIG. 6 to connect the second conductive path unit 240a.
  • the portion 260a abuts on a connection portion of the first conductive path unit arranged on the left side of the first conductive path unit 140a in FIG.
  • connection portions of the first conductive path units and the second conductive path units corresponding to the solar cells arranged at both ends in the arrangement direction are outside the solar cell group 302. It contacts with an unillustrated extraction electrode (terminal bar) arranged on the side. Thereby, electrical connection of the solar cell module 300 is realized.
  • the general construction of the solar cell module 300 can be implemented based on the common general technical knowledge in the technical field, and does not characterize the present invention.
  • the above configuration is excellent in the wiring workability of the solar battery cell as compared with the conventional wiring method (typically, a method performed using solder or the like). Moreover, since it is excellent also in terms of strength, for example, problems such as disconnection due to stress or the like of the sheet with the conductive portion can be prevented. Furthermore, since the electrical connection does not require soldering, it is possible to avoid problems (typically, cell warpage or cracking, characteristic deterioration, flux contamination) due to soldering. The fact that solder bonding is not required also brings advantages to the solar cell structure. Specifically, it is preferable to provide an aluminum electrode (back surface electrode) on the entire surface from the viewpoint of a BSF (Back Surface Field) effect on the back surface of the solar battery cell.
  • BSF Back Surface Field
  • a silver electrode having excellent solder jointability is usually disposed at a joint location with metal wiring. That is, as the back electrode of the solar battery cell, an aluminum electrode and a silver electrode are usually used in combination. According to the technology disclosed herein, the electrical connection on the back surface of the solar battery cell is realized only by contacting the back electrode (aluminum electrode) on the back surface with the second conductive path unit of the sheet with the second conductive portion. Therefore, solder joining on the back surface of the solar battery cell is not necessary. Therefore, by adopting the technology disclosed herein, a solar cell module having a structure in which the back electrode of the solar cell does not substantially contain a silver electrode can be realized. This configuration has significant advantages in cost reduction and productivity improvement.
  • the resin layer A disclosed herein (including the first resin layer A and the second resin layer A. The same shall apply hereinafter) is typically a sheet-like member formed from a sealing resin. That is, the resin layer A can be rephrased as a sealing resin layer (including a first sealing resin layer and a second sealing resin layer; the same applies hereinafter).
  • the resin layer A may have insulating properties and translucency. For example, it may be a resin layer that can exhibit fluidity by heat or pressure. In this specification, “having insulation” means a specific resistance at 25 ° C. of 1 ⁇ 10 6 ⁇ ⁇ cm or more (preferably 1 ⁇ 10 8 ⁇ ⁇ cm or more, typically 1 ⁇ 10 10 ⁇ ).
  • the electric resistance (for example, specific resistance) is a value at 25 ° C. unless otherwise specified.
  • “having translucency” means that the total light transmittance defined by JIS K 7375: 2008 is 50% or more (preferably 80% or more, typically 95% or more). That means.
  • the 2nd resin layer B (sealing resin layer) does not need to have translucency.
  • the resin (typically encapsulating resin) that forms the resin layer A is preferably a thermosetting resin, and in the sheet with a conductive part, before curing (before performing a thermosetting process such as a crosslinking process). It can be a resin. Resin layer A containing such a resin can seal a photovoltaic cell favorably in a photovoltaic module, for example by laminating and heating to a photovoltaic cell.
  • an ethylene-vinyl acetate copolymer (EVA) is preferably used from the viewpoints of translucency, workability, weather resistance, and the like.
  • the above resins include ethylene-vinyl ester copolymers represented by EVA, ethylene-unsaturated carboxylic acid copolymers such as ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid esters, etc.
  • An ethylene-unsaturated carboxylic acid ester copolymer, an unsaturated carboxylic acid ester-based polymer such as polymethyl methacrylate, and the like may be used.
  • fluoropolymers such as vinylidene fluoride resin and polyethylene tetrafluoroethylene; manufactured using low density polyethylene (LDPE), linear low density polyethylene (LLDPE, typically Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc.
  • PE polyethylene
  • PP polypropylene
  • Ziegler catalyst Phillips catalyst, metallocene catalyst, etc.
  • Ziegler catalyst vanadium catalyst
  • metallocene catalyst etc.
  • Polyolefins such as ethylene / ⁇ -olefin copolymers and their modified products (modified polyolefins); Polybutadienes; Polyvinyl acetals such as polyvinyl formal, polyvinyl butyral (PVB resin), and modified PVB; polyethylene Terephthalate (PET); polyimide; amorphous polycarbonate; siloxane sol - gel; polyurethane; polystyrene; polyether sulfone; polyarylate, epoxy resins, may be like; silicone resin; ionomers. These resins may be used alone or in combination of two or more.
  • the resin may contain various additives known in the art such as an ultraviolet absorber and a light stabilizer.
  • an adhesion improver to the surface of the resin layer A before forming the resin layer B.
  • an adhesion improver By forming the resin layer B on the surface of the resin layer A provided with the adhesion improver, the adhesion between the resin layer A and the resin layer B is improved.
  • a silane coupling agent is preferably used as an adhesion improver.
  • the adhesiveness of the resin layer B is improved by heat-treating after the adhesion improver is applied to the surface of the resin layer A.
  • the usage form of an adhesive improvement agent is not limited to application
  • Various surface treatments such as corona treatment and atmospheric pressure plasma treatment can be applied to the surface of the resin layer A alone or in combination for the purpose of improving adhesion and the like.
  • the thickness of the resin layer A is preferably about 100 to 2000 ⁇ m (for example, 200 to 1000 ⁇ m, typically 400 to 800 ⁇ m) from the viewpoint of sealing performance of solar cells.
  • the resin layer B disclosed here can function as a layer that favorably maintains the contact state between the solar battery cell and the conductive portion.
  • the resin layer B is a layer disposed between the resin layer A and the conductive portion, and is preferably disposed on the entire surface of the resin layer A.
  • the resin layer B may be partially disposed on the surface of the resin layer A.
  • Such a resin layer B is typically a layer that exhibits the properties of an elastic body or a viscoelastic body in a temperature range near room temperature.
  • the viscoelastic body referred to here is a material having both properties of viscosity and elasticity, that is, a material having a property that satisfies the phase of the complex elastic modulus exceeding 0 and less than ⁇ / 2 (typically at 25 ° C. A material having the above properties).
  • the technique disclosed here is characterized by the fact that the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer B is 5,000 Pa or more.
  • the resin layer B that satisfies tan ⁇ described later and exhibits a storage elastic modulus G ′ that is not less than a predetermined value at a high temperature, the solar cell and the conductive part are in good contact under high temperature conditions, and various conditions are met. Under such conditions (for example, under a wide range of temperatures), the contact state can be stably maintained.
  • the 150 ° C. storage elastic modulus G ′ is more preferably 10,000 Pa or more, further preferably 20,000 Pa or more, particularly preferably 25,000 Pa or more (for example, 50,000 Pa or more, typically 80,000 Pa or more). is there.
  • the 150 ° C. storage elastic modulus G ′ is usually 1,000,000 Pa or less, preferably 500,000 Pa or less, more preferably 200,000 Pa or less (for example, 150,000 Pa or less, typically 100,000 or less). 000 Pa or less).
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer B is preferably in the range of 5,000 Pa to 1,000,000 Pa in the temperature range of 80 ° C. to 150 ° C. .
  • the change in the storage elastic modulus G ′ in the high temperature range being within a predetermined range may mean that the physical properties of the resin layer B are not easily affected by the temperature change.
  • the storage elastic modulus G ′ of the resin layer B in the temperature range of 80 ° C. to 150 ° C. is more preferably 5,000 Pa to 500,000 Pa, still more preferably 5,000 Pa to 200,000 Pa (eg, 10,000 Pa to 100,000 Pa). ).
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer B is preferably in the range of 5,000 Pa to 10,000,000 Pa in the temperature range of 30 ° C. to 150 ° C. .
  • the change in the storage elastic modulus G ′ in the wide temperature range as described above being within a predetermined range may mean that the physical properties of the resin layer B are not easily affected by the temperature change.
  • the storage elastic modulus G ′ of the resin layer B in the temperature range of 30 ° C. to 150 ° C. is more preferably 5,000 Pa to 1,000,000 Pa, still more preferably 5,000 Pa to 500,000 Pa (for example, 10,000 Pa to 200 Pa). , 000 Pa).
  • tan ⁇ is a value (G ′′ / G ′) obtained from loss elastic modulus G ′′ / storage elastic modulus G ′.
  • the maximum value of tan ⁇ of the resin layer B in the temperature range of 80 ° C. to 150 ° C. is more preferably less than 0.3.
  • the minimum value of tan ⁇ in the above temperature range can be usually 0.01 or more (for example, 0.1 or more).
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) and tan ⁇ (G ′′ / G ′) of the resin layer B is 1 Hz and strain 0.1% using a commercially available rheometer. Measurements may be made within the specified temperature range (temperature range including 80 ° C to 150 ° C, further including temperature range including 30 ° C to 150 ° C). For example, a temperature range of 30 ° C. to 160 ° C. and a temperature increase rate of about 0.5 ° C. to 20 ° C./min (for example, 10 ° C./min) can be used.
  • Resin layer B may or may not have adhesiveness (typically adhesiveness).
  • the resin layer B may be an adhesive layer or a non-adhesive layer.
  • the “adhesive layer” refers to a SUS304 stainless steel plate as an adherend in accordance with JIS Z 0237: 2009, and a 2 kg roller is reciprocated once in a measurement environment at 23 ° C. to be bonded to the adherend. 30 minutes later, the peel strength when peeled in the direction of 180 ° at a pulling speed of 300 mm / min is 0.1 N / 20 mm or more.
  • non-adhesive layer refers to a layer that does not correspond to the adhesive layer, and typically refers to a layer having a peel strength of less than 0.1 N / 20 mm.
  • the layer that does not stick to the stainless steel plate when the 2 kg roller is reciprocated once in a measurement environment of 23 ° C. and pressed against the SUS304 stainless steel plate is a non-adhesive layer here. This is a typical example included in the concept.
  • the technique disclosed here is preferably implemented in a form including a resin layer B corresponding to an adhesive layer (also referred to as an adhesive layer) formed from an adhesive.
  • the resin layer B forming composition may be a pressure-sensitive adhesive composition.
  • the “pressure-sensitive adhesive” refers to a material that exhibits a soft solid (viscoelastic body) state in a temperature range near room temperature and has a property of easily adhering to an adherend by pressure.
  • the adhesive here is generally complex elastic modulus E * (1 Hz) as defined in “C. A. Dahlquist,“ Adhesion: Fundamental and Practice ”, McLaren & Sons, (1966) P. 143”. ⁇ 10 ⁇ 7 > dyne / cm ⁇ 2 > material (typically a material having the above properties at 25 [deg.] C.).
  • the surface of the resin layer B has adhesiveness.
  • the conductive portion is satisfactorily fixed to the resin layer B.
  • the exposed surface of the said resin layer B is the sun in the case of solar cell module construction. Adheres well to battery cells.
  • the resin layer B having adhesiveness on both surfaces, the resin layer A and the conductive part can be fixed satisfactorily.
  • the surface of the resin layer B is weakly adhesive or substantially non-adhesive, it can be fixed to the resin layer A or the conductive portion using a known adhesive, pressure-sensitive adhesive, or the like.
  • the surface of the resin layer B exhibits a 180 ° peel strength (adhesive power to solar cells) of 3N / 10 mm or more with respect to the crystalline Si solar cells.
  • the adhesive strength to the solar battery cell is more preferably 5 N / 10 mm or more, further preferably 8 N / 10 mm or more (for example, 10 N / 10 mm or more, typically 12 N). / 10 mm or more).
  • the surface of the resin layer B exhibits a 180 degree peel strength of 15 N / 10 mm or more with respect to the crystalline Si solar battery cell.
  • the upper limit of the adhesive force to the solar battery cell on the surface of the resin layer B is not particularly limited, but the above adhesive force is usually 50 N / 10 mm or less (for example, 30 N / 10 mm or less, typically from the viewpoint of workability such as reattachment). Is about 20 N / 10 mm or less).
  • the adherend used for the measurement of the adhesion to solar cells is a crystalline Si solar cell.
  • a crystalline Si solar cell manufactured by Q CELLS or a single crystalline Si cell manufactured by GINTECH are preferably used.
  • a commercially available tensile tester in an atmosphere of 23 ° C. and 50% RH, a tensile speed of 30 mm / min, a peeling angle of 180 degrees. It can carry out on the conditions of.
  • the above-mentioned adhesion to solar battery cells can be measured by the method described in Examples described later.
  • Resin layer B typically has translucency.
  • the total light transmittance of the resin layer B is preferably 70% or more, more preferably 85% or more. In a particularly preferred embodiment, the total light transmittance of the resin layer B is 90% or more from the viewpoint of the power generation efficiency of the solar battery cell.
  • the total light transmittance of the resin layer B can be measured using a commercially available haze meter. Specifically, it can measure by the method as described in the below-mentioned Example.
  • the resin layer B disclosed herein is preferably made of a resin material having a melt mass flow rate (MFR) at 150 ° C. of 9 g / 10 min or less.
  • MFR melt mass flow rate
  • the resin layer B exhibiting the above MFR can exhibit good shape retention.
  • the MFR is more preferably 3 g / 10 min or less, further preferably 1 g / 10 min or less, and particularly preferably 0.5 g / 10 min or less (for example, 0.2 g / 10 min or less).
  • the MFR is measured by the method described in Examples described later.
  • the linear expansion coefficient of the resin layer B is preferably less than 15% in the temperature range of ⁇ 40 ° C. to 85 ° C. According to the resin layer B exhibiting the above-described linear expansion coefficient, a sheet with a conductive part superior in durability is realized.
  • the linear expansion coefficient is more preferably 12% or less (for example, 10% or less).
  • the linear expansion coefficient of the resin layer B either one (preferably both) values of the tensile mode and the compression mode measured by the method described in Examples described later are adopted.
  • the resin layer B disclosed here is a resin layer formed from a resin material.
  • a resin layer containing a crosslinked resin as a base polymer (for example, a resin layer subjected to crosslinking treatment) is preferable.
  • the resin layer B has physical properties different from those of the resin layer A, and can typically be formed from a resin material different from the resin material of the resin layer A.
  • Resins that form the resin layer B include acrylic resins, EVA resins, polyolefin resins, rubbers, silicone resins, polyester resins, urethane resins, polyether resins, polyamide resins, fluorine resins, and the like. It may be one or more selected from various resins.
  • the acrylic resin is an acrylic polymer as a base polymer (the main component of the polymer component, that is, the component having the largest blending ratio in the polymer component, typically a component that exceeds 50% by weight).
  • the resin material The same meaning applies to EVA and other resins.
  • the resin layer B is an EVA resin layer formed from an EVA resin.
  • the proportion of EVA in the resin layer B is not particularly limited, but is typically 50% by weight or more, preferably 70% by weight or more, more preferably 80%. % By weight or more.
  • the EVA resin layer is subjected to a thermosetting treatment at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) from the viewpoint of obtaining desired physical properties. Is preferred.
  • the heat curing treatment time is not particularly limited and is usually 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes).
  • the EVA resin layer is preferably subjected to a press treatment before or during the thermosetting treatment.
  • the resin layer B may be a layer containing an acrylic polymer as a base polymer, that is, an acrylic resin layer.
  • the resin layer B having such a composition is preferable because it can be easily adjusted to desired physical properties such as shape retention and flexibility.
  • the proportion of the acrylic polymer in the resin layer B is not particularly limited, but is typically 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more.
  • “(meth) acrylate” means acrylate and methacrylate comprehensively.
  • (meth) acryloyl” means acryloyl and methacryloyl
  • “(meth) acryl” generically means acrylic and methacryl.
  • the “monomer component constituting the acrylic polymer” refers to a monomer unit constituting the acrylic polymer in the resin material forming the resin layer B.
  • the monomer component is included in the composition for forming the resin layer B used for forming the resin layer B in the form of an unpolymerized product (that is, the form of a raw material monomer in which the polymerizable functional group is unreacted). It may be included in the form of a polymer, or may be included in both forms.
  • the resin layer B forming composition disclosed herein contains the component (A) as a monomer component constituting the acrylic polymer.
  • the component (A) is an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms at the ester end.
  • an alkyl (meth) acrylate having an alkyl group having a carbon number of X or more and Y or less at the ester end may be referred to as “C XY alkyl (meth) acrylate”.
  • the structure of the C 1-20 alkyl group in the C 1-20 alkyl (meth) acrylate is not particularly limited, and either a linear or branched alkyl group can be used.
  • the component (A) one kind of such C 1-20 alkyl (meth) acrylate can be used alone or in combination of two or more kinds.
  • C 1-20 alkyl (meth) acrylates having a linear alkyl group at the ester end include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, n- Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, n-undecyl (Meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-pentadecyl (meth) acrylate,
  • C 3-20 alkyl (meth) acrylate having a branched alkyl group at the ester terminal isopropyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, isopentyl (meth) acrylate, t- Pentyl (meth) acrylate, neopentyl (meth) acrylate, isohexyl (meth) acrylate, isoheptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) Acrylate, 2-propylheptyl (meth) acrylate, isoundecyl (meth) acrylate, isododecyl (meth) acrylate, isotridecy
  • the component (A) can be preferably implemented in an embodiment containing C 4-9 alkyl (meth) acrylate as the component (A1).
  • the acrylic polymer contains the component (A1) as a monomer unit, the resin layer B having desired physical properties tends to be easily obtained, and the tackiness tends to be easily obtained.
  • the component (A1) may be one or more selected from C 4-9 alkyl (meth) acrylates. From the viewpoint of compatibility with other monomer components (for example, cyclic nitrogen-containing monomers), C 4-9 alkyl acrylate is preferably used as component (A1).
  • Preferable examples of C 4-9 alkyl acrylate include n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate and isononyl acrylate.
  • the proportion of the component (A1) in the component (A) is usually 20% by weight or more (for example, 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight).
  • the proportion of the component (A1) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
  • the embodiment in which the component (A) includes C 10-18 alkyl (meth) acrylate as the component (A2) can be preferably carried out.
  • the component (A2) may be one or more selected from C 10-18 alkyl (meth) acrylates.
  • the component (A2) preferably contains a C 10-18 alkyl (meth) acrylate in which the alkyl group is a branched chain, and more preferably from the viewpoint of compatibility with other monomer components (for example, a cyclic nitrogen-containing monomer). From C10-18 alkyl acrylates in which the alkyl group is branched.
  • C 10-18 alkyl (meth) acrylate examples include isodecyl acrylate, isodecyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, isomistyryl acrylate, isostearyl acrylate and stearyl methacrylate.
  • the proportion of the component (A2) in the component (A) is usually 20% by weight or more (for example, 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight).
  • the proportion of the component (A2) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
  • the weight ratio (A1: A2) of the component (A1) to the component (A2) is not particularly limited.
  • the ratio is suitably 9 to 9: 1, and preferably 2: 8 to 8: 2 (eg, 3: 7 to 7: 3, typically 4: 6 to 6: 4).
  • the component (A) may contain one or more of C 1-3 alkyl (meth) acrylate and C 19-20 alkyl (meth) acrylate as the component (A3).
  • the proportion of the component (A3) in the component (A) is usually 30% by weight or less (for example, 15% by weight or less, typically Specifically, it is preferably about 1 to 5% by weight).
  • the technique disclosed here is an embodiment in which the component (A) does not substantially contain the component (A3) (the proportion of the component (A3) in the component (A) is less than 1% by weight, and further 0.1% by weight. In an embodiment that is less than).
  • the proportion of the component (A) in the monomer component is not particularly limited. From the viewpoint of physical properties of the resin layer B and adhesive properties such as adhesive strength, the proportion of the component (A) is usually suitably 30% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more (for example, 75% by weight or more). In addition, the upper limit of the proportion of the component (A) is suitably about 98% by weight or less from the viewpoint of sufficiently obtaining the effects of the later-described components (B) and (C), and is 95% by weight. It is preferable that the amount be less than or equal to (for example, 90% by weight or less, typically 85% by weight or less).
  • the composition for forming the resin layer B includes a component (B) as a monomer component constituting the acrylic polymer.
  • the component (B) is a heterocycle-containing monomer such as a cyclic nitrogen-containing monomer or a cyclic ether group-containing monomer.
  • the component (B) can advantageously contribute to improving the shape retention and transparency of the resin layer B.
  • the heterocyclic ring-containing monomer can be used alone or in combination of two or more.
  • cyclic nitrogen-containing monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a cyclic nitrogen structure can be used without particular limitation.
  • the cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure.
  • cyclic nitrogen-containing monomers include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; 2-vinyl-2-oxazoline, 2-vinyl-5-methyl-2- Oxazoline group-containing monomers such as oxazoline and 2-isopropenyl-2-oxazoline; vinyl-based compounds having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, and vinylmorpholine And monomers.
  • lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone
  • 2-vinyl-2-oxazoline 2-vinyl-5-methyl-2- Oxazoline group-containing monomers such as oxazoline and 2-isopropenyl-2-ox
  • the (meth) acryl monomer containing nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • Specific examples include N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, N-acryloylaziridine and the like.
  • lactam vinyl monomers are preferable and N-vinylpyrrolidone is more preferable from the viewpoint
  • the monomer having a cyclic ether group a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and a cyclic ether group such as an epoxy group or an oxetane group.
  • a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and a cyclic ether group such as an epoxy group or an oxetane group.
  • the epoxy group-containing monomer include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and the like.
  • Examples of the oxetane group-containing monomer include 3-oxetanylmethyl (meth) acrylate, 3-methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, and 3-butyl-oxetanylmethyl (meth) acrylate. , 3-hexyl-oxetanylmethyl (meth) acrylate, and the like.
  • the proportion of the component (B) in the monomer component is usually suitably 0.5% by weight or more, preferably 1% by weight or more, more preferably 3% by weight. % Or more, more preferably 10% by weight or more (for example, 12% by weight or more).
  • the proportion of the component (B) is suitably about 50% by weight or less, preferably 40% by weight or less (for example, 30% by weight or less), from the viewpoint of sufficiently obtaining the effect of containing the component (A). , Typically 25% by weight or less).
  • the composition for forming the resin layer B includes a component (C) as a monomer component constituting the acrylic polymer.
  • the component (C) is a monomer having at least one of a hydroxy group and a carboxy group.
  • hydroxy group-containing monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxy group can be used without particular limitation.
  • the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( Hydroxyalkyl (meth) acrylates such as (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate; -Hydroxyalkylcycloalkane (meth) acrylates such as -hydroxymethylcyclohexyl) methyl (meth) acrylate.
  • hydroxyethyl (meth) acrylamide examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, and the like. These can be used alone or in combination of two or more. Of these, hydroxyalkyl (meth) acrylate is preferred. For example, a hydroxyalkyl (meth) acrylate having a hydroxyalkyl group having 2 to 6 carbon atoms can be preferably used. Of these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are more preferable.
  • carboxy group-containing monomer a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxy group can be used without particular limitation.
  • carboxy group-containing monomers include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate; itaconic acid, maleic acid, fumaric acid, And ethylenically unsaturated dicarboxylic acids such as citraconic acid; metal salts thereof (for example, alkali metal salts); anhydrides of the above ethylenically unsaturated dicarboxylic acids such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more. Among these, acrylic acid and methacrylic acid are preferable.
  • the technique disclosed herein can be preferably implemented in a mode in which the component (C) includes a hydroxy group-containing monomer. That is, it is preferable that the component (C) includes only a hydroxy group-containing monomer or includes a hydroxy group-containing monomer and a carboxy group-containing monomer. By increasing the proportion of the hydroxy group-containing monomer in the component (C), metal corrosion caused by the carboxy group can be reduced. From this, the technique disclosed here can be preferably implemented in a mode in which the monomer component does not substantially contain a carboxy group-containing monomer. For example, the proportion of the carboxy group-containing monomer in the monomer component can be less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.2% by weight.
  • the proportion of the component (C) in the monomer component is usually suitably 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 0.8% by weight or more.
  • the proportion of the component (C) may be 3% by weight or more, or 5% by weight or more (for example, 8% by weight or more, typically 10% by weight or more).
  • the proportion of the component (C) is suitably about 35% by weight or less, preferably 30% by weight or less, more preferably 25% by weight or less (typically 5% by weight or less, eg 3 % By weight or less).
  • the monomer component constituting the acrylic polymer includes all the components (A), (B), and (C).
  • the proportion of component (A) is 50 to 99% by weight (more preferably 60 to 95% by weight, still more preferably Is preferably 70 to 85% by weight, and the proportion of component (B) is 0.9 to 49.9% by weight (more preferably 4.5 to 39.5% by weight, still more preferably 14.2 to 29.2% by weight), and the proportion of component (C) is 0.1 to 35% by weight (more preferably 0.5 to 30% by weight, still more preferably 0.8 to 25% by weight). It is preferable to do.
  • the constituent monomer component in the technique disclosed herein may contain a monomer other than the components (A), (B) and (C) (hereinafter also referred to as “optional monomer”) as necessary.
  • the optional monomer examples include monomers containing a functional group other than a hydroxy group and a carboxy group. Such a functional group-containing monomer can be used for the purpose of introducing a crosslinking point into the acrylic polymer or increasing the cohesive strength of the acrylic polymer.
  • the functional group-containing monomer examples include amide group-containing monomers such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N-methylol (meth) acrylamide; cyano group-containing monomers such as acrylonitrile and methacrylonitrile;
  • amide group-containing monomers such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N-methylol (meth) acrylamide
  • cyano group-containing monomers such as acrylonitrile and methacrylonitrile
  • sulfonic acid group-containing monomers such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid
  • phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate
  • Keto group-containing monomers such as acrylamide, diacetone (me
  • the optional monomer examples include alicyclic monomers.
  • the alicyclic monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having an alicyclic structure-containing group can be used without particular limitation. it can.
  • the “alicyclic structure-containing group” refers to a portion containing at least one alicyclic structure.
  • the “alicyclic structure” refers to a saturated or unsaturated carbocyclic structure having no aromaticity. In the present specification, the alicyclic structure-containing group is sometimes simply referred to as “alicyclic group”.
  • Preferable examples of the alicyclic group include a hydrocarbon group and a hydrocarbon oxy group containing an alicyclic structure.
  • Examples of preferred alicyclic monomers include alicyclic (meth) acrylates having an alicyclic group and a (meth) acryloyl group.
  • Specific examples of the alicyclic (meth) acrylate include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, and cyclooctyl (meth).
  • Examples include acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. These can be used alone or in combination of two or more.
  • the monomer component in the technique disclosed herein is the above-mentioned optional monomer (A), (B), (C) as an arbitrary monomer for the purpose of adjusting the glass transition temperature (Tg) of the acrylic polymer and improving the cohesive force. It may be copolymerizable with the component and may contain copolymerizable monomers other than those exemplified above.
  • copolymerizable monomers examples include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; aromatic vinyl compounds such as styrene, substituted styrene ( ⁇ -methylstyrene, etc.), vinyltoluene; ) Aromatic ring-containing acrylate (eg phenyl (meth) acrylate), aryloxyalkyl (meth) acrylate (eg phenoxyethyl (meth) acrylate), arylalkyl (meth) acrylate (eg benzyl (meth) acrylate) ( (Meth) acrylates; olefinic monomers such as ethylene, propylene, isoprene, butadiene, and isobutylene; chlorine-containing monomers such as vinyl chloride and vinylidene chloride; for example, methyl vinyl ether, ethyl vinyl ether, and the like Vinyl ether monomers; other, macromonomers, and the like Vinyl
  • the amount of these optional monomers used is not particularly limited and can be determined as appropriate. Usually, the total amount of the arbitrary monomers used is suitably less than 50% by weight of the monomer component, preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the technique disclosed here can be preferably implemented in an embodiment in which the total amount of any monomer used is 10% by weight or less (for example, 5% by weight or less) of the monomer component.
  • the technique disclosed here is an embodiment in which an optional monomer is not substantially used (for example, an embodiment in which the amount of the optional monomer used is 0.3% by weight or less, typically 0.1% by weight or less) of the monomer component. However, it can be preferably implemented.
  • the above-described component (A), component (B), component (C) and optional monomer are typically monofunctional monomers.
  • the monomer component in the technique disclosed herein can contain a polyfunctional monomer as needed for the purpose of adjusting the cohesive force of the resin layer B and the like.
  • the monofunctional monomer in this specification refers to a monomer having one polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and a polyfunctional monomer. As described later, refers to a monomer having at least two polymerizable functional groups.
  • the polyfunctional monomer is a monomer having at least two polymerizable functional groups having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group.
  • polyfunctional monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, penta Erythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, 1,12-dodecanediol di (meth)
  • a polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
  • trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and dipentaerythritol hexa (meth) acrylate can be preferably used.
  • a polyfunctional monomer having two or more acryloyl groups is usually preferable.
  • the amount of the polyfunctional monomer used varies depending on the molecular weight, the number of functional groups, and the like, but is preferably 3% by weight or less of the above monomer component from the viewpoint of balancing cohesion and adhesion in a balanced manner. Is more preferable, and 1% by weight or less (for example, 0.5% by weight or less) is more preferable. Moreover, the lower limit of the usage-amount in the case of using a polyfunctional monomer should just be larger than 0 weight%, and is not specifically limited. Usually, the effect of improving the cohesive force can be appropriately exhibited by setting the amount of the polyfunctional monomer used to 0.001% by weight or more (for example, 0.01% by weight or more) of the monomer component.
  • the proportion of the total amount of the component (A), the component (B) and the component (C) in the monomer component is typically more than 50% by weight, preferably 70% by weight. Above, more preferably 80% by weight or more, still more preferably 90% by weight or more.
  • the technique disclosed here can be preferably implemented in an embodiment in which the ratio of the total amount is 95% by weight or more (for example, 99% by weight or more).
  • the technology disclosed herein can be preferably implemented in an embodiment in which the ratio of the total amount in the monomer components is 99.999% by weight or less (for example, 99.99% by weight or less).
  • the Tg of the polymer corresponding to the composition of the monomer component is preferably ⁇ 20 ° C. or less, and ⁇ 25 ° C. or less from the viewpoints of physical properties, adhesiveness and the like of the resin layer B. More preferably, it is suitably ⁇ 80 ° C. or higher, preferably ⁇ 60 ° C. or higher, and ⁇ 50 ° C. or higher (eg ⁇ 40 ° C. or higher, typically ⁇ 35 ° C. or higher). More preferably.
  • the Tg of the polymer corresponding to the composition of the monomer component refers to the Fox based on the Tg of the homopolymer of each monomer contained in the monomer component and the weight fraction of the monomer.
  • the calculation of Tg is performed considering only the monofunctional monomer. Therefore, when the monomer component includes a polyfunctional monomer, the total amount of the monofunctional monomer contained in the monomer component is defined as 100% by weight, and the Tg of the homopolymer of each monofunctional monomer and the above total amount of the monofunctional monomer Tg is calculated based on the weight fraction relative to.
  • Tg of the homopolymer the following values are adopted for the monomers shown below. 2-Ethylhexyl acrylate -70 ° C n-Butyl acrylate -55 ° C Isostearyl acrylate -18 °C Cyclohexyl acrylate 15 ° C Isobornyl acrylate 94 ° C N-Vinyl-2-pyrrolidone 54 ° C 2-Hydroxyethyl acrylate -15 ° C 4-hydroxybutyl acrylate -40 ° C Acrylic acid 106 °C
  • the values described in “Polymer Handbook” (3rd edition, John Wiley & Sons, Inc., 1989) are used as the Tg of the homopolymer. The highest value is adopted for the monomer whose values are described in this document. When not described in the above Polymer Handbook, values obtained by the measurement method described in JP-A-2007-51271 are used.
  • composition for forming resin layer B includes a monomer component having the composition as described above, a polymer, an unpolymerized product (that is, a form in which the polymerizable functional group is unreacted), or a mixture thereof. It can be included in the form.
  • the composition for forming the resin layer B is a composition in which an organic solvent contains a resin layer B forming component (for example, an adhesive component) (composition for forming a solvent-type resin layer B), and the resin layer B forming component is an aqueous solvent.
  • composition for forming a water-dispersed resin layer B a composition prepared to cure the active energy rays such as ultraviolet rays and radiation to form a resin layer B forming component (active energy)
  • the composition for forming a linear curable resin layer B can be in various forms such as a composition for forming a hot melt resin layer B that is applied in a heated and melted state and forms the resin layer B when cooled to near room temperature. .
  • the composition for forming the resin layer B is at least part of the monomer components of the composition (may be part of the type of monomer or part of the quantity).
  • the polymerization method for forming the polymer is not particularly limited, and various conventionally known polymerization methods can be appropriately employed.
  • thermal polymerization such as solution polymerization, emulsion polymerization and bulk polymerization (typically performed in the presence of a thermal polymerization initiator); photopolymerization performed by irradiation with light such as ultraviolet rays (typically It is carried out in the presence of a photopolymerization initiator.); Radiation polymerization carried out by irradiation with radiation such as ⁇ -rays and ⁇ -rays; Of these, photopolymerization is preferred.
  • the mode of polymerization is not particularly limited, and conventionally known monomer supply methods, polymerization conditions (temperature, time, pressure, light irradiation amount, radiation irradiation amount, etc.), materials used other than monomers (polymerization initiator) , Surfactant, etc.) can be selected as appropriate.
  • a known or commonly used photopolymerization initiator or thermal polymerization initiator can be used depending on the polymerization method, polymerization mode, and the like.
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the photopolymerization initiator is not particularly limited.
  • a polymerization initiator or the like can be used.
  • ketal photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one (for example, trade name “Irgacure 651” manufactured by BASF).
  • acetophenone photopolymerization initiator examples include 1-hydroxycyclohexyl-phenyl-ketone (for example, trade name “Irgacure 184” manufactured by BASF), 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (for example, trade name “Irgacure 2959” manufactured by BASF), 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one (for example, trade name “Darocur 1173” manufactured by BASF), methoxyacetophenone and the like are included.
  • benzoin ether photopolymerization initiator examples include benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether and benzoin isobutyl ether, and substituted benzoin ethers such as anisole methyl ether.
  • acylphosphine oxide photopolymerization initiator examples include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (for example, trade name “Irgacure 819” manufactured by BASF), bis (2,4,6 -Trimethylbenzoyl) -2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (for example, trade name “Lucirin TPO” manufactured by BASF), bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like.
  • ⁇ -ketol photopolymerization initiator examples include 2-methyl-2-hydroxypropiophenone, 1- [4- (2-hydroxyethyl) phenyl] -2-methylpropan-1-one, and the like. It is.
  • aromatic sulfonyl chloride photopolymerization initiator examples include 2-naphthalenesulfonyl chloride and the like.
  • photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2- (o-ethoxycarbonyl) -oxime and the like.
  • benzoin photopolymerization initiator examples include benzoin and the like.
  • benzyl photopolymerization initiator examples include benzyl and the like.
  • benzophenone photopolymerization initiator examples include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, ⁇ -hydroxycyclohexyl phenyl ketone, and the like.
  • thioxanthone photopolymerization initiator examples include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone. 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
  • the thermal polymerization initiator is not particularly limited.
  • an azo polymerization initiator, a peroxide initiator, a redox initiator by a combination of a peroxide and a reducing agent, a substituted ethane initiator. Etc. can be used.
  • the amount of such a thermal polymerization initiator or photopolymerization initiator used can be a normal amount used according to the polymerization method, polymerization mode, etc., and is not particularly limited.
  • a polymerization initiator of 0.001 to 5 parts by weight typically 0.01 to 2 parts by weight, for example, 0.01 to 1 part by weight
  • a polymerization initiator of 0.001 to 5 parts by weight typically 0.01 to 2 parts by weight, for example, 0.01 to 1 part by weight
  • composition for forming resin layer B containing polymerized and unpolymerized monomer components includes a polymerization reaction product of a monomer mixture containing at least a part of the monomer component (raw material monomer) of the composition. Typically, a part of the monomer component is included in the form of a polymer, and the remainder is included in the form of an unpolymerized substance (unreacted monomer).
  • the polymerization reaction product of the monomer mixture can be prepared by at least partially polymerizing the monomer mixture.
  • the polymerization reaction product is preferably a partial polymerization product of the monomer mixture.
  • Such a partial polymer is a mixture of a polymer derived from the monomer mixture and an unreacted monomer, and typically exhibits a syrup shape (viscous liquid).
  • a partially polymerized product may be referred to as “monomer syrup” or simply “syrup”.
  • the polymerization method for obtaining the polymerization reaction product is not particularly limited, and various polymerization methods as described above can be appropriately selected and used. From the viewpoints of efficiency and simplicity, a photopolymerization method can be preferably employed. According to photopolymerization, the polymerization conversion rate of the monomer mixture can be easily controlled by polymerization conditions such as the amount of light irradiation (light quantity).
  • the polymerization conversion rate (monomer conversion) of the monomer mixture in the partial polymer is not particularly limited.
  • the polymerization conversion rate can be, for example, 70% by weight or less, and preferably 60% by weight or less. In view of ease of preparation of the composition for forming the resin layer B containing the partial polymer, coating properties, and the like, the polymerization conversion rate is usually appropriately 50% by weight or less, and 40% by weight or less (for example, 35%). % By weight or less) is preferred.
  • the lower limit of the polymerization conversion rate is not particularly limited, but is typically 1% by weight or more, and usually 5% by weight or more is appropriate.
  • the resin layer B forming composition containing a partial polymer of the monomer mixture can be easily obtained, for example, by partially polymerizing a monomer mixture containing all of the raw material monomers by an appropriate polymerization method (for example, photopolymerization method). it can.
  • an appropriate polymerization method for example, photopolymerization method.
  • other components used as necessary for example, a photopolymerization initiator, a polyfunctional monomer, a crosslinking agent, an acrylic oligomer described later, etc.
  • the method of blending such other components is not particularly limited, and for example, it may be previously contained in the monomer mixture or added to the partial polymer.
  • the resin layer B forming composition disclosed herein is a complete polymerization product of a monomer mixture containing some types of monomers among the monomer components (raw material monomers), and the remaining types of monomers or partial polymerization products thereof. It may be in a dissolved form.
  • the composition for forming the resin layer B in such a form is also included in the example of the composition for forming the resin layer B including the polymerized monomer component and the unpolymerized product.
  • the “completely polymerized product” means that the polymerization conversion rate is more than 95% by weight.
  • a photopolymerization method when forming the resin layer B from the resin layer B forming composition containing the polymerized and unpolymerized monomer components, a photopolymerization method can be preferably employed.
  • the composition for forming the resin layer B containing the polymerization reaction product prepared by the photopolymerization method it is particularly preferable to employ the photopolymerization method as the curing method. Since the polymerization reaction product obtained by the photopolymerization method already contains a photopolymerization initiator, when the resin layer B-forming composition containing this polymerization reaction product is further cured to form the resin layer B, a new light It can be photocured without adding a polymerization initiator.
  • the composition for resin layer B formation of the composition which added the photoinitiator as needed to the polymerization reaction material prepared by the photopolymerization method may be sufficient.
  • the photopolymerization initiator to be added may be the same as or different from the photopolymerization initiator used for the preparation of the polymerization reaction product.
  • the resin layer B forming composition prepared by a method other than photopolymerization can be made photocurable by adding a photopolymerization initiator.
  • the photocurable resin layer B forming composition has an advantage that even a thick resin layer B can be easily formed.
  • the photopolymerization in forming the resin layer B from the resin layer B forming composition can be performed by ultraviolet irradiation.
  • a known high-pressure mercury lamp, low-pressure mercury lamp, metal halide lamp, or the like can be used for ultraviolet irradiation.
  • composition for forming resin layer B containing monomer components in the form of a completely polymerized product includes the monomer component of the composition in the form of a completely polymerized product.
  • a resin layer B forming composition is, for example, a solvent-based resin layer B forming composition containing an acrylic polymer, which is a complete polymerization product of monomer components, in an organic solvent, and the acrylic polymer is dispersed in an aqueous solvent. It may be in the form of a water-dispersed resin layer B forming composition.
  • the composition for forming the resin layer B disclosed herein may contain a (meth) acrylic oligomer from the viewpoint of improving the adhesive strength. By including the (meth) acrylic oligomer, the adhesive force of the resin layer B can be improved.
  • the (meth) acrylic oligomer preferably has a Tg of about 0 ° C. or higher and 300 ° C. or lower, preferably about 20 ° C. or higher and 300 ° C. or lower, more preferably about 40 ° C. or higher and 300 ° C. or lower.
  • Tg is within the above range, the adhesive force can be preferably improved.
  • the Tg of the (meth) acrylic oligomer is a value calculated based on the Fox equation, similar to the Tg of the acrylic polymer.
  • the weight average molecular weight (Mw) of the (meth) acrylic oligomer may typically be 1000 or more and less than 30000, preferably 1500 or more and less than 20000, and more preferably 2000 or more and less than 10,000. It is preferable for Mw to be within the above range because good adhesive force and holding characteristics can be obtained.
  • Mw of the (meth) acrylic oligomer is measured by GPC and can be obtained as a standard polystyrene equivalent value. Specifically, it is measured on a “HPLC 8020” manufactured by Tosoh Corporation using two TSKgelGMH-H (20) columns as a column and a tetrahydrofuran solvent at a flow rate of about 0.5 mL / min.
  • a monomer constituting the (meth) acrylic oligomer for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl ( (Meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, is
  • Examples of (meth) acrylic oligomers include alkyl (meth) acrylates in which alkyl groups such as isobutyl (meth) acrylate and t-butyl (meth) acrylate have a branched structure; cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, Esters of (meth) acrylic acid and alicyclic alcohols such as dicyclopentanyl (meth) acrylate; cyclic structures such as aryl (meth) acrylates such as phenyl (meth) acrylate and benzyl (meth) acrylate It is preferable that an acrylic monomer having a relatively bulky structure typified by (meth) acrylate is included as a monomer unit from the viewpoint of further improving adhesiveness.
  • an alkyl (meth) acrylate having a structure or an ester with an alicyclic alcohol can be preferably used as a monomer constituting the (meth) acrylic oligomer.
  • suitable (meth) acrylic oligomers include, for example, dicyclopentanyl methacrylate (DCPMA), cyclohexyl methacrylate (CHMA), isobornyl methacrylate (IBXMA), isobornyl acrylate (IBXA),
  • DCPMA dicyclopentanyl methacrylate
  • CHMA cyclohexyl methacrylate
  • IBXMA isobornyl methacrylate
  • IBXA isobornyl acrylate
  • DCPA dicyclopentanyl acrylate
  • ADMA 1-adamantyl methacrylate
  • ADA 1-adamantyl acrylate
  • a copolymer of CHMA and isobutyl methacrylate (IBMA), CHMA and IBXMA Copolymer Copolymer of CHMA and acryloylmorpholine (ACMO), Copolymer of CHMA and diethylacrylamide (DEAA), Copolymer of
  • the content of the (meth) acrylic oligomer is 3 parts by weight or more (for example, 5 parts by weight or more, typically 8 parts by weight or more). It is preferable to do.
  • the above (meth) acrylic oligomer is suitably 70 parts by weight or less (for example, 40 parts by weight or less, typically 20 parts by weight or less) with respect to 100 parts by weight of the monomer component contained in the composition for forming the resin layer B.
  • the technique disclosed here can also be implemented in an embodiment that does not use a (meth) acrylic oligomer.
  • the composition for forming the resin layer B disclosed herein can contain a silane coupling agent.
  • silane coupling agents that can be preferably used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2- (3,4-epoxy.
  • (Meth) acrylic group Isocyanate group-containing silane coupling agents such as 3-isocyanate propyl triethoxysilane; Yes silane coupling agent, and the like. These can be used alone or in combination of two or more.
  • the amount of the silane coupling agent is preferably 1 part by weight or less (for example, 0.01 to 1 part by weight), more preferably 0.02 to 100 parts by weight with respect to 100 parts by weight of the monomer component constituting the acrylic polymer. 0.6 parts by weight.
  • the composition for forming the resin layer B disclosed herein can contain a crosslinking agent.
  • a crosslinking agent a well-known or usual crosslinking agent can be used in the field
  • the resin layer B forming composition disclosed herein can contain various additives known in the field of pressure-sensitive adhesives and sealing resins, for example.
  • powders such as colorants, pigments, dyes, surfactants, plasticizers, tackifying resins, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, A polymerization inhibitor, an inorganic or organic filler, metal powder, particles, foils, etc. can be appropriately added depending on the application.
  • the resin layer B disclosed here can be formed as the resin layer B, for example, by applying any of the resin layer B forming compositions disclosed herein on a support and drying or curing.
  • a coating method of the composition for forming the resin layer B various conventionally known methods can be used. Specifically, for example, by roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
  • the resin layer B forming composition can be dried under heating.
  • the drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and further preferably 70 ° C to 170 ° C. By setting the heating temperature within the above range, a resin layer B having excellent physical properties can be obtained.
  • As the drying time an appropriate time can be adopted as appropriate.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and even more preferably 10 seconds to 5 minutes.
  • a crosslinking treatment, a thermosetting treatment, or the like may be further performed.
  • a thermosetting treatment can be performed at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) for 5 minutes or more.
  • the heat curing treatment time is preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes).
  • the resin layer B is preferably subjected to a press treatment before or during the thermosetting treatment.
  • the resin layer B disclosed herein can be obtained from the resin layer B forming composition.
  • the thickness of the resin layer B is not particularly limited, and may be, for example, about 1 to 400 ⁇ m. Usually, the thickness of the resin layer B is preferably 1 to 200 ⁇ m, more preferably 2 to 150 ⁇ m, further preferably 2 to 100 ⁇ m, and particularly preferably 5 to 75 ⁇ m.
  • the resin layer B before being laminated on the resin layer A or before the conductive portion is disposed is overlapped with a release liner (support) whose front surface and back surface are both release surfaces (peelable surfaces) and spirally formed. It can be in a wound form. Alternatively, the first surface and the second surface may be respectively protected by two independent release liners (supports).
  • a conventional release paper or the like can be used and is not particularly limited.
  • a release liner having a release treatment layer on the surface of a substrate such as a plastic film or paper, or a release made of a low adhesive material such as a fluorine polymer (polytetrafluoroethylene, etc.) or a polyolefin resin (polyethylene, polypropylene, etc.)
  • a liner or the like can be used.
  • the release treatment layer may be formed by surface-treating the base material with a release treatment agent.
  • the release treatment agent include a silicone release treatment agent, a long-chain alkyl release treatment agent, a fluorine release treatment agent, and molybdenum (IV) sulfide.
  • the conductive part (including the first conductive part and the second conductive part.
  • the solar cell contact part and the connection part of the first conductive path unit and the second conductive path unit may be included.
  • the conductive portion is formed, for example, by applying a conductive paste as a conductive material. Thereby, a conductive path can be efficiently formed while reducing the number of parts.
  • conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon (hereinafter referred to as “conductive paste”) The same)) and a resin component such as polyester or epoxy resin can be used in a suitable solvent.
  • conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon
  • conductive paste conductive paste
  • a resin component such as polyester or epoxy resin
  • the specific resistance of the conductive paste at 25 ° C. is about 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less (for example, 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, typically 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less). Preferably there is.
  • the specific resistance of the conductive component constituting the conductive paste is preferably 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less.
  • the conductive portion can be formed by applying a conductive paste to the surface of the resin layer B using a known dispenser.
  • the conductive paste is applied not to the surface of the resin layer B but to the surface of a peelable support (for example, a sheet-like release liner), and a conductive portion having a predetermined pattern is formed on the surface of the peelable support.
  • the conductive portion may be formed on the surface of the resin layer B by forming and transferring the conductive portion to the surface of the resin layer B.
  • a conductive sheet may be used as a connecting portion constituting a conductive path unit (including a first conductive path unit and a second conductive path unit) of the conductive portion.
  • the conductive path unit according to a preferred embodiment is such that the solar cell contact portion is formed of the conductive paste as described above, and the conductive sheet serving as the connection portion is connected to the solar cell contact portion formed of the conductive paste. It is arranged to do.
  • the conductive sheet may be selected from a conductive resin sheet in which the above-described conductive component is blended in a resin, or a metal sheet (for example, a metal foil) made of a metal such as copper or aluminum, an alloy, or the like. Especially, since it is excellent in alignment and workability
  • the conductive adhesive sheet examples include a conductive adhesive sheet, a hot melt type, a thermosetting type, a drying type, a moisture curing type, a two-component reaction curing type, an ultraviolet (UV) curing type, an anaerobic type, and a UV anaerobic type.
  • a conductive adhesive sheet can be used.
  • the adhesive component of the adhesive sheet urethane, acrylic, epoxy and other adhesive components can be used. Among these, a conductive pressure-sensitive adhesive sheet that does not require a heating operation and is excellent in handleability is particularly preferable.
  • a baseless pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer (for example, an acrylic pressure-sensitive adhesive layer) containing about 3 to 70% by weight of the above-described conductive component (more preferably, a silver filler), a copper foil or an aluminum foil
  • the pressure-sensitive adhesive layer may contain a tackifier, a crosslinking agent, and other additives depending on the purpose.
  • the pressure-sensitive adhesive sheet for example, those described in JP 2012-7093 A can be preferably used.
  • the conductive pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet in which a non-conductive pressure-sensitive adhesive layer is formed on both surfaces of the above-mentioned conductive base material, and the conductive base material is partially the surface of the pressure-sensitive adhesive layer. It may be a conductive pressure-sensitive adhesive sheet exposed to the surface. Examples of such a conductive pressure-sensitive adhesive sheet include those described in JP-A-8-185714.
  • the conductive portion is formed by hot-melt coating a metal material (typically an alloy) having a low melting point (for example, a melting point of 300 ° C. or lower, preferably 250 ° C. or lower).
  • a low melting point alloy for example, “SnBi solder” manufactured by Arakawa Chemical Industries, Ltd., melting point 139 ° C.
  • the low melting point metal material may be applied not to the surface of the resin layer B but to the surface of a peelable support (for example, a release liner).
  • the conductive part formed on the surface of the peelable support so as to have a predetermined pattern is transferred to the surface of the resin layer B, whereby the conductive part can be formed on the surface of the resin layer B.
  • the same configuration as described above can be obtained by employing various printing methods such as screen printing.
  • a metal material such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, or an alloy thereof can be preferably used as the material constituting the conductive portion.
  • silver, copper, aluminum, and iron are more preferable, and copper and aluminum are more preferable.
  • Conductive paths composed essentially of metal have the advantage of lower resistance.
  • the metal wire one provided with a plating coating such as tin (Sn) or silver (Ag) can be given.
  • the plating thickness may be about 10 ⁇ m or less (for example, 3 ⁇ m or less).
  • metal sheet typically metal foil
  • what gave at least 1 sort (s) of surface treatment of a roughening process, a rust prevention process, and an adhesive improvement process may be used preferably.
  • Suitable examples of the metal sheet include copper foil (in particular, electrolytic copper foil).
  • the sheet with the conductive part having the conductive part (including the sheet with the first conductive part and the sheet with the second conductive part) is produced, for example, as follows. That is, first, the conductive line and the connecting portion of the solar cell contact portion are fixed to produce a conductive path unit (also referred to as a conductive member). And the sheet
  • the resin layer B and the conductive portion may be bonded using a known or common bonding means such as a pressure-sensitive adhesive or an adhesive.
  • the solar cell contact portion for example, conductive wire
  • the connection portion in the conductive path unit it is preferable to employ welding.
  • welding method conventionally known various types of welding can be employed. For example, arc welding, resistance welding, laser beam welding, electron beam welding, and ultrasonic welding can be preferably employed. Or it is also possible to employ
  • the conductive part is made of a metal material
  • a structure in which the conductive path unit is made of a metal wire can be cited.
  • a metal wire the above-mentioned thing can be used preferably.
  • various joining methods such as the above-described welding can be employed.
  • the conductive path unit may be formed from a patterned metal sheet.
  • a conductive path unit can integrally form the solar cell contact portion and the connection portion by etching the metal sheet.
  • a resist is attached to the surface of a metal sheet (typically a metal foil), and a predetermined resist pattern is formed by applying a photolithography technique.
  • the metal sheet is patterned using a known or conventional etching solution.
  • seat with a conductive part can be obtained by forming a conductive path unit and arrange
  • a similar configuration can be obtained by various vapor deposition methods.
  • the conductive path unit may be formed from a mesh-structured metal sheet (mesh sheet).
  • the mesh sheet typically has a mesh structure (mesh shape) in which a plurality of metal wires are arranged vertically and horizontally.
  • the conductive path unit includes a plurality of metal lines (vertical lines) arranged along one direction and a plurality of metals arranged in a direction intersecting (typically substantially orthogonal) with the vertical lines.
  • a network structure composed of lines (horizontal lines). In each of the vertical and horizontal lines, the plurality of metal lines are spaced apart and are typically substantially parallel.
  • the mesh-shaped wire diameter and mesh size can be set so as to be within the range of the width and spacing of the conductive wires, which will be described later, and the width of the connecting portion.
  • the conductive line of the conductive path unit may be formed of a mesh material including a conductive material (for example, a metal such as copper).
  • the mesh material may be a composite material of a metal wire and a resin fiber (typically a transparent resin fiber).
  • the metal wires are arranged in stripes, and the resin fibers are arranged in the same direction as the metal wires and in a direction intersecting with the metal wires, thereby forming a mesh structure.
  • the mesh material can be produced by weaving metal wires into resin fibers so that the metal wires are arranged in a predetermined direction. In this case, it is preferable to use a resin fiber for the weft and a metal wire and a resin fiber for the warp.
  • the resin fiber is preferably a material having high transparency and excellent insulating properties. Specific examples include a mesh material in which the metal wire is a copper wire and the resin fiber is a PET fiber having excellent transparency.
  • the mesh material is available, for example, from NBC Meshtec.
  • connection portion constituting the conductive path unit may have a single layer structure or a multilayer structure. Further, when the solar battery cell is sandwiched between the sheet with the first conductive portion and the sheet with the second conductive portion, additional conductivity is provided between the connection portion of the first conductive path unit and the connection portion of the second conductive path unit.
  • a connecting member may be arranged.
  • an appropriate material can be selected and used from the materials that can be used as the connection portion. Preferred examples thereof include a metal sheet (specifically, a metal foil) and a conductive adhesive sheet.
  • the thickness of the laminated portion of the connection portion of the first conductive path unit and the connection portion of the second conductive path unit is improved, and the current collection efficiency is improved.
  • the shape of the conductive connection member is not particularly limited, and is preferably the same shape as the connection portion of the first conductive path unit and the connection portion of the second conductive path unit.
  • connection portion constituting the conductive path unit may be a continuous layer (conductive layer) in a band shape as described above, but may be an intermittent layer.
  • the connecting portion may have an intermittent band shape, or may be arranged in a dot shape (also referred to as a granular shape).
  • the dot shape is typically granular, and may be, for example, a spherical shape such as a true spherical shape or a flat spherical shape.
  • the connection portion having such a shape can be formed by using, for example, the conductive paste or the low melting point metal material.
  • connection part of the conductive path unit is arranged at a distance from the solar battery cell in the solar battery module, but in order to prevent short circuit with the solar battery cell reliably, the connection part between the solar battery cell and the connection part It is preferable to provide an insulating part.
  • the insulating part can be provided by applying a known insulating resin material. Or it can also provide by coat
  • the connecting portion and the insulating portion may be formed by separately painting using a dispenser having a three-neck nozzle.
  • the conductive layer forming material a material similar to the material capable of forming the conductive portion described above may be used.
  • the insulating layer forming material a conventionally known resin paste or the like whose main component is a resin such as polyimide or polyester may be used.
  • the solar battery cell contact portion and the connection portion of the conductive path unit may be integrally formed, for example, by the same method, or after being formed by different methods, they are connected to form a conductive path unit. May be used.
  • the width of the conductive line is preferably 30 ⁇ m or more from the viewpoint of reduction of current collection loss, strength, handling property, and workability. Yes, more preferably 100 ⁇ m or more, and even more preferably 500 ⁇ m or more.
  • the width is preferably 1500 ⁇ m or less, more preferably 1200 ⁇ m or less, and still more preferably 1000 ⁇ m or less from the viewpoint of reducing shadow loss.
  • variety points out the length (width) orthogonal to the longitudinal direction of a conductive wire.
  • the distance between the conductive lines is preferably 0.1 cm or more, more preferably 0.8 cm or more, from the viewpoint of reducing shadow loss. More preferably 1.5 cm or more.
  • the distance is preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.5 cm or less from the viewpoint of reducing current collection loss.
  • interval is a pitch and points out the distance between the centerlines in the width direction of a conductive wire.
  • the width of the connection portion is preferably 0.1 cm or more from the viewpoint of smooth electrical connection of the solar cell module, More preferably, it is 0.3 cm or more, and further preferably 0.5 cm or more.
  • the width is preferably 2 cm or less, more preferably 1.5 cm or less, and further preferably 1.0 cm or less.
  • variety points out the length (width
  • the thickness (height) of the conductive portion is 0.01 to 1 mm (for example, 0.02 to 0.5 mm, typically 0.05 to 0.00 mm) from the viewpoints of conductivity, strength, handling properties, and workability. 3 mm) or so is preferable.
  • the thickness of the conductive path unit, conductive line, and connecting portion is preferably selected from the same range.
  • the type of the solar battery cell to be used is not particularly limited, and for example, a single crystal type or a polycrystalline type Si cell is suitable.
  • the crystalline Si cell may be a p-type cell (a cell in which n-type is added to a p-type substrate) or an n-type cell (a cell in which p-type is added to an n-type substrate).
  • the solar battery cell may be an amorphous Si cell, a compound solar battery, an organic solar battery cell or the like.
  • the shape is not particularly limited, and may be a wafer having a substantially rectangular plane, or may be a belt shape.
  • the thickness of the solar battery cell is preferably about 0.5 mm or less, more preferably about 0.3 mm or less (for example, about 180 to 200 ⁇ m), and further preferably about 160 ⁇ m or less from the viewpoint of lightness and the like.
  • ⁇ Surface covering member> As the surface covering member, various materials having translucency can be used.
  • Surface covering member is glass plate, fluororesin sheet such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride resin, chlorotrifluoroethylene resin, acrylic resin, polyethylene terephthalate It may be a resin sheet composed of a material such as polyester such as (PET) or polyethylene naphthalate (PEN).
  • PET polyester
  • PEN polyethylene naphthalate
  • a flat plate member or a sheet member having a total light transmittance of 70% or more (for example, 90% or more, typically 95% or more) can be preferably used. The total light transmittance may be measured according to JIS K 7375: 2008.
  • the thickness of the surface covering member is preferably about 0.5 to 10 mm (for example, 1 to 8 mm, typically 2 to 5 mm) from the viewpoint
  • a flat plate member or a sheet member made of various materials exemplified as the material of the surface covering member is preferably used. Especially, it is more preferable to use polyester, such as PET and PEN, as a back surface covering member forming material. Or as a back surface covering member, you may use the metal sheet (for example, aluminum plate) which has corrosion resistance, resin sheets, such as an epoxy resin, and composite sheets, such as a silica vapor deposition resin.
  • the thickness of the back surface covering member is preferably about 0.1 to 10 mm (for example, 0.2 to 5 mm) from the viewpoints of handleability and lightness. In addition, the back surface covering member may not have translucency.
  • seat with an electroconductive part disclosed here is the state (A) which prepares the resin sheet A used as the resin layer A, and the state which the resin layer B intervened in the resin sheet A (resin layer A) (B) fixing with.
  • the step (B) includes (B1) a step of laminating the resin layer B on the surface of the resin sheet A (resin layer A) and then partially disposing a conductive portion on the surface of the resin layer B; and (B2) Preparing a resin sheet B to be the resin layer B, partially disposing the conductive portion on the first surface of the resin sheet B, and then bonding the second surface of the resin sheet B to the resin sheet A; Including.
  • Step (B1) specifically includes a step of laminating the resin layer B on the first surface of the resin sheet A (resin layer A) prepared in the step (A).
  • the form of the resin layer B before lamination is not particularly limited, and may be a form in which at least one surface (preferably both sides, in other words, the first surface and the second surface) is protected by the peelable support.
  • Such a resin sheet B (resin layer B) is prepared, and the second surface of the resin sheet B is exposed.
  • the said peelable support body is peeled off and the 2nd surface of the resin sheet B is exposed.
  • the exposed second surface of the resin sheet B is bonded to the first surface of the resin sheet A.
  • the resin layer B can be laminated on the surface of the resin sheet A (resin layer A).
  • the conductive portion is partially disposed on the surface (first surface) of the resin layer B laminated on the surface of the resin sheet A (resin layer A).
  • the peelable support is peeled off to expose the first surface of the resin layer B, and the exposed first surface of the resin layer B A conductive part is disposed on the surface. In this way, a sheet with a conductive part in which the resin layer B is disposed between the resin sheet A (resin layer A) and the conductive part can be obtained.
  • the conductive part arranged on the first surface of the resin layer B may be a metal conductive member (conductive part) prepared in advance, and the surface of the peelable support (peelable support for forming a conductive part). It may be a conductive member (conductive portion) formed in advance.
  • the peelable support on the conductive part is used as it is for protecting the first surface (conductive part forming surface) of the sheet with the conductive part, and is removed when the sheet with the conductive part is used.
  • Step (B2) specifically includes a step of preparing a resin sheet B to be the resin layer B.
  • the form of the resin sheet B is not particularly limited, and may be in a form in which at least one surface (preferably both surfaces; in other words, the first surface and the second surface) is protected by the peelable support.
  • the conductive portion is partially disposed on the first surface of the resin sheet B.
  • the peelable support is peeled off to expose the first surface of the resin sheet B, and the exposed first surface of the resin sheet B A conductive part is disposed on the surface.
  • positioned on the 1st surface of the resin sheet B is obtained.
  • the conductive portion disposed on the first surface of the resin sheet B may be a metal conductive member (conductive portion) prepared in advance, and is formed in advance on the surface of the peelable support for the conductive portion. It may be a conductive member (conductive portion).
  • the step of disposing the conductive portion on the first surface of the resin sheet B is performed in a state where the second surface of the resin sheet B is protected by a peelable support.
  • positioning the electroconductive part formed in the surface of the peelable support body on the 1st surface of the resin sheet B specifically, the conductive part on the peelable support body surface on the 1st surface of the resin sheet B A transfer step. This transfer step is typically performed in a state where the conductive portion is supported by the peelable support.
  • both surfaces of the sheet with the conductive portion may be covered with the peelable support.
  • the peelable support body on the conductive part can be used as it is for protecting the first surface (conductive part forming surface) of the sheet with the conductive part.
  • the second surface (conductive portion non-formed surface) of the resin sheet B with the conductive part is bonded to the resin sheet A.
  • the said peelable support body is peeled off and the 2nd surface of the resin sheet B with an electroconductive part is exposed.
  • the exposed second surface of the resin sheet B with the conductive portion is bonded to the first surface of the resin sheet A.
  • the resin sheet B with a conductive part can be laminated
  • the metal conductive member and the conductive part that can be formed on the surface of the peelable support are as described above. Moreover, what is necessary is just to use the peeling liner demonstrated above as a peelable support body. Other matters relating to the manufacture of the sheet with the conductive portion can be implemented in consideration of the description and technical common sense in this specification, and thus the description thereof is omitted.
  • the solar cell module disclosed here is manufactured using the sheet with a conductive part. Specifically, the sheet with the conductive part obtained by the above method is used as the sheet with the first conductive part and the sheet with the second conductive part in the solar cell module. Then, the solar cell is sandwiched between the sheet with the first conductive portion and the sheet with the second conductive portion, and the conductive portion of the sheet with the conductive portion and the solar cell are brought into contact with each other, thereby sealing the solar cell.
  • the battery module is manufactured.
  • the solar cell module may include a step of laminating, for example, a back surface covering member, a sheet with a second conductive portion, a solar cell, a sheet with a first conductive portion, and a surface covering member in this order.
  • the arrangement of the solar cells on the sheet with the second conductive portion is performed such that the second conductive portion of the sheet with the second conductive portion and the back surface of the solar cell come into contact with each other.
  • the sheet with the first conductive portion is arranged so that the first conductive portion is in contact with the surface of the solar battery cell. In this way, a solar cell module having the configuration disclosed herein can be manufactured.
  • the solar cell module can be manufactured by the following method. Specifically, the solar cell module prepares a resin sheet B with a conductive part, which includes: a resin sheet B to be a resin layer B; and a conductive part partially disposed on the first surface of the resin sheet B. And a step of fixing a resin sheet A (typically a sheet-shaped sealing resin) to be the resin layer A and a solar battery cell with a resin sheet B with a conductive portion interposed therebetween. obtain.
  • a resin sheet A typically a sheet-shaped sealing resin
  • the resin sheet B As the resin sheet B, the resin sheet B or the resin layer B described in the method for producing a sheet with a conductive part can be used. In that case, at least one surface (preferably double-sided, in other words, the first surface and the second surface) of the resin sheet B may be in a form protected by a peelable support.
  • a resin sheet B with a conductive part is produced. Specifically, the resin sheet B with a conductive part is produced by partially arranging the conductive part on the first surface of the resin sheet B.
  • the manufacturing method, structure, and the like of the resin sheet B with the conductive part are as described in the step (B2) of the method for manufacturing the sheet with the conductive part.
  • this fixing step is performed by preparing the second surface (conductive portion non-forming surface) of the prepared resin sheet B with conductive portion and one surface (first sheet-shaped sealing resin) of the resin sheet A (typically sheet-shaped sealing resin). 1 surface) and the process (bonding process) and the process (contact process) which contact
  • this contact step may be a step of laminating the resin sheet B with the conductive portion and the solar battery cell.
  • the order of the bonding step and the contact step is not particularly limited. For example, about the back surface side of a photovoltaic cell, the said contact process is performed after performing the said bonding process, About the surface side of a photovoltaic cell, the said bonding process is performed after performing the said contact process Is also possible.
  • the method of performing the said contact process after performing the said bonding process is fundamentally the same as the manufacturing method using the said (B2) process.
  • the method of performing the bonding step after performing the contact step is, specifically, a resin with a conductive part in which the second surface is protected by a peelable support on one surface of at least one solar battery cell.
  • the first surface (conductive portion forming surface) of the sheet B is bonded together.
  • the conductive part of the resin sheet B with the conductive part is brought into contact with the surface of the solar battery cell.
  • the resin sheet B with the conductive part is bonded to the solar battery cell so that at least one conductive path unit included in the resin sheet B with the conductive part is in contact with at least one solar battery cell.
  • the second surface (conductive portion non-formed surface) of the resin sheet B with the conductive portion bonded to one surface of the solar battery cell is exposed by removing the peelable support, and the resin sheet A is exposed on the second surface.
  • a sheet-shaped sealing resin is laminated to construct a solar cell module.
  • the following method is mentioned as an example of the manufacturing method of the solar cell module using the resin sheet B with an electroconductive part. That is, the resin sheet A (sheet-shaped sealing resin) is arranged on the back surface covering member, the resin sheet B with a conductive part is disposed thereon, and the second surface (conductive part non-formation surface) is the resin sheet A side. Laminate so that Next, the solar battery cell is disposed so as to come into contact with the conductive portion on the first surface (conductive portion forming surface) of the resin sheet B with the conductive portion. On top of that, another sheet of resin sheet B with a conductive part is prepared, and this is arranged so that the conductive part on the first surface (conductive part forming surface) and the solar battery cell are in contact with each other.
  • the resin sheet A sheet-shaped sealing resin
  • the resin sheet B with a conductive part is disposed thereon
  • the second surface (conductive part non-formation surface) is the resin sheet A side.
  • a resin sheet A sheet-shaped sealing resin
  • a surface covering member are laminated thereon.
  • One of the resin sheets B with a conductive part arranged on the back side and the front side of the solar battery cell can be replaced with a sheet with a conductive part together with the sheet-shaped sealing resin. Also by such a method, the solar cell module having the configuration disclosed herein can be manufactured.
  • the resin sheet B with a conductive part that can be preferably used in the above production method may have a structure basically similar to the structure composed of the resin layer B and the conductive part in the sheet with a conductive part. Therefore, a plurality of conductive path units are arranged as conductive portions on the first surface of the resin layer B, and each of these conductive path units is a solar cell contact portion (like the conductive path unit according to the above embodiment) ( Specifically, it may be a conductive wire) or a connection portion. Since the details are as described above, the description will not be repeated here.
  • the resin sheet B with a conductive part may be in a form having a cross-sectional structure shown partially enlarged in FIG.
  • stacking part of resin layer B520 and the electroconductive part 530 of resin sheet B500 with an electroconductive part is expanded and shown.
  • This resin sheet with conductive portion B500 includes a resin layer B520 and a conductive portion 530. More specifically, the conductive portion 530 is provided on the first surface 520A of the resin layer B520. As shown in FIG. 7, the first surface 500A and the second surface 500B of the resin sheet with conductive portion B500 before use (before bonding to a sealing resin or a solar battery cell) are provided by release liners 501 and 502, respectively. It can be in a protected form.
  • the surfaces 501A and 502A that are in contact with the resin sheet with conductive portion B500 are both release surfaces (peelable surfaces).
  • the first surface (conductive portion forming surface) 500A of the resin sheet with conductive portion B500 is covered with the release liner 501 (FIG. 8), the second surface (conductive portion non-formed surface) of the resin sheet with conductive portion B500.
  • Only 500B may be covered with the release liner 502 (FIG. 9).
  • the solar cell module disclosed here is not limited to the structure of the said embodiment.
  • the number of solar cells arranged in the solar cell module may be one or more.
  • a plurality of solar cells can be electrically connected in a lump. Therefore, the greater the number of solar cells, the greater the effect of improving the wiring workability.
  • the number of cells in the solar cell group is preferably 3 or more, more preferably 5 or more (for example, 7 -20, typically 8-12).
  • the solar cell group may have two or more rows (for example, 3 to 10 rows, typically 5 to 8 rows).
  • the several photovoltaic cell was comprised as a photovoltaic cell group arranged in a line
  • positioning) of a several photovoltaic cell is not limited to this, A linear form, a curve It may be a pattern, a regular pattern, or an irregular pattern.
  • interval of a photovoltaic cell does not need to be constant.
  • the electrical connection method between the first conductive portion and the second conductive portion in the solar cell module is not limited to the method of each of the above embodiments.
  • the first conductive part and the second conductive part can be electrically connected by appropriately modifying a conventionally known wiring method.
  • the matters disclosed by this specification include the following. (1) a plurality of solar cells arranged at intervals; A sheet with a first conductive portion covering the surface of a plurality of solar cells; A sheet with a second conductive portion covering the back surface of the plurality of solar cells, The sheet with the first conductive part is formed between the first resin layer A, the first conductive part constituting a part of the first surface of the sheet with the first conductive part, and between the first resin layer A and the first conductive part.
  • a first resin layer B disposed on The sheet with the second conductive part is between the second resin layer A, the second conductive part constituting a part of the first surface of the sheet with the second conductive part, and between the second resin layer A and the second conductive part.
  • a second resin layer B disposed on The storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the first resin layer B and the second resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4,
  • the first conductive part is in contact with the surface of one of the two adjacent solar cells among the plurality of solar cells
  • the second conductive portion is in contact with the back surface of the other solar cell of the two adjacent solar cells, and the first conductive portion and the second conductive portion are configured to be electrically connected.
  • the first conductive portion has a portion that protrudes from a region located between two adjacent solar cells so as to face the surface of one of the adjacent two solar cells.
  • the second conductive portion is disposed so as to face the back surface of the other solar cell of the two adjacent solar cells and to have a portion that protrudes from a region located between the two adjacent solar cells.
  • Each of the first conductive portion and the second conductive portion is composed of at least one conductive path unit, The solar cell according to (1) or (2), wherein one conductive path unit includes a solar cell contact portion located in the solar cell facing region and a connection portion located in the solar cell non-opposing region. Battery module.
  • the solar cell contact portion has a shape extending toward the connection portion, and the connection portion is connected to one end of the solar cell contact portion.
  • the solar cell contact part is composed of a plurality of conductive lines arranged at intervals, and the connection part extends in a direction intersecting with the longitudinal direction of the conductive line.
  • the protruding portion of the first conductive portion (typically, the connecting portion of the first conductive path unit) and the protruding portion of the second conductive portion (typically, the connecting portion of the second conductive path unit) Is a solar cell module according to (2), which is directly or indirectly connected (typically abutting).
  • the sheet with a conductive part includes a resin layer A, a conductive part constituting a part of the first surface of the sheet with a conductive part, and a resin layer B disposed between the resin layer A and the conductive part.
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4
  • the conductive part is a solar battery module in contact with at least one solar battery cell.
  • the conductive portion is disposed so as to face one surface of at least one solar battery cell and to have a portion protruding in a region not facing the solar battery cell, as described in (7) above.
  • Solar cell module. The conductive portion is composed of at least one conductive path unit, The solar cell according to (7) or (8), wherein one conductive path unit has a solar cell contact portion located in the solar cell facing region and a connection portion located in the solar cell non-opposing region. Battery module. (10) In one conductive path unit, the solar cell contact portion has a shape extending toward the connection portion, and the connection portion is connected to one end of the solar cell contact portion.
  • the solar cell contact part is composed of a plurality of conductive lines arranged at intervals, and the connection part extends in a direction intersecting with the longitudinal direction of the conductive line.
  • a step of preparing a plurality of solar cells The first resin layer A, the first conductive part constituting a part of the first surface of the sheet with the first conductive part, and the first resin layer disposed between the first resin layer A and the first conductive part A step of obtaining a sheet with a first conductive portion comprising: B; The second resin layer A, the second conductive part constituting a part of the first surface of the sheet with the second conductive part, and the second resin layer disposed between the second resin layer A and the second conductive part A step of obtaining a sheet with a second conductive portion comprising: B; A step of sandwiching a plurality of solar cells between the sheet with the first conductive portion and the sheet with the second conductive portion (typically, in this step, a plurality of solar cells are arranged at intervals, A 1st electroconductive part is made to contact the surface of one photovoltaic cell of two adjacent photovoltaic cells among a battery cell, and a 2nd electrically conductive part is made to contact the
  • the first conductive portion and the second conductive portion are electrically connected.); Including
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the first resin layer B and the second resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4.
  • Each of the first conductive portion and the second conductive portion is composed of at least one conductive path unit, (12) or (13), wherein one conductive path unit is formed to have a solar cell contact portion located in the solar cell facing region and a connection portion located in the solar cell non-opposing region.
  • the protruding portion of the first conductive portion (typically, the connecting portion of the first conductive path unit) and the protruding portion of the second conductive portion (typically, the connecting portion of the second conductive path unit) are directly or indirectly connected (typically abutted) with each other.
  • a sheet with a first conductive part and a sheet with a second conductive part The sheet with the first conductive part is formed between the first resin layer A, the first conductive part constituting a part of the first surface of the sheet with the first conductive part, and between the first resin layer A and the first conductive part.
  • a first resin layer B disposed on The sheet with the second conductive part is between the second resin layer A, the second conductive part constituting a part of the first surface of the sheet with the second conductive part, and between the second resin layer A and the second conductive part.
  • a second resin layer B disposed on The storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the first resin layer B and the second resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4.
  • a method for producing a sheet with a conductive part comprising the step (A) of preparing the resin sheet A and the step (B) of fixing the conductive part to the resin sheet A with the resin layer B interposed.
  • Step (B) is: (B1) a step of laminating the resin layer B on the surface of the resin sheet A and then partially disposing the conductive portion on the surface of the resin layer B; and (B2) preparing a resin sheet B to be the resin layer B, A step of bonding the second surface of the resin sheet B to the resin sheet A after partially disposing the conductive portion on the first surface of the sheet B;
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C.
  • the arrangement of the conductive portion on the surface of the resin layer B or the first surface of the resin sheet B is made by using at least one metal conductive member as the conductive portion, and at least one of the produced portions.
  • the conductive part is disposed on the surface of the resin layer B or the first surface of the resin sheet B. The conductive part is formed on the surface of the peelable support, and the surface of the peelable support is formed.
  • the step (B) includes the step (B2),
  • the step (B2) includes the step of producing a resin sheet B with a conductive portion by partially disposing a conductive portion on the first surface of the resin layer B, according to any one of the above (17) to (19). Production method.
  • a method for manufacturing a solar cell module comprising: (22) A step of preparing a resin sheet B with a conductive part, including the resin layer B and a conductive part partially disposed on the first surface of the resin layer B; A step of fixing a resin sheet A and a solar battery cell in a state in which a resin sheet B with a conductive portion is interposed, The fixing process is: A step of bonding the second surface of the prepared resin sheet B with the conductive portion and one surface of the resin sheet A; A step of bringing the conductive portion of the resin sheet B with the conductive portion into contact with the solar battery cell; Including
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer B is 5000 Pa or more, and tan ⁇ at 80 ° C
  • a composition (1) for forming layer B was prepared.
  • the composition for forming the resin layer B prepared as described above is applied to the release surface of a 38 ⁇ m-thick polyester film (trade name “Diafoil MRF”, manufactured by Mitsubishi Plastics Co., Ltd.) whose one side is release-treated with a silicone release treatment agent. (1) was applied so that the final thickness was 50 ⁇ m to form a coating layer.
  • a 38 ⁇ m thick polyester film (trade name “Diafoil MRE”, manufactured by Mitsubishi Plastics Co., Ltd.) whose one side is peeled with silicone is applied to the surface of the coating layer. I put it on. Thereby, the coating layer was shielded from oxygen.
  • the coating layer is cured to form a resin layer B.
  • the resin sheet B (resin layer B (1)) was obtained.
  • the polyester film coated on both surfaces of the resin layer B functions as a release liner.
  • the illuminance value is a value measured by an industrial UV checker (trade name “UVR-T1”, light receiving unit type UD-T36, manufactured by Topcon Corporation) having a peak sensitivity wavelength of about 350 nm.
  • a silane coupling agent (trade name “KBM403”, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.294 parts of 1,6-hexanediol diacrylate (HDDA) are added uniformly.
  • a composition (2) for forming a resin layer B was prepared.
  • a sheet-like resin layer B (2) was obtained in the same manner as in Production Example 1 except that this resin layer B forming composition (2) was used.
  • the (meth) acrylic oligomer one prepared by the following method was used.
  • Dicyclopentanyl methacrylate (trade name “FA-513M”, manufactured by Hitachi Chemical Co., Ltd.) 34.8 parts and methyl methacrylate 23.3 parts, 2 parts of thioglycolic acid as a chain transfer agent, and acetic acid as a polymerization solvent Ethyl was blended and nitrogen gas was blown to remove dissolved oxygen. The mixture was then heated to 70 ° C. and stirred at 70 ° C. for 1 hour, and 0.172 parts of azobisisobutyronitrile as a polymerization initiator was added. This was reacted at 70 ° C. for 2 hours and then at 80 ° C. for 2 hours. Thereafter, the polymerization solvent, chain transfer agent and residual monomer were removed at 130 ° C. to obtain a (meth) acrylic oligomer having an Mw of about 4000 and a Tg of about 130 ° C.
  • High pressure method low density polyethylene (HP-LDPE: trade name “DFD-2005”, manufactured by NUC) was press-molded to obtain a resin layer B (6) having a thickness of about 100 ⁇ m.
  • Resin layers B (1) to (6) were cut into a size of 5 cm ⁇ 10 cm and laminated on an EVA sheet (trade name “EVASKY”, manufactured by Bridgestone) having the same size and a thickness of 450 ⁇ m.
  • an EVA sheet (trade name “EVASKY”, manufactured by Bridgestone) having the same size and a thickness of 450 ⁇ m is laminated on a glass of 5 cm ⁇ 10 cm, and a cell for solar power generation (single unit) is cut into 5 cm ⁇ 4 cm on the sheet.
  • Crystalline Si cell Trade name “G156S3” (manufactured by GINTECH) was disposed.
  • the 180 degree peel strength between the solar power generation cell and the resin layer B was measured. Specifically, using a tensile tester (equipment name “Autograph AGS-J”, manufactured by Shimadzu Corporation) under conditions of 23 ° C., 50% RH, tensile speed 30 mm / min, peel angle 180 ° Then, the resin layer B was peeled from the adherend (cell), and the peel strength [N / 10 mm] at that time was determined. Moreover, also about the EVA sheet
  • Total light transmittance Two 5 cm ⁇ 5 cm glass plates (white chemical tempered glass: trade name “B270”, manufactured by Schott) were prepared, and these two glass plates were used for EVA sheet (trade name “EVASKY”, Bridgestone) having a thickness of 450 ⁇ m. Between the resin layer B and the resin layer B. And after laminating the said laminated body on the conditions of 150 degreeC and 100 kPa and 15 minutes using commercially available laminator (made by NPC), 150 degreeC and 15 minutes postcure were performed with a constant temperature dryer, and a test piece was carried out. Created.
  • the total light transmittance of the test piece was measured using a haze meter (trade name “HR-100”, manufactured by Murakami Color Research Laboratory Co., Ltd.). Moreover, the total light transmittance was measured for the EVA sheet without the resin layer B (comparative example) in the same manner as described above.
  • EVA is an evaluation result of the sealing resin (EVA sheet) of the comparative example.
  • Table 1 shows the storage elastic modulus G ′ [Pa] at 150 ° C. and the maximum value of tan ⁇ (G ′′ / G ′) in the temperature range of 80 ° C. to 150 ° C.
  • the copper wire has a width tolerance of ⁇ 10%, a thickness tolerance of ⁇ 4%, a plating thickness of 1 ⁇ m (tolerance of ⁇ 15%), a tensile strength of 350 N / mm 2 or more, stretched to 15.7 cm, and then cut. A thing was used. Sn or Ag is used as the plating type.
  • the above-described copper wire fixing operation was repeated 8 times at 2 cm intervals along the longitudinal direction of the copper foil to obtain a comb-shaped conductive member 35 as shown in FIG. In FIG. 12, the number of conductive wires 55 corresponding to copper wires is six, but in this example, eight copper wires are arranged.
  • EVA sheet (trade name “EVASKY”, manufactured by Bridgestone) was cut into 18 cm ⁇ 18 cm to prepare a sheet-shaped sealing resin (sealing resin layer).
  • the resin layer B produced in the above production example was laminated on the surface-treated surface. Further thereon, the conductive member obtained above was arranged. Thus, the sheet
  • corona treatment using a corona treatment device for example, manufactured by Kasuga Denki Co., Ltd.
  • atmospheric pressure plasma treatment using an atmospheric pressure plasma processing device for example, manufactured by Sekisui Chemical Co., Ltd.
  • a silane coupling agent trade name “KBM”.
  • FIG. 13 shows a sheet (1) 1 with a conductive part arranged on the surface side (upper side) of the solar battery cell.
  • reference numeral 10 denotes an EVA sheet as the resin layer A
  • reference numeral 20 denotes the resin layer B
  • reference numeral 55 denotes a plurality of copper wires (conductive wires)
  • reference numeral 60 denotes a copper foil as a connection portion.
  • Reference numerals 30, 35, 40, and 50 denote conductive portions, conductive members, conductive path units, and solar cell contact portions, respectively.
  • a back sheet having a thickness of 200 ⁇ m (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Co., Ltd.) was prepared, cut to 18 cm ⁇ 18 cm, and a back coating member was prepared. This back surface covering member was placed, and the sheet-shaped sealing resin produced above was placed thereon. 14 to 16, the back surface covering member is denoted by reference numeral 330, and the sealing resin is denoted by reference numeral 10. Further, as shown in FIG. 14, three bus bar electrodes 310 (trade name “SSA-SPS”, 1.5 mm ⁇ 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable, Ltd.) are provided on the back surface of the sealing resin 10.
  • a fixed Si-based solar battery cell 305 (manufactured by Q Cells, single crystal cell) was disposed.
  • the bus bar electrode 310 is soldered to the solar battery cell 305 using a soldering iron heated to 350 ° C.
  • a copper terminal bar (trade name “A-SPS”, manufactured by Hitachi Cable Co., Ltd.) having a width of 6 cm was installed on both sides of the solar battery cell 305 as extraction electrodes 350a and 350b.
  • the extraction electrode 350 a arranged on the left side in the figure was fixed to the portion of the bus bar electrode 310 fixed to the solar cell 305 that protruded from the solar cell 305 with solder.
  • the sheet (1) 1 with the conductive part prepared as described above is installed so that the conductive part forming surface is the lower surface, and the sheet with the conductive part (1) 1
  • the electroconductive part 30 and the surface of the photovoltaic cell 305 were made to contact
  • a commercially available laminator (manufactured by NPC Corp.) is used at 150 ° C., 100 kPa for 5 minutes. Lamination was performed under the conditions, and curing was performed for 15 minutes. Further, a test solar cell module according to Examples 1 to 6 was constructed by performing a drying process at 150 ° C. for 15 minutes using a commercially available air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.).
  • the sheet with the conductive part (2) was produced in the same manner as the sheet with the conductive part (1), and the sheet with the conductive part (1) was changed to the sheet with the conductive part (2) Constructed a test solar cell module as described above.
  • thermo-hygrostat device name “PSL-2J”, manufactured by Espec
  • JIS C 8990: 2009 section 10.11 temperature cycle test
  • the light conversion efficiency before and after the test was measured according to JIS C 8913: 2005 using a solar simulator (device name “XES-450S1,” manufactured by Mitsunaga Electric Mfg. Co., Ltd.) under the following conditions. From the light conversion efficiency before and after the test, the reduction rate (%) of the photoelectric conversion efficiency was obtained.
  • Examples 1 to 6 in which the resin layer B is disposed between the resin layer A and the conductive portion, the rate of decrease in photoelectric conversion efficiency is lower than that in the comparative example in which the resin layer B is not provided. Low was suppressed. It is considered that the resin layer B satisfactorily maintained the contact state between the solar battery cell and the conductive portion during the thermal cycle test. Further, Examples 1 to 3, 5 in which the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) is 5000 Pa or more and tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4, It was superior to Example 6 which was 0.4 or more in terms of suppression of decrease in photoelectric conversion efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュールの生産性および耐久性を向上し得る導電部付きシートを提供する。樹脂層Aと、導電部と、該樹脂層Aと該導電部との間に配置された樹脂層Bと、を備えた導電部付きシートが提供される。前記導電部は、前記導電部付きシートの表面の一部を構成している。また、前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である。

Description

導電部付きシートおよびその利用
 本発明は、導電部付きシートに関する。詳しくは、太陽電池モジュールに好ましく用いられる導電部付きシートに関する。
 本出願は、2015年3月31日に出願された日本国特許出願2015-073407号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 光エネルギーを電力に変換する太陽電池モジュールは、クリーンな発電装置として幅広く利用されている。太陽電池モジュールは、太陽電池セルと、該セルに接続した配線とを備えており、この配線を通って上記セルにて発電された電力は外部に供給されるように構成されている。この種の従来技術を開示する文献として特許文献1~7が挙げられる。特許文献1~5は、太陽電池セルの表面側にn型電極を部分的に配置し、裏面側にp型電極を配置するタイプの太陽電池モジュールに関するものであり、特許文献6,7は、裏面側に両電極が配置されたバックコンタクト方式を採用する太陽電池モジュールに関するものである。
 また一般に、太陽電池モジュールにおいて、太陽電池セルは絶縁性かつ透光性の封止シートで覆われる。例えば、特許文献5には、エチレン酢酸ビニル共重合体からなる透明シートの表面に金属配線が設けられた封止シートが開示されている。
日本国特許出願公開2005-72115号公報 日本国特許出願公開2013-232496号公報 日本国公表特許公報2005-536894号 日本国特許第5185913号公報 日本国特許出願公開2014-63978号公報 日本国特許出願公開2010-41009号公報 日本国特許出願公開2011-238849号公報
 表裏面に電極を有するタイプの太陽電池モジュールにおいて、例えば特許文献1,2に開示されている構造は、太陽電池セルの配線をはんだ等を用いて個別に接合しなければならず配線作業に手間と時間を要する。はんだ接合等のように接合の際に加熱を行う場合には、加熱によりセルの特性が低下したり、セルに反りや割れが生じるおそれがある。はんだ接合ではフラックス汚染の問題もある。特許文献3,4に開示されている太陽電池モジュールも、導電経路となるワイヤーをはんだ接合しており、特許文献1,2と同様の問題を抱えている。また上記ワイヤーは、樹脂膜上の接着剤層に埋め込むという方法によって配置されている。この方法は部品点数や工程数が多く、生産効率の点で不利益が大きい。
 また、特許文献5に記載されている太陽電池モジュールは、金属配線を表面に有する封止シートを一対用意し、この一対の封止シートで複数の太陽電池セルを挟んで、上記金属配線と太陽電池セルとを当接させて押圧および加熱することによって、はんだ接合を必要とすることなく複数の太陽電池セルを電気的に接続するとしている。しかし、封止シートを構成する樹脂は、例えば太陽電池モジュール構築時の押圧および加熱の際に金属配線と太陽電池セルとの接触状態を損ない、集電効率を低下させる原因となり得る。
 本発明は、上記の事情に鑑みて創出されたものであり、太陽電池モジュールの生産性および耐久性を向上し得る導電部付きシートを提供することを目的とする。関連する他の目的は、導電部付きシートを備える太陽電池モジュールを提供することである。
 本発明によると、樹脂層Aと、導電部と、該樹脂層Aと該導電部との間に配置された樹脂層Bと、を備えた導電部付きシートが提供される。前記導電部は、前記導電部付きシートの表面の一部を構成している。また、前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である。
 上記構成の導電部付きシートによると、太陽電池モジュールの生産性(典型的には配線作業性)が向上する。また、上記の構成によると、シート表面に配置した導電部と太陽電池セルとを当接させる場合に、樹脂層Aと導電部との間に配置された樹脂層Bが、導電部と太陽電池セルとの接触状態を保持する。その結果、集電効率の低下が抑制され、耐久性に優れた太陽電池モジュールが実現される。なお、前記樹脂層Aは、典型的には封止樹脂層である。
 ここに開示される技術(導電部付きシート、太陽電池モジュール、それらの製造方法を包含する。以下同じ。)の好ましい一態様では、前記樹脂層Bの表面は接着性を有しており、かつ前記導電部は該樹脂層Bの表面に部分的に形成されている。このように構成することで、導電部は樹脂層Bに良好に固定される。加えて、導電部付きシートの一方の表面は導電部と樹脂層Bの露出面とから構成され、樹脂層Bの露出面は、太陽電池モジュール構築の際に太陽電池セルに接着することができる。そのため、樹脂層Bは太陽電池セルに対しても良好な固定機能を発揮し得る。このことは、太陽電池セルと導電部との接触状態を保持する点でも有利である。前記樹脂層Bはアクリル系樹脂層であることが好ましい。
 ここに開示される技術の好ましい一態様では、前記導電部は、少なくとも1つの導電パス単位から構成されている。また、一の前記導電パス単位は、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有することが好ましい。このように構成することで、太陽電池セルにて発電された電力を導電パス単位の太陽電池セル接触部分に集めて、該太陽電池セル接触部分から接続部分を通して他の配線部材(他の導電パス単位や取出し電極等)に送ることができる。
 また、一の前記導電パス単位において、前記太陽電池セル接触部分は、前記接続部分に向かって延びる形状を有しており、前記接続部分は該太陽電池セル接触部分の一端と接続することが好ましい。これによって、集電効率に優れた配線構造が好ましく実現される。
 また、一の前記導電パス単位において、前記太陽電池セル接触部分は、互いに間隔をおいて配置された複数の導電線から構成されていることが好ましい。また、前記接続部分は、前記導電線の長手方向と交差する方向に延びて該導電線の一端と接続する帯形状を有することが好ましい。このように構成することで、シャドーロスの増大を抑制しつつ高い集電効率を実現することができる。また、上記接続部分の形状および配置は、配線作業性に優れる。
 また、前記導電部は、金属材料で形成されていることが好ましい。導電部を金属材料で形成することで、生産性を向上することができる。また、実質的に金属から構成された導電部は、より低抵抗であるという利点を有する。
 また、本発明によると、ここに開示されるいずれかの導電部付きシートを備える太陽電池モジュールが提供される。上記導電部付きシートを備える太陽電池モジュールは、生産性および耐久性に優れたものとなり得る。本発明によって提供される太陽電池モジュールは、少なくとも1つの太陽電池セルと、前記少なくとも1つの太陽電池セルの少なくとも一方の表面を覆う樹脂層Aと、前記少なくとも1つの太陽電池セルに接触する導電部と、前記樹脂層Aと前記導電部との間に配置された樹脂層Bと、を備えるものであり得る。そして、前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である。
一実施形態に係る導電部付きシートの主要部を模式的に示す上面図である。 図1の導電部付きシートのII-II線における断面図である。 導電部付きシートの一態様を模式的に示す斜視図である。 一実施形態に係る第1導電部付きシートの主要部を模式的に示す上面図である。 一実施形態に係る第2導電部付きシートの主要部を模式的に示す上面図である。 一実施形態に係る太陽電池モジュールの主要部の構造を模式的に示す分解断面図である。 他の実施形態に係る導電部付きシートの一部を拡大して示す模式的断面図である。 他の実施形態に係る導電部付きシートの一部を拡大して示す模式的断面図である。 他の実施形態に係る導電部付きシートの一部を拡大して示す模式的断面図である。 特定温度域における樹脂層Bの貯蔵弾性率(G’)を示すグラフである。 特定温度域における樹脂層Bのtanδ(G”/G’)を示すグラフである。 試験用太陽電池モジュールの構築方法の説明図であって、樹脂層Bの表面に配置する前の導電部材を模式的に示す斜視図である。 試験用太陽電池モジュールの構築方法の説明図であって、導電部付きシートを模式的に示す斜視図である。 試験用太陽電池モジュールの構築方法の説明図であって、シート状封止樹脂上に太陽電池セルを積層した状態を模式的に示す斜視図である。 試験用太陽電池モジュールの構築方法の説明図であって、取出し電極を設置した状態を模式的に示す斜視図である。 試験用太陽電池モジュールの構築方法の説明図であって、太陽電池セルの上に導電部付きシートを積層した状態を模式的に示す斜視図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際に提供される製品のサイズや縮尺を必ずしも正確に表したものではない。
 ≪導電部付きシート≫
 図1は一実施形態に係る導電部付きシートの主要部を模式的に示す上面図であり、図2は図1の導電部付きシートのII-II線における断面図である。図3は、導電部付きシートの一態様を模式的に示す斜視図である。
 図1,2に示すように、導電部付きシート1は、樹脂層Aとしての封止樹脂層10と、樹脂層B20と、導電部30と、を備える。なお、導電部付きシート1は、機能面から集電性封止シートともいう。
 樹脂層Aとしての封止樹脂層10は、太陽電池モジュール内において太陽電池セル(図示せず)を封止するものである。封止樹脂層10の第1表面10A上には、樹脂層B20が配置されている。封止樹脂層10の第2表面(樹脂層B非形成面)10Bには、樹脂層Bや導電部は設けられておらず、この面は導電部付きシート1の外表面を構成している。
 樹脂層B20は、封止樹脂層10に積層されており、封止樹脂層10と導電部30との間に配置されている。具体的には、樹脂層B20の表面(第1表面)20A上に導電部30が部分的に配置されており、導電部30の配置箇所において、樹脂層B20は封止樹脂層10と導電部30との間に存在している。この実施形態では、樹脂層B20は、封止樹脂層10の第1表面10Aのほぼ全面を覆うように重ねられている。
 導電部30は、導電部付きシート1の第1表面1Aに部分的に配置されており、導電部付きシート1の第1表面1Aの一部を構成している。また、樹脂層B20の第1表面20Aにおいて導電部30が形成されていない部分(導電部非形成部分)は、導電部付きシート1の外表面として露出しており、導電部付きシート1の第1表面1Aの一部を構成している。この実施形態では、導電部付きシート1の第1表面1Aは、樹脂層B20(の導電部非形成部分)と導電部30とから構成されている。
 導電部30は、複数の導電パス単位40a,40bから構成されている。導電パス単位40a,40bは、太陽電池モジュール構築時に太陽電池セルにそれぞれ対応するように配置されるものである。この実施形態では、導電パス単位40a,40bは、互いに分離して存在しており、各々がひとまとまりの連続構造を有する。
 また、導電部付きシート1の第1表面1Aは、太陽電池セルを封止するときに一の太陽電池セルの表面に対向する領域(太陽電池セル対向領域)5a,5bと、一の太陽電池セルの表面に対向しない領域(太陽電池セル非対向領域)7と、を有する。導電パス単位40aは、導電部付きシート1の第1表面1Aにおいて、太陽電池セル対向領域5aに位置する太陽電池セル接触部分50aと、太陽電池セル非対向領域7に位置する接続部分60aと、を有する。なお、太陽電池セル接触部分50aは、太陽電池セルを封止するときに太陽電池セルと接触(典型的には当接)する部分であり、導電部付きシート1においては、太陽電池セルとの接触が予定されている部分を意味する。
 導電パス単位40aにおいて、太陽電池セル接触部分50aは、接続部分60aに向かって延びる形状を有しており、太陽電池セル接触部分50aは、その一端にて接続部分60aに接続(具体的には固定)されている。また、太陽電池セル接触部分50aは、導電部付きシート1の第1表面1Aにおいて、線状に延びる複数の導電線55aから構成されている。これら複数の導電線55aは、互いに間隔をおいて配置されている。この実施形態では、導電線55aは直線状に延びており、所定の間隔をおいて平行に配置されている。なお、図1では簡略のため、導電線55aは3本しか示していない。
 導電パス単位40aの接続部分60aは、導電線55aの長手方向と交差(具体的にはほぼ直交)する方向に延びる帯形状を有する。この接続部分60aに導電線55aの一端は接続(具体的には固定)されている。つまり、複数の導電線55aの各々の一端は、接続部分60aと接続して固定端となっている。その一方で、複数の導電線55aの各々の他端側には接続部分は配置されておらず、導電パス単位40aにおいて、導電線55aの他端は自由端となっている。このような導電パス単位40aは、上面から見たときに櫛形状を有する。換言すると、導電パス単位40aは、基部となる接続部分60aから複数の導電線55aが歯状に延びた櫛形状を有する。
 接続部分60aは、典型的には、導電部付きシート1で太陽電池セルを封止するときに太陽電池セルと非接触の状態で配置される。そのため、接続部分60aは、例えば太陽電池セルの配列方向(導電線の長手方向でもあり得る。)と交差(具体的には直交)する方向に延びる帯形状を有することが好ましい。
 導電パス単位40bは、導電パス単位40aと間隔をおいて導電パス単位40aの隣に配置されている。具体的には、導電パス単位40a,40bは、太陽電池セル対向領域5a,5bにそれぞれ対応するように(太陽電池セルの配列方向において)間隔をおいて配置されている。その他の事項については、導電パス単位40bは導電パス単位40aと同様の形状、構造、配置関係等を有する。簡潔にいうと、導電パス単位40bは、導電パス単位40aと同様に、太陽電池セル接触部分50bおよび接続部分60bを有しており、太陽電池セル接触部分50bおよび接続部分60bは、太陽電池セル接触部分50aおよび接続部分60aとそれぞれ同様の形状、構造、配置関係等を有する。したがって、太陽電池セル接触部分50bが有する導電線55bも、導電線55aと同様の形状、構造、配置関係等を有する。
 上記のように導電パス単位40a,40bを備える導電部30を配置することによって、導電部付きシート1の第1表面1Aには、導電パス単位40a,40bを含む導電部パターンが形成されている。この実施形態では、その一部が図1に示されるように、櫛形状を有する複数の導電パス単位40a,40bが所定の間隔をおいて複数列に配列されたパターンが、導電部付きシート1の第1表面1Aに形成されている。
 上記のような導電部付きシートを一対用意し、該一対の導電部付きシートで少なくとも1つの太陽電池セルを挟んで、該導電部と該少なくとも1つの太陽電池セルとを当接させることによって、太陽電池セルの電気的接続を実現することができる。上記当接による導通は、はんだ等の接着手段による接合を必要としない。したがって、太陽電池セルを備える太陽電池モジュールの生産性(典型的には配線作業性)は向上する。特に、太陽電池モジュールが複数(2以上、好ましくは10以上、より好ましくは50以上)の太陽電池セルを備える場合、その生産性(典型的には配線作業性)を飛躍的に向上させることができる。また、上記の構成によると、樹脂層Aと導電部との間に配置された樹脂層Bが、太陽電池セルと導電部との接触状態を良好に保持する。そのため、集電効率の低下が抑制され耐久性に優れた太陽電池モジュールを効率よく製造することができる。なお、ここに開示される導電部付きシートは、太陽電池セルの一方の表面側にのみ用いることも可能である。その場合、太陽電池セルの他方の表面側は、はんだ接合配線など従来公知の手法で電気的に接続すればよい。
 なお、導電部および導電パス単位は、上記実施形態の形状、構造等に限定されない。太陽電池モジュールに導電部付きシートを適用したときに、導電部を利用して太陽電池セルの電気的接続が実現できる種々の形状、構造等を採用することが可能である。したがって、導電部が導電パス単位を有し、さらに太陽電池セル接触部分および接続部分を有する場合において、それらは、ここに開示される技術の効果を実現できる範囲内で種々の形状や構造をとり得る。例えば、導電パス単位を構成する導電線は、上記実施形態では、直線状に延びて且つ互いに平行に配置された複数の導電線であったが、導電線は曲線状に延びるものであってもよく、互いに非平行(例えば交差していてもよく、あるいは互いに接触しない程度に非平行)であってもよい。
 また、一の導電パス単位における導電線の数は2本以上(典型的には2~20本、より好ましくは4~12本、さらに好ましくは6~10本)であることが好ましく、あるいは1本であってもよい。導電部の形状も特に限定されず、例えば曲線状や環状であってもよい。上記導電部は、例えば格子状や、複数のリングが連なった形状等のパターンを有するものであってもよい。したがって、上記導電部を構成し得る導電パス単位についても、形状等は特に限定されない。導電部付きシートを太陽電池セルの裏面側に配置する場合には、導電線のような細線形状を有していなくてもよく、導電パス単位は太陽電池セルの裏面全体を覆う矩形状を有するものであってもよい。
 また、接続部分は、他の配線部材(他の導電パス単位や取出し電極等)との接続機能を発揮する範囲で、種々の配置状態や形状をとり得る。例えば、接続部分は、太陽電池セル接触部分(典型的には導電線)が太陽電池セル非対向領域まで延長した形状における当該太陽電池セル非対向領域部分であってもよい。
 また、導電パス単位の数は、基本的に導電部付きシートで封止する太陽電池セルの数に対応する。したがって、例えば、一対の導電部付きシートが一の太陽電池セルを封止し、この構成(すなわち一対の導電部付きシートで太陽電池セルを挟んだ構成)を複数接続して太陽電池モジュールを構築する場合には、例えば後述の図13に示すように、一の導電部付きシート1に設けられる導電パス単位40は1つである。一方、一対の導電部付きシートで、複数の太陽電池セルを封止し、当該複数の太陽電池セルの一括配線を行う場合には、例えば図3に示すように、一の導電部付きシート1に設けられる導電パス単位40a,40bの数は、太陽電池セルの個数に対応し、5以上(例えば30以上、典型的には50以上)となり、実際には50~60程度となり得る。あるいはまた、一対の導電部付きシートで複数の太陽電池セル(例えば、間隔をおいて一列に配置される2~20個の太陽電池セル)を挟み、この構成を複数(2~10程度)組み合わせて太陽電池モジュールを構築することも可能である。
 ≪一対の導電部付きシート≫
 図4は一実施形態に係る第1導電部付きシートの主要部を模式的に示す上面図であり、図5は一実施形態に係る第2導電部付きシートの主要部を模式的に示す上面図である。図4,5を参照して、一対の導電部付きシートについて説明する。
 図4に示す第1導電部付きシート101は、太陽電池モジュールにおいて太陽電池セルを挟んで封止する一対の導電部付きシート100の一方として利用される。また図5に示す第2導電部付きシート201は、太陽電池モジュールにおいて太陽電池セルを挟んで封止する一対の導電部付きシート100の他方として利用される。
 第1導電部付きシート101は、太陽電池セルの表面側に配置される導電部付きシートである。第1導電部付きシート101としては、上述の導電部付きシート1が用いられる。したがって、第1導電部付きシート101は、上述の導電部付きシート1と同じ形状および構造を有する。第1導電部付きシート101が備える第1樹脂層Aとしての第1封止樹脂層110、第1樹脂層B120および第1導電部130も、上述の導電部付きシート1における樹脂層Aとしての封止樹脂層10、樹脂層B20および導電部30と同じ形状、構造、配置関係等を有する。導電部付きシート1における導電パス単位40a,40bは、第1導電部付きシート101において第1導電パス単位140a,140bであり、太陽電池セル接触部分50a,50b、導電線55a,55bおよび接続部分60a,60bは、それぞれ符号150a,150b、155a,155bおよび160a,160bで示される。太陽電池セル対向領域5a,5b、太陽電池セル非対向領域7は、それぞれ太陽電池セル対向領域105a,105b、太陽電池セル非対向領域107で示される。同様に、第1導電部付きシート101の第1表面は符号101Aで、第1樹脂層B120の第1表面は符号120Aで示される。
 第2導電部付きシート201は、太陽電池セルの裏面側に配置される導電部付きシートである。第2導電部付きシート201としては、上述の導電部付きシート1が用いられる。したがって、第2導電部付きシート201は、上述の導電部付きシート1と同じ形状および構造を有する。第2導電部付きシート201が備える第2樹脂層Aとしての第2封止樹脂層210、第2樹脂層B220および第2導電部230も、上述の導電部付きシート1における樹脂層Aとしての封止樹脂層10、樹脂層B20および導電部30と同じ形状、構造、配置関係等を有する。導電部付きシート1における導電パス単位40a,40bは、第2導電部付きシート201において第2導電パス単位240a,240bであり、太陽電池セル接触部分50a,50b、導電線55a,55bおよび接続部分60a,60bは、それぞれ符号250a,250b、255a,255bおよび260a,260bで示される。太陽電池セル対向領域5a,5b、太陽電池セル非対向領域7は、それぞれ太陽電池セル対向領域205a,205b、太陽電池セル非対向領域207で示される。同様に、第2導電部付きシート201の第1表面は符号201Aで、第2樹脂層B220の第1表面は符号220Aで示される。
 この実施形態では、第1導電部付きシート101と第2導電部付きシート201とは、どちらも導電部付きシート1であるが、ここに開示される技術はこれに限定されない。第1導電部付きシートと第2導電部付きシートとは、同じ形状、構造等を有していてもよく、異なる形状、構造等を有していてもよい。具体的には、第1導電部付きシートを構成する第1導電部の形状、構造等は、第2導電部付きシートを構成する第2導電部の形状、構造等と同じでもよく、異なってもよい。同様に、第1導電部付きシートの表面における第1導電部に基づく第1導電パターンの形状等は、第2導電部付きシートの表面における第2導電部に基づく第2導電パターンの形状等と同じでもよく、異なってもよい。例えば、集電効率向上の観点から、第2導電部付きシート表面の第2導電パス単位における太陽電池セル接触部分の面積は、対応する第1導電部付きシート表面の第1導電パス単位における太陽電池セル接触部分の面積よりも大きくてもよく、第2導電パス単位における導電線の面積は、対応する第1導電パス単位における導電線の面積よりも大きくてもよい。具体的には、第2導電パス単位における導電線の数が、対応する第1導電パス単位における導電線の数よりも多い構成や、第2導電パス単位における導電線の太さ(幅および/または厚み)が、対応する第1導電パス単位における導電線の太さよりも大きい構成が挙げられる。あるいは、第2導電部付きシートの第2導電パス単位のみ、第2導電部付きシート表面における太陽電池セル対向領域のほぼ全域に配置されてもよい。
 なお、第1導電部付きシートおよび第2導電部付きシートはそれぞれ、太陽電池モジュールに組み込まれる前は、その少なくとも一方の表面(典型的には両面)が剥離性支持体(剥離ライナー)に保護された形態で提供され得る。
 ≪太陽電池モジュール≫
 図6は、一実施形態に係る太陽電池モジュールの主要部の構造を模式的に示す分解断面図である。図6を参照して、以下、一対の導電部付きシートを用いて構築される太陽電池モジュールについて説明する。
 図6に示すように、太陽電池モジュール300は、太陽電池セル305a,305bを含む複数の太陽電池セルを備える。また、太陽電池モジュール300は、太陽電池セル305a,305bの表面を覆う第1導電部付きシート101と、太陽電池セル305a,305bの裏面を覆う第2導電部付きシート201と、を備える。さらに、太陽電池モジュール300は、第1導電部付きシート101の外方(上側)に配置された表面被覆部材320と、第2導電部付きシート201の外方(下側)に配置された裏面被覆部材330と、を備える。表面被覆部材320および裏面被覆部材330は、それぞれ太陽電池モジュール300の表(おもて)面および裏(うら)面を構成している。
 太陽電池セル305a,305bを含む複数の太陽電池セルからなる太陽電池セル群302は、所定の間隔をおいて直線状に一列に配列されている。太陽電池セル305a,305bの表面にはn型電極(表面電極)が部分的に形成されており、裏面にはp型電極(裏面電極)が形成されている。なお、特に図示しないが、太陽電池モジュール300は、上記のように一列に配列された太陽電池セル群302に加えて、太陽電池セル群302の配列方向に平行するように一列に配列された他の太陽電池セル群を備える。
 第1導電部付きシート101としては、上述のものが用いられており、その第1導電部130を構成する第1導電パス単位140a,140bは、太陽電池セル群302の配列方向において所定の間隔をおいて分離して配置されている。第1導電パス単位140a,140bは、隣りあう2つの太陽電池セル305a,305bの表面(より具体的には表面電極)にそれぞれ対向接触するように配置されている。なお、第1導電パス単位140aは、太陽電池セル305a以外の太陽電池セルとは接触しておらず、第1導電パス単位140bは、太陽電池セル305b以外の太陽電池セルとは接触していない。第1導電部付きシート101に第1導電部130を設けることにより、従来の太陽電池セル表面に設けられていたバスバー(典型的には、はんだ被覆銅線)は不要となる。
 第1導電パス単位140aは、太陽電池セル305aと対向接触する太陽電池セル接触部分150aを有する。また、第1導電パス単位140aは、太陽電池セル接触部分150aから太陽電池セル305a,305bの配列方向に沿って延びて太陽電池セル305a,305bの間に位置する領域にはみ出しており、当該はみ出した部分に接続部分160aを有する。換言すると、第1導電パス単位140aは、太陽電池セル接触部分150aと、太陽電池セル305a,305bの間に位置する領域にはみ出した部分とを有し、当該はみ出した部分は接続部分160aを有する。このように、第1導電パス単位140aにはみ出した部分を設け、該はみ出した部分に接続部分160aを配置することにより、第1導電部130の第1導電パス単位140aは、第2導電部230の第2導電パス単位240bと電気的に接続しやすい構成となる。
 第1導電パス単位140aは、上述かつ図4に示すように複数の導電線155aを有する。これら導電線155aは、太陽電池セル群302の配列方向に平行する方向に線状に延びており、該配列方向に直交する方向に所定の間隔をおいて配置されている。より具体的には、導電線155aは、それぞれ直線状に延びる形状を有しており、互いに間隔をおいて、かつ平行するように配置されている。導電線155aは、第1導電部付きシート101の第1表面101Aにおいて太陽電池セル305aとの対向領域105aに配置されており、かつ、太陽電池セル305a,305bの間に位置する領域まで線状に延びて、接続部分160aと接続している。
 第1導電パス単位140aの接続部分160aは、第1導電部付きシート101の表面101Aにおいて、複数の太陽電池セル305a,305bの間の太陽電池セル非対向領域107に配置されている。また、接続部分160aは、太陽電池セル群302の配列方向と交差(具体的にはほぼ直交)する方向に帯状に延びるように配置されている。これによって、第1導電パス単位140aは、太陽電池セル305aと接触するとともに、その接続部分160aが他の配線部材に接触する。具体的には、接続部分160aは、太陽電池セル305a,305bの間で、太陽電池セル305bと接触する第2導電パス単位240bの接続部分260bと当接する。また特に図示しないが、第1導電部付きシート101の第1導電部130において、間隔をおいて配列された複数の第1導電パス単位のうち上記配列方向の端に位置する第1導電パス単位の接続部分は、太陽電池セル対向領域の外側にある太陽電池セル非対向領域にて取出し電極(図示せず)と接触し得る。
 第1導電パス単位140bは第1導電パス単位140aと基本的に同様に構成されており、太陽電池セル接触部分150b、導電線155bおよび接続部分160bも、それぞれ太陽電池セル接触部分150a、導電線155aおよび接続部分160aと基本的に同様に構成されているので、重複する説明は省略する。
 第2導電部付きシート201としては、上述のものが用いられており、その第2導電部230を構成する第2導電パス単位240a,240bは、太陽電池セル群302の配列方向において所定の間隔をおいて分離して配置されている。第2導電パス単位240a,240bは、隣りあう2つの太陽電池セル305a,305bの裏面(より具体的には裏面電極)にそれぞれ対向接触するように配置されている。なお、第2導電パス単位240aは、太陽電池セル305a以外の太陽電池セルとは接触しておらず、第2導電パス単位240bは、太陽電池セル305b以外の太陽電池セルとは接触していない。第2導電部付きシート201に第2導電部230を設けることにより、従来の太陽電池セル裏面に設けられていたバスバー(典型的には、はんだ被覆銅線)は不要となる。
 第2導電パス単位240bは、太陽電池セル305bと対向接触する太陽電池セル接触部分250bを有する。また、第2導電パス単位240bは、太陽電池セル接触部分250bから太陽電池セル305a,305bの配列方向に沿って延びて太陽電池セル305a,305bの間に位置する領域にはみ出しており、当該はみ出した部分に接続部分260bを有する。換言すると、第2導電パス単位240bは、太陽電池セル接触部分250bと、太陽電池セル305a,305bの間に位置する領域にはみ出した部分とを有し、当該はみ出した部分は接続部分260bを有する。このように、第2導電パス単位240bにはみ出した部分を設け、該はみ出した部分に接続部分260bを配置することにより、第2導電部230の第2導電パス単位240bは、第1導電部130の第1導電パス単位140aと電気的に接続しやすい構成となる。
 第2導電パス単位240bは、上述かつ図5に示すように複数の導電線255bを有する。これら導電線255bは、太陽電池セル群302の配列方向に平行する方向に線状に延びており、該配列方向に直交する方向に所定の間隔をおいて配置されている。より具体的には、導電線255bは、それぞれ直線状に延びる形状を有しており、互いに間隔をおいて、かつ平行するように配置されている。導電線255bは、第2導電部付きシート201の第1表面201Aにおいて太陽電池セル305bとの対向領域205bに配置されており、かつ、太陽電池セル305a,305bの間に位置する領域まで線状に延びて、接続部分260bと接続している。
 第2導電パス単位240bの接続部分260bは、第2導電部付きシート201の表面201Aにおいて、複数の太陽電池セル305a,305bの間の太陽電池セル非対向領域207に配置されている。また、接続部分260bは、太陽電池セル群302の配列方向と交差(具体的にはほぼ直交)する方向に帯状に延びるように配置されている。これによって、第2導電パス単位240bは、太陽電池セル305bと接触するとともに、その接続部分260bが他の配線部材に接触する。具体的には、接続部分260bは、太陽電池セル305a,305bの間で、太陽電池セル305aと接触する第1導電パス単位140aの接続部分160aと当接する。また特に図示しないが、第2導電部付きシート201の第2導電部230において、間隔をおいて配列された複数の第2導電パス単位のうち上記配列方向の端に位置する第2導電パス単位の接続部分は、太陽電池セル対向領域の外側にある太陽電池セル非対向領域にて取出し電極(図示せず)と接触し得る。
 第2導電パス単位240aは第2導電パス単位240bと基本的に同様に構成されており、太陽電池セル接触部分250a、導電線255aおよび接続部分260aも、それぞれ太陽電池セル接触部分250b、導電線255bおよび接続部分260bと基本的に同様に構成されているので、重複する説明は省略する。
 なお、太陽電池セル305a,305b以外の太陽電池セルや、第1導電部130における第1導電パス単位140a,140b以外の第1導電パス単位、第2導電部230における第2導電パス単位240a,240b以外の第2導電パス単位の形状、構造、配置関係等についても、配線作業を効率よく行う観点から、太陽電池セル305a,305bや、第1導電パス単位140a,140b、第2導電パス単位240a,240bからなる構成単位と基本的に同様に構成することが好ましく、同様の構成単位が繰り返されるように構成することがより好ましい。
 上述のように構成することにより、太陽電池モジュール300において、第1導電部130および第2導電部230は、隣りあう2つの太陽電池セルの一方の表面(例えば太陽電池セル305aの表面)および他方の裏面(例えば太陽電池セル305bの裏面)の間の導電経路を構成する。太陽電池セルがさらに配列されている場合には、第1導電部130および第2導電部230は、それら太陽電池セルの表面と裏面とを交互に電気的に接続することができる。その結果、太陽電池セル群302の電気的接続が実現される。太陽電池セル群302にて発電された電力は、太陽電池モジュール300において太陽電池セル群302の配列方向の両端に配置された取出し電極としての端子バー(図示せず)を通って、太陽電池モジュール300の外部に供給される。ここに開示される技術は、導電部付きシートを使用する他は基本的に従来公知の既存の構成を利用して実施することができるので、設備全体を置き換える必要がなく実用上の利点が大きい。
 太陽電池セルの電気的接続に関してさらに説明する。太陽電池モジュール300の構築時において、第1導電部付きシート101および第2導電部付きシート201を備える一対の導電部付きシート100で、各々の導電部形成面が向かいあうようにして、太陽電池セル305a,305bを挟む。そして、一対の導電部付きシート100を太陽電池セル305a,305bに押し当てると、第1導電部付きシート101の第1導電部130および第2導電部付きシート201の第2導電部230が、各々が備える接続部分160a,160b、接続部分260a,260bにて当接し、これによって太陽電池モジュール300の電気的接続が実現される。具体的には、第1導電パス単位140aの太陽電池セル接触部分150aと第2導電パス単位240aの太陽電池セル接触部分250aとが太陽電池セル305aに当接する。また、第1導電パス単位140bの太陽電池セル接触部分150bと第2導電パス単位240bの太陽電池セル接触部分250bとが太陽電池セル305bに当接する。そして、第1導電パス単位140aの接続部分160aと第2導電パス単位240bの接続部分260bとが当接する。また、第1導電パス単位140bの接続部分160bは、図6において第2導電パス単位240bの右隣に配置された第2導電パス単位の接続部分に当接し、第2導電パス単位240aの接続部分260aは、図6において第1導電パス単位140aの左隣に配置された第1導電パス単位の接続部分に当接する。なお、太陽電池セル群302の配列方向において、その配列方向の両端に配置された太陽電池セルに対応する第1導電パス単位や第2導電パス単位の接続部分は、太陽電池セル群302の外方に配置される図示しない取出し電極(端子バー)に当接する。これによって、太陽電池モジュール300の電気的接続が実現される。なお、太陽電池モジュール300の構築一般については、当該技術分野における技術常識に基づき実施可能であり、本発明を特徴づけるものではないので説明は省略する。
 上記の構成は、従来の配線手法(典型的には、はんだ等を用いて行う手法)と比べて、太陽電池セルの配線作業性に優れる。また、強度面にも優れることから、例えば導電部付きシートの応力等に起因する断線等の不具合も防止される。さらに、上記電気的接続ははんだ接合を必要としないため、はんだ接合による不具合(典型的には、セルの反りや割れ、特性低下、フラックス汚染)を回避することが可能である。はんだ接合を必要としないことは、太陽電池セルの構造にも利点をもたらす。具体的には、太陽電池セルの裏面には、BSF(Back Surface Field)効果等の観点から、全面にアルミニウム電極(裏面電極)を設けることが好ましい。しかし、アルミニウムははんだ接合性に劣るため、金属配線との接合箇所には、通常、はんだ接合性に優れる銀電極が配置されている。つまり、太陽電池セルの裏面電極としては、通常はアルミニウム電極と銀電極とが併用されている。ここに開示される技術によると、太陽電池セルの裏面における電気的接続は、当該裏面における裏面電極(アルミニウム電極)と第2導電部付きシートの第2導電パス単位とが当接するだけで実現されるので、太陽電池セル裏面でのはんだ接合は不要となる。したがって、ここに開示される技術を採用することによって、太陽電池セルの裏面電極が銀電極を実質的に含まない構造の太陽電池モジュールが実現され得る。この構成によるコスト低減および生産性向上の利点は大きい。
 ≪導電部付きシートおよび太陽電池モジュールの各構成要素≫
 次に、導電部付きシートおよび太陽電池モジュールを構成する各要素について説明する。
 <樹脂層A>
 ここに開示される樹脂層A(第1樹脂層Aおよび第2樹脂層Aを包含する。以下同じ。)は、典型的には、封止樹脂から形成されたシート状部材である。すなわち、樹脂層Aは封止樹脂層(第1封止樹脂層および第2封止樹脂層を包含する。以下同じ。)と言い換えることができる。樹脂層Aは、絶縁性を有し、かつ透光性を有するものであり得る。また例えば、熱や圧力によって流動性を示し得る樹脂層であり得る。なお、本明細書において「絶縁性を有する」とは、25℃における比抵抗が1×10Ω・cm以上(好ましくは1×108Ω・cm以上、典型的には1×1010Ω・cm以上)であることをいう。また、本明細書において電気抵抗(例えば比抵抗)は、特記しないかぎり25℃における値をいうものとする。また、本明細書において「透光性を有する」とは、JIS K 7375:2008で規定される全光線透過率が50%以上(好ましくは80%以上、典型的には95%以上)であることをいう。なお、第2樹脂層B(封止樹脂層)は透光性を有していなくてもよい。
 樹脂層Aを形成する樹脂(典型的には封止樹脂)は、好ましくは熱硬化性樹脂であって、導電部付きシートにおいては、硬化前(架橋処理等の熱硬化処理を行う前)の樹脂であり得る。このような樹脂を含む樹脂層Aは、例えば太陽電池セルに積層し加熱することで、太陽電池モジュールにおいて太陽電池セルを良好に封止することができる。上記樹脂としては、透光性、加工性、耐候性等の観点から、エチレン-酢酸ビニル共重合体(EVA)が好ましく使用される。上記樹脂は、EVAに代表されるエチレン-ビニルエステル共重合体の他、エチレン-(メタ)アクリル酸共重合体等のエチレン-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エステル等のエチレン-不飽和カルボン酸エステル共重合体、ポリメタクリル酸メチル等の不飽和カルボン酸エステル系重合体等であってもよい。あるいは、フッ化ビニリデン樹脂、ポリエチレンテトラフルオロエチレン等のフッ素樹脂;低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE。典型的にはチーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造され得るLLDPE)等のポリエチレン(PE)、ポリプロピレン(PP。例えば、チーグラー触媒、フィリップス触媒、メタロセン触媒等を用いて製造され得るPP)、チーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造することができるエチレン・α-オレフィン共重合体、それらの変性物(変性ポリオレフィン)等のポリオレフィン類;ポリブタジエン類;ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB等のポリビニルアセタール;ポリエチレンテレフタレート(PET);ポリイミド;非晶質ポリカーボネート;シロキサンゾル-ゲル;ポリウレタン;ポリスチレン;ポリエーテルサルフォン;ポリアリレート;エポキシ樹脂;シリコーン樹脂;アイオノマー;等であってもよい。これらの樹脂は単独で使用してもよく、また2種以上を混合して使用してもよい。上記樹脂は、紫外線吸収剤や光安定剤等の、この分野に公知の各種添加剤を含み得る。
 また、樹脂層Aの表面には、樹脂層Bを形成する前に密着性向上剤を付与することが好ましい。密着性向上剤が付与された樹脂層A表面に樹脂層Bを形成することにより、樹脂層Aと樹脂層Bとの密着性が向上する。上記樹脂層AとしてEVAシートが用いられる場合には、密着性向上剤としてシランカップリング剤が好ましく使用される。典型的には、密着性向上剤を上記樹脂層A表面に付与した後に加熱処理することで、樹脂層Bの密着性は向上する。なお、密着性向上剤の使用形態は塗布に限定されず、上記樹脂層Aに含ませて使用することも可能である。また、樹脂層Aの表面には、密着性向上その他を目的として、コロナ処理、大気圧プラズマ処理等の各種表面処理を単独でまたは組み合わせて施すことができる。
 樹脂層Aの厚さは、太陽電池セルの封止性等の観点から、100~2000μm(例えば200~1000μm、典型的には400~800μm)程度とすることが好ましい。
 <樹脂層B>
 (樹脂層Bの特性)
 ここに開示される樹脂層Bは、太陽電池セルと導電部との接触状態を良好に保持する層として機能し得る。導電部付きシートにおいては、樹脂層Bは、樹脂層Aと導電部との間に配置される層であり、好ましくは樹脂層A表面の全体に配置される。樹脂層Bは、樹脂層A表面に部分的に配置されるものであってもよい。このような樹脂層Bは、典型的には、室温付近の温度域において弾性体または粘弾性体の性質を示す層である。なお、ここでいう粘弾性体は、粘性と弾性の性質を併せ持つ材料、すなわち、複素弾性率の位相が0を超えてπ/2未満、を満たす性質を有する材料(典型的には25℃において上記性質を有する材料)である。
 ここに開示される技術は、樹脂層Bの貯蔵弾性率G’(周波数1Hz、歪み0.1%、150℃)が5,000Pa以上であることによって特徴づけられる。後述のtanδを満足し、かつ、高温時に所定以上の貯蔵弾性率G’を示す樹脂層Bを用いることで、高温条件下において太陽電池セルと導電部とが良好に接触し、かつ様々な条件下(例えば幅広い温度条件下)において、その接触状態が安定的に維持され得る。例えば、太陽電池モジュールの構築に際して導電部付きシートを太陽電池セルに押し当てたときに、高温条件下においても導電部を太陽電池セル表面に良好に当接させることができる。上記150℃貯蔵弾性率G’は、より好ましくは10,000Pa以上、さらに好ましくは20,000Pa以上、特に好ましくは25,000Pa以上(例えば50,000Pa以上、典型的には80,000Pa以上)である。また、上記150℃貯蔵弾性率G’は、通常は1,000,000Pa以下であり、好ましくは500,000Pa以下、より好ましくは200,000Pa以下(例えば150,000Pa以下、典型的には100,000Pa以下)であり得る。
 また、樹脂層Bの貯蔵弾性率G’(周波数1Hz、歪み0.1%)は、80℃~150℃の温度域において、5,000Pa~1,000,000Paの範囲内にあることが好ましい。上記高温域における貯蔵弾性率G’の変化が所定の範囲内にあることは、樹脂層Bの物性が温度変化の影響を受けにくいことを意味し得る。80℃~150℃の温度域における樹脂層Bの貯蔵弾性率G’は、より好ましくは5,000Pa~500,000Pa、さらに好ましくは5,000Pa~200,000Pa(例えば10,000Pa~100,000Pa)の範囲内である。
 さらに、樹脂層Bの貯蔵弾性率G’(周波数1Hz、歪み0.1%)は、30℃~150℃の温度域において、5,000Pa~10,000,000Paの範囲内にあることが好ましい。上記のような広い温度域における貯蔵弾性率G’の変化が所定の範囲内にあることは、樹脂層Bの物性が温度変化の影響を受けにくいことを意味し得る。30℃~150℃の温度域における樹脂層Bの貯蔵弾性率G’は、より好ましくは5,000Pa~1,000,000Pa、さらに好ましくは5,000Pa~500,000Pa(例えば10,000Pa~200,000Pa)の範囲内である。
 また、ここに開示される技術は、樹脂層Bの貯蔵弾性率G’(周波数1Hz、歪み0.1%、150℃)が5,000Pa以上であることに加えて、樹脂層Bのtanδの最大値が、80℃~150℃の温度域において0.4未満であることを特徴とする。上記貯蔵弾性率G’を満足し、かつ、高温域におけるtanδが所定値以下の樹脂層Bを用いることで、高温域において太陽電池セルと導電部とが良好に接触し、かつ様々な条件下(例えば幅広い温度条件下)において、その接触状態が安定的に維持され得る。例えば、太陽電池モジュールの構築に際して導電部付きシートを太陽電池セルに押し当てたときに、高温条件下においても導電部を太陽電池セル表面に良好に当接させることができる。なお、tanδは、損失弾性率G”/貯蔵弾性率G’から求められる値(G”/G’)である。80℃~150℃の温度域における樹脂層Bのtanδの最大値は、より好ましくは0.3未満である。また、上記温度域におけるtanδの最小値は、通常は0.01以上(例えば0.1以上)であり得る。
 樹脂層Bの貯蔵弾性率G’(周波数1Hz、歪み0.1%、150℃)およびtanδ(G”/G’)は、市販のレオメーターを用いて、周波数1Hz、歪み0.1%の条件で、所定の温度範囲(80℃~150℃を含む温度域、さらには30℃~150℃を含む温度域)で測定すればよい。測定温度域および昇温速度は、測定装置の機種等に応じて適切に設定すればよい。例えば、30℃~160℃の温度域、0.5℃~20℃/分(例えば10℃/分)程度の昇温速度とすることができる。測定サンプルとしては、約2mm厚とした樹脂層Bを直径8mm程度に打ち抜いたものを使用することが望ましい。樹脂層Bの貯蔵弾性率G’およびtanδ(G”/G’)は、具体的には、後述の実施例に記載の方法で測定される。
 樹脂層Bは、接着性(典型的には粘着性)を有してもよく、有しなくてもよい。換言すると、樹脂層Bは、粘着層であってもよく、非粘着層であってもよい。ここで「粘着層」とは、JIS Z 0237:2009に準じて、SUS304ステンレス鋼板を被着体とし、23℃の測定環境下において2kgのローラを1往復させて上記被着体に圧着してから30分後に引張速度300mm/分の条件で180°方向に剥離した場合の剥離強度が0.1N/20mm以上である層をいう。また、「非粘着層」とは、上記粘着層に該当しない層をいい、典型的には上記剥離強度が0.1N/20mm未満である層をいう。23℃の測定環境下において2kgのローラを1往復させてSUS304ステンレス鋼板に圧着した場合に該ステンレス鋼板に貼り付かない層(実質的に粘着性を示さない層)は、ここでいう非粘着層の概念に含まれる典型例である。
 ここに開示される技術は、粘着剤から形成された粘着層(粘着剤層ともいう。)に該当する樹脂層Bを含む形態で好ましく実施される。この場合、樹脂層B形成用組成物は粘着剤組成物であり得る。なお、本明細書において「粘着剤」とは、室温付近の温度域において柔らかい固体(粘弾性体)の状態を呈し、圧力により簡単に被着体に接着する性質を有する材料をいう。ここでいう粘着剤は、「C. A. Dahlquist, “Adhesion : Fundamental and Practice”, McLaren & Sons, (1966) P. 143」に定義されているとおり、一般的に、複素引張弾性率E(1Hz)<10dyne/cmを満たす性質を有する材料(典型的には、25℃において上記性質を有する材料)である。
 樹脂層Bの表面は接着性を有することが好ましい。これによって、導電部は樹脂層Bに良好に固定される。また、樹脂層B表面の導電部非形成領域が露出して導電部付きシートの第1表面を構成している場合には、当該樹脂層Bの露出面は、太陽電池モジュール構築の際に太陽電池セルに良好に接着する。両面に接着性を有する樹脂層Bを用いることで、樹脂層Aと導電部とを良好に固定することができる。なお、樹脂層Bの表面が弱接着性であったり実質的に非接着性である場合は、公知の接着剤、粘着剤等を利用して樹脂層Aや導電部と固定され得る。
 好ましい一態様では、樹脂層Bの表面は、結晶系Si太陽電池セルに対して3N/10mm以上の180度剥離強度(対太陽電池セル接着力)を示す。上記対太陽電池セル接着力は、太陽電池セルや導電部との固定等の観点から、より好ましくは5N/10mm以上、さらに好ましくは8N/10mm以上(例えば10N/10mm以上、典型的には12N/10mm以上)である。特に好ましい一態様では、樹脂層Bの表面は、結晶系Si太陽電池セルに対して15N/10mm以上の180度剥離強度を示す。樹脂層B表面の対太陽電池セル接着力の上限は特に限定されないが、上記接着力は、貼り直し等の作業性の観点から、通常は50N/10mm以下(例えば30N/10mm以下、典型的には20N/10mm以下)程度である。
 上記対太陽電池セル接着力の測定に用いられる被着体は、結晶系Si太陽電池セルである。例えば、Qセルズ社製の結晶系Si太陽電池セルやGINTECH社製の単結晶系Siセルが好ましく用いられる。測定は、ラミネート等によって樹脂層Bを被着体にしっかりと貼り合わせた後、市販の引張試験機を用いて、23℃、50%RHの雰囲気下、引張速度30mm/分、剥離角度180度の条件で実施することができる。上記対太陽電池セル接着力は、具体的には、後述の実施例に記載の方法で測定することができる。
 樹脂層Bは典型的には透光性を有する。樹脂層Bの全光線透過率は、好ましくは70%以上、より好ましくは85%以上である。特に好ましい一態様では、太陽電池セルの発電効率の観点から、樹脂層Bの全光線透過率は90%以上である。樹脂層Bの全光線透過率は、市販のヘーズメーターを用いて測定することができる。具体的には、後述の実施例に記載の方法で測定することができる。
 ここに開示される樹脂層Bは、150℃におけるメルトマスフローレート(MFR)が9g/10分以下を示す樹脂材料から構成されていることが好ましい。上記MFRを示す樹脂層Bは、良好な保形性を発揮することができる。上記MFRは、より好ましくは3g/10分以下、さらに好ましくは1g/10分以下、特に好ましくは0.5g/10分以下(例えば0.2g/10分以下)である。上記MFRは、後述の実施例に記載の方法で測定される。
 また、樹脂層Bの線膨張率は、-40℃~85℃の温度域において15%未満であることが好ましい。上記の線膨張率を示す樹脂層Bによると、耐久性により優れた導電部付きシートが実現される。上記線膨張率は、より好ましくは12%以下(例えば10%以下)である。樹脂層Bの線膨張率としては、後述の実施例に記載の方法で測定される引張モードおよび圧縮モードによる値のいずれか一方(好ましくは両方)の値が採用される。
 (樹脂層Bの組成)
 ここに開示される樹脂層Bは、樹脂材料から形成された樹脂層である。好ましくは、架橋された樹脂をベースポリマーとして含む樹脂層(例えば、架橋処理が施された樹脂層)である。樹脂層Bは、樹脂層Aと異なる物性を有し、典型的には、樹脂層Aの樹脂材料とは異なる樹脂材料から形成され得る。樹脂層Bを形成する樹脂は、アクリル系樹脂、EVA系樹脂、ポリオレフィン系樹脂、ゴム類、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、フッ素系樹脂等の各種の樹脂から選択される1種または2種以上であり得る。また、アクリル系樹脂とは、アクリル系ポリマーをベースポリマー(ポリマー成分のなかの主成分、すなわちポリマー成分のなかで配合割合の最も大きい成分、典型的には50重量%を超えて含まれる成分)とする樹脂材料をいう。EVA系その他の樹脂についても同様の意味である。
 (EVA系樹脂)
 好ましい一態様に係る樹脂層Bは、EVA系樹脂から形成されたEVA系樹脂層である。かかる樹脂層B(樹脂層B形成用組成物でもあり得る。)に占めるEVAの割合は特に限定されないが、典型的には50重量%以上であり、好ましくは70重量%以上、より好ましくは80重量%以上である。また、上記EVA系樹脂層は、所望の物性を得る観点から、凡そ80~200℃(例えば100~180℃、典型的には120~160℃)で熱硬化処理が施されたものであることが好ましい。熱硬化処理時間は、特に限定されず、通常は5分以上であり、好ましくは10分以上、より好ましくは20分以上(例えば30分以上、典型的には40分~120分)である。上記EVA系樹脂層は、熱硬化処理前または処理中にプレス処理が行われていることが好ましい。
 (アクリル系ポリマー)
 好ましい一態様において、樹脂層Bは、ベースポリマーとしてアクリル系ポリマーを含む層、すなわちアクリル系樹脂層であり得る。かかる組成の樹脂層Bは、保形性や柔軟性など所望の物性に調節しやすいので好ましい。また、樹脂層Bに占めるアクリル系ポリマーの割合は特に限定されないが、典型的には50重量%以上であり、好ましくは70重量%以上、より好ましくは80重量%以上である。
 なお、本明細書において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートを包括的に指す意味である。同様に、「(メタ)アクリロイル」とは、アクリロイルおよびメタクリロイルを、「(メタ)アクリル」とはアクリルおよびメタクリルを、それぞれ包括的に指す意味である。
 また、本明細書において「アクリル系ポリマーを構成するモノマー成分」とは、樹脂層Bを形成する樹脂材料においてアクリル系ポリマーを構成するモノマー単位をいう。モノマー成分は、樹脂層Bを形成するために用いられる樹脂層B形成用組成物中に、未重合物の形態(すなわち、重合性官能基が未反応である原料モノマーの形態)で含まれてもよく、重合物の形態で含まれていてもよく、これらの両方の形態で含まれていてもよい。
 ここに開示される樹脂層B形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(A)成分を含む。
 上記(A)成分は、炭素数1~20のアルキル基をエステル末端に有するアルキル(メタ)アクリレートである。以下、炭素数がX以上Y以下のアルキル基をエステル末端に有するアルキル(メタ)アクリレートを「CX-Yアルキル(メタ)アクリレート」と表記することがある。C1-20アルキル(メタ)アクリレートにおけるC1-20アルキル基の構造は特に限定されず、上記アルキル基が直鎖のものおよび分岐鎖のもののいずれも使用可能である。(A)成分としては、このようなC1-20アルキル(メタ)アクリレートの1種を単独でまたは2種以上を組み合わせて用いることができる。
 直鎖アルキル基をエステル末端に有するC1-20アルキル(メタ)アクリレートとして、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-へプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、n-ウンデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ペンタデシル(メタ)アクリレート、n-ヘキサデシル(メタ)アクリレート、n-ヘプタデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-ノナデシル(メタ)アクリレート、n-エイコシル(メタ)アクリレートが挙げられる。また、分岐鎖アルキル基をエステル末端に有するC3-20アルキル(メタ)アクリレートとして、イソプロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、イソヘキシル(メタ)アクリレート、イソへプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、2-プロピルヘプチル(メタ)アクリレート、イソウンデシル(メタ)アクリレート、イソドデシル(メタ)アクリレート、イソトリデシル(メタ)アクリレート、イソミスチリル(メタ)アクリレート、イソペンタデシル(メタ)アクリレート、イソヘキサデシル(メタ)アクリレート、イソヘプタデシル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソノナデシル(メタ)アクリレート、イソエイコシル(メタ)アクリレート等が例示される。これらアルキル(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて用いることができる。
 (A)成分は、(A1)成分としてC4-9アルキル(メタ)アクリレートを含む態様で好ましく実施され得る。アクリル系ポリマーがモノマー単位として(A1)成分を含むことで、所望の物性を有する樹脂層Bが得られやすい傾向があり、また粘着性も得られやすい傾向がある。(A1)成分はC4-9アルキル(メタ)アクリレートから選択される1種または2種以上であり得る。他のモノマー成分(例えば環状窒素含有モノマー)との相溶性等の観点から、(A1)成分として、C4-9アルキルアクリレートが好ましく使用される。C4-9アルキルアクリレートの好適例としては、n-ブチルアクリレート、2-エチルヘキシルアクリレート、イソオクチルアクリレートおよびイソノニルアクリレートが挙げられる。
 (A)成分が(A1)成分を含む場合、(A)成分に占める(A1)成分の割合は、通常は20重量%以上(例えば20~80重量%)であり、好ましくは30重量%以上(例えば30~70重量%)であり、より好ましくは40重量%以上(例えば40~60重量%)である。(A)成分に占める(A1)成分の割合は、50重量%以上(例えば80重量%以上、典型的には90~100重量%)であってもよい。
 また、(A)成分は、(A2)成分としてC10-18アルキル(メタ)アクリレートを含む態様でも好ましく実施され得る。アクリル系ポリマーがモノマー単位として(A2)成分を含むことで、所望の物性を有する樹脂層Bがより得られやすい傾向がある。(A2)成分は、C10-18アルキル(メタ)アクリレートから選択される1種または2種以上であり得る。(A2)成分は、より好ましくはアルキル基が分岐鎖であるC10-18アルキル(メタ)アクリレートを含み、さらに好ましくは、他のモノマー成分(例えば環状窒素含有モノマー)との相溶性等の観点から、アルキル基が分岐鎖であるC10-18アルキルアクリレートを含む。C10-18アルキル(メタ)アクリレートの好適例としては、イソデシルアクリレート、イソデシルメタクリレート、ドデシルメタクリレート、トリデシルメタクリレート、イソミスチリルアクリレート、イソステアリルアクリレート、ステアリルメタクリレートが挙げられる。
 (A)成分が(A2)成分を含む場合、(A)成分に占める(A2)成分の割合は、通常は20重量%以上(例えば20~80重量%)であり、好ましくは30重量%以上(例えば30~70重量%)であり、より好ましくは40重量%以上(例えば40~60重量%)である。(A)成分に占める(A2)成分の割合は、50重量%以上(例えば80重量%以上、典型的には90~100重量%)であってもよい。
 (A)成分として、(A1)成分と(A2)成分とを併用する場合、(A1)成分と(A2)成分との重量比(A1:A2)は、特に限定されないが、通常は1:9~9:1とすることが適当であり、好ましくは2:8~8:2(例えば3:7~7:3、典型的には4:6~6:4)である。
 また、(A)成分は、(A3)成分としてC1-3アルキル(メタ)アクリレートおよびC19-20アルキル(メタ)アクリレートの1種または2種以上を含有してもよい。(A)成分が(A3)成分を含む場合、樹脂層Bの物性の観点から、(A)成分に占める(A3)成分の割合は、通常は30重量%以下(例えば15重量%以下、典型的には1~5重量%)程度とすることが好ましい。ここに開示される技術は、(A)成分が(A3)成分を実質的に含まない態様((A)成分に占める(A3)成分の割合が1重量%未満、さらには0.1重量%未満である態様)で好ましく実施される。
 上記モノマー成分に占める(A)成分の割合は特に限定されない。樹脂層Bの物性や、接着力等の粘着特性の観点から、上記(A)成分の割合は、通常は30重量%以上とすることが適当であり、好ましくは50重量%以上、より好ましくは60重量%以上(例えば75重量%以上)である。また、上記(A)成分の割合の上限は、後述の(B)成分や(C)成分含有による効果を十分に得る観点から、凡そ98重量%以下とすることが適当であり、95重量%以下(例えば90重量%以下、典型的には85重量%以下)とすることが好ましい。
 好ましい一態様では、樹脂層B形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(B)成分を含む。上記(B)成分は、環状窒素含有モノマー、環状エーテル基含有モノマー等のヘテロ環含有モノマーである。上記(B)成分は、樹脂層Bの保形性や透明性の向上に有利に寄与し得る。ヘテロ環含有モノマーは1種を単独でまたは2種以上を組み合わせて用いることができる。
 環状窒素含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ環状窒素構造を有するものを特に制限なく用いることができる。環状窒素構造は、環状構造内に窒素原子を有するものが好ましい。環状窒素含有モノマーとしては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;2-ビニル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリンのようなオキサゾリン基含有モノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。また、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環、アジリジン環等の窒素含有複素環を含有する(メタ)アクリルモノマーが挙げられる。具体的には、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン、N-アクリロイルアジリジン等が挙げられる。上記環状窒素含有モノマーのなかでも、凝集性等の点からは、ラクタム系ビニルモノマーが好ましく、N-ビニルピロリドンがより好ましい。
 環状エーテル基を有するモノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつエポキシ基またはオキセタン基等の環状エーテル基を有するものを特に制限なく用いることができる。エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が挙げられる。オキセタン基含有モノマーとしては、例えば、3-オキセタニルメチル(メタ)アクリレート、3-メチル-オキセタニルメチル(メタ)アクリレート、3-エチル-オキセタニルメチル(メタ)アクリレート、3-ブチル-オキセタニルメチル(メタ)アクリレート、3-ヘキシル-オキセタニルメチル(メタ)アクリレート、等が挙げられる。
 上記モノマー成分に占める(B)成分の割合は、樹脂層Bの物性の観点から、通常は0.5重量%以上とすることが適当であり、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは10重量%以上(例えば12重量%以上)である。また、上記(B)成分の割合は、(A)成分含有による効果を十分に得る観点から、凡そ50重量%以下とすることが適当であり、好ましくは40重量%以下(例えば30重量%以下、典型的には25重量%以下)とすることが好ましい。
 好ましい一態様では、樹脂層B形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(C)成分を含む。上記(C)成分は、ヒドロキシ基およびカルボキシ基の少なくともいずれかを有するモノマーである。
 ヒドロキシ基含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつヒドロキシ基を有するものを特に制限なく用いることができる。ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等のヒドロキシアルキルシクロアルカン(メタ)アクリレートが挙げられる。その他、ヒドロキシエチル(メタ)アクリルアミド、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらのなかでもヒドロキシアルキル(メタ)アクリレートが好ましい。例えば、炭素数2~6のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレートを好ましく使用し得る。なかでも、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートがより好ましい。
 カルボキシ基含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつカルボキシ基を有するものを特に制限なく用いることができる。カルボキシ基含有モノマーの例としては、アクリル酸、メタクリル酸、クロトン酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート等のエチレン性不飽和モノカルボン酸;イタコン酸、マレイン酸、フマル酸、シトラコン酸等のエチレン性不飽和ジカルボン酸;これらの金属塩(例えばアルカリ金属塩);無水マレイン酸、無水イタコン酸等の、上記エチレン性不飽和ジカルボン酸の無水物等;が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらのなかでも、アクリル酸、メタクリル酸が好ましい。
 ここに開示される技術は、(C)成分がヒドロキシ基含有モノマーを含む態様で好ましく実施することができる。すなわち、(C)成分がヒドロキシ基含有モノマーのみを含むか、ヒドロキシ基含有モノマーおよびカルボキシ基含有モノマーを含むことが好ましい。(C)成分に占めるヒドロキシ基含有モノマーの割合を多くすることにより、カルボキシ基に起因する金属腐食等を低減することができる。このことから、ここに開示される技術は、モノマー成分がカルボキシ基含有モノマーを実質的に含有しない態様で好ましく実施され得る。例えば、モノマー成分に占めるカルボキシ基含有モノマーの割合を、1重量%未満、好ましくは0.5重量%未満、より好ましくは0.2重量%未満とすることができる。
 上記モノマー成分に占める(C)成分の割合は、樹脂層Bの物性の観点から、通常は0.1重量%以上とすることが適当であり、好ましくは0.5重量%以上、より好ましくは0.8重量%以上である。(C)成分の割合は、3重量%以上であってもよく、5重量%以上(例えば8重量%以上、典型的には10重量%以上)であってもよい。また、上記(C)成分の割合は、凡そ35重量%以下とすることが適当であり、好ましくは30重量%以下、より好ましくは25重量%以下(典型的には5重量%以下、例えば3重量%以下)である。
 特に好ましい一態様では、アクリル系ポリマーを構成するモノマー成分は、上記(A)、(B)および(C)成分をすべて含む。その場合、上記(A)、(B)および(C)成分の総量を100重量%としたときの(A)成分の割合は50~99重量%(より好ましくは60~95重量%、さらに好ましくは70~85重量%)とすることが好ましく、(B)成分の割合は0.9~49.9重量%(より好ましくは4.5~39.5重量%、さらに好ましくは14.2~29.2重量%)とすることが好ましく、(C)成分の割合は0.1~35重量%(より好ましくは0.5~30重量%、さらに好ましくは0.8~25量%)とすることが好ましい。
 ここに開示される技術における上記構成モノマー成分は、上記(A)、(B)成分および(C)成分以外のモノマー(以下「任意モノマー」ともいう。)を必要に応じて含有し得る。
 上記任意モノマーの例として、ヒドロキシ基およびカルボキシ基以外の官能基を含有するモノマーが挙げられる。このような官能基含有モノマーは、アクリル系ポリマーに架橋点を導入したり、アクリル系ポリマーの凝集力を高めたりする目的で使用され得る。官能基含有モノマーとしては、例えば(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のアミド基含有モノマー;例えばアクリロニトリル、メタクリロニトリル等のシアノ基含有モノマー; 例えばスチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有モノマー;例えば2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;例えばジアセトン(メタ)アクリルアミド、ジアセトン(メタ)アクリレート、ビニルメチルケトン、ビニルアセトアセテート等のケト基含有モノマー;例えば2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基含有モノマー;例えばメトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシ基含有モノマー;例えば3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等のアルコキシシリル基含有モノマー;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記任意モノマーの他の例として、脂環式モノマーが挙げられる。脂環式モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ脂環構造含有基を有するものを、特に制限なく用いることができる。ここで「脂環構造含有基」とは、少なくとも一つの脂環構造を含む部分をいう。また、「脂環構造」とは、芳香族性を有しない飽和または不飽和の炭素環構造をいう。本明細書では、脂環構造含有基を単に「脂環式基」ということがある。脂環式基の好適例としては、脂環構造を含む炭化水素基や炭化水素オキシ基が挙げられる。
 好ましい脂環式モノマーの例として、脂環式基と(メタ)アクリロイル基とを有する脂環式(メタ)アクリレートが挙げられる。脂環式(メタ)アクリレートの具体例としては、シクロプロピル(メタ)アクリレート、シクロブチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。
 ここに開示される技術におけるモノマー成分は、アクリル系ポリマーのガラス転移温度(Tg)の調整や凝集力の向上等の目的で、上記任意モノマーとして、上記(A),(B),(C)成分と共重合可能であって上記で例示した以外の共重合性モノマーを含んでいてもよい。そのような共重合性モノマーとしては、例えば酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;例えばスチレン、置換スチレン(α-メチルスチレン等)、ビニルトルエン等の芳香族ビニル化合物;例えばアリール(メタ)アクリレート(例えばフェニル(メタ)アクリレート)、アリールオキシアルキル(メタ)アクリレート(例えばフェノキシエチル(メタ)アクリレート)、アリールアルキル(メタ)アクリレート(例えばベンジル(メタ)アクリレート)等の芳香族性環含有(メタ)アクリレート;例えばエチレン、プロピレン、イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;例えば塩化ビニル、塩化ビニリデン等の塩素含有モノマー;例えばメチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマー;その他、ビニル基を重合したモノマー末端にラジカル重合性ビニル基を有するマクロモノマー等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 これらの任意モノマーの使用量は特に限定されず、適宜決定することができる。通常、任意モノマーの合計使用量は、モノマー成分の50重量%未満とすることが適当であり、30重量%以下とすることが好ましく、20重量%以下とすることがより好ましい。ここに開示される技術は、任意モノマーの合計使用量がモノマー成分の10重量%以下(例えば5重量%以下)である態様で好ましく実施され得る。ここに開示される技術は、任意モノマーを実質的に使用しない態様(例えば、任意モノマーの使用量がモノマー成分の0.3重量%以下、典型的には0.1重量%以下である態様)でも好ましく実施され得る。
 上述した(A)成分、(B)成分、(C)成分および任意モノマーは、典型的には単官能モノマーである。ここに開示される技術におけるモノマー成分は、このような単官能モノマーの他に、樹脂層Bの凝集力調整等の目的で、必要に応じて多官能モノマーを含有することができる。ここで、本明細書において単官能モノマーとは、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を1つ有するモノマーを指し、これに対して多官能モノマーとは、後述するように、上記重合性の官能基を少なくとも2つ有するモノマーを指す。
 多官能モノマーは、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を少なくとも2つ有するモノマーである。多官能モノマーの例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2-エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート,1,6-ヘキサンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート等の、多価アルコールと(メタ)アクリル酸とのエステル;アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ジビニルベンゼン、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等が挙げられる。多官能性モノマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。これらのなかでも、トリメチロールプロパントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートを好ましく使用することができる。反応性等の観点から、通常は、2以上のアクリロイル基を有する多官能モノマーが好ましい。
 多官能モノマーの使用量は、その分子量や官能基数等により異なるが、凝集力と接着力とをバランスよく両立する観点から、上記モノマー成分の3重量%以下とすることが好ましく、2重量%以下がより好ましく、1重量%以下(例えば0.5重量%以下)がさらに好ましい。また、多官能モノマーを使用する場合における使用量の下限値は、0重量%より大きければよく、特に限定されない。通常は、多官能モノマーの使用量をモノマー成分の0.001重量%以上(例えば0.01重量%以上)とすることにより、凝集力を向上させる効果が適切に発揮され得る。
 特に限定するものではないが、上記モノマー成分に占める(A)成分、(B)成分および(C)成分の合計量の割合は、典型的には50重量%超であり、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。ここに開示される技術は、上記合計量の割合が95重量%以上(例えば99重量%以上)である態様で好ましく実施され得る。ここに開示される技術は、上記モノマー成分に占める上記合計量の割合が99.999重量%以下(例えば99.99重量%以下)である態様で好ましく実施され得る。
 特に限定するものではないが、上記モノマー成分の組成に対応する重合体のTgは、樹脂層Bの物性、接着性等の観点から、-20℃以下であることが好ましく、-25℃以下であることがより好ましく、また-80℃以上であることが適当であり、-60℃以上であることが好ましく、-50℃以上(例えば-40℃以上、典型的には-35℃以上)であることがより好ましい。
 ここで、モノマー成分の組成に対応する重合体のTgとは、上記モノマー成分に含まれる各モノマーの単独重合体(ホモポリマー)のTgおよび該モノマーの重量分率に基づいて、フォックス(Fox)の式から計算される値をいう。ただし、本明細書において、Tgの計算は単官能モノマーのみを考慮して行うものとする。したがって、モノマー成分が多官能モノマーを含む場合には、該モノマー成分に含まれる単官能モノマーの合計量を100重量%として、各単官能モノマーのホモポリマーのTgおよび該単官能モノマーの上記合計量に対する重量分率に基づいてTgを算出する。
 ホモポリマーのTgとしては、以下に示すモノマーについては下記の値を採用するものとする。
    2-エチルヘキシルアクリレート    -70℃
    n-ブチルアクリレート        -55℃
    イソステアリルアクリレート      -18℃
    シクロヘキシルアクリレート       15℃
    イソボルニルアクリレート        94℃
    N-ビニル-2-ピロリドン       54℃
    2-ヒドロキシエチルアクリレート   -15℃
    4-ヒドロキシブチルアクリレート   -40℃
    アクリル酸              106℃
 上記で例示した以外のモノマーについては、ホモポリマーのTgとして、「Polymer Handbook」(第3版、John Wiley & Sons, Inc., 1989)に記載の数値を用いるものとする。本文献に複数種類の値が記載されているモノマーについては、最も高い値が採用される。上記Polymer Handbookにも記載されていない場合には、特開2007-51271号公報に記載の測定方法により得られる値を用いるものとする。
 (樹脂層B形成用組成物)
 ここに開示される樹脂層B形成用組成物は、上述のような組成のモノマー成分を、重合物、未重合物(すなわち、重合性官能基が未反応である形態)、あるいはこれらの混合物の形態で含み得る。上記樹脂層B形成用組成物は、有機溶媒中に樹脂層B形成成分(例えば粘着成分)を含む形態の組成物(溶剤型樹脂層B形成用組成物)、樹脂層B形成成分が水性溶媒に分散した形態の組成物(水分散型樹脂層B形成用組成物)、紫外線や放射線等の活性エネルギー線により硬化して樹脂層B形成成分を形成するように調製された組成物(活性エネルギー線硬化型樹脂層B形成用組成物)、加熱溶融状態で塗工され、室温付近まで冷えると樹脂層Bを形成するホットメルト型樹脂層B形成用組成物等の、種々の形態であり得る。
 上記樹脂層B形成用組成物は、典型的には、該組成物のモノマー成分のうち少なくとも一部(モノマーの種類の一部であってもよく、分量の一部であってもよい。)を重合物の形態で含む。上記重合物を形成する際の重合方法は特に限定されず、従来公知の各種重合方法を適宜採用することができる。例えば、溶液重合、エマルション重合、塊状重合等の熱重合(典型的には、熱重合開始剤の存在下で行われる。);紫外線等の光を照射して行う光重合(典型的には、光重合開始剤の存在下で行われる。);β線、γ線等の放射線を照射して行う放射線重合;等を適宜採用することができる。なかでも光重合が好ましい。これらの重合方法において、重合の態様は特に限定されず、従来公知のモノマー供給方法、重合条件(温度、時間、圧力、光照射量、放射線照射量等)、モノマー以外の使用材料(重合開始剤、界面活性剤等)等を適宜選択して行うことができる。
 重合にあたっては、重合方法や重合態様等に応じて、公知または慣用の光重合開始剤や熱重合開始剤を使用し得る。このような重合開始剤は、1種を単独でまたは2種以上を適宜組み合わせて用いることができる。
 光重合開始剤としては、特に限定されるものではないが、例えばケタール系光重合開始剤、アセトフェノン系光重合開始剤、ベンゾインエーテル系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤等を用いることができる。
 ケタール系光重合開始剤の具体例には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(例えば、BASF社製の商品名「イルガキュア651」)等が含まれる。
 アセトフェノン系光重合開始剤の具体例には、1-ヒドロキシシクロヘキシル-フェニル-ケトン(例えば、BASF社製の商品名「イルガキュア184」)、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(例えば、BASF社製の商品名「イルガキュア2959」)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(例えば、BASF社製の商品名「ダロキュア1173」)、メトキシアセトフェノン等が含まれる。
 ベンゾインエーテル系光重合開始剤の具体例には、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテルおよびアニソールメチルエーテル等の置換ベンゾインエーテルが含まれる。
 アシルホスフィンオキサイド系光重合開始剤の具体例には、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(例えば、BASF社製の商品名「イルガキュア819」)、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジ-n-ブトキシフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(例えば、BASF社製の商品名「ルシリンTPO」)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド等が含まれる。
 α-ケトール系光重合開始剤の具体例には、2-メチル-2-ヒドロキシプロピオフェノン、1-[4-(2-ヒドロキシエチル)フェニル]-2-メチルプロパン-1-オン等が含まれる。芳香族スルホニルクロリド系光重合開始剤の具体例には、2-ナフタレンスルホニルクロライド等が含まれる。光活性オキシム系光重合開始剤の具体例には、1-フェニル-1,1-プロパンジオン-2-(o-エトキシカルボニル)-オキシム等が含まれる。ベンゾイン系光重合開始剤の具体例にはベンゾイン等が含まれる。ベンジル系光重合開始剤の具体例にはベンジル等が含まれる。
 ベンゾフェノン系光重合開始剤の具体例には、ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等が含まれる。
 チオキサントン系光重合開始剤の具体例には、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、ドデシルチオキサントン等が含まれる。
 熱重合開始剤としては、特に限定されるものではないが、例えばアゾ系重合開始剤、過酸化物系開始剤、過酸化物と還元剤との組合せによるレドックス系開始剤、置換エタン系開始剤等を使用することができる。より具体的には、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート等のアゾ系開始剤;例えば過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素等の過酸化物系開始剤;例えばフェニル置換エタン等の置換エタン系開始剤;例えば過硫酸塩と亜硫酸水素ナトリウムとの組合せ、過酸化物とアスコルビン酸ナトリウムとの組合せ等のレドックス系開始剤;等が例示されるが、これらに限定されない。なお、熱重合は、例えば20~100℃(典型的には40~80℃)程度の温度で好ましく実施され得る。
 このような熱重合開始剤または光重合開始剤の使用量は、重合方法や重合態様等に応じた通常の使用量とすることができ、特に限定されない。例えば、重合対象のモノマー成分100重量部に対して重合開始剤0.001~5重量部(典型的には0.01~2重量部、例えば0.01~1重量部)を用いることができる。
 (モノマー成分の重合物と未重合物とを含む樹脂層B形成用組成物)
 好ましい一態様に係る樹脂層B形成用組成物は、該組成物のモノマー成分(原料モノマー)の少なくとも一部を含むモノマー混合物の重合反応物を含む。典型的には、上記モノマー成分の一部を重合物の形態で含み、残部を未重合物(未反応のモノマー)の形態で含む。上記モノマー混合物の重合反応物は、該モノマー混合物を少なくとも部分的に重合させることにより調製することができる。
 上記重合反応物は、好ましくは上記モノマー混合物の部分重合物である。このような部分重合物は、上記モノマー混合物に由来する重合物と未反応のモノマーとの混合物であって、典型的にはシロップ状(粘性のある液状)を呈する。以下、かかる性状の部分重合物を「モノマーシロップ」または単に「シロップ」ということがある。
 上記重合反応物を得る際の重合方法は特に制限されず、上述のような各種重合方法を適宜選択して用いることができる。効率や簡便性の観点から、光重合法を好ましく採用し得る。光重合によると、光の照射量(光量)等の重合条件によって、上記モノマー混合物の重合転化率を容易に制御することができる。
 上記部分重合物におけるモノマー混合物の重合転化率(モノマーコンバーション)は、特に限定されない。上記重合転化率は、例えば70重量%以下とすることができ、60重量%以下とすることが好ましい。上記部分重合物を含む樹脂層B形成用組成物の調製容易性や塗工性等の観点から、通常、上記重合転化率は、50重量%以下が適当であり、40重量%以下(例えば35重量%以下)が好ましい。重合転化率の下限は特に制限されないが、典型的には1重量%以上であり、通常は5重量%以上とすることが適当である。
 上記モノマー混合物の部分重合物を含む樹脂層B形成用組成物は、例えば、原料モノマーの全部を含むモノマー混合物を適当な重合方法(例えば光重合法)により部分重合させることにより容易に得ることができる。上記部分重合物を含む樹脂層B形成用組成物には、必要に応じて用いられる他の成分(例えば、光重合開始剤、多官能モノマー、架橋剤、後述するアクリル系オリゴマー等)が配合され得る。そのような他の成分を配合する方法は特に限定されず、例えば上記モノマー混合物にあらかじめ含有させてもよく、上記部分重合物に添加してもよい。
 また、ここに開示される樹脂層B形成用組成物は、モノマー成分(原料モノマー)のうち一部の種類のモノマーを含むモノマー混合物の完全重合物が、残りの種類のモノマーまたはその部分重合物に溶解した形態であってもよい。このような形態の樹脂層B形成用組成物も、モノマー成分の重合物と未重合物とを含む樹脂層B形成用組成物の例に含まれる。なお、本明細書において「完全重合物」とは、重合転化率が95重量%超であることをいう。
 このようにモノマー成分の重合物と未重合物とを含む樹脂層B形成用組成物から樹脂層Bを形成する際の硬化方法(重合方法)としては、光重合法を好ましく採用することができる。光重合法によって調製された重合反応物を含む樹脂層B形成用組成物では、その硬化方法として光重合法を採用することが特に好ましい。光重合法により得られた重合反応物は、すでに光重合開始剤を含むので、この重合反応物を含む樹脂層B形成用組成物をさらに硬化させて樹脂層Bを形成する際、新たな光重合開始剤を追加しなくても光硬化し得る。あるいは、光重合法により調製された重合反応物に、必要に応じて光重合開始剤を追加した組成の樹脂層B形成用組成物であってもよい。追加する光重合開始剤は、重合反応物の調製に使用した光重合開始剤と同じでもよく、異なってもよい。光重合以外の方法で調製された樹脂層B形成用組成物は、光重合開始剤を添加することにより光硬化性とすることができる。光硬化性の樹脂層B形成用組成物は、厚手の樹脂層Bであっても容易に形成し得るという利点を有する。好ましい一態様において、樹脂層B形成用組成物から樹脂層Bを形成する際の光重合は、紫外線照射により行うことができる。紫外線照射には、公知の高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ等を用いることができる。
 (モノマー成分を完全重合物の形態で含む樹脂層B形成用組成物)
 好ましい他の一態様に係る樹脂層B形成用組成物は、該組成物のモノマー成分を完全重合物の形態で含む。このような樹脂層B形成用組成物は、例えば、モノマー成分の完全重合物であるアクリル系ポリマーを有機溶媒中に含む溶剤型樹脂層B形成用組成物、上記アクリル系ポリマーが水性溶媒に分散した水分散型樹脂層B形成用組成物、等の形態であり得る。
 ((メタ)アクリル系オリゴマー)
 ここに開示される樹脂層B形成用組成物には、接着力向上の観点から、(メタ)アクリル系オリゴマーを含有させることができる。(メタ)アクリル系オリゴマーを含有させることにより、樹脂層Bの接着力は向上し得る。
 上記(メタ)アクリル系オリゴマーは、Tgが約0℃以上300℃以下、好ましくは約20℃以上300℃以下、さらに好ましくは約40℃以上300℃以下であることが望ましい。Tgが上記範囲内であることにより、接着力を好ましく向上することができる。なお(メタ)アクリル系オリゴマーのTgは、上記アクリル系ポリマーのTgと同様、Foxの式に基づいて計算される値である。
 (メタ)アクリル系オリゴマーの重量平均分子量(Mw)は、典型的には1000以上30000未満、好ましくは1500以上20000未満、さらに好ましくは2000以上10000未満であり得る。Mwが上記範囲内にあることで、良好な接着力や保持特性が得られるため好ましい。(メタ)アクリル系オリゴマーのMwは、GPCにより測定し、標準ポリスチレン換算の値として求めることができる。具体的には、東ソー社製「HPLC8020」に、カラムとしてTSKgelGMH-H(20)×2本を用いて、テトラヒドロフラン溶媒で流速約0.5mL/分の条件にて測定される。
 (メタ)アクリル系オリゴマーを構成するモノマーとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレートのようなアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環族アルコールとのエステル;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート;テルペン化合物誘導体アルコールから得られる(メタ)アクリレート;等が挙げられる。このような(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて使用することができる。
 (メタ)アクリル系オリゴマーとしては、イソブチル(メタ)アクリレートやt-ブチル(メタ)アクリレートのようなアルキル基が分岐構造を有するアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレートやイソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環式アルコールとのエステル;フェニル(メタ)アクリレートやベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート等の環状構造を有する(メタ)アクリレートに代表される、比較的嵩高い構造を有するアクリル系モノマーをモノマー単位として含んでいることが、接着性をさらに向上させることができる観点から好ましい。また、(メタ)アクリル系オリゴマーの合成の際や樹脂層Bの作製の際に紫外線を採用する場合には、重合阻害を起こしにくいという点で、飽和結合を有するものが好ましく、アルキル基が分岐構造を有するアルキル(メタ)アクリレート、または脂環式アルコールとのエステルを、(メタ)アクリル系オリゴマーを構成するモノマーとして好ましく用いることができる。
 このような点から、好適な(メタ)アクリル系オリゴマーとしては、例えば、ジシクロペンタニルメタクリレート(DCPMA)、シクロヘキシルメタクリレート(CHMA)、イソボルニルメタクリレート(IBXMA)、イソボルニルアクリレート(IBXA)、ジシクロペンタニルアクリレート(DCPA)、1-アダマンチルメタクリレート(ADMA)、1-アダマンチルアクリレート(ADA)の各単独重合体のほか、CHMAとイソブチルメタクリレート(IBMA)との共重合体、CHMAとIBXMAとの共重合体、CHMAとアクリロイルモルホリン(ACMO)との共重合体、CHMAとジエチルアクリルアミド(DEAA)との共重合体、ADAとメチルメタクリレート(MMA)の共重合体、DCPMAとIBXMAとの共重合体、DCPMAとMMAの共重合体、等が挙げられる。
 ここに開示される樹脂層B形成用組成物に(メタ)アクリル系オリゴマーを含有させる場合、その含有量は特に限定されないが、樹脂層B形成用組成物に含まれるモノマー成分100重量部に対して凡そ1重量部以上とすることが適当である。(メタ)アクリル系オリゴマーの効果をよりよく発揮させる観点からは、上記(メタ)アクリル系オリゴマーの含有量は、3重量部以上(例えば5重量部以上、典型的には8重量部以上)とすることが好ましい。また、樹脂層B形成用組成物の硬化性やアクリル系ポリマーの部分重合物や完全重合物との相溶性(ひいては樹脂層Bの透明性)等の観点から、上記(メタ)アクリル系オリゴマーの含有量は、樹脂層B形成用組成物に含まれるモノマー成分100重量部に対して70重量部以下(例えば40重量部以下、典型的には20重量部以下)とすることが適当である。ここに開示される技術は、(メタ)アクリル系オリゴマーを使用しない態様でも実施され得る。
 (シランカップリング剤)
 さらに、ここに開示される樹脂層B形成用組成物は、シランカップリング剤を含有することができる。好ましく用いられ得るシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤;3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、アクリル系ポリマーを構成するモノマー成分100重量部に対して、好ましくは1重量部以下(例えば0.01~1重量部)であり、より好ましくは0.02~0.6重量部である。
 (架橋剤)
 ここに開示される樹脂層B形成用組成物は、架橋剤を含有することができる。架橋剤としては、封止樹脂や粘着剤の分野において公知ないし慣用の架橋剤を使用することができる。例えば、エポキシ系架橋剤、イソシアネート系架橋剤、シリコーン系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、シラン系架橋剤、アルキルエーテル化メラミン系架橋剤、金属キレート系架橋剤等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。架橋剤の添加量は、技術常識に基づき適切に設定される。あるいは、樹脂層B形成用組成物は、上述のような架橋剤を含まないものであってもよい。
 (その他の添加剤)
 その他、ここに開示される樹脂層B形成用組成物には、例えば粘着剤や封止樹脂の分野において公知の各種添加剤を含有させることができる。例えば、着色剤、顔料等の粉体、染料、界面活性剤、可塑剤、粘着付与樹脂、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機または有機の充填剤、金属粉、粒子状、箔状物等を、用途に応じて適宜添加することができる。
 (形成方法等)
 ここに開示される樹脂層Bは、例えば、ここに開示されるいずれかの樹脂層B形成用組成物を支持体に塗布して乾燥または硬化させることにより樹脂層Bとして形成することができる。樹脂層B形成用組成物の塗布方法としては、従来公知の各種の方法を使用可能である。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。
 樹脂層B形成用組成物の乾燥は加熱下で行うことができる。乾燥温度は、40℃~200℃が好ましく、50℃~180℃がより好ましく、70℃~170℃がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた物性を有する樹脂層Bを得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分が好ましく、5秒~10分がより好ましく、10秒~5分がさらに好ましい。
 樹脂層Bの形成にあたっては、所望の物性を得るため、さらに架橋処理、熱硬化処理等が施され得る。例えば、凡そ80~200℃(例えば100~180℃、典型的には120~160℃)で、5分以上の熱硬化処理が施され得る。熱硬化処理時間は、好ましくは10分以上、より好ましくは20分以上(例えば30分以上、典型的には40分~120分)である。上記樹脂層Bは、熱硬化処理前または処理中にプレス処理を行うことが好ましい。
 ここに開示される樹脂層Bは、上記樹脂層B形成用組成物から得ることができる。樹脂層Bの厚さは特に制限されず、例えば1~400μm程度であり得る。通常、樹脂層Bの厚さは、1~200μmが好ましく、2~150μmがより好ましく、2~100μmがさらに好ましく、5~75μmが特に好ましい。
 樹脂層Aに積層される前または導電部を配置する前の樹脂層Bは、前面および背面がいずれも剥離面(剥離性の表面)である剥離ライナー(支持体)と重ね合わされて渦巻き状に巻回された形態であり得る。あるいは、第1表面および第2表面が2枚の独立した剥離ライナー(支持体)によりそれぞれ保護された形態であってもよい。
 剥離ライナーとしては、慣用の剥離紙等を使用することができ、特に限定されない。例えば、プラスチックフィルムや紙等の基材の表面に剥離処理層を有する剥離ライナーや、フッ素系ポリマー(ポリテトラフルオロエチレン等)やポリオレフィン系樹脂(ポリエチレン、ポリプロピレン等)の低接着性材料からなる剥離ライナー等を用いることができる。上記剥離処理層は、上記基材を剥離処理剤により表面処理して形成されたものであり得る。剥離処理剤の例としては、シリコーン系剥離処理剤、長鎖アルキル系剥離処理剤、フッ素系剥離処理剤、硫化モリブデン(IV)等が挙げられる。
 <導電部>
 導電部(第1導電部および第2導電部を包含する。また、その第1導電パス単位および第2導電パス単位の太陽電池セル接触部分や接続部分を包含し得る。以下同じ。)は、典型的には導電性材料を含む。導電部は、例えば、導電性材料としての導電性ペーストを付与することによって形成される。これにより、部品点数を削減しつつ導電経路を効率よく形成することができる。導電性ペーストとしては、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、それらの合金等の金属材料からなる導電成分や、カーボン等の非金属からなる導電成分(以下同じ。)と、ポリエステルやエポキシ樹脂等の樹脂成分とを適当な溶媒を用いて混合してなるペースト状組成物が用いられ得る。なかでも、経時安定性の観点から、導電成分として銀または銅を使用することが好ましい。導電性ペーストの具体例としては、銀ペースト(商品名「ペルトロンK-3105」、ペルノックス社製、導電成分:Ag、樹脂成分:ポリエステル樹脂、比抵抗:6.5×10-5Ω・cm)が挙げられる。導電性ペーストの25℃における比抵抗は、凡そ5×10-4Ω・cm以下(例えば1×10-4Ω・cm以下、典型的には5.0×10-7Ω・m以下)であることが好ましい。また、導電性ペーストを構成する導電成分の比抵抗は5.0×10-7Ω・m以下であることが好ましい。
 導電部は、公知のディスペンサを用いて導電性ペーストを樹脂層Bの表面に塗布することによって形成することができる。あるいは、導電性ペーストを、樹脂層Bの表面に対してではなく、剥離性支持体(例えばシート状剥離ライナー)の表面に塗布し、該剥離性支持体表面に所定のパターンを有する導電部を形成し、当該導電部を樹脂層Bの表面に転写することによって、樹脂層B表面に導電部を形成してもよい。
 また、導電部の導電パス単位(第1導電パス単位および第2導電パス単位を包含する。)を構成する接続部分として導電性シートを用いてもよい。好ましい一態様に係る導電パス単位は、その太陽電池セル接触部分を上述のような導電性ペーストで形成し、接続部分となる導電性シートを上記導電性ペーストで形成した太陽電池セル接触部分と接続するように配置したものである。導電性シートは、上述の導電成分が樹脂中に配合された導電性樹脂シートや、銅、アルミニウム等の金属、合金等からなる金属シート(例えば金属箔)から選択され得る。なかでも、位置合わせや作業性に優れることから、導電性シートとして、少なくとも一方の表面(典型的には両面)に接着性を有する導電性接着シートを用いることが好ましい。
 導電性接着シートとしては、導電性粘着シートや、ホットメルト型、熱硬化型、乾燥型、湿気硬化型、2液反応硬化型、紫外線(UV)硬化型、嫌気型、UV嫌気型等の各種導電性接着シートを用いることができる。上記接着シートの接着剤成分としては、ウレタン系、アクリル系、エポキシ系等の接着剤成分が用いられ得る。なかでも、加熱作業が不要であり、取扱い性に優れる導電性粘着シートが特に好ましい。典型的には、上述の導電成分(より好ましくは銀フィラー)を3~70重量%程度含む粘着剤層(例えばアクリル系粘着剤層)からなる基材レスの粘着シートや、銅箔やアルミニウム箔等の金属箔基材の少なくとも一方の表面(典型的には両面)に前述の粘着剤層が形成されてなる粘着シートが好ましく使用される。上記粘着剤層には、目的に応じて粘着付与剤や架橋剤その他の添加剤が含まれ得る。上記粘着シートとしては、例えば特開2012-7093号公報に記載されているものが好ましく使用され得る。あるいはまた、導電性粘着シートは、上述の導電性基材の両面に非導電性粘着剤層が形成されてなる両面粘着シートであって、該導電性基材が部分的に粘着剤層の表面に露出してなる導電性粘着シートであってもよい。そのような導電性粘着シートとしては、例えば特開平8-185714号公報に記載されているものが挙げられる。
 他の好ましい一態様では、導電部は、低融点(例えば融点300℃以下、好ましくは250℃以下)の金属材料(典型的には合金)をホットメルト塗工することにより形成される。具体的には、樹脂層Bの表面に、市販のホットメルトディスペンサー(例えば武蔵エンジニアリング社製)を用いて低融点合金(例えば、荒川化学工業社製の「SnBiはんだ」、融点139℃)を塗工することにより、導電部を形成することができる。低融点金属材料の塗布は、樹脂層Bの表面に対してではなく、剥離性支持体(例えば剥離ライナー)の表面に対して行ってもよい。その場合、剥離性支持体表面に所定のパターンを有するように形成した導電部を、樹脂層Bの表面に転写することによって、樹脂層B表面に導電部を形成することができる。なお、スクリーン印刷等の各種印刷法を採用することによっても、上記と同様の構成を得ることができる。
 また、他の好ましい一態様では、導電部を構成する材料として、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、それらの合金等の金属材料が好ましく用いられ得る。なかでも、銀、銅、アルミニウム、鉄がより好ましく、銅、アルミニウムがさらに好ましい。実質的に金属から構成された導電経路は、より低抵抗であるという利点を有する。一典型例として、太陽電池セル接触部分が金属ワイヤーからなる導電線であり、その接続部分が金属シート(典型的には金属箔)である導電パス単位から構成された導電部が挙げられる。上記金属ワイヤーの例としては、錫(Sn)や銀(Ag)等のめっきコーティングが施されたものが挙げられる。そのめっき厚は10μm以下(例えば3μm以下)程度であり得る。上記金属シート(典型的には金属箔)としては、粗化処理や防錆処理、密着性向上処理の少なくとも1種の表面処理が施されたものが好ましく用いられ得る。金属シートの好適例としては銅箔(なかでも電解銅箔)が挙げられる。
 上記導電部を有する導電部付きシート(第1導電部付きシートおよび第2導電部付きシートを包含する。)は、例えば次のようにして作製される。すなわち、まず、太陽電池セル接触部分の導電線と接続部分とを固定して、導電パス単位(導電部材ともいう。)を作製する。そして、作製した導電パス単位を樹脂層Bの表面に配置することによって(導電パス単位が複数の場合には、各々を間隔をおいて配置することによって)、導電部付きシートは作製される。なお、樹脂層Bと導電部とは、例えば粘着剤や接着剤等の公知ないし慣用の接着手段を用いて接着されていてもよい。
 導電パス単位における太陽電池セル接触部分(例えば導電線)と接続部分との固定方法としては、溶接を採用することが好ましい。溶接方法としては、従来公知の各種の溶接を採用することができ、例えば、アーク溶接、抵抗溶接、レーザービーム溶接、電子ビーム溶接、超音波溶接が好ましく採用され得る。あるいは、めっき接合や、導電性粘着剤による固定方法を採用することも可能である。
 導電部が金属材料によって構成されている他の好適例としては、導電パス単位が金属ワイヤーからなる構成が挙げられる。金属ワイヤーとしては、上述のものを好ましく用いることができる。金属ワイヤー同士の接合には、前述の溶接等、各種の接合方法が採用され得る。
 あるいは、導電パス単位は、パターン化された金属シートから形成されていてもよい。そのような導電パス単位は、金属シートをエッチングすることによって、太陽電池セル接触部分と接続部分とを一体として形成することができる。具体的には、金属シート(典型的には金属箔)の表面にレジストを貼り、フォトリソグラフィ技術を適用して所定のレジストパターンを形成する。次いで、公知ないし慣用のエッチング液を用いて金属シートをパターン化する。このようにして導電パス単位を形成し、樹脂層B表面に配置することによって、導電部付きシートを得ることができる。なお、各種蒸着法によっても同様の構成を得ることができる。
 あるいはまた、導電パス単位は、メッシュ構造の金属シート(メッシュシート)から形成されていてもよい。上記メッシュシートは、典型的には、縦横に複数の金属線が配置されてなる網目構造(メッシュ形状)を有する。より具体的には、導電パス単位は、一方向に沿って配列した複数の金属線(縦線)と、該縦線と交差(典型的には、ほぼ直交)する方向に配列した複数の金属線(横線)と、から構成された網目構造を有する。縦線および横線のそれぞれにおいて、複数の金属線は間隔をおいて配置されており、典型的には、ほぼ平行している。なお、上記メッシュ形状の線径や目開きは、後述の導電線の幅、間隔および接続部分の幅の範囲内となるように設定され得る。
 あるいはまた、導電パス単位の導電線は導電材料(例えば銅等の金属)を含むメッシュ材料から形成されていてもよい。上記メッシュ材料は、金属線と樹脂繊維(典型的には透明樹脂繊維)との複合材料であり得る。上記金属線はストライプ状に配置されており、樹脂繊維は金属線と同方向に、かつ金属線と交差する方向に配置されており、これによってメッシュ構造が形成されている。上記メッシュ材料は、金属線が所定方向に配列するように該金属線を樹脂繊維に編み込むことによって作製され得る。この場合、横糸に樹脂繊維を用い、縦糸に金属線および樹脂繊維を用いるとよい。上記メッシュ材料を樹脂層B表面に配置することによって、導電部付きシートを得ることができる。上記樹脂繊維は、透明性が高く絶縁性に優れる材料であることが好ましい。具体例としては、上記金属線が銅線であり、樹脂繊維が透明性に優れるPET繊維であるメッシュ材料が挙げられる。上記メッシュ材料は、例えばNBCメッシュテック社から入手可能である。
 導電パス単位を構成する接続部分は、単層構造であってもよく多層構造であってもよい。また、第1導電部付きシートと第2導電部付きシートとで太陽電池セルを挟むときに、第1導電パス単位の接続部分と第2導電パス単位の接続部分との間に追加の導電性接続部材が配置されていてもよい。そのような導電性接続部材としては、上記接続部分として用いられ得る材料のなかから適切なものを選択して用いることができる。その好適例としては、金属シート(具体的には金属箔)や導電性接着シートが挙げられる。これによって、第1導電部付きシートと第2導電部付きシートとで太陽電池セルを挟んだときに、第1導電パス単位の接続部分と第2導電パス単位の接続部分との積層部分の厚みが増大し、第1導電パス単位の接続部分と第2導電パス単位の接続部分間における接触状態がよりよくなり、集電効率が向上する。上記導電性接続部材の形状は、特に限定されず、第1導電パス単位の接続部分や第2導電パス単位の接続部分と同様の形状とすることが好ましい。
 導電パス単位を構成する接続部分は、上記のように帯状に連続した層(導電層)であり得るが、断続した層であってもよい。例えば、接続部分は、断続した帯形状を有していてもよく、ドット状(粒状ともいう。)に配置してなるものであってもよい。なお、ドット状とは典型的には粒状であり、例えば、真球状、扁平球状等の球状であり得る。そのような形状の接続部分は、例えば、上記の導電性ペーストや低融点金属材料を用いることによって形成することができる。
 導電パス単位の接続部分は、太陽電池モジュール内においては太陽電池セルと間隔をおいて配置されているが、太陽電池セルとの短絡を確実に防止するため、接続部分と太陽電池セルとの間には、絶縁部を設けることが好ましい。例えば、隣りあう2つの太陽電池セルの間に帯状の接続部分を配置する場合には、接続部分の幅方向の両端に絶縁部を設けることが好ましい。絶縁部は、公知の絶縁性樹脂材料を塗布することにより設けることができる。あるいは、ポリイミドテープ等の公知の絶縁樹脂シートを被覆することによって設けることもできる。絶縁部として、スリーエム社製の商品名「セロファンテープ」を使用することも可能である。
 接続部分を、上記のような導電性ペーストや低融点金属材料で帯状に形成する場合においては、その幅方向の両端に絶縁部を設ける利点は特に大きい。かかる構成においては、接続部分および絶縁部は、三口ノズルを有するディスペンサを用いて塗り分けることにより形成すればよい。導電層形成材料としては、上述の導電部を形成し得る材料と同様の材料を用いればよい。絶縁層形成材料としては、ポリイミドやポリエステル等の樹脂を主成分とする従来公知の樹脂ペースト等を用いればよい。
 なお、上述のとおり、導電パス単位の太陽電池セル接触部分と接続部分とは、同一の方法で例えば一体として形成してもよく、異なる方法で形成した後、両者を接続して導電パス単位として利用してもよい。
 導電パス単位が導電線を有する場合、導電線の幅(複数の導電線を有する場合は各々の幅)は、集電ロス低減、強度、ハンドリング性および作業性の観点から、好ましくは30μm以上であり、より好ましくは100μm以上であり、さらに好ましくは500μm以上である。また上記幅は、シャドーロス低減等の観点から、好ましくは1500μm以下であり、より好ましくは1200μm以下であり、さらに好ましくは1000μm以下である。なお、上記幅は、導電線の長手方向に直交する長さ(幅)を指す。
 また、線状に延びる複数の導電線を間隔をおいて配置する場合、導電線の間隔は、シャドーロス低減等の観点から、好ましくは0.1cm以上であり、より好ましくは0.8cm以上であり、さらに好ましくは1.5cm以上である。また上記間隔は、集電ロス低減の観点からは、好ましくは4.0cm未満であり、より好ましくは3.0cm未満であり、さらに好ましくは2.5cm以下である。なお、上記間隔はピッチであり、導電線の幅方向における中心線間の距離を指す。
 導電パス単位における接続部分が線状(帯状ともいう。)に延びる形状を有する場合、接続部分の幅は、太陽電池モジュールの円滑な電気的接続の観点から、好ましくは0.1cm以上であり、より好ましくは0.3cm以上であり、さらに好ましくは0.5cm以上である。また上記幅は、好ましくは2cm以下であり、より好ましくは1.5cm以下であり、さらに好ましくは1.0cm以下である。なお、上記幅は、接続部分の長手方向に直交する長さ(幅)を指す。
 導電部の厚さ(高さ)は、導電性、強度、ハンドリング性および作業性の観点から、0.01~1mm(例えば0.02~0.5mm、典型的には0.05~0.3mm)程度とすることが好ましい。導電パス単位、導電線、接続部分の厚さも同様の範囲から好ましく選定される。
 <太陽電池セル>
 使用される太陽電池セルの種類は特に限定されず、例えば単結晶型や多結晶型の結晶系Siセルが好適である。結晶系Siセルは、p型セル(p型基板にn型が付加されたセル)であってもよく、n型セル(n型基板にp型が付加されたセル)であってもよい。また、太陽電池セルは、アモルファス系Siセル、化合物系、有機系等の太陽電池セルであってもよい。形状も特に限定されず、ほぼ矩形状平面を有するウエハであってもよく、帯状等であってもよい。太陽電池セルの厚さは、軽量性等の観点から、好ましくは0.5mm以下程度であり、より好ましくは0.3mm以下(例えば180~200μm程度)、さらに好ましくは160μm以下程度であり得る。
 <表面被覆部材>
 表面被覆部材としては、透光性を有する各種材料が使用され得る。表面被覆部材は、ガラス板や、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン樹脂、クロロトリフルオロエチレン樹脂等のフッ素樹脂シート、アクリル樹脂、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル等の材料から構成された樹脂シートであり得る。例えば、全光線透過率が70%以上(例えば90%以上、典型的には95%以上)の平板状部材またはシート状部材が好ましく用いられ得る。上記全光線透過率は、JIS K 7375:2008に基づいて測定すればよい。表面被覆部材の厚さは、保護性や軽量性等の観点から、0.5~10mm(例えば1~8mm、典型的には2~5mm)程度とすることが好ましい。
 <裏面被覆部材>
 裏面被覆部材としては、表面被覆部材の材料として例示した各種材料からなる平板状部材またはシート状部材が好ましく使用される。なかでも、裏面被覆部材形成材料として、PETやPEN等のポリエステルを使用することがより好ましい。あるいは、裏面被覆部材として、耐食性を有する金属板(例えばアルミニウム板)や、エポキシ樹脂等の樹脂シート、シリカ蒸着樹脂等の複合シートを用いてもよい。裏面被覆部材の厚さは、取扱い性や軽量性等の観点から、0.1~10mm(例えば0.2~5mm)程度とすることが好ましい。なお、裏面被覆部材は透光性を有していなくてもよい。
 ≪導電部付きシートの製造方法≫
 次に、ここに開示される導電部付きシートの製造方法について説明する。ここに開示される導電部付きシートの製造方法は、樹脂層Aとなる樹脂シートAを用意する工程(A)と、樹脂シートA(樹脂層A)に導電部を樹脂層Bが介在した状態で固定する工程(B)と、を含む。また、工程(B)は、(B1)樹脂シートA(樹脂層A)の表面に樹脂層Bを積層した後、樹脂層Bの表面に導電部を部分的に配置する工程;および(B2)樹脂層Bとなる樹脂シートBを用意し、樹脂シートBの第1表面に導電部を部分的に配置した後、樹脂シートBの第2表面を樹脂シートAに貼り合わせる工程;のいずれかを含む。
 工程(B1)は、具体的には、工程(A)にて用意した樹脂シートA(樹脂層A)の第1表面に樹脂層Bを積層する工程を含む。積層する前の樹脂層Bの形態は特に限定されず、その少なくとも一方の表面(好ましくは両面。換言すると、第1表面および第2表面)が剥離性支持体に保護された形態であり得る。このような樹脂シートB(樹脂層B)を用意して、樹脂シートBの第2表面を露出させる。上記樹脂シートBの第2表面が剥離性支持体に保護されている場合には、上記剥離性支持体を剥がして、樹脂シートBの第2表面を露出させる。そして、露出した樹脂シートBの第2表面を樹脂シートAの第1表面に貼り合わせる。このようにして、樹脂シートA(樹脂層A)の表面に樹脂層Bを積層することができる。
 次に、樹脂シートA(樹脂層A)の表面に積層された樹脂層Bの表面(第1表面)に導電部を部分的に配置する。樹脂層Bの第1表面が剥離性支持体に保護されている場合には、上記剥離性支持体を剥がして、樹脂層Bの第1表面を露出させ、露出した樹脂層Bの第1表面に導電部を配置する。このようにして、樹脂シートA(樹脂層A)と導電部との間に樹脂層Bが配置された導電部付きシートを得ることができる。なお、樹脂層Bの第1表面に配置する導電部は、あらかじめ作製した金属製の導電部材(導電部)であってもよく、剥離性支持体(導電部形成用剥離性支持体)の表面にあらかじめ形成しておいた導電部材(導電部)であってもよい。剥離性支持体の表面に形成した導電部を樹脂層Bの第1表面に配置する場合、具体的には、剥離性支持体表面上の導電部を樹脂層Bの第1表面に転写する工程を含む。この転写工程は、典型的には、導電部が剥離性支持体に支持された状態で行われる。導電部上の剥離性支持体は、そのまま導電部付きシートの第1表面(導電部形成面)の保護に使用され、導電部付きシートを使用するときに除去される。
 工程(B2)は、具体的には、樹脂層Bとなる樹脂シートBを用意する工程を含む。樹脂シートBの形態は特に限定されず、その少なくとも一方の表面(好ましくは両面。換言すると、第1表面および第2表面)が剥離性支持体に保護された形態であり得る。
 次に、樹脂シートBの第1表面に導電部を部分的に配置する。樹脂シートBの第1表面が剥離性支持体に保護されている場合には、上記剥離性支持体を剥がして、樹脂シートBの第1表面を露出させ、露出した樹脂シートBの第1表面に導電部を配置する。これによって、樹脂シートBの第1表面に導電部が部分的に配置された導電部付きシート(導電部付き樹脂シートB)が得られる。なお、樹脂シートBの第1表面に配置する導電部は、あらかじめ作製した金属製の導電部材(導電部)であってもよく、導電部用の剥離性支持体の表面にあらかじめ形成しておいた導電部材(導電部)であってもよい。
 また、樹脂シートBの第1表面に導電部を配置する工程は、樹脂シートBの第2表面を剥離性支持体で保護した状態で行うことが好ましい。所定の機械的強度を有する剥離性支持体で樹脂シートBを支持した状態で導電部の配置作業を行うことにより、樹脂シートBの第1表面上に導電部を効率的に且つ精度よく配置することができる。また、剥離性支持体の表面に形成した導電部を樹脂シートBの第1表面に配置する方法は、具体的には、剥離性支持体表面上の導電部を樹脂シートBの第1表面に転写する工程を含む。この転写工程は、典型的には、導電部が剥離性支持体に支持された状態で行われる。導電部の転写によって、導電部付きシート(導電部付き樹脂シートB)の両面(すなわち導電部形成面および導電部非形成面の両方の表面)が剥離性支持体で覆われた状態となり得る。なお、導電部上の剥離性支持体は、そのまま導電部付きシートの第1表面(導電部形成面)の保護に使用され得る。これら剥離性支持体は、導電部付きシートの使用時に除去される。
 その後、上記導電部付き樹脂シートBの第2表面(導電部非形成面)を樹脂シートAに貼り合わせる。上記導電部付き樹脂シートBの第2表面が剥離性支持体に保護されている場合には、上記剥離性支持体を剥がして、導電部付き樹脂シートBの第2表面を露出させる。そして、露出した導電部付き樹脂シートBの第2表面を樹脂シートAの第1表面に貼り合わせる。このようにして、樹脂シートAの表面に導電部付き樹脂シートBを積層することができ、樹脂シートA(樹脂層A)と導電部との間に樹脂層Bが配置された導電部付きシートを得ることができる。
 なお、上記金属製の導電部材や、剥離性支持体の表面に形成し得る導電部については、上記で説明したとおりである。また、剥離性支持体としては、上記で説明した剥離ライナーを使用すればよい。導電部付きシートの製造に関するその他の事項については、本明細書の記載内容および技術常識を参酌して実施可能であるので、説明は省略する。
 ≪太陽電池モジュールの製造方法≫
 ここに開示される太陽電池モジュールは、上記導電部付きシートを用いて製造される。具体的には、上記の方法によって得られた導電部付きシートを、太陽電池モジュールにおける第1導電部付きシートおよび第2導電部付きシートとして利用する。そして、上記第1導電部付きシートおよび第2導電部付きシートで、太陽電池セルを挟んで、上記導電部付きシートの導電部と太陽電池セルとを当接させて封止することによって、太陽電池モジュールは製造される。
 好ましい一態様では、太陽電池モジュールは、例えば裏面被覆部材、第2導電部付きシート、太陽電池セル、第1導電部付きシートおよび表面被覆部材を、この順番で積層する工程を含み得る。第2導電部付きシート上への太陽電池セルの配置は、第2導電部付きシートの第2導電部と太陽電池セルの裏面とが当接するように行われる。また、第1導電部付きシートは、その第1導電部が太陽電池セルの表面と当接するように配置される。このようにして、ここに開示される構成を有する太陽電池モジュールを製造することができる
 また、太陽電池モジュールは、次の方法で製造することも可能である。具体的には、太陽電池モジュールは:樹脂層Bとなる樹脂シートBと、該樹脂シートBの第1表面に部分的に配置された導電部と、を備える導電部付き樹脂シートBを用意する工程と;樹脂層Aとなる樹脂シートA(典型的にはシート状封止樹脂)と太陽電池セルとを導電部付き樹脂シートBが介在した状態で固定する工程と;を含む方法によって製造され得る。
 樹脂シートBとしては、上記導電部付きシートの製造方法において説明した樹脂シートBまたは樹脂層Bを使用することができる。その場合、樹脂シートBは、その少なくとも一方の表面(好ましくは両面。換言すると、第1表面および第2表面)が剥離性支持体に保護された形態であり得る。この樹脂シートBを用いて導電部付き樹脂シートBを作製する。具体的には、樹脂シートBの第1表面に導電部を部分的に配置することによって、導電部付き樹脂シートBを作製する。導電部付き樹脂シートBの製法、構造等は、上記導電部付きシートの製造方法の(B2)工程において説明したとおりである。
 そして、上記導電部付き樹脂シートBを用いて、導電部付き樹脂シートBが介在した状態で樹脂シートA(典型的にはシート状封止樹脂)と太陽電池セルとを固定する。この固定工程は、具体的には、用意した導電部付き樹脂シートBの第2表面(導電部非形成面)と樹脂シートA(典型的にはシート状封止樹脂)の一方の表面(第1表面)とを貼り合わせる工程(貼り合わせ工程)と、導電部付き樹脂シートBの導電部と太陽電池セルとを当接させる工程(当接工程)と、を含む。この当接工程は、典型的には、導電部付き樹脂シートBと太陽電池セルとを積層する工程であり得る。上記貼り合わせ工程および上記当接工程の順序は特に限定されない。例えば、太陽電池セルの裏面側については、上記貼り合わせ工程を行った後に上記当接工程を行い、太陽電池セルの表面側については、上記当接工程を行った後に上記貼り合わせ工程を行うことも可能である。なお、上記貼り合わせ工程を行った後に上記当接工程を行う方法は、上記(B2)工程を利用した製造方法と基本的に同様である。
 上記当接工程を行った後に上記貼り合わせ工程を行う方法は、具体的には、少なくとも1つの太陽電池セルの一方の表面に、剥離性支持体で第2表面が保護された導電部付き樹脂シートBの第1表面(導電部形成面)を貼り合わせる。このとき、導電部付き樹脂シートBの導電部を太陽電池セルの表面に当接させる。典型的には、導電部付き樹脂シートBが備える少なくとも1つの導電パス単位が、少なくとも1つの太陽電池セルとそれぞれ当接するように導電部付き樹脂シートBを太陽電池セルに貼り合わせる。次いで、太陽電池セルの一方の表面に貼り合わせた導電部付き樹脂シートBの第2表面(導電部非形成面)を剥離性支持体を除去して露出させ、当該第2表面に樹脂シートA(典型的にはシート状封止樹脂)を積層し、太陽電池モジュールを構築する。
 導電部付き樹脂シートBを利用した太陽電池モジュールの製造方法の一例としては、次の方法が挙げられる。すなわち、裏面被覆部材上に樹脂シートA(シート状封止樹脂)を配置し、その上に導電部付き樹脂シートBを、その第2表面(導電部非形成面)が上記樹脂シートA側となるように積層する。次いで、太陽電池セルを、上記導電部付き樹脂シートBの第1表面(導電部形成面)の導電部と当接するように配置する。その上に、もう一枚の導電部付き樹脂シートBを用意し、これを、その第1表面(導電部形成面)の導電部と太陽電池セルとが当接するように配置する。さらにその上に、樹脂シートA(シート状封止樹脂)、表面被覆部材を積層する。太陽電池セルの裏面側および表面側に配置される導電部付き樹脂シートBの一方は、シート状封止樹脂とあわせて導電部付きシートに置き換えることが可能である。このような方法によっても、ここに開示される構成を有する太陽電池モジュールを製造することができる。
 なお、太陽電池モジュールの構築に関するその他の事項については前述のとおりであり、必要に応じて当該技術分野における技術常識に基づき実施可能であるので、ここでの説明は省略する。
 ≪導電部付きシート(導電部付き樹脂シートB)≫
 上記製造方法において好ましく用いられ得る導電部付き樹脂シートBは、上記導電部付きシートにおける樹脂層Bおよび導電部からなる構造体と基本的に同様の構造を有するものであり得る。したがって、樹脂層Bの第1表面には、導電部として、複数の導電パス単位が配置され、これら導電パス単位の各々は、上記実施形態に係る導電パス単位と同様の太陽電池セル接触部分(具体的には導電線)、接続部分を有するものであり得る。その詳細は前述のとおりであるので、ここでは説明は繰り返さない。
 上記導電部付き樹脂シートBは、例えば図7に一部を拡大して示す断面構造を有する形態であり得る。図7では、導電部付き樹脂シートB500の樹脂層B520と導電部530との積層部分を拡大して示している。この導電部付き樹脂シートB500は、樹脂層B520と導電部530とを備える。より詳しくは、樹脂層B520の第1表面520Aに導電部530が設けられている。使用前(封止樹脂または太陽電池セルへの貼り合わせ前)の導電部付き樹脂シートB500は、図7に示すように、その第1表面500Aおよび第2表面500Bが剥離ライナー501,502によってそれぞれ保護された形態であり得る。剥離ライナー501,502において導電部付き樹脂シートB500と当接する面501A、502Aはともに剥離面(剥離性の表面)である。あるいは、導電部付き樹脂シートB500の第1表面(導電部形成面)500Aのみが剥離ライナー501に覆われた形態(図8)、導電部付き樹脂シートB500の第2表面(導電部非形成面)500Bのみが剥離ライナー502に覆われた形態(図9)であってもよい。
 なお、ここに開示される太陽電池モジュールは、上記実施形態の構成に限定されない。例えば、太陽電池モジュールに配置される太陽電池セルの個数は1以上であればよい。ここに開示される技術によると、複数の太陽電池セルを一括して電気的に接続し得ることから、太陽電池セルの個数は多いほど配線作業性の改善効果は大きい。例えば、複数の太陽電池セルを、一列に配列された太陽電池セル群として構成する場合には、当該太陽電池セル群におけるセル数は、好ましくは3以上であり、より好ましくは5以上(例えば7~20、典型的には8~12)である。また、太陽電池セル群は、2列以上(例えば3~10列、典型的には5~8列)であり得る。
 また、上記実施形態では、複数の太陽電池セルは一列に配列された太陽電池セル群として構成されていたが、複数の太陽電池セルの配列(配置)はこれに限定されず、直線状、曲線状、規則的なパターン、あるいは不規則的なパターンであってもよい。また、太陽電池セルの間隔は一定でなくてもよい。
 さらに、太陽電池モジュールにおける第1導電部と第2導電部との電気的接続方法についても、上記各実施形態の方法に限定されない。従来公知の配線手法を適宜改変するなどして、第1導電部と第2導電部とを電気的に接続するように構成することができる。
 本明細書により開示される事項には以下のものが含まれる。
(1) 間隔をおいて配列される複数の太陽電池セルと、
 複数の太陽電池セルの表面を覆う第1導電部付きシートと、
 複数の太陽電池セルの裏面を覆う第2導電部付きシートと、を備えており、
 第1導電部付きシートは、第1樹脂層Aと、第1導電部付きシートの第1表面の一部を構成する第1導電部と、第1樹脂層Aと第1導電部との間に配置された第1樹脂層Bと、を備えており、
 第2導電部付きシートは、第2樹脂層Aと、第2導電部付きシートの第1表面の一部を構成する第2導電部と、第2樹脂層Aと第2導電部との間に配置された第2樹脂層Bと、を備えており、
 第1樹脂層Bおよび第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満であり、
 第1導電部は、複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの表面に接触しており、
 第2導電部は、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面に接触しており、かつ
 第1導電部と第2導電部とは電気的に接続されるように構成されている、太陽電池モジュール。
(2) 第1導電部は、隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ隣りあう2つの太陽電池セルの間に位置する領域にはみ出した部分を有するように配置されており、
 第2導電部は、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ隣りあう2つの太陽電池セルの間に位置する領域にはみ出した部分を有するように配置されている、上記(1)に記載の太陽電池モジュール。
(3) 第1導電部および第2導電部の各々は、少なくとも1つの導電パス単位から構成されており、
 一の導電パス単位は、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有する、上記(1)または(2)に記載の太陽電池モジュール。
(4) 一の導電パス単位において、太陽電池セル接触部分は、接続部分に向かって延びる形状を有しており、接続部分は太陽電池セル接触部分の一端と接続する、上記(3)に記載の太陽電池モジュール。
(5) 一の導電パス単位において、太陽電池セル接触部分は、互いに間隔をおいて配置された複数の導電線から構成されており、接続部分は、導電線の長手方向と交差する方向に延びて導電線の一端と接続する帯形状を有する、上記(4)に記載の太陽電池モジュール。
(6) 第1導電部のはみ出した部分(典型的には、第1導電パス単位の接続部分)と第2導電部のはみ出した部分(典型的には、第2導電パス単位の接続部分)とは、直接的にまたは間接的に接続(典型的には当接)している、上記(2)に記載の太陽電池モジュール。
(7) 少なくとも1つの太陽電池セルと、少なくとも1つの太陽電池セルの少なくとも一方の表面を覆う導電部付きシートと、を備えており、
 導電部付きシートは、樹脂層Aと、導電部付きシートの第1表面の一部を構成する導電部と、樹脂層Aと導電部との間に配置された樹脂層Bと、を備えており、
 樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満であり、
 導電部は、少なくとも1つの太陽電池セルに接触している、太陽電池モジュール。
(8) 導電部は、少なくとも1つの太陽電池セルの一方の表面と対向するように、かつ太陽電池セルと対向しない領域にはみ出した部分を有するように配置されている、上記(7)に記載の太陽電池モジュール。
(9) 導電部は、少なくとも1つの導電パス単位から構成されており、
 一の導電パス単位は、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有する、上記(7)または(8)に記載の太陽電池モジュール。
(10) 一の導電パス単位において、太陽電池セル接触部分は、接続部分に向かって延びる形状を有しており、接続部分は太陽電池セル接触部分の一端と接続する、上記(9)に記載の太陽電池モジュール。
(11) 一の導電パス単位において、太陽電池セル接触部分は、互いに間隔をおいて配置された複数の導電線から構成されており、接続部分は、導電線の長手方向と交差する方向に延びて導電線の一端と接続する帯形状を有する、上記(10)に記載の太陽電池モジュール。
(12) 複数の太陽電池セルを用意する工程と;
 第1樹脂層Aと、第1導電部付きシートの第1表面の一部を構成する第1導電部と、第1樹脂層Aと第1導電部との間に配置された第1樹脂層Bと、を備える第1導電部付きシートを得る工程と;
 第2樹脂層Aと、第2導電部付きシートの第1表面の一部を構成する第2導電部と、第2樹脂層Aと第2導電部との間に配置された第2樹脂層Bと、を備える第2導電部付きシートを得る工程と;
 第1導電部付きシートと第2導電部付きシートとで複数の太陽電池セルを挟む工程と(典型的には、この工程において、複数の太陽電池セルを間隔をおいて配列し、複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの表面に第1導電部を接触させ、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面に第2導電部を接触させ、かつ第1導電部と第2導電部とを電気的に接続するように構成する。);
を包含し、
 ここで、第1樹脂層Bおよび第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、太陽電池モジュールの製造方法。
(13) 第1導電部が隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ隣りあう2つの太陽電池セルの間に位置する領域にはみ出すように、第1導電部付きシートを配置する工程を含み、
 第2導電部が隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ隣りあう2つの太陽電池セルの間に位置する領域にはみ出すように、第2導電部付きシートを配置する工程を含む、上記(12)に記載の製造方法。
(14) 第1導電部および第2導電部の各々を、少なくとも1つの導電パス単位から構成し、
 一の導電パス単位を、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有するように形成する、上記(12)または(13)に記載の製造方法。
(15) 第1導電部のはみ出した部分(典型的には、第1導電パス単位の接続部分)と第2導電部のはみ出した部分(典型的には、第2導電パス単位の接続部分)とを、直接的にまたは間接的に接続(典型的には当接)させる、上記(13)に記載の製造方法。
(16) 第1導電部付きシートと、第2導電部付きシートと、を備え、
 第1導電部付きシートは、第1樹脂層Aと、第1導電部付きシートの第1表面の一部を構成する第1導電部と、第1樹脂層Aと第1導電部との間に配置された第1樹脂層Bと、を備えており、
 第2導電部付きシートは、第2樹脂層Aと、第2導電部付きシートの第1表面の一部を構成する第2導電部と、第2樹脂層Aと第2導電部との間に配置された第2樹脂層Bと、を備えており、
 第1樹脂層Bおよび第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、一対の導電部付きシート。
(17) 樹脂シートAを用意する工程(A)と、樹脂シートAに導電部を樹脂層Bが介在した状態で固定する工程(B)と、を含む、導電部付きシートの製造方法であって、
 工程(B)は:
(B1)樹脂シートAの表面に樹脂層Bを積層した後、樹脂層Bの表面に導電部を部分的に配置する工程;および
(B2)樹脂層Bとなる樹脂シートBを用意し、樹脂シートBの第1表面に導電部を部分的に配置した後、樹脂シートBの第2表面を樹脂シートAに貼り合わせる工程;
のいずれかを含み、
 ここで、樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、導電部付きシートの製造方法。
(18) 工程(B)において、樹脂層Bの表面または樹脂シートBの第1表面への導電部の配置は、少なくとも1つの金属製の導電部材を導電部として作製し、該作製した少なくとも1つの導電部材を樹脂層Bの表面または樹脂シートBの第1表面に配置することによって行う、上記(17)に記載の製造方法。
(19) 工程(B)において、樹脂層Bの表面または樹脂シートBの第1表面への導電部の配置は、導電部を剥離性支持体の表面に形成し、剥離性支持体の表面に形成された導電部を樹脂層Bの表面または樹脂シートBの第1表面に転写することによってなされる、上記(17)または(18)に記載の製造方法。
(20) 工程(B)は前記工程(B2)を含み、
 工程(B2)は、樹脂層Bの第1表面に導電部を部分的に配置して導電部付き樹脂シートBを作製する工程を含む、上記(17)~(19)のいずれかに記載の製造方法。
(21) 上記(17)~(20)のいずれかに記載の方法で導電部付きシートを作製する工程と;
 導電部付きシートの導電部と太陽電池セルとを当接させる工程と;
 を包含する、太陽電池モジュールの製造方法。
(22) 樹脂層Bと、樹脂層Bの第1表面に部分的に配置された導電部と、を備える導電部付き樹脂シートBを用意する工程と;
 樹脂シートAと太陽電池セルとを導電部付き樹脂シートBが介在した状態で固定する工程と;を含む太陽電池モジュールの製造方法であって、
 固定工程は:
  用意した導電部付き樹脂シートBの第2表面と樹脂シートAの一方の表面とを貼り合わせる工程と;
  導電部付き樹脂シートBの導電部と太陽電池セルとを当接させる工程と;
を含み、
 ここで、樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、太陽電池モジュールの製造方法。
(23) 樹脂層Bと、樹脂層Bの第1表面に部分的に配置された導電部と、を備え、
 樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、導電部付きシート。
 以下、本発明に関する実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。なお、以下の説明中の「部」および「%」は、特に断りがない限り重量基準である。
 <製造例1>
 2-エチルヘキシルアクリレート(2EHA)40.5部、イソステアリルアクリレート(ISA)40.5部、N-ビニル-2-ピロリドン(NVP)18部、4-ヒドロキシブチルアクリレート(4HBA)1部と、光重合開始剤としての2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」、BASF社製)0.05部および1-ヒドロキシシクロヘキシル-フェニル-ケトン(商品名「イルガキュア184」、BASF社製)0.05部とを混合し、窒素雰囲気下で紫外線を照射して部分重合物(モノマーシロップ)を作製した。得られたモノマーシロップにシランカップリング剤(商品名「KBM403」、信越化学工業社製)0.3部およびトリメチロールプロパントリアクリレート(TMPTA)0.02部を添加し、均一に混合して樹脂層B形成用組成物(1)を調製した。
 片面がシリコーン系剥離処理剤で剥離処理されている厚さ38μmのポリエステルフィルム(商品名「ダイアホイルMRF」、三菱樹脂社製)の剥離処理面に、上記で調製した樹脂層B形成用組成物(1)を、最終的な厚さが50μmになるように塗布して塗布層を形成した。次いで、上記塗布層の表面に、片面がシリコーンで剥離処理されている厚み38μmのポリエステルフィルム(商品名「ダイアホイルMRE」、三菱樹脂社製)を、当該フィルムの剥離処理面が上記塗布層側になるようにして被せた。これにより上記塗布層を酸素から遮断した。このようにして得られた塗布層を有するシートにケミカルライトランプ(東芝社製)を用いて照度5mW/cmの紫外線を360秒間照射することにより、上記塗布層を硬化させて樹脂層Bを形成し、樹脂シートB(樹脂層B(1))を得た。この樹脂層B(1)において、樹脂層Bの両面に被覆されたポリエステルフィルムは、剥離ライナーとして機能する。
 なお、上記照度の値は、ピーク感度波長約350nmの工業用UVチェッカー(商品名「UVR-T1」、受光部型式UD-T36、トプコン社製)による測定値である。
 <製造例2>
 2EHA78部、NVP18部、2-ヒドロキエチルアクリレート(HEA)21.6部と、(メタ)アクリル系オリゴマー11.8部と、光重合開始剤としての2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」、BASF社製)0.035部および1-ヒドロキシシクロヘキシル-フェニル-ケトン(商品名「イルガキュア184」、BASF社製)0.035部とを混合し、窒素雰囲気下で紫外線を照射して部分重合物(モノマーシロップ)を作製した。得られたモノマーシロップに、シランカップリング剤(商品名「KBM403」、信越化学工業社製)0.353部および1,6-ヘキサンジオールジアクリレート(HDDA)0.294部を添加し、均一に混合して樹脂層B形成用組成物(2)を調製した。この樹脂層B形成用組成物(2)を用いた他は製造例1と同様にしてシート状の樹脂層B(2)を得た。
 (メタ)アクリル系オリゴマーとしては、下記の方法で調製したものを使用した。ジシクロペンタニルメタクリレート(商品名「FA-513M」、日立化成工業社製)34.8部およびメチルメタクリレート23.3部に、連鎖移動剤としてのチオグリコール酸2部と、重合溶媒としての酢酸エチルとを配合し、窒素ガスを吹き込んで溶存酸素を除去した。次いで、この混合物を70℃に昇温し、70℃で1時間攪拌した後、重合開始剤としてのアゾビスイソブチロニトリル0.172部を加えた。これを70℃で2時間、次いで80℃で2時間の条件で反応させた。その後、130℃で重合溶媒、連鎖移動剤、残留モノマーを除去して、Mwが凡そ4000でTgが凡そ130℃の(メタ)アクリル系オリゴマーを得た。
 <製造例3~5>
 EVAシート(商品名「EVASKY」、ブリヂストン社製)をプレスし、150℃で15分間ポストキュアを行い、厚さ約150μmの樹脂層B(3)を得た。
 また、ポストキュア時間を30分、60分に変更した他は上記と同様にして樹脂層B(4),(5)を得た。
 <製造例6>
 高圧法低密度ポリエチレン(HP-LDPE:商品名「DFD-2005」、NUC社製)をプレス成形し、厚さ約100μmの樹脂層B(6)を得た。
 [太陽電池セルに対する180度剥離強度(対太陽電池セル接着力)]
 樹脂層B(1)~(6)を5cm×10cmのサイズにカットし、同じサイズで厚さ450μmのEVAシート(商品名「EVASKY」、ブリヂストン社製)に積層した。
 また、5cm×10cmのガラス上に、同じサイズで厚さ450μmのEVAシート(商品名「EVASKY」、ブリヂストン社製)を積層し、その上に5cm×4cmに切断した太陽発電用のセル(単結晶系Siセル:商品名「G156S3」、GINTECH社製)を配置した。そして、上記で用意した樹脂層B付きEVAシートの樹脂層B側表面を上記セルの上に積層した。このとき、樹脂層B表面のセル非対向部分に、シリコーンで剥離処理を行った剥離ライナーを配置した。この剥離ライナーは、セルのない領域にて下側のEVAシートと樹脂層Bとの間に挟まれている。さらに、上側のEVAシートの上にPETフィルムを裏打ちして試験用の積層体を得た。その後、市販のラミネータ(NPC社製)を用いて150℃、100kPa、15分間の条件で上記積層体をラミネート処理した後、恒温乾燥機で150℃、15分のポストキュアを行い、試験片を作成した。
 この試験片を用いて、太陽発電用のセルと樹脂層B間の180度剥離強度を測定した。具体的には、引張試験機(装置名「オートグラフAGS-J」、島津製作所製)を使用して、23℃、50%RHの雰囲気下、引張速度30mm/分、剥離角度180度の条件で被着体(セル)から樹脂層Bを剥離し、そのときの剥離強度[N/10mm]を求めた。また、樹脂層BのないEVAシート(比較例)についても、上記と同様の方法で剥離強度を測定した。
 [全光線透過率]
 5cm×5cmのガラス板(白色ケミカル強化ガラス:商品名「B270」、ショット社製)を2枚用意し、この2枚のガラス板で、厚さ450μmのEVAシート(商品名「EVASKY」、ブリヂストン社製)と樹脂層Bとを重ねたものを挟んだ。そして、市販のラミネータ(NPC社製)を用いて150℃、100kPa、15分間の条件で上記積層体をラミネート処理した後、恒温乾燥機で150℃、15分のポストキュアを行い、試験片を作成した。この試験片に対して、ヘーズメーター(商品名「HR-100」、村上色彩技術研究所社製)を用いて全光線透過率を測定した。また、樹脂層BのないEVAシート(比較例)についても上記と同様の方法で全光線透過率を測定した。
 [貯蔵弾性率およびtanδ]
 レオメーター(装置名「ARES 2KFRT」、TAインスツルメント社製)を使用して、樹脂層B(1)~(6)の貯蔵弾性率G’およびtanδ(G”/G’)を測定した。すなわち、各樹脂層Bを厚さ2mmのシート状とし、これを直径8mmに打ち抜き、装置のチャックに装着した。そして、周波数1Hz、歪み0.1%の条件で、10℃/分の昇温速度で30℃から160℃まで温度を上昇させて、貯蔵弾性率G’およびtanδ(G”/G’)を測定した。また、樹脂層BのないEVAシート(比較例)については、封止樹脂(EVAシート)を用いて上記と同様の評価を行った。結果を図10および11に示す。図中、EVAは比較例の封止樹脂(EVAシート)の評価結果である。また、150℃における貯蔵弾性率G’[Pa]および80℃~150℃の温度域におけるtanδ(G”/G’)の最大値を表1に示す。
 [MFR]
 各樹脂層B形成材料につき、ペレット状の樹脂はそのまま、混練物やシート状のものは数mmサイズに切断してフレーク状に調製し、市販のメルトインデクサー(テスター産業社製)に投入してMFRの測定を行った。測定は、JIS K 7210:1999またはASTM D 1238に準拠し、温度150℃、荷重2.16Kgの条件で一定時間に流れ出てきた樹脂量を天秤で秤量して単位時間(10分間)に吐出した樹脂量を計算することによって行った。なお、樹脂層B(1)については温度190℃で測定を実施した。樹脂層BのないEVAシート(比較例)についても上記と同様の方法でMFRの測定を試みたが、計測できなかった。
 [線膨張率]
 (引張モード)
 各樹脂層Bを長さ10mm×断面積約0.5mmのサイズに切断して、試験片を作製した。この試験片につき、熱分析装置(商品名「EXSTAR6000」、セイコーインスツル社製)を用いて、引張荷重20mN、昇温速度1.7℃/分の条件で、-40℃~85℃における線膨張率(%)を測定した。上記線膨張率は次式より求められる。
 -40℃~85℃における線膨張率(%)=(A-B)/B×100
 A:-40℃~85℃における試験片の長さの最大値(mm)
 B:-40℃~85℃における試験片の長さの最小値(mm)
 (圧縮モード)
 各樹脂層Bを約5mm角のサイズに切断して、試験片を作製した。この試験片につき、TMA(Thermal Mechanical Analysis)装置(装置名「TMA/SS7100」、エスアイアイ・ナノテクノロジー社製)を用いて下記の条件で、-40℃~85℃における線膨張率(%)を測定した。上記線膨張率は次式より求められる。
 -40℃~85℃における線膨張率(%)=(A-B)/B×100
 A:-40℃~85℃における試験片の厚さの最大値(μm)
 B:-40℃~85℃における試験片の厚さの最小値(μm)
 測定条件:
 押込試験時の荷重; 9.8mN
 プローブ径; φ3.5mm
 温度プログラム; -60℃→160℃、10℃/分
 測定雰囲気; N(流量 200mL/分)
 <実験例>
 (導電部材)
 厚さ75μmの銅箔を16cm×0.5cmサイズにカットした。銅箔としては、電解銅箔(リジット基板用電解銅箔、純度99.8%以上(表面処理前))を用いた。なお、この電解銅箔には、亜鉛、クロム、ヒ素を用いて、粗化処理、防錆処理、密着性向上処理が施されている。次いで、銅ワイヤー(幅0.8mm×厚さ0.25mm)を用意し、その一端を上記銅箔上に配置し溶接固定した。銅ワイヤーは、その長手方向が上記銅箔の長手方向に直交するように固定した。銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、めっき厚さ1μm(公差±15%)、引張強度は350N/mm以上であり、15.7cmに引き伸ばした後、カットしたものを用いた。めっき種としてはSnまたはAgが用いられる。上記の銅ワイヤーの固定作業を、銅箔の長手方向に沿って2cm間隔で8回繰り返し、図12に示すような櫛形の導電部材35を得た。なお、図12では、銅ワイヤーに相当する導電線55の本数は6本であるが、本例では8本の銅ワイヤーが配列されている。
 (封止樹脂)
 厚さ450μmのEVAシート(商品名「EVASKY」、ブリヂストン社製)を18cm×18cmにカットし、シート状封止樹脂(封止樹脂層)を用意した。
 (導電部付きシート(1))
 上記シート状封止樹脂の一方の表面に表面処理を施した後、当該表面処理面に、上記製造例で作製した樹脂層Bを積層した。さらにその上に、上記で得た導電部材を配置した。このようにして、図13に模式的に示す構造を有する導電部付きシート(1)1を得た。表面処理は、コロナ処理装置(例えば春日電機社製)を用いたコロナ処理、大気圧プラズマ処理装置(例えば積水化学工業社製)を用いた大気圧プラズマ処理およびシランカップリング剤(商品名「KBM-503」、信越化学社製)の塗布のうち適切な処理を単独でまたは組み合わせて行われる。図13には、太陽電池セルの表面側(上側)に配置される導電部付きシート(1)1が示されている。なお図13において、符号10は樹脂層AとしてのEVAシートを示し、符号20は樹脂層Bを示し、符号55は複数の銅ワイヤー(導電線)を示し、符号60は接続部分としての銅箔を示し、符号30,35,40,50は、導電部、導電部材、導電パス単位、太陽電池セル接触部分をそれぞれ示している。
 (太陽電池モジュール)
 厚さ200μmのバックシート(商品名「コバテックPV KB-Z1-3」、コバヤシ社製)を用意し、18cm×18cmにカットし、裏面被覆部材を用意した。この裏面被覆部材を載置し、その上に、上記で作製したシート状封止樹脂を設置した。なお、図14~16において裏面被覆部材は符号330で示し、封止樹脂は符号10で示す。また図14に示すように、封止樹脂10上に、裏面にバスバー電極310(商品名「SSA-SPS」、1.5mm×0.2mmのはんだ被覆銅線、日立電線社製)を3本固定したSi系太陽電池セル305(Qセルズ社製、単結晶セル)を配置した。なお、上記バスバー電極310は、350℃に熱したはんだごてを用いて上記太陽電池セル305にはんだ接合されている。そして、図15に示すように、太陽電池セル305の両横に、幅6cmの銅製端子バー(商品名「A-SPS」、日立電線社製)を、取出し電極350a,350bとしてそれぞれ設置した。図中左方に配置された取出し電極350aは、太陽電池セル305に固定されたバスバー電極310の太陽電池セル305からはみ出した部分とはんだで固定した。太陽電池セル305の上に、図16に示すように、上記で用意した導電部付きシート(1)1を導電部形成面が下面となるように設置し、導電部付きシート(1)1の導電部30と太陽電池セル305の表面とを当接させた。具体的には、導電部30の導電線55を太陽電池セル305に当接させ、導電部30の接続部分60を太陽電池セル305からはみ出した位置に配置し、右側の取出し電極350bに当接させた。さらにその上に、表面被覆部材として厚さ3.2mmのガラス板(旭硝子社製、白板熱処理ガラス)を配置した後、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施した。さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行い、例1~6に係る試験用太陽電池モジュールを構築した。
 <比較例>
 樹脂層Bを配置しない他は上記導電部付きシート(1)と同様にして導電部付きシート(2)を作製し、導電部付きシート(1)を導電部付きシート(2)に変更した他は上記と同様にして試験用太陽電池モジュールを構築した。
 [光電変換効率の低下率]
 得られた試験用太陽電池モジュールにつき、恒温恒湿器(装置名「PSL-2J」、エスペック社製)を用いて、JIS C 8990:2009の10.11項(温度サイクル試験)に準拠して、-40℃から85℃を1サイクルとする200サイクルのサーマルサイクル試験を実施した。試験前後の光変換効率を、JIS C 8913:2005に準拠し、ソーラーシミュレーター(装置名「XES-450S1」、三永電機製作所製)を用いて下記の条件で測定した。試験前後の光変換効率から、光電変換効率の低下率(%)を求めた。なお、サーマルサイクル後の最大出力値(Pmax)の測定は、30分間以上室温環境下に静置してから実施した。
 (測定条件)
 電圧スイープ法
 スタート電圧: -0.01V
 ストップ電圧: 0.8V
 ステップ: 0.02V
 制限電流: 10000A
 保持時間: 26.68ms
 光量:Reference PV CELL(商品名「AK-200」、コニカミノルタ社製)を用いて短絡電流が約129mA(±3%)になるよう調整した。
 上記評価の結果を表1に示す。なお、比較例の欄には、封止樹脂に対する評価結果を示している。表中、未測定は「-」と表記した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、樹脂層Aと導電部との間に樹脂層Bを配置した例1~6では、樹脂層Bを設けなかった比較例と比べて、光電変換効率の低下率が低く抑制された。サーマルサイクル試験時に、樹脂層Bが太陽電池セルと導電部との接触状態を良好に保持したためと考えられる。また、貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)が5000Pa以上であり、かつ80℃~150℃におけるtanδが0.4未満である例1~3,5は、上記tanδが0.4以上であった例6よりも、光電変換効率の低下抑制性に優れていた。また、上記導電部付きシートを用いることによって、バスバー電極のはんだ接合工程を省略することができ、配線作業性も飛躍的に改善することができる。上記より、ここに開示される技術によると、生産性および耐久性に優れた太陽電池モジュールが実現されることがわかる。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
  1  導電部付きシート
  1A  導電部付きシートの第1表面
  5a,5b  太陽電池セル対向領域
  7  太陽電池セル非対向領域
 10  樹脂層A(封止樹脂層)
 10A  樹脂層Aの第1表面
 10B  樹脂層Aの第2表面
 20  樹脂層B
 20A  樹脂層Bの第1表面
 30  導電部
 40,40a,40b  導電パス単位
 50, 50a,50b  太陽電池セル接触部分
 55,55a,55b  導電線
 60,60a,60b  接続部分
100  一対の導電部付きシート
101  第1導電部付きシート
101A  第1導電部付きシートの第1表面
105a,105b  太陽電池セル対向領域
107  太陽電池セル非対向領域
110  第1樹脂層A(第1封止樹脂層)
120  第1樹脂層B
120A  第1樹脂層Bの第1表面
130  第1導電部
140a,140b  第1導電パス単位
150a,150b  太陽電池セル接触部分
155a,155b  導電線
160a,160b  接続部分
201  第2導電部付きシート
201A  第2導電部付きシートの第1表面
205a,205b  太陽電池セル対向領域
207  太陽電池セル非対向領域
210  第2樹脂層A(第2封止樹脂層)
220  第2樹脂層B
220A  第2樹脂層Bの第1表面
230  第2導電部
240a,240b  第2導電パス単位
250a,250b  太陽電池セル接触部分
255a,255b  導電線
260a,260b  接続部分
300  太陽電池モジュール
302  太陽電池セル群
305,305a,305b  太陽電池セル
320  表面被覆部材
330  裏面被覆部材
500  導電部付きシート(導電部付き樹脂シートB)
500A  導電部付きシートの第1表面
520  樹脂層B
520A  樹脂層Bの第1表面
530  導電部

Claims (29)

  1.  樹脂層Aと、導電部と、該樹脂層Aと該導電部との間に配置された樹脂層Bと、を備えた導電部付きシートであって、
     前記導電部は、前記導電部付きシートの表面の一部を構成しており、
     前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、導電部付きシート。
  2.  前記樹脂層Bの表面は接着性を有しており、かつ前記導電部は該樹脂層Bの表面に部分的に形成されている、請求項1に記載の導電部付きシート。
  3.  前記樹脂層Bはアクリル系樹脂層である、請求項1または2に記載の導電部付きシート。
  4.  前記樹脂層Aは封止樹脂層である、請求項1~3のいずれか一項に記載の導電部付きシート。
  5.  前記導電部は、金属材料で形成されている、請求項1~4のいずれか一項に記載の導電部付きシート。
  6.  請求項1~5のいずれか一項に記載の導電部付きシートを備える、太陽電池モジュール。
  7.  間隔をおいて配列される複数の太陽電池セルと、
     前記複数の太陽電池セルの表面を覆う第1導電部付きシートと、
     前記複数の太陽電池セルの裏面を覆う第2導電部付きシートと、を備えており、
     前記第1導電部付きシートは、第1樹脂層Aと、該第1導電部付きシートの第1表面の一部を構成する第1導電部と、該第1樹脂層Aと該第1導電部との間に配置された第1樹脂層Bと、を備えており、
     前記第2導電部付きシートは、第2樹脂層Aと、該第2導電部付きシートの第1表面の一部を構成する第2導電部と、該第2樹脂層Aと該第2導電部との間に配置された第2樹脂層Bと、を備えており、
     前記第1樹脂層Bおよび前記第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満であり、
     前記第1導電部は、前記複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの表面に接触しており、
     前記第2導電部は、前記隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面に接触しており、かつ
     前記第1導電部と前記第2導電部とは電気的に接続されるように構成されている、太陽電池モジュール。
  8.  前記第1導電部は、前記隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ該隣りあう2つの太陽電池セルの間に位置する領域にはみ出した部分を有するように配置されており、
     前記第2導電部は、前記隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ該隣りあう2つの太陽電池セルの間に位置する領域にはみ出した部分を有するように配置されている、請求項7に記載の太陽電池モジュール。
  9.  前記第1導電部および前記第2導電部の各々は、少なくとも1つの導電パス単位から構成されており、
     前記少なくとも1つの導電パス単位のうち一の導電パス単位は、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有する、請求項7または8に記載の太陽電池モジュール。
  10.  前記一の導電パス単位において、前記太陽電池セル接触部分は、前記接続部分に向かって延びる形状を有しており、前記接続部分は前記太陽電池セル接触部分の一端と接続する、請求項9に記載の太陽電池モジュール。
  11.  前記一の導電パス単位において、前記太陽電池セル接触部分は、互いに間隔をおいて配置された複数の導電線から構成されており、前記接続部分は、前記導電線の長手方向と交差する方向に延びて該導電線の一端と接続する帯形状を有する、請求項10に記載の太陽電池モジュール。
  12.  前記第1導電部のはみ出した部分と前記第2導電部のはみ出した部分とは、直接的にまたは間接的に接続している、請求項8に記載の太陽電池モジュール。
  13.  少なくとも1つの太陽電池セルと、
     前記少なくとも1つの太陽電池セルの少なくとも一方の表面を覆う樹脂層Aと、
     前記少なくとも1つの太陽電池セルに接触する導電部と、
     前記樹脂層Aと前記導電部との間に配置された樹脂層Bと、を備え、
     前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、太陽電池モジュール。
  14.  前記導電部は、前記少なくとも1つの太陽電池セルの一方の表面と対向するように、かつ該太陽電池セルと対向しない領域にはみ出した部分を有するように配置されている、請求項13に記載の太陽電池モジュール。
  15.  前記導電部は、少なくとも1つの導電パス単位から構成されており、
     前記少なくとも1つの導電パス単位のうち一の導電パス単位は、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有する、請求項13または14に記載の太陽電池モジュール。
  16.  前記一の導電パス単位において、前記太陽電池セル接触部分は、前記接続部分に向かって延びる形状を有しており、前記接続部分は前記太陽電池セル接触部分の一端と接続する、請求項15に記載の太陽電池モジュール。
  17.  前記一の導電パス単位において、前記太陽電池セル接触部分は、互いに間隔をおいて配置された複数の導電線から構成されており、前記接続部分は、前記導電線の長手方向と交差する方向に延びて該導電線の一端と接続する帯形状を有する、請求項16に記載の太陽電池モジュール。
  18.  複数の太陽電池セルを用意する工程と;
     第1樹脂層Aと、第1導電部付きシートの第1表面の一部を構成する第1導電部と、該第1樹脂層Aと該第1導電部との間に配置された第1樹脂層Bと、を備える第1導電部付きシートを得る工程と;
     第2樹脂層Aと、第2導電部付きシートの第1表面の一部を構成する第2導電部と、該第2樹脂層Aと該第2導電部との間に配置された第2樹脂層Bと、を備える第2導電部付きシートを得る工程と;
     前記第1導電部付きシートと前記第2導電部付きシートとで前記複数の太陽電池セルを挟む工程と;
    を包含し、
     ここで、前記第1樹脂層Bおよび前記第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、太陽電池モジュールの製造方法。
  19.  前記第1導電部が隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ該隣りあう2つの太陽電池セルの間に位置する領域にはみ出すように、前記第1導電部付きシートを配置する工程を含み、
     前記第2導電部が前記隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ該隣りあう2つの太陽電池セルの間に位置する領域にはみ出すように、前記第2導電部付きシートを配置する工程を含む、請求項18に記載の製造方法。
  20.  前記第1導電部および前記第2導電部の各々を、少なくとも1つの導電パス単位から構成し、
     前記少なくとも1つの導電パス単位のうち一の導電パス単位を、太陽電池セル対向領域に位置する太陽電池セル接触部分と、太陽電池セル非対向領域に位置する接続部分と、を有するように形成する、請求項18または19に記載の製造方法。
  21.  前記第1導電部のはみ出した部分と前記第2導電部のはみ出した部分とを、直接的にまたは間接的に接続させる、請求項19に記載の製造方法。
  22.  第1導電部付きシートと、第2導電部付きシートと、を備え、
     前記第1導電部付きシートは、第1樹脂層Aと、該第1導電部付きシートの第1表面の一部を構成する第1導電部と、該第1樹脂層Aと該第1導電部との間に配置された第1樹脂層Bと、を備えており、
     前記第2導電部付きシートは、第2樹脂層Aと、該第2導電部付きシートの第1表面の一部を構成する第2導電部と、該第2樹脂層Aと該第2導電部との間に配置された第2樹脂層Bと、を備えており、
     前記第1樹脂層Bおよび前記第2樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、一対の導電部付きシート。
  23.  樹脂シートAを用意する工程(A)と、該樹脂シートAに導電部を樹脂層Bが介在した状態で固定する工程(B)と、を含む、導電部付きシートの製造方法であって、
     前記工程(B)は:
    (B1)前記樹脂シートAの表面に前記樹脂層Bを積層した後、前記樹脂層Bの表面に前記導電部を部分的に配置する工程;および
    (B2)前記樹脂層Bとなる樹脂シートBを用意し、前記樹脂シートBの第1表面に前記導電部を部分的に配置した後、該樹脂シートBの第2表面を前記樹脂シートAに貼り合わせる工程;
    のいずれかを含み、
     ここで、前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、導電部付きシートの製造方法。
  24.  前記工程(B)において、前記樹脂層Bの表面または前記樹脂シートBの第1表面への前記導電部の配置は、少なくとも1つの金属製の導電部材を前記導電部として作製し、該作製した少なくとも1つの導電部材を前記樹脂層Bの表面または前記樹脂シートBの第1表面に配置することによって行う、請求項23に記載の製造方法。
  25.  前記工程(B)において、前記樹脂層Bの表面または前記樹脂シートBの第1表面への前記導電部の配置は、該導電部を剥離性支持体の表面に形成し、該剥離性支持体の表面に形成された該導電部を該樹脂層Bの表面または該樹脂シートBの第1表面に転写することによってなされる、請求項23または24に記載の製造方法。
  26.  前記工程(B)は前記工程(B2)を含み、
     前記工程(B2)は、前記樹脂層Bの第1表面に前記導電部を部分的に配置して導電部付き樹脂シートBを作製する工程を含む、請求項23~25のいずれか一項に記載の製造方法。
  27.  請求項23~26のいずれか一項に記載の方法で導電部付きシートを作製する工程と;
     前記導電部付きシートの導電部と太陽電池セルとを当接させる工程と;
     を包含する、太陽電池モジュールの製造方法。
  28.  樹脂層Bと、該樹脂層Bの第1表面に部分的に配置された導電部と、を備える導電部付き樹脂シートBを用意する工程と;
     樹脂シートAと太陽電池セルとを前記導電部付き樹脂シートBが介在した状態で固定する工程と;を含む太陽電池モジュールの製造方法であって、
     前記固定工程は:
      前記用意した導電部付き樹脂シートBの第2表面と前記樹脂シートAの一方の表面とを貼り合わせる工程と;
      前記導電部付き樹脂シートBの導電部と前記太陽電池セルとを当接させる工程と;
    を含み、
     ここで、前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、太陽電池モジュールの製造方法。
  29.  樹脂層Bと、該樹脂層Bの第1表面に部分的に配置された導電部と、を備え、
     前記樹脂層Bの貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、導電部付きシート。

     
PCT/JP2016/058893 2015-03-31 2016-03-22 導電部付きシートおよびその利用 WO2016158543A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073407 2015-03-31
JP2015-073407 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158543A1 true WO2016158543A1 (ja) 2016-10-06

Family

ID=57006168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058893 WO2016158543A1 (ja) 2015-03-31 2016-03-22 導電部付きシートおよびその利用

Country Status (2)

Country Link
TW (1) TW201704023A (ja)
WO (1) WO2016158543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129894A1 (ja) * 2018-12-17 2020-06-25 リンテック株式会社 導電性接着シート、積層体、および発熱装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662337B2 (ja) * 2017-03-27 2020-03-11 信越化学工業株式会社 半導体装置及びその製造方法、並びに積層体
TWI705578B (zh) * 2018-02-09 2020-09-21 絜靜精微有限公司 貼合式串接之太陽能板封裝結構/製造方法及其串接板結構

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041009A (ja) * 2008-08-08 2010-02-18 Sharp Corp 素子形成基板配線ストリング、太陽電池モジュールおよびその製造方法
JP2012009706A (ja) * 2010-06-25 2012-01-12 Asahi Kasei E-Materials Corp 太陽電池モジュール及びその製造方法
JP2014003064A (ja) * 2012-06-15 2014-01-09 Nisshinbo Holdings Inc 太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュール製造用被覆材
JP2014154671A (ja) * 2013-02-07 2014-08-25 Nitto Denko Corp インターコネクタ
JP2015007181A (ja) * 2013-06-25 2015-01-15 日立化成株式会社 太陽電池用接続材料、これを用いた太陽電池モジュール及びその製造方法
JP2015057811A (ja) * 2013-03-26 2015-03-26 三菱化学株式会社 太陽電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041009A (ja) * 2008-08-08 2010-02-18 Sharp Corp 素子形成基板配線ストリング、太陽電池モジュールおよびその製造方法
JP2012009706A (ja) * 2010-06-25 2012-01-12 Asahi Kasei E-Materials Corp 太陽電池モジュール及びその製造方法
JP2014003064A (ja) * 2012-06-15 2014-01-09 Nisshinbo Holdings Inc 太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュール製造用被覆材
JP2014154671A (ja) * 2013-02-07 2014-08-25 Nitto Denko Corp インターコネクタ
JP2015057811A (ja) * 2013-03-26 2015-03-26 三菱化学株式会社 太陽電池モジュール
JP2015007181A (ja) * 2013-06-25 2015-01-15 日立化成株式会社 太陽電池用接続材料、これを用いた太陽電池モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIKAZU NISHIYAMA: "Kotai Kobunshi no Doteki Nendansei Sokutei", PLASTIC, vol. 59, no. 3, 1 March 2008 (2008-03-01), pages 30 - 32 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129894A1 (ja) * 2018-12-17 2020-06-25 リンテック株式会社 導電性接着シート、積層体、および発熱装置
JPWO2020129894A1 (ja) * 2018-12-17 2021-11-18 リンテック株式会社 導電性接着シート、積層体、および発熱装置
JP7401461B2 (ja) 2018-12-17 2023-12-19 リンテック株式会社 導電性接着シート、積層体、および発熱装置

Also Published As

Publication number Publication date
TW201704023A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
TWI643742B (zh) Antistatic adhesive sheet and optical film
JP6057600B2 (ja) 粘着剤、粘着剤層、および粘着シート
TWI638368B (zh) Conductive adhesive and solar cell module
KR102132619B1 (ko) 대전 방지층, 대전 방지성 점착 시트 및 광학 필름
JP2016130747A (ja) 粘着剤層付偏光フィルムおよび画像表示装置
JP5960408B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
US20210139750A1 (en) Electrically conductive adhesive for attaching solar cells
WO2016158543A1 (ja) 導電部付きシートおよびその利用
WO2012081437A1 (ja) 積層体
JP2012134393A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2014154671A (ja) インターコネクタ
WO2017010385A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法および太陽電池セルの配線方法
JP6154625B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
TWI779030B (zh) 用於附接太陽能電池的導電性黏著劑及其用途
JP2018113280A (ja) 太陽電池モジュール、導電コネクター付き太陽電池セル、太陽電池モジュール配線用粘着シート、太陽電池モジュール用配線構造体および太陽電池モジュールの製造方法
JP2016195146A (ja) 太陽電池モジュール用封止シートおよびその利用
JP2015228457A (ja) 太陽電池用導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2013150976A1 (ja) 結晶系太陽電池モジュール及びその製造方法
JP2015010109A (ja) 導電性粘着テープ
WO2017010383A1 (ja) 太陽電池モジュール、太陽電池モジュール用導電材および配線構造体
WO2017010384A1 (ja) 配線構造体、太陽電池モジュールおよび太陽電池セル
WO2022030565A1 (ja) 電気剥離型粘着シート、及び接合体
JP6563254B2 (ja) 積層体、タッチパネルセンサの製造方法、及び、タッチパネルセンサ
CN116731625A (zh) 加强薄膜
JP2003229586A (ja) 薄膜太陽電池用絶縁基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP