WO2016158501A1 - 放射線撮像装置,放射線計数装置および放射線撮像方法 - Google Patents

放射線撮像装置,放射線計数装置および放射線撮像方法 Download PDF

Info

Publication number
WO2016158501A1
WO2016158501A1 PCT/JP2016/058725 JP2016058725W WO2016158501A1 WO 2016158501 A1 WO2016158501 A1 WO 2016158501A1 JP 2016058725 W JP2016058725 W JP 2016058725W WO 2016158501 A1 WO2016158501 A1 WO 2016158501A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
counter
circuit
simultaneous
detector
Prior art date
Application number
PCT/JP2016/058725
Other languages
English (en)
French (fr)
Inventor
崇章 石津
高橋 勲
横井 一磨
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680019533.1A priority Critical patent/CN107430201B/zh
Priority to JP2017509571A priority patent/JP6375054B2/ja
Priority to US15/560,291 priority patent/US10292669B2/en
Publication of WO2016158501A1 publication Critical patent/WO2016158501A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/172Circuit arrangements not adapted to a particular type of detector with coincidence circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Definitions

  • the present invention relates to a radiation imaging apparatus that reconstructs an image based on a radiation count value.
  • An X-ray CT apparatus is a device that obtains a tomographic image of a subject from attenuation when X-rays generated from an X-ray tube pass through the body of the subject. The energy of each X-ray is measured at each pixel of the detector. A method called photon counting that detects them separately has been proposed.
  • the detectors are arranged at a pitch of about 1 mm, but in photon counting CT (Photon counting CT) that counts the number of photons, it is necessary to refine the detector to 0.5 to 0.05 mm pitch.
  • photon counting CT Photon counting CT
  • the detector pixel is miniaturized, a phenomenon that the detection pixel is divided into a plurality of detector pixels due to generation of characteristic X-rays or Compton scattering, or an electron cloud generated by X-rays is detected. Charge sharing across two pixels occurs. When these phenomena occur, an event that should originally be detected as one high energy is observed as two low energy events. Since such erroneous detection degrades the image, it is necessary to remove erroneous detection.
  • Patent Document 1 relates to PET (Positron Emission Computed Tomography), and when the radiation incidence rate is higher than that of PET as in X-ray CT, it takes time to process and the dead time increases. . Further, in the case of a semiconductor detector used for X-ray CT, since pixels are formed by electrode division, there is a problem that induced charges are temporarily generated in adjacent pixels during signal detection. For this reason, the conventional method of adding peaks causes a problem that a signal higher than the original value is detected.
  • the neighboring detector (pixel) is monitored, whether or not the neighboring detector is simultaneously counted, and the data having the higher energy is used.
  • Acquire data for image reconstruction More specifically, a radiation detector including a plurality of detector pixels for detecting radiation, and energy measurement for measuring energy when the detector pixels detect radiation based on a signal output from the radiation detector.
  • a circuit for counting the number of detected radiations, and a simultaneous determination circuit for determining whether or not radiation has been simultaneously detected in other detector pixels in the vicinity of the detector pixels at the time of detection of the radiation, ,
  • a counter control circuit for controlling the increment operation of the counter based on the presence / absence of simultaneous determination in the simultaneous determination circuit and the energy in the energy measurement circuit, and data processing for performing image reconstruction using the value of the counter
  • a radiation imaging apparatus comprising the apparatus.
  • FIG. 1 shows an example of an X-ray CT apparatus S which is an apparatus in this embodiment.
  • an X-ray CT apparatus photon counting X-ray CT apparatus
  • S of this embodiment includes a gantry 1, a data processing apparatus 2 that processes and reconstructs collected data, and a processed image.
  • the image display device 3 is displayed.
  • a bed 4 is attached to the gantry 1 and holds the subject 5. The bed 4 moves horizontally toward the opening of the gantry 1 and moves the subject 5 into the gantry 1.
  • an X-ray tube 6 and a detector panel 7 are arranged to face each other.
  • the X-ray tube 6 and the detector panel 7 rotate about 1 to 3 times per second with the periphery of the subject 5 facing each other, and acquire projection images from each direction of the subject 5.
  • the X-ray tube 6 accelerates electrons with a high voltage of about 100 kV.
  • X-rays are generated by accelerating electrons by a high electric field and hitting the target.
  • the generated X-rays pass through the subject 5 and reach the detector panel 7.
  • the X-ray intensity is attenuated by the subject 5, so that information on the body can be acquired by knowing the attenuation amount.
  • the voltage of the X-ray tube and the current for controlling the amount of generation are changed.
  • FIG. 2 is a diagram showing a configuration example of the detector panel.
  • the detector panel 7 is actually a detector module 8 composed of a plurality of detector pixels 9 as shown in FIG. is there.
  • the detector module 8 is arranged on an arc whose center is the position of the X-ray tube 6.
  • a collimator for removing scattered X-rays in which X-rays are scattered in the body of the subject 5 is attached to the surface of the detector module 8 facing the X-ray tube 6.
  • the configuration (structure) of the detector module 8 will be described with reference to FIG.
  • the detector module 8 has a plurality of ASICs (Application Specific Specific Integrated Circuits) 11 mounted on a holding substrate 12.
  • the ASIC 11 is connected to the substrate by a bonding wire, and power supply and control are performed.
  • a pad for connecting to the detector 10 is provided on the surface of the ASIC 11, and the detector 10 is connected through the pad.
  • the electrode pitch of the detector 10 is manufactured at the same pitch as the electrode pitch of the ASIC 11, and one detector pixel 9 is connected to one readout circuit 20 (see FIG. 4 described later).
  • solder, conductive adhesive, or the like is used for connecting the ASIC 11 and the detector 10.
  • the ASIC 11 corresponds to a “radiation counter” that counts X-rays (radiation) for image reconstruction.
  • the read circuit block 20 corresponds to a “measurement circuit”.
  • the detector 10 is made of CdTe or CdZnTe as in the background art, and electrodes are formed on two opposing surfaces of the semiconductor element. For example, an electrode is formed on the entire surface of one surface of the semiconductor element, and a high voltage is applied between the opposing electrodes to collect charges generated based on the interaction between the X-ray and the semiconductor element.
  • the electrodes on the opposite surface of the semiconductor element are pixelated by patterning, that is, each detector pixel 9 is configured to read out a charge signal. Both electrodes are formed using gold or platinum.
  • the length of the side of the detector is about 10 to 20 mm, and if it is a 0.5 mm pixel based on photon counting CT, 20 to 40 pixels are arranged in a line and are arranged in a plane, so that one element Hundreds to thousands of pixels are formed.
  • the detector pixels 9 are generally arranged in a number of squares, but for example, a plurality of elements having different sizes are arranged, or the pixels are arranged in accordance with the grid position for removing scattered radiation (collimator position). It is also possible to change the size.
  • the thickness of the element is sufficient to detect X-rays, and a medical device has a thickness of about 2 mm.
  • the detector 10 It is desirable to make the detector 10 larger than the ASIC 11 and have a sufficient thickness to prevent radiation (X-rays) from hitting the ASIC 11 and to prevent the ASIC 11 from being damaged by X-rays. Further, by providing a guard ring on the outer peripheral portion of the detector 10, it is possible to prevent the leakage current along the surface of the element from flowing into the detection circuit of the ASIC 11 and to obtain an effect of approaching a parallel electric field. In FIG. 3, the ASIC 11 is shown larger than the detector 10 for the sake of drawing.
  • a circuit of the ASIC 11 as a radiation counting device will be described with reference to FIG. 4 showing a circuit configuration example.
  • the ASIC 11 converts the charges for each detector pixel 9 generated by the detector 10 into an electrical signal and collects data based on the magnitude.
  • the ASIC 11 includes a plurality of read circuit blocks 20 and a data collection circuit 25.
  • the read circuit blocks 20 are arranged in only one row (shown one-dimensionally), but actually the read circuit blocks 20 are arranged in the vertical and horizontal directions (corresponding to those shown in FIG. 6 to be described later).
  • the arrangement of the readout circuit blocks 20 matches the structure (arrangement) of the detector pixels 9 in terms of shortening the wiring length and making the length uniform, and according to the arrangement of the detector pixels 9.
  • the arrangement on the read circuit block 20 side is also changed.
  • the uniform length means that the distance of the wiring between the detector pixel 9 and the readout circuit block 20 is the same in any combination of the detector pixel 9 and the readout circuit block 20.
  • the detector pixel 9 is connected to a charge amplifier 21 in the readout circuit block 20.
  • the charge amplifier 21 converts a charge signal into a voltage signal using a feedback capacitor. Since the detector pixel 9 generates a charge proportional to the energy of the reacted X-ray, the output wave height of the charge amplifier 21 is also proportional to the energy.
  • a switch for resetting the charge is provided or the accumulated charge is discharged by a resistor.
  • the output of the charge amplifier 21 is connected to a plurality of comparators 22 (22a, 22b).
  • the comparators 22a and 22b each have a different voltage to be compared, and generates a trigger signal when the threshold value is exceeded.
  • the number of comparators is two, but energy may be measured using more comparators 22.
  • ADC Analog-to-Digital Converter
  • a digital circuit may be compared to obtain a count value (count value) for each energy window. By adjusting the threshold value, X-ray events that have entered a specific energy window can be counted.
  • the comparator 22 corresponds to an “energy measurement circuit” that measures energy when the detector pixel 9 detects X-rays (radiation).
  • the output of the comparator 22 is connected to a control circuit 23 having a simultaneous determination circuit 23a and a counter control circuit 23b.
  • the control circuit 23 also receives the output of the comparator 22 in the other readout circuit block 20 in the vicinity (see FIG. 7 for the range of “neighborhood”). (See below).
  • the control circuit 23 controls the counter 24 according to the output conditions of these comparators 22 to advance the count.
  • a plurality of counters 24 are connected to the control circuit 23 and there are two comparators in the readout circuit block 20, for example, two types of energy windows and combinations of coincidence counting and non-simultaneous counting are shown in FIG. Thus, a total of four counters 24 are provided.
  • the comparator 22 has two comparators 22a (low threshold value) and comparator 22b (high threshold value) having different threshold values, and therefore has two energy windows. That is, of the four counters 24, two of them are the counter 24 of the energy window 1 (low energy) and the counter 24 of the energy window 2 (high energy) of non-coincidence counting.
  • N_L non-simultaneous_low
  • N_H non-simultaneous_high
  • C_L Simultaneous_low
  • C_H Simultaneous_high
  • N is an abbreviation for Non-Coincidence
  • C is an abbreviation for Coincidence.
  • the control circuit 23 in this embodiment includes the simultaneous determination circuit 23 a that performs simultaneous determination and the counter control circuit 23 b that controls the counter 24 as described above.
  • the data collection circuit 25 transfers the count value of the counter 24 to the data processing device 2 in accordance with an external control signal. There are a plurality of data collection circuits 25 in the apparatus. For this reason, data is transferred via a circuit (not shown) that arbitrates them. The data collecting circuit 25 resets the value of the counter 24 after reading.
  • FIG. 5 shows a determination flow.
  • the operation of the control circuit 23 of the first embodiment will be described with reference to FIG.
  • the control circuit 23 operates with the output of the comparator 22 in the readout circuit block 20 as a trigger (step S1).
  • the simultaneous determination circuit 23a of the control circuit 23 checks whether or not the trigger is generated in a neighboring channel (neighboring readout circuit block 20) for a certain time (during a time window), for example, 5 nsec. (Step S2).
  • the reason for taking a certain time (time window) is that the trigger generation time fluctuates depending on the generated charge amount and the charge generation position, and it is desirable to set the minimum time within the range of the fluctuation as the determination time.
  • the counter control circuit 23b of the control circuit 23 measures the peak value in its own read circuit block 20, and determines the energy window of the signal (Ste S4). This uses the value of the comparator having the highest threshold value among the comparators 22a and 22b generating the trigger. In this way, the energy windows can be classified into the same value as the number of the comparators 22. Incidentally, in FIG. 5, the energy window is abbreviated as “EW”.
  • the comparator 22a has a lower threshold for the two comparators 22, so the comparator 22a generates a trigger earlier than the comparator 22b with a higher threshold. For this reason, in this embodiment, the output of the comparator 22a is used as a trigger.
  • the output of the comparator 22b may be adopted as a trigger, but when the output of the comparator 22b is used as a trigger, the comparator 22b may not output even if the comparator 22a outputs due to a difference in threshold value. Should be the trigger.
  • the simultaneous determination circuit 23a performs the simultaneous determination process using the output of the comparator 22a as a trigger.
  • the counter control circuit 23b adds 1 to the counter 24 of the energy window corresponding thereto.
  • the non-coincidence counter 24 (N_L or N_H) is advanced (step S5).
  • the energy window can be measured as 1.
  • the counter 24 of the energy window 1 (N_L) is added to the counter 24 of the energy window 2 (N_H) of non-coincidence counting in step S5 (N_H ⁇ + 1). 24 is not added.
  • a trigger is generated in a neighboring channel (comparator 22 of the readout circuit block 20 related to the neighboring detector pixel 9) within a certain time (for example, within a time window of 5 nsec) determined to be simultaneous, Since a simultaneous event has occurred (step S3 ⁇ Yes), the counter control circuit 23b compares the energy window of its neighboring channel (hereinafter referred to as “pixel” as appropriate) with its own energy window. That is, the peak values are compared (step S6). When the own energy window is higher than the energy window of the neighboring pixel (step S7 ⁇ Yes), it is considered that the trigger generated in the neighboring pixel is triggered by the own event.
  • the counter control circuit 23b of the pixel having the higher energy window controls the counter 24 connected to itself. Specifically, the counter control circuit 23b advances the counter 24 corresponding to the energy window of coincidence counting in step S8, here, the counter 24 of the energy window 2 of coincidence counting (C_H ⁇ + 1).
  • step S7 ⁇ No if there is no pixel having an energy window whose energy window is higher than its own energy window among the events generated in the neighboring pixels (step S7 ⁇ No), the energy window of the neighboring pixels is more than the own. Is higher (step S9 ⁇ No), or the energy window of the neighboring pixel and the own energy window are the same (step S9 ⁇ Yes).
  • step S9 ⁇ No If the peak value of the neighboring pixel is higher, that is, if a pixel having the same energy window as that of the neighboring pixel does not exist in the neighborhood (step S9 ⁇ No), its own trigger is an event of the neighboring pixel (neighboring detector pixel 9). Therefore, the counter control circuit 23b does not advance any counter 24 for the counter 24 connected to itself (step S10). On the other hand, when the neighboring pixel and the energy window are the same (step S9 ⁇ Yes), the main source of the simultaneous event cannot be specified. Therefore, the counter control circuit 23b advances the coincidence counter 24 by 0.5 (step S11).
  • this step S9 when this step S9 is Yes (that is, when pixels of the same energy window exist), when the energy window (peak value) is the same at a low value (when only the comparator 22a outputs itself and its neighboring pixels). And when the energy window is the same at a high value (when the neighboring pixels, the comparator 22a, and the comparator 22b output).
  • 0.5 is added to the counter 24 of the coincidence energy window 1 (C_L ⁇ + 0.5)
  • 0.5 is added to the counter 24 of the energy window 2 of coincidence counting (C_H ⁇ +0.5). That is, the counter control circuit 23b changes the increment of the count value based on the result of the simultaneous determination when controlling the increment operation of the counter 24.
  • step S8 a doubled value is also entered in step S8. That is, when there is a simultaneous event (in the case of step S3 ⁇ Yes), both when the counter 24 is advanced at step S8 and when the counter 24 is advanced at step S11, the value is advanced by twice, and finally halved.
  • the width of the time window is determined in consideration of the response characteristics of the detector 10 and the readout circuit block 20, and in this example, the time window is set to 5 nsec as an example. It tends to increase.
  • the time window is narrow because the accidental coincidence count is reduced.
  • the influence of the fluctuation of the trigger generation time as described above is caused. Becomes larger.
  • it is preferable to set the time window within a range of 3 to 10 nsec.
  • the value of the time window of 5 nsec is within the range of 3 to 10 nsec.
  • FIG. 6 schematically shows a part of the state in which the detector pixels 9 are arranged on a plane (lattice arrangement).
  • the detector 10 has six detector pixels 9 arranged in a grid in the horizontal direction and five in the vertical direction.
  • the X-ray event 100D has one energy window 2 for one pixel.
  • FIG. 7 shows the increment of each counter after the processing corresponding to FIG.
  • neighboring pixels means, for example, a range including pixels to be subjected to simultaneous measurement determination.
  • neighboring pixels are four pixels on the top, bottom, left, and right of their own pixels. Since most of the events due to scattering in the detector occur in adjacent pixels, it is desirable to determine four pixels that share the sides of the pixels. This is because when the number of pixels to be subjected to simultaneous measurement determination increases, the circuit scale (the number of readout circuit blocks 20) increases, and erroneous events are likely to occur due to accidental coincidence. If the detector pixel 9 is further miniaturized, it is desirable to expand the “neighboring” range to include 8 pixels including diagonal lines or 2 to 3 pixels apart.
  • processing is performed while performing conditional branching of adjacent pixels independently. This makes it possible to count as one event that would be measured as two in a simple count.
  • one X-ray event may be measured over three or more pixels, but if it is divided into three or more, the peak value (energy window) of each pixel will drop, and the threshold may be exceeded. Is low and is less than a few percent of the total ratio, so even if it is processed by this processing method, it does not cause a big problem.
  • the data processing apparatus 2 performs image reconstruction using these data.
  • the data obtained from the detector panel 7 shows that the count for each energy window reacts within one detector pixel 9 and does not cause coincidence (non-coincidence), and two or more detector pixels 9
  • coincidence counts coincidence counts
  • the count value of the non-coincidence count that did not cause the coincidence count is based on the true energy and is used as main data in image reconstruction.
  • the energy of the coincidence counting is not accurate and is shifted to the low energy side. Measure in advance how the energy spectrum of the event that caused coincidence changes when X-rays with a specific energy spectrum are incident, and correct the count value of coincidence based on that data To do. By adding this corrected data to the count value of non-simultaneous counting, it is possible to acquire data with high statistical accuracy while suppressing measurement errors. Also, if two pixels have high and low energies in coincidence counting, it is assumed that the X-ray is incident on the higher energy pixel (detector pixel 9), and the values of both pixels are used for energy. Addition may be performed to determine the position where the event occurred and the energy of the event.
  • a count value obtained by summing both the simultaneous count and the non-simultaneous count is obtained for each pixel, and the weight of the count value of the simultaneous count and the count value of the non-simultaneous count is different at the time of this summation.
  • the weight to multiply the count value of the non-coincidence count is 1, the weight to multiply the count value of the coincidence count is less than 1. The value of Then, image reconstruction is performed based on the summed count value (that is, the corrected non-simultaneous count value).
  • the count value of the non-coincidence count may be multiplied by a weight greater than 1. Note that multiplying the coincidence count by a weight less than 1 has the same meaning as increasing the weight of the count value of the non-simultaneous count counter.
  • the count value of the detector pixel 9 when the count value of the detector pixel 9 is increased, it is determined whether or not X-rays (radiation) are simultaneously detected in other detector pixels 9 in the vicinity of the detector pixel 9.
  • a simultaneous determination circuit 23a is provided, and the counter control circuit 23b switches the counter 24 that counts radiation based on the determination result between non-simultaneous use and simultaneous use.
  • the count value of the non-simultaneous counter 24 is mainly used as the data for image reconstruction after correction of the counter value of the simultaneous counter. According to the photocounting X-ray CT apparatus S of the present embodiment, it is possible to satisfactorily cope with miniaturization of the detector pixel 9 and to reduce the circuit dead time.
  • a second embodiment will be described with reference to FIG.
  • the second embodiment differs from the first embodiment in that a simultaneous determination circuit 23a is provided in addition to the read circuit block 20. That is, in the first embodiment, the simultaneous determination is performed by the simultaneous determination circuit 23a in each readout circuit block 20 (for example, the control circuit 23), but in the present embodiment, the simultaneous determination is placed outside the readout circuit block 20. This is performed in the simultaneous determination circuit 23a.
  • the readout circuit block 20 includes a charge amplifier 21, a comparator 22 (energy measurement circuit), a counter 24, and a counter control circuit 23b.
  • the readout circuit block 20 is provided corresponding to each detector pixel 9. Yes.
  • the simultaneous determination circuit 23a is disposed between pixels (between the readout circuit blocks 20), and is connected to each comparator 22 of two (plural) pixels (readout circuit block 20).
  • the simultaneous determination circuit 23a is connected to a counter control circuit 23b in the read circuit block 20 including the connected comparator 22.
  • the coincidence determination circuit 23a receives information on whether or not an event has occurred simultaneously in the two detector pixels 9 within a certain time (within the time window) and information on whether the energy window is equal, larger or smaller than the counter control circuit. To 23b.
  • the counter control circuit 23b controls the counter 24 based on signals from the plurality of simultaneous determination circuits 23a.
  • simultaneous determination between two (plural) pixels is performed by one circuit, and the circuit scale can be reduced as compared with the configuration of the first embodiment in which simultaneous determination is performed individually. It is possible to avoid the problem that the judgment of simultaneous determination differs depending on the error of the window.
  • a third embodiment will be described with reference to FIG.
  • the third embodiment is different from the first and second embodiments in that the counter 27 is also connected to the simultaneous determination circuit 23a and the number of types of counters 24 connected to the counter control circuit 23b is increased.
  • the number of X-rays detected by the detector pixel 9 is very large, and it is necessary to process an event of several tens to several hundreds Mcps.
  • simultaneous determination is performed under such a high count rate, not only one X-ray divided into two (not only those shown in FIGS. 6 and 7) but also coincidentally detected. The phenomenon of accidental coincidence occurs.
  • This embodiment is different from the first and second embodiments in that it includes means for correcting the coincidence coincidence.
  • a simple counter (a simple counting counter) is added to the counter 24 to increase the count simultaneously or non-simultaneously to the counter 24 controlled by the counter control circuit 23b.
  • the energy spectrum and count rate are used as parameters to calculate the count values of the counter 24 for coincidence counting, the counter 24 for non-simultaneous counting, and the counter 24 for simple counting, and the inverse calculation is performed. It is possible to estimate the correct energy spectrum and counting rate.
  • the simple counter 24 is simply indicated as “L” or “H” in the frame.
  • the other counters 24 (the counter 24 for non-simultaneous counting and the counter 24 for simultaneous counting) add a value to one of them depending on the result of simultaneous determination, whereas the counter 24 for simple counting refers to the result of simultaneous determination. Do not simply increase the value.
  • a coincidence counter is connected as a counter 27 to the coincidence determination circuit 23a.
  • the coincidence counter 27 counts simultaneous events between pixels.
  • this coincidence counter 27 is provided for each combination of readout circuit blocks 20 (for each combination of detector pixels 9).
  • this counter 27 has three types of counters for each energy window. Two counters that count when one pixel is higher than the other have both energy windows equal. There are three counters, one for counting at times. That is, in one pixel and the other pixel, the counter 27 includes a counter when one is high, when both are equal, and when one is low.
  • a collimator that blocks X-rays incident on the detector pixels 9 from an oblique direction is provided in order to remove scattered rays generated in the body of the subject 5.
  • the collimator is formed with a slit made of a material having a high X-ray blocking ability such as tungsten. Due to this scattered radiation removing collimator, a region where some X-rays are not irradiated is generated in the detector.
  • the collimator is arranged so that the positions where the X-rays are not irradiated coincide with the pixel boundaries (between the detector pixels 9).
  • the slit interval and the pitch of the detector pixels 9 have an integer multiple ratio. Since the X-ray that reacts at the pixel boundary is reduced in the shadowed portion of the collimator, the ratio of being divided into two events is reduced compared to the portion that is not shadowed by the collimator.
  • the true coincidence count is estimated by using the count values of the pixels including and not including the shadowed portion of the collimator to determine the true count value. Image reconstruction is performed from this true count value. That is, in the coincidence counter 24 (27), the counts of the shadowed portions of the collimator and the other portions are separately counted and the counting rate error is corrected.
  • FIG. 6 shows a detector 10 in which detector pixels 9 are arranged in a 5 ⁇ 6 matrix as an example, but each detector pixel 9 is assigned an address to uniquely identify each position. It can be specified. It is possible to specify which detector pixel 9 out of each detector pixel 9 is behind the collimator.
  • FIG. 9 shows an example in which six counters 24 are connected to the counter control circuit 23b
  • the counter control circuit 23b has four counters 24 (two counters 24 for non-simultaneous counting, 2 counters 24) may be connected, while a predetermined number of coincidence counters 27 may be connected to the simultaneous determination circuit 23a.
  • ⁇ Other 1> a case where one X-ray event is measured (measured separately) over three or more pixels due to scattering in the detector 10 (detector pixel 9) or the like. Since the peak value in each pixel is lowered (that is, the energy window is lowered), the processing for such an X-ray event is omitted.
  • the counter control circuit 23b adds 0.5 to the counter 24 for simultaneous counting.
  • the counter control circuit 23b calculates the number of pixels for simultaneous determination in the simultaneous determination circuit 23a (the number of pixels determined to be simultaneous), and the counter control circuit 23b makes the count value to be added correspond to the number of pixels for simultaneous determination.
  • the counter control circuit 23b adds a count value corresponding to the number of pixels for simultaneous determination (the number of pixels in the same energy window) to the counter 24 for simultaneous counting. In other words, the counter control circuit 23b changes the increment of the count value in the counter 24 based on the determination result of the simultaneous determination circuit 23a. In other words, the counter control circuit 23b calculates the increment of the count value by a weight that is the reciprocal of the number of pixels for simultaneous determination (the number of pixels in the same energy window). As described above, when one X-ray event is measured over three or more pixels, the energy window (crest value) at each pixel is lowered. For this reason, such simultaneous determination processing may be performed after further increasing the number of comparators 22 and subdividing the energy window (in the above-described embodiment, there are two energy windows).
  • the increment of the count value is multiplied by 100 and added, and finally divided by 100.
  • the increment value of the count value is 0.5, 50 is added, and when the increment value of the count value is 0.33, 33 is added to the counter 24 for simultaneous determination, and finally divided by 100.
  • the simultaneous determination circuit 23a is connected to the comparators 22 (22a, 22b) of the pixels belonging to the expanded neighborhood range (see FIG. 4).
  • control lines and information lines indicate those that are considered necessary for the explanation, and do not necessarily indicate all the control lines and information lines on the product. Actually, it may be considered that almost all the components are connected to each other.
  • Each process may be performed by hardware or software.
  • the present invention may be applied to gamma ray detection.
  • the present invention may be applied to detect (count) radiation (gamma rays) emitted from the body of the subject 5 by a radioactive drug (that is, to a nuclear medicine diagnostic apparatus).
  • S X-ray CT system (radiation imaging system) DESCRIPTION OF SYMBOLS 1 Gantry 2 Data collection apparatus 3 Image display apparatus 4 Bed 5 Subject 6 X-ray tube 7 Detector panel 8 Detector module 9 Detector pixel 10 Detector (radiation detector) 11 ASIC (Radiation Counter) 12 Holding substrate 20 Reading circuit block (measurement circuit) 21 Charge amplifier 22 Comparator (measurement circuit) 22a (low threshold) comparator 22b (high threshold) comparator 23 control circuit 23a simultaneous determination circuit 23b counter control circuit 24 counter 25 data control circuit 27 counter (third embodiment) 100A, 100B, 100C, 100D X-ray event

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

フォトカウンティングX線CT(Photon Counting CT)の性能向上にはピクセルの微細化,回路デッドタイムの低減,散乱線やチャージシェアリングの処理が重要である。また,回路数が増加することから回路当たりの消費電力の削減が重要である。このような制約のもとに散乱線処理を実施する回路を提供する。各ピクセル(9)にその近傍の他のピクセル(9)において同時に放射線が検出されたか否かを判定する回路(23)を含み,その判定結果に基づき放射線のカウントを行うカウンタ(24)を切り替える。この結果をもとに非同時イベントのカウントを主に,同時カウントに関しては補正を実施してから再構成データに用いる。

Description

放射線撮像装置,放射線計数装置および放射線撮像方法
 本発明は,放射線のカウント値に基づいて画像を再構成する放射線撮像装置などに関する。
 X線CT装置はX線管から発生したX線が被検者の体を透過した際の減衰から被検体の断層像を求める装置であり,検出器の各ピクセルで個々のX線のエネルギーを区別して検出するフォトンカウンティングと呼ばれる手法が提案されている。
 X線による撮像においては核医学用の検査などと比べると放射線の発生数が多く,検出器における計数率が高くなる。このため,検出器ピクセルを小さくすることでピクセル当たりの計数率を下げる必要がある。通常のX線CTの検出器では約1mmピッチで検出器が並ぶが,光子の数を計数するフォトンカウンティングCT(Photon counting CT)では0.5mmから0.05mmピッチと検出器を微細化する必要がある。しかし,検出器ピクセルが微細化するとX線の検出の際に,特性X線の発生やコンプトン散乱などにより複数の検出器ピクセルに分割して検出される現象や,X線により発生した電子雲が2つのピクセルにまたがるチャージシェアリングなどが発生する。これらの現象が起きると,本来1つの高いエネルギーとして検出されるべきイベントが2つの低いエネルギーのイベントとして観測されてしまう。このような誤検出は画像を劣化させるため,誤検出除去を行う必要がある。
 このような誤検出を検知する方法として,特許文献1としてあげられるような検出器内での散乱線の処理手法がある。この様な手法により検出器内で分割された信号を処理することができる。
特開2008-89384号公報
 しかし,特許文献1はPET(Positron Emission Computed Tomography)に関するものであり,X線CTのようにPETよりも放射線の入射レートが高い場合,処理に要する時間がかかり,デッドタイムが増加することになる。
 また,X線CTに用いる半導体検出器の場合,ピクセルを電極分割により形成するため,信号検出中に隣接ピクセルに誘起電荷が一時的に発生するといった問題が生じる。このため従来のピークを足し合わせる手法では本来の値よりも高い信号が検出されるといった問題が生じる。
 以上のような従来技術の課題に鑑み,本発明は,より適切に放射線(光子)を計数できる放射線撮像装置などを提供することを課題とする。
 上記課題を解決するために,個々のピクセル内において,その近傍の検出器(ピクセル)を監視し,近傍の検出器において同時に計数したか否かを判定し,エネルギーの高い方のデータを用いて画像再構成用のデータ取得を実施する。より具体的には,放射線を検出する複数の検出器ピクセルを備える放射線検出器と,前記放射線検出器が出力する信号に基づいて前記検出器ピクセルが放射線を検出した際のエネルギーを計測するエネルギー計測回路と,放射線の検出数を計数する複数のカウンタと,前記放射線の検出の際に前記検出器ピクセルの近傍の他の検出器ピクセルにおいて放射線を同時に検出したか否かを判定する同時判定回路と,前記同時判定回路における同時判定の有無と前記エネルギー計測回路におけるエネルギーとに基づいて,前記カウンタの増加の動作を制御するカウンタ制御回路と,前記カウンタの値を用いて画像再構成を行うデータ処理装置を備えることを特徴とする放射線撮像装置である。
 その他の課題を解決するための手段は,後記する発明の実施の形態にて図面を参照して明らかにする。
 本発明によれば,より適切に放射線(光子)を計数できる放射線撮像装置などを提供することが可能となった。
本発明の第1実施例における装置の一例を示す図である。 本発明の第1実施例における検出器パネルの構成例を示す図である。 本発明の第1実施例における検出器モジュールの構成例を示す図である。 本発明の第1実施例における回路の構成例を示す図である。 本発明の第1実施例における判定フローを示す図である。 本発明の第1実施例におけるイベントの発生例を示す図である。 本発明の第1実施例における図6に対応したイベントの処理例を示す図である。 本発明の第2実施例における回路の構成を示す図である。 本発明の第3実施例における回路の構成を示す図である。
 以下に本発明の放射線撮像装置および放射線計数装置における散乱線判定の実施形態(以下「実施例」という)を,図面を用いて説明する。また,放射線撮像方法を併せて説明する。
 <第1実施例>
 本発明の第1実施例の放射線撮像装置,放射線計数装置および放射線撮像方法(検出器内での散乱線を考慮した散乱線処理方法)を,図1から図7を用いて説明する。図1は本実施例における装置であるX線CT装置Sの一例を示したものである。
 図1に示すように,本実施例のX線CT装置(フォトンカウンティングX線CT装置)Sは,ガントリ1と,収集されたデータを処理・画像再構成するデータ処理装置2と処理された画像を表示する画像表示装置3を含んでなる。ガントリ1にはベッド4が付属しており,被検者5を保持する。ベッド4はガントリ1の開口部に向けて水平移動し,被検者5をガントリ1内に移動させる。
 ガントリ1内にはX線管6と検出器パネル7が対向して配置されている。X線管6と検出器パネル7は被検者5の周囲を対向した状態で秒間1から3回程度,回転しており,被検者5の各方向からの投影画像を取得する。X線管6は100kV程度の高電圧によって電子を加速するものである。電子を高電界により加速しターゲットに当てることでX線を発生させる。発生したX線は被検者5を透過し検出器パネル7に到達する。このときX線の強度は被検者5により減衰するので,その減衰量を知ることで体内の情報を取得することができる。エネルギーによる減衰量の違いを知るためにX線管の電圧や,発生量を制御する電流を変化させることが行われる。
 図2は,検出器パネルの構成例を示す図であるが,検出器パネル7は実際には図2に示すように複数の検出器ピクセル9によって構成された検出器モジュール8を並べたものである。検出器モジュール8は中心がX線管6の位置となる円弧上に配置されている。図示しないが検出器モジュール8のX線管6に向いた面にはX線が被検者5の体内で散乱した散乱X線を除去するためのコリメータが取り付けられている。
 検出器モジュール8の構成(構造)を,図3を用いて説明する。検出器モジュール8は保持基板12上に複数のASIC(Application Specific Integrated Circuit)11が搭載されたものである。ASIC11はボンディングワイヤーにて基板に接続され,電源の供給や制御が行われる。ASIC11の表面には検出器10と接続するためのパッドが設けられており,検出器10がそのパッドを介して接続される。検出器10の電極ピッチはASIC11の電極ピッチと同ピッチで製造され,1つの検出器ピクセル9が1つの読出し回路20(後記の図4参照)に接続される。ASIC11と検出器10の接続には半田や導電性接着剤などを用いる。また,接着強度を確保するため,アンダーフィルなどの非導電性の接着剤を電極部以外に用いてもよい。なお,ASIC11は画像再構成用のX線(放射線)を計数する「放射線計数装置」に相当する。また,読出し回路ブロック20は「計測回路」に相当する。
 検出器10は背景技術のものと同様にCdTeまたはCdZnTeでできており,半導体素子の対向する2つの面に電極が形成されている。例えば半導体素子の一方の面は面全体に電極が形成されており,X線と半導体素子との相互作用に基づいて発生する電荷収集のために対向する電極間に高電圧を印加する。半導体素子の逆の面の電極はパターニングによってピクセル化されており,つまり各検出器ピクセル9を構成するようにされており電荷信号を読み出す。両電極は金や白金を用いて形成される。検出器の辺の長さは10から20mm程度であり,フォトンカウンティングCTを踏まえた0.5mmのピクセルであれば20から40ピクセルが一列に並び,それが平面的に配置されるため1つの素子に数百から数千ピクセルが形成されている。検出器ピクセル9の形状は四角のものを多数並べることが一般的であるが,例えば,サイズの違う複数の素子を並べることや,散乱線除去用のグリッド位置(コリメータの位置)に合わせてピクセルのサイズを変えることも可能である。素子の厚さはX線を検出するのに十分な厚さを備えており,医療用の装置では2mm程度の厚さを持つ。
 検出器10をASIC11よりも大きくし,十分な厚さを持たせることでASIC11に放射線(X線)が当たることを防ぎASIC11がX線によりダメージを受けることを防ぐことが望ましい。また,検出器10の外周部分にはガードリングを設けることで,素子沿面のリーク電流がASIC11の検出回路に流れないようにするほか,平行電界に近づける効果を得ることができる。なお,図3では,作図の都合上,検出器10よりもASIC11の方が大きく図示されている。
 放射線計数装置としてのASIC11の回路について,回路構成例を示す図4を用いて説明する。ASIC11は検出器10で発生した検出器ピクセル9ごとの電荷を電気信号に変換し,その大きさに基づいてデータを収集するものである。図4に示すように,ASIC11は複数の読出し回路ブロック20とデータ収集回路25を含んでなる。図中では読出し回路ブロック20は一列にだけ並んでいるが(1次元的に示しているが),実際には縦横に読出し回路ブロック20が並んでいる(後記する図6の並びに対応して並んでいる)。もちろん,読出し回路ブロック20の並びは検出器ピクセル9の構造(並び)に一致することが配線の長さの短縮化かつ長さの均一化の点で好ましく,検出器ピクセル9の配置に合わせて読出し回路ブロック20側の並びも変更される。ちなみに本実施例では後記するように数nsecオーダでの信号処理を行っているので,配線の短縮化と長さの均一化が望まれる。なお,長さの均一化とは検出器ピクセル9と読出し回路ブロック20間の配線の距離がどの検出器ピクセル9と読出し回路ブロック20の組合せでも同じにすることをいう。
 検出器ピクセル9は読出し回路ブロック20内のチャージアンプ21に接続される。チャージアンプ21はフィードバック容量を用いて電荷信号を電圧信号に変換する。検出器ピクセル9は反応したX線のエネルギーに比例した電荷を発生させるため,チャージアンプ21の出力波高もエネルギーに比例したものとなる。図示しないがフィードバック容量に電荷が溜まり続けることを防ぐため,電荷をリセットするスイッチを設けるか,抵抗によりたまった電荷を放電させる。
 チャージアンプ21の出力は複数のコンパレータ22(22a,22b)に接続される。コンパレータ22aとコンパレータ22bはそれぞれ違う電圧を比較対象としており,閾値を超えた際にトリガ信号を発生させる。コンパレータ22bの閾値を高く,コンパレータ22aの閾値を低くすることで,エネルギーが低い場合はコンパレータ22aのみトリガを発生し,エネルギーが高い場合はコンパレータ22aとコンパレータ22bの両方がトリガを発生させる。本実施例ではコンパレータは2つとしているが,より多くのコンパレータ22を用いてエネルギーの測定を行ってもよい。また,エネルギーの測定方法としてADC(Analog-to-Digital Converter)を用いた上で,エネルギーウインドウごとのカウント値(計数値)を求めるためにデジタル回路での比較を実施してもよい。閾値を調整することで,特定のエネルギーウインドウに入ったX線イベントをカウント(計数)することができる。なお,コンパレータ22は検出器ピクセル9がX線(放射線)を検出した際のエネルギーを計測する「エネルギー計測回路」に相当する。
 コンパレータ22の出力は,同時判定回路23aとカウンタ制御回路23bを備える制御回路23に接続される。この制御回路23は自身が属する読出し回路ブロック20内のコンパレータ22以外にも,近傍の他の読出し回路ブロック20内のコンパレータ22の出力も受ける(「近傍」の範囲については図7を参照して後記する)。制御回路23はこれらのコンパレータ22の出力の条件によりカウンタ24を制御しカウントを進める。複数のカウンタ24が制御回路23に接続されており,例えば読出し回路ブロック20内のコンパレータが2つの場合,2種類のエネルギーウインドウ,ならびに,同時計数および非同時計数の組み合わせで,図4に示されるように,計4つのカウンタ24を持つ。
 具体的には,図4の例ではコンパレータ22は閾値が異なるコンパレータ22a(低閾値)とコンパレータ22b(高閾値)の2つであるので,エネルギーウインドウも高低2つである。つまり4つあるカウンタ24は,そのうちの2つが非同時計数のエネルギーウインドウ1(低エネルギー)のカウンタ24とエネルギーウインドウ2(高エネルギー)のカウンタ24である。図4では,カウンタ24の枠中に「N_L」(非同時_低)と「N_H」(非同時_高)と記載している。また,残り2つが同時計数のエネルギーウインドウ1(低エネルギー)のカウンタ24とエネルギーウインドウ2(高エネルギー)のカウンタ24である。図4では,カウンタ24の枠中に「C_L」(同時_低)と「C_H」(同時_高)と記載している。なお,「N」はNon-Coincidence(非同時)の略であり,「C」はCoincidence(同時)の略である。ちなみに,読出し回路ブロック20内のコンパレータ22が4つに増えると,カウンタ24の数は8つとなる。なお,この実施例での制御回路23は,前記のように,同時判定を行う同時判定回路23aとカウンタ24の制御を行うカウンタ制御回路23bを備える。
 データ収集回路25は外部からの制御信号に応じて,カウンタ24のカウント値をデータ処理装置2に転送する。装置内には複数のデータ収集回路25が存在している。このため,それらを調停する回路(図示省略)を介してデータが転送される。また,データ収集回路25は読み出し後にカウンタ24の値をリセットする。
 図5は判定フローであるが,第1実施例の制御回路23の動作について図5を用いて説明する。制御回路23は読出し回路ブロック20内のコンパレータ22の出力をトリガとして動作する(ステップS1)。制御回路23の同時判定回路23aはトリガを受信すると一定の時間(タイムウインドウの間),例えば5nsecの間,近傍のチャンネル(近傍の読出し回路ブロック20)においてトリガが発生しているか否かをチェックする(ステップS2)。一定の時間(タイムウインドウ)を取るのは発生電荷量や電荷発生位置によりトリガの発生時間が揺らぐためであり,この揺らぎの範囲内で最小の時間を判定時間とすることが望ましい。近傍で同時イベント(トリガ)が発生していない場合(ステップS3→No),制御回路23のカウンタ制御回路23bは自身の読出し回路ブロック20における波高値を測定し,信号のエネルギーウインドウを確定する(ステップS4)。これはトリガを発生させているコンパレータ22a,22bのうち,最も高い閾値を持つものの値を用いる。このようにして,コンパレータ22の数と同じ値のエネルギーウインドウに分類できる。ちなみに,図5ではエネルギーウインドウを「EW」と省略して記載している。
 なお,2つのコンパレータ22はコンパレータ22aの方が閾値が低いので,閾値が高いコンパレータ22bよりもコンパレータ22aの方が早くトリガを発生する。このため,本実施例では,コンパレータ22aの出力をトリガとする。もちろん,コンパレータ22bの出力をトリガとして採用してもよいが,コンパレータ22bの出力をトリガとした場合,閾値の違いからコンパレータ22aが出力してもコンパレータ22bは出力しないときがあるのでコンパレータ22aの出力をトリガとするのがよい。ちなみに,同時判定回路23aは,コンパレータ22aの出力をトリガとして同時判定の処理を行う。
 カウンタ制御回路23bは,測定されたエネルギーウインドウが確定すると(ステップS4),それに応じたエネルギーウインドウのカウンタ24に1を加算する。この例では非同時計数のカウンタ24(N_LかN_H)を進める(ステップS5)。例えば閾値の低いコンパレータ22aのみトリガを発生し,閾値の高いコンパレータ22bはトリガを発生させない場合,エネルギーウインドウは1と測定できる。この場合,ステップS5では非同時計数のエネルギーウインドウ1(N_L)のカウンタ24に加算を行う(N_L⇒+1)。もし,閾値が高いコンパレータ22bでもトリガを発生した場合は,ステップS5では非同時計数のエネルギーウインドウ2(N_H)のカウンタ24に加算を行うが(N_H⇒+1),エネルギーウインドウ1(N_L)のカウンタ24には加算を行わない。
 もし,同時と判定する一定の時間内(例えば5nsecのタイムウインドウ内)に近傍のチャンネル(近傍の検出器ピクセル9に係る読出し回路ブロック20のコンパレータ22)にてトリガが発生していた場合,それは同時イベントの発生であるので(ステップS3→Yes),カウンタ制御回路23bは,その近傍のチャンネル(以下適宜「ピクセル」と呼ぶ)のエネルギーウインドウと自身のエネルギーウインドウを比較する。すなわち波高値を比較する(ステップS6)。自身のエネルギーウインドウが近傍のピクセルのエネルギーウインドウより高い場合(ステップS7→Yes),近傍のピクセルで発生したトリガは自身のイベントにより誘発されたものと考えられる。そのため,当該エネルギーウインドウが高い方のピクセルのカウンタ制御回路23bは,自身に接続されているカウンタ24を制御する。具体的には,当該ウンタ制御回路23bは,ステップS8では同時計数のエネルギーウインドウに応じたカウンタ24,ここでは同時計数のエネルギーウインドウ2のカウンタ24を1つ進める(C_H⇒+1)。
 一方,近傍のピクセルで発生したイベントの中にエネルギーウインドウが自身のエネルギーウインドウよりも高いエネルギーウインドウを持つピクセルが存在しない場合は(ステップS7→No),近傍のピクセルのエネルギーウインドウの方が自身よりも高いか(ステップS9→No),近傍のピクセルのエネルギーウインドウと自身のエネルギーウインドウが同じ(ステップS9→Yes)のいずれかである。
 近傍のピクセルの波高値の方が高い場合,つまり自身と同じエネルギーウインドウのピクセルが近傍に存在しない場合(ステップS9→No),自身のトリガは近傍のピクセル(近傍の検出器ピクセル9)のイベントによって誘発されたイベントであると考えることができるため,カウンタ制御回路23bは,自身に接続されているカウンタ24についてはいずれのカウンタ24も進めない(ステップS10)。一方,近傍のピクセルとエネルギーウインドウが同じ場合は(ステップS9→Yes),同時イベントの主たる発生源を特定できない。そのため,カウンタ制御回路23bは,同時計数のカウンタ24を0.5だけ進める(ステップS11)。ちなみに,このステップS9がYesの場合(つまり同じエネルギーウインドウのピクセルが存在する場合)は,エネルギーウインドウ(波高値)が低い値で同じとき(自身も近傍のピクセルもコンパレータ22aのみが出力するとき)とエネルギーウインドウが高い値で同じとき(自身も近傍のピクセルもコンパレータ22aもコンパレータ22bも出力するとき)の2通りがある。前者の場合は同時計数のエネルギーウインドウ1のカウンタ24に0.5を加算(C_L⇒+0.5)し,後者の場合は同時計数のエネルギーウインドウ2のカウンタ24に0.5を加算(C_H⇒+0.5)する。つまり,カウンタ制御回路23bは,カウンタ24の増加の動作を制御する際に,カウント値の増加量を同時判定の結果に基づいて変更する。
 なお,実際にはデジタル回路のカウンタ24は0.5をカウントすることはできないため,同時計数のカウンタ24には2倍した値が入るようにし,全てのカウントが終了した最後の処理でカウント値に0.5を乗算することで最終的なカウント値を取得する。ちなみに,ステップS8においてエネルギーウインドウ2のカウンタ24について1加算(C_H⇒+1)すると記載しているが,ステップS11と整合をとるためにステップS8でも2倍した値が入るようにする。つまり同時イベントありの場合(ステップS3→Yesの場合),ステップS8でカウンタ24を進めるときも,ステップS11でカウンタ24を進めるときも2倍の値で進め,最後に半分にする。
 ちなみに,前記したタイムウインドウの幅は検出器10や読出し回路ブロック20の応答特性などを考慮して定められ,この例ではタイムウインドウを一例として5nsecとしているが,タイムウインドウを広くすると偶発同時計数が増える傾向になる。なお,放射線(X線)の入射レートを高めた場合,タイムウインドウが狭い方が,偶発的同時計数が減って好ましいが,タイムウインドウを狭くすると,前記のようにトリガの発生時間の揺らぎの影響が大きくなる。これらの点を考慮して,タイムウインドウは3~10nsecの範囲内で設定するのが好ましい。前記の5nsecというタイムウインドウの値は,この3~10nsecの範囲内である。
 次に,実際の処理の例を図6および図7を用いて説明する。図6は検出器ピクセル9が平面上に並んでいる状態(格子状配列)の一部を模式的に示している。図の例では,検出器10は検出器ピクセル9が横方向に6個,縦方向に5個,格子状に並んでいる。1つの検出器ピクセル9が1つのピクセル(さらには読出し回路ブロック20)に対応するので,図6(および図7)の例では,検出器10は30ピクセル(=6×5ピクセル)の検出器ピクセル9を備えている。図6では4つの個別のX線が入射し,それぞれのピクセルにイベントとして記録される。図中のEWはエネルギーウインドウを示しており,「E=」で示される数値が大きいほど高いエネルギーを計測したことを示している。例えばX線イベント100Aは1つのピクセルにエネルギーウインドウ1(EW=1)のトリガを発生させる。X線イベント100Bはエネルギーウインドウ2(EW=2)のイベントが1つ,X線イベント100Cではエネルギーウインドウ2(EW=2)のイベントを2つ,X線イベント100Dは1つのピクセルにエネルギーウインドウ2(EW=2)のイベントともう1つのピクセルにエネルギーウインドウ1(EW=1)のイベントを発生させる。
 図7は図6に対応した処理後の各カウンタの増加量を示したものである。ここで「近傍」について説明する。「近傍」とは,例えば同時計測判定の対象となるピクセルを含む範囲をいう。図6・図7の本実施例では近傍のピクセル(検出器ピクセル9)を自身のピクセルの上下左右の4ピクセルとしている。検出器内の散乱によるイベントの多くは隣接したピクセルでおきるため,ピクセルの辺を共有する4つのピクセルを判定対象とする方が望ましい。これは同時計測判定の対象となるピクセルが増加すると回路規模(読出し回路ブロック20の数)が増大するほか,偶発同時計数などにより誤ったイベントが発生し易くなるためである。なお,検出器ピクセル9がより微細化すると,斜めを含む8ピクセルや,2ないし,3ピクセル離れたピクセルを含むところまで「近傍」の範囲を広げることが望ましい。
 図7において,(1)X線イベント100Aは低エネルギーのエネルギーウインドウ1のイベントのみを計測しており,近傍のピクセルでイベントが計測されていない。そのため,非同時計数(Non-Coincidence)のエネルギーウインドウ1のカウンタ24を1増加させる(N_L⇒+1)。なお,図7中では「EW=1 N+1」と記載している。(2)同様にX線イベント100Bの場合,高エネルギーのエネルギーウインドウ2のイベントのみを計測しており,非同時計数(Non-Coincidence)のエネルギーウインドウ2のカウンタを1増加させる(N_H⇒+1)。なお,図7中では「EW=2 N+1」と記載している。
 また,(3)X線イベント100Cは2つのピクセルに信号が分割されている。左側のピクセルの回路(読出し回路ブロック20)では自身と右側のピクセルのエネルギーウインドウを比較し,自身と同じ程度のエネルギーのイベントしか存在しないことから同時計数(Coincidence)のカウンタを0.5だけ増加させる(C_H⇒+0.5)。なお,図7中では「EW=2 C+0.5」と記載している。一方,右側のピクセルの回路(読出し回路ブロック20)でも同様の処理が行われる。右側のピクセルにおいても近傍のピクセルとの比較を行うが,この場合は右側も左側のピクセルと同じエネルギーウインドウのイベントのため,同時計数(Coincidence)カウンタを0.5増加させる(C_H⇒+0.5)。なお,図7中では「EW=2 C+0.5」と記載している。(4)X線イベント100Dの場合,左側のピクセルでは自身と右側のピクセルのエネルギーウインドウを比較し,右側のエネルギーウインドウが高いために,左側のピクセルでは同時計数のカウンタ24の増加を行わない。なお,図7中では「-」と記載している。一方で右側のピクセルでは自身のエネルギーウインドウが高いため,自身のエネルギーウインドウである2の同時計数のカウンタ24を1増加させる(C_H⇒+1)。なお,図7中では「EW=2 C+1」と記載している。
 このように第1実施例では隣接するピクセルの条件分岐は独立に行いながら処理を実施する。これにより単純なカウントでは2つとして計測されてしまうイベントを1つとしてカウントすることが可能になる。また,高い方のエネルギーのみを用いるので誘起電荷による誤検出を避けることが可能になる。もちろん,1つのX線イベントが3つ以上のピクセルにわたって計測されてしまうこともあるが,3つ以上に分割された場合は個々のピクセルの波高値(エネルギーウインドウ)が下がるため閾値を超える可能性が低く,全割合の数%以下であるため,本処理手法で処理しても大きな問題を起こさない。
 このようにしてある時間内に検出器パネル7に入射したX線の数の情報を取得することができる。データ処理装置2ではこれらのデータを用いて画像再構成を実施する。検出器パネル7から得られたデータはエネルギーウインドウごとのカウントが,1つの検出器ピクセル9内で反応し同時計数を起こさなかったもの(非同時計数)と,2つ以上の検出器ピクセル9に分割され同時計数として検出されたもの(同時計数)の2種類が存在する。このうち,同時計数を起こさなかった非同時計数のカウント値は真のエネルギーに基づいており,画像再構成において主要なデータとして用いる。
 一方,同時計数のカウントについてはエネルギーが正確ではなく,低エネルギー側にシフトしている。特定のエネルギースペクトルを持ったX線が入射したときに同時計数を起こしたイベントのエネルギースペクトルがどのように変化するかをあらかじめ測定しておき,そのデータをもとに同時計数のカウント値を補正する。この補正されたデータを非同時計数のカウント値に加えることで計測誤差を抑えつつ統計精度の高いデータを取得することができる。また,同時計数で2つのピクセルにエネルギーの高低がある場合,エネルギーが高い方のピクセル(検出器ピクセル9)にX線が入射したものとして入射位置を仮定し,エネルギーについては両ピクセルの値を加算し,イベントが発生した位置とイベントのエネルギーを決定するようにしてもよい。
 また,例えば同時計数と非同時計数のカウント値から両者を総和したカウント値をピクセルごとに求めることとし,この総和の際に,同時計数のカウント値と非同時計数のカウント値の重みを異なるものとする。前記したように,非同時計数のカウント値は真のエネルギーに基づいていることから非同時計数のカウント値に乗算する重みを1とするならば,同時計数のカウント値に乗算する重みを1未満の値とする。そして,総和したカウント値(つまり非同時計数のカウント値を補正したもの)をもとに画像再構成を行う。ちなみに,同時計数のカウント値に1未満の重みを乗算するのではなく,非同時計数のカウント値に1よりも大きな重みを乗算することでもよい。なお,同時計数のカウントに1未満の重みを乗算するとは,非同時計数のカウンタのカウント値の重みを増すと同じ意味である。
 以上,第1実施例では,検出器ピクセル9のカウント値を増加させる際,当該検出器ピクセル9の近傍の他の検出器ピクセル9において同時にX線(放射線)が検出されたか否かを判定する同時判定回路23aを備え,カウンタ制御回路23bがその判定結果に基づき放射線のカウントを行うカウンタ24を非同時用と同時用とで切り替える。そして,典型的には,非同時用のカウンタ24のカウント値を主に,同時用のカウンタのカウンタ値に関しては補正を実施してから画像再構成用のデータに用いる。本実施例のフォトカウンティングX線CT装置Sによれば,検出器ピクセル9の微細化に良好に対応可能であり,回路デッドタイムの低減も可能である。また,回路当たりの消費電力の削減も可能である。また,特性X線の発生やコンプトン散乱などにより複数の検出器ピクセル9に分割してエネルギーが検出される現象や,X線により発生した電子雲が2つの検出器ピクセル9にまたがるチャージシェアリングや誘起電荷などに適切に対応することができる。
 <第2実施例>
 次に,図8を用いて第2実施例について説明する。第2実施例は読出し回路ブロック20の外に同時判定回路23aを持つことが第1実施例とは異なる。すなわち第1実施例では,同時判定は各読出し回路ブロック20(例えば制御回路23)内において同時判定回路23aが実施しているが,本実施例では同時判定を読出し回路ブロック20の外部に置かれた同時判定回路23aにおいて行う。
 すなわち読出し回路ブロック20はチャージアンプ21とコンパレータ22(エネルギー計測回路)とカウンタ24とカウンタ制御回路23bとを含んで構成され,この読出し回路ブロック20は検出器ピクセル9の個々に対応して備わっている。また,同時判定回路23aはピクセル間(読出し回路ブロック20間)に配置されており,2つ(複数)のピクセル(読出し回路ブロック20)のそれぞれのコンパレータ22に接続されている。また,同時判定回路23aは接続されるコンパレータ22を含む読出し回路ブロック20内のカウンタ制御回路23bに接続されている。同時判定回路23aは一定時間内(タイムウインドウ内)に2つの検出器ピクセル9で同時にイベントが発生したか否かの情報と,エネルギーウインドウが等しいか,大きいか,小さいかの情報をカウンタ制御回路23bに渡す。カウンタ制御回路23bでは複数の同時判定回路23aからの信号をもとにカウンタ24の制御を実施する。この本実施例は2つ(複数)のピクセル間の同時判定を1つの回路で行っており,個々に同時判定を実施する実施例1の構成と比べると回路規模を減らすことができるほか,タイムウインドウの誤差により同時判定の判断が異なってしまうといった問題を回避することが可能である。
 <第3実施例>
 図9を用いて第3実施例について説明する。第3実施例は同時判定回路23aにもカウンタ27が接続されている他,カウンタ制御回路23bに接続されるカウンタ24の種類が増加している点が前記の第1,第2実施例とは異なる。X線CT装置Sでは検出器ピクセル9でのX線の検出数が非常に多く,数十から数百Mcpsのイベントを処理する必要がある。このような高計数率下の状態で同時判定を行った場合,1つのX線が2つにわかれたものだけではなく(図6や図7に示されたものだけでなく),偶然同時に検出されてしまう偶発同時計数という現象が発生する。
 本実施例では偶発同時計数を補正する手段を備える面で前記の第1,第2実施例と異なる。偶発同時計数が起きると本来の2つのイベントが1つのイベントとして計測されてしまう。本実施例ではカウンタ制御回路23bが制御するカウンタ24に同時,非同時関係なくカウントを増加させる単純カウンタ(単純計数のカウンタ)をカウンタ24に加える。画像再構成ではエネルギースペクトルと計数率をパラーメータとして同時計数のカウンタ24,非同時計数のカウンタ24,単純計数のカウンタ24のカウント値がいくつになるかを計算しておき,その逆計算を行うことで正しいエネルギースペクトルと計数率を推定することが可能である。
 ちなみに,図9において枠内に単に「L」「H」と記載されているのが単純計数のカウンタ24である。他のカウンタ24(非同時計数のカウンタ24と同時計数のカウンタ24)が同時判定の結果に応じていずれかに値を加算するのに対して,単純計数のカウンタ24は同時判定の結果を参照しないで単純に値を増加させる。
 また,図9に示されるとおり本実施例では同時計数のカウンタをカウンタ27として同時判定回路23aにも接続する。この同時計数のカウンタ27はピクセル間の同時イベントを計数する。補足すると,この同時計数のカウンタ27は読出し回路ブロック20の組合せごと(検出器ピクセル9の組合せごと)に備わる。なお,図示は省略しているが,このカウンタ27はエネルギーウインドウごとに3種のカウンタを持っており,片側のピクセルがもう一方よりも高い時にカウントするカウンタが2つと,両方のエネルギーウインドウが等しい時にカウントするカウンタが1つ,計3つからなる。つまり,一方のピクセルと他方のピクセルにおいて,カウンタ27は,一方が高い場合,両方が等しい場合,一方が低い場合のカウンタを備えている。
 なお,X線CTにおいては被検者5の体内で発生する散乱線を除去するために,斜め方向から検出器ピクセル9に入射するX線を遮るコリメータが設けられている。コリメータはタングステンなどのX線の阻止能が高い物質にてスリットを形成したものである。この散乱線除去のコリメータのため,検出器において一部X線が照射されない領域が生じる。本実施例ではピクセルの境界(検出器ピクセル9同士の間)にこのX線が照射されない位置が一致するようにコリメータを配置する。スリットの間隔よりもピクセルのピッチが細かいためスリット間に2~4ピクセルの検出器ピクセル9が配置される。スリットの間隔と検出器ピクセル9のピッチは整数倍の比率になるようにすることが望ましい。コリメータの影となる部分ではピクセルの境界で反応するX線が減るために2つのイベントに分割される割合がコリメータの陰にならない部分に比べて減少する。本実施形態ではコリメータの影となる部分を含むピクセルと含まないピクセルのカウント値を用いて偶発同時計数の割合を推定し,真のカウント値を求める。この真のカウント値から画像再構成を実施する。すなわち,同時計数のカウンタ24(27)のうち,コリメータの影の部分とそれ以外の部分の計数を分離して集計し,計数率の誤差を補正する。
 ちなみに,図6(図7)では一例として検出器ピクセル9が5×6マトリックスに配置された検出器10を示しているが,各検出器ピクセル9にはアドレスが付されて各位置を一意に特定可能である。そして各検出器ピクセル9のうちどの検出器ピクセル9がコリメータの陰になるかが特定可能である。
 なお,図9ではカウンタ制御回路23bにカウンタ24が6つ接続されている例を示しているが,カウンタ制御回路23bには4つのカウンタ24(非同時計数のカウンタ24が2つ,単純計数のカウンタ24が2つ)が接続されているものとし,一方,同時判定回路23aに同時計数のカウンタ27が所定数接続されているものとしてもよい。
 <その他1>
 前記した実施例では,検出器10(検出器ピクセル9)内での散乱などによって1つのX線イベントが3つ以上のピクセルにわたって計測(分割して計測)されてしまう場合について,このような場合は個々のピクセルでの波高値が低下するため(つまりエネルギーウインドウが低下するため),そのようなX線イベントについての処理を省略することとした。換言すると,同時判定回路23aにおける同時判定は2つのピクセルでの同時であることを前提に,自身のピクセルと同じエネルギーウインドウのピクセルが近傍にもう1つ存在する同時判定の場合(ステップS9→Yesの場合)は,カウンタ制御回路23bは同時計数のカウンタ24に0.5を加算していた。しかし,ピクセルのサイズがさらに微細化された場合,1つのX線イベントが3つ以上のピクセルにわたって計測されることも増えてくると考えられる。この場合,同時判定回路23aにおける同時判定のピクセル数(同時と判定されたピクセル数)を計算し,加算するカウント値が同時判定のピクセル数に応じたものとなるように,カウンタ制御回路23bが同時計数のカウンタ24の制御を行う構成とする。具体的には,図5のフローチャートにおいて,自身のピクセルの近傍に自身と同じエネルギーウインドウのピクセルが1つ存在する場合(自身を含めて2つ存在する場合)(ステップS9参照),ステップS11では同時計数のカウンタ24に1/2=0.5を加算する。一方,自身のピクセルの近傍に自身と同じエネルギーウインドウのピクセルが2つ存在する場合(自身を含めて3つ存在する場合)(ステップS9参照),ステップS11では同時計数のカウンタ24に1/3=0.33を加算する。
 つまり,カウンタ制御回路23bは,同時判定のピクセル数(同じエネルギーウインドウのピクセル数)に応じたカウント値を同時計数のカウンタ24に加算する。換言すると,カウンタ制御回路23bは,カウンタ24におけるカウント値の増加量を,同時判定回路23aの判定結果に基づいて変更する。さらに換言すると,カウンタ制御回路23bは,同時判定のピクセル数(同じエネルギーウインドウのピクセル数)の逆数となる重みによりカウント値の増加量を算出する。なお,前記したように,1つのX線イベントが3つ以上のピクセルにわたって計測されてしまう場合は,個々のピクセルでのエネルギーウインドウ(波高値)が低下することになる。このため,このような同時判定の処理は,コンパレータ22の数をさらに増やしてエネルギーウインドウを細分化した上で行うとよい(前記の実施例ではエネルギーウインドウは高低2つである)。
 ちなみに,カウンタ24が整数値の加算を行うものであるならば,例えばカウント値の増加量を100倍して加算して,最後に100で割ればよい。例えば,カウント値の増加量が0.5の場合は50を,カウント値の増加量が0.33の場合は33を同時判定のカウンタ24に加算し,最後に100で割ればよい。また,このような処理を行う場合,「近傍」の範囲に関して,斜めを含む8ピクセルや,2ないし,3ピクセル離れたピクセルを含むところまで近傍の範囲を広げることが望ましい。なお,このように近傍の範囲を広げた場合,同時判定回路23aは広げた近傍の範囲に属するピクセルのコンパレータ22(22a,22b)と接続されることとなる(図4参照)。
 <その他2>
 以上説明した本発明は上記した実施例(第1~第3実施例)のみに限定されるものではなく,発明の本質的な効果を奏する範囲で様々な変形例が含まれる。例えば上記した実施例は,本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが当然可能であり,ある実施例の構成に他の実施例の構成を加えることも当然可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることも可能である。
 各実施例において,制御線や情報線は,説明上必要と考えられるものを示しており,製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には,殆ど全ての構成が相互に接続されていると考えてもよい。また,各処理はハードウエア的に行われてもソフトウェア的に行われてもよい。また,ガンマ線の検出に本発明を適用してもよい。例えば放射性の薬剤によって被検者5の体内から放出される放射線(ガンマ線)を検出(計数)するのに(つまり核医学診断装置に),本発明を適用してもよい。
 S X線CT装置(放射線撮像装置)
 1 ガントリ
 2 データ収集装置
 3 画像表示装置
 4 ベッド
 5 被検者
 6 X線管
 7 検出器パネル
 8 検出器モジュール
 9 検出器ピクセル
 10 検出器(放射線検出器)
 11 ASIC(放射線計数装置)
 12 保持基板
 20 読出し回路ブロック(計測回路)
 21 チャージアンプ
 22 コンパレータ(計測回路)
 22a (閾値が低い)コンパレータ
 22b (閾値が高い)コンパレータ
 23 制御回路
 23a 同時判定回路
 23b カウンタ制御回路
 24 カウンタ
 25 データ制御回路
 27 カウンタ(第3実施例)
 100A,100B,100C,100D X線イベント

Claims (15)

  1.  放射線を検出する複数の検出器ピクセルを備える放射線検出器と,
     前記放射線検出器が出力する信号に基づいて前記検出器ピクセルが放射線を検出した際のエネルギーを計測するエネルギー計測回路と,
     放射線の検出数を計数する複数のカウンタと,
     前記放射線の検出の際に前記検出器ピクセルの近傍の他の検出器ピクセルにおいて放射線を同時に検出したか否かを判定する同時判定回路と,
     前記同時判定回路における同時判定の有無と前記エネルギー計測回路におけるエネルギーとに基づいて,前記カウンタの増加の動作を制御するカウンタ制御回路と,
     前記カウンタの値を用いて画像再構成を行うデータ処理装置とを備える
    ことを特徴とする放射線撮像装置。
  2.  請求項1に記載の放射線撮像装置であって,
     前記複数のカウンタは,前記近傍の他の検出器ピクセルとの同時計数,非同時計数のカウンタを,エネルギーの区分ごとに持ち,それぞれのカウント値をもとに画像再構成を行う
    ことを特徴とする放射線撮像装置。
  3.  請求項1に記載の放射線撮像装置であって,
     前記複数のカウンタは,前記近傍の他の検出器ピクセルとの同時計数,非同時計数のカウンタ,および同時,非同時に関係なく計数するカウンタの3つをエネルギーの区別ごとに持ち,それぞれのカウント値をもとに画像再構成を行う
    ことを特徴とする放射線撮像装置。
  4.  請求項1に記載の放射線撮像装置であって,
     前記エネルギー計測回路と前記カウンタと前記カウンタ制御回路とで,前記検出器ピクセルの個々に対応する個々の読出し回路ブロックを構成し,
     近傍の前記読出し回路ブロック間に同時判定を実施する前記同時判定回路を備える
    ことを特徴とする放射線撮像装置。
  5.  請求項4に記載の放射線撮像装置であって,
    同時計数のカウンタを前記読出し回路ブロックの組合せごとに持つ
    ことを特徴とする放射線撮像装置。
  6.  請求項5に記載の放射線撮像装置であって,
     同時計数のカウンタのうち,コリメータの影の部分とそれ以外の部分の計数を分離して集計し,計数率の誤差を補正すること
    ことを特徴とする放射線撮像装置。
  7.  請求項1に記載の放射線撮像装置であって,
     前記検出器ピクセルが2次元的に配置されている
    ことを特徴とする放射線撮像装置。
  8.  請求項7に記載の放射線撮像装置であって,
     前記エネルギー計測回路,前記同時判定回路,前記カウンタ制御回路,および,前記検出器ピクセルに接続されるチャージアンプを含んで計測回路が構成され,
     前記計測回路は,自身に隣接する他の4つの計測回路を前記近傍として判定を行う
    ことを特徴とする放射線撮像装置。
  9.  請求項1に記載の放射線撮像装置であって,
     前記カウンタ制御回路は,前記カウンタの増加の動作を制御する際の計数値の増加量を同時判定の結果に基づいて変更する
    ことを特徴とする放射線撮像装置。
  10.  請求項1に記載の放射線撮像装置であって,
     前記カウンタ制御回路は,前記カウンタの増加の動作を制御する際の計数値の増加量を,同時判定回路が同時と判定した検出器ピクセルの個数の逆数となる重みにより算出する
    ことを特徴とする放射線撮像装置。
  11.  請求項1に記載の放射線撮像装置であって,
     前記エネルギー計測回路は,閾値の異なる複数のコンパレータを有し,
     前記同時判定回路は,前記閾値が最も低いコンパレータの出力をトリガとして前記同時か否かの判定を開始する
    ことを特徴とする放射線撮像装置。
  12.  請求項2に記載の放射線撮像装置であって,
     前記それぞれのカウント値をもとに画像再構成を行うに際して,
     前記同時計数のカウンタのカウント値に1未満の値の重みを乗算し,乗算後の前記カウント値と前記非同時計数のカウンタのカウント値との総和を求めることで前記非同時計数のカウンタのカウント値を補正すること, 
    ことを特徴とする放射線撮像装置。
  13.  放射線を検出する複数の検出器ピクセルを備える放射線検出器が出力する信号に基づいて前記検出器ピクセルが放射線を検出した際のエネルギーを計測するエネルギー計測回路と,
     放射線の検出数を計数する複数のカウンタと,
     前記放射線の検出の際に前記検出器ピクセルの近傍の他の検出器ピクセルにおいて放射線を同時に検出したか否かを判定する同時判定回路と,
     前記同時判定回路における同時判定の有無と前記エネルギー計測回路におけるエネルギーとに基づいて,前記カウンタの増加の動作を制御するカウンタ制御回路と,
     前記カウンタの値を用いて画像再構成を行うデータ処理装置へ送信するデータを前記カウンタから収集するデータ収集回路とを備える
    ことを特徴とする放射線計数装置。
  14.  放射線を検出する複数の検出器ピクセルを備える放射線検出器と,
     前記放射線検出器が出力する信号に基づいて前記検出器ピクセルが放射線を検出した際のエネルギーを計測するエネルギー計測回路と,
     放射線の検出数を計数する複数のカウンタと,
     前記放射線の検出の際に前記検出器ピクセルの近傍の他の検出器ピクセルにおいて放射線を同時に検出したか否かを判定する同時判定回路と,
     前記カウンタの増加の動作を制御するカウンタ制御回路と,
     前記カウンタの値を用いて画像再構成を行うデータ処理装置とを備える
    放射線撮像装置における放射線撮像方法であって,
     前記カウンタ制御回路は,
     前記同時判定回路における同時判定の結果に基づき,同時判定ではなければ前記複数のカウンタのうちの非同時計数のカウンタのカウント値を増加させ,同時判定であれば,前記複数のカウンタのうちの同時計数のカウンタのカウント値の値を増加させる
    ことを特徴とする放射線撮像方法。
  15.  請求項14に記載の放射線撮像方法において,
     前記カウンタ制御回路は,前記カウント値の増加に際して,非同時計数のカウント値よりも同時計数のカウント値の増加量が小さくなるように増加量を調整する
    ことを特徴とする放射線撮像方法。
PCT/JP2016/058725 2015-03-30 2016-03-18 放射線撮像装置,放射線計数装置および放射線撮像方法 WO2016158501A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680019533.1A CN107430201B (zh) 2015-03-30 2016-03-18 放射线拍摄装置、放射线计数装置以及放射线拍摄方法
JP2017509571A JP6375054B2 (ja) 2015-03-30 2016-03-18 放射線撮像装置および放射線撮像方法
US15/560,291 US10292669B2 (en) 2015-03-30 2016-03-18 Radiation imaging apparatus, radiation counting apparatus, and radiation imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070281 2015-03-30
JP2015-070281 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158501A1 true WO2016158501A1 (ja) 2016-10-06

Family

ID=57004324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058725 WO2016158501A1 (ja) 2015-03-30 2016-03-18 放射線撮像装置,放射線計数装置および放射線撮像方法

Country Status (4)

Country Link
US (1) US10292669B2 (ja)
JP (1) JP6375054B2 (ja)
CN (1) CN107430201B (ja)
WO (1) WO2016158501A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875120B1 (ko) * 2016-10-31 2018-07-06 한국수력원자력 주식회사 2차원 방사선량지도 작성 장치 및 방법
WO2019019038A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-RAY DETECTOR CAPABLE OF MANAGING LOAD SHARING AT ITS PERIPHERY
JP2020516874A (ja) * 2017-04-06 2020-06-11 プリズマティック、センサーズ、アクチボラグPrismatic Sensors Ab 適応型反同時計数システムを有する光子計数x線検出器システム
JP2022503404A (ja) * 2018-06-13 2022-01-12 プリズマティック、センサーズ、アクチボラグ X線検出器設計

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10098595B2 (en) 2015-08-06 2018-10-16 Texas Instruments Incorporated Low power photon counting system
US10151845B1 (en) 2017-08-02 2018-12-11 Texas Instruments Incorporated Configurable analog-to-digital converter and processing for photon counting
US10024979B1 (en) * 2017-11-01 2018-07-17 Texas Instruments Incorporated Photon counting with coincidence detection
JP6987345B2 (ja) * 2018-01-18 2021-12-22 富士フイルムヘルスケア株式会社 放射線撮像装置
JP7391499B2 (ja) * 2018-09-05 2023-12-05 キヤノンメディカルシステムズ株式会社 放射線検出器、放射線診断装置及びチャージシェアリングの判定方法
US10890674B2 (en) 2019-01-15 2021-01-12 Texas Instruments Incorporated Dynamic noise shaping in a photon counting system
EP3839576A1 (de) * 2019-12-18 2021-06-23 Siemens Healthcare GmbH Photonenzählender röntgendetektor und verfahren zum betreiben eines photonenzählenden röntgendetektors
CN113876344A (zh) * 2020-07-02 2022-01-04 佳能医疗系统株式会社 X射线ct装置以及方法
EP4036609A1 (en) * 2021-01-29 2022-08-03 Koninklijke Philips N.V. X-ray scatter estimation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105995A (ja) * 2004-10-07 2006-04-20 Siemens Ag ディジタルx線撮影装置およびディジタルx線撮影装置におけるx線像の撮影方法
US20120305786A1 (en) * 2011-06-06 2012-12-06 Bart Dierickx Combined integration and pulse detection
US20130028382A1 (en) * 2011-07-29 2013-01-31 Martin Spahn Method for detecting the true coincidence of two charge pulses on adjacent picture elements, x-ray detector and x-ray image recording apparatus
JP2013096993A (ja) * 2011-11-01 2013-05-20 Samsung Electronics Co Ltd 光子計数検出装置及びその方法
WO2013089154A1 (ja) * 2011-12-12 2013-06-20 株式会社 日立メディコ X線ct装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621188B2 (ja) 2006-09-29 2011-01-26 株式会社日立製作所 核医学診断装置
US7829860B2 (en) * 2006-10-31 2010-11-09 Dxray, Inc. Photon counting imaging detector system
JP6289108B2 (ja) * 2014-01-14 2018-03-07 キヤノンメディカルシステムズ株式会社 フォトンカウンティングct装置及びフォトンカウンティングctデータ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105995A (ja) * 2004-10-07 2006-04-20 Siemens Ag ディジタルx線撮影装置およびディジタルx線撮影装置におけるx線像の撮影方法
US20120305786A1 (en) * 2011-06-06 2012-12-06 Bart Dierickx Combined integration and pulse detection
US20130028382A1 (en) * 2011-07-29 2013-01-31 Martin Spahn Method for detecting the true coincidence of two charge pulses on adjacent picture elements, x-ray detector and x-ray image recording apparatus
JP2013096993A (ja) * 2011-11-01 2013-05-20 Samsung Electronics Co Ltd 光子計数検出装置及びその方法
WO2013089154A1 (ja) * 2011-12-12 2013-06-20 株式会社 日立メディコ X線ct装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875120B1 (ko) * 2016-10-31 2018-07-06 한국수력원자력 주식회사 2차원 방사선량지도 작성 장치 및 방법
JP2020516874A (ja) * 2017-04-06 2020-06-11 プリズマティック、センサーズ、アクチボラグPrismatic Sensors Ab 適応型反同時計数システムを有する光子計数x線検出器システム
JP7167055B2 (ja) 2017-04-06 2022-11-08 プリズマティック、センサーズ、アクチボラグ 適応型反同時計数システムを有する光子計数x線検出器システム
WO2019019038A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-RAY DETECTOR CAPABLE OF MANAGING LOAD SHARING AT ITS PERIPHERY
CN110914713A (zh) * 2017-07-26 2020-03-24 深圳帧观德芯科技有限公司 能够管理周边电荷共享的x射线检测器
US10823862B2 (en) 2017-07-26 2020-11-03 Shenzhen Xpectvision Technology Co., Ltd. X-ray detector capable of managing charge sharing at its periphery
US11294082B2 (en) * 2017-07-26 2022-04-05 Shenzhen Xpectvision Technology Co., Ltd. X-ray detector capable of managing charge sharing at its periphery
JP2022503404A (ja) * 2018-06-13 2022-01-12 プリズマティック、センサーズ、アクチボラグ X線検出器設計
JP7199455B2 (ja) 2018-06-13 2023-01-05 プリズマティック、センサーズ、アクチボラグ X線検出器設計

Also Published As

Publication number Publication date
US20180049707A1 (en) 2018-02-22
CN107430201B (zh) 2019-09-24
JP6375054B2 (ja) 2018-08-15
JPWO2016158501A1 (ja) 2018-01-25
CN107430201A (zh) 2017-12-01
US10292669B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP6375054B2 (ja) 放射線撮像装置および放射線撮像方法
CN110869811B (zh) 管理x射线成像系统中的几何失准
US7480362B2 (en) Method and apparatus for spectral computed tomography
US10448914B2 (en) X-ray image generation
JP4909847B2 (ja) 核医学診断装置
US9002084B2 (en) Systems and methods for summing signals from an imaging detector
EP3596511B1 (en) Pixel-design for use in a radiation detector
CN109917445B (zh) X射线成像的散射估计和/或校正
EP3049827B1 (en) Hybrid photon counting data acquisition system
JP2014176620A (ja) X線コンピュータ断層撮影装置およびフォトンカウンティングプログラム
EP1840597A2 (en) Energy calibration method and radiation detecting and radiological imaging apparatus
BR102012005761A2 (pt) Método para detectar a radiação de raios x e sistema detector com detectores de conversão direta
US11045153B2 (en) Device for acquiring pulse height spectrum, method for acquiring pulse height spectrum, program for acquiring pulse height spectrum, and radiation imaging apparatus
JP5493027B2 (ja) 撮像装置
JP2016016130A (ja) フォトンカウンティングct装置
JP2012189345A (ja) 放射線撮像装置および核医学診断装置
JP2013007585A (ja) 陽電子放出コンピュータ断層撮影装置及びX線CT(ComputedTomography)装置
US20240023912A1 (en) Radiation imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772383

Country of ref document: EP

Kind code of ref document: A1