WO2016158427A1 - オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法 - Google Patents

オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法 Download PDF

Info

Publication number
WO2016158427A1
WO2016158427A1 PCT/JP2016/058378 JP2016058378W WO2016158427A1 WO 2016158427 A1 WO2016158427 A1 WO 2016158427A1 JP 2016058378 W JP2016058378 W JP 2016058378W WO 2016158427 A1 WO2016158427 A1 WO 2016158427A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
stainless steel
austenitic stainless
mass
Prior art date
Application number
PCT/JP2016/058378
Other languages
English (en)
French (fr)
Inventor
川越 崇史
香月 淳一
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to SG11201707814WA priority Critical patent/SG11201707814WA/en
Priority to US15/562,986 priority patent/US20180363087A1/en
Priority to KR1020177027739A priority patent/KR20170121282A/ko
Priority to EP16772310.5A priority patent/EP3278888A4/en
Priority to CN201680018506.2A priority patent/CN107405655A/zh
Priority to RU2017134057A priority patent/RU2685925C2/ru
Publication of WO2016158427A1 publication Critical patent/WO2016158427A1/ja
Priority to PH12017501760A priority patent/PH12017501760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a localised treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
    • G11B33/027Covers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a manufacturing method of an austenitic stainless steel sheet, a cover member, and an austenitic stainless steel sheet that have been temper-rolled using a dull roll after finish cold rolling and bright annealing.
  • Austenitic stainless steel sheets typified by SUS304 and SUS316 and austenitic stainless steel sheets typified by SUS430 are often used for exterior building materials, interior building materials, kitchen supplies, and the like.
  • anti-glare properties are also regarded as important so that dirt, fingerprints, handling wrinkles, etc. are not noticeable.
  • HDD hard disks
  • HDD parts such as rotating members, arm members, case members, and cover members are strictly controlled not only for excellent corrosion resistance but also for contamination such as particles (adherent particles) and outgas. .
  • the cleaning degree of class 5 or higher defined by JIS B 9920 means that the number of particles of 0.1 ⁇ m is 100,000 or less, the number of particles of 0.2 ⁇ m is 23700 or less, and the number of particles of 0.3 ⁇ m per 1 m 2 of air.
  • the number of particles is 10200 or less, the number of 0.5 ⁇ m particles is 3520 or less, 1 ⁇ m is 832 or less, and the number of 5 ⁇ m particles is 29 or less.
  • HDD parts manufactured through such a cleaning process ordinary steel, aluminum alloy, stainless steel, etc. are used, with electroless Ni plating applied mainly for the purpose of improving corrosion resistance and improving cleaning properties. Often used.
  • HDD parts and the like are required not only to have corrosion resistance and cleanability, but also to have a matte surface having antiglare properties so that fingerprints and fine wrinkles are not noticeable.
  • a seal member 3 such as a gasket or a rubber packing is attached to a cover inner surface 2 that is an inner side of the cover member 1, and each component of the HDD is assembled. , Sealed to block the inside of the HDD and the outside of the HDD.
  • the seal member 3 is attached to the stainless steel constituting the cover member 1 with an adhesive, the wettability between the adhesive and the stainless steel is important to maintain a stable sealing property. That is, the stainless steel constituting the HDD cover member 1 is required to have a hydrophilic surface.
  • Patent Document 1 As a stainless steel plate for a cover member of a precision device such as an HDD case, a stainless damping steel plate having excellent contamination resistance as described in Patent Document 1 is known.
  • the Cr-deficient layer generated near the grain boundary near the surface by annealing is preferentially welded by pickling, and small grooves (microglobe) are formed along the grain boundary. It is formed.
  • the microglove is not sufficiently pickled, oil remains and causes outgassing.
  • the micro glove is also a factor that dust easily adheres to and deteriorates cleaning properties.
  • Patent Document 1 bright annealing or non-oxidation annealing is applied as finish annealing after cold rolling in order to prevent the occurrence of microglobe.
  • Patent Document 2 as a stainless steel plate to which fine dust or dust in the air hardly adheres, mechanical polishing, reduction annealing, and temper rolling using a water-soluble lubricant are combined.
  • a stainless steel plate is known in which the number of pinholes having a size exceeding 0.25 mm 2 on the surface of the temper rolled sheet is suppressed to 10 or less per 10 cm 2 .
  • the stainless steel plate of Patent Document 2 has been evaluated for its cleanability by a test in which the sample after completion of the exposure test is wiped once with a cloth soaked in a neutral detergent. Therefore, it is considered that good cleaning properties against dirt such as fine particles cannot be obtained.
  • the anti-glare property can be improved only by specifying the surface roughness as in the stainless steel plate of Patent Document 4, but the good detergency against dirt such as fine particles cannot be obtained.
  • the present invention has been made in view of these points, and an object thereof is to provide an austenitic stainless steel sheet, a cover member, and an austenitic stainless steel sheet manufacturing method that are excellent in cleanability, antiglare property and hydrophilicity.
  • the austenitic stainless steel sheet described in claim 1 is an austenitic stainless steel sheet that has been temper-rolled using dull rolls after finish cold rolling and bright annealing, and is in a direction perpendicular to the rolling direction on the steel sheet surface.
  • micropits having an opening area of 10 ⁇ m 2 or more and a density of not more than 10.0 per 0.01 mm 2 and an opening area ratio on the steel sheet surface of 1.0%.
  • the film formed on the surface of the steel sheet has at least Si, N, Al, Mn, Cr, Fe, Nb, and Ti as film forming elements other than C. , O, and a SiO 2 -based oxide having a Si content of 10 atomic% or more and a N content of 10 atomic% or less.
  • the austenitic stainless steel sheet according to claim 2 is the austenitic stainless steel sheet according to claim 1, wherein C: 0.15 mass% or less, Si: 0.1 mass% or more and 4.0 mass% or less, Mn: 10.0% by mass or less, Ni: 1.0% by mass to 28.0% by mass, Cr: 16.0% by mass to 32.0% by mass, and N: 0.2% by mass or less And the balance consists of Fe and inevitable impurities.
  • the cover member described in claim 3 is a cover member for a hard disk drive, and is formed of the austenitic stainless steel plate according to claim 1 or 2.
  • the method for producing an austenitic stainless steel sheet according to claim 4 is austenitic stainless steel, in which hot-rolled hot-rolled steel sheet is brightly annealed as finish annealing at least after finish cold rolling and temper rolled using dull rolls.
  • a method of manufacturing a steel sheet, in finish cold rolling, using a work roll having a cold rolling rate of 30% or more and an arithmetic average roughness Ra of 0.3 ⁇ m or less in at least the final rolling pass Rolling is performed at a speed of 200 mm / min or less, and the total cold rolling rate until bright annealing is set to 60% or more.
  • the method for producing an austenitic stainless steel sheet according to claim 5 is the method for producing an austenitic stainless steel sheet according to claim 4, wherein the finish annealing is performed in a hydrogen-nitrogen mixed gas atmosphere having a hydrogen ratio of 70% by volume or more. Bright annealing is performed under conditions where the dew point is -70 ° C or higher and -50 ° C or lower and the temperature is 950 ° C or higher and 1100 ° C or lower.
  • the method for producing an austenitic stainless steel sheet according to claim 6 is the method for producing an austenitic stainless steel sheet according to claim 4 or 5, wherein, in temper rolling, the roll diameter is 500 mm or more and the arithmetic average roughness Ra is 1. Using a dull roll of 0 ⁇ m or more and 3.5 ⁇ m or less, rolling at least one pass at an elongation of 0.5% or less in one pass to make the total elongation 0.2% or more and 1.4% or less It is.
  • the micropit density and opening area ratio on the steel sheet surface are controlled, the arithmetic average roughness Ra on the steel sheet surface is controlled, and the dull pattern transfer rate on the steel sheet surface is controlled.
  • the antiglare property can be improved and the hydrophilicity can be improved because the composition of the surface film formed on the surface of the steel sheet is controlled.
  • the austenitic stainless steel plate in this embodiment is temper-rolled using a dull roll after finish cold rolling and bright annealing, and is suitable as a material for a cover member for a hard disk drive (HDD), for example.
  • HDD hard disk drive
  • This austenitic stainless steel sheet is finish cold-rolled so as to have a predetermined surface property, and the surface film structure is controlled to be hydrophilic by bright annealing after the finish cold-rolling, and also has a predetermined surface property.
  • the anti-glare property is improved so as not to reduce the cleaning property as much as possible.
  • Detergency indicating the ease of removing dirt adhered to the steel plate surface is greatly influenced by the minute pits distributed on the steel plate surface.
  • Pits are fine pits on the surface of the steel sheet, mainly cracks in the hot rolling process, gaps in the grain boundary oxidation part, grain boundary erosion parts, pits generated in the gaps between different kinds of particles such as inclusions and carbides, these particles Omission traces, depressions caused by biting of metal particles and other particles in the manufacturing process, omission traces of oxide scale residue, depressions caused by rolling oil during cold rolling, and fineness due to mismatch of cold rolling conditions This is caused by a rough surface flaw and work cracks caused by inclusions during cold working.
  • micropits having a depth of 0.5 ⁇ m or more and an opening area of 10 ⁇ m 2 or more tend to act as trap sites for foreign matters such as fine dirt, and greatly impair cleaning performance. It becomes a factor.
  • micropits defined in this embodiment do not correspond to crater-shaped depressions of several tens of ⁇ m in which a dull pattern is transferred by temper rolling with a dull roll, but before temper rolling with a dull roll.
  • the dull pattern is transferred to the existing micro pit portion, and the pit remaining in the crater as it is or the pit newly opened inside the crater is applicable.
  • micropits on the steel plate surface When the density of micropits on the steel plate surface is more than 10.0 per 0.01 mm 2 and when the micropit opening area ratio on the steel plate surface is higher than 1.0%, the micropits Easy to act as a trap site, detergency is reduced.
  • the austenitic stainless steel sheet has a micropit existing density of 0.01 mm 2 in order to ensure good cleanability in a cleaning process performed in a clean environment of class 5 or higher defined by JIS B 9920.
  • the number of openings per micropit is set to 10.0 or less, and the opening area ratio of micropits on the steel sheet surface is set to 1.0% or less.
  • the pit depth is the maximum pit depth based on the average height of the twill on the outer periphery of the pit.
  • the pit depth when the pit is present inside the crater to which the dull pattern is transferred is also the maximum pit depth based on the average height of the twill portion on the outer periphery of the pit.
  • the opening area of the pit is the projected area of the portion surrounded by the edge of the pit when the steel plate surface is viewed in plan in the thickness direction.
  • the measurement of the depth and opening area of these pits is preferably performed using a laser microscope or white interference microscope capable of measuring the surface shape.
  • the measurement area by such a measuring means is preferably 0.1 mm 2 or more in total in a plurality of fields randomly selected from the surface of the steel sheet. For example, measurement is performed in 20 fields or more at a magnification of 1000 times. Thus, the depth and opening area of the pits are measured, and the existence density of the micropits and the opening area ratio are calculated.
  • the density of micropits is determined by measuring the number of micropits (including micropits in which a part of the opening protrudes from the boundary of the measurement area) existing in the measurement area set in each field of view. The sum of the number of measurements in the region is divided by the total area of each measurement region, and is calculated in terms of the number per 0.01 mm 2 .
  • the opening area ratio of the micro pit is the opening area of each micro pit existing in the measurement area set in each field of view (the micro pit in which a part of the opening protrudes from the boundary of the measurement area Only the area of the located portion is included), and the sum of the total opening area in each measurement region is divided by the total area of all the measurement regions.
  • a matte surface such as a dull pattern is suitable as a design for HDD parts such as a cover member, and therefore, by performing temper rolling using a dull roll, the surface glossiness is lowered and antiglare property is imparted.
  • the glossiness specified in JIS Z 8741 that is, the value at 20 ° is preferably 400 or less.
  • the austenitic stainless steel sheet after temper rolling using a dull roll has a high surface glossiness and an antiglare property cannot be secured when the arithmetic average roughness (Ra) of the steel sheet surface is less than 0.2 ⁇ m. there is a possibility.
  • Ra on the steel sheet surface is set to 0.2 ⁇ m or more and 1.2 ⁇ m or less.
  • the arithmetic average roughness (Ra) is a measurement value defined in JIS B 0601, that is, a measurement value in a direction perpendicular to the rolling direction.
  • the transfer rate which is the area ratio of the portion where the dull pattern is transferred by temper rolling on the steel sheet surface, is a crater where the dull pattern is transferred in the total area of the steel sheet surface in a state where the steel sheet surface is viewed in plan view. It is the ratio of the projection area of the part enclosed by the twill part of the part.
  • the transfer rate of the dull pattern can be calculated by observing 20 fields of view or more with an optical microscope or the like at a magnification of 400 times and measuring the area ratio of the crater portion to which the dull pattern is transferred.
  • the transfer rate when the transfer rate is less than 15%, the cleaning property can be improved, but the anti-glare property is lowered, and dirt, fingerprints and handling wrinkles are easily noticeable.
  • the transfer rate exceeds 70%, the antiglare property can be improved, but the generation of micropits inside the crater to which the dull pattern has been transferred increases or the opening of the micropits increases, so that the cleaning property is improved. Cause a significant drop.
  • the transfer rate on the steel sheet surface is set to 15% or more and 70% or less.
  • the oxide film surface film formed on the surface of the steel sheet is mainly composed of SiO 2, to improve hydrophilicity, silicon (Si) content and nitrogen (N) content in the oxide film is important. That is, the oxide film is, for example, Si, nitrogen, aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), niobium (Nb), titanium (Ti) as film forming elements other than carbon (C). ) And oxygen (O), the Si content and N content in the oxide film are important.
  • the Si content in the oxide film is less than 10 atomic%, the oxide film has a composition mainly composed of Cr and Fe oxide, and hydrophilicity cannot be obtained. Therefore, the Si content of the oxide film formed on the steel sheet surface is set to 10 atomic% or more. Moreover, Si content in a more preferable oxide film is 15 atomic% or more.
  • the N content of the oxide film formed on the steel sheet surface is set to 10 atomic% or less.
  • the analysis value of the surface film composition is a value calculated by a semi-quantitative analysis value based on the integrated area of each element spectrum by X-ray photoelectron spectroscopy.
  • the austenitic stainless steel sheet has a carbon content of 0.15% by mass or less, Si of 0.1% by mass or more and 4.0% by mass or less, Mn of 10.0% by mass or less, and 1.0% by mass or more and 28% by mass. 0.0 mass% or less of nickel (Ni), 16.0 mass% or more and 32.0 mass% or less of Cr, and 0.2 mass% or less of N, with the balance being Fe and inevitable impurities .
  • C is a solid solution strengthening element, but when the C concentration is high, Cr carbides precipitated at the grain boundaries increase. A Cr-deficient layer having a low Cr concentration is generated around Cr carbide, and micropits are easily generated starting from this portion. Moreover, in the temper rolling using a dull roll, micropits are opened or newly generated, which causes a deterioration in cleaning performance. And when C content exceeds 0.15%, it will become easy to deteriorate cleaning property by a Cr deficient layer. Therefore, the C content is 0.15% by mass or less.
  • Si is an alloy component that affects the amount of SiO 2 in the surface film after bright annealing. That is, in order to impart hydrophilicity to the austenitic stainless steel sheet as described above, it is preferable to increase the amount of SiO 2 in the surface film after bright annealing, but the content of Si in the austenitic stainless steel sheet as the original plate is small. If it is less, the Si ratio in the surface film becomes low, and it becomes difficult to form an oxide film mainly composed of SiO 2 . Therefore, the higher the Si content in the steel sheet, the better. Specifically, if the Si content is less than 0.1% by mass, hydrophilicity may not be sufficiently secured. On the other hand, when the Si content exceeds 4.0% by mass, cold workability may be deteriorated. Therefore, Si content shall be 0.1 mass% or more and 4.0 mass% or less.
  • Mn is an austenite-generating element and has an effect of improving corrosion resistance and workability. And when Mn content exceeds 10 mass%, manufacturability may deteriorate remarkably. Therefore, the Mn content is set to 10.0% by mass or less.
  • Ni is an austenite-forming element and has an effect of improving corrosion resistance and workability. And Ni needs to contain 1.0 mass% or more which is a main alloy component of austenitic stainless steel. On the other hand, since Ni is a relatively expensive element, the steel material cost will increase if it is contained in a large amount. Therefore, the Ni content is 1.0% by mass or more and 28.0% by mass or less.
  • Cr is an alloy component effective for improving the corrosion resistance.
  • the Cr content is 16.0% by mass or more, the effect of improving the corrosion resistance by adding Cr becomes remarkable.
  • the productivity may be deteriorated. Therefore, Cr content shall be 16.0 mass% or more and 32.0 mass% or less.
  • N is an austenite-forming element as well as C, and is also a solid solution strengthening element.
  • the N content is 0.2% by mass or less.
  • Nb adheres C and N in steel as Nb (C, N) to produce precipitates, and suppresses the formation of Cr carbide, which is one of the causes of micropits. It is an important alloy component. And such an effect becomes remarkable by containing 0.01 mass% or more of Nb. On the other hand, if Nb exceeds 0.8% by mass, manufacturability and workability may be deteriorated. Therefore, the Nb content when Nb is contained is 0.01% by mass or more and 0.8% by mass or less.
  • Ti like Nb, adheres C and N in steel as Ti (C, N) to produce precipitates, and suppresses the formation of Cr carbide, which is one of the causes of micropits, It is an alloy component that is important for improving detergency. And such an effect becomes remarkable by making Ti contain 0.01 mass% or more. On the other hand, if Ti is excessively contained in an amount exceeding 0.5% by mass, the productivity and workability may be deteriorated. Therefore, when Ti is contained, the Ti content is set to 0.01% by mass or more and 0.5% by mass or less.
  • alloy components may be included as necessary.
  • Mo molybdenum
  • Cu 3.0 mass% or less iron
  • B 0.02 mass % Boron
  • Ti titanium
  • Zr 0.5 mass% zirconium
  • Y 0.05 mass% yttrium
  • W tungsten
  • Ag silver
  • Sn tin
  • Co cobalt
  • the phosphorus (P) content contained as an impurity is preferably controlled to 0.05% by mass or less, and the sulfur (S) content is 0.01% by mass.
  • the austenitic stainless steel sheet is not limited to the above composition, and may be a composition corresponding to, for example, the austenitic stainless steel type specified in JIS G 4305: 2005 or JIS G 4303: 2005.
  • annealing, pickling, finish cold rolling and bright annealing are performed in order, and austenitic stainless steel with less micropits and smoothness and excellent cleanability. It is important to provide an antiglare property while maintaining the detergency as much as possible by manufacturing a steel plate and performing temper rolling under light pressure using a dull roll on the plate.
  • a dull roll is used under predetermined conditions capable of suppressing the opening and generation of the micropits. Temper rolling to give antiglare while maintaining cleanability.
  • hot rolled steel sheets should be used as the starting material, and at least finish cold rolling should be followed by bright annealing as finish annealing and temper rolling using dull rolls. That's fine.
  • a procedure (i) in which processing proceeds in the order of annealing, pickling, finish cold rolling, finish annealing (bright annealing), and temper rolling.
  • annealing, pickling, first cold rolling, first annealing, first pickling, second cold rolling, second annealing, second pickling, finish cooling The procedure (iii) in which the processing proceeds in the order of cold rolling, finish annealing (bright annealing) and temper rolling may be used.
  • the procedure (iv) which advances a process in the order of annealing, pickling, cold rolling, bright annealing, finish cold rolling, finish annealing (bright annealing), and temper rolling from a hot-rolled steel sheet may be used.
  • a polishing step and a degreasing step may be added as necessary.
  • a finishing process such as a slit.
  • the hot-rolled steel sheet is a steel sheet that has been hot-rolled without being cold-rolled. This hot-rolled steel sheet is melted, cast and hot-rolled by a conventional method, and is subjected to hot-rolling annealing and pickling as necessary.
  • Annealing and pickling are effective treatments for removing coarse foreign matters such as metal and scale attached to the steel plate surface.
  • Annealing can be appropriately selected in consideration of the manufacturability and characteristics of the material. Also, the annealing may be either batch-type annealing or continuous-type annealing as long as it does not affect the surface properties of the steel sheet, and can be selected according to the material, for example.
  • the pickling may be performed by combining a neutral salt or an acid such as sulfuric acid, nitric acid, hydrofluoric acid, and hydrochloric acid, and electrolytic pickling may be performed.
  • Finish cold rolling is cold rolling performed after the last annealing and immediately before bright annealing, and the number of passes may be one pass or multiple passes. Further, for example, different types of rolling mills such as a general Sendzimir mill and a thin plate dedicated mill may be used in order.
  • the cold rolling rate of finish cold rolling when different rolling mills are used in order is the total cold rolling rate of a plurality of rolling mills.
  • finish cold rolling is an important process that determines the surface properties of an austenitic stainless steel sheet.
  • finish cold rolling in order to achieve a predetermined density and opening area ratio of the micropits, drop marks of foreign matters generated by pickling and dents due to grain boundary erosion are removed by finish cold rolling. It is important to stretch it sufficiently.
  • the cold rolling rate in finish cold rolling is set to 30% or more.
  • the cold rolling rate is more preferably 40% or more, and further preferably 50% or more.
  • the upper limit of the cold rolling rate in finish cold rolling can be appropriately selected because it is affected by the material deformation resistance and the ability of the cold rolling mill to be used, but is usually 90% or less.
  • finish cold rolling when a work roll with an arithmetic average roughness Ra of the roll surface exceeding 0.3 ⁇ m is used at least in the final rolling pass, the smoothness of the steel sheet surface is insufficient and the washability is lowered. there's a possibility that. Therefore, in the finish cold rolling, it is necessary to use a work roll having an arithmetic average roughness Ra of the roll surface of 0.3 ⁇ m or less at least in the final rolling pass.
  • the rolling speed in the final rolling pass exceeds 200 m / min, the opening and generation of micropits may progress due to rolling oil rolling on the work roll and the steel sheet surface. Therefore, the rolling speed in the final rolling pass in finish cold rolling is set to 200 m / min or less.
  • the total cold rolling rate is the total rolling rate of each cold rolling during a series of steps up to bright annealing when manufacturing an austenitic stainless steel sheet.
  • it is the rolling ratio of finish cold rolling
  • in the above procedure (ii) is the total rolling ratio of cold rolling and finishing cold rolling
  • in the above procedure (iii) the first rolling ratio
  • the total cold rolling rate which is the total cold rolling rate until bright annealing, to 60% or more. Therefore, the total cold rolling ratio until bright annealing is set to 60% or more.
  • the upper limit of the total cold rolling rate can be selected as appropriate because it is affected by the material deformation resistance and the capacity of the cold rolling mill to be used, but is usually 98% or less.
  • finish annealing In order to maintain the surface texture obtained by such finish cold rolling, that is, the surface texture with very few micropits, surface oxidation is prevented in finish annealing, and oxidation such as subsequent pickling and polishing is performed. It is important to be able to omit the step of removing the scale. Therefore, bright annealing in a reducing atmosphere is performed as finish annealing.
  • Bright annealing is annealing in a reducing atmosphere, and is preferably performed under the conditions of bright annealing applied to BA finishing (JIS G 203: 2009, number 4225).
  • an annealing process is performed in a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 70% by volume or more to form an oxide film mainly composed of SiO 2. It is necessary to let
  • the oxide film becomes an oxide mainly composed of Cr and Fe, and the oxide film becomes too thick and coloration due to interference colors (temper color) tends to occur.
  • the dew point is lower than ⁇ 70 ° C., Si is easily reduced, so that it is difficult to form an oxide film mainly composed of SiO 2 and Al is likely to be concentrated in the film.
  • the annealing temperature is less than 950 ° C. or exceeds 1100 ° C., Si is not sufficiently concentrated in the oxide film, and an oxide film mainly composed of SiO 2 is hardly formed.
  • the bright annealing is performed in a hydrogen-nitrogen mixed gas atmosphere having a hydrogen ratio of 70% by volume or more under conditions of a dew point of ⁇ 70 ° C. or more and ⁇ 50 ° C. or less and a temperature of 950 ° C. or more and 1100 ° C. or less.
  • temper rolling is performed using a dull roll as a work roll, thereby transferring the dull pattern onto the surface of the steel sheet and imparting anti-glare properties while maintaining the cleanability.
  • the dull rolling conditions are controlled so that the opening and generation of micropits inside the crater to which the dull pattern is transferred can be suppressed, and the antiglare property can be imparted without deteriorating the cleanability. This is very important.
  • the diameter of the dull roll is smaller than 500 mm, stress is applied more than necessary to the crater portion to which the dull pattern is transferred, and there is a possibility that the opening and generation of micropits inside the crater may be advanced.
  • the surface roughness of the dull roll is such that the arithmetic average roughness Ra is in the range of 1.0 ⁇ m or more and 3.5 ⁇ m or less, the antiglare property can be imparted and the detergency is hardly lowered.
  • the opening and generation of micropits inside the crater may progress. Also, even if the total elongation is the same, if temper rolling is performed in multiple passes divided into multiple passes, the opening and generation of micropits inside the crater where the dull pattern is transferred can be suppressed. preferable.
  • the total elongation which is the total elongation in temper rolling, is less than 0.2%, there is a possibility that the antiglare property cannot be sufficiently provided, and if the total elongation exceeds 1.4%, cleaning is performed. May be reduced.
  • the diameter of the dull roll is 500 mm or more
  • the surface roughness of this dull roll is 1.0 ⁇ m or more and 3.5 ⁇ m or less in arithmetic mean roughness Ra
  • the elongation rate in one pass is 0.5. % Or less
  • the total elongation is preferably 0.2% or more and 1.4% or less.
  • a lubricant containing additives may be used for the purpose of rust prevention. Further, the surface of the work roll may be wiped with a wiper or the like using a cleaning liquid for removing foreign matter.
  • the density of micropits that cause contamination on the steel plate surface is 10.0 or less per 0.01 mm 2 , and the opening area ratio on the steel plate surface is 1.0%. Since it is the following, trap sites, such as a particle, are hard to generate
  • the arithmetic average roughness Ra on the steel sheet surface is 0.2 ⁇ m or more and 1.2 ⁇ m or less, and the dull pattern transfer rate on the steel sheet surface is 15% or more and 70% or less. Can be improved.
  • the surface film formed on the steel sheet surface contains Si, N, Al, Mn, Cr, Fe, Nb, Ti and O as film forming elements other than C, and the Si content is 10 atomic% or more.
  • the Ni content is composed of an oxide mainly composed of SiO 2 having a composition of 10 atomic% or less, hydrophilicity can be improved.
  • the austenitic stainless steel sheet controls the surface properties and the surface film as described above, it can improve the cleanability, antiglare property and hydrophilicity.
  • the austenitic stainless steel sheet is excellent in cleanability, antiglare property and hydrophilicity, and therefore can be suitably used as a cover member for HDD.
  • the cold rolling rate in finish cold rolling is 30% or more, and the arithmetic average roughness Ra is 0 in at least the final rolling pass in finish cold rolling. Since rolling is performed at a rolling speed of 200 mm / min or less using a work roll of 3 ⁇ m or less, the generation of micropits can be suppressed, and the surface of the steel sheet can be smoothed to improve the cleanability.
  • the total cold rolling ratio until bright annealing is set to 60% or more, surface defects can be effectively eliminated, generation of micropits can be suppressed, and cleaning properties can be improved.
  • the elongation in one pass is 0.5% or less and the total elongation is 0.
  • the antiglare property can be improved without reducing the cleanability as much as possible by temper rolling so as to be 2% or more and 1.4% or less.
  • Example 1 stainless steel having the chemical composition shown in Table 1 was melted in an electric furnace, converter and VOD process, and continuously cast to obtain a slab.
  • the continuous cast slab was hot-rolled by a normal method to obtain a hot-rolled steel sheet. Then, using the hot-rolled steel sheet as a starting material, each step proceeds in the order of the above procedure (ii) or procedure (iii), and in the temper rolling step, a plate thickness of 0.3 to 1.5 mm is obtained using a dull roll.
  • temper rolled material it was set as the test material of each Example and each comparative example. The production conditions for each of these examples and comparative examples are shown in Table 2.
  • steel type B and steel type E in Table 2 proceeded through the respective steps in the procedure (ii), and other steel types proceeded through the respective steps in the procedure (iii).
  • work rolls with Ra of 0.3 ⁇ m or less were used in finish cold rolling so that the rolling speed of the final rolling pass was 200 mm / min or less.
  • bright annealing was performed in an atmosphere in which hydrogen was 75 to 100% by mass and the balance was nitrogen.
  • the electroless Ni plating material frequently used for HDD parts was also measured for the detergency in the same manner as a control material for the detergency evaluation.
  • a 50 mm square sample cut out from each test material was subjected to ultrasonic cleaning using acetone, and then the arithmetic average roughness Ra was measured by a method according to JIS B 0601. did.
  • the arithmetic average roughness was measured three times in the direction perpendicular to the rolling direction, and the average value was calculated and evaluated.
  • the transfer rate which is the area rate, was calculated.
  • the observation of the steel sheet surface was evaluated by calculating an average value of all measured values with an observation magnification of 400 times and an observation field number of 20 fields.
  • micropits In the measurement of micropits, a 50 mm square sample cut out from each sample material was subjected to ultrasonic cleaning using acetone, and then the surface of the steel sheet was observed with a laser microscope, and the depth was 0.5 ⁇ m or more. The existence density of the micropits having an area of 10 ⁇ m 2 or more and the opening area ratio were calculated. The surface of the steel sheet was observed at a magnification of 1000, the number of fields of view was 10, and the total measurement area was 0.1 mm 2 .
  • the Si element ratio was determined for each sample from the integrated intensity of the peak of each element on the outermost surface of the oxide film by X-ray photoelectron spectroscopy.
  • wettability In the measurement of wettability, a 50 mm square sample cut out from each specimen was subjected to ultrasonic cleaning with acetone, and then the contact angle of a 0.1 ml droplet of ion-exchanged water was measured by the sessile drop method. The case where the contact angle was 50 ° or less was evaluated as having excellent wettability.
  • degreasing is first performed by ultrasonic cleaning using acetone.
  • This degreased sample was subjected to ultrasonic cleaning using a fluorine-based cleaning liquid, steam cleaning, and vacuum drying. Then, it was ultrasonically cleaned using a weak alkaline detergent, rinsed by immersing in ultrapure water, pulled up at a low speed and dried in warm air to obtain a sample for measuring the degree of surface cleaning.
  • the surface cleanliness was measured using an LPC (liquid particle counter) apparatus as follows.
  • ultrapure water was placed in a beaker and set in an LPC apparatus, and the number of particles present in the ultrapure water and the size distribution of the particle particles were measured.
  • the number of particles having a particle diameter of 0.3 ⁇ m or more was calculated from the measurement data of the ultrapure water, and the calculated value was used as the number of particles before sample immersion (blank measurement value).
  • the sample for cleaning degree measurement was immersed in a beaker containing ultrapure water and subjected to ultrasonic cleaning for a certain time, and particles adhering to the sample surface were extracted into ultrapure water. Thereafter, the number of particles present in the ultrapure water and the size distribution of the particle particles were measured with an LPC apparatus, and the number of particles having a particle diameter of 0.3 ⁇ m or more was calculated.
  • the difference between the calculated value and the blank measurement value was taken as the number of particles extracted from the cleanliness measurement sample.
  • Table 3 shows the results of various measurements relating to these detergency, antiglare properties and hydrophilicity.
  • the number of particle adhesion of the sample for measuring the surface cleanliness is 1000 pieces / cm 2 or less, as compared with the electroless Ni plating material that is a control material for the evaluation of cleanability. Was equally low.
  • stainless steel plates of this example had a surface glossiness lower than the standard and good antiglare properties, and a contact angle smaller than the standard and good hydrophilicity.
  • any of the present examples is a surface state having cleanliness, antiglare property and hydrophilicity suitable as a cover member for HDD, for example, with the surface of a solid stainless steel plate.
  • Example 2 A gasket was injection molded on the surface of some of the samples prepared in Example 1, and the adhesiveness between the stainless steel and the gasket was evaluated.
  • a gasket was injection molded with an injection molding machine at an injection speed of 0.3 mm / second, an injection pressure of 30 MPa, and a cycle time of 30 seconds using a styrene thermoplastic elastomer compound, and adhered to the sample surface.
  • a penetration peel of about 1 mm was formed on the gasket adhesive surface formed on the sample, a SUS wire was passed through the part where the penetration peel was formed, a vertical tensile load was applied, and the peel length was about 10 mm. The load at the time of expansion was measured.
  • Example 1 A-1, B-1, and C-1 which were good in cleaning property, antiglare property and hydrophilic property in Example 1, all had good adhesiveness.
  • Comparative Examples C-5, C-6 and E-2 which were low in hydrophilicity and poor in wettability in Example 1, all had poor adhesion.
  • the austenitic stainless steel sheet according to the present invention is a surface state having a cleaning property, an antiglare property and a hydrophilic property suitable as a cover member for HDD.
  • the present invention can be used when manufacturing parts for precision equipment, electronic equipment, etc., for example, a cover member for a hard disk drive (HDD).
  • HDD hard disk drive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 洗浄性、防眩性および親水性に優れたオーステナイト系ステンレス鋼板を提供する。 仕上げ冷間圧延および光輝焼鈍後にダルロールを用いて調質圧延したオーステナイト系ステンレス鋼板において、鋼板表面における圧延方向に対して垂直な方向の算術平均粗さRaが0.2μm以上1.2μm以下である。また、鋼板表面におけるダル模様の転写率が15%以上70%以下である。さらに、鋼板表面に形成された深さが0.5μm以上で開口面積が10μm以上であるマイクロピットは、存在密度が0.01mm当たり10.0個以下で、かつ、開口部面積率が1.0%以下である。また、鋼板表面に形成された皮膜は、C以外の皮膜形成元素として、少なくともSiと、Nと、Alと、Mnと、Crと、Feと、Nbと、Tiと、Oと含有し、かつ、Si含有量が10原子%以上で、N含有量が10原子%以下であるSiO主体の酸化物にて構成する。

Description

オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法
 本発明は、仕上げ冷間圧延および光輝焼鈍後にダルロールを用いて調質圧延されたオーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法に関する。
 外装建材、内装建材および厨房用品等には、SUS304およびSUS316を代表とするオーステナイト系ステンレス鋼板や、SUS430を代表とするオーステナイト系ステンレス鋼板が多く用いられている。
 そして、このような用途では、製品製造の際や施工の際に付着する様々な汚れ、および、日常での使用の際に付着する様々な汚れや指紋等が除去しやすいように洗浄性が求められているだけでなく、汚れや指紋や取り扱い疵等が目立ちにくいように防眩性も重要視されている。
 また、精密機器や電子機器部材等では、例えばハードディスクドライブ(HDD)に関して一般的に高密度化および処理の高速化が求められている。
 また、回転部材、アーム部材、ケース部材およびカバー部材等のHDD部品に使用される材料は、優れた耐食性だけでなく、パーティクル(付着物粒子)やアウトガス等の汚れについても厳格に管理されている。
 そして、HDD部品を製造する際の洗浄工程において、例えば、炭化水素で脱脂した後にフッ素系洗浄液、弱アルカリ系洗浄液および超純水等を用いて超音波洗浄する等、入念な洗浄が施される。
 また、洗浄工程では、必要に応じて蒸気洗浄が施され、最終的に超純水を用いたリンシング(すすぎ)工程が複数回実施されることにより、パーティクルだけでなくイオン性物質も除去される。
 さらに、洗浄工程では、空気中に存在する微細な汚れも汚染源となるため、一般的に、JIS B 9920で規定されるクラス5以上の洗浄度であるクリーン環境で洗浄される。なお、JIS B 9920で規定されるクラス5以上とは、空気1m当たりにおいて、0.1μmの粒子数が100000個以下、0.2μmの粒子数が23700個以下、0.3μmの粒子数が10200個以下、0.5μmの粒子数が3520個以下、1μmも粒子数が832個以下、5μmの粒子数が29個以下の環境である。
 このような洗浄工程を経て製造されるHDD部品には、普通鋼、アルミニウム合金およびステンレス鋼等が用いられ、主として耐食性の向上および洗浄性の改善を目的として無電解Niめっきが施された状態で使用されることが多い。
 ここで、HDD部品等では、耐食性や洗浄性だけでなく、指紋や微細な疵が目立ちにくいように防眩性を有するつや消し表面であることも要求されている。
 またHDDでは、図1に示すように、カバー部材1の内側であるカバー内面2に、例えばガスケットやゴムパッキン等のシール部材3が取り付けられており、HDDの各部品が組み付けられた状態にて、HDD内部とHDD外部とを遮断するためにシールされている。
 シール部材3は、カバー部材1を構成するステンレス鋼に対して接着剤で取り付けられるため、安定したシール性を維持するには、接着剤とステンレス鋼との濡れ性が重要である。すなわち、HDDのカバー部材1を構成するステンレス鋼は、表面が親水性であることが要求される。
 そして、HDDケース等の精密機器のカバー部材用のステンレス鋼板としては、特許文献1に記載されているような耐コンタミ性に優れたステンレス制振鋼板が知られている。
 通常のステンレス鋼板では、焼鈍酸洗すると、焼鈍により表面近傍の粒界付近に生成されるCr欠乏層が酸洗によって優先的に溶削されて、粒界に沿って小さな溝(ミクログローブ)が形成される。このミクログローブは、酸洗が不十分な場合には油分が残留しアウトガス発生の要因となる。また、ミクログローブは、塵埃が付着しやすく洗浄性が低下する要因にもなる。
 そこで、特許文献1では、ミクログローブの発生を防止するために、冷間圧延後の仕上げ焼鈍として、光輝焼鈍または無酸化焼鈍を施している。
 また、空気中の微細な塵や埃が付着しにくいステンレス鋼板としては、特許文献2に記載されているように、機械研磨と還元焼鈍と水溶性潤滑剤を用いた調質圧延とを組み合わせることによって、調質圧延板の表面において0.25mmを超えるサイズのピンホールの数が10cm当たり10個以下に抑えられたステンレス鋼板が知られている。
 さらに、耐汚れ性および耐食性に優れたステンレス鋼板としては、特許文献3に示すように、ダルロールを用いて仕上げ圧延した後に光輝焼鈍を行って、所定の表面粗さに制御することにより、耐汚れ性および耐食性を向上させたステンレス鋼板が知られている。
 また、耐汚染性、洗浄性および防眩性に優れたステンレス鋼板としては、特許文献4に示すように、仕上げ焼鈍後に鏡面ロールで1回目の調質圧延を行い、ダルロールを用いて2回目の調質圧延を行って、鋼板表面を所定の算術平均粗さに制御することにより、耐汚染性、洗浄性および防眩性を向上させている。
特許第3956346号公報 特開2001-20045号公報 特許第3587180号公報 特許第4226131号公報
 しかしながら、上述の特許文献1のステンレス鋼板のように、仕上げ焼鈍として光輝焼鈍または無酸化焼鈍を適用して酸洗を省略するだけでは、微小なパーティクル等の汚れに対する良好な洗浄性が得られないと考えられる。
 また、特許文献2のステンレス鋼板は、中性洗剤に浸した布で暴露試験完了後のサンプルを1回拭き取るだけの試験によって洗浄性が評価されており、この特許文献2のステンレス鋼板の表面性状では、微小なパーティクル等の汚れに対する良好な洗浄性が得られないと考えられる。
 ここで、一般的に洗浄性と防眩性とは相反するものであり、ステンレス鋼板は、防眩性に優れる程、鋼板表面の凹凸が大きいため、汚れが付着しやすくなるとともに、付着した汚れを除去しにくくなり、洗浄性が劣ってしまう。
 したがって、特許文献3のステンレス鋼板では、防眩性を向上できるものの、洗浄性については検討されておらず、微小なパーティクル等の汚れに対する良好な洗浄性が得られないと考えられる。
 また、特許文献4のステンレス鋼板のように、表面粗さを規定しただけでは、防眩性は向上できるが、微小なパーティクル等の汚れに対する良好な洗浄性が得られないと考えられる。
 本発明はこのような点に鑑みなされたもので、洗浄性、防眩性および親水性に優れたオーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法を提供することを目的とする。
 請求項1に記載されたオーステナイト系ステンレス鋼板は、仕上げ冷間圧延および光輝焼鈍後にダルロールを用いて調質圧延されたオーステナイト系ステンレス鋼板であって、鋼板表面における圧延方向に対して垂直な方向の算術平均粗さRaが0.2μm以上1.2μm以下で、鋼板表面におけるダル模様が転写された部分の面積率である転写率が15%以上70%以下で、鋼板表面に形成された深さが0.5μm以上で開口面積が10μm以上であるマイクロピットは、鋼板表面における存在密度が0.01mm当たり10.0個以下で、かつ、鋼板表面における開口部面積率が1.0%以下で、鋼板表面に形成された皮膜は、C以外の皮膜形成元素として少なくともSiと、Nと、Alと、Mnと、Crと、Feと、Nbと、Tiと、Oと含有しかつSiの含有量が10原子%以上でNの含有量が10原子%以下であるSiO主体の酸化物にて構成されるものである。
 請求項2に記載されたオーステナイト系ステンレス鋼板は、請求項1記載のオーステナイト系ステンレス鋼板において、C:0.15質量%以下と、Si:0.1質量%以上4.0質量%以下と、Mn:10.0質量%以下と、Ni:1.0質量%以上28.0質量%以下と、Cr:16.0質量%以上32.0質量%以下と、N:0.2質量%以下とを含有し、残部がFeおよび不可避的不純物からなるものである。
 請求項3に記載されたカバー部材は、ハードディスクドライブ用のカバー部材であって、請求項1または2記載のオーステナイト系ステンレス鋼板にて形成されるものである。
 請求項4に記載されたオーステナイト系ステンレス鋼板の製造方法は、熱間圧延した熱延鋼板を、少なくとも仕上げ冷間圧延した後に仕上げ焼鈍として光輝焼鈍し、ダルロールを用いて調質圧延するオーステナイト系ステンレス鋼板の製造方法であって、仕上げ冷間圧延では、冷間圧延率を30%以上とし、かつ、少なくとも最終圧延パスにて算術平均粗さRaが0.3μm以下のワークロールを使用して圧延速度200mm/min以下で圧延し、光輝焼鈍までの総冷間圧延率を60%以上とするものである。
 請求項5に記載されたオーステナイト系ステンレス鋼板の製造方法は、請求項4記載のオーステナイト系ステンレス鋼板の製造方法において、仕上げ焼鈍では、水素比率が70体積%以上の水素-窒素混合ガス雰囲気において、露点が-70℃以上-50℃以下で、温度が950℃以上1100℃以下の条件で光輝焼鈍を行うものである。
 請求項6に記載されたオーステナイト系ステンレス鋼板の製造方法は、請求項4または5記載のオーステナイト系ステンレス鋼板の製造方法において、調質圧延では、ロール直径500mm以上で算術平均粗さRaが1.0μm以上3.5μm以下のダルロールを用いて、1回のパスでの伸び率が0.5%以下で1パス以上圧延し、総伸び率を0.2%以上1.4%以下とするものである。
 本発明によれば、鋼板表面におけるマイクロピットの存在密度および開口部面積率を制御し、鋼板表面における算術平均粗さRaを制御し、鋼板表面におけるダル模様の転写率を制御するため洗浄性および防眩性を向上でき、鋼板表面に形成された表面皮膜の組成を制御するため親水性を向上できる。
HDDのカバー部材を示す斜視図である。
 以下、本発明の一実施の形態の構成について詳細に説明する。
 この実施の形態におけるオーステナイト系ステンレス鋼板は、仕上げ冷間圧延および光輝焼鈍後にダルロールを用いて調質圧延されたものであり、例えばハードディスクドライブ(HDD)用のカバー部材等の材料として好適である。
 このオーステナイト系ステンレス鋼板は、所定の表面性状となるように仕上げ冷間圧延され、仕上げ冷間圧延後の光輝焼鈍により表面皮膜組織が親水性に制御されているとともに、所定の表面性状となるように調質圧延して、洗浄性をできるだけ低下させないように防眩性を向上させている。
 まず、オーステナイト系ステンレス鋼板の表面性状について説明する。
 鋼板表面に付着した汚れの除去しやすさを示す洗浄性は、鋼板表面に分布している微小なピットが大きく影響する。
 ピットは、鋼板表面の微細な窪みであり、主として、熱延工程での割れ、粒界酸化部の間隙、粒界侵食部、介在物や炭化物等の異種粒子の隙間に生じた窪み、これら粒子の脱落痕、製造工程中での金属粒子やその他の粒子の噛み込みによる窪み、酸化スケール残存物の脱落痕、冷間圧延の際の圧延油の巻き込みによる窪み、冷間圧延条件のミスマッチによる微細な表面疵、および、冷間加工の際の介在物に起因した加工割れ等に起因して発生する。
 このようなピットのうち、深さが0.5μm以上でかつ開口面積が10μm以上のものであるマイクロピットは、微細な汚れ等の異物のトラップサイトとして作用しやすく、洗浄性を阻害する大きな要因となる。
 そのため、洗浄性を向上するためには、鋼板表面におけるマイクロピットの分布を制御することが重要である。
 なお、この実施の形態で規定するマイクロピットには、ダルロールでの調質圧延によりダル模様が転写された数十μmサイズのクレーター状の窪み自体は該当しないが、ダルロールでの調質圧延前に存在したマイクロピット部分にダル模様が転写され、そのままクレーター内部に残存するピットや、クレーター内部で新たに開口したピットが該当する。
 そして、鋼板表面におけるマイクロピットの存在密度が0.01mm当たり10.0個より多い場合、および、鋼板表面におけるマイクロピットの開口部面積率が1.0%より高い場合には、マイクロピットがトラップサイトとして作用しやすく、洗浄性が低下する。
 そこで、オーステナイト系ステンレス鋼板は、JIS B 9920で規定されるクラス5以上のクリーン環境で行われる洗浄工程において良好な洗浄性を確保するために、鋼板表面のマイクロピットの存在密度を0.01mm当たり10.0個以下とし、かつ、鋼板表面におけるマイクロピットの開口部面積率を1.0%以下とする。
 なお、ピットの深さは、ピット外周の綾部の平均高さを基準としたピットの最大深さとする。また、ダル模様が転写されたクレーター内部にピットが存在する場合のピットの深さも、同様にピット外周の綾部の平均高さを基準としたピットの最大深さとする。
 ピットの開口面積は、鋼板表面を板厚方向に平面視した状態にてピットの縁部に囲まれている部分の投影面積である。
 これらのピットの深さおよび開口面積の測定は、表面の形状測定が可能なレーザー顕微鏡や白色干渉顕微鏡を用いて行うことが好ましい。
 また、このような測定手段による測定面積は、鋼板表面からランダムに選択した複数の視野にて合計0.1mm以上とすることが好ましく、例えば、倍率1000倍で20視野以上で測定を行うことにより、ピットの深さおよび開口面積を測定するとともに、マイクロピットの存在密度および開口部面積率を算出する。
 マイクロピットの存在密度は、それぞれの視野において設定された測定領域内に存在するマイクロピット(開口部の一部が測定領域の境界から突出したマイクロピットを含む。)の数を測定し、各測定領域での測定数の総和を各測定領域の総面積で除して、0.01mm当たりの個数に換算して算出する。
 また、マイクロピットの開口部面積率は、各視野において設定された測定領域内に存在する各マイクロピットの開口面積(開口部の一部が測定領域の境界から突出したマイクロピットは測定領域内に位置する部分の面積のみを含む。)の合計を算出し、各測定領域での合計開口面積の総和を、全測定領域の総面積で除することにより算出する。
 ここで、ダル模様等のつや消し表面は、カバー部材等のHDD部品の意匠として好適であるため、ダルロールを用いて調質圧延することにより、表面光沢度を低下させて防眩性を付与する。表面光沢度の目安としては、JIS Z 8741に規定する光沢度、すなわち20°での値が400以下であることが好ましい。
 このようにダルロールを用いて調質圧延した後のオーステナイト系ステンレス鋼板は、鋼板表面の算術平均粗さ(Ra)が、0.2μm未満であると、表面光沢度が高く防眩性を確保できない可能性がある。一方、鋼板表面の凹凸が大きくなりRaが1.2μmを超えると洗浄性が低下する可能性がある。したがって、十分な洗浄性および防眩性を確保するために、鋼板表面のRaは0.2μm以上1.2μm以下とする。
 なお、算術平均粗さ(Ra)は、JIS B 0601に規定された測定値、すなわち圧延方向に対して垂直な方向の測定値である。
 鋼板表面において調質圧延によりダル模様が転写された部分の面積率である転写率は、鋼板表面を板厚方向に平面視した状態にて、鋼板表面の総面積におけるダル模様が転写されたクレーター部の綾部で囲まれている部分の投影面積の割合である。例えば、光学顕微鏡等にて400倍の倍率で20視野以上の観察を行い、ダル模様が転写されたクレーター部分の面積率を測定することにより、ダル模様の転写率を算出できる。
 ここで、一般的に洗浄性と防眩性とは相反するものであり、鋼板表面の転写率が低い程、洗浄性を向上できるが、表面光沢度が高くなり防眩性が低下してしまう。一方、転写率が高い程、表面光沢度が低くなり防眩性を向上できるが、鋼板表面の凹凸が大きくなり洗浄性が低下してしまう。
 具体的には、転写率が15%未満だと、洗浄性を向上できるが、防眩性が低下して汚れや指紋や取り扱い疵が目立ちやすくなってしまう。一方、転写率が70%を超えると、防眩性を向上できるが、ダル模様が転写されたクレーター内部にマイクロピットの発生が増加したり、マイクロピットの開口が大きくなったりするため、洗浄性が著しく低下する原因となる。
 そこで、洗浄性および防眩性の両方を確保するために、鋼板表面における転写率は、15%以上70%以下とする。
 オーステナイト系ステンレス鋼板に親水性を付与するには、表面皮膜を酸化ケイ素(SiO)を主体とした組成にする必要があり、光輝焼鈍後の表面皮膜中のSiO量が多いほど、親水性を向上できる。
 また、鋼板表面に形成された表面皮膜がSiOを主体とした酸化皮膜であっても、親水性を向上させるには、酸化皮膜中のケイ素(Si)含有量および窒素(N)含有量が重要である。すなわち、酸化皮膜が、例えば炭素(C)以外の皮膜形成元素として、Si、窒素、アルミニウム(Al)、マンガン(Mn)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)、チタン(Ti)および酸素(O)を含有する場合における酸化皮膜中のSi含有量およびN含有量が重要である。
 具体的には、酸化皮膜中のSi含有量が10原子%未満であると、CrおよびFe酸化物を主体とした組成の酸化皮膜となり親水性が得られない。したがって、鋼板表面に形成された酸化皮膜のSi含有量は、10原子%以上とする。また、より好ましい酸化皮膜中のSi含有量は、15原子%以上である。
 また、酸化皮膜中のN含有量が10原子%を超えると、親水性が得られないことが確認された。したがって、鋼板表面に形成された酸化皮膜のN含有量は、10原子%以下とする。
 なお、表面皮膜組成の分析値は、X線光電子分光法による各元素スペクトルの積分面積に基づいた半定量分析値により算出した値である。
 次に、オーステナイト系ステンレス鋼板の成分組成について説明する。
 上記オーステナイト系ステンレス鋼板は、0.15質量%以下の炭素と、0.1質量%以上4.0質量%以下のSiと、10.0質量%以下のMnと、1.0質量%以上28.0質量%以下のニッケル(Ni)と、16.0質量%以上32.0質量%以下のCrと、0.2質量%以下のNとを含有し、残部がFeおよび不可避的不純物からなる。
 Cは、固溶強化元素であるが、C濃度が高いと結晶粒界に析出するCr炭化物が増加する。Cr炭化物の周辺にはCr濃度の低いCr欠乏層が生成され、この部分を起点として、マイクロピットが生成されやすくなる。また、ダルロールを用いた調質圧延の際に、マイクロピットを開口させたり新たに発生させたりして、洗浄性を悪化させる原因となる。そして、C含有量が0.15%を超えると、Cr欠乏層によって洗浄性を悪化させやすくなる。したがって、C含有量は、0.15質量%以下とする。
 Siは、光輝焼鈍後の表面皮膜中のSiO量に影響を与える合金成分である。すなわち、上述のようにオーステナイト系ステンレス鋼板に親水性を付与するには、光輝焼鈍後の表面皮膜中のSiO量を多くすることが好ましいが、原板であるオーステナイト系ステンレス鋼板における含有Si量が少ないと表面皮膜中のSi比率が低くなってSiOを主体とした酸化皮膜が形成されにくくなってしまう。そのため、原板の鋼中におけるSi含有量が多いほど好ましい。具体的には、Si含有量が0.1質量%未満であると、親水性を十分に確保できない可能性がある。一方、Si含有量が4.0質量%を超えると冷間加工性が低下する可能性がある。したがって、Si含有量は、0.1質量%以上4.0質量%以下とする。
 Mnは、オーステナイト生成元素であるとともに、耐食性改善作用や加工性改善作用を奏する。そして、Mn含有量が10質量%を超えると、製造性が著しく悪化する可能性がある。したがって、Mn含有量は、10.0質量%以下とした。
 Niは、オーステナイト生成元素であるとともに、耐食性改善作用や加工性改善作用を奏する。そして、Niはオーステナイト系ステンレス鋼の主要合金成分である1.0質量%以上含有させる必要がある。一方、Niは比較的に高価な元素であるため、多量に含有させると鋼材コストが上昇してしまう。したがって、Ni含有量は、1.0質量%以上28.0質量%以下とする。
 Crは、耐食性の改善に有効な合金成分であり、Cr含有量が16.0質量%以上になるとCr添加による耐食性の改善効果が顕著になる。一方、32.0質量%を超えて多量に含有させると、製造性を悪化させる可能性がある。したがって、Cr含有量は、16.0質量%以上32.0質量%以下とする。
 Nは、Cと同様にオーステナイト生成元素であるとともに、固溶強化元素でもある。しかし、Nを0.2質量%を超えて多量に含有させると、0.2%耐力が上昇し、鋼材が硬質化して製造性を著しく悪化させる可能性がある。したがって、N含有量は、0.2質量%以下とする。
 Nbは、鋼中のCおよびNをNb(C,N)として固着して析出物を生成し、マイクロピットの発生の原因の1つであるCr炭化物の生成を抑制するため、洗浄性の向上に重要な合金成分である。そして、このような効果は、Nbを0.01質量%以上含有させることにより顕著になる。一方、Nbを0.8質量%を超えて過剰に含有させると、製造性や加工性を悪化させてしまう可能性がある。したがって、Nbを含有させる場合のNb含有量は、0.01質量%以上0.8質量%以下とする。
 Tiは、Nbと同様に鋼中のCおよびNをTi(C,N)として固着して析出物を生成し、マイクロピットの発生の原因の1つであるCr炭化物の生成を抑制するため、洗浄性の向上に重要な合金成分である。そして、このような効果は、Tiを0.01質量%以上含有させることにより顕著になる。一方、Tiを0.5質量%を超えて過剰に含有させると、製造性や加工性を悪化させてしまう可能性がある。したがって、Tiを含有させる場合のTi含有量は、0.01質量%以上0.5質量%以下とする。
 また、上記合金成分の他に必要に応じて他の合金成分を含有させてもよい。例えば、耐食性や加工性等を向上させるために、5.0質量%以下のモリブデン(Mo)、3.0質量%以下の鉄(Cu)、5.0質量%以下のAl、0.02質量%以下のホウ素(B)、0.5質量%以下のチタン(Ti)、0.5質量%以下のジルコニウム(Zr)、0.05質量%以下のイットリウム(Y)、1.0質量%以下のタングステン(W)、0.5質量%以下の銀(Ag)、0.5質量%以下のすず(Sn)、および、1.0質量%以下のコバルト(Co)等のうちの少なくとも1種を含有させてもよい。
 さらに、上記合金成分による特性への悪影響を考慮すると、不純物として含まれるリン(P)含有量は0.05質量%以下に制御されることが好ましく、硫黄(S)含有量は0.01質量%以下に制御されることが好ましい。
 なお、オーステナイト系ステンレス鋼板は、上記組成に限定されず、例えば、JIS G 4305:2005や、JIS G 4303:2005に規定されるオーステナイト系ステンレス鋼種に相当する組成にしてもよい。
 次に上記オーステナイト系ステンレス鋼板の製造方法について説明する。
 洗浄性および防眩性に優れたオーステナイト系ステンレス鋼板を製造するには、焼鈍、酸洗、仕上げ冷間圧延および光輝焼鈍を順次行って、マイクロピットが少なく平滑で洗浄性に優れたオーステナイト系ステンレス鋼の原板を製造し、この原板にダルロールを用いて軽圧下で調質圧延を行うことにより、洗浄性をできるだけ維持しながら防眩性を付与することが重要である。
 まず、従来の方法で製造された熱延鋼板を出発材料とし、焼鈍および酸洗工程等でメタルやスケール等の比較的粗大な付着物を除去する。
 次いで、仕上げ冷間圧延にて十分な圧延率で圧延し、かつ、仕上げ冷間圧延の最終段階(最終パス)で平滑性の高いワークロールを使用して低速度で高圧下の条件で圧延することによって、酸洗にて生成された窪み(脱落痕)や、粒界侵食による窪みをできるだけ平滑化する。また同時に、光輝焼鈍までの総冷間圧延率を十分に大きくすることにより、熱延鋼板由来の窪みや、焼鈍および酸洗工程での脱落痕等の窪みをできるだけ平滑化する。
 さらに、仕上げ冷間圧延後に仕上げ焼鈍として光輝焼鈍を行うことにより、表面酸化による窪みの形成を防止するとともに、その後の酸洗が不要となり、酸洗による粒界侵食をなくし、洗浄性に優れたオーステナイト系ステンレス鋼の原板を製造する。
 そして、このように製造したオーステナイト系ステンレス鋼の原板について、上記マイクロピットの存在密度および開口部面積率に制御するために、マイクロピットの開口および発生を抑制可能な所定の条件にてダルロールを用いて調質圧延を行い、洗浄性を維持しながら防眩性を付与する。
 なお、オーステナイト系ステンレス鋼板を製造する際には、熱延鋼板を出発材料とし、少なくとも仕上げ冷間圧延を行った後に仕上げ焼鈍として光輝焼鈍を行い、ダルロールを用いて調質圧延を行う方法であればよい。具体な製造手順としては、例えば、熱延鋼板から、焼鈍、酸洗、仕上げ冷間圧延、仕上げ焼鈍(光輝焼鈍)および調質圧延の順に処理を進行する手順(i)で製造可能である。また、他の手順としては、熱延鋼板から、焼鈍、酸洗、冷間圧延、焼鈍、酸洗、仕上げ冷間圧延、仕上げ焼鈍(光輝焼鈍)および調質圧延の順に処理を進行する手順(ii)でもよい。さらに、熱延鋼板から、焼鈍、酸洗、第1の冷間圧延、第1の焼鈍、第1の酸洗、第2の冷間圧延、第2の焼鈍、第2の酸洗、仕上げ冷間圧延、仕上げ焼鈍(光輝焼鈍)および調質圧延の順に処理を進行する手順(iii)でもよい。また、熱延鋼板から、焼鈍、酸洗、冷間圧延、光輝焼鈍、仕上げ冷間圧延、仕上げ焼鈍(光輝焼鈍)および調質圧延の順に処理を進行する手順(iv)でもよい。
 なお、上記手順(i)ないし(iv)では、必要に応じて研磨工程や脱脂工程を加えてもよく、最後の調質圧延後に、表面性状に影響を与えない範囲で、脱脂、テンションレベラーおよびスリット等の精整工程を通板する構成にしてもよい。
 上記製造方法における各工程での具体的な条件について説明する。
 熱延鋼板は、冷間圧延せずに熱間圧延したままの鋼板とする。この熱延鋼板は、従来の方法で溶製、鋳造および熱間圧延したもので、必要に応じて熱延焼鈍および酸洗が施される。
 焼鈍および酸洗は、鋼板表面に付着したメタルやスケール等の粗大な異物を除去するために有効な処理である。
 焼鈍は、材料の製造性や特性を考慮して適宜条件を選択できる。また、焼鈍は、鋼板の表面性状に影響を与えない範囲において、バッチ式焼鈍および連続式焼鈍のいずれの方式でもよく、例えばその材料に応じて選択できる。
 酸洗は、中性塩や、硫酸、硝酸、フッ酸および塩酸等の酸を組み合わせて行われ、電解酸洗を行ってもよい。
 仕上げ冷間圧延は、最後の焼鈍の後で光輝焼鈍の直前に行われる冷間圧延であり、パス回数は、1回のパスでも複数回のパスでもよい。また、例えば一般的なゼンジミアミルおよび薄板専用ミル等の異なる複数種の圧延機を順に使用してもよい。異なる圧延機を順に使用する場合の仕上げ冷間圧延の冷間圧延率は、複数の圧延機によるトータルの冷間圧延率である。
 このような仕上げ冷間圧延は、オーステナイト系ステンレス鋼板の表面性状を決定付ける重要な工程である。すなわち、仕上げ冷間圧延にて、マイクロピットが所定の存在密度および開口部面積率となるように、酸洗にて生じた異物の脱落痕や粒界侵食による窪みを、仕上げ冷間圧延にて十分に引き延ばすことが重要である。
 そして、仕上げ圧延での冷間圧延率が30%未満であると、窪みを十分に引き延ばせない可能性がある。したがって、仕上げ冷間圧延での冷間圧延率は30%以上とする。なお、冷間圧延率は40%以上がより好ましく、さらに好ましくは50%以上である。一方、仕上げ冷間圧延における冷間圧延率の上限は、材料変形抵抗および使用する冷間圧延機の能力により影響されるため適宜選択できるが、通常は90%以下である。
 また、仕上げ冷間圧延において、少なくとも最終圧延パスにてロール表面の算術平均粗さRaが0.3μmを超えるワークロールを用いた場合には、鋼板表面の平滑化が不十分で洗浄性が低下する可能性がある。しがたって、仕上げ冷間圧延において、少なくとも最終圧延パスにてロール表面の算術平均粗さRaが0.3μm以下のワークロールを使用する必要がある。
 さらに、最終圧延パスでの圧延速度が200m/minを超えると、ワークロールおよび鋼板表面への圧延油の巻き込みによりマイクロピットの開口および発生が進行する可能性がある。したがって、仕上げ冷間圧延における最終圧延パスでの圧延速度は、200m/min以下とする。
 ここで、熱間圧延の際に生じた表面欠陥は比較的深いものが多く、マイクロピットをできるだけ少なくするには、光輝焼鈍工程前までの総冷間圧延率を高くし、出発材料である熱延鋼板に存在する表面欠陥を十分に引き延ばすことが重要である。また、冷間圧延前の熱延板の焼鈍や酸洗等によって鋼板表面付近に埋まっていた異物が脱落する可能性もあり、その脱落痕を引き延ばすためにも総冷間圧延率を高くすることが有効である。
 総冷間圧延率(トータル冷間圧延率)とは、オーステナイト系ステンレス鋼板を製造する際の光輝焼鈍までの一連の工程中における各冷間圧延のトータルの圧延率である。例えば、上記手順(i)では仕上げ冷間圧延の圧延率であり、上記手順(ii)では冷間圧延と仕上げ冷間圧延とのトータルの圧延率であり、上記手順(iii)では第1の冷間圧延と第2の冷間圧延と仕上げ冷間圧延とのトータルの圧延率であり、上記手順(iv)では冷間圧延と仕上げ冷間圧延とのトータルの圧延率である。より具体的には、熱延鋼板における最初の冷間圧延パス前の板厚をh0(mm)とし、最後の冷間圧延パス後の板厚をh1(mm)とした場合に、((h0-h1)/h0)×100(%)で示される。
 そして、検討の結果、光輝焼鈍までのトータルの冷間圧延率である総冷間圧延率を60%以上とすることにより、表面欠陥を効果的に消失できることが分かった。したがって、光輝焼鈍までの総冷間圧延率を60%以上とする。なお、総冷間圧延率の上限は、材料変形抵抗および使用する冷間圧延機の能力に影響されるため適宜選択できるが、通常は98%以下である。
 このような仕上げ冷間圧延によって得られた表面性状、すなわち、マイクロピットが極めて少ない表面性状を維持するためには、仕上げ焼鈍において、表面酸化を防止するとともに、その後の酸洗や研磨等の酸化スケールを除去する工程を省略できるようにすることが重要である。そこで、仕上げ焼鈍として、還元性の雰囲気での光輝焼鈍を行う。
 光輝焼鈍は、還元雰囲気中における焼鈍であり、BA仕上げ(JIS G 203:2009、番号4225)に適用した光輝焼鈍処理の条件で行うことが好ましい。
 また、光輝焼鈍にて親水性に優れた酸化皮膜組織を得るためには、水素比率が70体積%以上の水素および窒素の混合ガス雰囲気中で焼鈍を行って、SiO主体の酸化皮膜を形成させる必要がある。
 そして、焼鈍の際に露点が-50℃を超えると、酸化皮膜がCrおよびFe主体の酸化物になるとともに酸化皮膜が厚くなりすぎて干渉色による着色(テンパーカラー)が生じやすい。一方、露点が-70℃を下回ると、Siが還元されやすくなるため、SiOを主体とする酸化皮膜が形成されにくくなるとともに、皮膜中にAlが濃化しやすくなる。また、焼鈍の際の温度が950℃未満の場合および1100℃を超える場合は、Siが酸化皮膜中に十分に濃化せず、SiOを主体とする酸化皮膜が形成されにくい。したがって、光輝焼鈍は、水素比率が70体積%以上の水素-窒素混合ガス雰囲気中において、露点が-70℃以上-50℃以下で、温度が950℃以上1100℃以下の条件で行う。
 光輝焼鈍後には、ワークロールとしてダルロールを用いて調質圧延を行うことにより、鋼板表面にダル模様を転写させて、洗浄性を維持しながら防眩性を付与する。
 このような調質圧延においては、ダル模様が転写されたクレーター内部のマイクロピットの開口および発生を抑制し、洗浄性を悪化させることなく防眩性を付与できるように、ダル圧延条件を制御することが重要である。
 そして、ダルロールは、直径が500mmより小さいと、ダル模様が転写されたクレーター部に必要以上に応力が加わり、クレーター内部のマイクロピットの開口および発生を進行させてしまう可能性がある。
 また、ダルロールの表面粗さは、算術平均粗さRaが1.0μm以上3.5μm以下の範囲であれば、防眩性を付与でき、かつ、洗浄性が低下しにくい。
 調質圧延のパス条件については、パス1回当たりの伸び率が0.5%より大きいと、クレーター内部のマイクロピットの開口および発生が進行する可能性がある。また、トータルの伸び率が同じであっても、複数回のパスに分けてより多いパスで調質圧延を行うと、ダル模様が転写されたクレーター内部のマイクロピットの開口および発生を抑制できるので好ましい。
 さらに、調質圧延におけるトータルの伸び率である総伸び率が0.2%未満であると、防眩性を十分に付与できない可能性があり、総伸び率が1.4%を超えると洗浄性が低下する可能性がある。
 したがって、調質圧延は、ダルロールの直径を500mm以上とし、このダルロールの表面粗さを算術平均粗さRaで1.0μm以上3.5μm以下とし、1回のパスでの伸び率を0.5%以下とし、総伸び率を0.2%以上1.4%以下とすることが好ましい。
 このような調質圧延では、防錆等の目的で添加剤等を配合した潤滑剤を使用してもよい。また、ワークロールの表面を異物除去のために洗浄液を用いてワイパー等で拭き取ってもよい。
 次に、上記一実施の形態の作用および効果を説明する。
 上記オーステナイト系ステンレス鋼板によれば、鋼板表面における汚れの付着原因となるマイクロピットの存在密度が0.01mm当たり10.0個以下で、かつ、鋼板表面における開口部面積率が1.0%以下であるため、パーティクル等のトラップサイトが発生しにくく、洗浄性を向上できる。
 また、鋼板表面における算術平均粗さRaが0.2μm以上1.2μm以下であるとともに、鋼板表面におけるダル模様の転写率が15%以上70%以下であるため、洗浄性を維持できるとともに防眩性を向上できる。
 さらに、鋼板表面に形成された表面皮膜が、C以外の皮膜形成元素としてSi、N、Al、Mn、Cr、Fe、Nb、TiおよびOを含有し、かつ、Si含有量が10原子%以上でNi含有量が10原子%以下の組成であるSiO主体の酸化物にて構成されているため、親水性を向上できる。
 したがって、オーステナイト系ステンレス鋼板は、上述のように表面性状および表面皮膜を制御するため、洗浄性、防眩性および親水性を向上できる。
 また、上記オーステナイト系ステンレス鋼板は、洗浄性、防眩性および親水性に優れるため、HDD用のカバー部材として好適に利用できる。
 上記オーステナイト系ステンレス鋼板の製造方法によれば、仕上げ冷間圧延での冷間圧延率が30%以上で、かつ、仕上げ冷間圧延での少なくとも最終圧延パスにて、算術平均粗さRaが0.3μm以下のワークロールを使用して圧延速度200mm/min以下で圧延するため、マイクロピットを発生を抑制でき、鋼板表面を平滑化させて洗浄性を向上できる。
 さらに、光輝焼鈍までの総冷間圧延率を60%以上とするため、表面欠陥を効果的に消失させマイクロピットの発生を抑制でき、洗浄性を向上できる。
 仕上げ冷間圧延後に、水素比率が70体積%以上の水素-窒素混合ガス雰囲気中において、露点が-70℃以上-50℃以下で、温度が950℃以上1100℃以下の条件で光輝焼鈍を行うことにより、鋼板表面に、表面皮膜としてSiOを主体とする酸化皮膜が形成されるため、親水性を向上できる。
 光輝焼鈍後に、直径を500mm以上で算術平均粗さRaが1.0μm以上3.5μm以下であるダルロールを用いて、1回のパスでの伸び率が0.5%以下で総伸び率が0.2%以上1.4%以下となるように調質圧延することにより、できるだけ洗浄性を低下させずに防眩性を向上できる。
 以下、本実施例および比較例について説明する。
[実施例1]
 まず、表1に示す化学組成のステンレス鋼を、電気炉、転炉およびVOD工程にて溶製し、連続鋳造してスラブを得た。
Figure JPOXMLDOC01-appb-T000001
 次いで、連続鋳造スラブを通常の方法で熱間圧延して熱延鋼板とした。そして、熱延鋼板を出発材料として、上記手順(ii)または手順(iii)の順に各工程を進行するとともに、調質圧延工程にて、ダルロールを用いて板厚0.3~1.5mmの調質圧延材として、各実施例および各比較例の供試材とした。これら本実施例および比較例それぞれの製造条件を表2に示す。
 なお、表2における鋼種Bおよび鋼種Eは手順(ii)で各工程を進行し、それ以外の鋼種は手順(iii)で各工程を進行した。また、本実施例のいずれも仕上げ冷間圧延では、Raが0.3μm以下のワークロールを使用し、最終圧延パスの圧延速度が200mm/min以下となるようにした。さらに、本実施例のいずれも、水素が75~100質量%で残部が窒素である雰囲気にて光輝焼鈍を行った。
Figure JPOXMLDOC01-appb-T000002
 表2に示す各供試材を用いて、洗浄性、防眩性および親水性に関する各種測定を行った。具体的には、鋼板表面の算術平均粗さの測定、転写率の測定、鋼板表面におけるマイクロピットの測定、表面光沢度の測定、表面皮膜の測定、濡れ性の測定、および、洗浄性の評価を行った。
 なお、表2に示すように、洗浄性評価の対照材として、HDD部品に多く使用されている無電解Niめっき材についても、同様に洗浄性に関する測定を行った。
 鋼板表面の算術平均粗さの測定では、各供試材から切り出した50mm角のサンプルについて、アセトンを用いた超音波洗浄を行った後、JIS B 0601に準ずる方法で算術平均粗さRaを測定した。なお、この算術平均粗さの測定は、圧延方向に垂直な方向で3回行い、平均値を算出して評価した。
 転写率の測定では、各供試材から切り出した50mm角のサンプルについて、アセトンを用いた超音波洗浄を行った後、光学顕微鏡により鋼板表面を観察して、ダル模様の転写されたクレーター部の面積率である転写率を算出した。なお、鋼板表面の観察は、観察倍率を400倍とし、観察視野数を20視野とし、全測定値の平均値を算出して評価した。
 マイクロピットの測定では、各供試材から切り出した50mm角のサンプルについて、アセトンを用いた超音波洗浄を行った後、レーザー顕微鏡により鋼板表面を観察して、深さが0.5μm以上で開口面積が10μm以上であるマイクロピットの存在密度および開口部面積率を算出した。なお、鋼板表面の観察は、観察倍率を1000倍とし、視野数を10視野とし、全測定領域面積を0.1mmとした。
 表面光沢度の測定では、各供試材から切り出した50mm角のサンプルについて、アセトンを用いた超音波洗浄を行った後、JIS Z 8741に準ずる方法で表面光沢度(20°)の測定を行った。なお、表面光沢度の測定は、圧延方向に平行な方向および圧延方向に垂直な方向でそれぞれ3回行って平均値を算出し、400以下の場合を表面光沢度が低く防眩性に優れているものと評価した。
 表面皮膜の測定では、各サンプルについて、X線光電子分光法により酸化皮膜最表面での各元素のピークの積分強度からSi元素比率を求めた。
 濡れ性の測定では、各供試材から切り出した50mm角のサンプルについて、アセトンを用いた超音波洗浄を行った後、静滴法によりイオン交換水0.1mlの液滴の接触角を測定し、接触角が50°以下の場合を濡れ性が優れているものとして評価した。
 洗浄性の評価では、各供試材から切り出した50mm角のサンプルについて、以下の手順で洗浄操作を施し、表面洗浄度測定用試料を得た。なお、洗浄操作のアセトン脱脂以降の工程および表面洗浄度測定の全工程は、JIS B 9920で規定されるクラス5のクリーン環境で実施した。
 サンプルの洗浄操作では、まず、アセトンを用いた超音波洗浄により脱脂する。この脱脂したサンプルをフッ素系洗浄液を用いて超音波洗浄し、蒸気洗浄し、真空乾燥した。その後、弱アルカリ系洗剤を用いて超音波洗浄し、超純水に浸漬してリンシングし、低速で引き上げて温風乾燥して表面洗浄度測定用試料とした。
 表面洗浄度の測定は、LPC(リキッド・パーティクル・カウンター)装置を用いて以下のように行った。
 まず、洗浄度測定用試料を浸漬するために超純水をビーカーに入れてLPC装置にセットし、超純水中に存在するパーティクルの個数およびパーティクル粒子のサイズ分布を測定した。この超純水の測定データから粒子径0.3μm以上の粒子の個数を算出し、この算出した値を試料浸漬前のパーティクル数(ブランク測定値)とした。
 次いで、超純水が入ったビーカーに洗浄度測定用試料を浸漬して、一定時間の超音波洗浄を施し、試料表面に付着していたパーティクルを超純水中に抽出した。その後、この超純水中に存在するパーティクル個数およびパーティクル粒子のサイズ分布をLPC装置にて測定し、粒子径0.3μm以上の粒子の個数を算出した。
 そして、この算出値とブランク測定値との差を、洗浄度測定用試料から抽出されたパーティクル数とした。なお、パーティクル個数およびサイズ分布を測定する際には同一液についてLPC装置で3回以上の測定を行い、その平均値を測定値とした。また、同種の試料について3つのサンプルを用い試験数n=3として測定を行い、その平均値を洗浄度測定用試料に付着して残存したパーティクルの数とした。さらに、このパーティクル数の値から、鋼板表面における単位面積当たりのパーティクル付着数(表面付着粒子数)を算出した。そして、パーティクル付着数が1000個/cm以下である場合を洗浄性が良好であると評価した。
 これら洗浄性、防眩性および親水性に関する各種測定の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本実施例のいずれも、マイクロピットの存在密度が0.01mm当たり10.0個以下で、かつ、マイクロピットの開口部面積率が1.0%以下であった。また、鋼板表面の圧延方向に対して垂直方向の算術平均粗さが0.2~1.2μmで、ダル模様の転写率が15~70%のステンレス鋼板が得られた。
 また、本実施例のステンレス鋼板のいずれも、表面洗浄度測定用試料のパーティクル付着数がいずれも1000個/cm以下で、洗浄性評価の対照材である無電解Niめっき材と比較しても同等に低かった。
 さらに、本実施例のステンレス鋼板のいずれも、表面光沢度が基準より低く防眩性が良好であるとともに、接触角が基準より小さく親水性が良好であった。
 したがって、本実施例のいずれも、無垢のステンレス鋼板表面のままで、例えばHDD用のカバー部材として好適な洗浄性、防眩性および親水性を有した表面状態であると評価できる。
[実施例2]
 実施例1で作成した一部のサンプルの表面にガスケットを射出成形し、ステンレス鋼とガスケットとの接着剤密着性を評価した。
 ガスケットを射出成形する際には、まず、サンプル表面に変性オレフィン系樹脂接着剤をあらかじめ塗布した。
 また、スチレン系熱可塑性エラストマーコンパウンドを用い、射出成形機にて射出速度0.3mm/秒、射出圧力30MPa、サイクルタイム30秒でガスケットを射出成形して、サンプル表面に接着した。
 そして、以下のように接着性試験を行った。
 接着性試験では、サンプルに形成されたガスケット接着面に約1mmの貫通はがれを形成し、この貫通はがれを形成した部分にSUS製ワイヤーを通し、垂直引張荷重をかけて、はがれ長さが約10mmに拡大した際の荷重を測定した。
 この測定した剥離荷重が100kPa以上の場合を接着性が良好であると評価し、剥離荷重が100kPa未満の場合を接着性が劣ると評価した。この接着性の評価を行ったサンプルおよびその結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1にて洗浄性、防眩性および親水性が良好だった本実施例であるA-1、B-1およびC-1は、いずれも接着性が良好だった。
 一方、実施例1にて親水性が低く濡れ性が劣っていた比較例であるC-5、C-6およびE-2は、いずれも接着性が劣っていた。
 以上のことから、本発明に係るオーステナイト系ステンレス鋼板は、HDD用のカバー部材として好適な洗浄性、防眩性および親水性を有した表面状態であると評価できる。
 本発明は、精密機器や電子機器等の部品、例えばハードディスクドライブ(HDD)用のカバー部材を製造する際に利用できる。

Claims (6)

  1.  仕上げ冷間圧延および光輝焼鈍後にダルロールを用いて調質圧延されたオーステナイト系ステンレス鋼板であって、
     鋼板表面における圧延方向に対して垂直な方向の算術平均粗さRaが0.2μm以上1.2μm以下で、
     鋼板表面におけるダル模様が転写された部分の面積率である転写率が15%以上70%以下で、
     鋼板表面に形成された深さが0.5μm以上で開口面積が10μm以上であるマイクロピットは、鋼板表面における存在密度が0.01mm当たり10.0個以下で、かつ、鋼板表面における開口部面積率が1.0%以下で、
     鋼板表面に形成された皮膜は、C以外の皮膜形成元素として少なくともSiと、Nと、Alと、Mnと、Crと、Feと、Nbと、Tiと、Oと含有しかつSiの含有量が10原子%以上でNの含有量が10原子%以下であるSiO主体の酸化物にて構成される
     ことを特徴とするオーステナイト系ステンレス鋼板。
  2.  C:0.15質量%以下と、Si:0.1質量%以上4.0質量%以下と、Mn:10.0質量%以下と、Ni:1.0質量%以上28.0質量%以下と、Cr:16.0質量%以上32.0質量%以下と、N:0.2質量%以下とを含有し、残部がFeおよび不可避的不純物からなる
     ことを特徴とする請求項1記載のオーステナイト系ステンレス鋼板。
  3.  ハードディスクドライブ用のカバー部材であって、
     請求項1または2記載のオーステナイト系ステンレス鋼板にて形成される
     ことを特徴とするカバー部材。
  4.  熱間圧延した熱延鋼板を、少なくとも仕上げ冷間圧延した後に仕上げ焼鈍として光輝焼鈍し、ダルロールを用いて調質圧延するオーステナイト系ステンレス鋼板の製造方法であって、
     仕上げ冷間圧延では、冷間圧延率を30%以上とし、かつ、少なくとも最終圧延パスにて算術平均粗さRaが0.3μm以下のワークロールを使用して圧延速度200mm/min以下で圧延し、
     光輝焼鈍までの総冷間圧延率を60%以上とする
     ことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
  5.  仕上げ焼鈍では、水素比率が70体積%以上の水素-窒素混合ガス雰囲気において、露点が-70℃以上-50℃以下で、温度が950℃以上1100℃以下の条件で光輝焼鈍を行う
     ことを特徴とする請求項4記載のオーステナイト系ステンレス鋼板の製造方法。
  6.  調質圧延では、ロール直径500mm以上で算術平均粗さRaが1.0μm以上3.5μm以下のダルロールを用いて、1回のパスでの伸び率が0.5%以下で1パス以上圧延し、総伸び率を0.2%以上1.4%以下とする
     ことを特徴とする請求項4または5記載のオーステナイト系ステンレス鋼板の製造方法。
PCT/JP2016/058378 2015-04-03 2016-03-16 オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法 WO2016158427A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201707814WA SG11201707814WA (en) 2015-04-03 2016-03-16 Austenitic stainless steel sheet, cover member and production method for austenitic stainless steel sheet
US15/562,986 US20180363087A1 (en) 2015-04-03 2016-03-16 Austenitic stainless steel sheet, cover member and production method for austenitic stainless steel sheet
KR1020177027739A KR20170121282A (ko) 2015-04-03 2016-03-16 오스테나이트계 스테인리스강판, 커버 부재 및 오스테나이트계 스테인리스강판의 제조방법
EP16772310.5A EP3278888A4 (en) 2015-04-03 2016-03-16 Austenitic stainless steel sheet, cover member, and method for producing austenitic stainless steel sheet
CN201680018506.2A CN107405655A (zh) 2015-04-03 2016-03-16 奥氏体系不锈钢板、盖部件和奥氏体系不锈钢板的制造方法
RU2017134057A RU2685925C2 (ru) 2015-04-03 2016-03-16 Лист аустенитной нержавеющей стали, покровный элемент и способ производства для листа аустенитной нержавеющей стали
PH12017501760A PH12017501760A1 (en) 2015-04-03 2017-09-26 Austenitic stainless steel sheet, cover member and production method for austenitic stainless steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-076635 2015-04-03
JP2015076635A JP2016196682A (ja) 2015-04-03 2015-04-03 オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2016158427A1 true WO2016158427A1 (ja) 2016-10-06

Family

ID=57004989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058378 WO2016158427A1 (ja) 2015-04-03 2016-03-16 オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法

Country Status (10)

Country Link
US (1) US20180363087A1 (ja)
EP (1) EP3278888A4 (ja)
JP (1) JP2016196682A (ja)
KR (1) KR20170121282A (ja)
CN (1) CN107405655A (ja)
PH (1) PH12017501760A1 (ja)
RU (1) RU2685925C2 (ja)
SG (1) SG11201707814WA (ja)
TW (1) TW201704502A (ja)
WO (1) WO2016158427A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895695B1 (ko) * 2016-12-22 2018-09-05 주식회사 포스코 린 듀플렉스 스테인리스 강 및 그 제조 방법
KR101977492B1 (ko) * 2017-11-10 2019-08-28 주식회사 포스코 고질소 오스테나이트계 스테인리스 강 및 그 제조방법
KR102020405B1 (ko) * 2017-12-15 2019-09-10 주식회사 포스코 표면품질이 우수한 고질소 스테인리스강 및 이의 제조방법
CN109277427B (zh) * 2018-09-25 2020-11-24 宁波宝新不锈钢有限公司 一种冷轧不锈钢压花板的生产方法
CN109234634A (zh) * 2018-10-29 2019-01-18 江苏宏鹏电气科技有限公司 一种开关柜的不锈钢板制造方法
CN114929919B (zh) * 2020-01-09 2023-05-05 日铁不锈钢株式会社 奥氏体系不锈钢钢材
JP7301218B2 (ja) * 2020-03-30 2023-06-30 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼
JP7414615B2 (ja) * 2020-03-30 2024-01-16 日鉄ステンレス株式会社 建材用オーステナイト系ステンレス鋼板及びその製造方法
KR20220105663A (ko) * 2020-05-28 2022-07-27 닛테츠 스테인레스 가부시키가이샤 오스테나이트계 스테인리스 강재 및 내식성 부재
CN113020911B (zh) * 2021-03-12 2023-05-16 宁波宝新不锈钢有限公司 一种奥氏体不锈钢亚光产品的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235461A (ja) * 1987-03-23 1988-09-30 Nisshin Steel Co Ltd 耐候性に優れたba仕上げステンレス鋼板の製造方法
JP2005240062A (ja) * 2004-02-24 2005-09-08 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
JP2007119856A (ja) * 2005-10-28 2007-05-17 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
WO2012133837A1 (ja) * 2011-03-31 2012-10-04 日新製鋼株式会社 ステンレス鋼板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100660A (ja) * 1981-12-09 1983-06-15 Nisshin Steel Co Ltd 着色用オ−ステナイト系ステンレス鋼板
JP3739887B2 (ja) * 1997-03-21 2006-01-25 新日鐵住金ステンレス株式会社 汚れ除去性に優れた研磨仕上げステンレス鋼板およびその製造方法
JP2001020045A (ja) * 1999-07-07 2001-01-23 Nippon Steel Corp ステンレス鋼板素材およびその製造方法
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP4299644B2 (ja) * 2003-12-02 2009-07-22 日新製鋼株式会社 親水性ステンレス鋼板及びその製造方法
EP2436797B1 (en) * 2009-05-27 2017-01-04 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
RU2479641C1 (ru) * 2012-02-22 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаной ленты из низкоуглеродистых марок стали

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235461A (ja) * 1987-03-23 1988-09-30 Nisshin Steel Co Ltd 耐候性に優れたba仕上げステンレス鋼板の製造方法
JP2005240062A (ja) * 2004-02-24 2005-09-08 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
JP2007119856A (ja) * 2005-10-28 2007-05-17 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
WO2012133837A1 (ja) * 2011-03-31 2012-10-04 日新製鋼株式会社 ステンレス鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278888A4 *

Also Published As

Publication number Publication date
RU2017134057A3 (ja) 2019-04-08
JP2016196682A (ja) 2016-11-24
SG11201707814WA (en) 2017-10-30
PH12017501760A1 (en) 2018-04-11
EP3278888A1 (en) 2018-02-07
KR20170121282A (ko) 2017-11-01
EP3278888A4 (en) 2018-08-22
CN107405655A (zh) 2017-11-28
US20180363087A1 (en) 2018-12-20
RU2017134057A (ru) 2019-04-08
TW201704502A (zh) 2017-02-01
RU2685925C2 (ru) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2016158426A1 (ja) フェライト系ステンレス鋼板、カバー部材およびフェライト系ステンレス鋼板の製造方法
WO2016158427A1 (ja) オーステナイト系ステンレス鋼板、カバー部材およびオーステナイト系ステンレス鋼板の製造方法
JP5918127B2 (ja) ステンレス冷延鋼板およびその製造方法
JP5693030B2 (ja) 洗浄性に優れたオーステナイト系ステンレス鋼板およびその製造方法
KR101786235B1 (ko) Fe-Ni계 합금 박판의 제조방법
JP5606126B2 (ja) 洗浄性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2013208638A (ja) 洗浄性に優れたフェライト系ステンレス鋼およびその製造方法
US10718043B2 (en) Titanium plate
JP2013208639A (ja) 洗浄性に優れたステンレス鋼およびその製造方法
JP2022155337A (ja) オーステナイト系ステンレス鋼材及びその製造方法、並びに耐食性部材
JP2022155342A (ja) フェライト系ステンレス鋼材及びその製造方法、並びに耐食性部材
JP2010280938A (ja) チタン板およびその製造方法
JP5821874B2 (ja) 高Si冷延鋼板の製造方法
JP2022155339A (ja) フェライト・オーステナイト二相系ステンレス鋼材及びその製造方法、並びに耐食性部材
JP2022155341A (ja) オーステナイト系ステンレス鋼材及びその製造方法、並びに耐食性部材
JP2022155343A (ja) フェライト・オーステナイト二相系ステンレス鋼材及びその製造方法、並びに耐食性部材
JPH0748623A (ja) 表面性状の良好な鋼板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201707814W

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 12017501760

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20177027739

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134057

Country of ref document: RU