WO2016158394A1 - 基地局及びユーザ装置 - Google Patents

基地局及びユーザ装置 Download PDF

Info

Publication number
WO2016158394A1
WO2016158394A1 PCT/JP2016/058195 JP2016058195W WO2016158394A1 WO 2016158394 A1 WO2016158394 A1 WO 2016158394A1 JP 2016058195 W JP2016058195 W JP 2016058195W WO 2016158394 A1 WO2016158394 A1 WO 2016158394A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
drx
hsfn
edrx
user apparatus
Prior art date
Application number
PCT/JP2016/058195
Other languages
English (en)
French (fr)
Inventor
徹 内野
高橋 秀明
ウリ アンダルマワンティ ハプサリ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP16772277.6A priority Critical patent/EP3280191B1/en
Priority to US15/526,448 priority patent/US10420164B2/en
Priority to CN201680004231.7A priority patent/CN107113716B/zh
Priority to JP2017509523A priority patent/JPWO2016158394A1/ja
Publication of WO2016158394A1 publication Critical patent/WO2016158394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system.
  • DRX discontinuous reception
  • UE User Equipment
  • DRX control is defined for each of a user device in an idle state and a user device in a connected state.
  • the user apparatus sets a reception period for receiving a radio signal transmitted from the base station (evolved Node B: eNB) at a certain period, and in this reception period, the base station Send a wireless signal to the device.
  • the base station evolved Node B: eNB
  • a user apparatus in an idle state receives a paging message from a base station under DRX control as follows.
  • Paging Occlusion which is a subframe in which a paging message is transmitted
  • Paging Frame which is a radio frame that can include Paging Occasion
  • SFN system frame number
  • T is the DRX cycle of the user apparatus for receiving the paging message, and is represented by the number of radio frames.
  • N is a minimum value of T and nB (nB is a value selected from 4T, 2T, T, T / 2, T / 4, T / 8, T / 16, and T / 32).
  • the IMSI is the IMSI (International Mobile Subscriber Identity) of the user apparatus.
  • the PO subframe number in the PF thus determined is determined from the index i_s calculated according to the following formula and the parameter Ns using a correspondence table defined in the LTE standard.
  • i_s floor (UE_ID / N) mod Ns
  • Ns is the maximum value of 1 and nB / T.
  • the PF and PO can be uniquely determined from the user equipment identifier (IMSI) recognized by both the user equipment and the base station.
  • IMSI user equipment identifier
  • the user apparatus in the state waits for reception of a paging message from the base station.
  • the base station transmits the paging message in the periodic PF PO determined in this way, the user apparatus can receive the transmitted paging message.
  • the connected user apparatus receives a PDCCH (Physical Downlink Control Channel) from the base station under DRX control as follows.
  • the user apparatus is managed by two states: an active period in which the communication circuit is activated to receive the PDCCH from the base station, and an inactive period in which the reception circuit is not activated.
  • the user apparatus monitors the PDCCH from the base station and transmits feedback information and SRS (Sounding Reference Signal). Examples of the feedback information include CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), and PTI (Precoding Type Indicator).
  • the inactive state the user apparatus does not monitor the PDCCH from the base station, and does not transmit feedback information and SRS.
  • the active state is an ON HA timer, a drx-inactivity timer, a drx-retransmission timer, a mac-contention resolution timer, or an uplink HARQ retransmission when a scheduling request is sent.
  • RA random access
  • the inactive state in DRX control is defined as other than the above-mentioned case.
  • the user apparatus shifts from the active state to the inactive state, and then starts DRX.
  • the user apparatus transitions to an active state with a certain DRX cycle (DRX cycle), and attempts to receive PDCCH from the base station during the active state period (On duration).
  • DRX cycle a certain DRX cycle
  • On duration attempts to receive PDCCH from the base station during the active state period
  • the drx-Inactivity timer when a DRX MAC (Medium Access Control) CE (Control Element) including state control information indicating that the user apparatus should start DRX is received from the base station, the drx-Inactivity timer. Will be stopped according to the DRX MAC CE concerned.
  • the user apparatus transitions from the active state to the inactive state, and then activates DRX.
  • the user apparatus transitions to an active state in a certain DRX cycle, and attempts to receive PDCCH from the base station during the active state period (On duration).
  • 3GPP Rel-13 currently being developed suppresses the transition from the idle state to the active state with an increase in the amount of signaling and a delay for MTC (Machine Type Communication) terminals that do not frequently communicate. Therefore, introduction of DRX using a DRX cycle longer than the above-described current DRX is being studied. Specifically, the current DRX cycle can be set up to a maximum of 2.56 seconds, but extension DRX (extended DRX: eDRX) is being considered so that it can be set to 5 minutes or more. . Further, it is desired that the extended DRX can be applied to both the conventional DRX for the idle state and the DRX in the connected state.
  • extension DRX extended DRX
  • a user apparatus determines a DRX reception period or an on period (On duration) according to a DRX parameter that defines a DRX period (longDRX-Cycle) and a start period (longDRX-CycleStartOffset) notified from a base station.
  • the range of the DRX start period is defined according to the length of the DRX cycle. For example, for the DRX cycle of 40 subframes, the reception period can be set from the 0th to 39th subframes, For the DRX cycle of 2560 subframes, the reception period can be set from the 0th to 2559th subframes.
  • the SFN for identifying each radio frame (10 ms) composed of 10 subframes (subframes # 0 to # 9) takes only a value of 0 to 1023.
  • the maximum DRX cycle can only be set to 10240 ms, and according to the current LTE standard, a longer DRX cycle such as 5 minutes cannot be set.
  • an object of the present invention is to provide a mechanism for setting a longer DRX cycle in a user apparatus.
  • an aspect of the present invention is a base station including a communication control unit that controls wireless communication with a user apparatus and a DRX control unit that controls discontinuous reception (DRX) by the user apparatus.
  • the DRX control unit manages a system frame number (SFN), a subframe number, and a hyper SFN (HSFN) that counts the number of laps of the SFN in the wireless communication, and is designated for reception using the HSFN.
  • SFN system frame number
  • HSFN hyper SFN
  • the present invention relates to a base station that sets an extended DRX (eDRX) having a period in the user apparatus.
  • Another aspect of the present invention is a user apparatus including a transmission / reception unit that transmits and receives a radio signal to and from a base station, and a DRX unit that intermittently receives a radio signal transmitted from the base station, the DRX unit Manages a system frame number (SFN), a subframe number, and a hyper SFN (HSFN) that counts the number of laps of the SFN in wireless communication with the base station, and sets a reception period specified using the HSFN.
  • SFN system frame number
  • HSFN hyper SFN
  • the present invention relates to a user apparatus that activates an extended DRX (eDRX).
  • a longer DRX cycle can be set in the user apparatus.
  • FIG. 1 is a schematic diagram illustrating intermittent reception control as an example from the connected state.
  • FIG. 2 is a schematic diagram illustrating discontinuous reception control as another example from the connected state.
  • FIG. 3A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • FIG. 3B is a block diagram illustrating a hardware configuration of a base station according to an embodiment of the present invention.
  • FIG. 3C is a block diagram illustrating a hardware configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a case where HSFN recognition mismatch occurs between the eNB and the UE.
  • FIG. 5 is a schematic diagram illustrating a case where HSFN recognition mismatch occurs between the eNB and the UE.
  • FIG. 6 is a block diagram illustrating a configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • the conventional intermittent reception that is, the extended DRX (eDRX) that can set a longer DRX cycle, which is an extension of the DRX having a reception period set within the range of the system frame number (SFN) )
  • a hyper SFN for counting the number of SFN laps is introduced as an upper counter of the SFN.
  • the base station and the user apparatus manage the HSFN together with the SFN and subframe number used in conventional DRX, and set an eDRX reception period with a longer DRX cycle using the HSFN.
  • FIG. 3A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 10 includes a base station 100 and a user device 200.
  • the radio communication system 10 is, for example, an LTE system or an LTE-Advanced system.
  • only one base station 100 is shown, but a number of base stations 100 are arranged to cover the service area of the wireless communication system 10.
  • an upper station of the base station 100 such as MME (Mobility Management Entity) is connected to the base station 100.
  • MME Mobility Management Entity
  • the base station 100 wirelessly connects to the user apparatus 200 to transmit a downlink (DL) packet received from an upper station or a server that is communicatively connected to a core network (not shown) to the user apparatus 200.
  • the uplink (UL) packet received from the user apparatus 200 is transmitted to the server.
  • the base station 100 has an extended DRX (eDRX) function using HSFN, which will be described later.
  • the base station 100 typically includes an antenna 101 for transmitting and receiving radio signals to and from the user apparatus 200, and a first communication interface (X2) for communicating with an adjacent base station. 102), a second communication interface (S1 interface, etc.) 103 for communicating with the core network, a processor 104 and a circuit for processing transmission / reception signals with the user device 200, and hardware resources such as a memory device 105 Is done.
  • a processor 104 processing or executing data or a program stored in the memory device 105.
  • the base station 100 is not limited to the hardware configuration described above, and may have any other appropriate hardware configuration.
  • User apparatus 200 may typically be any appropriate information processing apparatus having a wireless communication function such as a smartphone, a mobile phone, a tablet, a mobile router, or a wearable terminal.
  • the user apparatus 200 has an eDRX function using HSFN, which will be described later.
  • the user apparatus 200 transmits and receives radio signals to and from the base station 100, such as a CPU (Central Processing Unit) 201 such as a processor, a memory apparatus 202 such as a RAM (Random Access Memory) and flash memory, and the like.
  • Wireless communication device 203, and user interface 204 such as an input / output device or a peripheral device.
  • each function and process of the user device 200 described later may be realized by the CPU 201 processing or executing data or a program stored in the memory device 202.
  • the user apparatus 200 is not limited to the hardware configuration described above, and may be configured by a circuit that realizes one or more of the processes described below.
  • FIG. 4 is a block diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the base station 100 includes a communication control unit 110 and a DRX control unit 120.
  • the communication control unit 110 controls wireless communication with the user device 200. Specifically, in downlink communication, the communication control unit 110 transmits a control channel such as PDCCH (Physical Downlink Control Channel) or a data channel such as PDSCH (Physical Downlink Shared Channel) to the user apparatus 200. In uplink communication, the communication control unit 110 receives a control channel such as PUCCH (Physical Uplink Control Channel) or a data channel such as PUSCH (Physical Uplink Shared Channel). In addition, the communication control unit 110 transmits broadcast information such as MIB (Master Information Block) or SIB (System Information Block) to the user apparatus 200 located in the cell of the base station 100.
  • MIB Master Information Block
  • SIB System Information Block
  • the DRX control unit 120 controls discontinuous reception (DRX) by the user apparatus 200 and manages a system frame number (SFN), a subframe number, and a hyper SFN (HSFN) that counts the number of circulations of the SFN in wireless communication. Then, an extended DRX (eDRX) having a reception period specified using the HSFN is set in the user apparatus 200. That is, the DRX control unit 120 updates the HSFN, SFN, and subframe number according to the progress of wireless communication, and sets the extended DRX (eDRX) with a longer DRX cycle in the user apparatus 200 using the HSFN.
  • SFN system frame number
  • HSFN hyper SFN
  • the HSFN functions as an upper counter of the SFN that counts radio frames, and is incremented by 1 each time the SFN circulates.
  • SFN for counting radio frames takes a value from 0 to 1023 and can count 1024 radio frames.
  • the DRX reception period is set using the SFN and the subframe number, and therefore can be set only within a period of 10240 subframes, that is, 10240 ms.
  • eDRX extended DRX
  • the recognition of HSFN, SFN, and subframe number managed by each of the base station 100 and the user apparatus 200 needs to match.
  • the DRX control unit 120 notifies the period (longDRX-Cycle) and start period (drxStartOffset) of the eDRX reception period when setting the eDRX so that the recognition of the HSFN, SFN, and subframe number matches. EDRX by the user apparatus 200 is controlled.
  • the DRX control unit 120 may notify the user apparatus 200 of the period and start of the eDRX reception period and the managed HSFN value. That is, in order to synchronize the HSFN between the base station 100 and the user apparatus 200, the DRX control unit 120 may explicitly notify the user apparatus 200 of the managed HSFN value. The value of the HSFN may be notified by an RRC (Radio Resource Control) message for setting eDRX.
  • RRC Radio Resource Control
  • the user apparatus 200 When receiving the HSFN value from the base station 100, the user apparatus 200 initializes the HSFN managed by the user apparatus 200 based on the received HSFN value, and thereafter increments the HSFN every time the SFN circulates.
  • the DRX control unit 120 can set HSFN in the user apparatus 200 on a cell-by-cell basis, thereby simplifying eDRX control. it can.
  • the DRX control unit 120 may notify the user apparatus 200 of the period and start period of the eDRX reception period represented by a value within the range of the SFN and a value indicating the HSFN to which the reception period belongs. Good.
  • the DRX cycle and the start period are reported as absolute values in units of subframes.
  • the implementation of the base station 100 and the user apparatus 200 may be complicated. For this reason, the DRX cycle and start time in eDRX may be notified by a combination of the DRX cycle and start time with the existing absolute value and the relative value of HSFN.
  • the DRX control unit 120 includes the HSFN to which the eDRX reception period belongs, specifically, the HSFN value indicating how many times the reception period belongs to the current HSFN, and the incremented HSFN.
  • the user apparatus 200 may be notified of the DRX cycle and start time indicating from which subframe the reception period starts, that is, the DRX cycle and start time represented by an absolute value by conventional DRX.
  • the 10240 subframes in a specific HSFN can be represented by absolute values within the range of SFN in the current LTE standard. For this reason, the DRX control unit 120 can specify the eDRX reception period by the combination of the absolute value within the SFN range and the relative value (increment value) from the current HSFN.
  • an increase in the amount of signaling can be suppressed as compared with a direct expression method in which the eDRX reception period is expressed by an absolute value within the range of HSFN. Further, it is not necessary for the base station 100 and the user apparatus 200 to count the absolute value of the subframe up to the range of HSFN, and the implementation can be simplified.
  • the DRX control unit 120 may suspend setting the eDRX in the user apparatus 200 for a predetermined period immediately before the SFN circulates.
  • the HSFN needs to be recognized by the base station 100 and the user apparatus 200.
  • the timing when the base station 100 sets eDRX in the user apparatus 200 There is a possibility that HSFN recognition mismatch may occur between the station 100 and the user apparatus 200.
  • the DRX control unit 120 sets eDRX immediately before the SFN lap
  • the user apparatus 200 sets the HSFN value (x) immediately before the lap, or There is a possibility that it cannot be determined whether the HSFN value (x + 1) after the lap has been set.
  • the DRX control unit 120 cannot be sure which value of x and x + 1 is used by the user apparatus 200 for HSFN.
  • the user apparatus 200 cannot receive the PDCCH from the base station 100.
  • the DRX control unit 120 may not set eDRX during a predetermined period immediately before the SFN circulates.
  • the predetermined period may be a period during which it is expected that an RRC complete message for the RRC message for setting eDRX can be received from the user apparatus 200. According to the present embodiment, it is possible to avoid the occurrence of an ambiguous period in which HSFN recognition mismatch may occur without causing the user apparatus 200 to perform special control.
  • the communication control unit 110 may notify the managed HSFN value by broadcast information.
  • the communication control unit 110 includes the managed HSFN value in the predetermined broadcast information.
  • the current value of the HSFN managed by the DRX control unit 120 may be notified to the user apparatus 200.
  • the user apparatus 200 confirms predetermined broadcast information (MIB or the like) transmitted from the communication control unit 110, and the HSFN in the broadcast information is confirmed. You may reset own HSFN by a value.
  • the user apparatus 200 normally confirms the MIB only at the time of initial connection, but may confirm the MIB whenever an eDRX setting instruction is received.
  • the predetermined broadcast information may be an MIB having SFN or an SIB.
  • the DRX control unit 120 may notify the user device 200 of the maximum value of HSFN when setting eDRX in the user device 200.
  • the value of HSFN will be notified using 10 bits of the spare bit of MIB.
  • a larger counter is required, which not only results in excessive performance compared with the value of the eDRX period that is actually used, but also causes complicated implementation. Become.
  • the maximum value of HFSN may be specified.
  • the DRX control unit 120 may notify the user apparatus 200 of the maximum value of HSFN that is equal to or less than the predetermined value when setting eDRX.
  • the user apparatus 200 sets the maximum value of its own HSFN, and when the HSFN reaches the maximum value, the user apparatus 200 circulates the HSFN and resets it to zero at the next SFN lap.
  • HSFN synchronization between the base station 100 and the user apparatus 200 is realized.
  • the DRX control unit 120 may notify the maximum value by the number of lower bits such as the least significant bit (LSB) of HSFN.
  • LSB least significant bit
  • the DRX control unit 120 determines whether eDRX is set in the user apparatus 200 You may be notified. As described above, when the user apparatus 200 is in an idle state, the base station 100 transmits a paging message to the user apparatus 200 under DRX control. Typically, the idle user apparatus 200 may autonomously change the connected cell. For this reason, when paging, the DRX control unit 120 needs to correctly recognize whether the eDRX is set in the user apparatus 200 and what DRX cycle and start time are set.
  • the transition-destination base station 100 correctly recognizes whether the user apparatus 200 that is the paging transmission destination is set to eDRX or normal DRX. There is a need to. For this reason, at the time of paging, the MME may notify the base station 100 that eDRX is set in the user apparatus 200. In the notification, the MME may also notify the DRX cycle and start period set in the user apparatus 200. When receiving the notification, the DRX control unit 120 can recognize that eDRX is set in the user apparatus 200.
  • the communication control unit 110 may notify the broadcast information that the base station 100 supports eDRX.
  • the base station 100 transmits a paging message to the user apparatus 200 under DRX control.
  • the base station 100 that is the transition destination grasps the timing of the active state of the user apparatus 200 Can not do it. For this reason, when the base station 100 supports eDRX, the communication control unit 110 may notify the broadcast information that the base station 100 supports eDRX.
  • the user apparatus 200 in which eDRX is set acquires broadcast information when the cell is reselected, and when the transition destination base station 100 supports eDRX, the application of eDRX is maintained. Also good. On the other hand, when the transition destination base station 100 does not support eDRX, the user apparatus 200 may determine the timing for receiving paging according to conventional DRX based on the SFN and the subframe number.
  • the communication control unit 110 may notify a cell or a base station in which the base station 100 and HSFN are synchronized by broadcast information.
  • the base station 100 transmits a paging message to the user apparatus 200 under DRX control.
  • the communication control part 110 may notify the cell or base station with which the said base station 100 and HSFN are synchronizing in alerting
  • a bit “1” is given in the broadcast information to an adjacent cell or base station to which HSFN is synchronized, and a bit “0” in the broadcast information is sent to an adjacent cell or base station to which HSFN is not synchronized. May be given.
  • the user apparatus 200 can determine whether or not the transition destination base station and the transition source base station 100 are synchronized. When the transition is not synchronized, the user apparatus 200 connects to the transition destination base station. Thus, it is possible to update its own HSFN with the HSFN value of the base station.
  • FIG. 6 is a block diagram illustrating a configuration of a user apparatus according to an embodiment of the present invention.
  • the user apparatus 200 includes a transmission / reception unit 210 and a DRX unit 220.
  • the transmission / reception unit 210 transmits / receives a radio signal to / from the base station 200. Specifically, in downlink communication, the transmission / reception unit 210 receives various downlink channels such as PDCCH and PDSCH from the base station 100. On the other hand, in uplink communication, the transmission / reception unit 210 transmits various uplink channels such as PUCCH and PUSCH to the base station 100. Further, the transmission / reception unit 210 receives broadcast information such as MIB and SIB transmitted from the base station 100.
  • the DRX unit 220 intermittently receives a radio signal transmitted from the base station 100, and counts a system frame number (SFN), a subframe number, and the number of laps of the SFN in radio communication with the base station 100.
  • SFN system frame number
  • eDRX extended DRX
  • the DRX unit 220 updates the HSFN, SFN, and subframe number according to the progress of wireless communication, and executes extended DRX (eDRX) with a longer DRX cycle using the HSFN.
  • the HSFN functions as an upper counter of the SFN that counts radio frames, and is incremented by 1 each time the SFN circulates.
  • SFN for counting radio frames takes a value from 0 to 1023 and can count 1024 radio frames.
  • the DRX reception period is set using the SFN and the subframe number, and therefore can be set only within a period of 10240 subframes, that is, 10240 ms.
  • eDRX extended DRX
  • the recognition of HSFN, SFN, and subframe number managed by each of the base station 100 and the user apparatus 200 needs to match.
  • the DRX unit 220 manages HSFN, SFN, and eDRX received together with the period (longDRX-Cycle) and start (drxStartOffset) received when the base station 100 is instructed to set eDRX. EDRX is activated based on the subframe number.
  • the DRX unit 220 sets the subframe calculated from the managed HSFN value, SFN value, and subframe number according to the period and start of the eDRX reception period set by the base station 100.
  • a radio signal transmitted from the base station 100 may be intermittently received.
  • the transmission / reception unit 210 may transmit feedback information and SRS to the base station 100.
  • the DRX unit 220 may set HSFN to a predetermined initial value when instructed by the base station 100 to set eDRX. That is, when receiving an RRC message for setting eDRX from base station 100, DRX unit 220 may set HSFN to an initial value set in advance by base station 100. Thereby, the base station 100 can recognize the HSFN of the user apparatus 200 without notifying the HSFN in the RRC message, and can synchronize the user apparatus 200 and the HSFN without increasing the signaling amount.
  • the predetermined initial value may be 0, or may be notified in advance by broadcast information such as MIB.
  • the DRX unit 220 may notify the base station 100 of the value of the managed HSFN when instructed by the base station 100 to set eDRX. That is, the DRX unit 220 autonomously manages the HSFN, and when the base station 100 is instructed to set the eDRX, notifies the base station 100 of the current value of the HSFN. Based on the notification, the base station 100 can recognize the HSFN of the user apparatus 200 and can synchronize the user apparatus 200 and the HSFN. For example, when an instruction to set eDRX is notified by an RRC connection reconfiguration message, the DRX unit 220 may notify the current value of the HSFN by an RRC connection reconfiguration complete message corresponding to the RRC connection reconfiguration message.
  • the DRX unit 220 when the DRX unit 220 obtains the value of HSFN from the base station 100, the DRX unit 220 counts an on duration timer that counts the eDRX reception period or an elapsed time from reception of the latest control channel from the base station 100. It may be determined whether the DRX-Inactivity timer is activated, and the On duration timer or DRX-Inactivity timer may be stopped or restarted. When a new value of HSFN is acquired, the start timing of the On duration timer may be changed. For this reason, if the On duration timer or the drx-Inactivity timer is activated when the HSFN is acquired by the broadcast information or the individual signal, the DRX unit 220 may temporarily stop or restart it. Good. Further, the stop of the timer may be individually defined as a new operation, or may be realized by diverting an existing operation such as a MAC reset.
  • the DRX unit 220 may set the reception period based on the period and start period of the eDRX reception period represented by a value within the range of the SFN and a value indicating the HSFN to which the reception period belongs. .
  • the DRX cycle and the start period are reported as absolute values in units of subframes.
  • the implementation of the base station 100 and the user apparatus 200 may be complicated. For this reason, the DRX cycle and start time in eDRX may be notified by a combination of the DRX cycle and start time with the existing absolute value and the relative value of HSFN.
  • the base station 100 increments the HSFN to which the eDRX reception period belongs, specifically, the HSFN value indicating how many times the reception period belongs to the HSFN that has been incremented from the current HSFN, and the reception period is incremented.
  • the user apparatus 200 may be notified of the period indicating the subframe in HSFN and the start period. For example, when the DRX unit 220 receives the period and start of the eDRX reception period represented within the SFN range and the HSFN specific value n, the DRX unit 220 first sets the HSFN to a predetermined initial value. Thereafter, the DRX unit 220 increments HSFN to (n ⁇ 1) according to the progress of wireless communication.
  • DRX section 220 determines whether a subframe in the HSFN has entered a reception period represented within the notified SFN range.
  • the DRX unit 220 activates intermittent reception and resets the HFSN to an initial value.
  • the DRX unit 220 can specify the eDRX reception period by the combination of the absolute value within the SFN range and the relative value (increment value) from the current HSFN. Therefore, an increase in the amount of signaling can be suppressed as compared with a direct expression method in which the eDRX reception period is expressed by an absolute value within the range of HSFN. Further, it is not necessary for the base station 100 and the user apparatus 200 to count the absolute value of the subframe up to the range of HSFN, and the implementation can be simplified.
  • the DRX unit 220 may notify the base station 100 of the HSFN value set for the eDRX.
  • HSFN recognition mismatch may occur between the base station 100 and the user apparatus 200 depending on the timing at which the base station 100 sets eDRX in the user apparatus 200.
  • the DRX unit 220 may notify the base station 100 of the HFSN value set for the eDRX by the DRX unit 220. Accordingly, HSFN recognition can be matched between the base station 100 and the user apparatus 200 without executing scheduling restriction in the base station 100, such as not instructing eDRX setting immediately before HSFN is incremented. It becomes possible.
  • the value of the HSFN may be notified by MAC CE, for example. Further, the DRX unit 220 may notify the base station 100 of the value of the HSFN at the time of transmitting the PUSCH together with the RRC connection reconfiguration complete message. Accordingly, the base station 100 can grasp the value of the HSFN in the user apparatus 200 retroactively when transmitting the uplink grant.
  • the DRX unit when the DRX unit is instructed to set eDRX from the base station 100, the DRX unit acquires the HSFN value from the broadcast information from the base station 100, and the HFSN managed by the acquired HSFN value. A value may be set.
  • the base station 100 in order to avoid the loss of HSFN synchronization caused by the timing when the base station 100 sets eDRX in the user apparatus 200, the base station 100 includes the value of the managed HSFN in the predetermined broadcast information, The user apparatus 200 may be notified of the current value of HSFN.
  • the DRX unit 220 confirms predetermined broadcast information (MIB or the like) transmitted from the base station 100, and determines itself by the HSFN value in the broadcast information.
  • the HSFN may be reset.
  • the user apparatus 200 normally confirms the MIB only at the time of initial connection, but may confirm the MIB whenever an eDRX setting instruction is received.
  • the predetermined broadcast information may be an MIB having SFN or an SIB.
  • the DRX unit 220 may increment the HSFN to the maximum value and then circulate the HSFN. That is, when the HSFN reaches the maximum value, the DRX unit 220 may circulate the HSFN and reset it to zero at the next SFN.
  • the transmission / reception unit 210 may notify the base station 100 of the maximum value of HSFN supported by the user apparatus 200 as capability information. For example, when the user apparatus 200 does not support an HSFN greater than a predetermined value, the DRX unit 220 may notify the maximum value of the HSFN that is equal to or less than the predetermined value when notifying the base station 100 of the capability information. When the maximum value is notified, the base station 100 can set the DRX cycle and the start period according to the maximum value of the HSFN of the user apparatus 200. In addition, the capability information may be notified only when there is a capability information inquiry (capability inquiry, etc.) from the base station 100.
  • capability information may be notified only when there is a capability information inquiry (capability inquiry, etc.) from the base station 100.
  • the DRX unit 220 may determine whether the base station 100 supports eDRX based on the broadcast information received from the base station 100. Good. As described above, when the user apparatus 200 is in an idle state, the base station 100 transmits a paging message to the user apparatus 200 under DRX control. When the user apparatus 200 in the idle state to which eDRX is applied makes a transition to the cell of the base station 100 that does not support eDRX, the base station 100 that is the transition destination grasps the timing of the active state of the user apparatus 200. I can't.
  • the base station 100 may notify the broadcast information that the base station 100 supports eDRX.
  • the DRX unit 220 may acquire broadcast information when a cell is reselected, and may maintain eDRX application when the transition destination base station 100 supports eDRX.
  • DRX unit 220 may determine the timing for receiving paging according to conventional DRX based on SFN and subframe number.
  • the DRX unit 220 determines that the transition destination base station and the transition base station are HSFN based on the broadcast information received from the base station 100. If the transition destination base station 100 is not synchronized with the transition source base station with respect to HSFN, in order to obtain the value of the HSFN managed by the transition destination base station 100, it is determined whether the transition destination base station 100 is synchronized. You may connect to the base station 100. As described above, when the user apparatus 200 is in an idle state, the base station 100 transmits a paging message to the user apparatus 200 under DRX control.
  • the DRX unit 220 determines whether the transition-destination base station 100 and the transition-source base station are synchronized based on the acquired broadcast information. If the DRX unit 220 determines that they are not synchronized, the user apparatus 200 It is possible to connect to the station 100 and update its own HSFN with the HSFN value of the base station 100.
  • FIG. 7 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • the base station 100 sets eDRX in the user apparatus 200 by signaling with a data structure as illustrated.
  • the DRX cycle and start period of eDRX are indicated by “ExtrongDRX-CycleStartOffset”.
  • “ExtlongDRX-CycleStartOffset” may be composed of “ExtLongDRX-Coeff” and “drxStartOffset”.
  • the eDRX cycle may be derived from 10240 * ExtLongDRX-Coeff.
  • the reception period is set based on the period and start period of the eDRX reception period represented by the value within the SFN range and the value indicating the HSFN to which the reception period belongs, the value is represented by the value within the SFN range.
  • the period and start period of the received eDRX reception period may be notified by “longDRX-Cycle” and “drxStartOffset”, respectively, and the value indicating the HSFN to which the reception period belongs may be notified by “ExtLongDRX-Coeff”.
  • FIG. 8 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • the base station 100 may notify the user apparatus 200 in an idle state of paging by signaling with a data structure as illustrated.
  • T is the DRX cycle of the user apparatus for receiving the paging message, and is represented by the number of radio frames.
  • N is a minimum value of T and nB (nB is a value selected from 4T, 2T, T, T / 2, T / 4, T / 8, T / 16, and T / 32).
  • the IMSI is the IMSI (International Mobile Subscriber Identity) of the user apparatus.
  • Ec is an extended paging cycle coefficient used to derive T. When the extended paging cycle coefficient is set by an upper layer, the DRX cycle may be derived by 1024 ⁇ Ec.
  • FIG. 9 is a diagram illustrating an eDRX control signaling example according to an embodiment of the present invention.
  • the base station 100 notifies information necessary for paging to the user apparatus 200 that supports the extended paging cycle by signaling the data structure as illustrated.
  • wireless communication system 100 base station 110 communication control unit 120 DRX control unit 200 user apparatus 210 transmission / reception unit 220 DRX unit

Abstract

 より長いDRX周期をユーザ装置に設定するための仕組みが開示される。本発明の一態様は、ユーザ装置との無線通信を制御する通信制御部と、前記ユーザ装置による間欠受信(DRX)を制御するDRX制御部とを有する基地局であって、前記DRX制御部は、前記無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び前記SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、前記HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を前記ユーザ装置に設定する基地局に関する。

Description

基地局及びユーザ装置
 本発明は、無線通信システムに関する。
 LTE(Long Term Evolution)システム及びLTE-Advancedシステムでは、ユーザ装置(User Equipment:UE)のバッテリセービングのため間欠受信(Discontinuous Reception:DRX)制御が採用されている。LTE規格では、DRX制御は、アイドル状態のユーザ装置とConnected状態のユーザ装置とのそれぞれについて規定されている。何れの動作状態のDRXにおいても、ユーザ装置はある一定の周期で基地局(evolved Node B:eNB)から送信される無線信号を受信する受信期間を設定し、当該受信期間において、基地局はユーザ装置に無線信号を送信する。
 LTEシステム及びLTE-Advancedシステムでは、アイドル状態のユーザ装置は、以下のようにして、DRX制御下において基地局からページングメッセージを受信する。LTE規格では、ページングメッセージが送信されるサブフレームであるPaging Occasion(PO)と、Paging Occasionを含みうる無線フレームであるPaging Frame(PF)とが、以下の式に従ってユーザ装置と基地局との双方において決定される。すなわち、PFのシステムフレーム番号(SFN)は、
 SFN mod T=(T div N)*(UE_ID mod N)
により決定される。ここで、Tは、ページングメッセージを受信するためのユーザ装置のDRX周期であり、無線フレーム数により表される。Nは、TとnB(nBは、4T,2T,T,T/2,T/4,T/8,T/16,T/32から選択される値である)との最小値である。また、UE_IDは、
 UE_ID=IMSI mod 1024
により決定され、ここで、IMSIは、当該ユーザ装置のIMSI(International Mobile Subscriber Identity)である。
 このようにして決定されたPFにおけるPOのサブフレーム番号は、以下の式に従って算出されるインデックスi_sとパラメータNsとから、LTE規格において規定されている対応テーブルを利用して決定される。
 i_s=floor(UE_ID/N)mod Ns
ここで、Nsは、1とnB/Tとの最大値である。
 このようにして、PF及びPOは、ユーザ装置と基地局との双方が認識しているユーザ装置の識別子(IMSI)から一意的に決定することができ、当該PFに設定されるPOでは、アイドル状態のユーザ装置は、基地局からのページングメッセージの受信を待機する。このように決定された周期的なPFのPOにおいて基地局がページングメッセージを送信すると、ユーザ装置は、送信されたページングメッセージを受信することができる。
 一方、Connected状態のユーザ装置は、以下のようにして、DRX制御下において基地局からPDCCH(Physical Downlink Control Channel)を受信する。Connected状態のDRX制御では、ユーザ装置は、基地局からPDCCHを受信するため通信回路を起動するアクティブ期間と、受信回路を起動しない非アクティブ期間との2つの状態により管理される。アクティブ状態では、ユーザ装置は、基地局からのPDCCHを監視すると共に、フィードバック情報やSRS(Sounding Reference Signal)を送信する。当該フィードバック情報として、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、PTI(Precoding Type Indicator)などがあげられる。一方、非アクティブ状態では、ユーザ装置は、基地局からのPDCCHを監視せず、また、フィードバック情報及びSRSも送信しない。
 LTE規格では、当該アクティブ状態は、On duration timer、drx-Inactivity timer、drx-Retransmission timer、mac-contention Resolution timerの何れかが起動している場合、スケジューリングリクエストを送信した場合、アップリンクHARQ再送のためのアップリンクグラントが割り当てられた場合、又は、ランダムアクセス(RA)レスポンスを受信し、その後に新規送信を指示するPDCCHを受信していない場合として定義される。一方、DRX制御における非アクティブ状態は、上述した場合以外として定義される。
 例えば、図1に示されるように、drx-Inactivity timerが満了すると、ユーザ装置は、アクティブ状態から非アクティブ状態に移行し、その後にDRXを起動する。図示されるように、DRXの起動中、ユーザ装置は、一定のDRX周期(DRX cycle)によりアクティブ状態に遷移し、当該アクティブ状態の期間(On duration)において基地局からのPDCCHの受信を試みる。
 また、図2に示されるように、基地局から当該ユーザ装置がDRXを起動すべきことを示す状態制御情報を含むDRX MAC(Medium Access Control) CE(Control Element)を受信すると、drx-Inactivity timerは、当該DRX MAC CEに従って停止される。この場合、図示されるように、ユーザ装置は、アクティブ状態から非アクティブ状態に移行し、その後にDRXを起動する。図1と同様に、DRXの起動中、ユーザ装置は、一定のDRX周期によりアクティブ状態に遷移し、当該アクティブ状態の期間(On duration)において基地局からのPDCCHの受信を試みる。
 一方、現在策定中の3GPP Rel-13では、通信が頻繁には発生しないMTC(Machine Type Communication)端末に対して、シグナリング量の増加と遅延とを伴うアイドル状態からアクティブ状態への移行を抑制するため、上述した現状のDRXより長いDRX周期を適用したDRXの導入が検討されている。具体的には、現状のDRX周期は最大2.56秒まで設定可能であるが、これを5分以上に設定できるようにすること、すなわち、拡張DRX(extended DRX:eDRX)が検討されている。また、当該拡張DRXは、上述した従来のアイドル状態のためのDRXとConnected状態のDRXとの双方に適用できることが望まれる。
3GPP TS36.304 V12.4.0(2015-03) 3GPP TS36.321 V12.5.0(2015-03) 3GPP TS36.331 V12.5.0(2015-03) RP-150493
 LTE規格では、ユーザ装置は、基地局から通知されるDRXの周期(longDRX-Cycle)及び始期(longDRX-CycleStartOffset)を規定するDRXパラメータに従って、DRXの受信期間又はオン期間(On duration)を決定している。ここで、DRX始期はDRX周期の長さに応じて範囲が規定されており、例えば、40サブフレームのDRX周期に対しては、0~39番目のサブフレームから受信期間が設定可能であり、2560サブフレームのDRX周期に対しては、0~2559番目のサブフレームから受信期間が設定可能である。基地局からこれらのDRXパラメータが通知されると、ユーザ装置は、
 [(SFN*10)+サブフレーム番号]modulo(longDRX-Cycle)=drxStartOffset
となるサブフレームにおいてアクティブ状態に遷移する。
 しかしながら、10個のサブフレーム(サブフレーム#0~#9)からなる各無線フレーム(10ms)を識別するSFNは、0~1023の値しかとらない。このため、DRX周期は最大で10240msしか設定できず、現状のLTE規格によると、5分などのより長いDRX周期を設定することはできない。
 上述した問題点に鑑み、本発明の課題は、より長いDRX周期をユーザ装置に設定するための仕組みを提供することである。
 上記課題を解決するため、本発明の一態様は、ユーザ装置との無線通信を制御する通信制御部と、前記ユーザ装置による間欠受信(DRX)を制御するDRX制御部とを有する基地局であって、前記DRX制御部は、前記無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び前記SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、前記HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を前記ユーザ装置に設定する基地局に関する。
 本発明の他の態様は、基地局との間で無線信号を送受信する送受信部と、前記基地局から送信される無線信号を間欠受信するDRX部とを有するユーザ装置であって、前記DRX部は、前記基地局との無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び前記SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、前記HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を起動するユーザ装置に関する。
 本発明によると、より長いDRX周期をユーザ装置に設定することができる。
図1は、Connected状態からの一例となる間欠受信制御を示す概略図である。 図2は、Connected状態からの他の例となる間欠受信制御を示す概略図である。 図3Aは、本発明の一実施例による無線通信システムを示す概略図である。 図3Bは、本発明の一実施例による基地局のハードウェア構成を示すブロック図である。 図3Cは、本発明の一実施例によるユーザ装置のハードウェア構成を示すブロック図である。 図4は、本発明の一実施例による基地局の構成を示すブロック図である。 図5は、eNBとUEとの間でHSFNの認識不一致が生じるケースを示す概略図である。 図6は、本発明の一実施例によるユーザ装置の構成を示すブロック図である。 図7は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。 図8は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。 図9は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 以下の実施例では、従来の間欠受信(DRX)、すなわち、システムフレーム番号(SFN)の範囲内で設定される受信期間を有するDRXを拡張した、より長いDRX周期を設定可能な拡張DRX(eDRX)を実現する基地局及びユーザ装置が開示される。後述される実施例を概略すると、SFNの上位のカウンタとして、SFNの周回の回数をカウントするハイパーSFN(HSFN)が導入される。基地局及びユーザ装置は、従来のDRXで用いられるSFN及びサブフレーム番号と共に当該HSFNを管理し、HSFNを用いてより長いDRX周期によるeDRXの受信期間を設定する。当該HSFNを利用したeDRXによって、MTC端末などの低頻度の通信しか必要としないユーザ装置の電力消費を低減することが可能になる。
 図3Aを参照して、本発明の一実施例による無線通信システムを説明する。図3Aは、本発明の一実施例による無線通信システムを示す概略図である。
 図3Aに示されるように、無線通信システム10は、基地局100及びユーザ装置200を有する。無線通信システム10は、例えば、LTEシステム又はLTE-Advancedシステムである。図示された実施例では、1つの基地局100しか示されていないが、無線通信システム10のサービスエリアをカバーするよう多数の基地局100が配置される。また、簡単化のため図示しないが、典型的には、MME(Mobility Management Entity)などの基地局100の上位局が基地局100に接続される。
 基地局100は、ユーザ装置200と無線接続することによって、コアネットワーク(図示せず)上に通信接続された上位局やサーバから受信したダウンリンク(DL)パケットをユーザ装置200に送信すると共に、ユーザ装置200から受信したアップリンク(UL)パケットをサーバに送信する。本実施例では、基地局100は、後述されるHSFNを利用した拡張DRX(eDRX)機能を有する。
 図3Bに示されるように、基地局100は、典型的には、ユーザ装置200との間で無線信号を送受信するためのアンテナ101、隣接する基地局と通信するための第1通信インタフェース(X2インタフェースなど)102、コアネットワークと通信するための第2通信インタフェース(S1インタフェースなど)103、ユーザ装置200との送受信信号を処理するためのプロセッサ104や回路、メモリ装置105などのハードウェアリソースにより構成される。後述される基地局100の各機能及び処理は、メモリ装置105に格納されているデータやプログラムをプロセッサ104が処理又は実行することによって実現されてもよい。しかしながら、基地局100は、上述したハードウェア構成に限定されず、他の何れか適切なハードウェア構成を有してもよい。
 ユーザ装置200は、典型的には、スマートフォン、携帯電話、タブレット、モバイルルータ、ウェアラブル端末などの無線通信機能を備えた何れか適切な情報処理装置であってもよい。本実施例では、ユーザ装置200は、後述されるHSFNを利用したeDRX機能を有する。
 図3Cに示されるように、ユーザ装置200は、プロセッサなどのCPU(Central Processing Unit)201、RAM(Random Access Memory)やフラッシュメモリなどのメモリ装置202、基地局100との間で無線信号を送受信するための無線通信装置203、入出力装置や周辺装置などのユーザインタフェース204などから構成される。例えば、後述されるユーザ装置200の各機能及び処理は、メモリ装置202に格納されているデータやプログラムをCPU201が処理又は実行することによって実現されてもよい。しかしながら、ユーザ装置200は、上述したハードウェア構成に限定されず、後述する処理の1以上を実現する回路などにより構成されてもよい。
 次に、図4~5を参照して、本発明の一実施例による基地局によるeDRX制御を説明する。図4は、本発明の一実施例による基地局の構成を示すブロック図である。
 図4に示されるように、基地局100は、通信制御部110及びDRX制御部120を有する。
 通信制御部110は、ユーザ装置200との無線通信を制御する。具体的には、ダウンリンク通信では、通信制御部110は、PDCCH(Physical Downlink Control Channel)などの制御チャネルやPDSCH(Physical Downlink Shared Channel)などのデータチャネルをユーザ装置200に送信する。また、アップリンク通信では、通信制御部110は、PUCCH(Physical Uplink Control Channel)などの制御チャネルやPUSCH(Physical Uplink Shared Channel)などのデータチャネルを受信する。また、通信制御部110は、基地局100のセルに在圏するユーザ装置200にMIB(Master Information Block)やSIB(System Information Block)などの報知情報を送信する。
 DRX制御部120は、ユーザ装置200による間欠受信(DRX)を制御すると共に、無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び当該SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、当該HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)をユーザ装置200に設定する。すなわち、DRX制御部120は、無線通信の進捗に従ってHSFN、SFN及びサブフレーム番号を更新すると共に、当該HSFNを利用してより長いDRX周期による拡張DRX(eDRX)をユーザ装置200に設定する。
 本発明によるHSFNは、無線フレームをカウントするSFNの上位のカウンタとして機能し、SFNが周回する毎に1だけインクリメントされる。LTE規格では、無線フレームをカウントするSFNは、0~1023までの値をとり、1024個の無線フレームをカウントできる。SFN=1023に対応する無線フレームの次の無線フレームが出現すると、SFNは周回して0にリセットされると共に、HSFNが1だけインクリメントされる。例えば、HSFN=3及びSFN=1023におけるサブフレーム#9の次のサブフレームは、HSFN=4及びSFN=0におけるサブフレーム#0となる。現在のLTE規格では、DRXの受信期間は、SFN及びサブフレーム番号を用いて設定されるため、10240個のサブフレーム、すなわち、10240msの期間内でしか設定できない。しかしながら、このようなHSFNを利用してDRXの受信期間を設定することによって、より長いDRX周期を有する拡張DRX(eDRX)を設定することが可能になる。eDRXを実現するためには、基地局100とユーザ装置200とのそれぞれが管理するHSFN、SFN及びサブフレーム番号の認識が一致している必要がある。このため、DRX制御部120は、eDRXを設定する際にeDRXの受信期間の周期(longDRX-Cycle)及び始期(drxStartOffset)を通知すると共に、HSFN、SFN及びサブフレーム番号の認識が一致するようにユーザ装置200によるeDRXを制御する。
 一実施例では、DRX制御部120は、ユーザ装置200に設定したeDRXの受信期間の周期及び始期に基づき、管理されているHSFNの値、SFNの値及びサブフレーム番号から算出されるサブフレームが当該受信期間に入ったか判断してもよい。一例として、DRX制御部120は、
 [(HSFN)*10240+(SFN*10)+サブフレーム番号]mod(longDRX-Cycle)=drxStartOffset
となるサブフレームにおいて、ユーザ装置200がアクティブ状態に遷移すると判断してもよい。当該タイミングにおいて、通信制御部110は、ユーザ装置200にPDCCHを送信したり、あるいは、ユーザ装置200からのフィードバック情報やSRSの受信を待機してもよい。
 一実施例では、DRX制御部120は、ユーザ装置200にeDRXを設定する際、eDRXの受信期間の周期及び始期と管理されているHSFNの値とをユーザ装置200に通知してもよい。すなわち、基地局100とユーザ装置200との間でHSFNを同期させるため、DRX制御部120は、管理しているHSFNの値をユーザ装置200に明示的に通知してもよい。当該HSFNの値は、eDRXを設定するためのRRC(Radio Resource Control)メッセージにより通知されてもよい。基地局100から当該HSFNの値を受信すると、ユーザ装置200は、受信したHSFNの値によって自らが管理するHSFNを初期化し、その後はSFNが周回する毎にHSFNをインクリメントする。これにより、例えば、ユーザ装置200にキャリアアグリゲーションが設定されている場合、DRX制御部120は、セル単位でユーザ装置200にHSFNを設定することが可能になり、eDRX制御をよりシンプルにすることができる。
 一実施例では、DRX制御部120は、SFNの範囲内の値により表されたeDRXの受信期間の周期及び始期と、当該受信期間が属するHSFNを示す値とをユーザ装置200に通知してもよい。LTE規格では、DRX周期及び始期は、サブフレームを単位とする絶対値で通知される。しかしながら、長周期になったeDRXにおいて、DRX周期及び始期を絶対値で管理及び通知した場合、基地局100及びユーザ装置200の実装が複雑になる可能性がある。このため、eDRXにおけるDRX周期及び始期は、既存の絶対値によるDRX周期及び始期とHSFNの相対値との組み合わせによって通知されてもよい。すなわち、DRX制御部120は、eDRXの受信期間が属するHSFN、具体的には、当該受信期間が現在のHSFNから何回インクリメントされたHSFNに属するかを示すHSFNの値と、インクリメントされたHSFNにおける何れのサブフレームから受信期間が始まるかを示すDRX周期及び始期、すなわち、従来のDRXによる絶対値で表されたDRX周期及び始期とをユーザ装置200に通知してもよい。特定のHSFNにおける10240個のサブフレームは、現状のLTE規格におけるSFNの範囲内の絶対値により表すことができる。このため、DRX制御部120は、SFNの範囲内の絶対値と現在のHSFNからの相対値(インクリメント値)との組み合わせによって、eDRXの受信期間を特定することができる。本実施例によると、eDRXの受信期間をHSFNの範囲内の絶対値により表す直接的な表現方法と比較して、シグナリング量の増加を抑制できる。また、基地局100及びユーザ装置200がHSFNの範囲までサブフレームの絶対値をカウントする必要がなくなり、実装を簡素化できる。
 一実施例では、DRX制御部120は、SFNが周回する直前の所定の期間ではeDRXをユーザ装置200に設定することを保留してもよい。上述したように、eDRX制御では、基地局100とユーザ装置200との間でHSFNの認識が一致している必要があるが、基地局100がユーザ装置200にeDRXを設定するタイミングによっては、基地局100とユーザ装置200との間でHSFNの認識不一致が生じる可能性がある。具体的には、図5に示されるように、DRX制御部120が、SFNの周回の直前でeDRXを設定すると、ユーザ装置200が周回直前のHSFNの値(x)を設定したのか、あるいは、周回後のHSFNの値(x+1)を設定したのか判断できない可能性がある。例えば、図示されるように、通信制御部110が、HSFN=xに属するサブフレームとHSFN=x+1に属するサブフレームとの境界の直前でeDRXを設定するためのRRCメッセージをユーザ装置200に送信し、HSFN=x+1に属するサブフレームで当該RRCメッセージに対するRRC completeメッセージを受信したとする。この場合、DRX制御部120は、ユーザ装置200がxとx+1との何れの値をHSFNに使用しているか確信することができなくなる。HSFNの認識不一致が生じた場合には、ユーザ装置200は、基地局100からのPDCCHを受信することができなくなる。このようなHSFNの同期外れを回避するため、DRX制御部120は、SFNが周回する直前の所定の期間ではeDRXの設定をしないようにしてもよい。なお、当該所定の期間は、eDRXを設定するためのRRCメッセージに対するRRC completeメッセージをユーザ装置200から受信できると予想される期間であってもよい。本実施例によると、ユーザ装置200に特別な制御をさせることなく、HSFNの認識不一致が生じる可能性がある曖昧な期間(ambiguity period)の発生を回避することができる。
 他の実施例では、通信制御部110は、管理されているHSFNの値を報知情報により通知してもよい。上述したように、基地局100がユーザ装置200にeDRXを設定するタイミングに起因したHSFNの同期外れを回避するため、通信制御部110は、管理されているHSFNの値を所定の報知情報に含め、DRX制御部120が管理するHSFNの現在値をユーザ装置200に通知してもよい。具体的には、基地局100からeDRXを設定するよう指示されると、ユーザ装置200は、通信制御部110から送信される所定の報知情報(MIBなど)を確認し、当該報知情報におけるHSFNの値により自らのHSFNを再設定してもよい。ユーザ装置200は、通常は初期接続の際しかMIBを確認しないが、eDRXの設定指示を受信したときは常にMIBを確認するようにしてもよい。なお、当該所定の報知情報は、SFNを有するMIBであってもよいし、SIBであってもよい。
 一実施例では、DRX制御部120は、ユーザ装置200にeDRXを設定する際、HSFNの最大値をユーザ装置200に通知してもよい。上述したように、HSFNの値をMIBで報知する場合、当該HSFNの値は、MIBのspare bitの10ビットを用いて通知されることになるであろう。この10ビット全てをHSFNに利用した場合、eDRX周期は、最大で220*10ms(=2.91時間)まで表現可能となる。一方、このように長い周期のeDRXをサポートするには、より大きなカウンタが必要となり、実際に使用されるeDRX周期の値と比較して過剰性能になるだけでなく、実装の複雑化を招くことなる。HSFNが過剰に大きな値になることを回避するため、HFSNの最大値が指定されてもよい。例えば、基地局100が所定値より大きいHSFNに対応していない場合、DRX制御部120は、ユーザ装置200にeDRXを設定する際、当該所定値以下のHSFNの最大値を通知してもよい。当該最大値が通知されると、ユーザ装置200は、自らのHSFNの最大値を設定し、HSFNが最大値に到達すると、次のSFNの周回時にはHSFNを周回してゼロにリセットすることになり、基地局100とユーザ装置200との間のHSFNの同期が実現される。なお、DRX制御部120は、HSFNの最下位ビット(LSB)など、下位ビットのビット数により当該最大値を通知してもよい。
 一実施例では、アイドル状態で基地局100のセルに遷移したユーザ装置200にページングチャネルを送信するよう上位ノードから指示される際、DRX制御部120は、ユーザ装置200にeDRXが設定されているか通知されてもよい。上述したように、ユーザ装置200がアイドル状態にあるとき、基地局100は、DRX制御下においてユーザ装置200にページングメッセージを送信する。典型的には、アイドル状態のユーザ装置200は自律的に接続セルを変更する可能性がある。このため、ページングする際、DRX制御部120は、ユーザ装置200にeDRXが設定されているか、また、どのようなDRX周期及び始期が設定されているかを正しく認識する必要がある。例えば、ユーザ装置200がセル再選択を実行する際、遷移先の基地局100は、ページングの送信先となるユーザ装置200にeDRXが設定されているか、又は通常のDRXが設定されているか正しく認識する必要がある。このため、ページングに際して、MMEは、ユーザ装置200にeDRXが設定されていることを基地局100に通知してもよい。また、当該通知において、MMEは、ユーザ装置200に設定されているDRX周期及び始期もまた通知してもよい。当該通知を受信すると、DRX制御部120は、ユーザ装置200にeDRXが設定されていることを認識することが可能になる。
 一実施例では、通信制御部110は、基地局100がeDRXをサポートしていることを報知情報により通知してもよい。上述したように、ユーザ装置200がアイドル状態にあるとき、基地局100は、DRX制御下においてユーザ装置200にページングメッセージを送信する。eDRXが適用されているアイドル状態のユーザ装置200が、eDRXをサポートしていない基地局100のセルへセル再選択した場合、遷移先の基地局100は、ユーザ装置200のアクティブ状態のタイミングを把握することができない。このため、基地局100がeDRXをサポートする場合、通信制御部110は、当該基地局100がeDRXをサポートしていることを報知情報において通知してもよい。この場合、eDRXが設定されているユーザ装置200は、セル再選択した際に報知情報を取得し、遷移先の基地局100がeDRXをサポートしている場合には、eDRXの適用を維持してもよい。他方、遷移先の基地局100がeDRXをサポートしていない場合には、ユーザ装置200は、SFN及びサブフレーム番号に基づく従来のDRXに従ってページングを受信するタイミングを決定してもよい。
 他の実施例では、通信制御部110は、基地局100とHSFNが同期しているセル又は基地局を報知情報により通知してもよい。上述したように、ユーザ装置200がアイドル状態にあるとき、基地局100は、DRX制御下においてユーザ装置200にページングメッセージを送信する。ユーザ装置200が、基地局100とHSFNに関して同期していない基地局又はセルに遷移した場合、ユーザ装置200と遷移先の基地局との間でHSFNの認識不一致が生じる可能性がある。このため、通信制御部110は、当該基地局100とHSFNが同期しているセル又は基地局を報知情報において通知してもよい。例えば、HSFNが同期している隣接セル又は隣接基地局には、報知情報においてビット"1"を付与し、HSFNが同期していない隣接セル又は隣接基地局には、報知情報においてビット"0"を付与してもよい。これにより、ユーザ装置200は、遷移先の基地局と遷移元の基地局100とが同期しているか判断することが可能になり、同期していない場合には、遷移先の基地局に接続して当該基地局のHSFNの値により自らのHSFNを更新することができる。
 次に、図6を参照して、本発明の一実施例によるユーザ装置によるeDRX処理を説明する。図6は、本発明の一実施例によるユーザ装置の構成を示すブロック図である。
 図6に示されるように、ユーザ装置200は、送受信部210及びDRX部220を有する。
 送受信部210は、基地局200との間で無線信号を送受信する。具体的には、ダウンリンク通信では、送受信部210は、基地局100からPDCCHやPDSCHなどの各種ダウンリンクチャネルを受信する。一方、アップリンク通信では、送受信部210は、基地局100にPUCCHやPUSCHなどの各種アップリンクチャネルを送信する。また、送受信部210は、基地局100から送信されるMIBやSIBなどの報知情報を受信する。
 DRX部220は、基地局100から送信される無線信号を間欠受信すると共に、基地局100との無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び当該SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、当該HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を起動する。すなわち、DRX部220は、無線通信の進捗に従ってHSFN、SFN及びサブフレーム番号を更新すると共に、当該HSFNを利用してより長いDRX周期による拡張DRX(eDRX)を実行する。
 本発明によるHSFNは、無線フレームをカウントするSFNの上位のカウンタとして機能し、SFNが周回する毎に1だけインクリメントされる。LTE規格では、無線フレームをカウントするSFNは、0~1023までの値をとり、1024個の無線フレームをカウントできる。SFN=1023に対応する無線フレームの次の無線フレームが出現すると、SFNは周回して0にリセットされると共に、HSFNが1だけインクリメントされる。例えば、HSFN=3及びSFN=1023におけるサブフレーム#9の次のサブフレームは、HSFN=4及びSFN=0におけるサブフレーム#0となる。現在のLTE規格では、DRXの受信期間は、SFN及びサブフレーム番号を用いて設定されるため、10240個のサブフレーム、すなわち、10240msの期間内でしか設定できない。しかしながら、HSFNを利用してDRXの受信期間を設定することによって、より長いDRX周期を有する拡張DRX(eDRX)を設定することが可能になる。eDRXを実現するためには、基地局100とユーザ装置200とのそれぞれが管理するHSFN、SFN及びサブフレーム番号の認識が一致している必要がある。このため、DRX部220は、基地局100からeDRXを設定するよう指示された際に受信したeDRXの受信期間の周期(longDRX-Cycle)及び始期(drxStartOffset)と共に、管理されているHSFN、SFN及びサブフレーム番号に基づきeDRXを起動する。
 一実施例では、DRX部220は、管理されているHSFNの値、SFNの値及びサブフレーム番号から算出されるサブフレームが、基地局100により設定されたeDRXの受信期間の周期及び始期に従って設定された当該受信期間に入ると、基地局100から送信される無線信号を間欠受信してもよい。一例として、DRX部220は、
 [(HSFN)*10240+(SFN*10)+サブフレーム番号]mod(longDRX-Cycle)=drxStartOffset
となるサブフレームにおいて、基地局100からのPDCCHの受信を試みてもよい。また、当該タイミングにおいて、送受信部210は、フィードバック情報やSRSを基地局100に送信してもよい。
 一実施例では、DRX部220は、基地局100からeDRXを設定するよう指示されると、HSFNを所定の初期値に設定してもよい。すなわち、基地局100からeDRXを設定するためのRRCメッセージを受信すると、DRX部220は、HSFNを基地局100により予め設定された初期値に設定してもよい。これにより、基地局100は、RRCメッセージにおいてHSFNを通知することなく、ユーザ装置200のHSFNを認識することができ、シグナリング量を増加させることなくユーザ装置200とHSFNを同期させることができる。ここで、所定の初期値は0であってもよいし、あるいは、MIBなどの報知情報により予め通知されてもよい。
 一実施例では、DRX部220は、基地局100からeDRXを設定するよう指示されると、管理されているHSFNの値を基地局100に通知してもよい。すなわち、DRX部220は、HSFNを自律的に管理し、基地局100からeDRXを設定するよう指示されると、HSFNの現在値を基地局100に通知する。当該通知に基づき、基地局100は、ユーザ装置200のHSFNを認識することができ、ユーザ装置200とHSFNを同期させることができる。例えば、eDRXを設定する指示がRRC connection reconfigurationメッセージにより通知される場合、DRX部220は、当該RRC connection reconfigurationメッセージに対するRRC connection reconfiguration completeメッセージによりHSFNの現在値を通知してもよい。
 一実施例では、DRX部220は、基地局100からHSFNの値を取得すると、eDRXの受信期間を計時するOn duration timer又は基地局100からの直近の制御チャネルの受信からの経過時間を計時するDRX-Inactivity timerが起動しているか判断し、On duration timer又はDRX-Inactivity timerを停止又は再起動してもよい。HSFNの値を新規に取得する際、On duration timerの起動タイミングが変更される可能性がある。このため、報知情報又は個別信号によりHSFNを取得した時点で、On duration timerやdrx-Inactivity timerが起動中である場合、DRX部220は、これらを一旦停止するか、あるいは、再起動してもよい。また、当該タイマの停止は、新規の動作として個別に定義されてもよいし、MACリセットのように既存の動作を流用することによって実現されてもよい。
 一実施例では、DRX部220は、SFNの範囲内の値により表されたeDRXの受信期間の周期及び始期と、当該受信期間が属するHSFNを示す値とに基づき受信期間を設定してもよい。LTE規格では、DRX周期及び始期は、サブフレームを単位とする絶対値で通知される。しかしながら、長周期になったeDRXにおいて、DRX周期及び始期を絶対値で管理及び通知した場合、基地局100及びユーザ装置200の実装が複雑になる可能性がある。このため、eDRXにおけるDRX周期及び始期は、既存の絶対値によるDRX周期及び始期とHSFNの相対値との組み合わせによって通知されてもよい。すなわち、基地局100は、eDRXの受信期間が属するHSFN、具体的には、当該受信期間が現在のHSFNから何回インクリメントされたHSFNに属するかを示すHSFNの値と、当該受信期間がインクリメントされたHSFNにおける何れのサブフレームから始まるかを示す周期及び始期とをユーザ装置200に通知してもよい。例えば、DRX部220は、SFNの範囲内で表されたeDRXの受信期間の周期及び始期とHSFNの特定値nとを受信すると、まずHSFNを所定の初期値に設定する。その後、DRX部220は、無線通信の進捗に従ってHSFNを(n-1)までインクリメントする。HSFNが(n-1)になると、DRX部220は、当該HSFNにおけるサブフレームが通知されたSFNの範囲内で表される受信期間に入ったか判断する。現在のサブフレームが当該受信期間に入ると、DRX部220は、間欠受信を起動すると共にHFSNを初期値にリセットする。このようにして、DRX部220は、eDRXの受信期間をSFNの範囲内の絶対値と、現在のHSFNからの相対値(インクリメント値)との組み合わせにより特定することができる。このため、eDRXの受信期間をHSFNの範囲内の絶対値により表す直接的な表現方法と比較して、シグナリング量の増加を抑制できる。また、基地局100及びユーザ装置200がHSFNの範囲までサブフレームの絶対値をカウントする必要がなくなり、実装を簡素化できる。
 一実施例では、DRX部220は、基地局100からeDRXを設定するよう指示されると、当該eDRXについて設定したHSFNの値を基地局100に通知してもよい。図5を参照して上述したように、基地局100がユーザ装置200にeDRXを設定するタイミングによっては、基地局100とユーザ装置200との間でHSFNの認識不一致が生じる可能性がある。このため、DRX部220は、DRX部220が当該eDRXについて設定したHFSNの値を基地局100に通知してもよい。これにより、HSFNがインクリメントされる直前にはeDRXの設定を指示しないなど、基地局100におけるスケジューリング制限を実行することなく、基地局100とユーザ装置200との間でHSFNの認識を一致させることが可能になる。当該HSFNの値は、例えば、MAC CEにより通知されてもよい。また、DRX部220は、RRC connection reconfiguration completeメッセージと共に、PUSCHを送信する時点でHSFNの値を基地局100に通知してもよい。これにより、基地局100は、アップリンクグラントの送信時に遡って、ユーザ装置200におけるHSFNの値を把握することが可能になる。
 一実施例では、DRX部は、基地局100からeDRXを設定するよう指示されると、基地局100からの報知情報からHSFNの値を取得し、取得したHSFNの値によって管理されているHFSNの値を設定してもよい。上述したように、基地局100がユーザ装置200にeDRXを設定するタイミングに起因したHSFNの同期外れを回避するため、基地局100は、管理されているHSFNの値を所定の報知情報に含め、ユーザ装置200にHSFNの現在値を通知してもよい。このとき、基地局100からeDRXを設定するよう指示されると、DRX部220は、基地局100から送信される所定の報知情報(MIBなど)を確認し、当該報知情報におけるHSFNの値により自らのHSFNを再設定してもよい。ユーザ装置200は、通常は初期接続の際しかMIBを確認しないが、eDRXの設定指示を受信したときは常にMIBを確認するようにしてもよい。なお、当該所定の報知情報は、SFNを有するMIBであってもよいし、SIBであってもよい。
 一実施例では、DRX部220は、基地局100からHFSNの最大値を受信すると、HSFNを最大値までインクリメントした後、HSFNを周回させてもよい。すなわち、DRX部220は、HSFNが最大値に到達すると、次のSFNの周回時にはHSFNを周回してゼロにリセットしてもよい。
 一実施例では、送受信部210は、ユーザ装置200がサポートするHSFNの最大値を能力情報として基地局100に通知してもよい。例えば、ユーザ装置200が所定値より大きいHSFNに対応していない場合、DRX部220は、基地局100に能力情報を通知する際、当該所定値以下のHSFNの最大値を通知してもよい。当該最大値が通知されると、基地局100は、ユーザ装置200のHSFNの最大値に応じたDRX周期及び始期を設定することが可能になる。また、当該能力情報は、基地局100から能力情報の照会(capability enquiryなど)があったときにのみ通知されてもよい。
 一実施例では、ユーザ装置200がアイドル状態により基地局100のセルに遷移すると、DRX部220は、基地局100から受信した報知情報に基づき基地局100がeDRXをサポートしているか判断してもよい。上述したように、ユーザ装置200がアイドル状態にあるとき、基地局100は、DRX制御下においてユーザ装置200にページングメッセージを送信する。eDRXが適用されているアイドル状態のユーザ装置200が、eDRXをサポートしていない基地局100のセルへ遷移した場合、遷移先の基地局100は、ユーザ装置200のアクティブ状態のタイミングを把握することができない。このため、基地局100がeDRXをサポートする場合、基地局100は、当該基地局100がeDRXをサポートしていることを報知情報において通知してもよい。この場合、DRX部220は、セル再選択した際に報知情報を取得し、遷移先の基地局100がeDRXをサポートしている場合には、eDRXの適用を維持してもよい。他方、遷移先の基地局100がeDRXをサポートしていない場合には、DRX部220は、SFN及びサブフレーム番号に基づく従来のDRXに従ってページングを受信するタイミングを決定してもよい。
 一実施例では、ユーザ装置200がアイドル状態により基地局100のセルに遷移すると、DRX部220は、基地局100から受信した報知情報に基づき遷移先の基地局がHSFNについて遷移元の基地局と同期しているか判断し、遷移先の基地局100がHSFNについて遷移元の基地局と同期していない場合、遷移先の基地局100により管理されているHSFNの値を取得するため、遷移先の基地局100に接続してもよい。上述したように、ユーザ装置200がアイドル状態にあるとき、基地局100は、DRX制御下においてユーザ装置200にページングメッセージを送信する。ユーザ装置200が、HSFNに関して同期していない基地局100又はセルに遷移した場合、ユーザ装置200と遷移先の基地局100との間でHSFNの認識不一致が生じる可能性がある。DRX部220は、取得した報知情報に基づき遷移先の基地局100と遷移元の基地局とが同期しているか判断し、同期していないと判断した場合、ユーザ装置200は、遷移先の基地局100に接続し、当該基地局100のHSFNの値により自らのHSFNを更新することができる。
 次に、図7~9を参照して、本発明の一実施例によるeDRX制御のシグナリングを説明する。
 図7は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。基地局100は、図示されるようなデータ構造のシグナリングによってユーザ装置200にeDRXを設定する。eDRXのDRX周期及び始期は、"ExtlongDRX-CycleStartOffset"により指示される。"ExtlongDRX-CycleStartOffset"は、"ExtLongDRX-Coeff"と、"drxStartOffset"とから構成されてもよい。ここで、eDRX周期は、10240*ExtLongDRX-Coeffにより導出されてもよい。また、SFNの範囲内の値により表されたeDRXの受信期間の周期及び始期と、当該受信期間が属するHSFNを示す値とに基づき受信期間が設定される場合、SFNの範囲内の値により表されたeDRXの受信期間の周期及び始期はそれぞれ、"longDRX-Cycle"及び"drxStartOffset"により通知され、受信期間が属するHSFNを示す値は、"ExtLongDRX-Coeff"により通知されてもよい。
 図8は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。基地局100は、図示されるようなデータ構造のシグナリングによって、アイドル状態のユーザ装置200にページングを通知してもよい。ここで、ページングフレーム(PF)は、
 SFN mod T=(T div N)*(UE_ID mod N)、又は
 (Y×SFN)mod T=(T div N)*(UE_ID mod N) for 0≦Y≦(Ec-1) (拡張ページングサイクル係数が上位レイヤにより設定される場合)
により決定されてもよい。ここで、Tは、ページングメッセージを受信するためのユーザ装置のDRX周期であり、無線フレーム数により表される。Nは、TとnB(nBは、4T,2T,T,T/2,T/4,T/8,T/16,T/32から選択される値である)との最小値である。また、UE_IDは、
 UE_ID=IMSI mod 1024、又は
 IMSI mod(1024×Ec) (拡張ページングサイクル係数が上位レイヤにより設定される場合)
により決定され、ここで、IMSIは、当該ユーザ装置のIMSI(International Mobile Subscriber Identity)である。また、Ecは、Tを導出するのに用いられる拡張ページングサイクル係数であり、当該拡張ページングサイクル係数が上位レイヤにより設定されている場合、DRXサイクルは1024×Ecにより導出されてもよい。
 図9は、本発明の一実施例によるeDRX制御のシグナリング例を示す図である。基地局100は、図示されるようなデータ構造のシグナリングによって、拡張ページングサイクルをサポートするユーザ装置200にページングに必要な情報を通知する。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本出願は、2015年4月3日に出願した日本国特許出願2015-077226号の優先権の利益に基づき、これを主張するものであり、2015-077226号の全内容を本出願に援用する。
10 無線通信システム
100 基地局
110 通信制御部
120 DRX制御部
200 ユーザ装置
210 送受信部
220 DRX部

Claims (10)

  1.  ユーザ装置との無線通信を制御する通信制御部と、
     前記ユーザ装置による間欠受信(DRX)を制御するDRX制御部と、
    を有する基地局であって、
     前記DRX制御部は、前記無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び前記SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、前記HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を前記ユーザ装置に設定する基地局。
  2.  前記DRX制御部は、前記ユーザ装置に設定した前記eDRXの受信期間の周期及び始期に基づき、前記管理されているHSFNの値、SFNの値及びサブフレーム番号から算出されるサブフレームが前記受信期間に入ったか判断する、請求項1記載の基地局。
  3.  前記DRX制御部は、前記ユーザ装置に前記eDRXを設定する際、前記eDRXの受信期間の周期及び始期と前記管理されているHSFNの値とを前記ユーザ装置に通知する、請求項1又は2記載の基地局。
  4.  前記DRX制御部は、前記SFNの範囲内の値により表された前記eDRXの受信期間の周期及び始期と、前記受信期間が属するHSFNを示す値とを前記ユーザ装置に通知する、請求項1乃至3何れか一項記載の基地局。
  5.  前記DRX制御部は、前記SFNが周回する直前の所定の期間では前記eDRXを前記ユーザ装置に設定することを保留する、請求項1乃至4何れか一項記載の基地局。
  6.  基地局との間で無線信号を送受信する送受信部と、
     前記基地局から送信される無線信号を間欠受信するDRX部と、
    を有するユーザ装置であって、
     前記DRX部は、前記基地局との無線通信におけるシステムフレーム番号(SFN)、サブフレーム番号及び前記SFNの周回の回数をカウントするハイパーSFN(HSFN)を管理し、前記HSFNを用いて指定された受信期間を有する拡張DRX(eDRX)を起動するユーザ装置。
  7.  前記DRX部は、前記管理されているHSFNの値、SFNの値及びサブフレーム番号から算出されるサブフレームが、前記基地局により設定された前記eDRXの受信期間の周期及び始期に従って設定された前記受信期間に入ると、前記基地局から送信される無線信号を間欠受信する、請求項6記載のユーザ装置。
  8.  前記DRX部は、前記基地局から前記eDRXを設定するよう指示されると、前記HSFNを所定の初期値に設定する、請求項6又は7記載のユーザ装置。
  9.  前記DRX部は、前記基地局から前記eDRXを設定するよう指示されると、前記管理されているHSFNの値を前記基地局に通知する、請求項6又は7記載のユーザ装置。
  10.  前記送受信部は、当該ユーザ装置がサポートする前記HSFNの最大値を能力情報として前記基地局に通知する、請求項6乃至9何れか一項記載のユーザ装置。
PCT/JP2016/058195 2015-04-03 2016-03-15 基地局及びユーザ装置 WO2016158394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16772277.6A EP3280191B1 (en) 2015-04-03 2016-03-15 Base station and user device
US15/526,448 US10420164B2 (en) 2015-04-03 2016-03-15 Base station and user equipment for configuring an extended DRX
CN201680004231.7A CN107113716B (zh) 2015-04-03 2016-03-15 基站及用户装置
JP2017509523A JPWO2016158394A1 (ja) 2015-04-03 2016-03-15 基地局及びユーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-077226 2015-04-03
JP2015077226 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016158394A1 true WO2016158394A1 (ja) 2016-10-06

Family

ID=57005691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058195 WO2016158394A1 (ja) 2015-04-03 2016-03-15 基地局及びユーザ装置

Country Status (5)

Country Link
US (1) US10420164B2 (ja)
EP (1) EP3280191B1 (ja)
JP (1) JPWO2016158394A1 (ja)
CN (1) CN107113716B (ja)
WO (1) WO2016158394A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232569A1 (zh) * 2017-06-19 2018-12-27 华为技术有限公司 超级系统帧号确定方法、通信方法及装置
WO2019021379A1 (ja) * 2017-07-25 2019-01-31 株式会社Nttドコモ 無線通信システム、無線基地局、ユーザ装置及び無線通信方法
WO2019030084A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE OF GENERATION AND / OR MANAGEMENT OF RNTI
WO2021052371A1 (zh) * 2019-09-19 2021-03-25 中兴通讯股份有限公司 Drx通信同步及启动控制方法、装置、设备及存储介质
JP2021521687A (ja) * 2018-04-13 2021-08-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wusとrrm測定との間の相互作用
US11653408B2 (en) 2017-09-07 2023-05-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, terminal device and network device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401854B2 (ja) * 2015-03-03 2018-10-10 京セラ株式会社 通信方法、無線端末及びプロセッサ
US10779354B2 (en) * 2015-03-03 2020-09-15 Kyocera Corporation Communication method, radio terminal, and processor
US20190075597A1 (en) * 2017-09-01 2019-03-07 Qualcomm Incorporated Methods, apparatuses and systems for supporting long term channel sensing in shared spectrum
SG11201911139SA (en) * 2018-03-20 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for paging, network device, and terminal device
CN110536383B (zh) * 2019-01-18 2024-03-08 中兴通讯股份有限公司 终端节能方法、基站及终端
CN112788618B (zh) * 2019-11-06 2023-05-12 大唐移动通信设备有限公司 非连续接收参数的配置、监听寻呼的方法、设备及终端
WO2022151229A1 (zh) * 2021-01-14 2022-07-21 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2022151217A1 (zh) * 2021-01-14 2022-07-21 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2024023347A1 (en) * 2022-07-29 2024-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Frame number correction for discontinuous reception

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137259A1 (en) * 2013-03-07 2014-09-12 Telefonaktiebolaget L M Ericsson (Publ) Radio link monitoring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3735007A1 (en) * 2012-05-09 2020-11-04 Interdigital Patent Holdings, Inc. Handling mtc long drx cycle/sleep lengths
CN104105111B (zh) * 2013-04-02 2017-11-21 电信科学技术研究院 一种激活时刻的计算方法及装置
CN104105177B (zh) * 2013-04-06 2017-12-12 上海贝尔股份有限公司 用于空闲模式用户设备的功率节省的方法和装置
GB2514117A (en) * 2013-05-13 2014-11-19 Nec Corp Communication system
WO2016140271A1 (ja) * 2015-03-03 2016-09-09 京セラ株式会社 基地局、無線端末、及びネットワーク装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137259A1 (en) * 2013-03-07 2014-09-12 Telefonaktiebolaget L M Ericsson (Publ) Radio link monitoring

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 12)", 3GPP TS 36.331 V12.5.0, 27 March 2015 (2015-03-27), pages 252 - 256, XP055320339, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/36_series/36.331/36331-c50.zip> [retrieved on 20160512] *
INTERDIGITAL COMMUNICATIONS: "Supporting Extended DRX in RRC_IDLE mode", 3GPP TSG-RAN WG2#83 R2-132436, pages 3.1, XP050718395, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_83/Docs/R2-132436.zip> *
SAMSUNG: "Enhancements for extended DRX in IDLE", 3GPP TSG-RAN WG2#83 R2-132613, 10 August 2013 (2013-08-10), pages 2.1, 2.2, XP050718435, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_83/Docs/R2-132613.zip> [retrieved on 20160512] *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11147019B2 (en) 2017-06-19 2021-10-12 Huawei Technologies Co., Ltd. Hyper system frame number determination
WO2018232569A1 (zh) * 2017-06-19 2018-12-27 华为技术有限公司 超级系统帧号确定方法、通信方法及装置
CN110710310A (zh) * 2017-06-19 2020-01-17 华为技术有限公司 超级系统帧号确定方法、通信方法及装置
CN110710310B (zh) * 2017-06-19 2022-01-28 华为技术有限公司 超级系统帧号确定方法、通信方法及装置
WO2019021379A1 (ja) * 2017-07-25 2019-01-31 株式会社Nttドコモ 無線通信システム、無線基地局、ユーザ装置及び無線通信方法
EP3979755A1 (en) * 2017-08-11 2022-04-06 Telefonaktiebolaget LM Ericsson (publ) Technique for generating rntis
WO2019030084A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE OF GENERATION AND / OR MANAGEMENT OF RNTI
US20220095386A1 (en) * 2017-08-11 2022-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Technique for Generating and/or Managing RNTIs
US11229058B2 (en) 2017-08-11 2022-01-18 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating and/or managing RNTIs
US11711854B2 (en) 2017-08-11 2023-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating and/or managing RNTIs
US11653408B2 (en) 2017-09-07 2023-05-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, terminal device and network device
JP2021521687A (ja) * 2018-04-13 2021-08-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wusとrrm測定との間の相互作用
JP7293252B2 (ja) 2018-04-13 2023-06-19 クゥアルコム・インコーポレイテッド Wusとrrm測定との間の相互作用
US11856641B2 (en) 2018-04-13 2023-12-26 Qualcomm Incorporated Interaction between WUS and RRM measurement
WO2021052371A1 (zh) * 2019-09-19 2021-03-25 中兴通讯股份有限公司 Drx通信同步及启动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JPWO2016158394A1 (ja) 2017-07-27
CN107113716B (zh) 2020-06-23
CN107113716A (zh) 2017-08-29
EP3280191B1 (en) 2019-03-06
EP3280191A1 (en) 2018-02-07
US20170339745A1 (en) 2017-11-23
EP3280191A4 (en) 2018-04-11
US10420164B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2016158394A1 (ja) 基地局及びユーザ装置
US11968737B2 (en) Active time handling with 2-step granting
US11317465B2 (en) Communication method, radio terminal, and processor
US10779354B2 (en) Communication method, radio terminal, and processor
KR102097703B1 (ko) 장치 간 통신을 위한 애드혹/네트워크 보조의 디스커버리 프로토콜에 대한 시스템 및 방법
EP2351407B1 (en) Method and apparatus for monitoring downlink control channel in a user equipment
JP2021158697A (ja) 基地局及び無線端末
EP2983416B1 (en) Paging method, apparatus, and system
JP5478775B2 (ja) 移動通信方法、無線端末及び装置
JPWO2016136958A1 (ja) 無線端末及びプロセッサ
JPWO2015174327A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5786022B2 (ja) 移動通信方法及び無線端末
JP2014526839A (ja) 無線通信システムにおいて端末のplmn情報格納方法及びそのための装置
JP6557421B2 (ja) 通信におけるタイマー・ハンドリング
US20180192468A1 (en) Communications terminal, infrastructure equipment and methods for discontinuous reception, drx
US20230164818A1 (en) Enabling aperiodic csi and srs transmissions for scell dormancy
JP6010666B2 (ja) 通信制御方法及び無線基地局
JP5627808B2 (ja) 無線端末及び装置
JP2015046884A (ja) 移動通信方法及び無線基地局
OA18276A (en) Base station and user device.
KR20230165279A (ko) 멀티캐스트 및 브로드캐스트 서비스들을 위한 drx 동작을 위한 방법 및 장치
JP2017188834A (ja) 無線基地局及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509523

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772277

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE