WO2016158298A1 - 位相差フィルム、円偏光フィルム、および、画像表示装置 - Google Patents

位相差フィルム、円偏光フィルム、および、画像表示装置 Download PDF

Info

Publication number
WO2016158298A1
WO2016158298A1 PCT/JP2016/057623 JP2016057623W WO2016158298A1 WO 2016158298 A1 WO2016158298 A1 WO 2016158298A1 JP 2016057623 W JP2016057623 W JP 2016057623W WO 2016158298 A1 WO2016158298 A1 WO 2016158298A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
film
anisotropic layer
layer
retardation
Prior art date
Application number
PCT/JP2016/057623
Other languages
English (en)
French (fr)
Inventor
勇太 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017509486A priority Critical patent/JP6571167B2/ja
Publication of WO2016158298A1 publication Critical patent/WO2016158298A1/ja
Priority to US15/702,018 priority patent/US10564339B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion

Definitions

  • the present invention relates to a retardation film, a circularly polarizing film, and an image display device.
  • circularly polarizing films have been used in image display panels such as organic EL (electroluminescence) panels and liquid crystal display panels in order to suppress adverse effects due to external light reflection.
  • image display panels such as organic EL (electroluminescence) panels and liquid crystal display panels
  • a circularly polarizing film it has been proposed to use a circularly polarizing film in which a retardation plate composed of a ⁇ / 2 plate and a ⁇ / 4 plate (so-called broadband ⁇ / 4 plate) and a polarizing layer are combined (for example, Patent Document 1).
  • the present invention suppresses coloring in visual recognition from the front direction when applied to an image display panel, in particular, an organic EL panel, and is viewed from an oblique direction when viewed from the front direction. It is an object of the present invention to provide a retardation film and a circularly polarizing film that have a small color difference from the case and can suppress image unevenness. Another object of the present invention is to provide an image display device having the circularly polarizing film.
  • the present inventor has found that the above problem can be solved by using a retardation film that satisfies predetermined optical characteristics. That is, it has been found that the above object can be achieved by the following configuration.
  • a retardation film comprising an optically anisotropic layer A and an optically anisotropic layer B,
  • the retardation RthA in the thickness direction at a wavelength of 550 nm of the optically anisotropic layer A is larger than 0,
  • the optically anisotropic layer A satisfies the following formulas (A-1) to (A-3):
  • the retardation RthB in the thickness direction at a wavelength of 550 nm of the optically anisotropic layer B is smaller than 0,
  • the optically anisotropic layer B satisfies the following formulas (B-1) to (B-3):
  • the angle formed by the slow axis of the optically anisotropic layer A and the slow axis of the optically anisotropic layer B is 90 ° ⁇ 10 °
  • Formula (A-1) 0.80 ⁇ ReA (450) / ReA (550) ⁇ 1 Formula (A-2) 1 ⁇ ReA (650) / ReA (550) ⁇ 1.30 Formula (A-3) 100 nm ⁇ ReA (550) ⁇ 200 nm Formula (B-1) 1.08 ⁇ ReB (450) / ReB (550) ⁇ 1.30 Formula (B-2) 0.90 ⁇ ReB (650) / ReB (550) ⁇ 0.97 Formula (B-3) 0 ⁇ ReB (550) ⁇ 50 nm Formula (X-1) 0.79 ⁇ ReX (450) / ReX (550) ⁇ 0.85 Formula (X-2) 1.02 ⁇ ReX (650) / ReX (550) ⁇ 1.30 ReA (450), ReA (550), and ReA (650) represent in-plane retardation values of the optically anisotropic layer A at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • ReB (450), ReB (550), and ReB (650) represent in-plane retardation values of the optically anisotropic layer B at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • ReX (450), ReX (550), and ReX (650) represent in-plane retardation values of the retardation film at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm, respectively.
  • ReC (550) represents the value of in-plane retardation of the optically anisotropic layer C at a wavelength of 550 nm.
  • the difference between the in-plane retardation ReA (550) of the optically anisotropic layer A at a wavelength of 550 nm and the in-plane retardation ReB (550) of the optically anisotropic layer B at a wavelength of 550 nm is 110 to 170 nm.
  • the retardation film according to (1) or (2).
  • the present invention when applied to an image display panel, in particular, an organic EL panel, coloring is suppressed in visual recognition from the front direction, and color difference between the case of visual recognition from the front direction and the case of visual recognition from an oblique direction. It is possible to provide a retardation film and a circularly polarizing film that are small and can suppress image unevenness. Moreover, according to this invention, the image display apparatus containing the said circularly-polarizing film can also be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “orthogonal” and “parallel” with respect to an angle shall mean a range of a strict angle ⁇ 10 °, and “identical” and “different” with respect to an angle indicate whether or not the difference is less than 5 °. It can be judged on the basis of.
  • “visible light” means 380 to 780 nm.
  • a measurement wavelength is 550 nm.
  • the “slow axis” means a direction in which the refractive index is maximum in the plane
  • the “circularly polarizing film” means a long circularly polarizing film, and unless otherwise specified, and It is used to include both circularly polarized films cut to a size that can be incorporated into an image display device.
  • cutting includes “punching” and “cutting out”.
  • tilt angle (also referred to as tilt angle) means an angle formed by a tilted liquid crystal compound with a layer plane, and the direction of the maximum refractive index in the refractive index ellipsoid of the liquid crystal compound is the layer plane. It means the maximum angle among the angles formed. Therefore, in the rod-like liquid crystal compound having positive optical anisotropy, the tilt angle means an angle formed by the major axis direction of the rod-like liquid crystal compound, that is, the director direction and the layer plane.
  • average tilt angle (average tilt angle)” means an average value of tilt angles from the tilt angle at the upper interface to the lower interface of the retardation film.
  • the reverse wavelength dispersion means a property that the absolute value of the in-plane retardation becomes larger as the wavelength becomes longer.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured by making light of wavelength ⁇ nm incident in the film normal direction in KOBRAB21ADH or WR (trade name, manufactured by Oji Scientific Instruments).
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (if there is no slow axis, it is arbitrary in the film plane)
  • the light is incident at a wavelength of ⁇ nm in 10 ° steps from the normal direction to 50 ° on one side with respect to the normal direction of the film (with the direction of the rotation axis as the rotation axis), and a total of 6 points are measured. It is calculated in KOBRA 21ADH or WR based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index of the slow axis in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz represents the refractive index in the direction orthogonal to nx and ny.
  • d represents the film thickness of the film.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ), from ⁇ 50 ° to + 50 ° with respect to the film normal direction with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis)
  • the light of wavelength ⁇ nm is incident from each inclined direction in 10 ° steps and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or Calculated by WR.
  • nx, ny, and nz are calculated in KOBRA 21ADH or WR.
  • Nz (nx ⁇ nz) / (nx ⁇ ny) is further calculated from the calculated nx, ny, and nz.
  • the A plate and the C plate are defined as follows. There are two types of A plates, positive A plate (positive A plate) and negative A plate (negative A plate), and the slow axis in the film plane (direction in which the refractive index in the plane is maximum).
  • the positive A plate satisfies the relationship of the formula (A1) where nx is the refractive index of nx, ny is the refractive index in the direction perpendicular to the in-plane slow axis, and nz is the refractive index in the thickness direction.
  • the negative A plate satisfies the relationship of the formula (A2).
  • the positive A plate shows a positive value for Rth
  • the negative A plate shows a negative value for Rth.
  • the positive C plate satisfies the relationship of the formula (C1), and the negative C plate is The relationship of Formula (C2) is satisfied.
  • the positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
  • Formula (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means, for example, (nx ⁇ ny) ⁇ d (where d is the thickness of the film), but 0 to 10 nm, preferably 0 to 5 nm is also included in “nx ⁇ ny” It is.
  • the retardation film of the present invention can provide a desired effect by including an optically anisotropic layer exhibiting predetermined optical characteristics. More specifically, as will be described in detail later, the optically anisotropic layer A is an optically anisotropic layer exhibiting so-called reverse wavelength dispersion, and the optically anisotropic layer B exhibits so-called forward wavelength dispersion. It is an optically anisotropic layer, and a desired effect can be obtained by laminating them. In addition, this inventor has discovered that the image nonuniformity is related to the planar property of retardation film.
  • the optically anisotropic layer used in this retardation film can be made thinner because of its optical characteristics than a conventional broadband ⁇ / 4 plate in which a ⁇ / 4 plate and a ⁇ / 2 plate are laminated, As a result, it is presumed that the surface characteristics are improved and image unevenness is suppressed.
  • the retardation film 10 includes an optically anisotropic layer A (12) and an optically anisotropic layer B (14).
  • the retardation film 10 as a whole has the characteristics of a so-called ⁇ / 4 plate (a retardation film that expresses a 1 ⁇ 4 retardation value for each wavelength of light).
  • ⁇ / 4 plate a retardation film that expresses a 1 ⁇ 4 retardation value for each wavelength of light.
  • the retardation film is a laminate including at least the optically anisotropic layer A and the optically anisotropic layer B.
  • each layer constituting the retardation film will be described in detail.
  • the optically anisotropic layer A is an optically anisotropic layer that has a positive retardation RthA in the thickness direction at a wavelength of 550 nm and satisfies the relationships of formulas (A-1) to (A-3) described later. .
  • the optically anisotropic layer A preferably corresponds to a so-called positive A plate.
  • the retardation RthA in the thickness direction at a wavelength of 550 nm of the optically anisotropic layer A is larger than 0. So-called positive Rth is shown.
  • the RthA value only needs to be positive, but the display performance of the image display device is more excellent.
  • the difference in tint between viewing from the front direction and viewing from an oblique direction is smaller (that is, viewing angle characteristics). Is more preferably 0 to 120 nm, and more preferably 30 to 100 nm.
  • the optically anisotropic layer A satisfies the relationships of the following formulas (A-1) to (A-3).
  • Formula (A-1) 0.80 ⁇ ReA (450) / ReA (550) ⁇ 1
  • Formula (A-2) 1 ⁇ ReA (650) / ReA (550) ⁇ 1.30
  • Formula (A-3) 100 nm ⁇ ReA (550) ⁇ 200 nm ReA (450), ReA (550), and ReA (650) represent in-plane retardation values of the optically anisotropic layer A at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the optically anisotropic layer A is expressed by the formula (A) in that at least one of the difference in color tone between cases is smaller (hereinafter also referred to simply as “the point where the effect of the present invention is more excellent”). -1-1) is preferably satisfied, and it is more preferable that the formula (A-1-2) is satisfied.
  • the optically anisotropic layer A preferably satisfies the formula (A-2-1), and more preferably satisfies the formula (A-2-2).
  • the optically anisotropic layer A preferably satisfies the formula (A-3-1), and more preferably satisfies the formula (A-3-2).
  • Formula (A-3-1) 120 nm ⁇ ReA (550) ⁇ 200 nm
  • Formula (A-3-2) 140 nm ⁇ ReA (550) ⁇ 190 nm
  • the thickness of the optically anisotropic layer A is not particularly limited, but is preferably 0.1 to 80 ⁇ m and more preferably 0.1 to 70 ⁇ m from the viewpoint of thinning.
  • the said thickness intends average thickness, measures the thickness of the arbitrary 5 points
  • the optically anisotropic layer A preferably contains a liquid crystal compound. More specifically, the optically anisotropic layer A preferably corresponds to a layer containing a homogeneously aligned rod-like liquid crystal compound.
  • the homogeneous alignment refers to an alignment state in which the long axis direction formed by the rod-like liquid crystal compound is parallel to the surface. However, it may be made of other materials as long as predetermined characteristics such as the in-plane retardation value described above are satisfied. For example, you may form from the polymer film (especially the polymer film to which the extending
  • the optically anisotropic layer A for example, an optically anisotropic layer obtained by forming a low-molecular liquid crystal compound in a nematic alignment in a liquid crystal state and then fixing by photocrosslinking or thermal crosslinking, and Examples thereof include an optically anisotropic layer obtained by fixing the alignment by forming a polymer liquid crystal compound in a nematic alignment in a liquid crystal state and then cooling.
  • the optically anisotropic layer is, for example, a layer formed by fixing a liquid crystal compound by polymerization or the like, and it is no longer necessary to exhibit liquid crystallinity after becoming a layer.
  • liquid crystal compounds can be classified into rod-shaped types (rod-shaped liquid crystal compounds) and disk-shaped types (discotic liquid crystal compounds, disk-shaped liquid crystal compounds) based on their shapes. Furthermore, there are low-molecular and high-molecular types, respectively.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used. Two or more kinds of rod-like liquid crystal compounds, two or more kinds of discotic liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a discotic liquid crystal compound may be used.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • the discotic liquid crystal compound for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used, but are not limited thereto.
  • the optically anisotropic layer A preferably contains a rod-like liquid crystalline compound, and the major axis of the rod-like liquid crystalline compound is substantially horizontal to the film surface (optically anisotropic layer surface). .
  • the rod-like liquid crystal compound being substantially horizontal means that the angle formed by the transparent support surface (optically anisotropic layer B surface) and the director of the rod-like liquid crystal compound is in the range of 0 ° to 20 °. 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
  • the optically anisotropic layer A uses a liquid crystal compound (a rod-like liquid crystal compound or a discotic liquid crystal compound) having a reactive group (preferably a polymerizable group) since the temperature change and / or humidity change of optical characteristics can be reduced. It is more preferable to form them.
  • the number of reactive groups in the liquid crystal compound is not particularly limited, but is preferably 2 or more.
  • the liquid crystal compound may be a mixture of two or more. That is, the optically anisotropic layer A is preferably a layer formed by fixing a polymerizable liquid crystal compound (a rod-like liquid crystal compound having a polymerizable group or a discotic liquid crystal compound) by polymerization.
  • the kind of the polymerizable group contained in the rod-like liquid crystal compound or the discotic liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, or an allyl group is preferable, and a (meth) acryloyl group is more preferable.
  • the (meth) acryloyl group is a concept including both a methacryloyl group and an acryloyl group.
  • liquid crystal compound contained in the optically anisotropic layer A is a compound represented by the following general formula (I).
  • L 1 -G 1 -D 1 -Ar-D 2 -G 2 -L 2 General formula (I)
  • D 1 and D 2 are each independently —CO—O—, —O—CO—, —C ( ⁇ S) O—, —O—C ( ⁇ S) —, —CR 1 R 2.
  • Q 1 represents —S—, —O—, or NR 11 —
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms
  • Z 1 , Z 2 , and Z 3 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a monovalent carbon number of 6
  • Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring.
  • R 12 and R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • a 1 and A 2 each independently represents a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and —CO—;
  • Ax has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
  • Ay is a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or a group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the organic groups represented by L 1 and L 2 are each particularly preferably a group represented by —D 3 —G 3 —Sp—P 3 .
  • D 3 is synonymous with D 1 .
  • G 3 represents a single bond, a divalent aromatic or heterocyclic group having 6 to 12 carbon atoms, or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and the above alicyclic hydrocarbon group
  • the methylene group contained in may be substituted with —O—, —S—, —NR 7 —, wherein R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a generally known radical polymerizable group can be used, and preferable examples include acryloyl group and methacryloyl group.
  • the acryloyl group is generally fast in the polymerization rate, and the acryloyl group is preferable from the viewpoint of productivity improvement, but the methacryloyl group is also used as the polymerizable group of the highly birefringent liquid crystal. be able to.
  • cationic polymerizable group generally known cationic polymerizable can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and And vinyloxy groups.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferable.
  • particularly preferred polymerizable groups include the following.
  • liquid crystal compound contained in the optically anisotropic layer A a polymerizable compound described in International Publication No. 2012/147904 is also exemplified.
  • an optically anisotropic layer forming composition containing a liquid crystal compound having a polymerizable group (hereinafter also simply referred to as “composition”) is applied to a predetermined substrate (including a temporary substrate) to form a coating film.
  • the optically anisotropic layer A can be produced by subjecting the obtained coating film to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment).
  • a curing treatment ultraviolet irradiation (light irradiation treatment) or heat treatment.
  • the composition can be applied by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method).
  • the composition may contain a component other than the liquid crystal compound described above.
  • the composition may contain a polymerization initiator.
  • the polymerization initiator used is selected according to the type of the polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • examples of photopolymerization initiators include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and p-aminophenyl ketones. Is mentioned.
  • the amount of the polymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid content of the composition.
  • the composition may contain a polymerizable monomer from the viewpoint of the uniformity of the coating film and the strength of the film.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds.
  • it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the above-described polymerizable group-containing liquid crystal compound. Examples thereof include those described in paragraphs [0018] to [0020] in JP-A No. 2002-296423.
  • the amount of the polymerizable monomer used is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass with respect to the total mass of the liquid crystal compound.
  • the composition may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film.
  • a surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A No. 2001-330725, and those described in paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212 are described. Compounds.
  • the composition may contain a solvent, and an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the composition may contain various alignment agents such as a vertical alignment accelerator and a horizontal alignment accelerator. Furthermore, the composition may contain an adhesion improving agent, a plasticizer, or a polymer in addition to the above components.
  • optically anisotropic layer B is an optically anisotropic layer that has a thickness direction retardation RthB of less than 0 at a wavelength of 550 nm and satisfies the relationships of formulas (B-1) to (B-3) described later.
  • the optically anisotropic layer B preferably corresponds to a so-called negative A plate.
  • the thickness direction retardation RthB of the optically anisotropic layer B at a wavelength of 550 nm is smaller than zero. So-called negative Rth is shown.
  • the value of RthB may be negative, but is preferably ⁇ 80 nm or more and less than 0 nm, and more preferably ⁇ 50 to ⁇ 5 nm, from the viewpoint of better display performance (particularly viewing angle characteristics) of the image display device.
  • the optically anisotropic layer B satisfies the relationships of the following formulas (B-1) to (B-3).
  • Formula (B-1) 1.08 ⁇ ReB (450) / ReB (550) ⁇ 1.30
  • Formula (B-2) 0.90 ⁇ ReB (650) / ReB (550) ⁇ 0.97
  • Formula (B-3) 0 ⁇ ReB (550) ⁇ 50 nm ReB (450), ReB (550), and ReB (650) represent in-plane retardation values of the optically anisotropic layer B at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the optically anisotropic layer B preferably satisfies the formula (B-1-1), and more preferably satisfies the formula (B-1-2), in that the effect of the present invention is more excellent.
  • Formula (B-1-1) 1.10 ⁇ ReB (450) / ReB (550) ⁇ 1.30
  • Formula (B-1-2) 1.12 ⁇ ReB (450) / ReB (550) ⁇ 1.30
  • the optically anisotropic layer B preferably satisfies the formula (B-2-1), and more preferably satisfies the formula (B-2-2).
  • the optically anisotropic layer B preferably satisfies the formula (B-3-1), and more preferably satisfies the formula (B-3-2).
  • Formula (B-3-1) 5 ⁇ ReB (550) ⁇ 50 nm
  • the thickness of the optically anisotropic layer B is not particularly limited, but is preferably 0.05 to 10 ⁇ m and more preferably 0.1 to 5 ⁇ m from the viewpoint of thinning.
  • the said thickness intends average thickness, measures the thickness of the arbitrary 5 points
  • the material constituting the optically anisotropic layer B examples include liquid crystal compounds.
  • the liquid crystal compound are as described above.
  • the optically anisotropic layer B preferably contains a discotic liquid crystal compound, and the disc surface of the discotic liquid crystal compound is preferably substantially perpendicular to the film surface (optically anisotropic layer surface).
  • the optically anisotropic layer B is preferably a layer containing a substantially vertically aligned discotic liquid crystal compound in that the display performance of the image display device is more excellent.
  • the optically anisotropic layer B has a reactive group (preferably a polymerizable group) because it can reduce the temperature change and / or humidity change of the optical characteristics. More preferably, a liquid crystal compound (a rod-like liquid crystal compound or a discotic liquid crystal compound) is used. That is, the optically anisotropic layer B is preferably a layer formed by fixing a polymerizable liquid crystal compound (a rod-like liquid crystal compound having a polymerizable group or a discotic liquid crystal compound) by polymerization. The production procedure of the layer is the same as that of the optically anisotropic layer A.
  • the retardation film may contain other layers other than the optically anisotropic layer A and the optically anisotropic layer B described above.
  • the retardation film 100 may include a subsequent optically anisotropic layer C (16).
  • the optically anisotropic layer C (16) is disposed on the lowermost side in the drawing, but the position of the optically anisotropic layer C (16) is not particularly limited, and is different from that of the optically anisotropic layer A (12). It may be on the surface opposite to the optically anisotropic layer B (14) side of the optically anisotropic layer A (12) with the isotropic layer B (14).
  • the optically anisotropic layer C has a thickness direction retardation RthC of less than 0 at a wavelength of 550 nm. So-called negative Rth is shown.
  • the value of RthC may be negative, but is preferably ⁇ 150 nm or more and less than 0 nm, and more preferably ⁇ 100 to ⁇ 20 nm, from the viewpoint that the display performance (particularly viewing angle characteristics) of the image display device is more excellent.
  • the in-plane retardation ReC (550) at a wavelength of 550 nm satisfies the relationship of the following formula (C-1).
  • Formula (C-1) 0 ⁇ ReC (550) ⁇ 10 nm
  • it is preferable that the relationship of the following formula (C-2) is satisfied in that the effect of the present invention is more excellent.
  • Formula (C-2) 0 ⁇ ReC (550) ⁇ 5 nm
  • the thickness of the optically anisotropic layer C is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m from the viewpoint of thinning.
  • the said thickness intends average thickness, measures the thickness of the arbitrary 5 points
  • the optically anisotropic layer C is preferably formed from a composition containing a liquid crystal compound.
  • the definition of the liquid crystal compound is as described above.
  • the optically anisotropic layer C has a reactive group (preferably a polymerizable group) because it can reduce the temperature change and / or humidity change of the optical characteristics.
  • a liquid crystal compound a rod-like liquid crystal compound or a discotic liquid crystal compound
  • the optically anisotropic layer C is preferably a layer formed by fixing a polymerizable liquid crystal compound (a rod-like liquid crystal compound having a polymerizable group or a discotic liquid crystal compound) by polymerization. The production procedure of the layer is the same as that of the optically anisotropic layer A.
  • the retardation film may include an alignment film having a function of defining the alignment direction of the liquid crystal compound.
  • the alignment film generally contains a polymer as a main component.
  • the polymer material for alignment film is described in many documents, and many commercially available products can be obtained.
  • the polymer material used is preferably polyvinyl alcohol or polyimide, and derivatives thereof.
  • modified or unmodified polyvinyl alcohol is preferred.
  • modified polyvinyl alcohol described in WO01 / 88574A1, page 43, line 24 to page 49, line 8 or patent No. 3907735, paragraphs [0071] to [0095] is used. You can refer to it.
  • the alignment film is usually subjected to a known rubbing treatment. That is, the alignment film is usually preferably a rubbing alignment film that has been rubbed.
  • the thickness of the alignment film is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m, and still more preferably 0.01 to 0.8 ⁇ m. Moreover, you may arrange
  • ⁇ Phase difference film> The retardation film including the optically anisotropic layer A and the optically anisotropic layer B described above satisfies the relationship of the formula (X-1) and the formula (X-2).
  • Formula (X-2) 1.02 ⁇ ReX (650) / ReX (550) ⁇ 1.30 ReX (450), ReX (550), and ReX (650) represent in-plane retardation values of the retardation film at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm, respectively.
  • the retardation film preferably satisfies the formula (X-1-1), and more preferably satisfies the formula (X-1-2), in that the effect of the present invention is more excellent.
  • Formula (X-1-1) 0.80 ⁇ ReX (450) / ReX (550) ⁇ 0.84
  • Formula (X-1-2) 0.81 ⁇ ReX (450) / ReX (550) ⁇ 0.83
  • the retardation film preferably satisfies the formula (X-2-1) and more preferably satisfies the formula (X-2-2) from the viewpoint that the effects of the present invention are more excellent.
  • Formula (X-2-1) 1.02 ⁇ ReX (650) / ReX (550) ⁇ 1.27
  • Formula (X-2-2) 1.02 ⁇ ReX (650) / ReX (550) ⁇ 1.24
  • the retardation film is characterized in that the in-plane retardation of the retardation film is ReX (450) ⁇ ReX (550) ⁇ ReX (650). That is, the retardation film exhibits reverse wavelength dispersion for in-plane retardation.
  • the angle formed by the slow axis (slow axis direction) of the optically anisotropic layer A and the slow axis (slow axis direction) of the optically anisotropic layer B is 90 ° ⁇ 10 °.
  • 90 ° ⁇ 8 ° is preferable, and 90 ° ⁇ 5 ° is more preferable.
  • the retardation in the thickness direction of the retardation film at a wavelength of 550 nm is not particularly limited, but is preferably ⁇ 80 to 100 nm, more preferably ⁇ 40 to 80 nm in terms of more excellent effects of the present invention.
  • the difference between the in-plane retardation ReA (550) of the optically anisotropic layer A at a wavelength of 550 nm and the in-plane retardation ReB (550) of the optically anisotropic layer B at a wavelength of 550 nm ( ReA (550) -ReB (550)) is preferably from 110 to 170 nm, more preferably from 120 to 160 nm, from the viewpoint that the effects of the present invention are more excellent.
  • the circularly polarizing film of the present invention has the above-described retardation film and polarizing layer. More specifically, as shown in FIG. 3, the circularly polarizing film 20 includes a retardation film 10 and a polarizing layer 22.
  • the optical anisotropic layers are arranged in the order of the optical anisotropic layer A (12) and the optical anisotropic layer B (14) from the polarizing layer 22 side.
  • the arrangement order of the optically anisotropic layers is not limited to this configuration.
  • the optical anisotropic layer B and the optical anisotropic layer A may be arranged in this order from the polarizing layer side.
  • the angle formed by the slow axis (slow axis direction) of the optically anisotropic layer A and the absorption axis (absorption axis direction) of the polarizing layer is 45 ° ⁇ 10 °, and the effect of the present invention is more excellent. In this respect, 45 ° ⁇ 8 ° is preferable, and 45 ° ⁇ 5 ° is more preferable.
  • the configuration of the retardation film is as described above. Hereinafter, the polarizing layer will be described in detail.
  • the polarizing layer may be a so-called linear polarizer (linear polarizing layer) having a function of converting natural light into specific linearly polarized light.
  • linear polarizer linear polarizing layer
  • An absorption type polarizer absorption type polarizing layer
  • the type of the polarizing layer is not particularly limited, and a commonly used polarizing layer can be used.
  • an iodine polarizing film, a dye polarizing film using a dichroic dye (dichroic organic dye), Any of the polyene polarizing films can be used.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
  • the thickness of the polarizing layer is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less from the viewpoint of thinning.
  • the thickness of the polarizing layer is usually 1 ⁇ m or more and preferably 5 ⁇ m or more.
  • the circularly polarizing film of the present invention may further have a transparent protective film. More specifically, as shown in FIG. 4, the circularly polarizing film 200 includes a retardation film 10, a polarizing layer 22, and a transparent protective film 24. In addition, as shown in FIG. 4, it is preferable that the transparent protective film 24 is arrange
  • the type of the transparent protective film is not particularly limited, and may be, for example, a so-called transparent resin support or a hard coat layer, or a laminate of the transparent resin support and the hard coat layer. A laminate including a hard coat layer is preferred. A known transparent resin support can be used as the transparent resin support.
  • the transparent resin support for example, a cellulose polymer typified by triacetyl cellulose, a thermoplastic norbornene resin (ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., ARTON manufactured by JSR Co., Ltd., etc.) Acrylic resin or polyester resin can be used.
  • the transparent protective film may be bonded to the polarizing layer via an adhesive layer or an adhesive layer.
  • the circularly polarizing film may contain other layers other than the retardation film, polarizing layer, and transparent protective film.
  • a functional layer may be further included.
  • the functional layer include an antireflection layer and an antiglare layer. A known layer material is used for these. Note that a plurality of these layers may be stacked.
  • the thickness (total thickness) of the circularly polarizing film is not particularly limited, but is preferably 100 ⁇ m or less, and preferably 80 ⁇ m or less from the viewpoint of further thinning the apparatus.
  • the lower limit is not particularly limited, but is usually 20 ⁇ m or more in many cases.
  • the said thickness intends average thickness, measures the thickness of arbitrary 5 points
  • the circularly polarizing film can be applied to various applications, and among them, it can be suitably used as an antireflection plate. That is, the image display device of the present invention has the image display panel and the circularly polarizing film of the present invention as an antireflection layer on the image display panel. In addition, a circularly-polarizing film is arrange
  • the image display panel in the image display device is not particularly limited. For example, a liquid crystal display panel including a liquid crystal layer, an organic EL panel including an organic EL layer (organic EL display panel), or a plasma display panel. There may be.
  • an antireflection plate made of the circularly polarizing film of the present invention can be used on the light extraction surface side of the organic EL display device.
  • the organic EL display device includes a circularly polarizing film and an organic EL panel (organic EL element), and the polarizing layer, the retardation film, and the organic EL panel are arranged in this order from the viewing side.
  • external light becomes linearly polarized light by the polarizing layer and then becomes circularly polarized light by passing through the retardation film.
  • the circularly polarized state is reversed, and when it passes through the retardation film again, it becomes linearly polarized light inclined by 90 ° from the incident and reaches the polarizing layer to be absorbed. Is done. As a result, the influence of external light can be suppressed.
  • Example 1 ⁇ Preparation of reverse wavelength dispersive optically anisotropic layer (X)> (Formation of alignment film A)
  • TD80UL manufactured by FUJIFILM Corporation
  • a dielectric heating roll having a temperature of 60 ° C.
  • the cellulose acylate film surface temperature was raised to 40 ° C.
  • an alkaline solution having the composition shown below was applied to the band surface of the cellulose acylate film at a coating amount of 14 ml / m 2 using a bar coater.
  • the cellulose acylate film coated with the alkaline solution was conveyed for 10 seconds under a steam far infrared heater manufactured by Noritake Company Limited, heated to 110 ° C. Subsequently, using a bar coater, 3 ml / m 2 of pure water was applied onto the obtained cellulose acylate film. Next, the obtained cellulose acylate film was washed with a fountain coater and drained with an air knife three times. Then, the obtained cellulose acylate film was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acylate film.
  • An alignment film A coating solution having the following composition was continuously applied to the surface of the cellulose acylate film subjected to the alkali saponification treatment with a # 14 wire bar.
  • the cellulose acylate film coated with the alignment film A coating solution was dried with warm air at 60 ° C. for 60 seconds and further with warm air at 100 ° C. for 120 seconds to obtain alignment film A.
  • composition of coating solution for alignment film A Polyvinyl alcohol-1 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde (crosslinking agent) 0.5 parts by weight Citrate ester (manufactured by Sankyo Chemical Co., Ltd.) 0.175 parts by weight ⁇
  • An optically anisotropic layer X coating solution containing a reverse wavelength-dispersible liquid crystal compound having the following composition was coated on the alignment film A produced above.
  • the conveyance speed of the film was 26 m / min.
  • the film coated with the optically anisotropic layer X coating solution was heated with hot air at 100 ° C. for 60 seconds in order to dry the solvent of the coating solution and to mature the alignment of the liquid crystal compound.
  • the obtained film was irradiated with UV (ultraviolet rays) of 300 mJ / cm 2 at 60 ° C. to fix the orientation of the liquid crystal compound, and an optically anisotropic layer X was produced.
  • the thickness of the optically anisotropic layer X was 1.8 ⁇ m.
  • the average inclination angle of the liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface.
  • the angle of the slow axis was orthogonal to the rotational axis of the rubbing roller, and was 135 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer X could be peeled from the alignment film A.
  • composition of coating solution for optically anisotropic layer X Reverse wavelength dispersible liquid crystal compound-1 100 parts by mass photopolymerization initiator (Irgacure 907, manufactured by BASF) 3.0 parts by mass fluorine-containing compound (F-1) 0.2 parts by mass fluorine-containing compound (F-2) 0. 4 parts by weight methyl ethyl ketone 414 parts by weight -------------------------
  • An optically anisotropic layer W coating liquid containing a discotic liquid crystal (forward wavelength dispersion) compound having the following composition was coated on the alignment film A produced above.
  • the conveyance speed of the film was 26 m / min.
  • the film coated with the optically anisotropic layer W coating solution was heated with warm air of 120 ° C. for 90 seconds for drying the solvent of the coating solution and orientation ripening of the discotic liquid crystal compound. Thereafter, the obtained film was irradiated with UV (ultraviolet rays) of 300 mJ / cm 2 at 80 ° C. to fix the orientation of the liquid crystal compound, and the optically anisotropic layer W was produced.
  • the thickness of the optically anisotropic layer W was 0.5 ⁇ m.
  • the average tilt angle of the disc surface of the discotic liquid crystal compound with respect to the film surface was 90 °, and it was confirmed that the discotic liquid crystal compound was aligned perpendicular to the film surface.
  • the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller, and was 45 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer W could be peeled from the alignment film A.
  • composition of coating solution for optically anisotropic layer W ⁇ The following discotic liquid crystal compound 91 parts by mass ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 5 parts by mass photopolymerization initiator (Irgacure 907, manufactured by BASF) 3 parts by mass sensitization Agent (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass
  • the following pyridinium salt 0.5 part by mass fluorinated compound (F-1) 0.2 part by mass fluorinated compound (F-3) 0.1 mass Methyl ethyl ketone 552 parts by mass ⁇
  • outer layer cellulose acylate dope 1 10 parts by mass of the matting agent dispersion 1 having the following composition was added to the core layer cellulose acylate dope 1 (90 parts by mass) to prepare an outer layer cellulose acylate dope 1.
  • Matting agent dispersion 1 Silica particles having an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass Methylene chloride (first solvent) 76 parts by mass Methanol (second solvent) 11 parts by mass Core layer cellulose acylate dope 1 part by mass --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • the following hard coat curable composition 1 was prepared as a coating solution for forming a hard coat layer.
  • the curable composition for hard coat 1 was applied onto the surface of the polarizing plate protective film 01 produced above. Thereafter, the polarizing plate protective film 01 on which the hard coat curable composition 1 was applied was dried at 100 ° C. for 60 seconds, and UV light was applied at 1.5 kW and 300 mJ / cm 2 under the condition of 0.1% or less of nitrogen.
  • the curable composition for hard coat 1 on the polarizing plate protective film 01 was irradiated and cured to prepare a polarizing plate protective film 01 with a hard coat layer having a hard coat layer having a thickness of 5 ⁇ m.
  • Example 2 Production of Polarizing Layer According to Example 1 of Japanese Patent Application Laid-Open No. 2001-141926, a circumferential speed difference was given between two pairs of nip rolls, and the longitudinal direction was stretched to produce a polarizing layer 1 having a width of 1330 mm and a thickness of 15 ⁇ m. . 3) Bonding
  • the polarizing layer 1 and the polarizing plate protective film 01 with a hard coat layer subjected to saponification treatment are roll-to-rolled using a 3% aqueous solution of polyvinyl alcohol (PVA) (manufactured by Kuraray Co., Ltd., PVA-117H) as an adhesive.
  • PVA polyvinyl alcohol
  • a polarizing plate 01 with a single-sided protective film was prepared by laminating with a roll. At this time, it bonded together so that the cellulose acylate film side of a polarizing plate protective film might become the polarizing layer 1 side.
  • the cellulose acylate film and the alignment film A were peeled from the obtained film, and then a pressure-sensitive adhesive layer (thickness 10 ⁇ m) was continuously bonded onto the optically anisotropic layer X. Subsequently, the produced cellulose acylate film, the alignment film A, and the film having the optically anisotropic layer W were continuously bonded so that the pressure-sensitive adhesive layer and the optically anisotropic layer W were in close contact with each other. Thereafter, the cellulose acylate film and the alignment film A were peeled from the obtained film.
  • stacked in this order on the polarizing plate 01 with a single-sided protective film was produced.
  • the width direction of the circularly polarizing film is 0 ° (the longitudinal direction is 90 °)
  • the polarizing axis 1 has an absorption axis of 90 ° when viewed from the protective film side of the polarizing plate 01 with a single-side protective film, and is optically anisotropic.
  • the slow axis of the optical layer X was 135 °
  • the slow axis of the optically anisotropic layer W was 45 °.
  • Example 2 ⁇ Preparation of reverse wavelength dispersive optically anisotropic layer (Y)>
  • the alignment film A produced on the cellulose acylate film was continuously rubbed.
  • the longitudinal direction of the long film and the transport direction are parallel, and the angle formed by the film longitudinal direction and the rotation axis of the rubbing roller was 45 ° (the film width direction was 0 ° and the film longitudinal direction was 90 °).
  • the rotation axis of the rubbing roller is 45 ° when the film is observed from the alignment film A side and the clockwise direction is expressed as a positive value with reference to the film width direction.
  • optically anisotropic layer Y coating liquid containing a reverse wavelength-dispersible liquid crystal compound having the following composition was applied on the prepared alignment film A.
  • the conveyance speed of the film was 26 m / min.
  • the film coated with the optically anisotropic layer Y coating solution was heated with warm air at 120 ° C. for 60 seconds in order to dry the solvent of the coating solution and to mature the alignment of the liquid crystal compound.
  • the obtained film was irradiated with UV (ultraviolet rays) of 300 mJ / cm 2 at 70 ° C. to fix the orientation of the liquid crystal compound, and an optically anisotropic layer Y was produced.
  • the thickness of the optically anisotropic layer Y was 1.6 ⁇ m.
  • the average inclination angle of the liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface.
  • the angle of the slow axis was orthogonal to the rotational axis of the rubbing roller, and was 135 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer Y could be peeled from the alignment film A.
  • composition of coating solution for optically anisotropic layer Y ⁇ 100 parts by mass photopolymerization initiator (Irgacure 819, manufactured by BASF) 3.0 parts by mass fluorine-containing compound (F-1) 0.2 parts by mass fluorine-containing compound (F-2) 0. 4 parts by mass chloroform 588 parts by mass ⁇
  • Example 3 ⁇ Preparation of reverse wavelength dispersive optically anisotropic layer (Z)> According to the method described in Example 4 of JP2012-150477A, an optically anisotropic layer Z having a reverse wavelength dispersion composed of a polycarbonate copolymer was produced.
  • ⁇ Lamination of polarizing plate, optically anisotropic layer W '' and optically anisotropic layer Z> In the same manner as in Example 1, a polarizing plate 01 with a single-side protective film was prepared, and a pressure-sensitive adhesive layer (thickness 10 ⁇ m) was continuously bonded to the polarizing layer 1 side (side without a protective film). Subsequently, the produced cellulose acylate film, the alignment film A and the optically anisotropic layer W ′′ are continuously adhered so that the pressure-sensitive adhesive layer and the optically anisotropic layer W ′′ are in close contact with each other. Pasted together.
  • the cellulose acylate film and the alignment film A were peeled from the obtained film, and then a pressure-sensitive adhesive layer (thickness 10 ⁇ m) was continuously bonded onto the optically anisotropic layer W ′′.
  • the produced optically anisotropic layer Z was bonded so as to be in close contact with the pressure-sensitive adhesive layer.
  • the laminate of the long polarizing plate and the optically anisotropic layer W ′′ and the long optically anisotropic layer Z were bonded to each other after being punched into a sheet having an appropriate size.
  • the absorption axis of the polarizing layer 1 is 90 °
  • the slow axis of the optically anisotropic layer Z is 135 ° and the optically anisotropic layer W ′′.
  • the slow axis of was 45 °.
  • Example 4 ⁇ Preparation of optically anisotropic layer (P)>
  • an alignment film A was produced on a cellulose acylate film.
  • An optically anisotropic layer P coating liquid containing a liquid crystal compound having the following composition was coated on the alignment film A.
  • the conveyance speed of the film was 26 m / min.
  • the film coated with the optically anisotropic layer P coating solution was heated with hot air at 80 ° C. for 60 seconds for drying the solvent of the coating solution and aging the alignment of the liquid crystal compound. Thereafter, the obtained film was irradiated with UV (ultraviolet rays) of 300 mJ / cm 2 at 60 ° C.
  • an optically anisotropic layer P was produced.
  • the thickness of the optically anisotropic layer P was 0.5 ⁇ m.
  • the average inclination angle of the liquid crystal compound with respect to the film surface was 90 °, and it was confirmed that the liquid crystal compound was aligned perpendicular to the film surface.
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer P could be peeled from the alignment film A.
  • Rod-shaped liquid crystal compound (I) 80 parts by mass Rod-shaped liquid crystal compound (II) 20 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by BASF) 3 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 mass Fluorine compound (F-4) 0.4 parts by mass
  • the above pyridinium salt 1 part by mass Methyl ethyl ketone 272 parts by mass ⁇ ⁇
  • the pressure-sensitive adhesive layer and the optically anisotropic layer P were continuously bonded so as to be in close contact with each other. Thereafter, the cellulose acylate film and the alignment film A were peeled from the obtained film. In this way, a long circular polarizing film in which the optically anisotropic layer X, the optically anisotropic layer W, and the optically anisotropic layer P are laminated in this order on the polarizing plate 01 with a single-side protective film is produced. did.
  • the polarizing axis 1 has an absorption axis of 90 ° when viewed from the protective film side of the polarizing plate 01 with a single-side protective film, and is optically anisotropic.
  • the slow axis of the optical layer X was 135 °
  • the slow axis of the optically anisotropic layer W was 45 °.
  • the polarizing axis 1 has an absorption axis of 90 ° when viewed from the protective film side of the polarizing plate 01 with a single-side protective film, and is optically anisotropic.
  • the slow axis of the photosensitive layer X ′ was 135 °.
  • An optically anisotropic layer R coating solution containing a rod-like liquid crystal (forward wavelength dispersible) compound having the following composition was coated on the prepared alignment film A.
  • the conveyance speed of the film was 26 m / min.
  • the film coated with the optically anisotropic layer R coating solution is heated with 130 ° C. warm air for 90 seconds, followed by 80 ° C. warm air for drying of the solvent of the coating solution and orientation ripening of the liquid crystal compound. For 60 seconds. Thereafter, the obtained film was irradiated with UV (ultraviolet rays) of 300 mJ / cm 2 at 60 ° C. to fix the orientation of the liquid crystal compound, and an optically anisotropic layer R was produced.
  • UV ultraviolet
  • the thickness of the optical anisotropic layer R was 0.4 ⁇ m.
  • the average inclination angle of the liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface.
  • the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller, and was 45 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer R could be peeled from the alignment film A.
  • Rod-shaped liquid crystal compound (I) 80 parts by mass Rod-shaped liquid crystal compound (II) 20 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by BASF) 3 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 mass Fluorine compound (F-1) 0.2 parts by mass Fluorine compound (F-2) 0.4 parts by mass Methyl ethyl ketone 272 parts by mass ⁇ ⁇
  • an optically anisotropic layer RH was produced in the same manner except that the thickness was 2.0 ⁇ m.
  • the average inclination angle of the liquid crystal compound with respect to the film surface was 0 °, and it was confirmed that the liquid crystal compound was aligned horizontally with respect to the film surface.
  • the angle of the slow axis was orthogonal to the rotational axis of the rubbing roller, and was 135 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer RH could be peeled from the alignment film A.
  • An optically anisotropic layer WQ was produced in the same manner as in the production of the optically anisotropic layer W of Example 1 except that the thickness was 1.7 ⁇ m.
  • the average tilt angle of the disc surface of the discotic liquid crystal compound with respect to the film surface was 90 °, and it was confirmed that the discotic liquid crystal compound was aligned perpendicular to the film surface.
  • the angle of the slow axis was orthogonal to the rotation axis of the rubbing roller, and was 45 ° when the film width direction was 0 ° (the film longitudinal direction was 90 °).
  • the cellulose acylate film and the alignment film A were in close contact, and the optically anisotropic layer WQ could be peeled from the alignment film A.
  • each single layer of the optically anisotropic layer prepared in the above examples and comparative examples is transferred to the pressure-sensitive adhesive bonded on the glass substrate (the cellulose acylate film and the alignment film A are peeled off), and the phase difference is determined. It was measured. Moreover, regarding the retardation measurement of the optically anisotropic layer laminate (retardation film), each optically anisotropic layer is transferred to the pressure-sensitive adhesive bonded on the glass substrate (the cellulose acylate film and the alignment film A).
  • a pressure-sensitive adhesive is further bonded, and a predetermined optical anisotropic layer is transferred thereon (the cellulose acylate film and the alignment film A are peeled), and the predetermined optical anisotropic layer is laminated.
  • the optically anisotropic layer laminate (retardation film) thus prepared was prepared, and retardation measurement was performed. Using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.), the light incident angle dependency is measured to determine the retardation in the front direction (in-plane retardation) and the retardation in the thickness direction. It was. The results are shown in Table 2.
  • ReX (450)”, “ReX (550)”, and “ReX (650)” in Table 2 represent in-plane retardations of the retardation film at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • “ReX (550)” is an in-plane retardation ReA (550) of the optically anisotropic layer A at a wavelength of 550 nm and an in-plane retardation ReB (550) of the optically anisotropic layer B at a wavelength of 550 nm. This also applies to the difference.
  • “RthX (550)” corresponds to retardation in the thickness direction of the retardation film at a wavelength of 550 nm.
  • the organic EL display device having the circularly polarizing film of the present invention had excellent display quality both in the front direction and in the oblique direction, and had excellent uniformity without unevenness.
  • an organic EL display device satisfying all of the front color, the diagonal color, and the uniformity was not obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、画像表示パネル、特に、有機ELパネルに適用した際に、正面方向からの視認において着色が抑制され、正面方向からの視認した場合と斜め方向から視認した場合との色味差が小さく、かつ、画像ムラを抑制できる、位相差フィルムおよび円偏光フィルム、並びに、円偏光フィルムを有する画像表示装置を提供する。本発明の位相差フィルムは、光学異方性層Aと光学異方性層Bとを含む位相差フィルムであって、光学異方性層Aの波長550nmにおける厚み方向のレターデーションRthAが0より大きく、光学異方性層Aが所定の光学特性を示し、光学異方性層Bの波長550nmにおける厚み方向のレターデーションRthBが0より小さく、光学異方性層Bが所定の光学特性を満たし、光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角が90°±10°である。

Description

位相差フィルム、円偏光フィルム、および、画像表示装置
 本発明は、位相差フィルム、円偏光フィルム、および、画像表示装置に関する。
 従来から、外光反射による悪影響を抑制するために、円偏光フィルムが有機EL(エレクトロルミネッセンス)パネルおよび液晶表示パネルなどの画像表示パネルに使用されている。
 円偏光フィルムとしては、λ/2板およびλ/4板からなる位相差板(いわゆる広帯域のλ/4板)と、偏光層とを組み合わせた円偏光フィルムの使用が提案されている(例えば、特許文献1)。
国際公開第2013/137464号
 一方、近年、画像表示パネルの視認性に関してより一層の向上が求められている。具体的には、正面方向から視認した際に着色がより抑制されること、および、正面方向から視認した際と斜め方向から視認した際との色味差がより小さいことが求められている。
 また、円偏光フィルムを画像表示パネルに適用した際に、画像ムラが少ないことも求められている。
 本発明者は、特許文献1に記載の円偏光フィルムの特性について検討を行ったところ、上記要望をすべて同時には満足することができず、さらなる改良が必要であった。
 そこで、本発明は、上記実情に鑑みて、画像表示パネル、特に、有機ELパネルに適用した際に、正面方向からの視認において着色が抑制され、正面方向から視認した場合と斜め方向から視認した場合との色味差が小さく、かつ、画像ムラを抑制できる、位相差フィルムおよび円偏光フィルムを提供することを課題とする。
 また、本発明は、上記円偏光フィルムを有する画像表示装置を提供することも課題とする。
 本発明者は、従来技術の問題点について鋭意検討した結果、所定の光学特性を満たす位相差フィルムを用いることにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 光学異方性層Aと光学異方性層Bとを含む位相差フィルムであって、
 光学異方性層Aの波長550nmにおける厚み方向のレターデーションRthAが0より大きく、
 光学異方性層Aが以下の式(A-1)~式(A-3)の関係を満たし、
 光学異方性層Bの波長550nmにおける厚み方向のレターデーションRthBが0より小さく、
 光学異方性層Bが以下の式(B-1)~式(B-3)の関係を満たし、
 光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角が90°±10°であり、
 位相差フィルムが式(X-1)および式(X-2)の関係を満たす、位相差フィルム。
式(A-1)  0.80≦ReA(450)/ReA(550)<1
式(A-2)  1<ReA(650)/ReA(550)≦1.30
式(A-3)  100nm≦ReA(550)≦200nm
式(B-1)  1.08≦ReB(450)/ReB(550)≦1.30
式(B-2)  0.90≦ReB(650)/ReB(550)≦0.97
式(B-3)  0<ReB(550)≦50nm
式(X-1)  0.79≦ReX(450)/ReX(550)≦0.85
式(X-2)  1.02≦ReX(650)/ReX(550)≦1.30
なお、ReA(450)、ReA(550)、および、ReA(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける光学異方性層Aの面内レターデーションの値を表す。
また、ReB(450)、ReB(550)、および、ReB(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける光学異方性層Bの面内レターデーションの値を表す。
なお、ReX(450)、ReX(550)、および、ReX(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける位相差フィルムの面内レターデーションの値を表す。
(2) さらに、波長550nmにおける厚み方向のレターデーションRthCが0より小さく、かつ、以下の式(C-1)の関係を満たす光学異方性層Cを含む、(1)に記載の位相差フィルム。
式(C-1)  0≦ReC(550)≦10nm
なお、ReC(550)は、波長550nmにおける光学異方性層Cの面内レターデーションの値を表す。
(3) 光学異方性層Aの波長550nmにおける面内レターデーションReA(550)と、光学異方性層Bの波長550nmにおける面内レターデーションReB(550)との差が、110~170nmである、(1)または(2)に記載の位相差フィルム。
(4) (1)~(3)のいずれかに記載の位相差フィルムと、偏光層とを有し、
 光学異方性層Aの遅相軸と、偏光層の吸収軸とのなす角が45°±10°である、円偏光フィルム。
(5) (4)に記載の円偏光フィルムを有する画像表示装置。
 本発明によれば、画像表示パネル、特に、有機ELパネルに適用した際に、正面方向からの視認において着色が抑制され、正面方向から視認した場合と斜め方向から視認した場合との色味差が小さく、かつ、画像ムラを抑制できる、位相差フィルムおよび円偏光フィルムを提供することができる。
 また、本発明によれば、上記円偏光フィルムを含む画像表示装置を提供することもできる。
本発明の位相差フィルムの一実施態様の断面図である。 本発明の位相差フィルムの他の実施態様の断面図である。 本発明の円偏光フィルムの一実施態様の断面図である。 本発明の円偏光フィルムの他の実施態様の断面図である。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとし、並びに角度について「同一」および「異なる」は、その差が5°未満であるか否かを基準に判断できる。
 また、本明細書では、「可視光」とは、380~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 本明細書において「遅相軸」とは、面内において屈折率が最大となる方向を意味し、「円偏光フィルム」とは、特別な記述がない限り、長尺の円偏光フィルム、および、画像表示装置に組み込まれる大きさに裁断された円偏光フィルムの両者を含む意味で用いている。なお、ここでいう「裁断」には「打ち抜き」および「切り出し」等も含むものとする。
 本明細書において、「傾斜角」(チルト角とも称する)とは、傾斜した液晶化合物が層平面となす角度を意味し、液晶化合物の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度を意味する。従って、正の光学的異方性を持つ棒状液晶化合物では、チルト角は棒状液晶化合物の長軸方向すなわちダイレクター方向と層平面とのなす角度を意味する。また、本発明において、「平均チルト角(平均傾斜角)」とは、位相差フィルムの上界面でのチルト角から下界面までのチルト角の平均値を意味する。
 本明細書において逆波長分散性とは長波長になるほど面内レターデーションの絶対値が大きくなる性質を意味する。
 本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚み方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(商品名、王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
 測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRにおいて算出される。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRにおいて算出される。
 なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の数式(1)および数式(2)によりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。nxは面内における遅相軸の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。dはフィルムの膜厚を表す。
 測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(OPTIC AXIS)がないフィルムの場合には、以下の方法によりRth(λ)が算出される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRにより算出される。
 上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRにおいてnx、ny、nzが算出される。この算出されたnx、ny、nzによりNz=(nx-nz)/(nx-ny)が更に算出される。
 なお、本明細書において、AプレートおよびCプレートは以下のように定義する。
 Aプレートは、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、フィルム面内の遅相軸(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚さ方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
 本発明の位相差フィルムは、所定の光学特性を示す光学異方性層を含むことにより、所望の効果が得られる。より具体的には、後段で詳述するように、光学異方性層Aはいわゆる逆波長分散性を示す光学異方性層であり、光学異方性層Bはいわゆる順波長分散性を示す光学異方性層であり、両者を積層することにより所望の効果が得られる。なお、本発明者は、画像ムラが位相差フィルムの面状特性に関連していることを知見している。本位相差フィルムで使用される光学異方性層は、従来のλ/4板とλ/2板とを積層した広帯域λ/4板よりも、その光学特性のために薄く作製することができ、結果として面状特性を良好にし、画像ムラが抑制されていると推測される。
 以下に、本発明の位相差フィルムの一実施態様について図面を参照して説明する。図1に、本発明の位相差フィルムの一実施態様の断面図を示す。なお、本発明における図は模式図であり、各層の厚みの関係および位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
 位相差フィルム10は、光学異方性層A(12)、および、光学異方性層B(14)が含まれる。後段で詳述するが、位相差フィルム10は、全体として、いわゆるλ/4板(各波長の光に対し、その1/4の位相差値を発現する位相差フィルム)の特性を有する。
 以下、位相差フィルムに含まれる各部材について詳述する。以下では、まず、位相差フィルムについて詳述する。
 位相差フィルムは、光学異方性層Aおよび光学異方性層Bを少なくとも含む積層体である。
 以下、位相差フィルムを構成する各層について詳述する。
<光学異方性層A>
 光学異方性層Aは、波長550nmにおける厚み方向のレターデーションRthAが正の値を示し、後述する式(A-1)~式(A-3)の関係を満たす光学異方性層である。なお、光学異方性層Aは、いわゆるポジティブAプレートに該当することが好ましい。
 光学異方性層Aの波長550nmにおける厚み方向のレターデーションRthAは、0より大きい。いわゆる、正のRthを示す。
 RthAの値は正であればよいが、画像表示装置の表示性能がより優れる、特に、正面方向から視認した場合と斜め方向から視認した場合との色味差がより小さい(つまり、視野角特性がより優れる)点で、0超120nmが好ましく、30~100nmがより好ましい。
 光学異方性層Aは、以下の式(A-1)~(A-3)の関係を満たす。
式(A-1)  0.80≦ReA(450)/ReA(550)<1
式(A-2)  1<ReA(650)/ReA(550)≦1.30
式(A-3)  100nm≦ReA(550)≦200nm
 ReA(450)、ReA(550)、および、ReA(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける光学異方性層Aの面内レターデーションの値を表す。
 なかでも、本位相差フィルムを含む円偏光フィルムを有する画像表示装置を正面方向から視認した際の着色がより抑制される、および、上記画像表示装置を正面方向から視認した場合と斜め方向から視認した場合とでの色味差がより小さい、の少なくともいずれか一方が満たされる点(以後、単に「本発明の効果がより優れる点」とも称する)で、光学異方性層Aは、式(A-1-1)を満たすことが好ましく、式(A-1-2)を満たすことがより好ましい。
式(A-1-1)  0.82≦ReA(450)/ReA(550)≦0.96
式(A-1-2)  0.84≦ReA(450)/ReA(550)≦0.92
 また、本発明の効果がより優れる点で、光学異方性層Aは、式(A-2-1)を満たすことが好ましく、式(A-2-2)を満たすことがより好ましい。
式(A-2-1)  1<ReA(650)/ReA(550)≦1.25
式(A-2-2)  1<ReA(650)/ReA(550)≦1.20
 また、本発明の効果がより優れる点で、光学異方性層Aは、式(A-3-1)を満たすことが好ましく、式(A-3-2)を満たすことがより好ましい。
式(A-3-1)  120nm≦ReA(550)≦200nm
式(A-3-2)  140nm≦ReA(550)≦190nm
 光学異方性層Aの厚みは特に制限されないが、薄型化の点から、0.1~80μmが好ましく、0.1~70μmがより好ましい。
 なお、上記厚みは平均厚みを意図し、光学異方性層Aの任意の5点の厚みを測定し、それらを算術平均したものである。
 光学異方性層Aには液晶化合物が含まれることが好ましい。より具体的には、光学異方性層Aは、ホモジニアス配向した棒状液晶化合物を含む層に該当することが好ましい。上記ホモジニアス配向とは、棒状液晶化合物によって形成される長軸方向が面に対して平行となる配向状態をいう。ただし、上述した面内レターデーション値など所定の特性を満たせば、他の材料で構成されていてもよい。例えば、ポリマーフィルム(特に、延伸処理が施されたポリマーフィルム)から形成されていてもよい。
 より具体的には、光学異方性層Aとしては、例えば、低分子液晶化合物を液晶状態においてネマチック配向に形成後、光架橋または熱架橋によって固定化して得られる光学異方性層、および、高分子液晶化合物を液晶状態においてネマチック配向に形成後、冷却することによって配向を固定化して得られる光学異方性層が挙げられる。なお、本発明では、光学異方性層は、例えば、液晶化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。
 一般的に、液晶化合物はその形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物、円盤状液晶化合物)に分類できる。更に、それぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできる。2種以上の棒状液晶化合物、2種以上のディスコティック液晶化合物、または、棒状液晶化合物とディスコティック液晶化合物との混合物を用いてもよい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報および特開2007-279688号公報に記載のものを好ましく用いることができる。ディスコティック液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報に記載のものを好ましく用いることができるが、これらに限定されない。
 なかでも、光学異方性層Aにおいては、棒状液晶性化合物が含まれ、その棒状液晶性化合物の長軸がフィルム面(光学異方性層面)に対して実質的に水平であることが好ましい。棒状液晶性化合物が実質的に水平とは、透明支持体面(光学異方性層B面)と棒状液晶性化合物のダイレクターとのなす角度が0°~20°の範囲内であることを意味し、0°~10°がより好ましく、0°~5°が更に好ましい。
 光学異方性層Aは、光学特性の温度変化および/または湿度変化を小さくできることから、反応性基(好ましくは、重合性基)を有する液晶化合物(棒状液晶化合物またはディスコティック液晶化合物)を用いて形成することがより好ましい。液晶化合物中における反応性基の数は特に制限されないが、2つ以上が好ましい。また、液晶化合物は2種類以上の混合物でもよい。
 つまり、光学異方性層Aは、重合性液晶化合物(重合性基を有する棒状液晶化合物またはディスコティック液晶化合物)が重合によって固定されて形成された層であることが好ましい。
 棒状液晶化合物またはディスコティック液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、または、アリル基が好ましく挙げられ、(メタ)アクリロイル基がより好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基およびアクリロイル基の両者を包含する概念である。
 光学異方性層Aに含まれる液晶化合物の好適態様の一つとしては、以下一般式(I)で表される化合物が挙げられる。
1-G1-D1-Ar-D2-G2-L2   一般式(I)
 式中、D1およびD2は、それぞれ独立に、-CO-O-、-O-CO-、-C(=S)O-、-O-C(=S)-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-、-CR12-O-CR34-、-CR12-O-CO-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、-CR12-NR3-、-CO-NR1-、または-NR1-CO-を表し、
1、R2、R3、およびR4は、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表し、
1およびG2は、それぞれ独立に炭素数5~8の2価の脂環式炭化水素基を表し、上記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、-N(R6)-で置換されていてもよく、R6は水素原子または炭素数1~6のアルキル基を表し、
1およびL2は、それぞれ独立に、1価の有機基を表し、L1およびL2からなる群から選ばれる少なくとも一方が、重合性基を有する1価の基を表し、
Arは下記一般式(II-1)、(II-2)、(II-3)、または(II-4)で表される2価の芳香環基を表し:
Figure JPOXMLDOC01-appb-C000002
 式(II-1)~(II-4)中、Q1は、-S-、-O-、またはNR11-を表し、
11は、水素原子または炭素数1~6のアルキル基を表し、
1は、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表し、
1、Z2、および、Z3は、それぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213またはSR12を表し、Z1およびZ2は、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表し、
1およびA2は各々独立に、-O-、-NR21-(R21は水素原子または置換基を表す。)、-S-および-CO-からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14~16族の非金属原子を表し、Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
2は、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 一般式(I)で表される化合物の各置換基の定義および好ましい範囲については、特開2012-21068号公報に記載の化合物(A)に関するD1、D2、G1、G2、L1、L2、R1、R2、R3、R4、X1、Y1、Q1、Q2に関する記載をそれぞれD1、D2、G1、G2、L1、L2、R1、R2、R3、R4、X1、およびY1、Z1、Z2について参照できる。また、特開2008-107767号公報に記載の一般式(I)で表される化合物についてのA1、A2、およびXに関する記載をそれぞれA1、A2、およびXについて参照できる。また、WO2013/018526に記載の一般式(I)で表される化合物についてのAx、Ay、Q1に関する記載をそれぞれAx、Ay、Q2について参照できる。また、Z3については2012-21068号公報に記載の化合物(A)に関するQ1に関する記載を参照できる。
 特に、L1、L2で示される有機基としては、それぞれ、特に、-D3-G3-Sp-P3で表される基であることが好ましい。D3は、D1と同義である。G3は、単結合、炭素数6~12の2価の芳香環基もしくは複素環基、または炭素数5~8の2価の脂環式炭化水素基を表し、上記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、-NR7-で置換されていてもよく、ここでR7は水素原子または炭素数1~6のアルキル基を表す。Spは、単結合、-(CH2n-、-(CH2n-O-、-(CH2-O-)n-、-(CH2CH2-O-)m、-O-(CH2n-、-O-(CH2n-O-、-O-(CH2-O-)n-、-O-(CH2CH2-O-)m、-C(=O)-O-(CH2n-、-C(=O)-O-(CH2n-O-、-C(=O)-O-(CH2-O-)n-、-C(=O)-O-(CH2CH2-O-)m、-C(=O)-N(R8)-(CH2n-、-C(=O)-N(R8)-(CH2n-O-、-C(=O)-N(R8)-(CH2-O-)n-、-C(=O)-N(R8)-(CH2CH2-O-)mで表されるスペーサー基を表す。ここで、nは2~12の整数を表し、mは2~6の整数を表し、R8は水素原子または炭素数1~6のアルキル基を表す。P3は重合性基を示す。
 重合性基は特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイル基またはメタアクリロイル基を挙げることができる。この場合、重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の観点からアクリロイル基が好ましいが、メタアクリロイル基も高複屈折性液晶の重合性基として同様に使用することができる。カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基またはビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては下記が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 また、光学異方性層Aに含まれる液晶化合物の他の好適態様としては、国際公開第2012/147904号に記載の重合性化合物も挙げられる。
 光学異方性層Aの形成方法は特に制限されず、公知の方法が挙げられる。
 例えば、所定の基板(仮基板を含む)に、重合性基を有する液晶化合物を含む光学異方性層形成用組成物(以後、単に「組成物」とも称する)を塗布して塗膜を形成し、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)または加熱処理)を施すことにより、光学異方性層Aを製造できる。なお、必要に応じて、後述する配向膜を用いてもよい。
 上記組成物の塗布としては、公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法)により実施できる。
 上記組成物には、上述した液晶化合物以外の成分が含まれていてもよい。
 例えば、組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。例えば、光重合開始剤の例には、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、および、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 重合開始剤の使用量は、組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.5~5質量%であることがより好ましい。
 また、組成物には、塗工膜の均一性、および、膜の強度の点から、重合性モノマーが含まれていてもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002-296423号公報中の段落[0018]~[0020]に記載のものが挙げられる。
 重合性モノマーの使用量は、液晶化合物の全質量に対して、1~50質量%であることが好ましく、2~30質量%であることがより好ましい。
 また、組成物には、塗工膜の均一性、および、膜の強度の点から、界面活性剤が含まれていてもよい。
 界面活性剤としては、従来公知の化合物が挙げられ、特にフッ素系化合物が好ましい。具体的には、例えば、特開2001-330725号公報中の段落[0028]~[0056]に記載の化合物、特願2003-295212号明細書中の段落[0069]~[0126]に記載の化合物が挙げられる。
 また、組成物には溶媒が含まれていてもよく、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。2種類以上の有機溶媒を併用してもよい。
 また、組成物には、垂直配向促進剤、および、水平配向促進剤などの各種配向剤が含まれていてもよい。
 さらに、組成物には、上記成分以外に、密着改良剤、可塑剤、または、ポリマーなどが含まれていてもよい。
<光学異方性層B>
 光学異方性層Bは、波長550nmにおける厚み方向のレターデーションRthBが0より小さく、後述する式(B-1)~式(B-3)の関係を満たす光学異方性層である。なお、光学異方性層Bは、いわゆるネガティブAプレートに該当することが好ましい。
 光学異方性層Bの波長550nmにおける厚み方向のレターデーションRthBは、0より小さい。いわゆる、負のRthを示す。
 RthBの値は負であればよいが、画像表示装置の表示性能(特に、視野角特性)がより優れる点で、-80nm以上0nm未満が好ましく、-50~-5nmがより好ましい。
 光学異方性層Bは、以下の式(B-1)~(B-3)の関係を満たす。
式(B-1)  1.08≦ReB(450)/ReB(550)≦1.30
式(B-2)  0.90≦ReB(650)/ReB(550)≦0.97
式(B-3)  0<ReB(550)≦50nm
 ReB(450)、ReB(550)、および、ReB(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける光学異方性層Bの面内レターデーションの値を表す。
 なかでも、本発明の効果がより優れる点で、光学異方性層Bは、式(B-1-1)を満たすことが好ましく、式(B-1-2)を満たすことがより好ましい。
式(B-1-1)  1.10≦ReB(450)/ReB(550)≦1.30
式(B-1-2)  1.12≦ReB(450)/ReB(550)≦1.30
 また、本発明の効果がより優れる点で、光学異方性層Bは、式(B-2-1)を満たすことが好ましく、式(B-2-2)を満たすことがより好ましい。
式(B-2-1)  0.90≦ReB(650)/ReB(550)≦0.96
式(B-2-2)  0.90≦ReB(650)/ReB(550)≦0.95
 また、本発明の効果がより優れる点で、光学異方性層Bは、式(B-3-1)を満たすことが好ましく、式(B-3-2)を満たすことがより好ましい。
式(B-3-1)  5≦ReB(550)≦50nm
式(B-3-2)  10≦ReB(550)≦50nm
 光学異方性層Bの厚みは特に制限されないが、薄型化の点から、0.05~10μmが好ましく、0.1~5μmがより好ましい。
 なお、上記厚みは平均厚みを意図し、光学異方性層Bの任意の5点の厚みを測定し、それらを算術平均したものである。
 光学異方性層Bを構成する材料は、液晶化合物が挙げられる。液晶化合物の例示としては、上述の通りである。
 なかでも、光学異方性層Bにおいては、ディスコティック液晶化合物が含まれ、そのディスコティック液晶化合物の円盤面がフィルム面(光学異方性層面)に対して実質的に垂直であることが好ましい。言い換えれば、光学異方性層Bとしては、画像表示装置の表示性能がより優れる点で、実質的に垂直配向したディスコティック液晶化合物を含む層であることが好ましい。
 また、上述した光学異方性層Aと同様に、光学異方性層Bは、光学特性の温度変化および/または湿度変化を小さくできることから、反応性基(好ましくは、重合性基)を有する液晶化合物(棒状液晶化合物またはディスコティック液晶化合物)を用いて形成することがより好ましい。つまり、光学異方性層Bは、重合性液晶化合物(重合性基を有する棒状液晶化合物またはディスコティック液晶化合物)が重合によって固定されて形成された層であることが好ましい。
 層の製造手順は、上記光学異方性層Aと同様である。
<任意の層>
 位相差フィルムには、上述した光学異方性層Aおよび光学異方性層B以外の他の層が含まれていてもよい。
 例えば、図2に示すように、位相差フィルム100には、後段の光学異方性層C(16)が含まれていてもよい。なお、図2においては、光学異方性層C(16)が図面上最も下側に配置されているが、その配置位置は特に制限されず、光学異方性層A(12)と光学異方性層B(14)との間、または、光学異方性層A(12)の光学異方性層B(14)側とは反対側の表面上であってもよい。
(光学異方性層C)
 光学異方性層Cは、波長550nmにおける厚み方向のレターデーションRthCが0より小さい。いわゆる、負のRthを示す。
 RthCの値は負であればよいが、画像表示装置の表示性能(特に、視野角特性)がより優れる点で、-150nm以上0nm未満が好ましく、-100~-20nmがより好ましい。
 光学異方性層Cは、波長550nmにおける面内レターデーションReC(550)が以下の式(C-1)の関係を満たす。
式(C-1)  0≦ReC(550)≦10nm
 なかでも、本発明の効果がより優れる点で、以下の式(C-2)の関係を満たすことが好ましい。
式(C-2)  0≦ReC(550)≦5nm
 光学異方性層Cの厚みは特に制限されないが、薄型化の点から、0.05~10μmが好ましく、0.1~5μmがより好ましい。
 なお、上記厚みは平均厚みを意図し、光学異方性層Cの任意の5点の厚みを測定し、それらを算術平均したものである。
 光学異方性層Cは、液晶化合物を含む組成物から形成されることが好ましい。液晶化合物の定義は、上述した通りである。
 また、上述した光学異方性層Aと同様に、光学異方性層Cは、光学特性の温度変化および/または湿度変化を小さくできることから、反応性基(好ましくは、重合性基)を有する液晶化合物(棒状液晶化合物またはディスコティック液晶化合物)を用いて形成することがより好ましい。つまり、光学異方性層Cは、重合性液晶化合物(重合性基を有する棒状液晶化合物またはディスコティック液晶化合物)が重合によって固定されて形成された層であることが好ましい。
 層の製造手順は、上記光学異方性層Aと同様である。
(その他の層)
 例えば、位相差フィルムには、液晶化合物の配向方向を規定する機能を有する配向膜が含まれていてもよい。
 配向膜は、一般的にはポリマーを主成分とする。配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。利用されるポリマー材料は、ポリビニルアルコールまたはポリイミド、および、その誘導体が好ましい。特に、変性または未変性のポリビニルアルコールが好ましい。本発明に使用可能な配向膜については、WO01/88574A1号公報の43頁24行~49頁8行、または、特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコールを参照することができる。なお、配向膜には、通常、公知のラビング処理が施される。つまり、配向膜は、通常、ラビング処理されたラビング配向膜であることが好ましい。
 配向膜の厚みは特に制限されないが、0.01~10μmであることが好ましく、0.01~1μmであることがより好ましく、0.01~0.8μmであることがさらに好ましい。
 また、各層の間の密着性担保のために、各層の間に粘着層または接着層を配置してもよい。
<位相差フィルム>
 上述した光学異方性層Aおよび光学異方性層Bを含む位相差フィルムは、式(X-1)および式(X-2)の関係を満たす。
式(X-1)  0.79≦ReX(450)/ReX(550)≦0.85
式(X-2)  1.02≦ReX(650)/ReX(550)≦1.30
 なお、ReX(450)、ReX(550)、および、ReX(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける位相差フィルムの面内レターデーションの値を表す。
 なかでも、本発明の効果がより優れる点で、位相差フィルムは式(X-1-1)を満たすことが好ましく、式(X-1-2)を満たすことがより好ましい。
式(X-1-1)  0.80≦ReX(450)/ReX(550)≦0.84
式(X-1-2)  0.81≦ReX(450)/ReX(550)≦0.83
 なかでも、本発明の効果がより優れる点で、位相差フィルムは式(X-2-1)を満たすことが好ましく、式(X-2-2)を満たすことがより好ましい。
式(X-2-1)  1.02≦ReX(650)/ReX(550)≦1.27
式(X-2-2)  1.02≦ReX(650)/ReX(550)≦1.24
 上記式(X-1)および式(X-2)で表されるように、位相差フィルムの特徴としては、まず、位相差フィルムの面内レターデーションは、ReX(450)<ReX(550)<ReX(650)の関係を有する。つまり、位相差フィルムは、面内レターデーションについては逆波長分散性を示す。
 位相差フィルム中において、光学異方性層Aの遅相軸(遅相軸方向)と光学異方性層Bの遅相軸(遅相軸方向)とのなす角は90°±10°であり、本発明の効果がより優れる点で、90°±8°が好ましく、90°±5°がより好ましい。
 位相差フィルムの波長550nmにおける厚み方向のレターデーションは特に制限されないが、本発明の効果がより優れる点で、-80~100nmが好ましく、-40~80nmがより好ましい。
 また、位相差フィルム中において、光学異方性層Aの波長550nmにおける面内レターデーションReA(550)と、光学異方性層Bの波長550nmにおける面内レターデーションReB(550)との差(ReA(550)-ReB(550))は、本発明の効果がより優れる点で、110~170nmであることが好ましく、120~160nmであることがより好ましい。
<円偏光フィルム>
 本発明の円偏光フィルムは、上述した位相差フィルムおよび偏光層を有する。
 より具体的には、図3に示すように、円偏光フィルム20は、位相差フィルム10と、偏光層22とを有する。なお、図3においては、位相差フィルム10中において、偏光層22側から光学異方性層A(12)、および、光学異方性層B(14)の順で各光学異方性層が配置されているが、光学異方性層の配置順はこの構成に限定されない。例えば、偏光層側から光学異方性層B、および、光学異方性層Aがこの順で配置されていてもよい。
 また、光学異方性層Aの遅相軸(遅相軸方向)と、偏光層の吸収軸(吸収軸方向)とのなす角は45°±10°であり、本発明の効果がより優れる点で、45°±8°が好ましく、45°±5°がより好ましい。
 位相差フィルムの構成は、上述の通りである。
 以下、偏光層について詳述する。
(偏光層)
 偏光層(偏光膜)は、自然光を特定の直線偏光に変換する機能を有するいわゆる直線偏光子(直線偏光層)であればよい。偏光層としては、特に限定されないが、吸収型偏光子(吸収型偏光層)を利用することができる。
 偏光層の種類は特に制限はなく、通常用いられている偏光層を利用することができ、例えば、ヨウ素系偏光膜、二色性染料(二色性有機染料)を利用した染料系偏光膜、および、ポリエン系偏光膜のいずれも用いることができる。ヨウ素系偏光膜、および、染料系偏光膜は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
 偏光層の膜厚は特に制限されないが、薄型化の点から、50μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましい。また、偏光層の膜厚は、通常1μm以上で、5μm以上であることが好ましい。
(透明保護フィルム)
 本発明の円偏光フィルムは、さらに、透明保護フィルムを有していてもよい。より具体的には、図4に示すように、円偏光フィルム200は、位相差フィルム10と、偏光層22と、透明保護フィルム24とを有する。なお、図4に示すように、透明保護フィルム24は、偏光層22の位相差フィルム10側とは反対側の表面上に配置されることが好ましい。
 透明保護フィルムの種類は特に制限されず、例えば、いわゆる透明樹脂支持体またはハードコート層であっても、透明樹脂支持体とハードコート層との積層体であってもよく、透明樹脂支持体およびハードコート層を含む積層体であることが好ましい。
 透明樹脂支持体としては、公知の透明樹脂支持体を使用することができる。透明樹脂支持体を形成する材料としては、例えば、トリアセチルセルロースに代表されるセルロース系ポリマー、熱可塑性ノルボルネン系樹脂(日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等)、アクリル系樹脂、または、ポリエステル系樹脂を使用することができる。
 透明保護フィルムは、粘着層または接着層を介して偏光層に貼り合わされていてもよい。
 円偏光フィルムには、上記位相差フィルム、偏光層、透明保護フィルム以外の他の層が含まれていてもよい。例えば、機能層がさらに含まれていてもよい。
 機能層としては、反射防止層、および、防眩層などが挙げられる。これらは公知の層材料が使用される。なお、これらの層は、複数層が積層してもよい。
 円偏光フィルムの厚み(全体厚み)は特に制限されないが、100μm以下が好ましく、装置のより一層の薄型化の点からは、80μm以下が好ましい。下限は特に制限されないが、通常、20μm以上の場合が多い。
 上記厚みは平均厚みを意図し、円偏光フィルムの任意の5点の厚みを測定し、それらを算術平均したものである。
 円偏光フィルムは、種々の用途に適用することができるが、なかでも、反射防止板として好適に用いることができる。つまり、本発明の画像表示装置は、画像表示パネルと、画像表示パネル上に、反射防止層として本発明の円偏光フィルムとを有する。なお、円偏光フィルムは、画像表示パネルの視認側に配置される。
 画像表示装置における画像表示パネルは特に限定されず、例えば、液晶層を含む液晶表示パネルであっても、有機EL層を含む有機ELパネル(有機EL表示パネル)であっても、プラズマディスプレイパネルであってもよい。
 例えば、有機EL表示装置の光取り出し面側に本発明の円偏光フィルムからなる反射防止板を用けることができる。この場合、有機EL表示装置は、円偏光フィルムと有機ELパネル(有機EL素子)とを含み、視認側から偏光層、位相差フィルム、有機ELパネルがこの順で配置される。
 この態様の場合、外光は偏光層によって直線偏光となり、次に位相差フィルムを通過することで、円偏光となる。これが有機ELパネルの金属電極等にて反射された際に円偏光状態が反転し、再び位相差フィルムを通過した際に、入射時から90°傾いた直線偏光となり、偏光層に到達して吸収される。結果として、外光の影響を抑制することができる。
 なお、反射防止板の製造の際は、例えば、位相差フィルムと偏光層とが、それぞれ長尺の状態で連続的に積層される工程を含むことが好ましい。長尺の反射防止板は、用いられる画像表示装置の画面の大きさに合わせて裁断される。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
<逆波長分散性光学異方性層(X)の作製>
(配向膜Aの形成)
 長尺状のセルロースアシレートフィルム(TD80UL、富士フイルム社製)を、温度60℃の誘電式加熱ロールを通過させ、セルロースアシレートフィルム表面温度を40℃に昇温した。その後、セルロースアシレートフィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布した。次に、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、アルカリ溶液を塗布したセルロースアシレートフィルムを10秒間搬送した。続いて、同じくバーコーターを用いて、得られたセルロースアシレートフィルム上に純水を3ml/m2塗布した。次いで、得られたセルロースアシレートフィルムに対して、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した。その後、得られたセルロースアシレートフィルムを70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
アルカリ溶液組成
──────────────────────────────────
 水酸化カリウム                    4.7質量部
 水                         15.8質量部
 イソプロパノール                  63.7質量部
 界面活性剤SF-1:C1429O(CH2CH2O)20H   1.0質量部
 プロピレングリコール                14.8質量部──────────────────────────────────
 セルロースアシレートフィルムのアルカリ鹸化処理を行った面に、下記組成の配向膜A塗布液を#14のワイヤーバーで連続的に塗布した。次に、配向膜A塗布液が塗布されたセルロースアシレートフィルムを60℃の温風で60秒、更に100℃の温風で120秒乾燥して、配向膜Aを得た。
配向膜A塗布液の組成
――――――――――――――――――――――――――――――――――
下記ポリビニルアルコール-1               10質量部
水                           371質量部
メタノール                       119質量部
グルタルアルデヒド(架橋剤)              0.5質量部
クエン酸エステル(三協化学(株)製)        0.175質量部
――――――――――――――――――――――――――――――――――
ポリビニルアルコール-1
Figure JPOXMLDOC01-appb-C000004
(光学異方性層Xの形成)
 上記作製した配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を45°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は45°)。
 下記の組成の逆波長分散性液晶化合物を含む光学異方性層X塗布液を上記作製した配向膜A上に塗布した。なお、フィルムの搬送速度は26m/minとした。次に、塗布液の溶媒の乾燥および液晶化合物の配向熟成のために、光学異方性層X塗布液が塗布されたフィルムを100℃の温風で60秒間加熱した。その後、得られたフィルムに60℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、光学異方性層Xを作製した。
 光学異方性層Xの厚みは1.8μmであった。液晶化合物のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、135°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層Xは配向膜Aから剥離することができた。
光学異方性層X塗布液の組成
――――――――――――――――――――――――――――――――――
逆波長分散性液晶化合物-1               100質量部
光重合開始剤(イルガキュア907、BASF製)     3.0質量部
含フッ素化合物(F-1)                0.2質量部
含フッ素化合物(F-2)                0.4質量部
メチルエチルケトン                   414質量部
――――――――――――――――――――――――――――――――――
逆波長分散性液晶化合物-1
Figure JPOXMLDOC01-appb-C000005
含フッ素化合物(F-1)
Figure JPOXMLDOC01-appb-C000006
含フッ素化合物(F-2)
Figure JPOXMLDOC01-appb-C000007
<順波長分散性光学異方性層(W)の作製>
 上記と同様にして、長尺状のセルロースアシレートフィルム(TD80UL、富士フイルム社製)上に配向膜Aを作製し、配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を135°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は135°)。
 下記の組成のディスコティック液晶(順波長分散性)化合物を含む光学異方性層W塗布液を上記作製した配向膜A上に塗布した。なお、フィルムの搬送速度は26m/minとした。次に、塗布液の溶媒の乾燥およびディスコティック液晶化合物の配向熟成のために、光学異方性層W塗布液が塗布されたフィルムを120℃の温風で90秒間加熱した。その後、得られたフィルムに80℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、光学異方性層Wを作製した。
 光学異方性層Wの厚みは0.5μmであった。ディスコティック液晶化合物の円盤面のフィルム面に対する平均傾斜角は90°であり、ディスコティック液晶化合物がフィルム面に対して、垂直に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、45°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層Wは配向膜Aから剥離することができた。
光学異方性層W塗布液の組成
――――――――――――――――――――――――――――――――――
下記のディスコティック液晶化合物             91質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
          (V#360、大阪有機化学(株)製)  5質量部
光重合開始剤(イルガキュアー907、BASF製)      3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
下記のピリジニウム塩                  0.5質量部
含フッ素化合物(F-1)                0.2質量部
含フッ素化合物(F-3)                0.1質量部
メチルエチルケトン                   552質量部
――――――――――――――――――――――――――――――――――
ディスコティック液晶化合物
Figure JPOXMLDOC01-appb-C000008
ピリジニウム塩
Figure JPOXMLDOC01-appb-C000009
含フッ素化合物(F-3)
Figure JPOXMLDOC01-appb-C000010
<偏光板の作製>
 下記の組成物をミキシングタンクに投入し攪拌して、各成分を溶解し、コア層セルロースアシレートドープ1を調製した。
--------------------------------------------------------------------
アセチル置換度2.88のセルロースアセテート      100質量部
エステルオリゴマー(化合物1-1)            10質量部
耐久性改良剤(化合物1-2)                4質量部
紫外線吸収剤(化合物1-3)                3質量部
メチレンクロライド(第1溶媒)             438質量部
メタノール(第2溶媒)                  65質量部
--------------------------------------------------------------------
化合物1-1
Figure JPOXMLDOC01-appb-C000011
化合物1-2
Figure JPOXMLDOC01-appb-C000012
化合物1-3
Figure JPOXMLDOC01-appb-C000013
(外層セルロースアシレートドープ1の作製)
 上記のコア層セルロースアシレートドープ1(90質量部)に下記の組成のマット剤分散液1を10質量部加え、外層セルロースアシレートドープ1を調製した。
--------------------------------------------------------------------
マット剤分散液1:
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)    2質量部
メチレンクロライド(第1溶媒)              76質量部
メタノール(第2溶媒)                  11質量部
コア層セルロースアシレートドープ1             1質量部
--------------------------------------------------------------------
(セルロースアシレートフィルムの作製)
 コア層セルロースアシレートドープ1とその両側に外層セルロースアシレートドープ1とを3層同時に流延口から20℃のドラム上に流延し、フィルムを作製した。フィルムの溶媒含有率が略20質量%の状態でドラムからフィルムを剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、残留溶媒が3~15質量%の状態で、横方向に1.2倍延伸しつつ乾燥した。その後、得られたフィルムを熱処理装置のロール間に搬送することにより、厚み25μmのセルロースアシレートフィルムを作製し、偏光板保護膜01とした。
(ハードコート層の作製)
 ハードコート層形成用の塗布液として、下記ハードコート用硬化性組成物1を調製した。
Figure JPOXMLDOC01-appb-T000014
UV開始剤1
Figure JPOXMLDOC01-appb-C000015
 上記ハードコート用硬化性組成物1を、上記にて作製した偏光板保護膜01の表面上へ塗布した。その後、ハードコート用硬化性組成物1が塗布された偏光板保護膜01を100℃で60秒乾燥し、窒素0.1%以下の条件でUV光を1.5kW、300mJ/cmにて偏光板保護膜01上のハードコート用硬化性組成物1に照射して硬化させ、厚み5μmのハードコート層を有するハードコート層付偏光板保護膜01を作製した。
(偏光板の作製)
1)フィルムの鹸化
 作製したハードコート層付偏光板保護膜01を、37℃に調温した4.5mol/Lの水酸化ナトリウム水溶液(鹸化液)に1分間浸漬した。その後、得られたフィルムを水洗し、次に、0.05mol/Lの硫酸水溶液にフィルムを30秒浸漬した後、更に水洗浴にフィルムを通した。そして、フィルムに対してエアナイフによる水切りを3回繰り返して、水を落とした後に、得られたフィルムを70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したハードコート層付偏光板保護膜01を作製した。
2)偏光層の作製
 特開2001-141926号公報の実施例1に従い、2対のニップロール間に周速差を与え、長手方向の延伸を行い、幅1330mmおよび厚み15μmの偏光層1を作製した。
3)貼り合わせ
 偏光層1と、鹸化処理したハードコート層付偏光板保護膜01とを、ポリビニルアルコール(PVA)((株)クラレ製、PVA-117H)3%水溶液を接着剤として、ロールツーロールで貼りあわせて片面保護膜付き偏光板01を作製した。このとき、偏光板保護膜のセルロースアシレートフィルム側が、偏光層1側になるように貼り合わせた。
<偏光板、光学異方性層Xおよび光学異方性層Wの積層>
 上記作製した片面保護膜付き偏光板01の偏光層1側(保護膜の無い側)に、感圧粘着層(厚み10μm)を連続的に貼り合せた。続いて、上記作製したセルロースアシレートフィルム、配向膜Aおよび光学異方性層Xを有するフィルムを、感圧接着層および光学異方性層Xが密着するように、連続的に貼り合せた。その後、得られたフィルムからセルロースアシレートフィルムおよび配向膜Aを剥離し、次に、光学異方性層X上に感圧粘着層(厚み10μm)を連続的に貼り合せた。続いて、上記作製したセルロースアシレートフィルム、配向膜Aおよび光学異方性層Wを有するフィルムを、感圧接着層および光学異方性層Wが密着するように、連続的に貼り合せた。その後、得られたフィルムからセルロースアシレートフィルムおよび配向膜Aを剥離した。このようにして、片面保護膜付き偏光板01に、光学異方性層Xと光学異方性層Wとが、この順に積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層Xの遅相軸は135°、光学異方性層Wの遅相軸は45°であった。
[実施例2]
<逆波長分散性光学異方性層(Y)の作製>
 実施例1と同様にして、セルロースアシレートフィルム上に作製した配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を45°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は45°)。
 下記の組成の逆波長分散性液晶化合物を含む光学異方性層Y塗布液を上記作製した配向膜A上に塗布した。なお、フィルムの搬送速度は26m/minとした。次に、塗布液の溶媒の乾燥および液晶化合物の配向熟成のために、光学異方性層Y塗布液が塗布されたフィルムを120℃の温風で60秒間加熱した。その後、得られたフィルムに70℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、光学異方性層Yを作製した。
 光学異方性層Yの厚みは1.6μmであった。液晶化合物のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、135°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層Yは配向膜Aから剥離することができた。
光学異方性層Y塗布液の組成
――――――――――――――――――――――――――――――――――
逆波長分散性液晶化合物-2               100質量部
光重合開始剤(イルガキュア819、BASF製)     3.0質量部
含フッ素化合物(F-1)                0.2質量部
含フッ素化合物(F-2)                0.4質量部
クロロホルム                      588質量部
――――――――――――――――――――――――――――――――――
逆波長分散性液晶化合物-2
Figure JPOXMLDOC01-appb-C000016
<順波長分散性光学異方性層(W’)の作製>
 上記実施例1の光学異方性層Wの作製において、厚みを0.2μmにする以外は同様にして、光学異方性層W’を作製した。
<偏光板、光学異方性層Yおよび光学異方性層W’の積層>
 上記実施例1と同様にして、片面保護膜付き偏光板01に、光学異方性層Yと光学異方性層W’とが、この順に積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層Yの遅相軸は135°、光学異方性層W’の遅相軸は45°であった。
[実施例3]
<逆波長分散性光学異方性層(Z)の作製>
 特開2012-150477の実施例4に記載の方法に従い、ポリカーボネート共重合体からなる逆波長分散性の光学異方性層Zを作製した。
<順波長分散性光学異方性層(W’’)の作製>
 上記実施例1の光学異方性層Wの作製において、厚みを0.58μmにする以外は同様にして、光学異方性層W’’を作製した。
<偏光板、光学異方性層W’’および光学異方性層Zの積層>
 上記実施例1と同様にして、片面保護膜付き偏光板01を作製し、偏光層1側(保護膜の無い側)に、感圧粘着層(厚み10μm)を連続的に貼り合せた。続いて、上記作製したセルロースアシレートフィルム、配向膜Aおよび光学異方性層W’’を有するフィルムを、感圧接着層および光学異方性層W’’が密着するように、連続的に貼り合せた。その後、得られたフィルムからセルロースアシレートフィルムおよび配向膜Aを剥離し、次に、光学異方性層W’’上に感圧粘着層(厚み10μm)を連続的に貼り合せた。続いて、上記作製した光学異方性層Zを、感圧接着層に密着するように貼り合せた。なお、長尺状の偏光板と光学異方性層W’’の積層体および長尺状の光学異方性層Zは、それぞれ適当なサイズのシートに打ち抜き加工してから貼り合せた。
 片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°とすると、光学異方性層Zの遅相軸は135°、光学異方性層W’’の遅相軸は45°であった。
[実施例4]
<光学異方性層(P)の作製>
 実施例1と同様にして、セルロースアシレートフィルム上に配向膜Aを作製した。下記の組成の液晶化合物を含む光学異方性層P塗布液を、配向膜A上に塗布した。なお、フィルムの搬送速度は26m/minとした。次に、塗布液の溶媒の乾燥および液晶化合物の配向熟成のために、光学異方性層P塗布液を塗布したフィルムを80℃の温風で60秒間加熱した。その後、得られたフィルムに60℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、光学異方性層Pを作製した。
 光学異方性層Pの厚みは0.5μmであった。液晶化合物のフィルム面に対する平均傾斜角は90°であり、液晶化合物がフィルム面に対して、垂直に配向していることを確認した。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層Pは配向膜Aから剥離することができた。
光学異方性層P塗布液の組成
――――――――――――――――――――――――――――――――――
棒状液晶化合物(I)                   80質量部
棒状液晶化合物(II)                  20質量部
光重合開始剤(イルガキュアー907、BASF製)      3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
含フッ素化合物(F-4)                0.4質量部
上記のピリジニム塩                     1質量部
メチルエチルケトン                   272質量部
――――――――――――――――――――――――――――――――――
棒状液晶化合物(I)
Figure JPOXMLDOC01-appb-C000017
棒状液晶化合物(II)
Figure JPOXMLDOC01-appb-C000018
含フッ素化合物(F-4)
Figure JPOXMLDOC01-appb-C000019
<偏光板、光学異方性層X、光学異方性層Wおよび光学異方性層Pの積層>
 上記実施例1と同様にして、片面保護膜付き偏光板01に、光学異方性層Xと光学異方性層Wとが、この順に積層された長尺状の偏光板を作製した。さらに、光学異方性層Wに、感圧粘着層(厚み10μm)を連続的に貼り合せ、続いて、上記作製したセルロースアシレートフィルム、配向膜Aおよび光学異方性層Pを有するフィルムを、感圧接着層および光学異方性層Pが密着するように、連続的に貼り合せた。その後、得られたフィルムから、セルロースアシレートフィルムおよび配向膜Aを剥離した。このようにして、片面保護膜付き偏光板01に、光学異方性層X、光学異方性層Wおよび光学異方性層Pが、この順に積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層Xの遅相軸は135°、光学異方性層Wの遅相軸は45°であった。
[比較例1]
<偏光板および光学異方性層X’の積層>
 上記実施例1の光学異方性層Xの作製において、厚みを1.4μmにする以外は同様にして、光学異方性層X’を作製した。続いて、光学異方性層Wを含まない以外は、実施例1と同様にして、片面保護膜付き偏光板01に、光学異方性層X’が積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層X’の遅相軸は135°であった。
[比較例2]
<逆波長分散性光学異方性層(X’’)の作製>
 上記実施例1の光学異方性層Xの作製において、厚みを1.9μmにする以外は同様にして、光学異方性層X’’を作製した。液晶化合物のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、135°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層X’’は配向膜Aから剥離することができた。
<順波長分散性光学異方性層(R)の作製>
 実施例1と同様にして、セルロースアシレートフィルム上に作製した配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を135°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は135°)。
 下記の組成の棒状液晶(順波長分散性)化合物を含む光学異方性層R塗布液を上記作製した配向膜A上に塗布した。なお、フィルムの搬送速度は26m/minとした。次に、塗布液の溶媒の乾燥および液晶化合物の配向熟成のために、光学異方性層R塗布液が塗布されたフィルムを130℃の温風で90秒間、続いて、80℃の温風で60秒間加熱した。その後、得られたフィルムに60℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、光学異方性層Rを作製した。光学異方性層Rの厚みは0.4μmであった。液晶化合物のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、45°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層Rは配向膜Aから剥離することができた。
光学異方性層R塗布液の組成
――――――――――――――――――――――――――――――――――
棒状液晶化合物(I)                   80質量部
棒状液晶化合物(II)                  20質量部
光重合開始剤(イルガキュアー907、BASF製)      3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
含フッ素化合物(F-1)                0.2質量部
含フッ素化合物(F-2)                0.4質量部
メチルエチルケトン                   272質量部
――――――――――――――――――――――――――――――――――
<偏光板、光学異方性層X’’および光学異方性層Rの積層>
 上記実施例1と同様にして、片面保護膜付き偏光板01に、光学異方性層X’’と光学異方性層Rとが、この順に積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層X’’の遅相軸は135°、光学異方性層Rの遅相軸は45°であった。
[比較例3]
<順波長分散性光学異方性層(RH)の作製>
 上記実施例1と同様にして、セルロースアシレートフィルム上に作製した配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を45°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は45°)。
 上記比較例2の光学異方性層Rの作製において、厚みを2.0μmにする以外は同様にして、光学異方性層RHを作製した。液晶化合物のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、135°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層RHは配向膜Aから剥離することができた。
<順波長分散性光学異方性層(WQ)の作製>
 上記実施例1と同様にして、セルロースアシレートフィルム上に作製した配向膜Aに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を135°とした(フィルム幅方向を0°、フィルム長手方向を90°とし、配向膜A側から観察してフィルム幅方向を基準に時計回り方向を正の値で表すと、ラビングローラーの回転軸は135°)。
 上記実施例1の光学異方性層Wの作製において、厚みを1.7μmにする以外は同様にして、光学異方性層WQを作製した。ディスコティック液晶化合物の円盤面のフィルム面に対する平均傾斜角は90°であり、ディスコティック液晶化合物がフィルム面に対して、垂直に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°)とすると、45°であった。なお、セルロースアシレートフィルムと配向膜Aは密着しており、光学異方性層WQは配向膜Aから剥離することができた。
<偏光板、光学異方性層RHおよび光学異方性層WQの積層>
 上記実施例1と同様にして、片面保護膜付き偏光板01に、光学異方性層RHと光学異方性層WQとが、この順に積層された長尺状の円偏光フィルムを作製した。また、円偏光フィルムの幅方向を0°(長手方向を90°)とすると、片面保護膜付き偏光板01の保護膜側から見たとき、偏光層1の吸収軸は90°、光学異方性層RHの遅相軸は135°、光学異方性層WQの遅相軸は45°であった。
<光学異方性層の位相差測定>
 上記実施例および比較例で作製した光学異方性層の各単層を、ガラス基板上に貼り合せた粘着剤に転写(セルロースアシレートフィルムと配向膜Aとを剥離)して、位相差を測定した。また、光学異方性層積層体(位相差フィルム)の位相差測定に関しては、ガラス基板上に貼り合せた粘着剤に各光学異方性層を転写(セルロースアシレートフィルムと配向膜Aとを剥離)して、さらに粘着剤を貼り合せ、その上に、所定の光学異方性層を転写(セルロースアシレートフィルムと配向膜Aとを剥離)して、所定の光学異方性層が積層した光学異方性層積層体(位相差フィルム)を作製して位相差測定を行った。自動複屈折計(KOBRA-21ADH、王子計測機器(株)社製)を用いて、光入射角度依存性を測定し、正面方向のレターデーション(面内レターデーション)および厚み方向のレターデーションを求めた。結果を表2に示す。
<各種評価>
<有機ELパネルへの実装及び表示性能の評価(その1)>
 有機ELパネル搭載のSAMSUNG社製GALAXY S4を分解し、円偏光フィルムを剥離して、実施例および比較例の円偏光フィルムを感圧粘着剤を用いて貼合した。作製した有機EL表示装置について、明光下にて視認性および表示品位を評価した。正面および極角45°から黒画像表示した画面を観察し、下記の基準で評価した。結果を表2に示す。
[正面色味]
 A:正面方向の色味が黒色、または、ごくわずかに着色(許容)
 B:正面方向で着色があり、許容できない
[視野角依存性]
 A:正面と斜め方向で色味差が小さく、黒色に近い(許容)
 B:正面と斜め方向で色味差が視認されるが、許容できる
 C:正面と斜め方向の色味差は小さいが、色味付きが大きい(黒色でない)
 D:正面と斜め方向で色味差が大きく、かつ、色味付きも大きく、許容できない
[ムラ]
 A:画面内でムラがほとんど視認されない(許容)
 B:画面内でムラが視認される
 C:画面内でムラが著しく視認され、許容できない
 表2中の「ReX(450)」、「ReX(550)」、および、「ReX(650)」は、それぞれ波長450nm、波長550nm、および、波長650nmにおける位相差フィルムの面内レターデーションを表す。なお、「ReX(550)」は、光学異方性層Aの波長550nmにおける面内レターデーションReA(550)と、光学異方性層Bの波長550nmにおける面内レターデーションReB(550)との差にも該当する。
 また、「RthX(550)」は、位相差フィルムの波長550nmにおける厚み方向のレターデーションに該当する。
Figure JPOXMLDOC01-appb-T000020
 本発明の円偏光フィルムを有する有機EL表示装置は、正面方向および斜め方向でも優れた表示品位を有し、ムラのない優れた均一性を有していた。
 一方、比較例の円偏光フィルムでは、正面方向の色味、斜め方向の色味、均一性の全てを満足する有機EL表示装置は得られなかった。
 10,100  位相差フィルム
 12  光学異方性層A
 14  光学異方性層B
 16  光学異方性層C
 20,200  円偏光フィルム
 22  偏光層
 24  透明保護フィルム

Claims (5)

  1.  光学異方性層Aと光学異方性層Bとを含む位相差フィルムであって、
     前記光学異方性層Aの波長550nmにおける厚み方向のレターデーションRthAが0より大きく、
     前記光学異方性層Aが以下の式(A-1)~式(A-3)の関係を満たし、
     前記光学異方性層Bの波長550nmにおける厚み方向のレターデーションRthBが0より小さく、
     前記光学異方性層Bが以下の式(B-1)~式(B-3)の関係を満たし、
     前記光学異方性層Aの遅相軸と前記光学異方性層Bの遅相軸とのなす角が90°±10°であり、
     前記位相差フィルムが式(X-1)および式(X-2)の関係を満たす、位相差フィルム。
    式(A-1)  0.80≦ReA(450)/ReA(550)<1
    式(A-2)  1<ReA(650)/ReA(550)≦1.30
    式(A-3)  100nm≦ReA(550)≦200nm
    式(B-1)  1.08≦ReB(450)/ReB(550)≦1.30
    式(B-2)  0.90≦ReB(650)/ReB(550)≦0.97
    式(B-3)  0<ReB(550)≦50nm
    式(X-1)  0.79≦ReX(450)/ReX(550)≦0.85
    式(X-2)  1.02≦ReX(650)/ReX(550)≦1.30
    なお、ReA(450)、ReA(550)、および、ReA(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける前記光学異方性層Aの面内レターデーションの値を表す。
    また、ReB(450)、ReB(550)、および、ReB(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける前記光学異方性層Bの面内レターデーションの値を表す。
    なお、ReX(450)、ReX(550)、および、ReX(650)は、それぞれ波長450nm、波長550nm、および、波長650nmにおける前記位相差フィルムの面内レターデーションの値を表す。
  2.  さらに、波長550nmにおける厚み方向のレターデーションRthCが0より小さく、かつ、以下の式(C-1)の関係を満たす光学異方性層Cを含む、請求項1に記載の位相差フィルム。
    式(C-1)  0≦ReC(550)≦10nm
    なお、ReC(550)は、波長550nmにおける前記光学異方性層Cの面内レターデーションの値を表す。
  3.  前記光学異方性層Aの波長550nmにおける面内レターデーションReA(550)と、前記光学異方性層Bの波長550nmにおける面内レターデーションReB(550)との差が、110~170nmである、請求項1または2に記載の位相差フィルム。
  4.  請求項1~3のいずれか1項に記載の位相差フィルムと、偏光層とを有し、
     前記光学異方性層Aの遅相軸と、前記偏光層の吸収軸とのなす角が45°±10°である、円偏光フィルム。
  5.  請求項4に記載の円偏光フィルムを有する画像表示装置。
PCT/JP2016/057623 2015-03-30 2016-03-10 位相差フィルム、円偏光フィルム、および、画像表示装置 WO2016158298A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017509486A JP6571167B2 (ja) 2015-03-30 2016-03-10 位相差フィルム、円偏光フィルム、および、画像表示装置
US15/702,018 US10564339B2 (en) 2015-03-30 2017-09-12 Phase difference film, circularly polarizing film, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069908 2015-03-30
JP2015069908 2015-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/702,018 Continuation US10564339B2 (en) 2015-03-30 2017-09-12 Phase difference film, circularly polarizing film, and image display device

Publications (1)

Publication Number Publication Date
WO2016158298A1 true WO2016158298A1 (ja) 2016-10-06

Family

ID=57007043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057623 WO2016158298A1 (ja) 2015-03-30 2016-03-10 位相差フィルム、円偏光フィルム、および、画像表示装置

Country Status (3)

Country Link
US (1) US10564339B2 (ja)
JP (1) JP6571167B2 (ja)
WO (1) WO2016158298A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200120500A (ko) 2019-04-12 2020-10-21 제이에스알 가부시끼가이샤 적층체 및 그의 제조 방법, 광학 필름의 형성 방법, 편광 필름 및 그의 제조 방법, 원편광판, 그리고 액정 표시 소자의 제조 방법
KR20200122992A (ko) 2019-04-18 2020-10-28 제이에스알 가부시끼가이샤 적층체 및 그의 제조 방법, 광학 필름층의 형성 방법, 편광 필름 및 그의 제조 방법, 그리고 액정 표시 소자의 제조 방법
JP2021056419A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム
JPWO2020031784A1 (ja) * 2018-08-06 2021-09-24 富士フイルム株式会社 積層体、液晶表示装置、有機電界発光装置
US11163191B2 (en) * 2017-02-07 2021-11-02 Fujifilm Corporation Organic electroluminescence display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910481B2 (ja) 2018-01-30 2021-07-28 富士フイルム株式会社 積層体
JP2019158953A (ja) * 2018-03-08 2019-09-19 シャープ株式会社 円偏光板、表示装置、及び、積層型位相差板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239518A (ja) * 1997-02-25 1998-09-11 Sumitomo Bakelite Co Ltd 位相差板及びそれを用いた偏光素子
JP2006284903A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光学異方性膜、輝度向上フィルムおよび積層光学フィルムならびにこれらを用いた画像表示装置。
JP2007206703A (ja) * 2004-09-29 2007-08-16 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2012212056A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 画像表示装置及び3d画像表示システム
JP2014224838A (ja) * 2013-05-08 2014-12-04 大日本印刷株式会社 画像表示装置
JP2015106114A (ja) * 2013-12-02 2015-06-08 日東電工株式会社 有機el表示装置用円偏光板および有機el表示装置
JP2015163940A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 楕円偏光板
JP2015175994A (ja) * 2014-03-14 2015-10-05 大日本印刷株式会社 反射防止フィルム及び画像表示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316828C (en) * 1998-10-30 2010-02-23 Teijin Limited Retardation film and optical device employing it
JP3985969B2 (ja) 2004-09-29 2007-10-03 日東電工株式会社 液晶パネル及び液晶表示装置
CN101321811B (zh) * 2005-11-25 2011-12-21 富士胶片株式会社 纤维素酰化物薄膜及其制备方法、纤维素衍生物薄膜及使用其的光学补偿薄膜、加有光学补偿薄膜的偏振片、偏振片和液晶显示装置
EP2042894A4 (en) * 2006-06-28 2012-03-07 Sharp Kk BIREFRINGENT COMPLEX SUPPORT, POLARIZING PLATE, AND LIQUID CRYSTAL DEVICE
JPWO2009078227A1 (ja) * 2007-12-14 2011-04-28 シャープ株式会社 液晶表示装置
JP2009300760A (ja) * 2008-06-13 2009-12-24 Nippon Oil Corp 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
US7948592B2 (en) * 2008-06-23 2011-05-24 Samsung Electronics Co., Ltd. Display device for increasing viewing angle
JP5241859B2 (ja) * 2008-12-16 2013-07-17 帝人化成株式会社 光学フィルム
JP5524903B2 (ja) * 2011-05-13 2014-06-18 富士フイルム株式会社 パターン偏光板、画像表示装置、及び画象表示システム
JP5697634B2 (ja) * 2011-07-26 2015-04-08 富士フイルム株式会社 光学フィルム、セキュリティ製品、および真贋判定方法
JPWO2013137188A1 (ja) * 2012-03-13 2015-08-03 富士フイルム株式会社 立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板
KR101631399B1 (ko) 2012-03-15 2016-06-16 후지필름 가부시키가이샤 광학 적층체를 갖는 유기 el 디스플레이 소자
JP2014044394A (ja) * 2012-03-30 2014-03-13 Nitto Denko Corp 長尺位相差フィルム、円偏光板及び有機elパネル
JP5960743B2 (ja) * 2013-03-25 2016-08-02 富士フイルム株式会社 円偏光板用位相差板、円偏光板、有機el表示装置
CN104345370B (zh) * 2013-08-09 2018-08-24 住友化学株式会社 光学膜
US9309362B2 (en) * 2013-12-17 2016-04-12 Eastman Chemical Company Optical films containing optical retardation-enhancing additive
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
US9835780B2 (en) * 2014-06-27 2017-12-05 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
JP6729550B2 (ja) * 2015-03-03 2020-07-22 日本ゼオン株式会社 位相差板及び位相差板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239518A (ja) * 1997-02-25 1998-09-11 Sumitomo Bakelite Co Ltd 位相差板及びそれを用いた偏光素子
JP2007206703A (ja) * 2004-09-29 2007-08-16 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2006284903A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光学異方性膜、輝度向上フィルムおよび積層光学フィルムならびにこれらを用いた画像表示装置。
JP2012212056A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 画像表示装置及び3d画像表示システム
JP2014224838A (ja) * 2013-05-08 2014-12-04 大日本印刷株式会社 画像表示装置
JP2015163940A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 楕円偏光板
JP2015106114A (ja) * 2013-12-02 2015-06-08 日東電工株式会社 有機el表示装置用円偏光板および有機el表示装置
JP2015175994A (ja) * 2014-03-14 2015-10-05 大日本印刷株式会社 反射防止フィルム及び画像表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11163191B2 (en) * 2017-02-07 2021-11-02 Fujifilm Corporation Organic electroluminescence display device
JPWO2020031784A1 (ja) * 2018-08-06 2021-09-24 富士フイルム株式会社 積層体、液晶表示装置、有機電界発光装置
KR20200120500A (ko) 2019-04-12 2020-10-21 제이에스알 가부시끼가이샤 적층체 및 그의 제조 방법, 광학 필름의 형성 방법, 편광 필름 및 그의 제조 방법, 원편광판, 그리고 액정 표시 소자의 제조 방법
KR20200122992A (ko) 2019-04-18 2020-10-28 제이에스알 가부시끼가이샤 적층체 및 그의 제조 방법, 광학 필름층의 형성 방법, 편광 필름 및 그의 제조 방법, 그리고 액정 표시 소자의 제조 방법
JP2021056419A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム
JP7310513B2 (ja) 2019-09-30 2023-07-19 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム

Also Published As

Publication number Publication date
JPWO2016158298A1 (ja) 2018-02-15
US10564339B2 (en) 2020-02-18
US20180011234A1 (en) 2018-01-11
JP6571167B2 (ja) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6276393B2 (ja) 有機el表示装置
JP7426415B2 (ja) 光学システム
JP6571167B2 (ja) 位相差フィルム、円偏光フィルム、および、画像表示装置
JP6259925B2 (ja) 円偏光板、表示装置
JP6554536B2 (ja) 円偏光板、および、屈曲可能な表示装置
WO2018164126A1 (ja) 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
JPWO2019022156A1 (ja) 有機エレクトロルミネッセンス表示装置
WO2016035636A1 (ja) 円偏光フィルム、光学フィルム、および、画像表示装置
WO2018123725A1 (ja) 円偏光板、有機エレクトロルミネッセンス表示装置
JPWO2014189041A1 (ja) 偏光板およびその製造方法ならびに光学フィルム材料
WO2020209354A1 (ja) 積層型波長板、偏光板、円偏光板、および表示装置
JP2018180563A (ja) 積層体および画像表示装置
JP2018060152A (ja) Ipsモード用の偏光板のセット及びそれを用いたipsモード液晶表示装置
JP7385380B2 (ja) 位相差層およびハードコート層付偏光板の製造方法
JP6287371B2 (ja) 光学フィルム、光学フィルム用転写体、及び画像表示装置
WO2018164045A1 (ja) 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
JP7162037B2 (ja) 画像表示装置
WO2023176661A1 (ja) 表示システムおよび積層フィルム
WO2022201907A1 (ja) 位相差層付偏光板およびその製造方法、ならびに該位相差層付偏光板を用いた画像表示装置
WO2023176659A1 (ja) レンズ部および積層フィルム
JP6699514B2 (ja) Ipsモード用の偏光板のセット及びそれを用いたipsモード液晶表示装置
JP6724729B2 (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP6699513B2 (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP2018054887A (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP2022137941A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772182

Country of ref document: EP

Kind code of ref document: A1