WO2016158297A1 - プロジェクター及び画像光投射方法 - Google Patents

プロジェクター及び画像光投射方法 Download PDF

Info

Publication number
WO2016158297A1
WO2016158297A1 PCT/JP2016/057606 JP2016057606W WO2016158297A1 WO 2016158297 A1 WO2016158297 A1 WO 2016158297A1 JP 2016057606 W JP2016057606 W JP 2016057606W WO 2016158297 A1 WO2016158297 A1 WO 2016158297A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
primary color
blue
projector
output
Prior art date
Application number
PCT/JP2016/057606
Other languages
English (en)
French (fr)
Inventor
修 若林
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2017509485A priority Critical patent/JP6422143B2/ja
Priority to US15/557,439 priority patent/US10268109B2/en
Priority to CN201680019346.3A priority patent/CN107430319B/zh
Publication of WO2016158297A1 publication Critical patent/WO2016158297A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present invention relates to a projector that projects image light and an image light projection method.
  • the white light output from the light source is separated into red, green, and blue primary color light sequentially using a color wheel that rotates at high speed, and each separated color light is separated according to the video signal.
  • a structure of a field sequential method also called a single plate method that forms a color image by sequentially modulating light is known.
  • a liquid crystal panel, DMD (Digital Micro-mirror Device: registered trademark), or the like is used as an image forming element used for light modulation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-139689
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-212129 describes a projector using a laser diode that emits blue light as a light source.
  • the LED or laser diode When an LED or laser diode is used as a light source, the LED or laser diode can usually output only single wavelength light. Therefore, in the projector described in Patent Documents 1 and 2, in order to obtain light of each of the three primary colors of red, green, and blue, the light output from the light source is irradiated to the phosphor as excitation light and obtained directly from the light source. Invisible color light is emitted by the phosphors. For example, when a laser diode that emits blue laser light is used as a light source, red light and green light are emitted by a phosphor.
  • Patent Document 1 Since phosphors have different luminous efficiencies depending on the color light to be emitted (depending on the type of phosphor), in Patent Document 1, two or more types of light sources having different wavelengths are provided, and the light source used as excitation light is switched according to the phosphor. Has proposed.
  • the influence by the difference in the luminous efficiency of the phosphor can be reduced by reducing the types of the phosphor.
  • red light and green light are not emitted by separate phosphors, but yellow light containing red and green components is emitted.
  • color light may be used to separate red light and green light from the yellow light.
  • a light source device an apparatus that outputs light of each color for forming a color image on an image forming element, which includes a light source, a phosphor, and the like is referred to as a light source device.
  • a projector including a laser diode that emits blue laser light in a light source device can obtain blue light having higher color purity and saturation than a projector including a discharge lamp or the like in the light source device.
  • the blue light has the same luminance as that of the red light and the green light, and the red light and the green light. It looks brighter than light. This is due to the high saturation of blue light obtained with laser light, which is known as the Helmholtz-Colelausch effect (HK effect). Therefore, when blue laser light is used as a light source, the saturation difference between blue light, red light, and green light increases, and color braking is more prominent in the projected image than a projector using a discharge lamp or the like as the light source. It appears in.
  • a projector is a field sequential projector, A plurality of light sources that output primary color light having a peak wavelength in the primary color wavelength range, and that have different peak wavelengths in the primary color wavelength range;
  • An illumination optical system that guides primary color light output from the plurality of light sources to the image forming element, including an image forming element that spatially modulates primary color light output from the plurality of light sources to form image light;
  • a plurality of light sources that output primary color light having a peak wavelength in the primary color wavelength range, and that have different peak wavelengths in the primary color wavelength range;
  • An illumination optical system that guides primary color light output from the plurality of light sources to the image forming element, including an image forming element that spatially modulates primary color light output from the plurality of light sources to form image light;
  • the image light projection method of the present invention is an image light projection method in a field sequential projector,
  • the primary color light having a peak wavelength in the primary color wavelength range, and the primary color light having a different peak wavelength in the primary color wavelength range is output from a plurality of light sources,
  • the primary color light output from the plurality of light sources is guided by an illumination optical system to an image forming element that spatially modulates the primary color light to form image light,
  • the image light formed by the image forming element is projected by a projection optical system,
  • the brightness of the primary color light having the longest peak wavelength and the brightness of the primary color light having the shortest peak wavelength are the same.
  • an image light projection method in a field sequential projector The primary color light having a peak wavelength in the primary color wavelength range, and the primary color light having a different peak wavelength in the primary color wavelength range is output from a plurality of light sources,
  • the primary color light output from the plurality of light sources is guided by an illumination optical system to an image forming element that spatially modulates the primary color light to form image light,
  • the image light formed by the image forming element is projected by a projection optical system,
  • the current values flowing through the plurality of light sources are the same.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a light source device included in a projector according to the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of a phosphor wheel included in the light source device illustrated in FIG. 1.
  • FIG. 3 is a schematic diagram illustrating an example of a color wheel included in the light source device illustrated in FIG. 1.
  • FIG. 4 is a schematic diagram illustrating an arrangement example of light sources provided in the light source device illustrated in FIG. 1.
  • FIG. 5A is a schematic diagram illustrating a connection example of light sources included in the light source device illustrated in FIG. 1.
  • FIG. 5B is a schematic diagram illustrating another connection example of light sources included in the light source device illustrated in FIG. 1.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a light source device included in a projector according to the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of a phosphor wheel included in the light source device illustrated in FIG. 1.
  • FIG. 6 is a graph showing an example of the spectral transmittance characteristics of the dichroic mirror and the emission spectrum of the light source.
  • FIG. 7 is a schematic diagram illustrating a configuration example of a projector according to the present invention.
  • FIG. 8 is a schematic diagram showing another configuration example of the projector of the present invention.
  • the present invention will be described with reference to the drawings.
  • the HK effect occurs when a blue laser beam with high saturation appears brighter than it actually is. Therefore, it is considered that color braking is reduced if the “saturation” or “brightness” of blue light is lowered.
  • changing the luminance of blue light is not preferable because the color of the projected video (color video) that generates white light is changed by combining the red, green, and blue color lights.
  • color braking is reduced by reducing the “saturation” of blue light.
  • a plurality of types of laser diodes that output blue light having different peak wavelengths are prepared as light sources, and these are simultaneously emitted to widen the wavelength region width of the blue light, thereby reducing the saturation of the blue light.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a light source device included in a projector according to the present invention.
  • a light source device 1 includes a light source 1a, a collimator lens 1b, lenses 1c to 1e, 1i, 1k and 1m, a mirror 1f, a diffusion plate 1g, a dichroic mirror 1h, a quarter wavelength plate 1j, and a phosphor.
  • a unit 11 and a color filter unit 1n are provided.
  • the light source 1a a plurality of blue laser diodes (LD), which are semiconductor elements, that output blue light having a peak wavelength in the blue wavelength region are used. For example, S-polarized blue laser light is output from each blue LD.
  • LD blue laser diodes
  • the collimator lens 1b is provided for each blue LD, and converts the blue light output from each blue LD into a parallel light beam.
  • the lenses 1c to 1e convert each blue light (incident light beam) incident from the light source 1a via the collimator lens 1b into a parallel light beam with a reduced light beam diameter. By making the diameter of the outgoing light beam smaller than that of the incident light beam, the size of the members disposed after the lenses 1c to 1e can be reduced.
  • an example using three lenses 1c to 1e is shown, but the number of lenses is not limited to three, and may be increased or decreased as necessary.
  • Laser light (blue light) emitted from the lenses 1c to 1e is incident on the diffusing plate 1g with the optical path changed by the mirror 1f, diffused by the diffusing plate 1g, and then incident on the dichroic mirror 1h. Since the laser light is coherent and propagates without being diffused, when the output light from the light source 1a reaches the phosphor unit 1l as it is, each output light for each blue LD is collected on the phosphor wheel described later. Irradiated with light. In that case, there is a possibility that the temperature of each condensing part on the phosphor wheel rises and the phosphor wheel is damaged.
  • the diffusion plate 1g diffuses each output light for each blue LD so that each output light for each blue LD is irradiated onto the phosphor wheel with a uniform intensity distribution.
  • the dichroic mirror 1h transmits light having a first wavelength longer than the wavelength of the light source 1a and reflects light having a wavelength less than the first wavelength with respect to light incident as S-polarized light (first linearly polarized light).
  • the dichroic mirror 1h transmits light having a second wavelength shorter than the wavelength of the light source 1a with respect to light incident as P-polarized light (second linearly polarized light) and transmits light having a wavelength less than the second wavelength. It has the property of reflecting.
  • the dichroic mirror 1h having such characteristics can be realized by a dielectric multilayer film.
  • the dichroic mirror 1h guides the laser beam (blue light) incident through the diffusion plate 1g to the phosphor unit 1l.
  • a quarter-wave plate 1j and lenses 1i and 1k are disposed on the optical path between the dichroic mirror 1h and the phosphor unit 11.
  • the phosphor unit 1l includes a phosphor wheel 10 provided with a phosphor that emits laser light (blue light) as excitation light, and a phosphor wheel 10 in which a reflection region that reflects the laser light (blue light) is disposed, And a drive unit including a motor for rotating the phosphor wheel 10.
  • FIG. 2 shows an example of the phosphor wheel 10. As shown in FIG. 2, the phosphor wheel 10 has a yellow phosphor region 10 ⁇ / b> Y provided with a phosphor that emits yellow light, and a reflection film (mirror) that reflects laser light (blue light). And a region 10B.
  • the yellow phosphor region 10 ⁇ / b> Y and the reflection region 10 ⁇ / b> B are arranged along the circumference of the phosphor wheel 10.
  • the ratio of the area in the circumferential direction of the yellow phosphor region 10Y and the reflection region 10B is the light intensity of the yellow light, red light, green light, and blue light included in the output light of the light source device 1. It is set as appropriate according to the balance.
  • the quarter-wave plate 1j converts linearly polarized light (here, S-polarized light) incident from one surface into circularly polarized light, and circularly polarized light incident from the other surface is incident on the straight line incident from the one surface. Conversion into linearly polarized light (P-polarized light) having a polarization plane different from that of polarized light (90 ° different). Therefore, the blue light (S-polarized light) from the dichroic mirror 1h becomes circularly polarized light by passing through the quarter wavelength plate 1j.
  • the lenses 1i and 1k collect the blue light (circularly polarized light) that has passed through the quarter-wave plate 1j on the phosphor wheel 10 of the phosphor unit 11.
  • blue light (circularly polarized light) that has passed through the lens 1k is sequentially irradiated onto the yellow phosphor region 10Y and the reflection region 10B.
  • the phosphor excited by blue light (circularly polarized light) emits yellow fluorescence (unpolarized light).
  • the reflection region 10B reflects blue light (circularly polarized light) that has passed through the lenses 1i and 1k toward the lens 1k.
  • the yellow fluorescence from the yellow phosphor region 10Y and the blue light (circularly polarized light) from the reflection region 10B sequentially pass through the lenses 1k and 1i and the quarter wavelength plate 1j and enter the dichroic mirror 1h.
  • the lenses 1k and 1i only have to have a lens configuration in which the light from the phosphor wheel 10 becomes parallel light, and may be increased or decreased as necessary.
  • the blue light (circularly polarized light) from the reflection region 10B passes through the quarter-wave plate 1j again, so that the linearly polarized light (P-polarized light) having a 1/2 wavelength phase different from the polarized light (S-polarized light) of the light source 1a. ) And is incident on the dichroic mirror 1h.
  • the yellow fluorescence from the yellow phosphor region 10Y is polarized light (non-polarized light) whose vibration direction is random, the light characteristics do not change even if it passes through the quarter-wave plate 1j. Further, since the dichroic mirror 1h transmits yellow light having a wavelength sufficiently longer than that of blue light, yellow fluorescent light (non-polarized light) and blue light (P-polarized light) that have passed through the quarter-wave plate 1j pass through the dichroic mirror 1h. The light is transmitted, condensed by the lens 1m, and applied to the color filter unit 1n.
  • the color filter unit 1n includes a color wheel 11 that separates the emitted light and a drive unit that includes a motor that rotates the color wheel 11.
  • FIG. 3 shows an example of the color wheel 11. As shown in FIG. 3, the color wheel 11 includes a yellow transmission filter 11Y, a red transmission filter 11R, a green transmission filter 11G, and a diffusion plate (diffusion region) 11B.
  • FIG. 3 shows a configuration example in which the color wheel 11 includes the yellow transmission filter 11Y, but the yellow transmission filter 11Y may be omitted.
  • the yellow transmission filter 11 ⁇ / b> Y, the red transmission filter 11 ⁇ / b> R, the green transmission filter 11 ⁇ / b> G, and the diffusion plate 11 ⁇ / b> B are arranged along the circumference of the color wheel 11.
  • the areas of the yellow transmission filter 11Y, the red transmission filter 11R, and the green transmission filter 11G correspond to the yellow phosphor area 10Y of the phosphor wheel 10 shown in FIG. 2, and the area of the diffusion plate 11B is the phosphor shown in FIG. This corresponds to the reflection region 10 ⁇ / b> B of the wheel 10.
  • the ratio of the area in the circumferential direction (division ratio in the circumferential direction) of the yellow transmission filter 11Y, the red transmission filter 11R, the green transmission filter 11G, and the diffusion plate 11B corresponds to each of the phosphor wheels 10 shown in FIG. It is the same as the area ratio.
  • the phosphor wheel 10 and the color wheel 11 are controlled by corresponding driving units so as to rotate in synchronization with each other.
  • the yellow fluorescence emitted from the yellow phosphor region 10Y includes light of a red component, a green component, and a yellow component obtained by mixing them. Therefore, the yellow component light is transmitted through the yellow transmission filter 11Y, the red component light is transmitted through the red transmission filter 11R, and the green component light is transmitted through the green transmission filter 11G.
  • the blue light from the reflection region 10B is output while being diffused by the diffusion plate 11B.
  • the diffusion angle of the blue light by the diffusion plate 11B may be about 10 degrees, for example, but can be changed as needed.
  • the light source 1a uses a plurality of types of blue LDs (excitation light sources) having different peak wavelengths to widen the wavelength region width of the blue light, thereby saturation of the blue light. To reduce color braking.
  • blue LDs excitation light sources
  • the blue LD for example, a blue LD having a peak wavelength of output light of around 450 nm and a blue LD having a peak wavelength of output light of around 460 nm are used.
  • the blue LD used for the light source 1a is not limited to two types, and may have more types.
  • one blue LD used for the light source 1a is referred to as a first blue LD 12, and the other blue LD used for the light source 1a is referred to as a second blue LD 13.
  • the first blue LD 12 and the second blue LD 13 are arranged in a grid pattern, and are alternately arranged so that the blue LDs adjacent in the row direction and the column direction are different from each other.
  • the first blue LD 12 and the second blue LD 13 do not have to be arranged in a lattice pattern, and may be arranged in a staggered pattern.
  • FIG. 4 shows an example in which the first blue LD 12 and the second blue LD 13 are arranged in a grid of 6 rows and 4 columns.
  • the output light of the first blue LD and the second blue LD included in the light source 1a is diffused by the diffusion plate 1g.
  • the light distribution after the color wheel 11 is made uniform in luminance distribution by the light tunnel 2a as described later.
  • the light source device 1 according to the present embodiment uses a plurality of types of blue LDs having different peak wavelengths as the light source 1a, for example, when the first blue LD 12 and the second blue LD 13 are biased, the phosphor wheel 10 or Luminance unevenness and color unevenness occur in the light irradiated to the color wheel 11.
  • the first blue LD 12 and the second blue LD 13 are preferably arranged alternately so that the blue LDs adjacent in the row direction and the column direction are different from each other, as shown in FIG. Even when more types of blue LDs are used as the light source 1a, it is only necessary to prevent the same types of blue LDs from being biased.
  • the luminance of the first blue LD 12 and the second blue LD 13 provided in the light source 1a is different, the blue light with high luminance appears brighter and the saturation of the blue light is increased. Therefore, the luminance of the first blue LD 12 and the second blue LD 13 included in the light source 1a is the same (or the same level). In that case, the saturation of the mixed light of the blue light output from the first blue LD 12 and the blue light output from the second blue LD 13 can be reduced most. Even when more types of blue LDs are used as the light source 1a, the luminance of blue light having the longest peak wavelength and the luminance of blue light having the shortest peak wavelength may be made the same (or similar).
  • the first blue LD 12 In order to make the luminance of the first blue LD 12 and the luminance of the second blue LD 13 the same, for example, when the first blue LD 12 and the second blue LD 13 have similar characteristics (forward current-relative luminous intensity characteristics), the first blue LD 12 What is necessary is just to make the electric current value sent through LD12 and 2nd blue LD13 the same. In that case, for example, as shown in FIGS. 5A and 5B, if a plurality of first blue LDs 12 and second blue LDs 13 are alternately connected in series using the wiring base material 14, the first blue LDs 12 connected in series and The current values flowing through the second blue LD 13 can be made the same.
  • the blue LDs may be connected in series and the current values flowing through them may be the same.
  • FIG. 5A the first blue LD 12 and the second blue LD 13 are divided into three blocks.
  • FIG. 5B the first blue LD 12 and the second blue LD 13 are divided into two blocks, and the first blue LD 12 is divided into blocks.
  • FIGS. 5A and 5B show an example in which each block is divided into a plurality of blocks each having two or more light sources. These blocks may be connected in series and supplied with current from a common power supply device, or may be supplied with the same power supply current from individual power supply devices for each block.
  • the output light of the light source 1a is diffused by the diffusion plate 1g, so that the color light in which the blue light output from the first blue LD 12 and the blue light output from the second blue LD 13 are mixed is produced.
  • the phosphor wheel 10 is irradiated. Therefore, the blue LD used for the light source 1a only needs to have a peak wavelength in a wavelength region where desired blue light can be obtained in the state of mixed color light. For example, since the wavelength of blue light obtained from a discharge lamp or the like conventionally used as a light source is 400 nm to 480 nm, the blue LD used for the light source 1a may have a peak wavelength in the range of 400 nm to 480 nm. However, it is desirable to select the peak wavelength of the blue LD used for the light source 1a in consideration of the characteristics of the dichroic mirror 1h included in the light source device 1.
  • FIG. 6 is a graph showing an example of the spectral transmittance characteristics of the dichroic mirror and the emission spectrum of the light source.
  • FIG. 6 shows examples of spectral transmittance characteristics of S-polarized (Ts) blue light and P-polarized (Tp) blue light, respectively.
  • the dichroic mirror 1h included in the light source device 1 shown in FIG. 1 is in the wavelength region from the cutoff wavelength (first wavelength) of S-polarized light to the cutoff wavelength (second wavelength) of P-polarized light. , S-polarized light and P-polarized light can be separated.
  • the dichroic mirror having the characteristics shown in FIG.
  • the dichroic mirror 1h has a cutoff wavelength of S-polarized blue light in the vicinity of 480 nm and a cutoff wavelength of P-polarized blue light in the vicinity of 430 nm.
  • the emission spectrum of the blue LD whose output light peak wavelength is around 450 nm and the emission spectrum of the blue LD whose output light peak wavelength is around 460 nm are shown simultaneously. Therefore, in the wavelength range longer than the cutoff wavelength (first wavelength) of S-polarized light and in the wavelength range shorter than the cutoff wavelength (second wavelength) of P-polarized light, the S-polarized light and P-polarized light by the dichroic mirror 1h are used. Separation becomes impossible.
  • the blue LD used for the light source 1a may be selected from those having a peak wavelength in the range from the first wavelength to the second wavelength.
  • the first wavelength to the second wavelength of the dichroic mirror 1h is about 50 nm. Therefore, a plurality of types of blue LDs whose peak wavelength difference is within 50 nm may be used as the light source 1a.
  • FIG. 7 is a schematic diagram illustrating a configuration example of a projector according to the present invention.
  • the projector includes a light source device 1, an illumination optical system 2, and a projection optical system 3.
  • the illumination optical system 2 includes a light tunnel 2a, lenses 2b, 2c and 2e, a mirror 2d, and an image forming element 2f.
  • the projection optical system 3 includes a projection lens.
  • Yellow light, red light, green light, and blue light that have passed through the color filter unit 1 n included in the light source device 1 are incident on the light tunnel 2 a of the illumination optical system 2.
  • the light tunnel 2a repeatedly outputs the incident light so that the luminance distribution becomes uniform by total reflection.
  • the light output from the light tunnel 2a is irradiated to the image forming element 2f through the lenses 2b and 2c, the mirror 2d, and the lens 2e.
  • the image forming element 2f spatially modulates red, green, yellow and blue light fluxes to form image light for each color light.
  • the DMD described above may be used for the image forming element 2f.
  • the image light formed by the image forming element 2f is enlarged by a projection lens provided in the projection optical system 3 and projected onto a screen (not shown) or the like.
  • the light source device 1 since the light source device 1 includes a plurality of types of blue LDs that output blue light having different peak wavelengths, the saturation of the blue light output from the light source device 1 is reduced. Therefore, a projector that can reduce color braking of the projected image is obtained.
  • FIG. 7 shows a configuration example including the light source device 1 and the illumination optical system 2 for guiding the blue light reflected by the phosphor wheel 10 to the image forming element (DMD) 2f.
  • the optical system of the projector is shown in FIG. It is not limited to the configuration shown in FIG.
  • FIG. 8 shows a configuration example of such a projector.
  • FIG. 8 is a schematic diagram showing another configuration example of the projector of the present invention.
  • the projector shown in FIG. 8 includes an excitation optical system 100, a relay optical system 200, a color synthesis system 300, an illumination optical system 400, and a projection optical system 500.
  • the excitation optical system 100, the relay optical system 200, and the color synthesis system 300 correspond to the light source device 1 shown in FIG.
  • the excitation optical system 100 includes a light source 100a, a collimator lens 100b, lenses 100c to 100e, 100g and 100h, a phosphor unit 100i, and a diffusion plate 1f.
  • the relay optical system 200 includes lenses 200a, 200b, 200d and 200f, and mirrors 200c, 200e and 200g.
  • the color composition system 300 includes a dichroic mirror 300a, a lens 300b, and a light tunnel 300c.
  • the illumination optical system 400 includes lenses 400a, 400b and 400d, a mirror 400c, and an image forming element (DMD) 400e.
  • the projection optical system 500 includes a projection lens.
  • a plurality of types of blue laser diodes (LDs) that output blue light having different peak wavelengths are used for the light source 100a.
  • the collimator lens 100b is provided for each blue LD, and converts the blue light output from the blue LD into a parallel light beam.
  • the lenses 100c to 100e convert each blue light (incident light beam) incident from the light source 100a via the collimator lens 100b into a parallel light beam with a reduced light beam diameter.
  • the three lenses 100c to 100e are used here, the number of lenses is not limited to three, and may be increased or decreased as necessary.
  • the blue light emitted from the lenses 100c to 100e enters the diffusion plate 100f, is diffused by the diffusion plate 100f, and then enters the dichroic mirror 300a.
  • the dichroic mirror 300a shown in FIG. 8 has characteristics of transmitting blue light having a relatively short wavelength and reflecting other color light (yellow light, green light, red light, etc.) having a relatively long wavelength.
  • the dichroic mirror 1h provided in the optical device 1 shown in FIG. 1 it is not configured to switch transmission / reflection of blue light by polarization (S-polarized light and P-polarized light). Therefore, in the projector (optical device) shown in FIG. 8, it is not necessary to select the peak wavelength of the blue LD used for the light source 100a in consideration of the characteristics of the dichroic mirror 300a. In that case, as the blue LD used for the light source 100a, a blue LD having a peak wavelength in the range of 400 nm to 480 nm can be used.
  • the phosphor unit 100i includes a phosphor wheel provided with a phosphor that emits laser light (blue light) as excitation light, a phosphor wheel in which a transmission region that transmits laser light (blue light) is disposed, and the fluorescence And a drive unit including a motor for rotating the body wheel.
  • the phosphor wheel has, for example, a red phosphor region provided with a phosphor emitting red light, a green phosphor region provided with a phosphor emitting green light, and a transmission region transmitting blue light. Yes.
  • the phosphor wheel may be provided with a yellow phosphor region provided with a phosphor that emits yellow light.
  • the blue light transmitted through the dichroic mirror 300a is collected on the phosphor wheel provided in the phosphor unit 100i by the lenses 100g and 100h.
  • the blue light (circularly polarized light) that has passed through the lens 100h is sequentially irradiated to the red phosphor region, the green phosphor region, and the transmission region.
  • the phosphor wheel sequentially emits red light and green light, and subsequently transmits blue light. Note that the order of red light emission, green light emission, and blue light transmission only needs to match the order of the color of the image light formed by the image forming element, and the order of red, green, and blue is necessary. Absent.
  • the blue light transmitted through the phosphor wheel is guided to the dichroic mirror 300a by the relay optical system 200, passes through the dichroic mirror 300a, is condensed by the lens 300a, and enters the light tunnel 300c.
  • red fluorescent light and green fluorescent light emitted from the phosphor wheel that emits blue light as excitation light pass through the lenses 100g and 100h and enter the dichroic mirror 300a.
  • the dichroic mirror 300a reflects the red fluorescence and the green fluorescence from the phosphor wheel, changes the optical path, and guides it to the light tunnel 300c.
  • the light output from the light tunnel 300c is applied to the image forming element (DMD) 400e through the lenses 400a and 400b, the mirror 400c, and the lens 400d, as in the projector shown in FIG.
  • the image light formed by the image forming element 400e is enlarged by a projection lens 500a included in the projection optical system 500 and projected onto a screen (not shown) or the like.
  • a projector capable of reducing color braking of the projected video can be obtained.
  • the light source device excitation optical system 100, relay optical system 200, and color synthesis system 300 shown in FIG. 8

Abstract

 フィールドシーケンシャル方式のプロジェクターであって、原色の波長域にピーク波長を有する原色光を出力する、原色の波長域におけるピーク波長が異なる複数の光源と、複数の光源から出力された原色光を空間的に変調して画像光を形成する映像形成素子を含む、映像形成素子まで複数の光源から出力された原色光を導く照明光学系と、映像形成素子で形成された画像光を投射する投射光学系とを有する。

Description

プロジェクター及び画像光投射方法
 本発明は画像光を投射するプロジェクター及び画像光投射方法に関する。
 カラー映像を投射するプロジェクターには、高速に回転するカラーホイールを用いて光源から出力された白色光を赤、緑、青の三原色の色光に順次分離し、分離された各色光を映像信号にしたがって順次光変調することでカラー映像を形成するフィールドシーケンシャル方式(単板方式とも呼ばれる)の構成が知られている。光変調に用いる映像形成素子には、液晶パネルやDMD(Digital Micro-mirror Device:登録商標)等が利用される。
 上述したカラーホイールを用いるプロジェクターでは、従来、高輝度な放電ランプ等を光源として用いる構成が主流であった。しかしながら、近年は光源の長寿命化や低消費電力化等を実現するため、レーザダイオードやLED(Light Emitting Diode)等の半導体素子を光源に用いたプロジェクターが開発されている。
 例えば、特許文献1(特開2014-139689号公報)には紫外光及び青色光を発光するLEDやレーザダイオードを光源に用いたプロジェクターが記載されている。また、特許文献2(特開2012-212129号公報)には青色光を発光するレーザダイオードを光源に用いたプロジェクターが記載されている。
 光源としてLEDやレーザダイオードを用いる場合、該LEDやレーザダイオードは、通常、単一波長光しか出力できない。そのため、特許文献1や2に記載されたプロジェクターでは、赤、緑、青の三原色の各色光を得るために、光源から出力された光を励起光として蛍光体に照射し、該光源から直接得られない色光をそれぞれ蛍光体で発光させている。例えば、青色のレーザ光を発光するレーザダイオードを光源に用いる場合は、蛍光体で赤色光や緑色光を発光させる。蛍光体は、発光する色光によって(蛍光体の種類によって)発光効率が異なるため、特許文献1では、波長が異なる2種類以上の光源を備え、蛍光体に応じて励起光として用いる光源を切り換えることを提案している。
 なお、蛍光体の発光効率の差異による影響は蛍光体の種類を減らすことでも軽減できる。例えば、青色のレーザ光を励起光に用いて赤色光及び緑色光を発光させる場合、赤色光と緑色光とを個別の蛍光体で発光させるのはなく、赤色と緑色の成分を含む黄色光を発光する蛍光体を用いることが考えられる。その場合、カラーホイールを用いて該黄色光から赤色光及び緑色光を色分離すればよい。以下では、光源や蛍光体等を備えた、映像形成素子にカラー映像を形成するための各色光を出力する装置を光源装置と称す。
 このように、青色のレーザ光を発光するレーザダイオードを光源装置に備えるプロジェクターでは、放電ランプ等を光源装置に備えるプロジェクターよりも色純度や彩度が高い青色光を得ることができる。
 しかしながら、放電ランプ等を備える光源装置と同程度の輝度の各色光をレーザダイオードを備える光源装置から出力させる場合、青色光は、赤色光や緑色光と同一輝度であっても、赤色光や緑色光よりも明るく見えてしまう。これはレーザ光で得られる青色光の彩度が高いことが原因であり、ヘルムホルツ・コールラウシュ効果(H-K効果)として知られている。
 したがって、青色のレーザ光を光源に用いると、青色光と、赤色光及び緑色光との彩度の差が大きくなり、放電ランプ等を光源とするプロジェクターよりも投射映像にカラーブレーキングがより顕著に表れてしまう。
特開2014-139689号公報 特開2012-212129号公報
 本発明は投射映像のカラーブレーキングを低減できるプロジェクター及び画像光投射方法を提供することを目的とする。
 上記目的を達成するため本発明のプロジェクターは、フィールドシーケンシャル方式のプロジェクターであって、
 原色の波長域にピーク波長を有する原色光を出力する、前記原色の波長域における前記ピーク波長が異なる複数の光源と、
 前記複数の光源から出力された原色光を空間的に変調して画像光を形成する映像形成素子を含む、前記映像形成素子まで前記複数の光源から出力された原色光を導く照明光学系と、
 前記映像形成素子で形成された画像光を投射する投射光学系と、
を有し、
 前記複数の光源から出力される原色光のうち、ピーク波長が最長の原色光の輝度と、ピーク波長が最短の原色光の輝度とが同じである。
 または、フィールドシーケンシャル方式のプロジェクターであって、
 原色の波長域にピーク波長を有する原色光を出力する、前記原色の波長域における前記ピーク波長が異なる複数の光源と、
 前記複数の光源から出力された原色光を空間的に変調して画像光を形成する映像形成素子を含む、前記映像形成素子まで前記複数の光源から出力された原色光を導く照明光学系と、
 前記映像形成素子で形成された画像光を投射する投射光学系と、
を有し、
 前記複数の光源に流れる電流値が同じである。
 一方、本発明の画像光投射方法は、フィールドシーケンシャル方式のプロジェクターにおける画像光投射方法であって、
 原色の波長域にピーク波長を有する、前記原色の波長域における前記ピーク波長が異なる原色光を複数の光源から出力し、
 前記複数の光源から出力された原色光を、該原色光を空間的に変調して画像光を形成する映像形成素子まで照明光学系により導き、
 前記映像形成素子で形成された画像光を投射光学系により投射し、
 前記複数の光源から出力される原色光のうち、ピーク波長が最長の原色光の輝度と、ピーク波長が最短の原色光の輝度とが同じである方法である。
 または、フィールドシーケンシャル方式のプロジェクターにおける画像光投射方法であって、
 原色の波長域にピーク波長を有する、前記原色の波長域における前記ピーク波長が異なる原色光を複数の光源から出力し、
 前記複数の光源から出力された原色光を、該原色光を空間的に変調して画像光を形成する映像形成素子まで照明光学系により導き、
 前記映像形成素子で形成された画像光を投射光学系により投射し、
 前記複数の光源に流れる電流値が同じである方法である。
図1は、本発明のプロジェクターが備える光源装置の一構成例を示す模式図である。 図2は、図1に示した光源装置が備える蛍光体ホイールの一例を示す模式図である。 図3は、図1に示した光源装置が備えるカラーホイールの一例を示す模式図である。 図4は、図1に示した光源装置が備える光源の配置例を示す模式図である。 図5Aは、図1に示した光源装置が備える光源の接続例を示す模式図である。 図5Bは、図1に示した光源装置が備える光源の他の接続例を示す模式図である。 図6は、ダイクロイックミラーの分光透過率特性及び光源の発光スペクトルの一例を示すグラフである。 図7は、本発明のプロジェクターの一構成例を示す模式図である。 図8は、本発明のプロジェクターの他の構成例を示す模式図である。
 次に本発明について図面を参照して説明する。
 上述したように、H-K効果は、彩度が高い青色のレーザ光が実際よりも明るく見えることで起こる。したがって、カラーブレーキングは青色光の「彩度」または「輝度」を下げれば低減すると考えられる。
 しかしながら、青色光の輝度を変動させると、赤、緑、青の各色光を合成することで白色光を生成する投射映像(カラー映像)の色味が変わってしまうために好ましくない。例えば、青色光の輝度を下げると、投射映像全体が黄色寄りの映像となってしまう。
 そこで、本発明では、青色光の「彩度」を下げることでカラーブレーキングを低減させる。具体的には、ピーク波長が異なる青色光を出力する複数種類のレーザダイオードを光源として用意し、それらを同時に発光させて青色光の波長領域幅を広げることで青色光の彩度を低下させる。
 図1は、本発明のプロジェクターが備える光源装置の一構成例を示す模式図である。
 図1に示すように、光源装置1は、光源1a、コリメータレンズ1b、レンズ1c~1e、1i、1k及び1m、ミラー1f、拡散板1g、ダイクロイックミラー1h、1/4波長板1j、蛍光体ユニット1l、並びにカラーフィルタユニット1nを備える。
 光源1aには、青色の波長域にピーク波長を有する青色光を出力する、半導体素子である複数の青色レーザダイオード(LD)が用いられる。各青色LDからは、例えばS偏光の青色レーザ光が出力される。
 コリメータレンズ1bは、青色LD毎に設けられ、各青色LDから出力された青色光を平行光束に変換する。
 レンズ1c~1eは、光源1aからコリメータレンズ1bを介して入射される各青色光(入射光束)を、光束径を縮小した平行光束に変換する。出射光束の径を入射光束よりも小さくすることで、レンズ1c~1e以降に配置される部材のサイズを小さくできる。ここでは3つのレンズ1c~1eを用いる例を示しているが、レンズの数は3つに限定されるものではなく、必要に応じて増減してもよい。
 レンズ1c~1eから出射したレーザ光(青色光)は、ミラー1fにより光路が変更されて拡散板1gに入射され、該拡散板1gにて拡散された後、ダイクロイックミラー1hに入射される。
 レーザ光は、コヒーレントな光であり、拡散せずに伝播するため、光源1aの出力光がそのまま蛍光体ユニット1lまで到達すると、後述する蛍光体ホイール上に青色LD毎の各出力光がそれぞれ集光した状態で照射される。その場合、蛍光体ホイール上における各集光部位の温度が上昇して蛍光体ホイールの破損を招くおそれがある。拡散板1gは、青色LD毎の各出力光が均一な強度分布で蛍光体ホイール上に照射されるように、青色LD毎の各出力光を拡散させる。
 ダイクロイックミラー1hは、S偏光(第1の直線偏光)で入射する光に対して、光源1aの波長よりも長い第1の波長以上の光を透過し、第1の波長未満の光を反射する特性を有する。また、ダイクロイックミラー1hは、P偏光(第2の直線偏光)で入射する光に対して、光源1aの波長よりも短い第2の波長以上の光を透過し、第2の波長未満の光を反射する特性を有する。このような特性を有するダイクロイックミラー1hは、誘電体多層膜によって実現できる。
 ダイクロイックミラー1hは、拡散板1gを介して入射されたレーザ光(青色光)を蛍光体ユニット1lへ導く。ダイクロイックミラー1hと蛍光体ユニット1lとの間の光路上には、1/4波長板1j、並びにレンズ1i及び1kが配置されている。
 蛍光体ユニット1lは、レーザ光(青色光)を励起光として発光する蛍光体が設けられた蛍光体領域及びレーザ光(青色光)を反射する反射領域が配置された蛍光体ホイール10と、該蛍光体ホイール10を回転させるモータを含む駆動部とを有する。図2に蛍光体ホイール10の一例を示す。
 図2に示すように、蛍光体ホイール10は、黄色光を発光する蛍光体が設けられた黄色蛍光体領域10Yと、レーザ光(青色光)を反射する反射膜(鏡)が設けられた反射領域10Bとを備えている。黄色蛍光体領域10Y及び反射領域10Bは、蛍光体ホイール10の円周に沿って並ぶように配置されている。黄色蛍光体領域10Y及び反射領域10Bの円周方向における面積の割合(円周方向の分割比)は、光源装置1の出力光に含む黄色光、赤色光、緑色光及び青色光の光強度のバランスに応じて適宜設定される。
 1/4波長板1jは、一方の面から入射された直線偏光(ここではS偏光)を円偏光に変換し、他方の面から入射された円偏光を、上記一方の面から入射される直線偏光とは異なる偏光面(90°異なる)の直線偏光(P偏光)に変換する。そのため、ダイクロイックミラー1hからの青色光(S偏光)は、1/4波長板1jを通過することで円偏光となる。レンズ1i及び1kは、1/4波長板1jを通過した青色光(円偏光)を蛍光体ユニット1lの蛍光体ホイール10上に集光する。このとき、蛍光体ホイール10を回転させることで、レンズ1kを通過した青色光(円偏光)が黄色蛍光体領域10Y及び反射領域10Bに順次照射される。黄色蛍光体領域10Yでは青色光(円偏光)により励起された蛍光体が黄色蛍光(非偏光)を発する。反射領域10Bはレンズ1i及び1kを通過した青色光(円偏光)を該レンズ1k方向へ反射する。
 黄色蛍光体領域10Yからの黄色蛍光と反射領域10Bからの青色光(円偏光)とは、レンズ1k及び1i、並びに1/4波長板1jを順次通過してダイクロイックミラー1hに入射される。レンズ1k及び1iは、蛍光体ホイール10からの光が平行光となるレンズ構成であればよく、必要に応じて増減してもよい。
 ここで、反射領域10Bからの青色光(円偏光)は、1/4波長板1jを再び通過することで、光源1aの偏光(S偏光)から1/2波長位相が異なる直線偏光(P偏光)に変換されてダイクロイックミラー1hに入射される。黄色蛍光体領域10Yからの黄色蛍光は、振動方向がランダムな偏光(非偏光)であるため、1/4波長板1jを透過しても光の特性は変化しない。また、ダイクロイックミラー1hは、青色光よりも波長が十分に長い黄色光を透過させるため、1/4波長板1jを通過した黄色蛍光(非偏光)及び青色光(P偏光)はダイクロイックミラー1hを透過し、レンズ1mによって集光されてカラーフィルタユニット1nに照射される。
 カラーフィルタユニット1nは、照射光を色分離するカラーホイール11と該カラーホイール11を回転させるモータを含む駆動部とを有する。図3にカラーホイール11の一例を示す。図3に示すように、カラーホイール11は、黄色透過フィルター11Y、赤色透過フィルター11R、緑色透過フィルター11G及び拡散板(拡散領域)11Bを有する。図3は、カラーホイール11に黄色透過フィルター11Yを備える構成例を示しているが、黄色透過フィルター11Yは無くてもよい。
 黄色透過フィルター11Y、赤色透過フィルター11R、緑色透過フィルター11G及び拡散板11Bは、カラーホイール11の円周に沿って並ぶように配置されている。
 黄色透過フィルター11Y、赤色透過フィルター11R及び緑色透過フィルター11Gの領域は、図2に示した蛍光体ホイール10の黄色蛍光体領域10Yに対応し、拡散板11Bの領域は図2に示した蛍光体ホイール10の反射領域10Bに対応する。黄色透過フィルター11Y、赤色透過フィルター11R、緑色透過フィルター11G及び拡散板11Bの円周方向における面積の割合(円周方向の分割比)は、図2に示した蛍光体ホイール10のそれぞれに対応する領域の割合と同じである。
 蛍光体ホイール10及びカラーホイール11は、互いに同期して回転するように対応する駆動部により制御される。黄色蛍光体領域10Yが発する黄色蛍光には、赤色成分及び緑色成分、並びにそれらを混色した黄色成分の光を含む。そのため、黄色成分の光が黄色透過フィルター11Yを透過し、赤色成分の光が赤色透過フィルター11Rを透過し、緑色成分の光が緑色透過フィルター11Gを透過する。反射領域10Bからの青色光は、拡散板11Bにより拡散されつつ出力される。拡散板11Bによる青色光の拡散角は、例えば10度程度であればよいが、必要に応じて適宜変更できる。
 このような構成において、上述したように、本実施形態では光源1aとしてピーク波長が異なる複数種類の青色LD(励起光源)を用いて青色光の波長領域幅を広げることで、青色光の彩度を低下させて、カラーブレーキングを低減する。
 青色LDには、例えば、出力光のピーク波長が450nm付近の青色LDと、出力光のピーク波長が460nm付近の青色LDとを用いる。光源1aに用いる青色LDは2種類に限定されるものではなく、より多くの種類を備えていてもよい。以下では、光源1aに用いる一方の青色LDを第1青色LD12と称し、光源1aに用いる他方の青色LDを第2青色LD13と称す。
 第1青色LD12及び第2青色LD13は、例えば図4に示すように格子状に配列され、行方向及び列方向で隣接する青色LDが互いに異なるように交互に配置される。第1青色LD12及び第2青色LD13は、格子状に配列される必要はなく、千鳥状に配列されていてもよい。図4は、第1青色LD12及び第2青色LD13を、6行4列の格子状に配列する例を示している。青色LDの数は、6×4=24個に限定されるものではなく、必要に応じて増減してもよい。
 上述したように、光源1aが備える第1青色LD及び第2青色LDの出力光は拡散板1gによって拡散される。また、カラーホイール11通過後の光は、後述するようにライトトンネル2aによって輝度分布が均一化される。但し、本実施形態の光源装置1では、光源1aとしてピーク波長が異なる複数種類の青色LDを用いるため、例えば第1青色LD12や第2青色LD13が偏って配置されると、蛍光体ホイール10やカラーホイール11に照射される光に輝度ムラや色ムラが生じてしまう。したがって、第1青色LD12及び第2青色LD13は、図4に示したように、行方向及び列方向で隣接する青色LDが互いに異なるように、交互に配置することが好ましい。光源1aとして、より多くの種類の青色LDを用いる場合も、同一種類の青色LDが偏って配置されないようにすればよい。
 また、光源1aが備える第1青色LD12及び第2青色LD13の輝度が異なっていると、輝度が高い青色光がより明るく見えることで青色光の彩度が高くなってしまう。そのため、光源1aが備える第1青色LD12及び第2青色LD13の輝度は同じ(または同程度)にする。その場合、第1青色LD12から出力される青色光と第2青色LD13から出力される青色光の混色光の彩度を最も低減できる。光源1aとして、より多くの種類の青色LDを用いる場合も、ピーク波長が最長の青色光の輝度とピーク波長が最短の青色光の輝度とを同じ(または同程度)にすればよい。
 第1青色LD12の輝度と第2青色LD13の輝度とを同じにするには、例えば第1青色LD12と第2青色LD13とが同様の特性(順電流-相対光度特性)の場合、第1青色LD12と第2青色LD13とに流す電流値を同じにすればよい。その場合、例えば図5A及びBに示すように配線基材14を用いて複数の第1青色LD12及び第2青色LD13を交互に直列に接続すれば、該直列に接続された第1青色LD12及び第2青色LD13に流れる電流値をそれぞれ同じにできる。光源1aとして、より多くの種類の青色LDを用いる場合も、各青色LDを直列に接続してそれらに流れる電流値をそれぞれ同じにすればよい。
 なお、図5Aでは第1青色LD12及び第2青色LD13が3つのブロックに分割され、図5Bでは第1青色LD12及び第2青色LD13が2つのブロックに分割されて、ブロック毎に第1青色LD12及び第2青色LD13が直列に接続される構成例を示している。すなわち、図5A及びBは、それぞれが2以上の光源を有する複数のブロックに分割された例を示している。これらのブロックは、直列に接続されて共通の電源装置から電流が供給されてもよく、ブロック毎に個別の電源装置から同じ電源電流が供給されてもよい。
 また、上述したように光源1aの出力光は、拡散板1gによって拡散されることで、第1青色LD12から出力される青色光と第2青色LD13から出力される青色光とが混色した色光が蛍光体ホイール10に照射される。したがって、光源1aに用いる青色LDは、混色光の状態で所望の青色光が得られる波長領域内にピーク波長があればよい。例えば、従来、光源として用いていた放電ランプ等で得られる青色光の波長は400nm~480nmであるため、光源1aに用いる青色LDも400nm~480nmの範囲にピーク波長があればよい。
 但し、光源1aに用いる青色LDのピーク波長は、光源装置1が備えるダイクロイックミラー1hの特性も考慮して選択することが望ましい。
 図6は、ダイクロイックミラーの分光透過率特性及び光源の発光スペクトルの一例を示すグラフである。図6は、S偏光(Ts)の青色光の及びP偏光(Tp)の青色光の分光透過率特性の一例をそれぞれ示している。
 上述したように、図1に示した光源装置1が備えるダイクロイックミラー1hは、S偏光のカットオフ波長(第1の波長)からP偏光のカットオフ波長(第2の波長)までの波長域において、S偏光とP偏光とを分離できる。
 図6に示す特性を有するダイクロイックミラーは、S偏光の青色光のカットオフ波長が480nm付近にあり、P偏光の青色光のカットオフ波長が430nm付近にある。なお、図6では、出力光のピーク波長が450nm付近の青色LDの発光スペクトルと出力光のピーク波長が460nm付近の青色LDの発光スペクトルとを同時に示している。
 したがって、S偏光のカットオフ波長(第1の波長)よりも長い波長域、並びにP偏光のカットオフ波長(第2の波長)よりも短い波長域では、ダイクロイックミラー1hによるS偏光とP偏光の分離が不可能になる。そのため、光源1aに用いる青色LDは、上記第1の波長から第2の波長までの範囲内にピーク波長があるものを選択すればよい。通常、ダイクロイックミラー1hの上記第1の波長から第2の波長までは、およそ50nm程度である。そのため、光源1aには、ピーク波長の差の範囲が50nm以内となるような複数種類の青色LDを用いればよい。
 次に図1に示した光源装置1を備えるプロジェクターの一例について図面を用いて説明する。
 図7は、本発明のプロジェクターの一構成例を示す模式図である。
 図7に示すように、プロジェクターは、光源装置1、照明光学系2及び投射光学系3を有する。
 光源装置1には、図1に示した光源装置1を用いればよい。
 照明光学系2は、ライトトンネル2a、レンズ2b、2c及び2e、ミラー2d、並びに映像形成素子2fを備える。投射光学系3は投射レンズから構成される。
 光源装置1が備えるカラーフィルタユニット1nを通過した黄色光、赤色光、緑色光及び青色光は照明光学系2のライトトンネル2aに入射される。
 ライトトンネル2aは、入射された光を繰り返し全反射させることで輝度分布が均一となるようにして出力する。ライトトンネル2aから出力された光は、レンズ2b及び2c、ミラー2d、並びにレンズ2eを介して映像形成素子2fに照射される。
 映像形成素子2fは、赤、緑、黄及び青の光束をそれぞれ空間的に変調し、色光毎の画像光を形成する。映像形成素子2fには、上述したDMDを用いればよい。映像形成素子2fで形成された画像光は、投射光学系3が備える投射レンズにより拡大されて不図示のスクリーン等に投射される。
 本発明によれば、光源装置1としてピーク波長が異なる青色光を出力する複数種類の青色LDを備えることで、光源装置1から出力される青色光の彩度が低下する。
 そのため、投射映像のカラーブレーキングを低減できるプロジェクターが得られる。
 なお、図7は、蛍光体ホイール10で反射した青色光を映像形成素子(DMD)2fまで導く光源装置1及び照明光学系2を備えた構成例を示しているが、プロジェクターの光学系は図7に示した構成に限定されるものではない。例えば、蛍光体ホイールを透過した青色光を映像形成素子(DMD)まで導く光学系を備えたプロジェクターもある。図8はそのようなプロジェクターの構成例を示している。
 図8は、本発明のプロジェクターの他の構成例を示す模式図である。
 図8に示すプロジェクターは、励起光学系100、リレー光学系200、色合成系300、照明光学系400及び投射光学系500を有する。図8に示すプロジェクターでは、励起光学系100、リレー光学系200及び色合成系300が、図1に示した光源装置1に相当する。
 励起光学系100は、光源100a、コリメータレンズ100b、レンズ100c~100e、100g及び100h、蛍光体ユニット100i、並びに拡散板1fを備える。リレー光学系200は、レンズ200a、200b、200d及び200f、並びにミラー200c、200e及び200gを備える。色合成系300は、ダイクロイックミラー300a、レンズ300b及びライトトンネル300cを備える。照明光学系400は、レンズ400a、400b及び400d、ミラー400c、並びに映像形成素子(DMD)400eを備える。投射光学系500は投射レンズから構成される。
 光源100aには、図1に示した光源装置1と同様に、ピーク波長が異なる青色光を出力する複数種類の青色レーザダイオード(LD)が用いられる。
 コリメータレンズ100bは、青色LD毎に設けられ、青色LDから出力された青色光を平行光束に変換する。
 レンズ100c~100eは、光源100aからコリメータレンズ100bを介して入射される各青色光(入射光束)を、光束径を縮小した平行光束に変換する。ここでは3つのレンズ100c~100eを用いているが、レンズの数は3つに限定されるものではなく、必要に応じて増減してもよい。
 レンズ100c~100eから出射した青色光は、拡散板100fに入射され、該拡散板100fにて拡散された後、ダイクロイックミラー300aに入射される。
 図8に示すダイクロイックミラー300aは、波長が比較的短い青色光を透過させ、波長が比較的長いその他の色光(黄色光、緑色光、赤色光等)を反射する特性を備えている。すなわち、図1に示した光学装置1が備えるダイクロイックミラー1hのように、偏光(S偏光及びP偏光)によって青色光の透過/反射を切り換える構成ではない。そのため、図8に示すプロジェクター(光学装置)では、ダイクロイックミラー300aの特性を考慮して、光源100aに用いる青色LDのピーク波長を選択する必要がない。その場合、光源100aに用いる青色LDは、400nm~480nmの範囲にピーク波長があるものを用いることができる。
 蛍光体ユニット100iは、レーザ光(青色光)を励起光として発光する蛍光体が設けられた蛍光体領域及びレーザ光(青色光)を透過させる透過領域が配置された蛍光体ホイールと、該蛍光体ホイールを回転させるモータを含む駆動部とを有する。蛍光体ホイールには、例えば赤色光を発光する蛍光体が設けられた赤色蛍光体領域、緑色光を発光する蛍光体が設けられた緑色蛍光体領域、青色光を透過させる透過領域が設けられている。蛍光体ホイールには、黄色光を発光する蛍光体が設けられた黄色蛍光体領域が設けられていてもよい。
 ダイクロイックミラー300aを透過した青色光はレンズ100g及び100hにより蛍光体ユニット100iが備える蛍光体ホイール上に集光する。このとき、蛍光体ホイールを回転させることで、レンズ100hを通過した青色光(円偏光)が、赤色蛍光体領域、緑色蛍光体領域及び透過領域に順次照射される。その結果、蛍光体ホイールは、赤色光及び緑色光を順次発光し、それに続いて青色光を透過させる。なお、赤色光の発光、緑色光の発光及び青色光の透過の順番は、映像形成素子により形成する画像光の色の順に一致していればよく、赤、緑、青の順である必要はない。
 蛍光体ホイールを透過した青色光は、リレー光学系200によってダイクロイックミラー300aまで導かれ、ダイクロイックミラー300aを透過した後、レンズ300aにより集光されてライトトンネル300cへ入射される。
 一方、青色光を励起光にして発光した蛍光体ホイールからの赤色蛍光及び緑色蛍光は、レンズ100g及び100hを通過してダイクロイックミラー300aへ入射される。ダイクロイックミラー300aは、蛍光体ホイールからの赤色蛍光及び緑色蛍光を反射して光路を変更し、ライトトンネル300cへ導く。
 ライトトンネル300cから出力された光は、図1に示したプロジェクターと同様に、レンズ400a及び400b、ミラー400c、並びにレンズ400dを介して映像形成素子(DMD)400eに照射される。映像形成素子400eで形成された画像光は、投射光学系500が備える投射レンズ500aにより拡大されて不図示のスクリーン等に投射される。
 図8に示した構成においても、投射映像のカラーブレーキングを低減できるプロジェクターが得られる。
 さらに、図8に示した光源装置(励起光学系100、リレー光学系200及び色合成系300)では、ダイクロイックミラー300aの特性を考慮して、光源100aに用いる青色LDのピーク波長を選択する必要がない。そのため、図1に示した光源装置1と比べて光源100aに用いる青色LDの選択自由度が向上する。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。

Claims (14)

  1.  フィールドシーケンシャル方式のプロジェクターであって、
     原色の波長域にピーク波長を有する原色光を出力する、前記原色の波長域における前記ピーク波長が異なる複数の光源と、
     前記複数の光源から出力された原色光を空間的に変調して画像光を形成する映像形成素子を含む、前記映像形成素子まで前記複数の光源から出力された原色光を導く照明光学系と、
     前記映像形成素子で形成された画像光を投射する投射光学系と、
    を有し、
     前記複数の光源から出力される原色光のうち、ピーク波長が最長の原色光の輝度と、ピーク波長が最短の原色光の輝度とが同じであるプロジェクター。
  2.  フィールドシーケンシャル方式のプロジェクターであって、
     原色の波長域にピーク波長を有する原色光を出力する、前記原色の波長域における前記ピーク波長が異なる複数の光源と、
     前記複数の光源から出力された原色光を空間的に変調して画像光を形成する映像形成素子を含む、前記映像形成素子まで前記複数の光源から出力された原色光を導く照明光学系と、
     前記映像形成素子で形成された画像光を投射する投射光学系と、
    を有し、
     前記複数の光源に流れる電流値が同じであるプロジェクター。
  3.  請求項1または2に記載のプロジェクターにおいて、
     前記原色光は青色光であり、
     前記複数の光源から出力された青色光がそれぞれ照射される、該青色光を励起光として蛍光を発する蛍光体領域、並びに該青色光を反射させる反射領域を備えた蛍光体ホイールをさらに有するプロジェクター。
  4.  請求項1または2に記載のプロジェクターにおいて、
     前記原色光は青色光であり、
     前記複数の光源から出力された青色光がそれぞれ照射される、該青色光を励起光として蛍光を発する蛍光体領域、並びに該青色光を透過させる透過領域を備えた蛍光体ホイールをさらに有するプロジェクター。
  5.  請求項3に記載のプロジェクターにおいて、
     前記複数の光源から出力された青色光を前記蛍光体ホイールまで導くダイクロイックミラーと、
     前記蛍光体ホイールと前記ダイクロイックミラーとの間の光路上に配置された1/4波長板と、
    をさらに有し、
     前記ダイクロイックミラーは、
     前記複数の光源から出力された第1の直線偏光から成る青色光を反射させ、前記蛍光体ホイールから前記1/4反射板を介して入射される第2の直線偏光から成る青色光を透過させるプロジェクター。
  6.  請求項4に記載のプロジェクターにおいて、
     前記複数の光源から出力された青色光を前記蛍光体ホイールまで導くダイクロイックミラーと、
     前記蛍光体ホイールを透過した青色光を前記ダイクロイックミラーまで導くリレー光学系と、
    をさらに有し、
     前記ダイクロイックミラーは、
     前記複数の光源から出力された青色光及び前記蛍光体ホイールから前記リレー光学系を介して入射される青色光を透過させ、前記蛍光体ホイールから発せされた蛍光を反射させるプロジェクター。
  7.  請求項5または6に記載のプロジェクターにおいて、
     赤色光を透過させる赤色透過フィルター、緑色光を透過させる緑色透過フィルター及び青色光を拡散させつつ透過させる拡散領域を備え、前記ダイクロイックミラーを介して、前記蛍光体ホイールからの蛍光が前記赤色透過フィルター及び前記緑色透過フィルターに照射され、前記蛍光体ホイールからの青色光が前記拡散領域に照射されるカラーホイールをさらに有し、
     前記カラーホイールは、
     前記赤色透過フィルター、前記緑色透過フィルター及び前記拡散領域に、前記蛍光体ホイールからの蛍光及び青色光が順次照射されるように回転されるプロジェクター。
  8.  請求項1から7のいずれか1項に記載のプロジェクターにおいて、
     前記光源は、レーザ光を出力する半導体素子であるプロジェクター。
  9.  請求項1から8のいずれか1項に記載のプロジェクターにおいて、
     前記複数の光源が出力する原色光のピーク波長は400nmから480nmの範囲であるプロジェクター。
  10.  請求項1から9のいずれか1項に記載のプロジェクターにおいて、
     前記複数の光源として、出力光のピーク波長が異なる第1光源及び第2光源を備え、
     前記第1光源及び前記第2光源は、
     行方向または列方向で隣接する光源が互いに異なるように、交互に配置されたプロジェクター。
  11.  請求項1から9のいずれか1項に記載のプロジェクターにおいて、
     前記複数の光源が、電気的に直列に接続されたプロジェクター。
  12.  請求項11に記載のプロジェクターにおいて、
     前記複数の光源が2以上の光源を有する複数のブロックに分割され、前記ブロック毎に、前記2以上の光源が電気的に直列に接続されたプロジェクター。
  13.  フィールドシーケンシャル方式のプロジェクターにおける画像光投射方法であって、
     原色の波長域にピーク波長を有する、前記原色の波長域における前記ピーク波長が異なる原色光を複数の光源から出力し、
     前記複数の光源から出力された原色光を、該原色光を空間的に変調して画像光を形成する映像形成素子まで照明光学系により導き、
     前記映像形成素子で形成された画像光を投射光学系により投射し、
     前記複数の光源から出力される原色光のうち、ピーク波長が最長の原色光の輝度と、ピーク波長が最短の原色光の輝度とが同じである画像光投射方法。
  14.  フィールドシーケンシャル方式のプロジェクターにおける画像光投射方法であって、
     原色の波長域にピーク波長を有する、前記原色の波長域における前記ピーク波長が異なる原色光を複数の光源から出力し、
     前記複数の光源から出力された原色光を、該原色光を空間的に変調して画像光を形成する映像形成素子まで照明光学系により導き、
     前記映像形成素子で形成された画像光を投射光学系により投射し、
     前記複数の光源に流れる電流値が同じである画像光投射方法。
PCT/JP2016/057606 2015-03-30 2016-03-10 プロジェクター及び画像光投射方法 WO2016158297A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017509485A JP6422143B2 (ja) 2015-03-30 2016-03-10 プロジェクター及び画像光投射方法
US15/557,439 US10268109B2 (en) 2015-03-30 2016-03-10 Projector and image light projection method
CN201680019346.3A CN107430319B (zh) 2015-03-30 2016-03-10 投影仪和图像光投射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/059935 WO2016157365A1 (ja) 2015-03-30 2015-03-30 プロジェクター及び画像光投射方法
JPPCT/JP2015/059935 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158297A1 true WO2016158297A1 (ja) 2016-10-06

Family

ID=57006581

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/059935 WO2016157365A1 (ja) 2015-03-30 2015-03-30 プロジェクター及び画像光投射方法
PCT/JP2016/057606 WO2016158297A1 (ja) 2015-03-30 2016-03-10 プロジェクター及び画像光投射方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059935 WO2016157365A1 (ja) 2015-03-30 2015-03-30 プロジェクター及び画像光投射方法

Country Status (4)

Country Link
US (1) US10268109B2 (ja)
JP (1) JP6422143B2 (ja)
CN (1) CN107430319B (ja)
WO (2) WO2016157365A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106085A (ja) * 2016-12-28 2018-07-05 キヤノン株式会社 光源装置および画像投射装置
JP2018136501A (ja) * 2017-02-23 2018-08-30 セイコーエプソン株式会社 光源装置およびプロジェクター
EP3561594A1 (en) * 2018-04-28 2019-10-30 Coretronic Corporation Illumination system, projection device and operating method thereof
JP2021005060A (ja) * 2019-06-27 2021-01-14 キヤノン株式会社 光源装置およびこれを備える画像投射装置
JP2021015247A (ja) * 2019-07-16 2021-02-12 キヤノン株式会社 光源装置およびこれを備える画像投射装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116893565A (zh) * 2017-04-12 2023-10-17 扬明光学股份有限公司 光源装置
CN110058478B (zh) * 2018-01-19 2022-01-18 中强光电股份有限公司 照明系统与投影装置
CN110471244A (zh) * 2018-05-10 2019-11-19 中强光电股份有限公司 照明系统及投影装置
CN113253554B (zh) 2020-02-13 2022-11-08 中强光电股份有限公司 照明系统、照明控制方法以及投影装置
CN212657601U (zh) * 2020-04-29 2021-03-05 赫尔曼·友瀚·范·贝赫库姆 激光发光装置
JP7428070B2 (ja) * 2020-05-19 2024-02-06 株式会社リコー 光源光学系、光源装置及び画像投射装置
CN114200756B (zh) * 2020-09-18 2023-04-18 中强光电股份有限公司 照明系统及投影装置
US11720010B2 (en) * 2020-12-07 2023-08-08 Ricoh Company, Ltd. Light source device and projection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008549A (ja) * 2010-05-27 2012-01-12 Panasonic Corp 光源装置およびこれを用いた照明装置ならびに画像表示装置
JP2012212129A (ja) * 2011-03-23 2012-11-01 Panasonic Corp 光源装置及びそれを用いた画像表示装置
JP2013008950A (ja) * 2011-05-23 2013-01-10 Panasonic Corp 光源装置および画像表示装置
US20130242534A1 (en) * 2011-10-13 2013-09-19 Texas Instruments Incorporated Projector light source and system, including configuration for display of 3d images
WO2014038434A1 (ja) * 2012-09-10 2014-03-13 三菱電機株式会社 光源装置
JP2014062974A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置、投影装置及び光源制御方法
JP2014123563A (ja) * 2012-12-20 2014-07-03 Osram Gmbh 照明装置および照明装置の作動方法
JP2014160227A (ja) * 2013-01-28 2014-09-04 Panasonic Corp 照明装置および映像表示装置
JP2014174555A (ja) * 2013-03-12 2014-09-22 Christie Digital Systems Canada Inc マルチカラー照明装置
JP2015028504A (ja) * 2013-07-30 2015-02-12 株式会社リコー 照明装置および投射表示装置
JP2015049442A (ja) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 偏光分離素子、照明装置、及びプロジェクター

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412996B2 (ja) * 2009-06-30 2014-02-12 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP5987382B2 (ja) * 2011-07-22 2016-09-07 株式会社リコー 照明装置、ならびに、投射装置および投射装置の制御方法
CN103062672B (zh) * 2011-10-21 2015-03-11 中强光电股份有限公司 照明系统与投影装置
WO2014196079A1 (ja) * 2013-06-07 2014-12-11 Necディスプレイソリューションズ株式会社 光源装置およびそれを備えた投写型表示装置
JP2015025832A (ja) 2013-07-24 2015-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
JP6186987B2 (ja) * 2013-07-26 2017-08-30 セイコーエプソン株式会社 光源ユニットおよび投射型表示装置
JP2015092224A (ja) * 2013-10-03 2015-05-14 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP6452027B2 (ja) * 2013-10-23 2019-01-16 株式会社リコー 光源装置及びこれを備えた画像投射装置
US20150215569A1 (en) * 2014-01-29 2015-07-30 Wavien, Inc. Projector with light source including laser, phosphor, and led
CN103900035A (zh) * 2014-02-25 2014-07-02 扬州吉新光电有限公司 具有分界结构的荧光粉色轮基板及其制作方法
JP6202654B2 (ja) * 2014-03-31 2017-09-27 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ
JP5867536B2 (ja) 2014-04-01 2016-02-24 カシオ計算機株式会社 光源装置及びプロジェクタ
JP6440477B2 (ja) * 2014-12-09 2018-12-19 キヤノン株式会社 光源制御装置および画像投射装置
JP6677173B2 (ja) * 2015-01-20 2020-04-08 ソニー株式会社 光源装置、及び画像表示装置
WO2016189582A1 (ja) * 2015-05-22 2016-12-01 Necディスプレイソリューションズ株式会社 照明装置、プロジェクタ、表示システム及び光源調整方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008549A (ja) * 2010-05-27 2012-01-12 Panasonic Corp 光源装置およびこれを用いた照明装置ならびに画像表示装置
JP2012212129A (ja) * 2011-03-23 2012-11-01 Panasonic Corp 光源装置及びそれを用いた画像表示装置
JP2013008950A (ja) * 2011-05-23 2013-01-10 Panasonic Corp 光源装置および画像表示装置
US20130242534A1 (en) * 2011-10-13 2013-09-19 Texas Instruments Incorporated Projector light source and system, including configuration for display of 3d images
WO2014038434A1 (ja) * 2012-09-10 2014-03-13 三菱電機株式会社 光源装置
JP2014062974A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置、投影装置及び光源制御方法
JP2014123563A (ja) * 2012-12-20 2014-07-03 Osram Gmbh 照明装置および照明装置の作動方法
JP2014160227A (ja) * 2013-01-28 2014-09-04 Panasonic Corp 照明装置および映像表示装置
JP2014174555A (ja) * 2013-03-12 2014-09-22 Christie Digital Systems Canada Inc マルチカラー照明装置
JP2015028504A (ja) * 2013-07-30 2015-02-12 株式会社リコー 照明装置および投射表示装置
JP2015049442A (ja) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 偏光分離素子、照明装置、及びプロジェクター

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106085A (ja) * 2016-12-28 2018-07-05 キヤノン株式会社 光源装置および画像投射装置
JP2018136501A (ja) * 2017-02-23 2018-08-30 セイコーエプソン株式会社 光源装置およびプロジェクター
CN108469712A (zh) * 2017-02-23 2018-08-31 精工爱普生株式会社 光源装置以及投影仪
EP3561594A1 (en) * 2018-04-28 2019-10-30 Coretronic Corporation Illumination system, projection device and operating method thereof
US11199765B2 (en) 2018-04-28 2021-12-14 Coretronic Corporation Illumination system, projection device and operating method thereof
JP2021005060A (ja) * 2019-06-27 2021-01-14 キヤノン株式会社 光源装置およびこれを備える画像投射装置
JP2021015247A (ja) * 2019-07-16 2021-02-12 キヤノン株式会社 光源装置およびこれを備える画像投射装置
JP7330787B2 (ja) 2019-07-16 2023-08-22 キヤノン株式会社 光源装置およびこれを備える画像投射装置

Also Published As

Publication number Publication date
CN107430319B (zh) 2020-02-18
WO2016157365A1 (ja) 2016-10-06
US20180129127A1 (en) 2018-05-10
US10268109B2 (en) 2019-04-23
JPWO2016158297A1 (ja) 2018-01-18
JP6422143B2 (ja) 2018-11-14
CN107430319A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6422143B2 (ja) プロジェクター及び画像光投射方法
JP4590647B2 (ja) 光源装置およびプロジェクタ装置
JP5870259B2 (ja) 照明装置および該照明装置を備える投射型表示装置
JP5951744B2 (ja) プロジェクター及びその照明装置
JP2018077485A (ja) 光源システム及び関連する投影システム
JP2014160227A (ja) 照明装置および映像表示装置
JP2013178290A (ja) 光源装置及び照明装置
JP2016224304A (ja) 光源装置、投写型表示装置及び光生成方法
WO2011037026A1 (ja) 照明装置およびそれを用いた投射型表示装置
JP4944769B2 (ja) 照明装置及びそれを用いた投写型表示装置
US20180149955A1 (en) Illumination device and projector
US10162253B2 (en) Illumination device and projector
JP6406736B2 (ja) プロジェクタおよび画像表示方法
JP4143533B2 (ja) 光源装置、画像表示装置
US11156907B2 (en) Light source apparatus and projection display apparatus
CN110488561A (zh) 光源装置和图像投影装置
JP6908036B2 (ja) 光源装置及び投影表示装置
JP7095466B2 (ja) 光学ユニットおよび画像投射装置
JP2005195780A (ja) 光源装置と投写型表示装置
JP2005202210A (ja) 投写型表示装置の光源装置と投写型表示装置
JP7108901B2 (ja) 照明装置及び投写型表示装置
JP7022632B2 (ja) 光源装置、並びに、それを用いたプロジェクタ装置及び照明装置
JP2018136501A (ja) 光源装置およびプロジェクター
JP2008176083A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557439

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017509485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772181

Country of ref document: EP

Kind code of ref document: A1