WO2016158260A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2016158260A1
WO2016158260A1 PCT/JP2016/057268 JP2016057268W WO2016158260A1 WO 2016158260 A1 WO2016158260 A1 WO 2016158260A1 JP 2016057268 W JP2016057268 W JP 2016057268W WO 2016158260 A1 WO2016158260 A1 WO 2016158260A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
unit
electronic control
safety
control device
Prior art date
Application number
PCT/JP2016/057268
Other languages
English (en)
French (fr)
Inventor
辰也 堀口
寛 岩澤
広津 鉄平
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016158260A1 publication Critical patent/WO2016158260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B7/00Arrangements for obtaining smooth engagement or disengagement of automatic control
    • G05B7/02Arrangements for obtaining smooth engagement or disengagement of automatic control electric
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an electronic control device, and performs a plurality of control computations based on signals input to the electronic control device from various sensors attached to a controlled object, and outputs an appropriate control computation result when outputting the computation result.
  • the present invention relates to an electronic control device for outputting.
  • a method of preparing a plurality of control pattern candidates according to the driving situation and the surrounding environmental situation, and appropriately selecting and outputting according to the situation can be considered.
  • Patent Document 1 when a danger is predicted in the future of the vehicle by recognizing the surrounding environment using the sensor of the vehicle, appropriate control is performed from a plurality of control pattern candidates based on prediction of a future dangerous situation.
  • a method of evaluating, selecting, and applying to the own vehicle is disclosed.
  • driving assistance technology and automated driving technology are required not only to ensure safety but also to improve passenger comfort.
  • the optimal route planning based on the evaluation function consisting of comfort and comfort is suitable, but it is necessary to speed up the calculation because of the need to execute complex control calculations at high speed with the microcontroller on the electronic control unit. .
  • speculative execution is a method of starting a control calculation at a time earlier than the actual calculation start time by predicting in advance an input value necessary for the control calculation. By advancing the calculation start time, it becomes possible to match the calculation completion time to the required calculation result output time, while speculative execution is a calculation speedup method using the predicted value of the input to the end, There is a risk of unintended behavior of the controlled object due to the difference between the actual input value and the predicted value used in the calculation.
  • An object of the present invention made in view of the above points is an electronic device that improves performance while ensuring safety when performing route planning calculation required in driving support technology and automatic driving technology using speculative execution. It is to provide a control device.
  • the electronic control device outputs a calculation result in response to at least one external input and controls a control target.
  • the electronic control device includes a plurality of calculation units that perform control calculation based on the input,
  • the calculation unit has different characteristics with respect to safety, and the different features include at least one first calculation unit when the safety requirements are not satisfied with respect to the safety, and at least one second second that satisfies the safety requirements.
  • calculation results of the first calculation unit 21 and the second calculation unit 22 when the speculative execution is successful in the first calculation unit 21 are respectively calculated as the first prediction unit 31 and the first calculation unit 21. It is a figure which shows the prediction behavior of the own vehicle 6 estimated by the 2nd estimation part 32.
  • the calculation results of the first calculation unit 21 and the second calculation unit 22 at the time of speculative execution failure in the first calculation unit 21 are the first prediction unit 31 and the first calculation unit 21, respectively. It is a figure which shows the prediction behavior of the own vehicle 6 estimated by the 2nd estimation part 32.
  • FIG. It is a block diagram which shows the structure at the time of mounting the electronic control apparatus 1 in the 1st Example of this invention.
  • FIG. 1 is a block diagram showing a configuration of a control system including the electronic control device 1 and the subject vehicle 6 to be controlled in this embodiment.
  • the electronic control device 1 shown in FIG. 1 receives the input value 91 obtained from a host electronic control device (not shown), the surrounding information of the own vehicle 6 and the own vehicle information obtained from the sensor 9 mounted on the own vehicle 6. Using the feedback value 92 including the input, the acceleration information necessary for traveling of the host vehicle 6 is determined as the control output 51, and the various vehicles 8 are driven via the actuator control device 7 of the host vehicle 6 to Control.
  • the sensor 9 mounted on the host vehicle 6 a camera, a laser radar, or the like as an external recognition sensor may be a vehicle speed sensor that acquires information on the host vehicle as an internal information sensor.
  • the electronic control device 1 can have an external environment model (not shown) that predicts the behavior of an external environment, for example, a surrounding pedestrian, as necessary.
  • the electronic control device 1 is based on the outputs from the first calculation unit 21 and the second calculation unit 22 and the first calculation unit 21 and the second calculation unit 22 having different safety. 6 based on the outputs from the first prediction unit 31 and the second prediction unit 32, the first prediction unit 31 and the second prediction unit 32 that perform prediction of the future behavior.
  • the evaluation unit 4 that evaluates the calculation result of the calculation unit 22 and the selection unit 5 that selects the output 51 of the electronic control device 1 based on the evaluation result of the evaluation unit 4 are provided.
  • FIG. 2 is a scene of a driving situation where only the pedestrian 10 who intends to cross a single road with the own vehicle 6 exists.
  • the own vehicle 6 travels on a single road and uses a sensor 9 to find a pedestrian 10 who wants to cross the single road at a certain time.
  • the own vehicle 6 detects the course and the moving speed of the pedestrian 10 using the sensor 9 and predicts the future behavior of the pedestrian 10 using the external environment model.
  • the external environment model is a model that estimates the course and speed based on the behavior up to immediately before the pedestrian 10, but the implementation method of the external environment model is not limited to this.
  • FIG. 3 shows the characteristics of the calculations performed by the first calculation unit 21 and the second calculation unit 22 mounted on the electronic control unit 1.
  • the first calculation unit 21 and the second calculation unit 22 are calculation units having different characteristics with respect to safety and control performance.
  • traveling with a certain distance from the pedestrian 10 as safety is used as the control performance, and the comfort of the occupant is used as an evaluation axis in this control, and there is a possibility that the safety for the pedestrian 10 is infringed.
  • a first calculation unit 21 that outputs a calculation result with high comfort for a passenger, and a second calculation unit 22 that outputs a calculation result with low comfort for a passenger that surely behaves safely are electronically controlled. It is assumed that the device 1 is mounted.
  • the first calculation unit 21 performs route planning using a calculation speedup technique called speculative execution.
  • the route plan optimizes the control of the vehicle in the future from the present to a certain period of time based on the model of the vehicle and the surrounding environment. It is possible to perform control in consideration of the ride comfort of the occupant by introducing a traveling speed at a target speed, a term for suppressing a change in acceleration, or the like as an evaluation function when performing route planning.
  • Speculative execution is a calculation speed-up method in which the calculation is started ahead of the actual control calculation start time by predicting in advance the input value necessary for the control calculation as shown in FIG.
  • it is required to complete and output the calculation within a predetermined timing based on the input value that is input periodically.
  • the control calculation start time is set so as to satisfy the control cycle constraint, and the complex control calculation is apparently executed at high speed.
  • speculative execution is performed using the input predicted value to the last, a situation in which the predicted value is different from the actual input value may occur.
  • Examples of the difference between the actual input value and the predicted value include not only due to an error in modeling, but also a sudden change in pedestrian behavior (sudden change in course or speed, unintentional jump-out, etc.). Since it is difficult to deal with such a case, in particular, a sudden change in pedestrian behavior due to the speculative execution characteristics of predicting future input values in advance, the first calculation unit 21 is limited as long as the prediction works well. Is a control that can take passengers' comfort into consideration, while the calculation is performed based on the prediction, and therefore the safety is risky control.
  • the second calculation unit 22 is controlled so as to run at a speed basically equal to the target speed and apply a sudden brake when the distance between the pedestrians of the vehicle becomes equal to or less than a predetermined distance at each time.
  • a predetermined distance for example, it is conceivable to set the distance at which the host vehicle can be stopped just before the collision with the pedestrian 10 by applying a sudden brake.
  • the reason for adopting the traveling at the target speed and the emergency braking as the control in the second computing unit 22 is that it is assumed that there is no subsequent vehicle as the situation setting, and the pedestrian and This is because it can be said that one of the reliable accident avoidance methods is to perform the brake operation with the maximum force within the range allowed in the control of the own vehicle in order to avoid the accident. For this reason, since the second arithmetic unit performs sudden braking, the ride comfort of the occupant is not good, but the safety is guaranteed.
  • FIG. 5 is a flowchart showing the operation of each functional block in the electronic control device 1 for outputting the electronic control device 1 for each control cycle.
  • the feedback value 92 is first acquired by the sensor 9 mounted on the host vehicle 6 (C1), and then the first calculation unit 21 and the second calculation are based on the value acquired at C1.
  • the control calculation is performed by the unit 22 (C2-1, C2-2).
  • the calculation start time is different from that of the second calculation unit 22, and C1 is the calculation start time of the first calculation unit 21 and the second calculation unit 21. This is performed twice at the calculation start time of the unit 22.
  • the first state prediction unit 31 and the second prediction unit 32 determine the future state quantity and, if necessary, the future state amount. To predict the output value (C3-1, C3-2). Thereby, the estimated value of the state quantity of the own vehicle 6 over the fixed period future by the calculation result of the 1st calculating part 21 and the 2nd calculating part 22 is obtained.
  • the estimated value of the state quantity for example, the vehicle position, speed, steering angle, etc. can be considered.
  • the evaluation unit 4 calculates the estimated state of the vehicle based on the calculation results of the first calculation unit 21 and the second calculation unit 22 obtained in C3-1 and C3-2, and, if necessary, the external environment model. Is used to evaluate safety and performance (C4-1, C4-2).
  • the safety standard absolutely evaluates whether the distance between pedestrians predicted by C3-1 and C3-2 is more than a certain value for a certain period in the future. It is conceivable to relatively evaluate the evaluation using an evaluation function that takes into account the deviation from the target vehicle speed.
  • a predicted future position of the pedestrian 10 that can be acquired using an external environment model may be used as necessary.
  • the selection unit 5 selects the output 51 of the electronic control unit 1 based on the result of the evaluation unit 4 by C4-1 and C4-2 (C5).
  • the selection unit 5 selects a calculation result of the calculation unit that satisfies the safety standard and shows a good result in the comfort evaluation based on the determination of compliance with the safety standard and the evaluation result of the comfort, It is output as the output value 51 of the electronic control unit 1.
  • the pedestrian 10 with the intention of crossing the vehicle is detected using the sensor 9 as shown in FIG.
  • the electronic control device 1 acquires the vehicle information and pedestrian information at time T1 by the sensor 9, and performs a control calculation for outputting at time T2 by the first calculation unit 21 and the second calculation unit 22.
  • the first calculation unit 21 performs calculation using the speculative execution described above, the actual calculation start time is time T0 before time T1, and the external environment model is used at time T1. Assume that the position of the pedestrian 10 is predicted.
  • the first calculation unit 21 calculates the optimum route and speed of the vehicle up to time T3 based on the estimated values of the state of the vehicle and the pedestrian 10 at time T1 described above. At this time, prediction of a pedestrian state by an external environment model is used.
  • the second computing unit 22 determines the necessity of sudden braking based on the distance between the pedestrians and the speed of the own vehicle obtained by the sensor 9.
  • the second calculation unit 22 feeds back the behavior prediction value of the host vehicle 6 from the second prediction unit 32 to the second calculation unit 22 in order to perform prediction from time T1 to time T3. It is necessary to repeatedly perform control calculations for each control cycle.
  • FIG. 6 shows the inter-vehicle pedestrian distance, speed, and acceleration output from the first prediction unit 31 and the second prediction unit 32 when the speculative execution in the first calculation unit 21 is successful.
  • FIG. The transition of each parameter output by the first prediction unit 31 is indicated by a solid line, and the transition of each parameter output by the second prediction unit 32 is indicated by a one-dot chain line.
  • the criterion for safety evaluation in the evaluation unit 4 in the present control is that the in-house pedestrian distance always has a distance equal to or greater than the threshold in a future fixed period in each control cycle. It is assumed that the distance is equal to the predetermined distance in the calculation unit 22.
  • the result of weighted addition of the target speed we evaluated the result of weighted addition of the target speed, the difference between the speed and the absolute value of the acceleration over a certain period starting from the current time. Further, it is assumed that the comfort of the present control is high that the evaluation result becomes smaller.
  • FIG. 6a shows the threshold value of the distance between the pedestrians as a safety standard
  • FIG. 6b shows the target speed value by dotted lines.
  • the success of speculative execution means that the calculation result of the first calculation unit 21 that has performed calculation using speculative execution is output as the calculation result of the electronic control unit 1, that is, the evaluation unit 4. It is assumed that the safety evaluation satisfies the safety standard and the calculation result of the second calculation unit 22 is superior in the performance evaluation.
  • the calculation results by the first calculation unit 21 and the second calculation unit 22 both maintain the distance between the vehicle pedestrians above the threshold value as shown in FIG. Further, as shown in FIGS. 6b and 6c, the calculation result of the first calculation unit 21 is smaller than the calculation result of the second calculation unit 22 in that the difference from the target speed and the change in acceleration are small. 21 is relatively superior to the second calculation unit 22. This is because the first computing unit 21 performs control to optimize the future position of the pedestrian 10 and the state of the own vehicle by performing route planning using the external environment model as described above. This is because it is possible to secure the distance between the pedestrians of the vehicle by pre-deceleration that predicts the approach to the pedestrian 10 while keeping it.
  • the calculation result of the first calculation unit 21 that satisfies the safety standard and is excellent in performance is output as the output 51 of the electronic control device 1 by the evaluation unit 4 and the selection unit 5.
  • the calculation result by the first calculation unit 21 is less than the threshold of the distance between the pedestrians of the vehicle and does not satisfy the safety standard. This is because the first calculation unit 21 performs the control calculation based on the position of the pedestrian 10 at the time T1 predicted at the time T0 and the external environment model based on the pedestrian behavior until the time T0. This is because the control taking into consideration the stop of the pedestrian 10 cannot be performed, and the pedestrian 10 is approached with insufficient deceleration.
  • the future behavior of the host vehicle 6 by the first calculation unit 21 that does not consider the stop of the pedestrian 10 is determined not to satisfy the safety standard in the determination of the safety standard of the evaluation unit 4.
  • the 2nd calculating part 22 since the 2nd calculating part 22 has detected that the pedestrian 10 stopped, it can decelerate at an appropriate timing. For this reason, the calculation result of the 2nd calculating part 22 is selected in the selection part 5, and the electronic control apparatus 1 can apply the sudden brake to the own vehicle 6, and can stop it from the time T1. That is, the electronic control device 1 having the second calculation unit 22 can avoid the safety risk of the first calculation unit 21.
  • the calculations performed by the first calculation unit 21 and the second calculation unit 22 are performed on different silicon chips 1111 and 1121 as shown in FIG. It can be considered to be performed on the integrated circuit 111 and the integrated circuit 112 that are mounted.
  • the integrated circuit 111 and the integrated circuit 112 are obtained from an input value 91 obtained from a not-shown upper-level electronic control device in FIG. 1 or a sensor 9 mounted on the host vehicle 6, as in the electronic control device 1 of the present embodiment.
  • the surrounding information of the own vehicle 6 and the feedback value 92 which is the own vehicle information are input, acceleration information necessary for traveling of the own vehicle 6 (not shown) is determined as the control output 51 and the own vehicle 6 is controlled.
  • the predicted value 113 of the state quantity is transmitted from the first prediction unit 31 on the integrated circuit 111 to the integrated circuit 112 from the integrated circuit 111.
  • the calculation result of the first calculation unit 21 is selected, feedback from the own vehicle 6 to be controlled to the electronic control unit 1 is performed. It becomes substantially equal to the value 92.
  • This is a future value related to the behavior of the vehicle 6 as shown in FIGS. 6a, 6b, and 6c, as the values output by the first calculation unit 21 and the first prediction unit 31 in the integrated circuit 111.
  • the calculation result in the first calculation unit 21 is continuously selected.
  • the structure of this invention is not limited to this. That is, it is possible to further improve comfort by mounting a plurality of calculation units corresponding to the first calculation unit 21 and the second calculation unit 22 and evaluating the calculation results in the respective calculation units by the evaluation unit 4. Is possible.
  • the second arithmetic unit 22 is mounted with an operation of suddenly braking for ensuring safety, but the configuration of the present invention is not limited to this. For example, even if implemented by a method of outputting a predetermined pattern defined according to the situation, a method of performing a control calculation, or the like, it has the same operational effect as described in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Feedback Control In General (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本発明の目的は、運転支援技術や自動運転技術において必要となる経路計画演算を投機的実行で行う際に、安全性を確保しつつ性能を向上する電子制御装置を提供することにある。 少なくとも一つの外部からの入力を基に制御演算を行う複数の演算部を有し、前記複数の演算部が、安全性に関して安全性要件を満たさない場合の第一の演算部と、前記安全性要件を満たす第二の演算部を有し、前記第一の演算部および第二の演算部から出力される制御演算結果を基に、制御対象の将来の状態を予測する第一の予測部と第二の予測部と、前記制御対象の将来の状態を表す量を基に、前記第一の演算部および第二の演算部における制御演算結果について安全性を評価する評価部と、前記評価部による評価結果を基に、安全性要件を満たすものを制御演算結果から選択し、前記電子制御装置の演算結果として出力する選択部と、を有する。

Description

電子制御装置
 本発明は電子制御装置に係り、制御対象に装着された各種センサから電子制御装置に入力される信号を基に、複数の制御演算を行い、演算結果を出力するにあたり、適切な制御演算結果を出力する電子制御装置に関する。
 運転支援技術や自動運転技術においては、乗員や周辺環境の安全を守るため、運転状況や周囲の環境状況に応じた適切な制御を行う必要がある。その方法の一例として、運転状況や周囲の環境状況に応じた制御パターンの候補を複数準備し、状況に応じて適切に選択、出力する方法が考えられる。例えば特許文献1では、自車のセンサを用いた周辺環境の認識により、自車の将来において危険が予測される場合には将来の危険状況の予測を基に複数の制御パターン候補から適切な制御を評価、選択し、自車に適用する方式が開示されている。
特開2014-120158号公報
 一方で、運転支援技術や自動運転技術には安全性を担保するだけでなく、乗員の快適性を向上することも求められる。
 快適性の向上には、事前に設定された複数の制御パターン候補からの選択ではなく、経路計画に代表されるようなリアルタイムに自車および周辺環境の現在および将来の状態を予測し、安全性と快適性から成る評価関数を基に最適な経路を計画する方式が適しているが、複雑な制御演算を電子制御装置上のマイクロコントローラで高速に実行する必要性から演算高速化が必須となる。
 演算高速化手法としては、投機的実行とよばれる高速化手法が知られている。投機的実行とは、制御演算に必要となる入力値を事前に予測することにより、実際の演算開始時刻より早い時刻に制御演算を開始する手法である。演算開始時刻を前倒しすることで、演算完了時刻を要求される演算結果出力時刻に合わせることが可能となる一方で、投機的実行はあくまで入力の予測値を用いた演算高速化手法であるため、実際の入力値と演算に用いる予測値が異なることによる、制御対象の意図しない挙動というリスクがある。
 上記の点に鑑みてなされた本発明の目的は、運転支援技術や自動運転技術において必要となる経路計画演算を投機的実行を用いて行う際に、安全性を確保しつつ性能を向上する電子制御装置を提供することにある。
 電子制御装置は、少なくとも一つの外部からの入力に応じて演算結果を出力し制御対象を制御する電子制御装置において、前記入力を基に制御演算を行う複数の演算部を有し、前記複数の演算部が安全性に関して異なる特徴を持ち、前記異なる特徴として、前記安全性に関して安全性要件を満たさない場合の少なくとも一つの第一の演算部と、前記安全性要件を満たす少なくとも一つの第二の演算部を有し、前記第一の演算部および第二の演算部から出力されるそれぞれの制御演算結果を基に、制御対象の将来の状態をそれぞれ予測する第一の予測部と第二の予測部と、前記第一の予測部と第二の予測部から出力される前記制御対象の将来の状態を表す量を基に、前記第一の演算部および第二の演算部における制御演算結果について少なくとも安全性を評価する評価部と、前記評価部による評価結果を基に、少なくとも安全性要件を満たすものを制御演算結果の中から1つ選択し、前記電子制御装置の演算結果として出力する選択部と、を有することを特徴とする。
 本発明によれば、運転支援技術や自動運転技術において安全性を担保しつつ快適性を向上することが可能となる。
本発明の第一の実施例における電子制御装置1および制御対象である自車6の構成を示すブロック図である。 本発明の第一の実施例における電子制御装置1を用いた自車6が走行する、走行環境の例である。 本発明の第一の実施例における第一の演算部21と第二の演算部22において行われる演算の特徴を示した図である。 本発明の第一の実施例における電子制御装置1内の第一の演算部21の実装に用いられる投機的実行を説明する図である。 本発明の第一の実施例における電子制御装置1の動作を説明するフローチャートである。 本発明の第一の実施例における、第一の演算部21での投機的実行成功時の第一の演算部21および第二の演算部22それぞれの演算結果を第一の予測部31および第二の予測部32にて予測した、自車6の予測挙動を示す図である。 本発明の第一の実施例における、第一の演算部21での投機的実行失敗時の第一の演算部21および第二の演算部22それぞれの演算結果を第一の予測部31および第二の予測部32にて予測した、自車6の予測挙動を示す図である。 本発明の第一の実施例における、電子制御装置1を実装する際の構成を示すブロック図である。
 以下、本発明の一実施例に係る電子制御装置について図面を用いて説明する。
 図1は本実施例における電子制御装置1および制御対象である自車6から成る、制御系の構成を示したブロック図である。図1に示した電子制御装置1は、図示しない上位の電子制御装置から得られる入力値91や、自車6に搭載されたセンサ9から得られる、自車6の周辺情報および自車情報を含むフィードバック値92を入力として、自車6の走行に必要となる加速度情報を制御出力51として決定し、自車6のアクチュエータ制御装置7を介して各種アクチュエータ8を駆動することで自車6を制御する。自車6に搭載されるセンサ9としては、外界認識センサとしてのカメラ、レーザレーダ等が、内部情報センサとしての自車の情報を取得する車速センサ等が考えられる。また、電子制御装置1は、必要に応じて外部環境、例えば周辺の歩行者の挙動を予測する図示しない外部環境モデルを持つことができるとする。
 電子制御装置1は、安全性の異なる第一の演算部21と第二の演算部22、第一の演算部21と第二の演算部22からの出力を基に、制御対象である自車6の将来挙動の予測を行う第一の予測部31および第二の予測部32、第一の予測部31および第二の予測部32からの出力を基に第一の演算部21および第二の演算部22の演算結果を評価する評価部4、評価部4での評価結果を基に電子制御装置1の出力51を選択する選択部5を有する。
 以下、電子制御装置1が行う制御について説明する。
 図2は、自車6と単路を横断する意思のある歩行者10のみが存在する運転状況の一シーンである。
 自車6は単路を走行し、ある時刻に単路を横断しようとする歩行者10をセンサ9により発見する。自車6はセンサ9を用いて歩行者10の進路および移動速度を検出し、また外部環境モデルを用いて歩行者10の将来の挙動を予測する。本実施例では、外部環境モデルは、歩行者10の直前までの挙動を基に進路および速度を推定するモデルとするが、外部環境モデルの実装方法はこの限りではない。
 図3に、電子制御装置1に実装される第一の演算部21および第二の演算部22にて行われる演算の特徴を示す。第一の演算部21および第二の演算部22は安全性および制御性能に関して異なる特徴を持つ演算部である。ここでは、安全性として歩行者10と一定以上の距離を開けて走行することを、制御性能として乗員の快適性を、本制御における評価軸とし、歩行者10に対する安全性を侵害する可能性があるものの乗員の快適性が高い演算結果を出力する第一の演算部21と、確実に安全な挙動を取るものの乗員の快適性の低い演算結果を出力する第二の演算部22が、電子制御装置1に実装されているとする。
 具体的な実装としては、例えば第一の演算部21では、投機的実行と呼ばれる演算高速化手法を用いて経路計画を行うとする。経路計画は、自車および周辺環境のモデルを基に、現在より一定期間先までの将来における自車の制御を最適化するものである。経路計画を行う際の評価関数として、目標速度での走行や、加速度変化を抑制する項等を導入することで、乗員の乗り心地を考慮した制御を行うことが可能となる。
 投機的実行とは、図4に示すように制御演算に必要となる入力値を事前に予測することにより、演算を実際の制御演算開始時刻に先駆けて開始する演算高速化手法である。通常の制御演算においては周期的に入力される入力値を基に、既定のタイミング内に演算を完了し出力することが要求されるが、経路計画演算のような複雑な演算の高速な制御周期をもつ電子制御装置への単なる適用では、制御周期内に演算を完了することができず、制御周期の制約を満たすことができない。そこで将来の入力値の予測を行うことにより、制御演算開始時刻を制御周期の制約を満たすように設定し、複雑な制御演算を見かけ上高速に実行する。ただし、投機的実行はあくまで入力の予測値を用いて演算を行うため、予測値が実際の入力値と異なる状況が起こり得る。実際の入力値と予測値が異なる例としては、モデル化時の誤差によるものだけでなく、歩行者挙動の急変(進路や速度の急変、意図しない飛び出し等)も含まれる。このような事例、特に歩行者挙動の急変に対応することは、将来の入力値を事前に予測する投機的実行の特徴上難しいため、第一の演算部21は、予測が上手く働いている限りは乗員の快適性を考慮できる制御である一方、予測を基に演算を行うために安全性にはリスクのある制御となる。
 対して第二の演算部22は、基本的に目標速度に等しい速度で走行し、各時刻において自車歩行者間距離が既定の距離以下となった際に急ブレーキをかけるような制御とする。既定の距離の設定方法としては、例えば急ブレーキをかけることで歩行者10との衝突寸前に自車を停車させることが可能な距離とすることが考えられる。なお、第二の演算部22における制御として、目標速度での走行と緊急時の急ブレーキを採用したのは、状況設定として後続車が存在しないことを想定しているためであり、歩行者との事故を回避する目的においては自車の制御上許す範囲での最大の力でブレーキ操作を行うことは確実な事故回避方法の一つと言えるためである。このため、第二の演算部は急ブレーキを行うため乗員の乗り心地は良いとは言えないものの安全性の保証された制御となる。
 以下、電子制御装置1が行う制御の概要について、図5のフローチャートを用いて説明する。
 図5は、制御周期毎に電子制御装置1の出力を行うための電子制御装置1内の各機能ブロックの動作を示すフローチャートである。本実施例においては、まず自車6に搭載されたセンサ9によるフィードバック値92の取得を行い(C1)、続いてC1で取得した値を基に、第一の演算部21および第二の演算部22にて制御演算を行う(C2-1、C2-2)。この際、第一の演算部21では前述の投機的実行を行うため、第二の演算部22とは演算開始時刻が異なり、C1は第一の演算部21の演算開始時刻と第二の演算部22の演算開始時刻とにおいて二度行われる。
 次に、第一の演算部21および第二の演算部22の演算結果を基に、第一の予測部31および第二の予測部32にて将来の状態量、および必要に応じて将来の出力値を予測する (C3-1、C3-2)。これにより、第一の演算部21および第二の演算部22の演算結果による、一定期間将来にわたる自車6の状態量の推定値が得られる。状態量の推定値としては、例えば自車位置、速度、ステアリング角、などが考えられる。
 次に評価部4は、C3-1、C3-2で得られた、第一の演算部21および第二の演算部22の演算結果による自車の推定状態、および必要に応じて外部環境モデルを用いて、安全性および性能に関する評価を行う(C4-1、C4-2)。
 安全基準は、例えばC3-1、C3-2で予測する自車歩行者間距離が、一定期間将来にわたって一定以上であるかを絶対的に評価し、快適性は例えば自車加速度の変化や、自車目標速度からの乖離を考慮した評価関数を用いて評価を相対的に評価することが考えられる。C4-1、C4-2においては、必要に応じて外部環境モデルを用いて取得できる歩行者10の将来の予測位置を用いてもよい。
 最後に選択部5にて、C4-1、C4-2による評価部4の結果をうけて電子制御装置1の出力51が選択される(C5)。選択部5では、安全基準への準拠の判定および快適性の評価結果に基づき、安全基準を満たしており、かつ前記の快適性評価において良好な結果を示した演算部の演算結果が選択され、電子制御装置1の出力値51として出力される。
 以下、上述の制御フローを用いて自車6を制御する例について説明する。
 ある時刻T1において、図2のように自車が横断意思のある歩行者10をセンサ9を用いて検出したとする。電子制御装置1は、センサ9により時刻T1における自車情報、歩行者情報を取得し、時刻T2に出力を行うための制御演算を第一の演算部21および第二の演算部22で行っているとする。なお、第一の演算部21では、前述の投機的実行を用いて演算を行っているため、実際の演算開始時刻は時刻T1より前の時刻T0であり、外部環境モデルを用いて時刻T1における歩行者10の位置の予測を行っているとする。
 第一の演算部21は、前述の時刻T1における自車および歩行者10の状態の推定値を基に、時刻T3までの自車の最適な経路、速度の演算を行う。この際、外部環境モデルによる歩行者状態の予測が用いられる。また第二の演算部22は、センサ9により得られる自車歩行者間の距離および自車の速度を基に、急ブレーキの必要性を判断する。また第二の演算部22は、時刻T1から時刻T3までの予測を行うために第二の予測部32から第二の演算部22へ自車6の挙動予測値をフィードバックし、時刻T3までの各制御周期に関して繰り返し制御演算を行う必要がある。
 図6は、第一の演算部21における投機的実行が成功している場合の、第一の予測部31および第二の予測部32から出力される自車歩行者間距離、速度、加速度を示す図である。第一の予測部31により出力される各パラメタの遷移を実線で、第二の予測部32により出力される各パラメタの遷移を一点鎖線で示す。
 ここで、本制御における評価部4での安全性評価の基準を、自社歩行者間距離が各制御周期での将来の一定期間において常に閾値以上の距離を有することとし、同閾値を第二の演算部22における既定の距離と同等であるとする。また、本制御における快適性の基準として、速度および加速度を、現在の時刻を起点とする一定期間における、目標速度と速度の差分と加速度の絶対値との重みづけ加算を行った結果を評価し、評価結果がより小さくなることを本制御において快適性が高いとする。図6aには安全性の基準としての自車歩行者間距離の閾値を、図6bには速度の目標値を、点線で示す。
 また、ここで言う投機的実行の成功とは、投機的実行を用いて演算を行った第一の演算部21の演算結果が電子制御装置1の演算結果として出力されること、すなわち評価部4における安全性評価で安全基準を満たし、かつ性能評価において第二の演算部22の演算結果に対して優れていることであるとする。
 
 図6の投機成功時においては、図6aのように第一の演算部21および第二の演算部22による演算結果はともに自車歩行者間距離を閾値以上に保っており安全基準を満たす。また、図6bおよび図6cのように、第一の演算部21の演算結果は、第二の演算部22の演算結果に対して、目標速度との差分および加速度変化が小さい第一の演算部21が、第二の演算部22に対して相対的に優れている。これは、第一の演算部21では前述のように外部環境モデルを用いた経路計画を行うことで将来の歩行者10の位置および自車の状態を最適化する制御を行うため、快適性を保ちつつ歩行者10への接近を予測した事前の減速による自車歩行者間距離の確保が可能となるためである。
 このことより、安全基準を満たしかつ性能面で優れる第一の演算部21の演算結果が、評価部4および選択部5により電子制御装置1の出力51として出力される。
 
 一方、図7に第一の演算部21における投機的実行に失敗した場合の、第一の予測部31および第二の予測部32から出力される自車歩行者間距離、速度、加速度を示す。本例では、第一の演算部21における投機的実行失敗の例として、時刻T0と時刻T1の間のある時刻において、歩行者が車道内で停止した場合を考える。
 先述の投機的実行に成功した場合と異なり、第一の演算部21による演算結果は、図7aより自車歩行者間距離の閾値を下回り、安全基準を満たさないことが分かる。これは、第一の演算部21は、時刻T0において予測した時刻T1における歩行者10の位置、および歩行者10が時刻T0までの歩行者挙動を基にした外部環境モデルを基に制御演算を行うため、歩行者10の停止を考慮した制御ができず、減速が不十分なまま歩行者10に接近してしまうことによる。歩行者10の停止を考慮していない第一の演算部21による自車6の将来挙動は、評価部4の安全基準の判定にて安全基準を満たさないと判定される。対して第二の演算部22は、歩行者10が立ち止まったことを検知しているため、適切なタイミングで減速を行うことができる。このため、選択部5にて第二の演算部22の演算結果が選択され、時刻T1より電子制御装置1は自車6に急ブレーキをかけて停車させることができる。つまり、電子制御装置1が第二の演算部22を有することにより、第一の演算部21がもつ安全リスクを回避することができる。
 このような特徴をもつ電子制御装置1を実装する際には、第一の演算部21および第二の演算部22で行われる演算を、図8に示すように異なるシリコンチップ1111および1121上に実装された集積回路111および集積回路112上で行うことが考えられる。集積回路111および集積回路112は、本実施例の電子制御装置1と同様、図示しない図1上位の電子制御装置から得られる入力値91や、自車6に搭載されたセンサ9から得られる、自車6の周辺情報および自車情報であるフィードバック値92を入力として、図示しない自車6の走行に必要となる加速度情報を制御出力51として決定し自車6を制御するものである。
 その際、集積回路111から集積回路112へ、集積回路111上の第一の予測部31より状態量の予測値113が送信される。この状態量の予測値113の一部もしくは全部が、投機的実行に成功し第一の演算部21の演算結果が選択される限り、制御対象である自車6より電子制御装置1へのフィードバック値92に略等しくなる。これは、集積回路111内の第一の演算部21および第一の予測部31により出力される値が図6a、図6b、図6cに示すように自車6の挙動に関する将来の値であり、前述のように投機的実行が成功する限り、第一の演算部21における演算結果が選択され続けることによる。
 なお、本実施例においては制御演算を行う第一の演算部21および第二の演算部22を1つずつ備えているが、本発明の構成はこれに限定されるものではない。すなわち第一の演算部21および第二の演算部22に相当する演算部を複数実装し、それぞれの演算部における演算結果を評価部4にて評価することで、快適性をさらに改善することが可能である。
 また、本実施例において第二の演算部22を安全性確保のため急ブレーキをかけるという動作で実装したが、本発明の構成はこれに限定されるものではない。例えば状況に応じて規定された所定のパターンを出力する方式や制御演算を行う方式等で実装しても、各実施形態で説明したのと同等の作用効果を持つ。
 なお、以上説明したような各種の変形例は、それぞれ単独で適用しても、任意に組み合わせて適用してもよい。以上説明した各実施形態や各種の変形例はあくまで一例であり、発明の特徴が損われない限り、本発明はこれらの内容に限定されるものではない。
1:電子制御装置、21:第一の演算部、22:第二の演算部
31:第一の演算部21からの出力を基に自車6の将来状態を予測する予測部
32:第二の演算部22からの出力を基に自車6の将来状態を予測する予測部
4:評価部、5:選択部、51:電子制御装置の出力値、6:自車、
7:自車搭載の各種アクチュエータを制御する電子制御装置、
8:自車搭載の各種アクチュエータ、9:自車搭載のセンサ、
91:電子制御装置1への図示しない上位の電子制御装置からの入力値
92:電子制御装置1へのセンサ9からの入力値
10:歩行者、
111:電子制御装置1を2つの集積回路上に実装時の第一の演算部を含む集積回路、
112:電子制御装置1を2つの集積回路上に実装時の第一の演算部を含まない集積回路、
113:第一の演算部を含む集積回路からの出力値

Claims (5)

  1.  少なくとも一つの外部からの入力に応じて演算結果を出力し制御対象を制御する電子制御装置において、
     前記入力を基に制御演算を行う複数の演算部を有し、前記複数の演算部が安全性に関して異なる特徴を持ち、前記異なる特徴として、前記安全性に関して安全性要件を満たさない場合の少なくとも一つの第一の演算部と、前記安全性要件を満たす少なくとも一つの第二の演算部を有し、
     前記第一の演算部および第二の演算部から出力されるそれぞれの制御演算結果を基に、制御対象の将来の状態をそれぞれ予測する第一の予測部と第二の予測部と、
     前記第一の予測部と第二の予測部から出力される前記制御対象の将来の状態を表す量を基に、前記第一の演算部および第二の演算部における制御演算結果について少なくとも安全性を評価する評価部と、
     前記評価部による評価結果を基に、少なくとも安全性要件を満たすものを制御演算結果の中から1つ選択し、前記電子制御装置の演算結果として出力する選択部と、を有することを特徴とする電子制御装置。
  2.  請求項1において、前記評価部は前記安全性の評価に関しない第二の評価基準についても評価を行い、前記安全基準を満たす制御演算結果が複数ある場合は第二の評価基準において最も適した制御演算結果を出力することを特徴とする電子制御装置。
  3.  請求項1または2において、前記第一の予測部および第二の予測部において制御対象の数理モデルを用いることを特徴とする電子制御装置。
     
  4.  請求項1乃至3のいずれかにおいて、前記第一の演算部が1制御周期以内に演算を完了しない演算を行っていることを特徴とする電子制御装置。
  5.  少なくとも一つの外部からの入力に応じて演算結果を出力し制御対象を制御する電子制御装置において、
     複数のシリコンチップ上に実装された集積回路を有し、前記複数の集積回路間にてデータの送受信を伴う制御演算を行い、
     ある時刻における前記複数の集積回路間で送受信されるデータの少なくとも一部が、前記ある時刻以降における制御対象への出力値または制御対象からの入力値のうち少なくとも一方と略等しいことを特徴とする電子制御装置。
PCT/JP2016/057268 2015-03-31 2016-03-09 電子制御装置 WO2016158260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070625 2015-03-31
JP2015070625A JP2016192010A (ja) 2015-03-31 2015-03-31 電子制御装置

Publications (1)

Publication Number Publication Date
WO2016158260A1 true WO2016158260A1 (ja) 2016-10-06

Family

ID=57005642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057268 WO2016158260A1 (ja) 2015-03-31 2016-03-09 電子制御装置

Country Status (2)

Country Link
JP (1) JP2016192010A (ja)
WO (1) WO2016158260A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572610A (zh) * 2017-03-13 2018-09-25 欧姆龙株式会社 评价系统、安全控制器、可读取记录媒体及评价方法
CN110400471A (zh) * 2019-07-24 2019-11-01 杭州电子科技大学 一种城市交通系统安全运行的控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946861B2 (ja) 2017-08-29 2021-10-13 トヨタ自動車株式会社 自動運転評価装置及び自動運転評価方法
JP6525402B2 (ja) * 2017-08-30 2019-06-05 マツダ株式会社 車両制御装置
JP6525401B2 (ja) * 2017-08-30 2019-06-05 マツダ株式会社 車両制御装置
JP6888577B2 (ja) 2018-03-30 2021-06-16 オムロン株式会社 制御装置、制御方法、及び制御プログラム
JP7409222B2 (ja) 2020-05-14 2024-01-09 マツダ株式会社 移動体の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150175A (ja) * 1992-11-11 1994-05-31 Yokogawa Electric Corp プラント監視装置
JP2008117082A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
JP2009051356A (ja) * 2007-08-27 2009-03-12 Toyota Motor Corp 走行計画生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150175A (ja) * 1992-11-11 1994-05-31 Yokogawa Electric Corp プラント監視装置
JP2008117082A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
JP2009051356A (ja) * 2007-08-27 2009-03-12 Toyota Motor Corp 走行計画生成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572610A (zh) * 2017-03-13 2018-09-25 欧姆龙株式会社 评价系统、安全控制器、可读取记录媒体及评价方法
CN108572610B (zh) * 2017-03-13 2021-05-18 欧姆龙株式会社 评价系统、安全控制器、可读取记录媒体及评价方法
CN110400471A (zh) * 2019-07-24 2019-11-01 杭州电子科技大学 一种城市交通系统安全运行的控制方法
CN110400471B (zh) * 2019-07-24 2020-09-22 杭州电子科技大学 一种城市交通系统安全运行的控制方法

Also Published As

Publication number Publication date
JP2016192010A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2016158260A1 (ja) 電子制御装置
US20220126821A1 (en) Damage reduction device, damage reduction method, and program
CN103935361B (zh) 用于自主的车道变换、经过和超越行为的有效数据流算法
JP6787671B2 (ja) 合流支援装置
JP4254844B2 (ja) 走行制御計画評価装置
JP6320522B2 (ja) 自動走行モードでの自動車の動作方法および装置
WO2018066560A1 (ja) 車両制御装置
JP6802391B2 (ja) 車両制御装置および電子制御システム
JP4371137B2 (ja) 自動運転制御装置
CN103625470B (zh) 用于引导车辆的方法和驾驶员辅助系统
JP4811075B2 (ja) 回避操作算出装置、回避制御装置、各装置を備える車両、回避操作算出方法および回避制御方法
JP7212702B2 (ja) 車両制御装置、車両制御方法、及び車両制御システム
JP6203949B2 (ja) 自動車のための回避・ブレーキアシスト
JP6315827B2 (ja) 運転支援装置
CN106608259B (zh) 自动紧急制动装置和方法
JPWO2019055442A5 (ja)
JP7031005B2 (ja) 車両挙動予測方法及び車両挙動予測装置
JP2019137139A (ja) 車両制御装置
US20190299995A1 (en) Vehicle control apparatus
JPWO2018173175A1 (ja) 車両制御装置
JP2005132172A (ja) 走行制御装置
US20200198600A1 (en) Driving assistance apparatus
JP7243095B2 (ja) 車両制御装置
JP6553662B2 (ja) 車両用運転支援装置
US20200307572A1 (en) Driving assistance apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772144

Country of ref document: EP

Kind code of ref document: A1