JP6525401B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP6525401B2
JP6525401B2 JP2017165245A JP2017165245A JP6525401B2 JP 6525401 B2 JP6525401 B2 JP 6525401B2 JP 2017165245 A JP2017165245 A JP 2017165245A JP 2017165245 A JP2017165245 A JP 2017165245A JP 6525401 B2 JP6525401 B2 JP 6525401B2
Authority
JP
Japan
Prior art keywords
vehicle
speed
obstacle
travel route
request signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017165245A
Other languages
English (en)
Other versions
JP2019043193A (ja
Inventor
多加志 後藤
多加志 後藤
大村 博志
博志 大村
細田 浩司
浩司 細田
哲也 立畑
哲也 立畑
隆 中上
隆 中上
友馬 西條
友馬 西條
川原 康弘
康弘 川原
翔太 片山
翔太 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017165245A priority Critical patent/JP6525401B2/ja
Priority to US16/641,999 priority patent/US20200353918A1/en
Priority to CN201880055105.3A priority patent/CN111132882A/zh
Priority to EP18850156.3A priority patent/EP3663152A4/en
Priority to PCT/JP2018/031102 priority patent/WO2019044644A1/ja
Publication of JP2019043193A publication Critical patent/JP2019043193A/ja
Application granted granted Critical
Publication of JP6525401B2 publication Critical patent/JP6525401B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile

Description

本発明は、車両制御装置に係り、特に、走行中に障害物を回避するのに適した車両制御装置に関する。
障害物の緊急回避時において、その際の車速に応じて制動回避(ブレーキ操作のみ)と操舵回避(ステリング操作のみ)のいずれかを選択し、最適化処理を用いて目標走行経路計算をする技術が提案されている(例えば、特許文献1参照)。この技術では、制動回避が選択されると、縦方向(車両前後方向)の運動のみに計算条件が簡略化される。また、操舵回避が選択されると、横方向(車両幅方向)の運動のみに計算条件が簡略化される。このように、この技術では、緊急時において計算負荷が軽減されるため、高い計算精度を確保しつつ、計算時間を短くすることができるようになっている。
特開2010−155545号公報
しかしながら、走行状況によっては、所定計算時間内に目標走行経路の計算が完了せず、目標走行経路の最適解が得られない場合が生じ得る(タイムアウト)。この場合、最適な目標走行経路が得られていないため、障害物回避操作をよりよく実行できないおそれがある。
本発明は、このような問題を解決するためになされたものであり、障害物回避時を含み常時、目標走行経路を計算しつつ、確実に障害物回避可能な車両制御装置を提供することを目的とする。
上記の目的を達成するために、本発明は、車両制御装置であって、車両の目標走行経路を繰り返し更新する走行経路制御部と、障害物との衝突回避のための自動衝突防止制御処理を実行する自動衝突防止制御部と、を備え、走行経路制御部は、障害物が検出された場合に、この障害物を回避するように目標走行経路を補正する走行経路補正処理を実行し、走行経路制御部は、走行経路補正処理において、少なくとも障害物から車両に向けて、障害物に対する車両の相対速度の許容上限値の分布を規定する速度分布領域を設定し、この速度分布領域における許容上限値は障害物から距離が離れるほど大きくなるように設定され、速度分布領域内において障害物に対する車両の相対速度が許容上限値を超えないように、目標走行経路を補正して速度分布領域内を車両が走行するための複数の補正走行経路を算出し、これらの目標走行経路に対して補正された複数の前記補正走行経路を、所定の評価関数によって評価し、その評価に応じて1つの補正走行経路を選択する、ように構成されており、走行経路制御部は、選択した補正走行経路を車両が走行するように、車両のブレーキ制御システムに対する第1の要求信号を生成し、自動衝突防止制御部は、走行経路制御部とは独立して、自動衝突防止制御処理を実行して、車両のブレーキ制御システムに対する第2の要求信号を生成し、走行経路制御部及び自動衝突防止制御部からそれぞれ第1の要求信号及び第2の要求信号を受け取る出力制御部を更に備え、出力制御部は、第1の要求信号又は第2の要求信号を車両のブレーキ制御システムへ出力するように構成されている。
このように構成された本発明によれば、障害物が検出された場合に、走行経路制御部が、補正走行経路を算出し、これに基づいて、ブレーキ制御システムを制御するための第1の要求信号を生成する。しかしながら、目標走行経路の計算処理に加え、障害物回避のために評価関数を用いて最適な補正走行経路を算出する計算処理は、走行状況によっては計算負荷が高くなり、繰り返し計算時間(更新時間)内に最適な補正走行経路を算出できないおそれがある(タイムアウト)。この場合、障害物をよりよく回避できない場合が生じ得る。
このため、本発明では、車両制御装置は、走行経路制御部とは別に、障害物との衝突を回避するための自動衝突防止制御部を備えている。走行経路制御部は、走行経路計算及び補正経路計算のような負荷の高い計算処理を実行する。しかしながら、自動衝突防止制御部は、負荷の低い計算処理(即ち、障害物との衝突回避のための自動ブレーキの計算処理)を実行すればよい。したがって、自動衝突防止制御部は、少なくとも更新時間内には確実に計算処理を完了することができる。よって、本発明では、走行経路制御部によって最適な補正走行経路が算出できない場合であっても、自動衝突防止制御部によって、確実に障害物を回避することが可能である。これにより、本発明では、車両の走行安全性を向上させることができる。
また、本発明において、好ましくは、出力制御部は、第1の要求信号よりも、第2の要求信号を優先して出力するように構成されている。このように構成された本発明によれば、出力制御部は、両方の要求信号(第1の要求信号,第2の要求信号)を受け取ったときに、障害物回避のより高い信頼性を有する第2の要求信号により、ブレーキ制御システムを作動させることができる。
また、本発明において、好ましくは、走行経路補正処理と自動衝突防止制御処理は、単一のCPUによって所定の繰り返し計算時間内に実行される。このように構成された本発明によれば、単一のCPUによって走行経路補正処理と自動衝突防止制御処理の両方の処理が実行されるが、確実に障害物との衝突を回避することができる。
本発明によれば、障害物回避時を含み常時、目標走行経路を計算しつつ、確実に障害物回避可能な車両制御装置を提供することができる。
本発明の実施形態における車両制御システムの構成図である。 本発明の実施形態における車両制御システムの制御ブロック図である。 本発明の実施形態における第1走行経路の説明図である。 本発明の実施形態における第2走行経路の説明図である。 本発明の実施形態における第3走行経路の説明図である。 本発明の実施形態における障害物回避制御の説明図である。 本発明の実施形態の障害物回避制御における障害物と車両との間のすれ違い速度の許容上限値とクリアランスとの関係を示す説明図である。 本発明の実施形態の走行経路補正処理の説明図である。 本発明の実施形態の車両モデルの説明図である。 本発明の実施形態における運転支援制御の処理フローである。 本発明の実施形態における走行経路計算処理の処理フローである。 本発明の実施形態における走行経路補正処理の処理フローである。 本発明の実施形態における自動衝突防止制御処理の処理フローである。 本発明の実施形態におけるシステム制御処理の処理フローである。 本発明の第2実施形態における車両制御システムの制御ブロック図である。 本発明の第2実施形態における運転支援制御の処理フローである。 本発明の第2実施形態における自動進路逸脱防止処理の処理フローである。 本発明の第2実施形態におけるシステム制御処理の処理フローである。
以下、添付図面を参照して、本発明の実施形態による車両制御システムについて説明する。まず、図1及び図2を参照して、車両制御システムの構成について説明する。図1は車両制御システムの構成図、図2は車両制御システムの制御ブロック図である。
本実施形態の車両制御システム100は、車両1(図3等参照)に対して複数の運転支援モードにより、それぞれ異なる運転支援制御を提供するように構成されている。運転者は、複数の運転支援モードから所望の運転支援モードを選択可能である。
図1に示すように、車両制御システム100は、車両1に搭載されており、車両制御装置(ECU)10と、複数のセンサ及びスイッチと、複数の制御システムと、運転支援モードについてのユーザ入力を行うための運転者操作部35を備えている。複数のセンサ及びスイッチには、車載カメラ21,ミリ波レーダ22,車両の挙動を検出する複数の挙動センサ(車速センサ23,加速度センサ24,ヨーレートセンサ25)及び複数の挙動スイッチ(操舵角センサ26,アクセルセンサ27,ブレーキセンサ28),測位システム29,ナビゲーションシステム30が含まれる。また、複数の制御システムには、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33が含まれる。
運転者操作部35は、運転者が操作可能なように車両1の車室内に設けられており、複数の運転支援モードから所望の運転支援モードを選択するためのモード選択スイッチ36と、選択された運転支援モードに応じて設定車速を入力するための設定車速入力部37を備えている。運転者がモード選択スイッチ36を操作することにより、選択された運転支援モードに応じた運転支援モード選択信号が出力される。また、運転者が設定車速入力部37を操作することにより、設定車速信号が出力される。
ECU10は、CPU,各種プログラムを記憶するメモリ,入出力装置等を備えたコンピュータにより構成される。ECU10は、運転者操作部35から受け取った運転支援モード選択信号や設定車速信号、及び、複数のセンサ及びスイッチから受け取った信号に基づき、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33に対して、それぞれエンジンシステム,ブレーキシステム,ステアリングシステムを適宜に作動させるための要求信号を出力可能に構成されている。
車載カメラ21は、車両1の周囲を撮像し、撮像した画像データを出力する。ECU10は、画像データに基づいて対象物(例えば、車両、歩行者、道路、区画線(車線境界線、白線、黄線)、交通信号、交通標識、停止線、交差点、障害物等)を特定する。なお、ECU10は、交通インフラや車々間通信等によって、車載通信機器を介して外部から対象物の情報を取得してもよい。
ミリ波レーダ22は、対象物(特に、先行車、駐車車両、歩行者、障害物等)の位置及び速度を測定する測定装置であり、車両1の前方へ向けて電波(送信波)を送信し、対象物により送信波が反射されて生じた反射波を受信する。そして、ミリ波レーダ22は、送信波と受信波に基づいて、車両1と対象物との間の距離(例えば、車間距離)や車両1に対する対象物の相対速度を測定する。なお、本実施形態において、ミリ波レーダ22に代えて、レーザレーダや超音波センサ等を用いて対象物との距離や相対速度を測定するように構成してもよい。また、複数のセンサを用いて、位置及び速度測定装置を構成してもよい。
車速センサ23は、車両1の絶対速度を検出する。
加速度センサ24は、車両1の加速度(前後方向の縦加速度、横方向の横加速度)を検出する。なお、加速度は、増速側(正)及び減速側(負)を含む。
ヨーレートセンサ25は、車両1のヨーレートを検出する。
操舵角センサ26は、車両1のステアリングホイールの回転角度(操舵角)を検出する。
アクセルセンサ27は、アクセルペダルの踏み込み量を検出する。
ブレーキセンサ28は、ブレーキペダルの踏み込み量を検出する。
測位システム29は、GPSシステム及び/又はジャイロシステムであり、車両1の位置(現在車両位置情報)を検出する。
ナビゲーションシステム30は、内部に地図情報を格納しており、ECU10へ地図情報を提供することができる。ECU10は、地図情報及び現在車両位置情報に基づいて、車両1の周囲(特に、進行方向前方)に存在する道路、交差点、交通信号、建造物等を特定する。地図情報は、ECU10内に格納されていてもよい。
エンジン制御システム31は、車両1のエンジンを制御するコントローラである。ECU10は、車両1を加速又は減速させる必要がある場合に、エンジン制御システム31に対して、エンジン出力の変更を要求するエンジン出力変更要求信号を出力する。
ブレーキ制御システム32は、車両1のブレーキ装置を制御するためのコントローラである。ECU10は、車両1を減速させる必要がある場合に、ブレーキ制御システム32に対して、車両1への制動力の発生を要求するブレーキ要求信号を出力する。
ステアリング制御システム33は、車両1のステアリング装置を制御するコントローラである。ECU10は、車両1の進行方向を変更する必要がある場合に、ステアリング制御システム33に対して、操舵方向の変更を要求する操舵方向変更要求信号を出力する。
図2に示すように、ECU10は、走行経路制御部10a,自動衝突防止制御部10b,入力処理部10c,出力制御部10dとして機能する単一のCPUを備えている。入力処理部10cは、複数のセンサ/スイッチ及び運転者操作部35から受けた入力情報を処理する。走行経路制御部10a及び自動衝突防止制御部10bは、処理された入力情報を用いて演算処理を実行する。本実施形態では、緊急性が高い自動緊急回避制御である自動衝突防止制御は、通常の走行経路制御とは独立して実行されるように構成されている。なお、本実施形態では、単一のCPUが複数の上記機能を実行するように構成されているが、これに限らず、複数のCPUがこれら機能を実行するように構成することができる。
本実施形態において、自動緊急回避制御は、緊急時に車両1の挙動を変更するために、少なくともエンジン制御システム31,ブレーキ制御システム32,又はステアリング制御システム33のいずれか1つ又は複数に対する要求信号を生成する制御である。
走行経路制御部10aは、入力情報に基づいて目標走行経路を計算し、この目標走行経路上を車両1が走行するように、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33に対する第1の要求信号を生成する。自動衝突防止制御部10bは、入力情報に基づいて障害物との衝突回避のために緊急自動ブレーキを作動させるように、ブレーキ制御システム32に対して第2の要求信号を生成する。出力制御部10dは、制御部10a,10bから受け取った要求信号を、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33へ選択的に出力する。
次に、本実施形態による車両制御システム100が備える運転支援モードについて説明する。本実施形態では、運転支援モードとして、4つのモード(先行車追従モード、自動速度制御モード、速度制限モード、基本制御モード)が備えられている。
<先行車追従モード>
先行車追従モードは、基本的に、車両1と先行車との間に車速に応じた所定の車間距離を維持しつつ、車両1を先行車に追従走行させるモードであり、車両制御システム100による自動的なステアリング制御,速度制御(エンジン制御,ブレーキ制御),障害物回避制御(速度制御及びステアリング制御)を伴う。
先行車追従モードでは、車線両端部の検出の可否、及び、先行車の有無に応じて、異なるステアリング制御及び速度制御が行われる。ここで、車線両端部とは、車両1が走行する車線の両端部(白線等の区画線,道路端,縁石,中央分離帯,ガードレール等)であり、隣接する車線や歩道等との境界である。走行路端部検出部としてのECU10は、この車線両端部を車載カメラ21により撮像された画像データから検出する。また、ナビゲーションシステム30の地図情報から車線両端部を検出してもよい。しかしながら、例えば、車両1が整備された道路ではなく、車線が存在しない平原を走行する場合や、車載カメラ21からの画像データの読取り不良等の場合に車線両端部が検出できない場合が生じ得る。
なお、上記実施形態では、ECU10を走行路端部検出部としているが、これに限らず、走行路端部検出部としての車載カメラ21が車線両端部を検出してもよいし、走行路端部検出部としての車載カメラ21とECU10が協働して車線両端部を検出してもよい。
また、本実施形態では、先行車検出部としてのECU10は、車載カメラ21による画像データ及びミリ波レーダ22による測定データにより、先行車を検出する。具体的には、車載カメラ21による画像データにより前方を走行する他車両を走行車として検出する。更に、本実施形態では、ミリ波レーダ22による測定データにより、車両1と他車両との車間距離が所定距離(例えば、400〜500m)以下である場合に、当該他車両が先行車として検出される。
なお、上記実施形態では、ECU10を先行車検出部としているが、これに限らず、先行車検出部としての車載カメラ21が前方を走行する他車両を検出してもよく、ECU10に加えて車載カメラ21及びミリ波レーダ22が先行車両検出部の一部を構成してもよい。
(先行車追従モード:車線検出可能)
まず、車線両端部が検出される場合、車両1は、車線の中央付近を走行するようにステアリング制御され、設定車速入力部37を用いて運転者によって又は所定の処理に基づいてシステム100によって予め設定された設定車速(一定速度)を維持するように速度制御される。なお、設定車速が制限車速(速度標識やカーブの曲率に応じて規定される制限速度)よりも大きい場合は制限車速が優先され、車両1の車速は制限車速に制限される。カーブの曲率に応じて規定される制限速度は、所定の計算式により計算され、カーブの曲率が大きい(曲率半径が小さい)ほど低速度に設定される。
なお、車両1の設定車速が先行車の車速よりも大きい場合は、車両1は、車速に応じた車間距離を維持しながら先行車に追従するように速度制御される。また、追従していた先行車が車線変更等により、車両1の前方に存在しなくなると、車両1は、再び設定車速を維持するように速度制御される。
(先行車追従モード:車線検出不可、先行車有り)
また、車線両端部が検出されない場合であって、且つ、先行車が存在する場合、車両1は、先行車の走行軌跡を追従するようにステアリング制御され、且つ、先行車の走行軌跡上の速度に追従するように速度制御される。
(先行車追従モード:車線検出不可、先行車無し)
また、車線両端部が検出されない場合であって、且つ、先行車も存在しない場合、走行路上での走行位置を特定できない(区画線等検出不可、先行車追従不可)。この場合、現在の走行挙動(操舵角、ヨーレート、車速、加速度等)を運転者の意思により維持又は変更するように、運転者がステアリングホイール,アクセルペダル,ブレーキペダルを操作することにより、ステアリング制御及び速度制御を実行する。
なお、先行車追従モードでは、先行車の有無、車線両端部の検出の可否にかかわらず、後述する障害物回避制御(速度制御及びステアリング制御)が更に自動的に実行される。
<自動速度制御モード>
また、自動速度制御モードは、運転者によって又はシステム100によって予め設定された所定の設定車速(一定速度)を維持するように速度制御するモードであり、車両制御システム100による自動的な速度制御(エンジン制御,ブレーキ制御),障害物回避制御(速度制御)を伴うが、ステアリング制御は行われない。この自動速度制御モードでは、車両1は、設定車速を維持するように走行するが、運転者によるアクセルペダルの踏み込みにより設定車速を超えて増速され得る。また、運転者がブレーキ操作を行った場合には、運転者の意思が優先され、設定車速から減速される。また、先行車に追いついた場合には、車速に応じた車間距離を維持しながら先行車に追従するように速度制御され、先行車が存在しなくなると、再び設定車速に復帰するように速度制御される。
<速度制限モード>
また、速度制限モードは、車両1の車速が速度標識による制限速度又は運転者によって設定された設定速度を超えないように、速度制御するモードであり、車両制御システム100による自動的な速度制御(エンジン制御)を伴う。制限速度は、車載カメラ21により撮像された速度標識や路面上の速度表示の画像データをECU10が画像認識処理することにより特定してもよいし、外部からの無線通信により受信してもよい。速度制限モードでは、運転者が制限速度を超えるようにアクセルペダルを踏み込んだ場合であっても、車両1は制限速度までしか増速されない。
<基本制御モード>
また、基本制御モードは、運転者操作部35により、運転支援モードが選択されていないときのモード(オフモード)であり、車両制御システム100による自動的なステアリング制御及び速度制御は行われない。ただし、自動衝突防止制御は実行されるように構成されており、この制御において、車両1が先行車等に衝突する可能性がある場合には自動的にブレーキ制御が実行され、衝突が回避される。また、自動衝突防止制御は、先行車追従モード,自動速度制御,速度制限モードにおいても同様に実行される。
また、自動速度制御モード、速度制限モード、及び基本制御モードにおいても、後述する障害物回避制御(速度制御のみ、又は、速度制御及びステアリング制御)が更に実行される。
次に、図3〜図5を参照して、本実施形態による車両制御システム100において計算される複数の走行経路について説明する。図3〜図5は、それぞれ第1走行経路〜第3走行経路の説明図である。本実施形態では、ECU10が、以下の第1走行経路R1〜第3走行経路R3を時間的に繰返し計算するように構成されている(例えば、0.1秒毎)。本実施形態では、ECU10は、センサ等の情報に基づいて、現時点から所定期間(例えば、3秒)が経過するまでの間の走行経路を計算する。走行経路Rx(x=1,2,3)は、走行経路上の車両1の目標位置(Px_k)及び目標速度(Vx_k)により特定される(k=0,1,2,・・・,n)。更に、各目標位置において、目標速度以外に複数の変数(加速度、加速度変化量、ヨーレート、操舵角、車両角度等)について目標値が特定される。
なお、図3〜図5における走行経路(第1走行経路〜第3走行経路)は、車両1が走行する走行路上又は走行路周辺の障害物(駐車車両、歩行者等を含む)に関する障害物情報を考慮せずに、走行路の形状,先行車の走行軌跡,車両1の走行挙動,及び設定車速に基づいて計算される。このように、本実施形態では、障害物情報が計算に考慮されないので、これら複数の走行経路の全体的な計算負荷を低く抑えることができる。
以下では、理解の容易のため、車両1が直線区間5a,カーブ区間5b,直線区間5cからなる道路5を走行する場合において計算される各走行経路について説明する。道路5は、左右の車線5L,5Rからなる。現時点において、車両1は、直線区間5aの車線5L上を走行しているものとする。
(第1走行経路)
図3に示すように、第1走行経路R1は、道路5の形状に即して車両1に走行路である車線5L内の走行を維持させるように所定期間分だけ設定される。詳しくは、第1走行経路R1は、直線区間5a,5cでは車両1が車線5Lの中央付近の走行を維持するように設定され、カーブ区間5bでは車両1が車線5Lの幅方向中央よりも内側又はイン側(カーブ区間の曲率半径Lの中心O側)を走行するように設定される。
ECU10は、車載カメラ21により撮像された車両1の周囲の画像データの画像認識処理を実行し、車線両端部6L,6Rを検出する。車線両端部は、上述のように、区画線(白線等)や路肩等である。更に、ECU10は、検出した車線両端部6L,6Rに基づいて、車線5Lの車線幅W及びカーブ区間5bの曲率半径Lを算出する。また、ナビゲーションシステム30の地図情報から車線幅W及び曲率半径Lを取得してもよい。更に、ECU10は、画像データから速度標識Sや路面上に表示された制限速度を読み取る。なお、上述のように、制限速度を外部からの無線通信により取得してもよい。
ECU10は、直線区間5a,5cでは、車線両端部6L,6Rの幅方向の中央部を車両1の幅方向中央部(例えば、重心位置)が通過するように、第1走行経路R1の複数の目標位置P1_kを設定する。
一方、ECU10は、カーブ区間5bでは、カーブ区間5bの長手方向の中央位置P1_cにおいて、車線5Lの幅方向中央位置からイン側への変位量Wsを最大に設定する。この変位量Wsは、曲率半径L,車線幅W,車両1の幅寸法D(ECU10のメモリに格納された規定値)に基づいて計算される。そして、ECU10は、カーブ区間5bの中央位置P1_cと直線区間5a,5cの幅方向中央位置とを滑らかにつなぐように第1走行経路R1の複数の目標位置P1_kを設定する。なお、カーブ区間5bへの進入前後においても、直線区間5a,5cのイン側に第1走行経路R1を設定してもよい。
第1走行経路R1の各目標位置P1_kにおける目標速度V1_kは、原則的に、運転者が運転者操作部35の設定車速入力部37によって又はシステム100によって予め設定された所定の設定車速(一定速度)に設定される。しかしながら、この設定車速が、速度標識S等から取得された制限速度、又は、カーブ区間5bの曲率半径Lに応じて規定される制限速度を超える場合、走行経路上の各目標位置P1_kの目標速度V1_kは、2つの制限速度のうち、より低速な制限速度に制限される。さらに、ECU10は、車両1の現在の挙動状態(即ち、車速,加速度,ヨーレート,操舵角,横加速度等)に応じて、目標位置P1_k,目標車速V1_kを適宜に補正する。例えば、現車速が設定車速から大きく異なっている場合は、車速を設定車速に近づけるように目標車速が補正される。
(第2走行経路)
また、図4に示すように、第2走行経路R2は、先行車3の走行軌跡を追従するように所定期間分だけ設定される。ECU10は、車載カメラ21による画像データ,ミリ波レーダ22による測定データ,車速センサ23による車両1の車速に基づいて、車両1の走行する車線5L上の先行車3の位置及び速度を継続的に計算して、これらを先行車軌跡情報として記憶し、この先行車軌跡情報に基づいて、先行車3の走行軌跡を第2走行経路R2(目標位置P2_k、目標速度V2_k)として設定する。
(第3走行経路)
また、図5に示すように、第3走行経路R3は、運転者による車両1の現在の運転状態に基づいて所定期間分だけ設定される。即ち、第3走行経路R3は、車両1の現在の走行挙動から推定される位置及び速度に基づいて設定される。
ECU10は、車両1の操舵角,ヨーレート,横加速度に基づいて、所定期間分の第3走行経路R3の目標位置P3_kを計算する。ただし、ECU10は、車線両端部が検出される場合、計算された第3走行経路R3が車線端部に近接又は交差しないように、目標位置P3_kを補正する。
また、ECU10は、車両1の現在の車速,加速度に基づいて、所定期間分の第3走行経路R3の目標速度V3_kを計算する。なお、目標速度V3_kが速度標識S等から取得された制限速度を超えてしまう場合は、制限速度を超えないように目標速度V3_kを補正してもよい。
次に、本実施形態による車両制御システム100における運転支援モードと走行経路との関係について説明する。本実施形態では、運転者がモード選択スイッチ36を操作して1つの運転支援モードを選択すると、ECU10が、センサ等による測定データに応じて、第1走行経路R1〜第3走行経路R3のうち、いずれか1つを選択するように構成されている。
先行車追従モードの選択時には、車線両端部が検出されていると、先行車の有無にかかわらず、第1走行経路が適用される。この場合、設定車速入力部37によって設定された設定車速が目標速度となる。
一方、先行車追従モードの選択時において、車線両端部が検出されず、先行車が検出された場合、第2走行経路が適用される。この場合、目標速度は、先行車の車速に応じて設定される。また、先行車追従モードの選択時において、車線両端部が検出されず、先行車も検出されない場合、第3走行経路が適用される。
また、自動速度制御モードの選択時には、第3走行経路が適用される。自動速度制御モードは、上述のように速度制御を自動的に実行するモードであり、設定車速入力部37によって設定された設定車速が目標速度となる。また、運転者によるステアリングホイールの操作に基づいてステアリング制御が実行される。
また、速度制限モードの選択時にも第3走行経路が適用される。速度制限モードも、上述のように速度制御を自動的に実行するモードであり、目標速度は、制限速度以下の範囲で、運転者によるアクセルペダルの踏み込み量に応じて設定される。また、運転者によるステアリングホイールの操作に基づいてステアリング制御が実行される。
また、基本制御モード(オフモード)の選択時には、第3走行経路が適用される。基本制御モードは、基本的に、速度制限モードにおいて制限速度が設定されない状態と同様である。
次に、図6〜図9を参照して、本実施形態による車両制御システム100において実行される障害物回避制御及びこれに伴う走行経路補正処理について説明する。図6は障害物回避制御の説明図、図7は障害物回避制御における障害物と車両との間のすれ違い速度の許容上限値とクリアランスとの関係を示す説明図、図8は走行経路補正処理の説明図、図9は車両モデルの説明図である。
図6では、車両1は走行路(車線)7上を走行しており、走行中又は停車中の車両3とすれ違って、車両3を追い抜こうとしている。
一般に、道路上又は道路付近の障害物(例えば、先行車、駐車車両、歩行者等)とすれ違うとき(又は追い抜くとき)、車両1の運転者は、進行方向に対して直交する横方向において、車両1と障害物との間に所定のクリアランス又は間隔(横方向距離)を保ち、且つ、車両1の運転者が安全と感じる速度に減速する。具体的には、先行車が急に進路変更したり、障害物の死角から歩行者が出てきたり、駐車車両のドアが開いたりするといった危険を回避するため、クリアランスが小さいほど、障害物に対する相対速度は小さくされる。
また、一般に、後方から先行車に近づいているとき、車両1の運転者は、進行方向に沿った車間距離(縦方向距離)に応じて速度(相対速度)を調整する。具体的には、車間距離が大きいときは、接近速度(相対速度)が大きく維持されるが、車間距離が小さくなると、接近速度は低速にされる。そして、所定の車間距離で両車両の間の相対速度はゼロとなる。これは、先行車が駐車車両であっても同様である。
このように、運転者は、障害物と車両1との間の距離(横方向距離及び縦方向距離を含む)と相対速度との関係を考慮しながら、危険を回避するように車両1を運転している。
そこで、本実施形態では、図6に示すように、車両1は、車両1から検知される障害物(例えば、駐車車両3)に対して、障害物の周囲に(横方向領域、後方領域、及び前方領域にわたって)又は少なくとも障害物と車両1との間に、車両1の進行方向における相対速度についての許容上限値を規定する2次元分布(速度分布領域40)を設定するように構成されている。速度分布領域40では、障害物の周囲の各点において、相対速度の許容上限値Vlimが設定されている。本実施形態では、すべての運転支援モードにおいて、障害物に対する車両1の相対速度が速度分布領域40内の許容上限値Vlimを超えることを防止するための障害物回避制御が実施される。
図6から分かるように、速度分布領域40は、原則的に、障害物からの横方向距離及び縦方向距離が小さくなるほど(障害物に近づくほど)、相対速度の許容上限値が小さくなるように設定される。また、図6では、理解の容易のため、同じ許容上限値を有する点を連結した等相対速度線が示されている。等相対速度線a,b,c,dは、それぞれ許容上限値Vlimが0km/h,20km/h,40km/h,60km/hに相当する。本例では、各等相対速度領域は、略矩形に設定されている。
なお、速度分布領域40は、必ずしも障害物の全周にわたって設定されなくてもよく、少なくとも障害物の後方、及び、車両1が存在する障害物の横方向の一方側(図6では、車両3の右側領域)に設定されればよい。
図7に示すように、車両1がある絶対速度で走行するときにおいて、障害物の横方向に設定される許容上限値Vlimは、クリアランスXがD0(安全距離)までは0(ゼロ)km/hであり、D0以上で2次関数的に増加する(Vlim=k(X−D02。ただし、X≧D0)。即ち、安全確保のため、クリアランスXがD0以下では車両1は相対速度がゼロとなる。一方、クリアランスXがD0以上では、クリアランスが大きくなるほど、車両1は大きな相対速度ですれ違うことが可能となる。
図7の例では、障害物の横方向における許容上限値は、Vlim=f(X)=k(X−D02で定義されている。なお、kは、Xに対するVlimの変化度合いに関連するゲイン係数であり、障害物の種類等に依存して設定される。また、D0も障害物の種類等に依存して設定される。
なお、本実施形態では、VlimがXの2次関数となるように定義されているが、これに限らず、他の関数(例えば、一次関数等)で定義されてもよい。また、図7を参照して、障害物の横方向の許容上限値Vlimについて説明したが、障害物の縦方向を含むすべての径方向について同様に設定することができる。その際、係数k、安全距離D0は、障害物からの方向に応じて設定することができる。
なお、速度分布領域40は、種々のパラメータに基づいて設定することが可能である。パラメータとして、例えば、車両1と障害物の相対速度、障害物の種類、車両1の進行方向、障害物の移動方向及び移動速度、障害物の長さ、車両1の絶対速度等を考慮することができる。即ち、これらのパラメータに基づいて、係数k及び安全距離D0を選択することができる。
また、本実施形態において、障害物は、車両,歩行者,自転車,崖,溝,穴,落下物等を含む。更に、車両は、自動車,トラック,自動二輪で区別可能である。歩行者は、大人,子供,集団で区別可能である。
図6に示すように、車両1が走行路7上を走行しているとき、車両1のECU10は、車載カメラ21から画像データに基づいて障害物(車両3)を検出する。このとき、障害物の種類(この場合は、車両、歩行者)が特定される。
また、ECU10は、ミリ波レーダ22の測定データ及び車速センサ23の車速データに基づいて、車両1に対する障害物(車両3)の位置及び相対速度並びに絶対速度を算出する。なお、障害物の位置は、車両1の進行方向に沿ったx方向位置(縦方向距離)と、進行方向と直交する横方向に沿ったy方向位置(横方向距離)が含まれる。
ECU10は、検知したすべての障害物(図6の場合、車両3)について、それぞれ速度分布領域40を設定する。そして、ECU10は、車両1の速度が速度分布領域40の許容上限値Vlimを超えないように障害物回避制御を行う。このため、ECU10は、障害物回避制御に伴い、運転者の選択した運転支援モードに応じて適用された目標走行経路を補正する。
即ち、目標走行経路を車両1が走行すると、ある目標位置において目標速度が速度分布領域40によって規定された許容上限値を超えてしまう場合には、目標位置を変更することなく目標速度を低下させるか(図6の経路Rc1)、目標速度を変更することなく目標速度が許容上限値を超えないように迂回経路上に目標位置を変更するか(図6の経路Rc3)、目標位置及び目標速度の両方が変更される(図6の経路Rc2)。
例えば、図6は、計算されていた目標走行経路Rが、走行路7の幅方向の中央位置(目標位置)を60km/h(目標速度)で走行する経路であった場合を示している。この場合、前方に駐車車両3が障害物として存在するが、上述のように、目標走行経路Rの計算段階においては、計算負荷の低減のため、この障害物は考慮されていない。
目標走行経路Rを走行すると、車両1は、速度分布領域40の等相対速度線d,c,c,dを順に横切ることになる。即ち、60km/hで走行する車両1が等相対速度線d(許容上限値Vlim=60km/h)の内側の領域に進入することになる。したがって、ECU10は、目標走行経路Rの各目標位置における目標速度を許容上限値Vlim以下に制限するように目標走行経路Rを補正して、補正後の目標走行経路Rc1を生成する。即ち、補正後の目標走行経路Rc1では、各目標位置において目標車速が許容上限値Vlim以下となるように、車両3に接近するに連れて目標速度が徐々に40km/h未満に低下し、その後、車両3から遠ざかるに連れて目標速度が元の60km/hまで徐々に増加される。
また、目標走行経路Rc3は、目標走行経路Rの目標速度(60km/h)を変更せず、このため等相対速度線d(相対速度60km/hに相当)の外側を走行するように設定された経路である。ECU10は、目標走行経路Rの目標速度を維持するため、目標位置が等相対速度線d上又はその外側に位置するように目標位置を変更するように目標走行経路Rを補正して、目標走行経路Rc3を生成する。したがって、目標走行経路Rc3の目標速度は、目標走行経路Rの目標速度であった60km/hに維持される。
また、目標走行経路Rc2は、目標走行経路Rの目標位置及び目標速度の両方が変更された経路である。目標走行経路Rc2では、目標速度は、60km/hには維持されず、車両3に接近するに連れて徐々に低下し、その後、車両3から遠ざかるに連れて元の60km/hまで徐々に増加される。
目標走行経路Rc1のように、目標走行経路Rの目標位置を変更せず、目標速度のみを変更する補正は、速度制御を伴うが、ステアリング制御を伴わない運転支援モードに適用することができる(例えば、自動速度制御モード、速度制限モード、基本制御モード)。
また、目標走行経路Rc3のように、目標走行経路Rの目標速度を変更せず、目標位置のみを変更する補正は、ステアリング制御を伴う運転支援モードに適用することができる(例えば、先行車追従モード)。
また、目標走行経路Rc2のように、目標走行経路Rの目標位置及び目標速度を共に変更する補正は、速度制御及びステアリング制御を伴う運転支援モードに適用することができる(例えば、先行車追従モード)。
次に、図8に示すように、ECU10(走行経路制御部10a)は、上述のセンサ情報等に基づいて、目標走行経路Rを計算する。そして、障害物検出時には、ECU10は、走行経路補正処理により、運転支援モード等に応じて、補正走行経路R1〜R3を計算する。本実施形態では、この走行経路補正処理は、評価関数Jを用いた最適化処理である。
ECU10は、評価関数J、制約条件及び車両モデルをメモリ内に記憶している。ECU10は、走行経路補正処理において、制約条件及び車両モデルを満たす範囲で、評価関数Jが最小になる補正走行経路を算出する(最適化処理)。
評価関数Jは、複数の評価ファクタを有する。本例の評価ファクタは、例えば、速度(縦方向及び横方向)、加速度(縦方向及び横方向)、加速度変化量(縦方向及び横方向)、ヨーレート、車線中心に対する横位置、車両角度、操舵角、その他ソフト制約について、目標走行経路と補正走行経路との差を評価するための関数である。
評価ファクタには、車両1の縦方向の挙動に関する評価ファクタ(縦方向評価ファクタ:縦方向の速度、加速度、加速度変化量等)と、車両1の横方向の挙動に関する評価ファクタ(横方向評価ファクタ:横方向の速度、加速度、加速度変化量、ヨーレート、車線中心に対する横位置、車両角度、操舵角等)が含まれる。
具体的には、評価関数Jは、以下の式で記述される。
Figure 0006525401
式中、Wk(Xk−Xrefk)2は評価ファクタ、Xkは補正走行経路の評価ファクタに関する物理量、Xrefkは目標走行経路(補正前)の評価ファクタに関する物理量、Wkは評価ファクタの重み値(例えば、0≦Wk≦1)である(但し、k=1〜n)。したがって、本実施形態の評価関数Jは、n個の評価ファクタの物理量について、障害物が存在しないと仮定して計算された目標走行経路(補正前)の物理量に対する補正走行経路の物理量の差の2乗の和を重み付けして、所定期間(例えば、N=3秒)の走行経路長にわたって合計した値に相当する。
制約条件は、車両1の挙動を制限する少なくとも1つの制約ファクタを含む。各制約ファクタは、いずれかの評価ファクタと直接的又は間接的に関連している。したがって、制約条件により車両1の挙動(即ち、評価ファクタの物理量)が制限されることにより、評価関数Jによる最適化処理を早期に収束させることが可能となり、計算時間を短縮することができる。なお、制約条件は、運転支援モードに応じて異なって設定される。
本例の制約ファクタには、例えば、速度(縦方向及び横方向)、加速度(縦方向及び横方向)、加速度変化量(縦方向及び横方向)、車速時間偏差、中心位置に対する横位置、車間距離時間偏差、操舵角、操舵角速度、操舵トルク、操舵トルクレート、ヨーレート、車両角度が含まれる。これら制約ファクタには、許容される数値範囲がそれぞれ設定されている(例えば、−5m/s2≦縦加速度≦4m/s2、−4m/s2≦横加速度≦4m/s2)。例えば、乗り心地に大きな影響を及ぼす縦方向及び横方向の加速度が制約条件によって制限されることにより、補正走行経路での縦G及び横Gの最大値を制限することができる。
車両モデルは、車両1の物理的な運動を規定するものであり、以下の運動方程式で記述される。この車両モデルは、本例では図9に示す2輪モデルである。車両モデルにより車両1の物理的な運動が規定されることにより、走行時の違和感が低減された補正走行経路を算出することができると共に、評価関数Jによる最適化処理を早期に収束させることができる。
Figure 0006525401

Figure 0006525401
図9及び式中、mは車両1の質量、Iは車両1のヨーイング慣性モーメント、lはホイールベース、lfは車両重心点と前車軸間の距離、lrは車両重心点と後車軸間の距離、Kfは前輪1輪あたりのタイヤコーナリングパワー、Krは後輪1輪あたりのタイヤコーナリングパワー、Vは車両1の車速、δは前輪の実舵角、βは車両重心点の横すべり角、rは車両1のヨー角速度、θは車両1のヨー角、yは絶対空間に対する車両1の横変位、tは時間である。
ECU10は、目標走行経路、制約条件、車両モデル、障害物情報等に基づいて、多数の補正走行経路の中から、評価関数Jが最小になる補正走行経路を算出する。即ち、走行経路補正処理において、ECU10は、最適化問題の解を出力するソルバーとして機能する。したがって、最適解として算出される補正走行経路は、障害物に対して適度な距離と相対速度を確保しつつ、補正前の目標走行経路に最も沿う(近い)ものが選択される。
次に、図10〜図14を参照して、本実施形態の車両制御システム100における運転支援制御の処理フローを説明する。図10は運転支援制御の処理フロー、図11は走行経路計算処理の処理フロー、図12は走行経路補正処理の処理フロー、図13は自動衝突防止制御処理の処理フロー、図14はシステム制御処理の処理フローである。
ECU10は、図10の処理フローを所定時間(例えば、0.1秒)ごとに繰り返して実行している。まず、ECU10(入力処理部10c)は、情報取得処理を実行する(S11)。情報取得処理において、ECU10は、測位システム29及びナビゲーションシステム30から、現在車両位置情報及び地図情報を取得し(S11a)、車載カメラ21,ミリ波レーダ22,車速センサ23,加速度センサ24,ヨーレートセンサ25,運転者操作部35等からセンサ情報を取得し(S11b)、操舵角センサ26,アクセルセンサ27,ブレーキセンサ28等からスイッチ情報を取得する(S11c)。
次に、ECU10(入力処理部10c)は、情報取得処理(S11)において取得した各種の情報を用いて所定の情報検出処理を実行する(S12)。情報検出処理において、ECU10は、現在車両位置情報及び地図情報並びにセンサ情報から、車両1の周囲及び前方エリアにおける走行路形状に関する走行路情報(直線区間及びカーブ区間の有無,各区間長さ,カーブ区間の曲率半径,車線幅,車線両端部位置,車線数,交差点の有無,カーブ曲率で規定される制限速度等)、走行規制情報(制限速度、赤信号等)、先行車軌跡情報(先行車の位置及び速度)を検出する(S12a)。
また、ECU10は、スイッチ情報から、運転者による車両操作に関する車両操作情報(操舵角,アクセルペダル踏み込み量,ブレーキペダル踏み込み量等)を検出し(S12b)、更に、スイッチ情報及びセンサ情報から、車両1の挙動に関する走行挙動情報(車速、縦加速度、横加速度、ヨーレート等)を検出する(S12c)。
次に、ECU10(走行経路制御部10a)は、計算により得られた情報に基づいて、走行経路制御処理を実行する(S13)。走行経路制御処理は、走行経路計算処理(S13a)、走行経路補正処理(S13b)、第1要求信号生成処理(S13c)を含む。
走行経路計算処理(S13a)では、上述のように、第1走行経路,第2走行経路,又は第3走行経路が計算される。
走行経路補正処理(S13b)では、ECU10は、障害物情報(例えば、図6に示した駐車車両3)に基づいて、目標走行経路を補正する。走行経路補正処理では、原則的に選択されている運転支援モードに応じて、速度制御及び/又はステアリング制御により、車両1に障害物を回避させるように、走行経路が補正される。
第1要求信号生成処理(S13c)では、ECU10は、選択されている運転支援モードに応じて、車両1が最終的に算出された走行経路上を走行するように、該当する制御システム(エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33)へ出力する要求信号を生成する。具体的には、ECU10は、算出された目標走行経路(補正走行経路)によって特定されるエンジン,ブレーキ,操舵の目標制御量に応じて、第1の要求信号(エンジン要求信号,ブレーキ要求信号,ステアリング要求信号)を生成する。
一方、ECU10(自動衝突防止制御部10b)は、走行経路制御処理(S13)と並行して、自動衝突防止制御処理(S14)を実行し、第2の要求信号(ブレーキ要求信号)を生成する。
更に、ECU10(出力制御部10d)は、生成された第1の要求信号又は第2の要求信号に基づいて、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33へ要求信号を出力する(システム制御処理;S15)。
次に、図11を参照して、図10の走行経路計算処理(S13a)の詳細な処理フローを説明する。
まず、ECU10は、モード選択スイッチ36から受け取っている運転支援モード選択信号に基づいて、運転者が先行車追従モードを選択しているか否かを判定する(S21)。
先行車追従モードが選択されている場合(S21;Yes)、ECU10は、センサ情報等に基づいて、車線両端部位置が検出されているか否かを判定する(S22)。車線両端部位置が検出されている場合(S22;Yes)、第1走行経路を目標走行経路として計算する(S23)。なお、先行車が検出されている場合は、先行車車速が目標車速として用いられ、先行車が検出されていない場合は、設定車速が目標車速として用いられる。
第1走行経路の計算処理では、ECU10は、設定車速,車線両端部,車線幅,制限速度,車速,縦加速度,ヨーレート,操舵角,横加速度等に基づいて、所定期間分(例えば、3秒)の走行経路R1を計算する。走行経路R1の目標位置は、直線区間では車線中央付近を走行するように、カーブ区間では旋回半径が大きくなるようにカーブのイン側を走行するように設定される。また、走行経路R1の目標速度は、設定車速,交通標識による制限車速,及びカーブ曲率により規定される制限車速のうち最も低速な速度を上限速度とするように設定される。
また、車線両端部位置が検出されていない場合(S22;No)、ECU10は、センサ情報等に基づいて、先行車が検出されているか否かを判定する(S24)。
車線両端部位置は検出されていないが、先行車が検出されている場合(S24;Yes)、ECU10は、第2走行経路を目標走行経路として計算する(S25)。第2走行経路の計算処理では、ECU10は、センサ情報等から取得した先行車の先行車軌跡情報(位置及び速度)から、先行車と車両1との間に所定の車間距離を維持しつつ、車間距離を走行する時間分だけ遅れて先行車の挙動(位置及び速度)に追従するように、所定期間分の走行経路R2を計算する。
また、先行車追従モードが選択されていない場合(S21;No)、及び、先行車追従モード選択時において車線両端部位置及び先行車が共に検出されていない場合(S24;No)、ECU10は、第3走行経路を目標走行経路として計算する(S26)。第3走行経路の計算処理では、ECU10は、車両操作情報,走行挙動情報等に基づいて、現在の車両1の挙動から推定される所定期間分の走行経路R3を計算する。
次に、図12を参照して、図10の走行経路補正処理(S13b)の詳細な処理フローを説明する。
まず、ECU10は、情報取得処理(S11)において取得した各種の情報を用いて障害物情報(先行車や障害物の有無,位置,速度等)を取得する(S31)。
そして、ECU10は、障害物情報に基づいて、障害物が検出されていないと判定すると(S32;No)、処理を終了するが、障害物が検出されていると判定すると(S32;Yes)、障害物情報や車両1の走行挙動情報等から速度分布領域(図6参照)を設定する(S33)。
次に、ECU10は、センサ/スイッチ情報(例えば、運転支援モード選択信号)に応じて、評価関数J,制約条件,車両モデルを読み込む(S34)。そして、ECU10は、走行経路計算処理(S13)にて算出した目標走行経路,速度分布領域(S33),評価関数J,制約条件,車両モデル,センサ/スイッチ情報等に基づき、評価関数Jを用いて補正走行経路の最適化処理を実行する(S35)。この最適化処理では、最適化された補正走行経路が算出されるまで繰り返し複数の補正走行経路候補について評価関数Jの評価値が計算される。この評価値が最小となる補正走行経路が出力される。
次に、図13を参照して、図10の自動衝突防止制御処理(S14)の詳細な処理フローを説明する。
まず、ECU10は、情報取得処理(S11)において取得した各種の情報を用いて障害物情報(先行車や障害物の有無,位置,速度等)を取得する(S41)。
そして、ECU10は、車両1の現在の挙動状態(即ち、車速,加速度,ヨーレート,操舵角,横加速度等)から予測される車両1の所定期間分(例えば、3秒)の予測走行経路を計算し、この予測走行経路上に障害物が存在するか否かを判定する(S42)。
予測走行経路上に障害物が存在しない場合(S42;No)、ECU10は、処理を終了する。一方、予測走行経路上に障害物が存在する場合(S42;Yes)、ECU10は、障害物との衝突判定を行う(S43)。この衝突判定処理(S43)では、障害物に車両1が衝突するまでの衝突余裕時間(TTC=距離/相対速度)が所定の自動ブレーキ発生時間Tth(例えば、1秒)以内であるか否かが判定される。
ECU10は、TTCがTthを超えている場合、衝突可能性がないと判定し(S43;No)、処理を終了する。一方、ECU10は、TTCがTth以下である場合、衝突可能性があると判定する(S43;Yes)。
ECU10は、衝突可能性があると判定すると(S43;Yes)、第2の要求信号を生成し(S44)、処理を終了する。第2の要求信号は、車両1を急減速して障害物との衝突を回避するため、ブレーキ制御システム32に対して所定の大きな制動力を発生させるように設定されたブレーキ要求信号である。
なお、第2の要求信号は、障害物との衝突可能性がある場合にのみ生成される。即ち、第2の要求信号は、図10の運転支援制御の繰り返し実行時間(例えば、0.1秒)毎に必ず生成されるわけではなく、衝突可能性がある緊急時にのみ生成される。また、障害物が予測走行経路上に存在しない場合や、衝突可能性がない場合に、ECU10は、Null値を含む形式的な第2の要求信号(Null信号)を生成してもよい。
次に、図14を参照して、図10のシステム制御処理(S15)の詳細な処理フローを説明する。
まず、ECU10から外部の制御システムへ出力される要求信号のうち、ブレーキ制御に関わるブレーキ要求信号について説明する。
ECU10は、外部への要求信号出力の際に、第2の要求信号(ブレーキ要求信号)が自動衝突防止制御処理(S14)により生成されているか否かを判定する(S51)。実質的な(Null信号ではない)第2の要求信号が生成されていない場合(S51;No)、緊急時ではないので、ECU10は、走行経路制御処理(S13)により生成された第1の要求信号を外部へ出力し(S52)、処理を終了する。
一方、第2の要求信号が生成されている場合(S51;Yes)、緊急時であるので、ECU10は、第2の要求信号(ブレーキ要求信号)を外部(ブレーキ制御システム32)へ出力し(S53)、処理を終了する。
なお、ECU10は、エンジン要求信号とステアリング要求信号については、第2の要求信号の有無にかかわらず、第1の要求信号に含まれるエンジン要求信号とステアリング要求信号を外部(エンジン制御システム31,ステアリング制御システム33)へ出力する。
なお、例えば、先行車追従モードにおいて、自動速度/ステアリング制御が実行されている場合、走行経路制御処理(S13)が適切に実行されていれば、走行経路補正処理(S13b)によって障害物を安全に回避するように補正走行経路が計算される。このため、自動衝突防止制御処理(S14)によって第2の要求信号が生成されることはない。したがって、第2の要求信号が生成されるのは、例えば、高い計算負荷が生じて走行経路制御処理(S13)が所定計算時間内に完全に終了しなかった場合(タイムアウト)である。よって、この場合(S51;Yes)、ブレーキ要求信号は、第2の要求信号に基づく。一方、第1の要求信号は、最適値に更新されていないか、信号自体が生成されていないおそれがあるので(Null値)、エンジン要求信号とステアリング要求信号は、所定値としてもよい。
次に、図15〜図18を参照して、本発明の第2実施形態について説明する。図15は車両制御システムの制御ブロック図、図16は運転支援制御の処理フロー、図17は自動進路逸脱防止処理の処理フロー、図18はシステム制御処理の処理フローである。
第2実施形態では、自動緊急回避制御として、自動衝突防止制御の代わりに、自動進路逸脱防止制御が実行される。なお、第2実施形態では、上記実施形態との相違を主に説明する。
図15に示すように、ECU10は、走行経路制御部10a,進路逸脱防止制御部10e,入力処理部10c,出力制御部10dとして機能する単一又は複数のCPUを備えている。本実施形態では、緊急時の自動進路逸脱防止制御は、通常の走行経路制御とは独立して実行されるように構成されている。
進路逸脱防止制御部10eは、入力情報に基づいて車線逸脱に伴う対向車等との衝突回避のために緊急自動操舵を作動させるように、ステアリング制御システム33に対して第2の要求信号を生成する。
図16の処理フローにおいて、ステップS11−S13は上記実施形態と同様である。ステップS16において、ECU10(進路逸脱防止制御部10e)は、走行経路制御処理(S13)と並行して、自動進路逸脱防止制御処理(S16)を実行する。また、ECU10(出力制御部10d)は、システム制御処理を実行する(S17)。
図17に示すように、自動進路逸脱防止制御処理において、ECU10は、情報取得処理(S11)において取得した各種の情報を用いて障害物情報(先行車や障害物の有無,位置,速度等)を取得する(S61)。
そして、ECU10は、車両1の現在の挙動状態(即ち、車速,加速度,ヨーレート,操舵角,横加速度等)から予測される車両1の所定期間分(例えば、3秒)の予測走行経路を計算し、この予測走行経路が走行車線から逸脱するか否か(予測走行経路が車線端部位置を横切るか否か)を判定する(S62)。
車線逸脱しない場合(S62;No)、ECU10は、処理を終了する。一方、車線逸脱する場合(S62;Yes)、ECU10は、反対車線を走行中の対向車との衝突判定を行う(S63)。この衝突判定処理(S63)では、ステップS61において反対車線において車両1から所定距離以内に対向車が存在するか否かが判定される。
ECU10は、対向車が所定距離以内に存在しない場合、衝突可能性がないと判定し(S63;No)、処理を終了する(緊急操舵不要)。一方、ECU10は、対向車が所定距離以内に存在する場合、衝突可能性があると判定する(S63;Yes)。また、ECU10は、ステップS61において、車線端部位置に縁石やガードレール等の障害物が検知されていた場合にも、衝突可能性があると判定する(S63;Yes)。
ECU10は、衝突可能性があると判定すると(S63;Yes)、第2の要求信号を生成し(S64)、処理を終了する。第2の要求信号は、車両1を自動操舵して車線逸脱を回避するための、ステアリング制御システム33に対する所定舵角分のステアリング要求信号である。このように、第2の要求信号は、車線逸脱により対向車と衝突可能性がある場合にのみ生成される。
図18に示すように、システム制御処理(S17)において、ECU10は、外部への要求信号出力の際に、第2の要求信号(ステアリング要求信号)が自動進路逸脱防止制御処理(S16)により生成されているか否かを判定する(S71)。第2の要求信号が生成されていない場合(S71;No)、緊急時ではないので、ECU10は、走行経路制御処理(S13)により生成された第1の要求信号を外部へ出力し(S73)、処理を終了する。
一方、第2の要求信号が生成されている場合(S71;Yes)、ECU10は、第1の要求信号と第2の要求信号のステアリング要求信号において、目標制御量(目標舵角量)の差分が所定閾値未満であるか否かを判定する(S72)。差分が所定閾値未満である場合(S72;Yes)、ECU10は、第1の要求信号を外部へ出力し(S73)、処理を終了する。
一方、差分が所定閾値以上である場合(S72;No)、ECU10は、第2の要求信号(ステアリング要求信号)を外部(ステアリング制御システム33)へ出力し(S74)、処理を終了する。
なお、ECU10は、エンジン要求信号とブレーキ要求信号については、第2の要求信号の有無にかかわらず、第1の要求信号に含まれるエンジン要求信号とブレーキ要求信号を外部(エンジン制御システム31,ブレーキ制御システム32)へ出力する。
なお、例えば、先行車追従モードにおいて、自動速度/ステアリング制御が実行されている場合、走行経路制御処理(S13)が適切に実行されていれば、車線逸脱は生じない。しかしながら、この場合でも、自動進路逸脱防止制御処理(S16)によって第2の要求信号が生成され得る。したがって、本実施形態では、第1の要求信号と第2の要求信号のステアリング要求信号の目標舵角量に大きな差がない場合は、第1の要求信号に応じて、車両制御が実行される。
しかしながら、例えば、高い計算負荷が生じて走行経路制御処理(S13)が所定計算時間内に完全に終了しなかった場合(タイムアウト)にも第2の要求信号が生成され得る。この場合において(S71;Yes)、第1の要求信号と第2の要求信号のステアリング要求信号の目標舵角量に大きな差があると(S72;No)、ステアリング要求信号は、第2の要求信号が採用される。一方、第1の要求信号は、最適値に更新されていないか、信号自体が生成されていないおそれがあるので(Null値)、エンジン要求信号とブレーキ要求信号は、所定値としてもよい。
なお、上記実施形態及び上記第2実施形態は、ECU10が走行経路制御処理と並行して、それぞれ自動衝突防止制御処理,自動進路逸脱防止制御処理を自動緊急回避制御処理として実行している。自動衝突防止制御処理,自動進路逸脱防止制御処理は、それぞれ緊急時にブレーキ制御システム32,ステアリング制御システム33を作動させて障害物を回避する制御処理である。しかしながら、自動緊急回避制御処理は、他の制御処理であってもよく、例えば、緊急時に、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33の1つ又は複数を作動させる制御処理であってよい。
次に、本実施形態の車両制御装置の作用について説明する。
本実施形態は、車両制御装置(ECU)10であって、車両1の目標走行経路Rを繰り返し更新する走行経路制御部10aと、障害物との衝突回避のための自動衝突防止制御処理(S14;S41−S44)を実行する自動衝突防止制御部10bと、を備える。走行経路制御部10aは、障害物(例えば、車両3)が検出された場合に、この障害物を回避するように目標走行経路Rを補正する走行経路補正処理(S13b;S31−S35)を実行する。走行経路制御部10aは、走行経路補正処理において、目標走行経路Rを補正して障害物を回避する複数の補正走行経路を算出し、目標走行経路Rに対して複数の補正走行経路を、所定の評価関数Jによって評価し、その評価に応じて1つの補正走行経路を選択する、ように構成されている。走行経路制御部10aは、選択した補正走行経路を車両1が走行するように、車両1のブレーキ制御システム32に対する第1の要求信号を生成する。一方、自動衝突防止制御部10bは、走行経路制御部10aとは独立して、自動衝突防止制御処理を実行して、車両1のブレーキ制御システム32に対する第2の要求信号を生成する。ECU10は、走行経路制御部10a及び自動衝突防止制御部10bからそれぞれ第1の要求信号及び第2の要求信号を受け取る出力制御部10dを更に備える。出力制御部10dは、第1の要求信号又は第2の要求信号を車両1のブレーキ制御システム32へ出力するように構成されている。
このように本実施形態では、障害物が検出された場合に、走行経路制御部10aが、補正走行経路を算出し、これに基づいて、ブレーキ制御システム32を制御するための第1の要求信号を生成する。しかしながら、目標走行経路の計算処理に加え、障害物回避のために評価関数Jを用いて最適な補正走行経路を算出する計算処理は、走行状況によっては計算負荷が高くなり、繰り返し計算時間(更新時間)内に最適な補正走行経路を算出できないおそれがある(タイムアウト)。この場合、障害物をよりよく回避できない場合が生じ得る。
このため、本実施形態では、ECU10は、走行経路制御部10aとは別に、障害物との衝突を回避するための自動衝突防止制御部10bを備えている。走行経路制御部10aは、走行経路計算及び補正経路計算のような負荷の高い計算処理を実行する。しかしながら、自動衝突防止制御部10bは、負荷の低い計算処理(即ち、障害物との衝突回避のための自動ブレーキの計算処理)を実行すればよい。したがって、自動衝突防止制御部10bは、少なくとも更新時間内には確実に計算処理を完了することができる。
よって、本実施形態では、走行経路制御部10aによって最適な補正走行経路が算出できない場合であっても、自動衝突防止制御部10bによって、確実に障害物を回避することが可能である。これにより、本実施形態では、車両1の走行安全性を向上させることができる。
また、本実施形態では、出力制御部10dは、第1の要求信号よりも、第2の要求信号を優先して出力するように構成されている。これにより本実施形態では、出力制御部10dは、両方の要求信号(第1の要求信号,第2の要求信号)を受け取ったときに、障害物回避のより高い信頼性を有する第2の要求信号により、ブレーキ制御システム32を作動させることができる。
また、本実施形態では、走行経路補正処理と自動衝突防止制御処理は、単一のCPUによって所定の繰り返し計算時間内に実行される。このように本実施形態では、単一のCPUによって走行経路補正処理と自動衝突防止制御処理の両方の処理が実行されるが、確実に障害物との衝突を回避することができる。
1 車両
3 車両
5 道路
5a,5c 直線区間
5b カーブ区間
L,5R 車線
L,6R 車線両端部
7 走行路
40 速度分布領域
a,b,c,d 等相対速度線
lim 許容上限値
100 車両制御システム
D 幅寸法
0 安全距離
R 目標走行経路
R1 第1走行経路
R2 第2走行経路
R3 第3走行経路
Rc1,Rc2,Rc3 補正走行経路
X クリアランス

Claims (3)

  1. 車両制御装置であって、
    車両の目標走行経路を繰り返し更新する走行経路制御部と、
    障害物との衝突回避のための自動衝突防止制御処理を実行する自動衝突防止制御部と、を備え、
    前記走行経路制御部は、障害物が検出された場合に、この障害物を回避するように前記目標走行経路を補正する走行経路補正処理を実行し、
    前記走行経路制御部は、前記走行経路補正処理において、
    少なくとも前記障害物から前記車両に向けて、前記障害物に対する前記車両の相対速度の許容上限値の分布を規定する速度分布領域を設定し、この速度分布領域における許容上限値は前記障害物から距離が離れるほど大きくなるように設定され、
    前記速度分布領域内において前記障害物に対する前記車両の相対速度が前記許容上限値を超えないように、前記目標走行経路を補正して前記速度分布領域内を前記車両が走行するための複数の補正走行経路を算出し、
    これらの目標走行経路に対して補正された複数の前記補正走行経路を、所定の評価関数によって評価し、その評価に応じて1つの補正走行経路を選択する、ように構成されており、
    前記走行経路制御部は、選択した補正走行経路を前記車両が走行するように、前記車両のブレーキ制御システムに対する第1の要求信号を生成し、
    前記自動衝突防止制御部は、前記走行経路制御部とは独立して、前記自動衝突防止制御処理を実行して、前記車両のブレーキ制御システムに対する第2の要求信号を生成し、
    前記走行経路制御部及び前記自動衝突防止制御部からそれぞれ第1の要求信号及び第2の要求信号を受け取る出力制御部を更に備え、
    前記出力制御部は、前記第1の要求信号又は前記第2の要求信号を前記車両のブレーキ制御システムへ出力するように構成されている、車両制御装置。
  2. 前記出力制御部は、前記第1の要求信号よりも、前記第2の要求信号を優先して出力するように構成されている、請求項1に記載の車両制御装置。
  3. 前記走行経路補正処理と前記自動衝突防止制御処理は、単一のCPUによって所定の繰り返し計算時間内に実行される、請求項1又は2に記載の車両制御装置。
JP2017165245A 2017-08-30 2017-08-30 車両制御装置 Expired - Fee Related JP6525401B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017165245A JP6525401B2 (ja) 2017-08-30 2017-08-30 車両制御装置
US16/641,999 US20200353918A1 (en) 2017-08-30 2018-08-23 Vehicle control device
CN201880055105.3A CN111132882A (zh) 2017-08-30 2018-08-23 车辆控制装置
EP18850156.3A EP3663152A4 (en) 2017-08-30 2018-08-23 VEHICLE CONTROL DEVICE
PCT/JP2018/031102 WO2019044644A1 (ja) 2017-08-30 2018-08-23 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165245A JP6525401B2 (ja) 2017-08-30 2017-08-30 車両制御装置

Publications (2)

Publication Number Publication Date
JP2019043193A JP2019043193A (ja) 2019-03-22
JP6525401B2 true JP6525401B2 (ja) 2019-06-05

Family

ID=65526395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165245A Expired - Fee Related JP6525401B2 (ja) 2017-08-30 2017-08-30 車両制御装置

Country Status (5)

Country Link
US (1) US20200353918A1 (ja)
EP (1) EP3663152A4 (ja)
JP (1) JP6525401B2 (ja)
CN (1) CN111132882A (ja)
WO (1) WO2019044644A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107125B2 (ja) * 2018-09-19 2022-07-27 トヨタ自動車株式会社 車両制御装置
WO2020184423A1 (en) 2019-03-08 2020-09-17 Ricoh Company, Ltd. Sound wave generator, broadcasting system, method for generating sound wave, and program
JP2021009653A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7387224B2 (ja) * 2019-07-31 2023-11-28 ダイハツ工業株式会社 追従走行制御装置
CN111402614A (zh) * 2020-03-27 2020-07-10 北京经纬恒润科技有限公司 一种车辆行驶决策调整方法、装置及车载终端
KR20220026656A (ko) * 2020-08-25 2022-03-07 현대모비스 주식회사 차량의 주행 제어 시스템 및 방법
US11738749B2 (en) * 2020-11-09 2023-08-29 GM Global Technology Operations LLC Methods, systems, and apparatuses for scenario-based path and intervention adaptation for lane-keeping assist systems
JP7380541B2 (ja) * 2020-12-22 2023-11-15 トヨタ自動車株式会社 車両制御システム
JP7435513B2 (ja) 2021-03-15 2024-02-21 トヨタ自動車株式会社 車両制御装置及び車両制御方法
US11891061B2 (en) 2021-06-17 2024-02-06 Ford Global Technologies, Llc Target vehicle detection
US11938929B2 (en) 2021-12-15 2024-03-26 Ford Global Technologies, Llc Obstacle avoidance for vehicle with trailer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50213504D1 (de) * 2001-07-11 2009-06-10 Bosch Gmbh Robert Verfahren und vorrichtung zur prädiktion von beweg
JP2009061878A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 走行制御装置
JP5206404B2 (ja) 2008-12-26 2013-06-12 トヨタ自動車株式会社 車両制御装置および車両制御方法
JP5338398B2 (ja) * 2009-03-12 2013-11-13 トヨタ自動車株式会社 走行支援装置
JP5472477B2 (ja) * 2010-10-05 2014-04-16 トヨタ自動車株式会社 衝突判定装置
CN103597527B (zh) * 2011-06-13 2016-03-16 丰田自动车株式会社 驾驶辅助装置和驾驶辅助方法
JP6308032B2 (ja) * 2014-06-04 2018-04-11 株式会社デンソー 運転操作を生成するシステムおよび方法
JP6323246B2 (ja) * 2014-08-11 2018-05-16 日産自動車株式会社 車両の走行制御装置及び方法
JP6296162B2 (ja) * 2014-08-11 2018-03-20 日産自動車株式会社 車両の走行制御装置及び方法
JP2016192010A (ja) * 2015-03-31 2016-11-10 株式会社日立製作所 電子制御装置
JP6532786B2 (ja) * 2015-08-07 2019-06-19 株式会社日立製作所 車両走行制御装置及び速度制御方法
JP6308186B2 (ja) * 2015-08-28 2018-04-11 トヨタ自動車株式会社 衝突回避支援装置
KR101714273B1 (ko) * 2015-12-11 2017-03-08 현대자동차주식회사 자율 주행 시스템의 경로 제어 방법 및 그 장치
DE102015016531A1 (de) * 2015-12-18 2017-06-22 Adam Opel Ag Fahrerassistenzsystem und Verfahren zur Kollisionsvermeidung
JP6354746B2 (ja) * 2015-12-24 2018-07-11 マツダ株式会社 運転支援装置

Also Published As

Publication number Publication date
CN111132882A (zh) 2020-05-08
WO2019044644A1 (ja) 2019-03-07
US20200353918A1 (en) 2020-11-12
EP3663152A4 (en) 2020-08-05
JP2019043193A (ja) 2019-03-22
EP3663152A1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6525402B2 (ja) 車両制御装置
JP6525401B2 (ja) 車両制御装置
JP6573224B2 (ja) 車両制御装置
JP6573223B2 (ja) 車両制御装置
JP6573222B2 (ja) 車両制御装置
JP6525413B1 (ja) 車両制御装置
JP6647681B2 (ja) 車両制御装置
JP6572950B2 (ja) 車両制御装置
JP6376523B2 (ja) 車両制御装置
WO2019044641A1 (ja) 車両制御装置
JP2018203108A (ja) 車両制御装置
JP6572948B2 (ja) 車両制御装置
JP6376522B2 (ja) 車両制御装置
JP6525415B1 (ja) 車両制御装置
JP6572949B2 (ja) 車両制御装置
JP2021160660A (ja) 車両制御装置
JP6376520B2 (ja) 車両制御装置
JP6525414B1 (ja) 車両制御装置
JP6525416B1 (ja) 車両制御装置
JP6525417B1 (ja) 車両制御装置
JP2018086947A (ja) 車両制御装置
JP2021126979A (ja) 車両制御装置

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6525401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190428

LAPS Cancellation because of no payment of annual fees