WO2016158111A1 - Semiconductor light emitting element and method for manufacturing same - Google Patents

Semiconductor light emitting element and method for manufacturing same Download PDF

Info

Publication number
WO2016158111A1
WO2016158111A1 PCT/JP2016/055617 JP2016055617W WO2016158111A1 WO 2016158111 A1 WO2016158111 A1 WO 2016158111A1 JP 2016055617 W JP2016055617 W JP 2016055617W WO 2016158111 A1 WO2016158111 A1 WO 2016158111A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
semiconductor
region
electrode
Prior art date
Application number
PCT/JP2016/055617
Other languages
French (fr)
Japanese (ja)
Inventor
研 片岡
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015074128A external-priority patent/JP2016195171A/en
Priority claimed from JP2015073106A external-priority patent/JP2016192529A/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016158111A1 publication Critical patent/WO2016158111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a semiconductor light emitting device and a method of manufacturing the same.
  • the inventors of the present invention have found a unique problem that the yield is deteriorated when manufacturing the above-described via structure type semiconductor light emitting device, and the present invention has been achieved.
  • the semiconductor light emitting device is A substrate, A first semiconductor layer formed of an n-type or p-type nitride semiconductor formed in the upper layer of the substrate; An active layer formed of a nitride semiconductor, formed on the upper layer of the first semiconductor layer; A second semiconductor layer formed of a nitride semiconductor of a conductivity type different from the first semiconductor layer, formed in the upper layer of the active layer; And a first electrode formed in contact with the first semiconductor layer, At least one of the active layer and the first semiconductor layer includes an uneven surface in a first region in a direction parallel to the surface of the substrate, and a second region different from the first region is a flat surface.
  • the first electrode is formed in the second region so as to be in contact with the first semiconductor layer and to have insulation with respect to the active layer and the second semiconductor layer.
  • the active layer and the second semiconductor layer are not formed on the upper layer of the first semiconductor layer located in the region in contact with the first electrode.
  • the active layer is configured such that the surface located on the side of the first semiconductor layer in the first region includes an uneven surface, while the surface of the first semiconductor layer in the second region is The surface located in the side is comprised by the flat surface.
  • the first electrode is formed to be in contact with the first semiconductor layer in a region where the active layer and the second semiconductor layer do not exist.
  • the surface located on the side of the first semiconductor layer of the active layer is not included in the first region including the uneven surface, but the surface located on the side of the first semiconductor layer of the active layer is It is provided in the 2nd area
  • the second semiconductor layer and the active layer located in the region are formed, for example, by performing etching or the like.
  • the first electrode is formed in the first region in which the active layer is formed including the uneven surface. Even if the first semiconductor layer is exposed at a portion where the surface of the active layer on the first semiconductor layer side is recessed toward the first semiconductor layer as the etching progresses, on the first semiconductor layer side in the vicinity thereof At a location where the surface of the active layer is convex toward the first semiconductor layer, it is assumed that the active layer still exists and the first semiconductor layer is not exposed. That is, in order to form the first electrode, etching is performed until the first semiconductor layer is completely exposed at the portion where the surface of the active layer on the first semiconductor layer side is convex toward the first semiconductor layer. It is necessary to advance.
  • the first electrode is formed in the second region in which the active layer is formed to be flat, there is no need to pay attention to the above, and only the film thickness equivalent of the active layer is required.
  • the first semiconductor layer can be exposed. That is, the amount of etching can be reduced as compared with the case where the first electrode is formed in the first region.
  • An increase in the amount of etching means an increase in the amount of energy applied at the time of etching. From the viewpoint of suppressing the adverse effect on the electrical characteristics of the light emitting element as much as possible, it is preferable to reduce the amount of energy applied at the time of etching. Therefore, according to the above configuration, even in the case where the concavo-convex surface is formed in the semiconductor layer, it can be realized by inserting the first electrode into the hole portion formed by the etching to the flat surface. A semiconductor light emitting device of via type structure with high yield can be realized because the electrical characteristics between the devices can be made uniform.
  • the semiconductor light emitting device can be a flip chip structure as well as a via structure.
  • the second region it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
  • the first electrode may be inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and may be formed to be in contact with the first semiconductor layer. I do not care. As a result, a semiconductor light emitting device of via type structure with high yield is realized.
  • the surface on the side of the first semiconductor layer and the surface on the side of the second semiconductor layer include concavo-convex surfaces in the first region, while in the second region Both the surface on the semiconductor layer side and the surface on the second semiconductor layer side may be flat.
  • the upper surface of the first semiconductor layer can be exposed to the active layer by etching the film thickness of the active layer. Thereby, the controllability of the etching process becomes easy, and the yield of the manufactured element is improved.
  • the uneven surface of the active layer in the first region is composed of a nonpolar surface of a nitride semiconductor
  • the flat surface of the active layer in the second region is composed of a polar surface of a nitride semiconductor
  • c-plane growth means epitaxial growth along a direction perpendicular to the c-plane, that is, along the c-axis.
  • Ga atoms and N atoms are arranged asymmetrically.
  • the Ga atomic surface containing only Ga atoms is slightly charged negatively, while the N atomic surface containing only N atoms is slightly negatively charged, as a result Spontaneous polarization occurs in the c-axis direction.
  • the active layer generally has a quantum well structure.
  • the above heteroepitaxial growth is required to form a quantum well structure. Therefore, when a semiconductor layer including an active layer is grown with the c-plane as a growth plane, an internal electric field due to spontaneous polarization or piezoelectric polarization is generated in the c-axis direction in the quantum well. As a result, the recombination probability of electrons and holes is lowered, and the light emission efficiency is lowered.
  • the active layer is formed of nonpolar planes in the first region, so the internal electric field is reduced compared to the case where all active layers are formed of polar planes. And the recombination probability is improved.
  • the active layer is formed of a polar surface, so that a flat surface is formed in the region.
  • the first electrode is formed in the second region formed by the flat surface, as described above, the dimensions of the adjacent first electrodes are made uniform, and between the elements in the case of manufacturing a plurality of elements.
  • the dimensions of the first electrode can be made uniform, and thus the electrical characteristics between the elements can be made uniform.
  • the surface located on the opposite side to the active layer in the first region includes a rough surface, and the surface located on the opposite side to the active layer in the second region May be configured as a flat surface.
  • the etching when forming the first electrode, if the etching progresses and the second semiconductor layer is first exposed, the etching should proceed by the film thickness of the second semiconductor layer and the film thickness of the active layer. , And the first semiconductor layer can be exposed. Thereby, the controllability of the etching process becomes easy, and the yield of the manufactured element is improved.
  • the second semiconductor layer may have a flat surface on the side opposite to the active layer in the first area and the second area.
  • the second semiconductor layer may be configured such that the surface opposite to the active layer in the first region and the second region includes an uneven surface.
  • This uneven surface can be, for example, a surface intended to improve the light extraction efficiency.
  • the surface of the second semiconductor layer opposite to the active layer is configured to include the uneven surface, as described above, the surface of the active layer on the first semiconductor layer side is Since the flat surface is formed, the etching amount is reduced as compared with the case where the first electrode is formed in the first region in which the surface on the first semiconductor layer side of the active layer is formed by the uneven surface.
  • the effects that can be done are still played. That is, according to this configuration, an element with an improved yield can be realized while improving the light extraction efficiency.
  • the semiconductor light emitting device is A second electrode in contact with the second semiconductor layer,
  • the first electrode may be in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode.
  • the present invention is also a method of manufacturing a semiconductor light emitting device, Preparing a substrate (a); In the upper layer of the substrate, in the first region, at least a nonpolar surface is a crystal growth surface, and in a second region different from the first region, a polar surface is a crystal growth surface, n-type or p-type nitridation Growing a first semiconductor layer made of a semiconductor semiconductor (b); (C) growing an active layer made of a nitride semiconductor on the first semiconductor layer; Growing a second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer; Etching the second semiconductor layer and the active layer in at least a part of the second region to expose the first semiconductor layer on the bottom surface; And (f) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. .
  • the device according to the first configuration is manufactured.
  • the first semiconductor layer is grown with the nonpolar plane as the crystal growth plane at least in the first region, and the first semiconductor layer is grown with the polar plane as the crystal growth plane in the second region.
  • step (c) After step (b), the surface located on the side of the first semiconductor layer in the first region is configured to include an uneven surface, while the surface different from the first region is It is possible to grow an active layer in which the surface located on the side of the first semiconductor layer in the two regions is a flat surface. Therefore, as described above, at the time of etching in step (e), the amount of etching required to expose the first semiconductor layer can be reduced, and a device with high yield can be realized.
  • an active layer having a nonpolar plane as a crystal growth plane can be grown at least in the first region. Therefore, in the semiconductor light emitting device manufactured by the present method, the internal electric field is relaxed and the light emission efficiency is improved as compared with the semiconductor light emitting device having only the active layer whose crystal growth surface is the polar surface.
  • a third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the third semiconductor layer is stretched in a predetermined direction in the first region.
  • a step (b1) of forming a groove (hereinafter referred to as a "first groove") is performed.
  • the first groove has a depth within a range in which the surface of the substrate is not exposed.
  • the step (b2) of growing the third semiconductor layer again is performed.
  • the uneven surface is formed by the presence of the first groove in the first region, and the third semiconductor layer is grown on the uneven surface to form the inside of the first region.
  • the third semiconductor layer is formed with the growth surface at least a nonpolar surface.
  • a third semiconductor layer having a polar plane as a growth surface is formed.
  • the step (b3) of growing the first semiconductor layer is performed.
  • the first semiconductor layer is formed on the growth surface of the third semiconductor layer so that at least the nonpolar surface is formed as the growth surface in the first region, and the polar surface is formed as the growth surface in the second region. Be done.
  • the step (b) can be realized by the steps (b1) to (b3).
  • the step (b) may be realized by performing the step (b3) of growing the first semiconductor layer after the step (b1) is performed. That is, before the step (b3) is performed, the uneven surface is formed by the presence of the first groove in the first region, and the first semiconductor layer is grown on the uneven surface. In the region, a first semiconductor layer having at least a nonpolar surface as a growth surface is formed. On the other hand, in the second region, a first semiconductor layer having a polar surface as a growth surface is grown.
  • the third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the step (b4) of growing the first semiconductor layer is performed. Thereafter, in the first region, a step (b5) of forming a groove extending in a predetermined direction is performed on the first semiconductor layer. Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer is performed again. Before the step (b6) is performed, the uneven surface is formed by the presence of the first groove in the first region, and the first semiconductor layer is grown on the uneven surface to form the inside of the first region. In the second semiconductor layer, the first semiconductor layer having the nonpolar plane as the growth plane is formed, and in the second region, the first semiconductor layer having the polar plane as the growth plane is formed.
  • the step (b) can be realized by the steps (b4) to (b6).
  • the step (e) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed.
  • the step (f) may be a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. .
  • the first electrode is filled in a groove penetrating the second semiconductor layer and the active layer (hereinafter referred to as “second groove” as appropriate), so a so-called semiconductor light emitting element of via structure type is obtained. To be realized. Thereby, the uniformity of the current distribution density is improved, and a semiconductor light emitting device suitable for high current driving is realized.
  • the step (e) may be a step of etching a plane parallel to the c-plane of the layer made of nitride semiconductor.
  • a plane parallel to c-plane refers to a c-plane and a plane substantially corresponding to c-plane, and a plane substantially corresponding to c-plane is inclined to c-plane The angle is in the range of 5 ° or less.
  • a step (g) may be formed to form a concavo-convex shape on the upper surface of the second semiconductor layer.
  • an element with an improved yield can be realized while improving the light extraction efficiency.
  • a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in the first region may be a step of forming the first electrode in a state of being electrically insulated from the second electrode.
  • the etching amount can be minimized when forming the first electrode, and a semiconductor light emitting device with high yield can be realized.
  • the surface opposite to the active layer in the first region is configured to include an uneven surface, while the surface opposite to the active layer is in the second region.
  • the surface is composed of a flat surface.
  • the second semiconductor layer since the second semiconductor layer has the concavities and convexities formed on the surface opposite to the active layer, the amount of light capable of extracting the light emitted from the active layer to the outside of the device Increases to improve the light extraction efficiency.
  • the first electrode is formed to be in contact with the first semiconductor layer in a region where the active layer and the second semiconductor layer are not present.
  • the surface of the second semiconductor layer opposite to the active layer is not in the first region including the uneven surface, but opposite to the active layer of the second semiconductor layer.
  • the surface located on the side is provided in a second area which is constituted by a flat surface.
  • the second semiconductor layer and the active layer located in the region are formed, for example, by etching or the like. Since the upper surface of the second semiconductor layer is a flat surface, energy given at the time of etching can be uniformly given to the target portion. For this reason, when forming a plurality of first electrodes in the same element, etching regions for forming the first electrodes can be formed with the same dimensions. Therefore, the electrical characteristics between the manufactured devices can be made uniform, and a semiconductor light emitting device with high yield can be realized.
  • the semiconductor light emitting device can be a flip chip structure as well as a via structure.
  • the second region it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
  • the first electrode may be inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and may be formed to be in contact with the first semiconductor layer. I do not care. As a result, a semiconductor light emitting device of via type structure with high yield is realized.
  • the active layer may be made of a nitride semiconductor having a nonpolar plane as a crystal plane.
  • c-plane growth means epitaxial growth along a direction perpendicular to the c-plane, that is, along the c-axis.
  • Ga atoms and N atoms are arranged asymmetrically.
  • the Ga atomic surface containing only Ga atoms is slightly charged negatively, while the N atomic surface containing only N atoms is slightly negatively charged, as a result Spontaneous polarization occurs in the c-axis direction.
  • the active layer generally has a quantum well structure.
  • the above heteroepitaxial growth is required to form a quantum well structure. Therefore, when a semiconductor layer including an active layer is grown with the c-plane as a growth plane, an internal electric field due to spontaneous polarization or piezoelectric polarization is generated in the c-axis direction in the quantum well. As a result, the recombination probability of electrons and holes is lowered, and the light emission efficiency is lowered.
  • the active layer is formed of a nonpolar surface, the internal electric field is reduced as compared with the case where all the active layers are formed of polar surfaces, The probability is improved.
  • both the surface located on the side of the first semiconductor layer and the surface located on the side of the second semiconductor layer across the first region and the second region are uneven. It does not matter as what is comprised including.
  • the active layer is flat over both the first region and the second region, and a surface located on the side of the first semiconductor layer and a surface located on the side of the second semiconductor layer It does not matter as what is comprised by the surface.
  • the semiconductor light emitting device is A second electrode in contact with the second semiconductor layer,
  • the first electrode may be in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode.
  • the present invention is Preparing a substrate (a); Growing a first semiconductor layer made of an n-type or p-type nitride semiconductor on the upper layer of the substrate (b) (C) growing an active layer made of a nitride semiconductor on the first semiconductor layer; Growing a second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer; Forming a concavo-convex shape on at least a part of the upper surface of the second semiconductor layer located in the first region among the upper surfaces of the second semiconductor layer; Etching the second semiconductor layer and the active layer in at least a part of the second region different from the first region to expose the first semiconductor layer on the bottom surface; And (g) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. .
  • the device according to the second configuration is manufactured.
  • a semiconductor light emitting device with improved light extraction efficiency is manufactured while achieving uniform dimensions among the devices.
  • the step (b) may be a step of growing the first semiconductor layer with a nonpolar plane as a crystal growth plane.
  • Step (b1) of forming a single groove portion a third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then a groove extending in a predetermined direction with respect to the third semiconductor layer (hereinafter Step (b1) of forming a single groove portion) is performed.
  • the first groove has a depth within a range in which the surface of the substrate is not exposed.
  • the step (b2) of growing the third semiconductor layer again is performed.
  • the uneven surface is formed by the presence of the first groove, and the third semiconductor layer is grown on the uneven surface to form a third semiconductor layer with at least a nonpolar surface as a growth surface.
  • a semiconductor layer is formed.
  • the step (b3) of growing the first semiconductor layer is performed.
  • the first semiconductor layer is formed on at least the nonpolar surface as the growth surface because the first semiconductor layer is to be continuously grown on the growth surface of the third semiconductor layer.
  • the step (b) can be realized by the steps (b1) to (b3).
  • the step (b) may be realized by performing the step (b3) of growing the first semiconductor layer after the step (b1) is performed. That is, before the step (b3) is performed, the uneven surface is formed by the presence of the first groove portion, and the first semiconductor layer is grown on the uneven surface to form at least the nonpolar surface as the growth surface. The first semiconductor layer is formed.
  • the third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the step (b4) of growing the first semiconductor layer is performed. Thereafter, a step (b5) of forming a groove extending in a predetermined direction is performed on the first semiconductor layer. Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer is performed again. Before execution of the step (b6), the uneven surface is formed by the presence of the first groove portion, and the first semiconductor layer is grown on the uneven surface, so that at least the nonpolar surface is the growth surface. One semiconductor layer is formed.
  • the step (b) can be realized by the steps (b4) to (b6).
  • the step (f) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed.
  • the step (g) may be a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. .
  • the first electrode is filled in a groove penetrating the second semiconductor layer and the active layer (hereinafter referred to as “second groove” as appropriate), so a so-called semiconductor light emitting element of via structure type is obtained. To be realized. Thereby, the uniformity of the current distribution density is improved, and a semiconductor light emitting device suitable for high current driving is realized.
  • the step (b) may be a step of growing the first semiconductor layer using a nonpolar surface as a crystal growth surface over the first region and the second region.
  • a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in the first region may be a step of forming the first electrode in a state of being electrically insulated from the second electrode.
  • the etching amount can be minimized when forming the first electrode, and a semiconductor light emitting device with high yield can be realized.
  • a semiconductor light emitting device with high yield can be realized.
  • FIG. 17 is a diagram for describing the difference between the case where the etching is performed in the second region 104 and the case where the etching is performed in the first region 103 in step S9. It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. It is drawing which shows typically another structure of the semiconductor light-emitting device of another embodiment of a 1st structure. It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure.
  • FIG. 1 is a drawing schematically showing the structure of a semiconductor light emitting element, and corresponds to an element called a so-called “via structure type”.
  • (a) is a schematic plan view as viewed from the side opposite to the light extraction surface
  • (b) is a schematic cross section when cut along line AA in (a).
  • FIG. 10 is a diagram, and corresponds to a schematic cross-sectional view when cut by a plane formed in the [0001] direction and the [1-100] direction here.
  • the symbol “ ⁇ ” attached immediately before the numeral in parentheses indicating the Miller index indicates the inversion of the index, and is the same as “bar” in the drawings.
  • the ⁇ 1-101 ⁇ plane means a (1-101) plane and a plane that is crystallographically equivalent to the (1-101) plane, that is, a (10-11) plane, (01 It is a concept including a -11) plane, a (0-111) plane, a (-1101) plane, and a (-1011) plane.
  • the ⁇ 11-20> direction is the [11-20] direction and a direction crystallographically equivalent to the [11-20] direction, that is, the [1-210] direction, 2110]
  • a concept including a [-1 120] direction, a [-12-10] direction, and a [2-1-10] direction.
  • AlGaN simply means that the semiconductor is a nitride semiconductor containing Al and Ga, and the description of the composition ratio of Al and Ga is simply omitted. It is not intended to limit the case where the composition ratio of Al and Ga is 1: 1. The same applies to the notation of InGaN or AlInGaN.
  • the semiconductor light emitting device 101 includes a substrate 111, a first semiconductor layer 115, an active layer 117, a second semiconductor layer 119, and a first electrode 141.
  • the first semiconductor layer 115 is formed in the upper layer of the substrate 111
  • the active layer 117 is formed in the upper layer of the first semiconductor layer 115
  • the second semiconductor layer 119 is formed in the upper layer of the active layer 117.
  • the semiconductor light emitting device 101 further includes a first electrode 141 and a second electrode 121.
  • the semiconductor light emitting device 101 is divided into two regions of a first region 103 and a second region 104.
  • the second region 104 corresponds to the region where the first electrode 141 is formed and the region in the vicinity thereof, and the first region 103 is farther from the position where the first electrode 141 is disposed in the semiconductor light emitting device 101 than the second region 104. Corresponds to the area.
  • the active layer 117 is formed to include an uneven surface in the first region 103, while a flat surface is formed in the second region 104.
  • the semiconductor light emitting element 101 has a hole 107 in the second region 104, and the first electrode 141 is formed so as to be inserted into the hole 107.
  • the substrate 111 is made of, for example, a sapphire substrate.
  • the element substrate 112 is configured by providing a wiring pattern on a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate such as AlN. Note that, as shown in FIG. 1B, in the element substrate 112, insulation is provided between the region electrically connected to the first electrode 141 and the region electrically connected to the second electrode 121. Is secured. Although various methods can be adopted as a method for securing this insulation property, an example can be realized by patterning.
  • the bonding layer 143 is made of, for example, Au-Sn, Au-In, Au-Cu-Sn, Cu-Sn, Pd-Sn, Sn or the like.
  • the bonding layer 143 functions as a layer for securing the adhesion between the substrate 111 and the element substrate 112 when bonding the substrate 111 and the element substrate 112.
  • the protective layer 142 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni or the like. At the time of bonding via the bonding layer 143, the material constituting the bonding layer 143 diffuses to the second electrode 121 side, and the function of preventing a decrease in light extraction efficiency due to a decrease in reflectance at the second electrode 121 is performed. Play.
  • a protective layer 142 may be provided on the upper surface of the first electrode 141 for the purpose of preventing the material constituting the bonding layer 143 from diffusing to the first electrode 141 side. Absent.
  • the first electrode 141 is made of, for example, Cr-Au. As shown to Fig.1 (a), the semiconductor light-emitting device 101 of this embodiment is the structure which has the some 1st electrode 141 arrange
  • the first electrode 141 is formed by being inserted into the hole 107 which penetrates the second semiconductor layer 119 and the active layer 117 in the second region 104 and reaches the first semiconductor layer 115.
  • the first semiconductor layer 115 is an n-type semiconductor layer
  • the second semiconductor layer 119 is a p-type semiconductor layer. At this time, the first electrode 141 corresponds to the n-side electrode.
  • the second electrode 121 is formed on the surface of the second semiconductor layer 119, and can be made of, for example, a metal material containing an Ag-based metal (an alloy of Ni and Ag), Al, Rh, or the like. These materials are conductive materials capable of reflecting the light emitted from the active layer 117. With this configuration, light emitted from the active layer 117 toward the element substrate 112 can be reflected by the second electrode 121 and guided to the extraction surface side (substrate 111 side). , High light extraction efficiency is realized.
  • the second electrode 121 corresponds to a p-side electrode.
  • the insulating layer 154 has an insulating property between the first electrode 141 and the second electrode 121, an insulating property between the first electrode 141 and the second semiconductor layer 119, and the first electrode 141 and the active layer. It is provided for the purpose of securing insulation between it and 117.
  • the insulating layer 154 is provided on a part of the outer surface of the first electrode 141 and a part of the surface of the second electrode 121 on the element substrate 112 side. The formation location and formation mode of the insulating layer 154 can be appropriately changed within the range that can be realized.
  • the insulating layer 154 may be made of SiO 2 , SiN, Zr 2 O 3, Al 2 O 3 or the like.
  • the first semiconductor layer 115 is composed of an n-type AlN layer.
  • AlN general formula Al x2 Ga y2 In 1-x2 -y2 N may be composed of (0 ⁇ x2 ⁇ 1,0 ⁇ y2 ⁇ 1) n -type nitride semiconductor layer defined by.
  • the first semiconductor layer 115 has a growth surface 115a parallel to a nonpolar surface (for example, ⁇ 1-101 ⁇ surface) and a polar surface (for example, Growth surface 115 b parallel to the ⁇ 0001 ⁇ plane).
  • the active layer 117 has a configuration in which Al x 3 Ga 1-x 3 N (0 ⁇ x 3 ⁇ 1) / AlN is stacked in one cycle or multiple cycles.
  • a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN are repeatedly formed in multiple cycles.
  • the configuration of the active layer 117 is appropriately selected according to the light emission wavelength.
  • the growth surface 117a parallel to the nonpolar plane (eg ⁇ 1-101 ⁇ plane) and the polar plane (eg ⁇ 0001 ⁇ plane) are used. It has parallel growth surfaces 117b (see FIG. 2F described later).
  • two types of nitride semiconductor layers AlGaN or AlInGaN having a difference in band gap energy by making the Al composition different may be stacked in one cycle or multiple cycles.
  • the second semiconductor layer 119 includes a p - type cladding layer formed of p-type Al x 4 Ga 1 -x 4 N (0 ⁇ x 4 ⁇ 1) and p + -type GaN formed on the p-type cladding layer. And a p-type contact layer.
  • the second electrode 121 is formed to be in contact with the p-type contact layer.
  • the p-type contact layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 ⁇ x5 ⁇ 1).
  • the semiconductor light emitting device 101 includes the third semiconductor layer 113, and the first semiconductor layer 115 is formed on the third semiconductor layer 113.
  • the first semiconductor layer 115 is a layer formed by epitaxial growth on the upper layer of the third semiconductor layer 113.
  • the third semiconductor layer 113 is formed of an AlN layer.
  • a nitride semiconductor layer defined by the general formula Al x 1 Ga y 1 In 1-x 1-y N (0 ⁇ x 1 ⁇ 1, 0 ⁇ y 1 ⁇ 1) can be used.
  • the emission wavelength from the Al x1 Ga y1 In 1-x1 -y1 N the In composition is preferably 1% or less, Al x1 Ga y1 In 1-x1 -y1 N Al composition, the active layer 117 It is appropriately selected accordingly.
  • the third semiconductor layer 113 has a groove (concave portion) 114 extending along a predetermined direction (here, the [11-20] direction) in the first region 103, while the second semiconductor layer 113
  • the groove portion 114 is not provided in the region 104.
  • the stretching direction of the groove portion 114 is the [11-20] direction
  • the stretching direction is a crystallographically equivalent direction to the [11-20] direction, that is, ⁇ 11-20>. It may be a direction, or may be another direction.
  • the active layer 117 since the active layer 117 has the growth surface 117a (see FIG. 2F described later) parallel to the nonpolar surface, the influence of the internal electric field is suppressed, and the light emitting element with high light emission efficiency Is realized.
  • a plurality of via electrodes are generally formed on the same device.
  • the second semiconductor layer 119 and the active layer 117 have a flat surface in the second region 104 in which the hole 107 in which the first electrode 141 is inserted is formed.
  • the holes 107 are formed by etching, but the etching target surface is formed flat as described above, so that etching energy is uniformly applied to the surfaces of the second semiconductor layer 119 and the active layer 117. Can be given to Therefore, since the hole 107 for inserting the first electrode 141 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting devices 101 can be made uniform, and a high yield can be realized.
  • This corresponds to a schematic cross-sectional view when the element is cut at a location corresponding to the line AA in FIG. 1 (a).
  • 2H (a) to 2M (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 1 (a).
  • Step S1 The substrate 111 is prepared (see FIG. 2A).
  • a sapphire substrate having a (0001) plane can be used as an example.
  • the substrate 111 is cleaned.
  • the growth substrate 111 is disposed in the processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen at a flow rate of, for example, 10 slm is disposed in the processing furnace. It is carried out by raising the temperature in the furnace to, for example, 1150 ° C. while flowing a gas.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • This step S1 corresponds to the step (a).
  • Step S2 As shown in FIG. 2B, the third semiconductor layer 113 made of, for example, AlN is formed on the (0001) plane of the substrate 111.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. to 1600 ° C.
  • nitrogen gas and hydrogen gas are flowed as a carrier gas
  • trimethylaluminum (TMA) and ammonia are treated as source gases Supply into the furnace.
  • trimethylgallium in addition to TMA and ammonia TMG
  • trimethylindium TMI
  • Step S3 As shown in FIG. 2C, in the third semiconductor layer 113, a groove (first groove) 114 along a predetermined, for example, ⁇ 11-20> direction is applied to at least a part of the first region 103. Form. At this time, no groove is formed in the second region 104. As a result, the groove 114 is formed in the first region 103 and the groove 114 is not formed in the second region 104 on the top surface of the third semiconductor layer 113. In addition, it is preferable to control so that the groove part 114 is formed in the bottom of the groove part 114 in the depth in the range which the board
  • the wafer obtained by performing to step S2 is taken out of the processing furnace, and ⁇ 11-20 of the third semiconductor layer 113 is formed by photolithography and reactive ion etching (RIE).
  • RIE reactive ion etching
  • a plurality of grooves parallel to the direction are formed at predetermined intervals.
  • the groove 114 is stretched in the [11-20] direction which is one direction that is crystallographically equivalent to the ⁇ 11-20> direction.
  • the entire upper surface of the second region 104 may be made flat by etching the entire region of the second region 104 to form the groove portion 114a. Absent. Below, only when advancing a process from the state of FIG. 2C, it demonstrates.
  • This step S2-S3 corresponds to the step (b1).
  • Step S4 As shown in FIG. 2E, the first semiconductor layer 115 is formed on the upper surface of the third semiconductor layer 113 in which the groove portion 114 is formed along the ⁇ 11-20> direction.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900.degree. C. or more and 1600.degree.
  • flowing hydrogen gas, TMA, ammonia, tetraethylsilane as an n-type dopant, etc. are supplied into the processing furnace as source gases.
  • the flow rate ratio (V / III ratio) of TMA and ammonia By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPa or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru.
  • the first semiconductor layer 115 made of n-type AlN having a film thickness of 3000 nm was formed.
  • the case of forming the n-type Al x2 Ga y2 In 1-x2 -y2 N (0 ⁇ x2 ⁇ 1,0 ⁇ y2 ⁇ 1) is, TMA, ammonia, a tetra ethyl silane
  • TMG and TMI may be supplied at predetermined flow rates according to the composition.
  • a nonpolar surface By growing a crystal on the upper surface of the third semiconductor layer 113 in which the groove 114 having a depth to which the upper surface of the substrate 111 is not exposed is formed, a nonpolar surface (here, as an example) A first semiconductor layer 115 having a growth surface 115a parallel to the ⁇ 1-101 ⁇ plane is formed.
  • the first semiconductor layer 115 has a growth surface 115 b parallel to the polar surface (here, ⁇ 0001 ⁇ as an example) in the second region 104, the upper surface of which is constituted only by the flat surface. Grow on. In the configuration shown in FIG.
  • the first semiconductor layer 115 in the first region 103, has the growth surface 115b parallel to the polar plane at a part of the portion, but in the first region 103, The first semiconductor layer 115 may have only the growth surface 115 a parallel to the nonpolar plane.
  • Step S4 corresponds to the step (b3).
  • Steps S2-S4 correspond to step (b).
  • Step S5 As shown in FIG. 2F, a first semiconductor layer having a growth surface 115a parallel to the nonpolar plane (here, ⁇ 1-101 ⁇ plane) and a growth plane 115b parallel to the polar plane (here, ⁇ 0001 ⁇ plane) An active layer 117 is grown on top of the surface 115.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. or more and 1600 ° C. or less, and nitrogen gas and hydrogen gas are flowed as a carrier gas, while TMA and ammonia as a source gas are filmed in the processing furnace.
  • a step of supplying a predetermined time according to the thickness and a step of supplying TMA, TMG and ammonia as source gases into the processing furnace for a predetermined time according to the film thickness are repeated a predetermined number of times according to the number of cycles.
  • an active layer 117 made of multi-period Al x 3 Ga 1-x 3 N (0 ⁇ x 3 ⁇ 1) / AlN is formed.
  • TMA, ammonia, TMG and TMI may be supplied as source gases at predetermined flow rates according to the composition.
  • step S 4 Since the first semiconductor layer 115 having the growth surface 115 a parallel to the nonpolar surface and the growth surface 115 b parallel to the polar surface is formed in step S 4, the epitaxial growth is performed in this step S 5 in this state.
  • an active layer 117 having a growth surface 117a parallel to the nonpolar plane and a growth surface 117b parallel to the polar plane is formed.
  • an active layer 117 having a growth surface 117a parallel to the nonpolar plane and in the second region 104 a growth surface 117b parallel to the polar surface is formed in the first region 103.
  • the active layer 117 may have a growth surface 117b parallel to the nonpolar plane in the first region 103.
  • This step S5 corresponds to the step (c).
  • Step S6 As shown in FIG. 2G, the second semiconductor layer 119 is grown on the upper surface of the active layer 117.
  • a bis-cyclopentan for forming a p-type impurity in addition to ammonia, TMA and TMG as source gases with an in-furnace pressure of 100 kPa and an in-furnace temperature of 830 ° C. in the MOCVD apparatus Further grow with dienyl magnesium (Cp 2 Mg).
  • the second semiconductor layer 119 formed of p-type Al x 4 Ga 1 -x 4 N (0 ⁇ x4 ⁇ 1) is formed on the active layer 117.
  • the flow rate of the source gas may be further changed to form the p + -type GaN layer on the upper layer.
  • the second semiconductor layer 119 is configured by the p-type Al x 4 Ga 1 -x 4 N (0 ⁇ x 4 ⁇ 1) and the p + -type GaN layer.
  • the p + -type GaN layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 ⁇ x5 ⁇ 1).
  • the upper surface of the second semiconductor layer 119 is configured by the uneven surface in the first region 103, and is configured by only the flat surface in the second region 104. .
  • This step S6 corresponds to the step (d).
  • Step S7 An activation process is performed on the wafer obtained through steps S1-S6. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  • RTA Rapid Thermal Anneal: rapid heating
  • Step S8 As shown in FIG. 2H, the second electrode 121 is formed on the top surface of the second semiconductor layer 119. Specifically, the second electrode 121 is selectively formed on the region other than the one or more island regions 124 on the upper surface of the second semiconductor layer 119.
  • the wafer having undergone this step S8 has, on the upper surface, a region 124 in which the second semiconductor layer 119 is exposed in an island shape and a region in which the second electrode 121 is exposed.
  • the island region 124 is formed in the second region 104.
  • the specific formation method of the second electrode 121 is, for example, as follows.
  • a resist is applied by patterning to the region of the upper surface of the second semiconductor layer 119 corresponding to the region where the second electrode 121 is not formed.
  • the area to which the resist is applied corresponds to an area where the first electrode 141 is to be formed later and an area close to the first electrode 141 where current tends to be concentrated.
  • Ag with a film thickness of 150 nm and Ni with a film thickness of 30 nm are formed on the entire surface including the upper surface of the resist by using, for example, a sputtering apparatus.
  • Ni having a film thickness of about 1.5 nm may be formed under the Ag layer in order to enhance the adhesion to the second semiconductor layer 119.
  • the second electrode is subjected to a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like.
  • a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like.
  • a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like.
  • Form 121 When annealing is performed in an inert gas atmosphere, the diffusion of Ag to the second semiconductor layer 119 side due to migration can be reduced, so the Schottky effect can be further enhanced than in the case of a dry air atmosphere.
  • This step S8 corresponds to the step (h).
  • Step S9 As shown in FIG. 2I, the surface of the second semiconductor layer 119 located in the second region 104 exposed through the step S8 is etched to expose the upper surface of the first semiconductor layer 115.
  • a resist 151 is applied by patterning to the upper surface of the second electrode 121 formed at the end of step S8. Thereafter, using the resist 151 as a mask, the second semiconductor layer 119 and the active layer 117 are removed by dry etching using an ICP apparatus until a partial upper surface of the first semiconductor layer 115 is exposed. In the step S9, the first semiconductor layer 115 may be partially etched away. The groove part 107 is formed by this step S9. The groove portion 107 corresponds to the “second groove portion”.
  • step S9 etching is performed on the second semiconductor layer 119 and the active layer 117 in the second region 104 formed of a flat surface, so that the first semiconductor can be etched with the same size for adjacent portions as well. Layer 115 can be exposed. This point will be described with reference to FIG.
  • FIG. 3 is a diagram for explaining the difference between the case where the portion to be etched is in the second region 104 and the case in the first region 103 in the present step S9.
  • FIG. 3A corresponds to the drawing when the first semiconductor layer 115 is exposed by etching the second semiconductor layer 119 and the active layer 117 in the first region 103 in step S9.
  • FIG. 3 (b) corresponds to the drawing of FIG. 2I.
  • the second semiconductor layer 119 and the active layer 117 present in the etching target region each have an uneven surface.
  • the active layer 117 is active layer as compared to a portion forming a protrusion toward the second semiconductor layer 119.
  • the contact surface between the semiconductor layer 117 and the first semiconductor layer 115 exists near the substrate 111. This is because, for example, in a portion where the upper surface of the second semiconductor layer 119 constitutes a convex, the active layer 117 is still present even if the etching proceeds until the upper surface of the first semiconductor layer 115 is exposed. Suggests exposure.
  • the film is formed regardless of the pitch or the height of the uneven portion formed in the active layer 117.
  • the first semiconductor layer 115 can be exposed by advancing it by the etching amount d2 assumed in advance depending on the film thickness of each layer (117, 119). Further, in the present embodiment, the amount of etching d2 required to expose the upper surface of the first semiconductor layer 115 can be made smaller than the amount of etching d1 shown in FIG. The amount can be reduced.
  • This step S9 corresponds to step (e).
  • Step S10 Next, after lifting off the resist 151 formed in step S9, as shown in FIG. 2J, a resist 153 is formed on the central portion of the bottom of the groove 107 and the upper surface of the second electrode 121 by patterning. That is, the upper surface of the first semiconductor layer 115 is exposed to the outer periphery of the resist 153 at the bottom of the groove portion 107. Thereafter, the insulating layer 154 is formed on the entire surface.
  • the insulating layer 154 can be used SiO 2, SiN, Zr 2 O 3, AlN, Al 2 O 3 or the like.
  • the resist 153 is lifted off as shown in FIG. 2K.
  • the insulating layer 154 is formed on the inner side surface of the groove portion 107 and the partial upper surface of the second electrode 121.
  • Step S11 A resist 155 is formed on the upper surface of the second electrode 121 by patterning. Thereafter, a conductive material is deposited to form the first electrode 141 so as to fill the groove 107 (see FIG. 2K) (see FIG. 2L).
  • a conductive material is deposited to form the first electrode 141 so as to fill the groove 107 (see FIG. 2K) (see FIG. 2L).
  • annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere. Thereafter, the resist 155 is lifted off (see FIG. 2M).
  • Steps S10 to S11 the first electrode 141 is formed in the groove portion 107 in a state of being electrically insulated from the second electrode 121. Steps S10 to S11 correspond to step (f).
  • the protective layer 142 and the bonding layer 143 are formed on the exposed upper surfaces of the first electrode 141 and the second electrode 121, and the element substrate 112 is bonded via the bonding layer 143 (see FIG. 1).
  • a specific example is as follows.
  • the protective layer 142 is formed by forming Ti and Pt three cycles with an electron beam vapor deposition apparatus (EB apparatus), and then Ti and Au-Sn solder are vapor deposited on the upper surface (Pt surface) of the protective layer 142 Thus, the bonding layer 143 is formed. Then, an element substrate 112 for applying a voltage to each of the electrodes (141, 121) is bonded to each other through the bonding layer 143.
  • a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like provided with a wiring pattern can be used.
  • step (b) is performed by steps S2-S4, but step (b) can be realized in various ways.
  • step S5 and subsequent steps are the same as the above-mentioned contents, they are omitted.
  • the first method is a method of growing the first semiconductor layer 115 in the same manner as step S4, after performing the step (b2) of growing the third semiconductor layer 113 again from the state shown in FIG. 2C (FIG. 2N) reference).
  • the uneven surface is formed by the presence of the groove 114 in the first region 103, and the third semiconductor layer 113 is grown on the uneven surface to form the first region.
  • the third semiconductor layer 113 having at least a nonpolar surface as a growth surface is formed.
  • the second region 104 the third semiconductor layer 113 having a polar plane as a growth surface is formed. Therefore, by subsequently growing the first semiconductor layer 115, as shown in FIG. 2O, the first semiconductor layer 115 having the growth surface 115a parallel to the nonpolar plane is formed in the first region 103, and In the two regions 104, a first semiconductor layer 115 having a growth surface 115b parallel to the polar plane is formed.
  • a groove is formed in a first region, for example, along a predetermined ⁇ 11-20> direction. (B) is performed (see FIG. 2P). Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer 115 is performed again. Before the step (b6) is performed, the uneven surface is formed by the presence of the groove in the first region 103, and the first semiconductor layer 115 is grown on the uneven surface, as shown in FIG. 2Q. As described above, while the first semiconductor layer 115 having at least a nonpolar surface as a growth surface is formed in the first region 103, the first semiconductor layer 115 having a polar surface as a growth surface in the second region 104 is formed. It is formed.
  • the second semiconductor layer 119 has the concavo-convex formed on the upper surface in the first region 103, The upper surface is formed flat in the region 104.
  • the upper surface may be formed flat over both the first region 103 and the second region 104 after step S6 is performed. Absent.
  • the active layer 117 and the first semiconductor layer 115 are formed as flat surfaces in the second region 104, so The first semiconductor layer 115 can be exposed with an etching amount of the same size.
  • FIG. 4A and FIG. 4B correspond to schematic cross-sectional views when cut at a point corresponding to the line AA in FIG. 4C (a) at each time point, and FIG.
  • the semiconductor light emitting device 101 according to the embodiment is schematically shown following FIG.
  • step (g) In the above another embodiment ⁇ 1>, after the state of FIG. 4A, the upper surface of the exposed second semiconductor layer 119 is subjected to asperity processing before the start of the second electrode 121 forming step according to step S8. It does not matter (see FIG. 5A). This corresponds to step (g).
  • the concavo-convex shape 105 is provided only in the first region 103 of the top surface of the second semiconductor layer 119.
  • Such a configuration is, by way of example, the surface of the second semiconductor layer 119, with the second semiconductor layer 119 in the second region 104 masked, the second region in the first region 103 exposed. This is realized by immersing an alkaline solution such as KOH in the second semiconductor layer 119.
  • the semiconductor light emitting device 101 shown in FIG. 5C is manufactured by performing the steps after step S10 described above. According to the semiconductor light emitting device 101 shown in FIG. 5C, since the concavo-convex shape 105 is provided on a part of the surface of the second semiconductor layer 119, the light extraction efficiency to the outside can be improved.
  • the concavo-convex shape 105 is applied only to the first region 103 in FIG. 5A, as shown in FIG. 6A, the concavo-convex shape 105 may be applied to the entire top surface of the second semiconductor layer 119 in this step. Absent. Even in this case, since the active layer 117 is formed to have a flat surface in the second region 104, the first semiconductor layer can be etched with the same size to the adjacent portion during the etching according to step S9. 115 can be exposed (see FIG. 6B). After the state of FIG. 6B, the semiconductor light emitting device 101 shown in FIG. 6C is manufactured by performing the steps after step S10 described above.
  • the first semiconductor layer 115 is described as an n-type semiconductor layer
  • the second semiconductor layer 119 is described as a p-type semiconductor layer, but this is merely an example, and the configuration of the above embodiment It is not intended to exclude from the present invention a semiconductor light emitting device in which n-type and p-type are inverted.
  • the extending direction of the groove portion 114 is the ⁇ 11-20> direction
  • the active layer 117 is in the first region 103.
  • the extending direction of the groove 114 may be another direction as long as growth can be performed with the growth surface 117a parallel to the nonpolar plane.
  • the semiconductor light emitting device 101 of the via type structure in which the first electrode 141 is formed in the hole portion 107 has been described.
  • the second region 104 as the end region of the substrate 111, it is possible to realize the horizontal and flip chip type semiconductor light emitting device 101 with high yield.
  • FIG. 7 is a drawing schematically showing the structure of the semiconductor light emitting device of the second configuration, and corresponds to a device called a “via structure type”.
  • (a) is a schematic plan view as viewed from the side opposite to the light extraction surface
  • (b) is a schematic cross section when cut along the line AA in (a).
  • FIG. 10 is a diagram, and corresponds to a schematic cross-sectional view when cut by a plane formed in the [0001] direction and the [1-100] direction here.
  • the symbol “ ⁇ ” attached immediately before the numeral in parentheses indicating the Miller index indicates the inversion of the index, and is the same as “bar” in the drawings.
  • the ⁇ 1-101 ⁇ plane means a (1-101) plane and a plane that is crystallographically equivalent to the (1-101) plane, that is, a (10-11) plane, (01 It is a concept including a -11) plane, a (0-111) plane, a (-1101) plane, and a (-1011) plane.
  • the ⁇ 11-20> direction is the [11-20] direction and a direction crystallographically equivalent to the [11-20] direction, that is, the [1-210] direction, 2110]
  • a concept including a [-1 120] direction, a [-12-10] direction, and a [2-1-10] direction.
  • AlGaN simply means that the semiconductor is a nitride semiconductor containing Al and Ga, and the description of the composition ratio of Al and Ga is simply omitted. It is not intended to limit the case where the composition ratio of Al and Ga is 1: 1. The same applies to the notation of InGaN or AlInGaN.
  • the semiconductor light emitting device 201 includes a substrate 211, a first semiconductor layer 215, an active layer 217, a second semiconductor layer 219, and a first electrode 241.
  • the first semiconductor layer 215 is formed in the upper layer of the substrate 211
  • the active layer 217 is formed in the upper layer of the first semiconductor layer 215,
  • the second semiconductor layer 219 is formed in the upper layer of the active layer 217.
  • the semiconductor light emitting device 201 further includes a first electrode 241 and a second electrode 221.
  • the semiconductor light emitting device 201 is divided into two regions of a first region 203 and a second region 204.
  • the second region 204 corresponds to the region where the first electrode 241 is formed and the region in the vicinity thereof, and the first region 203 is farther from the position where the first electrode 241 is disposed in the semiconductor light emitting element 201 than the second region 204 Corresponds to the area.
  • the second semiconductor layer 219 is configured such that the surface located on the opposite side to the active layer 217 in the first region 203 includes an uneven surface, while the second semiconductor layer 219 includes the active layer 217 in the second region 204.
  • the surface on the opposite side is composed of a flat surface.
  • the semiconductor light emitting element 201 has a hole 207 in the second region 204, and the first electrode 241 is formed so as to be inserted into the hole 207.
  • the substrate 211 is made of, for example, a sapphire substrate.
  • the element substrate 212 is configured by providing a wiring pattern on a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like. As shown in FIG. 7B, in the element substrate 212, insulation is provided between a region electrically connected to the first electrode 241 and a region electrically connected to the second electrode 221. Is secured. Although various methods can be adopted as a method for securing this insulation property, an example can be realized by patterning. In the semiconductor light emitting device 201 shown in FIG. 7, the side of the substrate 211 constitutes a light extraction surface.
  • the bonding layer 243 is made of, for example, Au-Sn, Au-In, Au-Cu-Sn, Cu-Sn, Pd-Sn, Sn or the like.
  • the bonding layer 243 functions as a layer for securing the adhesion between the substrate 211 and the element substrate 212 when bonding the substrate 211 and the element substrate 212.
  • the protective layer 242 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni or the like.
  • a Pt-based metal an alloy of Ti and Pt
  • W aluminum
  • Mo aluminum
  • Ni nickel
  • the material constituting the bonding layer 243 is diffused to the second electrode 221 side, and the function of preventing a decrease in light extraction efficiency due to a decrease in reflectance at the second electrode 221 is performed. Play.
  • a protective layer 242 may be provided on the upper surface of the first electrode 241 for the purpose of preventing the material forming the bonding layer 243 from diffusing to the first electrode 241 side. Absent.
  • the first electrode 241 is made of, for example, Cr-Au. As shown to Fig.7 (a), the semiconductor light-emitting device 201 of this embodiment is the structure which has the some 1st electrode 241 arrange
  • the first electrode 241 penetrates the second semiconductor layer 219 and the active layer 217 in the second region 204 and is formed by being inserted into the hole 207 reaching the first semiconductor layer 215.
  • the first semiconductor layer 215 is an n-type semiconductor layer and the second semiconductor layer 219 is a p-type semiconductor layer.
  • the first electrode 241 corresponds to an n-side electrode.
  • the second electrode 221 is formed on the surface of the second semiconductor layer 219, and can be made of, for example, a metal material containing an Ag-based metal (an alloy of Ni and Ag), Al, Rh, or the like. These materials are conductive materials capable of reflecting the light emitted from the active layer 217. With this configuration, light emitted from the active layer 217 toward the element substrate 212 can be reflected by the second electrode 221 and guided to the extraction surface side (the substrate 211 side). , High light extraction efficiency is realized.
  • the second electrode 221 corresponds to a p-side electrode.
  • the insulating layer 254 has the insulation between the first electrode 241 and the second electrode 221, the insulation between the first electrode 241 and the second semiconductor layer 219, and the first electrode 241 and the active layer. It is provided for the purpose of securing insulation between it and 217.
  • the insulating layer 254 is provided on part of the outer surface of the first electrode 241 and part of the surface of the second electrode 221 on the element substrate 212 side, but the above-described object is The formation location and the formation mode of the insulating layer 254 can be appropriately changed within the range that can be realized.
  • the insulating layer 254 may be made of SiO 2 , SiN, Zr 2 O 3, Al 2 O 3 or the like.
  • the first semiconductor layer 215 is composed of an n-type AlN layer.
  • AlN general formula Al x2 Ga y2 In 1-x2 -y2 N may be composed of (0 ⁇ x2 ⁇ 1,0 ⁇ y2 ⁇ 1) n -type nitride semiconductor layer defined by.
  • the first semiconductor layer 215 includes a growth surface 215a parallel to the nonpolar surface (for example, ⁇ 1-101 ⁇ surface) and a polar surface (for example, Growth surface 215 b parallel to the ⁇ 0001 ⁇ plane).
  • the active layer 217 has a configuration in which Al x 3 Ga 1-x 3 N (0 ⁇ x 3 ⁇ 1) / AlN is stacked in one cycle or multiple cycles.
  • a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN are repeatedly formed in multiple cycles.
  • the configuration of the active layer 217 is appropriately selected according to the light emission wavelength.
  • the active layer 217 is a growth surface parallel to a nonpolar surface (for example, ⁇ 1-101 ⁇ surface), like the first semiconductor layer 215. 217a and a growth surface 217b parallel to a polar surface (eg, ⁇ 0001 ⁇ surface).
  • two types of nitride semiconductor layers AlGaN or AlInGaN having a difference in band gap energy by making the Al composition different may be stacked in one cycle or multiple cycles.
  • the second semiconductor layer 219 is a p + -type GaN formed on the p-type cladding layer and a p-type cladding layer made of p-type Al x 4 Ga 1 -X 4 N (0 ⁇ x4 ⁇ 1). And a p-type contact layer.
  • the second electrode 221 is formed to be in contact with the p-type contact layer.
  • the p-type contact layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 ⁇ x5 ⁇ 1).
  • the semiconductor light emitting device 201 includes the third semiconductor layer 213, and the first semiconductor layer 215 is formed on the third semiconductor layer 213.
  • the first semiconductor layer 215 is a layer formed by epitaxial growth on the upper layer of the third semiconductor layer 213.
  • the third semiconductor layer 213 is formed of an AlN layer.
  • a nitride semiconductor layer defined by the general formula Al x 1 Ga y 1 In 1-x 1-y N (0 ⁇ x 1 ⁇ 1, 0 ⁇ y 1 ⁇ 1) can be used.
  • the emission wavelength from the Al x1 Ga y1 In 1-x1 -y1 N the In composition is preferably 1% or less, Al x1 Ga y1 In 1- x1-y1 Al composition of N, the active layer 217 It is appropriately selected accordingly.
  • the third semiconductor layer 213 has a groove (concave portion) 214 extending along a predetermined direction (here, the [11-20] direction).
  • a predetermined direction here, the [11-20] direction
  • the stretching direction of the groove portion 214 is the [11-20] direction
  • the stretching direction is a crystallographically equivalent direction with respect to the [11-20] direction, that is, ⁇ 11-20>. It may be a direction, or may be another direction.
  • the active layer 217 since the active layer 217 has the growth surface 217a (see FIG. 8E described later) parallel to the nonpolar surface, the influence of the internal electric field is suppressed, and the light emitting element with high light emission efficiency Is realized.
  • a plurality of via electrodes (corresponding to the first electrode 241 in this case) are usually formed on the same device.
  • the upper surface of the second semiconductor layer 219 is configured to be a flat surface.
  • the holes 207 are formed by etching. By thus forming the surface to be etched as a flat surface, etching energy can be uniformly applied to the active layer 217. Therefore, since the hole 207 for inserting the first electrode 241 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting elements 201 can be equalized, and a high yield can be realized.
  • FIGS. 7 and 8A to 8Q The method of manufacturing the semiconductor light emitting device 201 according to the first embodiment will be described with reference to FIGS. 7 and 8A to 8Q.
  • FIGS. 8A to 8G, 8N to 8Q, and 8H (b) to 8M (b), as in FIG. 7 (b), at each time point This corresponds to a schematic cross-sectional view when the element is cut at a location corresponding to the line AA in FIG. 7A.
  • FIGS. 8H (a) to 8M (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 7 (a).
  • the substrate 211 is prepared (see FIG. 8A).
  • a sapphire substrate having a (0001) plane can be used as an example.
  • the substrate 211 is cleaned.
  • the growth substrate 211 is disposed in the processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen at a flow rate of, for example, 10 slm is provided in the processing furnace. It is carried out by raising the temperature in the furnace to, for example, 1150 ° C. while flowing a gas.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • This step S21 corresponds to the step (a).
  • a third semiconductor layer 213 made of, for example, AlN is formed on the (0001) plane of the substrate 211.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. to 1600 ° C.
  • nitrogen gas and hydrogen gas are flowed as a carrier gas, and trimethylaluminum (TMA) and ammonia are treated as source gases Supply into the furnace.
  • TMA trimethylaluminum
  • TMA trimethyl gallium
  • TMI trimethylindium
  • a groove (first groove) 214 is formed in the third semiconductor layer 213 along, for example, a predetermined ⁇ 11-20> direction. It is preferable to control so that the groove part 214 is formed in the bottom of the groove part 214 by the depth in the range which the board
  • the wafer obtained by performing up to step S22 is taken out of the processing furnace, and ⁇ 11-20 of the third semiconductor layer 213 is formed by photolithography and reactive ion etching (RIE).
  • RIE reactive ion etching
  • a plurality of grooves parallel to the direction are formed at predetermined intervals.
  • the groove portion 214 is stretched in the [11-20] direction which is one direction that is crystallographically equivalent to the ⁇ 11-20> direction.
  • Step S24 As shown in FIG. 8D, the first semiconductor layer 215 is formed on the upper surface of the third semiconductor layer 213 in which the groove 214 is formed along the ⁇ 11-20> direction.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900.degree. C. to 1600.degree.
  • flowing hydrogen gas, TMA, ammonia, tetraethylsilane as an n-type dopant, etc. are supplied into the processing furnace as source gases.
  • the flow rate ratio (V / III ratio) of TMA and ammonia By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPa or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru.
  • the first semiconductor layer 215 made of n-type AlN having a film thickness of 3000 nm was formed.
  • the case of forming the n-type Al x2 Ga y2 In 1-x2 -y2 N (0 ⁇ x2 ⁇ 1,0 ⁇ y2 ⁇ 1) is, TMA, ammonia, a tetra ethyl silane
  • TMG and TMI may be supplied at a predetermined flow rate according to the composition.
  • a nonpolar surface (here, ⁇ 1-101 ⁇ as an example) is formed.
  • a first semiconductor layer 215 having parallel growth surfaces 215a is formed.
  • the first semiconductor layer 215 has the growth surface 215b parallel to the polar surface at a part of the part, the growth surface parallel to the nonpolar surface is the first semiconductor layer 215. It may be a configuration having only 215a.
  • Step S24 corresponds to the step (b3).
  • Steps S22 to S24 correspond to step (b).
  • Step S25 As shown in FIG. 8E, a first semiconductor layer having a growth surface 215a parallel to the nonpolar plane (here, ⁇ 1-101 ⁇ plane) and a growth plane 215b parallel to the polar plane (here, ⁇ 0001 ⁇ plane) An active layer 217 is grown on top of 215.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. or more and 1600 ° C. or less, and nitrogen gas and hydrogen gas are flowed as a carrier gas, while TMA and ammonia as a source gas are filmed in the processing furnace.
  • a step of supplying a predetermined time according to the thickness and a step of supplying TMA, TMG and ammonia as source gases into the processing furnace for a predetermined time according to the film thickness are repeated a predetermined number of times according to the number of cycles.
  • an active layer 217 made of multi-period Al x 3 Ga 1-x 3 N (0 ⁇ x 3 ⁇ 1) / AlN is formed.
  • TMA, ammonia, TMG, and TMI may be supplied as source gases at a predetermined flow rate according to the composition.
  • step S24 Since the first semiconductor layer 215 having the growth surface 215a parallel to the nonpolar surface and the growth surface 215b parallel to the polar surface is formed in step S24, the epitaxial growth is performed in this step S25 in this state. As shown in 8E, an active layer 217 is formed having a growth surface 217a parallel to the nonpolar plane and a growth surface 217b parallel to the polar plane. If the first semiconductor layer 215 has only the growth surface 215a parallel to the nonpolar plane in step S24, only the growth surface 217a parallel to the nonpolar plane is active in step S25. It may be configured to have
  • Step S25 corresponds to step (c).
  • Step S26 As shown in FIG. 8F, the second semiconductor layer 219 is grown on the upper surface of the active layer 217.
  • a bis-cyclopentan for forming a p-type impurity in addition to ammonia, TMA and TMG as source gases with an in-furnace pressure of 100 kPa and an in-furnace temperature of 830 ° C. in the MOCVD apparatus Further grow with dienyl magnesium (Cp 2 Mg).
  • the second semiconductor layer 219 formed of p-type Al x 4 Ga 1 -x 4 N (0 ⁇ x4 ⁇ 1) is formed in the upper layer of the active layer 217.
  • the flow rate of the source gas may be further changed to form the p + -type GaN layer on the upper layer.
  • the second semiconductor layer 219 is configured by the p-type Al x 4 Ga 1 -x 4 N (0 ⁇ x 4 ⁇ 1) and the p + -type GaN layer.
  • the p + -type GaN layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 ⁇ x5 ⁇ 1).
  • the upper surface of the second semiconductor layer 219 is formed to be a flat surface.
  • the film formation conditions of the second semiconductor layer 219 it is possible to make the upper surface of the second semiconductor layer 219 flat as described above.
  • This step S26 corresponds to the step (d).
  • Step S27 The activation process is performed on the wafer obtained through steps S21 to S26. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  • RTA Rapid Thermal Anneal: rapid heating
  • Step S28 Next, with respect to the second semiconductor layer 219 in the first region 203 exposed in the state where the second semiconductor layer 219 in the second region 204 is masked among the surfaces of the second semiconductor layer 219, Soak an alkaline solution such as KOH. As a result, as shown in FIG. 8G, the concavo-convex shape 205 is formed on the upper surface of the second semiconductor layer 219 only in the first region 203.
  • This step S28 corresponds to the step (e). Note that this step S28 may be performed before step S27.
  • Step S29 As shown in FIG. 8H, the second electrode 221 is formed on the top surface of the second semiconductor layer 219. Specifically, the second electrode 221 is selectively formed on a region other than the one or more island regions 224 on the upper surface of the second semiconductor layer 219.
  • the wafer having undergone this step S29 has, on the upper surface, a region 224 in which the second semiconductor layer 219 is exposed in an island shape and a region in which the second electrode 221 is exposed.
  • the island region 224 is formed in the second region 204.
  • the specific formation method of the second electrode 221 is, for example, as follows.
  • a resist is applied by patterning to the region of the upper surface of the second semiconductor layer 219 corresponding to the region where the second electrode 221 is not formed.
  • the region to which the resist is applied corresponds to a region where the first electrode 241 is to be formed later and a region near the first electrode 241 where current tends to be concentrated.
  • Ag with a film thickness of 150 nm and Ni with a film thickness of 30 nm are formed on the entire surface including the upper surface of the resist by using, for example, a sputtering apparatus.
  • Ni may be formed to a film thickness of about 1.5 nm under the Ag layer in order to enhance the adhesion to the second semiconductor layer 219.
  • the second electrode is subjected to a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like.
  • a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like.
  • This step S29 corresponds to step (h).
  • Step S30 As shown in FIG. 8I, the surface of the second semiconductor layer 219 located in the second region 204 and exposed through the step S29 is etched to expose the top surface of the first semiconductor layer 215.
  • a resist 251 is applied to the upper surface of the second electrode 221 formed at the end of step S29 by patterning. Thereafter, using the resist 251 as a mask, the second semiconductor layer 219 and the active layer 217 are removed by dry etching using an ICP apparatus until a partial upper surface of the first semiconductor layer 215 is exposed. In the step S30, the first semiconductor layer 215 may be partially etched away.
  • the groove portion 207 is formed by the present step S30. The groove portion 207 corresponds to the “second groove portion”.
  • step S30 The groove portion 207 formed in step S30 later becomes a space for embedding the first electrode 241 for supplying a current to the first semiconductor layer 215. Therefore, in step S30, it is necessary to advance the etching until the surface of the first semiconductor layer 215 is exposed in the entire region of the bottom surface of the groove portion 207.
  • step S30 a case where this step S30 is performed on the surface of the second semiconductor layer 219 on which the concavo-convex shape 205 is formed in step S28 will be examined. Since the wet etching process performed in step S28 has poor controllability compared to dry etching, the pitch and height of the concavo-convex shape 205 formed on the surface of the second semiconductor layer 219 are randomly determined. As a result, in the present step S30, it is assumed that the etching amount required to expose the surface of the first semiconductor layer 215 in the entire region of the bottom surface of the groove portion 207 differs from element to element.
  • the concavo-convex shape 205 is formed on the surface of the semiconductor layer at the start of etching, the etching energy to be introduced is easily dispersed in the plane direction parallel to the substrate 211, and the etching is difficult to progress at the beginning of the etching
  • the etching energy supplied may be increased.
  • the upper surface of the second semiconductor layer 219 relating to the etching target region is formed flat.
  • the shape of the active layer 217 can be controlled by the thickness of the first semiconductor layer 215 and the pitch and depth of the grooves 207. That is, based on the information such as the thickness of the first semiconductor layer 215 and the pitch and depth of the groove portion 207 set in the step prior to the step S29, the etching is advanced to what depth in the step S30. Then, it can be estimated in advance whether the surface of the first semiconductor layer 215 can be exposed. That is, with the method according to the present embodiment, the amount of energy to be applied at the time of etching can be made smaller than when etching the inside of the first region 203.
  • Step S30 corresponds to step (f).
  • Step S31 Next, after lifting off the resist 251 formed in step S30, as shown in FIG. 8J, a resist 253 is formed on the central portion of the bottom of the groove portion 207 and the upper surface of the second electrode 221 by patterning. That is, the upper surface of the first semiconductor layer 215 is exposed to the outer periphery of the resist 253 on the bottom surface of the groove portion 207. After that, the insulating layer 254 is formed over the entire surface. As the insulating layer 254, SiO 2, SiN, Zr 2 O 3 , AlN, Al 2 O 3 or the like can be used.
  • the resist 253 is lifted off as shown in FIG. 8K.
  • the insulating layer 254 is formed on the inner side surface of the groove portion 207 and the partial upper surface of the second electrode 221.
  • Step S32 A resist 255 is formed on the upper surface of the second electrode 221 by patterning. Thereafter, a conductive material is deposited to form the first electrode 241 so as to fill the groove portion 207 (see FIG. 8L).
  • a conductive material is deposited to form the first electrode 241 so as to fill the groove portion 207 (see FIG. 8L).
  • annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere. Thereafter, the resist 255 is lifted off (see FIG. 8M).
  • Steps S31 to S32 the first electrode 241 is formed in the groove portion 207 in a state of being electrically insulated from the second electrode 221. Steps S31 to S32 correspond to step (g).
  • the protective layer 242 and the bonding layer 243 are formed on the exposed upper surfaces of the first electrode 241 and the second electrode 221, and the element substrate 212 is bonded via the bonding layer 243 (see FIG. 7).
  • a specific example is as follows.
  • the protective layer 242 is formed by forming Ti and Pt three cycles with an electron beam vapor deposition apparatus (EB apparatus), and then Ti and Au-Sn solder are vapor deposited on the upper surface (Pt surface) of the protective layer 242 Thus, the bonding layer 243 is formed. Then, an element substrate 212 for applying a voltage to each electrode (41, 21) is bonded to each other through the bonding layer 243.
  • a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like provided with a wiring pattern can be used.
  • step (b) is performed by steps S22 to S24, but step (b) can be realized by various methods.
  • step S25 and subsequent steps are the same as the contents described above, they are omitted.
  • the first method is a method of growing the first semiconductor layer 215 in the same manner as step S24 after performing the step (b2) of growing the third semiconductor layer 213 again from the state shown in FIG. 8C (FIG. 8N). reference).
  • the uneven surface is formed by the presence of the groove 214 in the first region 203, and the third semiconductor layer 213 is grown on the uneven surface to at least a nonpolar surface.
  • the third semiconductor layer 213 having the surface 213a as a growth surface is formed. Therefore, by subsequently growing the first semiconductor layer 215, as shown in FIG. 8O, the first semiconductor layer 215 having the growth surface 215a at least parallel to the nonpolar plane is formed.
  • the step (b5) of forming a groove along a predetermined ⁇ 11-20> direction is performed. It is the method to implement (refer FIG. 8P). Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer 215 is performed again. Before execution of the step (b6), the first semiconductor layer 215 has an uneven surface, and the first semiconductor layer 215 is regrown on the uneven surface, as shown in FIG. 8Q. A first semiconductor layer 215 is formed having a growth surface 215a parallel to the polar plane.
  • Second Embodiment A second embodiment of the present invention will be described.
  • the elements common to the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • FIG. 9 is a drawing schematically showing the structure of the semiconductor light emitting device of the second embodiment of the second configuration.
  • FIG. 9 is a schematic plan view as seen from the side opposite to the light extraction surface, as in FIG. 7, and (b) is taken along the line AA in (a) It is a typical sectional view of the time.
  • the same reference numerals are given to elements common to the first embodiment. Note that, since the semiconductor light emitting element 201a of this embodiment does not have a structure in which the nonpolar surface is a growth surface, unlike the first embodiment, the Miller index is not displayed in the drawing.
  • the second semiconductor layer 219 is configured such that the surface located on the opposite side to the active layer 217 in the first region 203 is an uneven surface.
  • the surface opposite to the active layer 217 in the second region 204 is a flat surface.
  • the semiconductor light emitting element 201 has a hole 207 in the second region 204, and the first electrode 241 is formed so as to be inserted into the hole 207.
  • the island-shaped region 224 is formed by etching as in the first embodiment.
  • the etching target surface is formed to be a flat surface, so that etching energy can be uniformly applied to the active layer 217. Therefore, since the hole 207 for inserting the first electrode 241 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting devices 201a can be made uniform, and a high yield can be realized.
  • FIGS. 9 and 10A to 10E The method of manufacturing the semiconductor light emitting device 201a according to the second embodiment will be described with reference to FIGS. 9 and 10A to 10E.
  • the elements at each time point are taken along AA in FIG. 9 (a). It corresponds to a schematic cross-sectional view when cut at a portion corresponding to a line.
  • 10C (a) to 10E (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 9A.
  • description is omitted about the part common to 1st embodiment.
  • Step S41 As in step S21, the substrate 211 is prepared.
  • a sapphire substrate having a (0001) plane can be used as an example.
  • Step S41 corresponds to step (a).
  • Steps S42 to S44 As shown in FIG. 10A, the first semiconductor layer 215, the active layer 217, and the second semiconductor layer 219 are formed on the substrate 211.
  • An example of a specific method is as follows.
  • Step S42 First, a low temperature buffer layer made of GaN is formed on the surface of the substrate 211, and an underlayer made of GaN is formed thereon. These low temperature buffer layers and underlayers correspond to the undoped layer 236.
  • a specific method of forming the undoped layer 236 is, for example, as follows. First, the pressure in the furnace of the ⁇ CVD apparatus is 100 kPa, and the temperature in the furnace is 480 ° C.
  • TMG having a flow rate of 50 ⁇ mol / min and ammonia having a flow rate of 250,000 ⁇ mol / min as a source gas for 68 seconds in the processing furnace Supply.
  • a low temperature buffer layer of 20 nm thick made of GaN is formed on the surface of the substrate 211.
  • the temperature in the furnace of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 ⁇ mol / min and ammonia having a flow rate of 250000 ⁇ mol / min as a source gas in the processing furnace Feed for 30 minutes. Thereby, an underlayer of 1.7 ⁇ m in thickness made of GaN is formed on the surface of the low temperature buffer layer.
  • the first semiconductor layer 215 is formed on the undoped layer 236.
  • the pressure in the furnace of the MOCVD apparatus is 30 kPa.
  • TMG having a flow rate of 94 ⁇ mol / min
  • TMA having a flow rate of 6 ⁇ mol / min
  • a flow rate of 250,000 ⁇ mol / min as a carrier gas.
  • Ammonia of min and tetraethylsilane with a flow rate of 0.013 ⁇ mol / min are fed into the processing furnace for 60 minutes.
  • a first semiconductor layer 215 having a composition of Al 0.06 Ga 0.94 N, a Si concentration of 5 ⁇ 10 19 / cm 3 , and a thickness of 2 ⁇ m is formed on the upper layer of the undoped layer 236.
  • the semiconductor layer 215 may be realized.
  • the n-type impurity contained in the first semiconductor layer 215 is Si, but Ge, S, Se, Sn, Te, or the like can be used as the n-type impurity in addition to Si. .
  • This step S42 corresponds to the step (b).
  • Step S43 Next, in the upper layer of the first semiconductor layer 215, an active layer 217 in which a light emitting layer composed of, for example, InGaN and a barrier layer composed of n-type AlGaN are periodically repeated is formed.
  • the pressure in the furnace of the MOCVD apparatus is 100 kPa, and the temperature in the furnace is 830.degree. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as carrier gas in the processing furnace, TMG having a flow rate of 10 ⁇ mol / min and TMI having a flow rate of 12 ⁇ mol / min and a flow rate of 300000 ⁇ mol / min as source gases. The step of supplying min ammonia for 48 seconds into the processing furnace is performed.
  • the active layer 217 in which the light emitting layer made of InGaN and the barrier layer made of n-type AlGaN having a thickness of 7 nm are repeated 15 cycles is repeated by repeating the two steps. Formed in the upper layer of
  • This step S43 corresponds to the step (c).
  • Step S44 the second semiconductor layer 219 made of, for example, AlGaN is formed on the active layer 217.
  • the specific formation method of the second semiconductor layer 219 is, for example, as follows.
  • the pressure in the furnace of the MOCVD apparatus is maintained at 100 kPa, and the temperature in the furnace is raised to 1025 ° C. while flowing nitrogen gas with a flow rate of 15 slm and hydrogen gas with a flow rate of 25 slm into the processing furnace as carrier gas.
  • nitrogen gas with a flow rate of 15 slm
  • hydrogen gas with a flow rate of 25 slm into the processing furnace as carrier gas.
  • TMG with a flow rate of 35 ⁇ mol / min
  • TMA with a flow rate of 20 ⁇ mol / min
  • Cp 2 Mg with a flow rate of 0.1 ⁇ mol / min for doping ammonia with a flow rate of 250000 ⁇ mol / min Supply to the processing furnace for 60 seconds.
  • a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the active layer 33.
  • the flow rate of TMA is changed to 4 ⁇ mol / min and the source gas is supplied for 360 seconds to form a hole supply layer having a composition of Al 0.13 Ga 0.87 N with a thickness of 120 nm.
  • the second semiconductor layer 219 is formed by these hole supply layers.
  • the thickness is about 5 nm and the p-type impurity concentration is 1 ⁇
  • a p-type contact layer of about 10 20 / cm 3 may be formed.
  • the second semiconductor layer 219 also includes this p-type contact layer.
  • This step S44 corresponds to the step (d).
  • Step S45 An activation process is performed on the wafer. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  • RTA Rapid Thermal Anneal: rapid heating
  • Step S46 Next, with respect to the second semiconductor layer 219 in the first region 203 exposed in the state where the second semiconductor layer 219 in the second region 204 is masked among the surfaces of the second semiconductor layer 219, Soak an alkaline solution such as KOH. As a result, as shown in FIG. 10B, the concavo-convex shape 205 is formed on the top surface of the second semiconductor layer 219 only in the first region 203.
  • This step S46 corresponds to the step (e).
  • the present step S26 may be performed before step S45.
  • Step S47 As shown in FIG. 10C, the second electrode 221 is formed as in step S29. Step S47 corresponds to step (h).
  • Step S48 As shown in FIG. 10D, as in step S30, the upper surface of the first semiconductor layer 215 is etched by etching the surface of the second semiconductor layer 219 located in the second region 204 exposed through step S47. Expose the In this step S48, as in step S30 in the first embodiment, the etching is performed on the second semiconductor layer 219 in the second region 204 and the active layer 217 below the second region 204, the upper surface of which is formed as a flat surface. Therefore, the first semiconductor layer 215 can be exposed to the adjacent portion with the same amount of etching amount.
  • Step S48 corresponds to step (f).
  • Step S49 As shown in FIG. 10E, the insulating layer 254 and the first electrode 241 are formed in the same manner as in steps S31 to S32. Step S49 corresponds to step (g).
  • Step after After that, the semiconductor light emitting device 201a as shown in FIG. 9 is realized through the same steps as the first embodiment.
  • FIG. 11 is a schematic plan view when (a) is viewed from the light extraction surface side (the first semiconductor layer 215 side), and (b) is a cut along line AA in (a) of the element 201a. It is typical sectional drawing at the time of.
  • the active layer 217 has the growth surface 217a parallel to the nonpolar plane in both the first region 203 and the second region 204 has been described.
  • the active layer 217 may have a growth surface 217 a parallel to the nonpolar surface in at least a part of the area.
  • the extending direction of the groove portion 214 is the ⁇ 11-20> direction has been described as an example, but this is merely an example, and the active layer 217 is parallel to the nonpolar surface
  • the extending direction of the groove portion 214 may be another direction as long as growth can be performed with the growth surface 217a.
  • the first semiconductor layer 215 is described as an n-type semiconductor layer
  • the second semiconductor layer 219 is described as a p-type semiconductor layer, but this is merely an example, and the configuration of the above embodiment It is not intended to exclude from the present invention a semiconductor light emitting device in which n-type and p-type are inverted.
  • the semiconductor light emitting device 201 having the via type structure in which the first electrode 241 is formed in the hole portion 207 has been described.
  • the second region 204 as the end region of the substrate 211, it is possible to realize the horizontal or flip chip type semiconductor light emitting device 201 with high yield.

Abstract

To achieve a semiconductor light emitting element having a high yield. This semiconductor light emitting element has: a substrate; a first semiconductor layer, an active layer, and a second semiconductor layer, which are formed on an upper layer of the substrate; and a first electrode. The active layer and/or the first semiconductor layer includes, in the direction parallel to the surface of the substrate, an uneven surface in a first region, and a second region different from the first region is configured from a flat surface. In the second region, the first electrode is formed in contact with the first semiconductor layer, and in a state of being insulated from the active layer and the second semiconductor layer. In the second region, the active layer and the second semiconductor layer are not formed on the upper layer of the first semiconductor layer, said upper layer being positioned in a region in contact with the first electrode.

Description

半導体発光素子及びその製造方法Semiconductor light emitting device and method of manufacturing the same
 本発明は、半導体発光素子及びその製造方法に関する。 The present invention relates to a semiconductor light emitting device and a method of manufacturing the same.
 半導体発光素子の素子構造の一つとして、いわゆるビア構造型の半導体発光素子の開発が進められている。例えば、下記特許文献1には、ビア構造型の半導体発光素子を採用することにより、電流が半導体内で横方向に拡がるべき距離が小さくなり、直列抵抗を小さくすることができ、高電流駆動が実現できることが記載されている。 As one of the device structures of semiconductor light emitting devices, development of a so-called via structure type semiconductor light emitting device has been advanced. For example, in Patent Document 1 below, by adopting a semiconductor light emitting element of a via structure type, the distance in which the current should be spread in the lateral direction becomes smaller in the semiconductor, the series resistance can be reduced, and high current drive is achieved. It describes what can be achieved.
特開2004-047988号公報JP, 2004-047988, A
 本発明者は、上記のようなビア構造型の半導体発光素子を製造するに際して歩留まりが悪化するという特有の課題を見出し、本発明に至った。 The inventors of the present invention have found a unique problem that the yield is deteriorated when manufacturing the above-described via structure type semiconductor light emitting device, and the present invention has been achieved.
 本発明に係る半導体発光素子は、
 基板と、
 前記基板の上層に形成された、n型又はp型の窒化物半導体からなる第一半導体層と、
 前記第一半導体層の上層に形成された、窒化物半導体からなる活性層と、
 前記活性層の上層に形成された、前記第一半導体層とは異なる導電型の窒化物半導体からなる第二半導体層と、
 前記第一半導体層に接触して形成された第一電極とを有し、
 前記活性層又は前記第一半導体層の少なくとも一方は、前記基板の面に平行な方向に関して、第一領域に凹凸面を含み、前記第一領域とは異なる第二領域が平坦面で構成され、
 前記第一電極は、前記第二領域内において、前記第一半導体層に接触すると共に、前記活性層及び前記第二半導体層に対して絶縁性を有した状態で形成され、
 前記第二領域内において、前記第一電極と接触している領域に位置する前記第一半導体層の上層には前記活性層及び前記第二半導体層が形成されていないことを特徴とする。
The semiconductor light emitting device according to the present invention is
A substrate,
A first semiconductor layer formed of an n-type or p-type nitride semiconductor formed in the upper layer of the substrate;
An active layer formed of a nitride semiconductor, formed on the upper layer of the first semiconductor layer;
A second semiconductor layer formed of a nitride semiconductor of a conductivity type different from the first semiconductor layer, formed in the upper layer of the active layer;
And a first electrode formed in contact with the first semiconductor layer,
At least one of the active layer and the first semiconductor layer includes an uneven surface in a first region in a direction parallel to the surface of the substrate, and a second region different from the first region is a flat surface.
The first electrode is formed in the second region so as to be in contact with the first semiconductor layer and to have insulation with respect to the active layer and the second semiconductor layer.
In the second region, the active layer and the second semiconductor layer are not formed on the upper layer of the first semiconductor layer located in the region in contact with the first electrode.
 上記の素子としては、以下の2つの構成が想定される。まず、第一の構成に関して記載し、第二の構成については後述する。 The following two configurations are assumed as the above element. First, the first configuration will be described, and the second configuration will be described later.
 第一の構成において、前記活性層は、第一領域内において前記第一半導体層の側に位置する面が凹凸面を含んで構成される一方、前記第二領域内において前記第一半導体層の側に位置する面が平坦面で構成されている。 In the first configuration, the active layer is configured such that the surface located on the side of the first semiconductor layer in the first region includes an uneven surface, while the surface of the first semiconductor layer in the second region is The surface located in the side is comprised by the flat surface.
 上記の素子において、第一電極は、活性層及び第二半導体層が存在しない領域において第一半導体層に接触するように形成されている。この第一電極は、活性層の第一半導体層の側に位置する面が凹凸面を含んで構成されている第一領域内ではなく、活性層の第一半導体層の側に位置する面が平坦面で構成されている第二領域内に設けられている。 In the above element, the first electrode is formed to be in contact with the first semiconductor layer in a region where the active layer and the second semiconductor layer do not exist. In the first electrode, the surface located on the side of the first semiconductor layer of the active layer is not included in the first region including the uneven surface, but the surface located on the side of the first semiconductor layer of the active layer is It is provided in the 2nd area | region comprised by the flat surface.
 活性層及び第二半導体層が存在しない領域を形成するためには、当該領域内に位置する第二半導体層及び活性層に対して、例えばエッチング等を施すことで形成される。ここで、第一電極を、活性層が凹凸面を含んで形成された第一領域内に形成する場合を想定する。エッチングが進行して、第一半導体層側における活性層の面が第一半導体層に向かって凹になっている箇所において第一半導体層が露出したとしても、その近傍の第一半導体層側における活性層の面が第一半導体層に向かって凸になっている箇所では、いまだ活性層が存在し、第一半導体層が露出していない状態が想定される。つまり、第一電極を形成するためには、第一半導体層側における活性層の面が第一半導体層に向かって凸になっている箇所において、第一半導体層が完全に露出するまでエッチングを進行させる必要がある。 In order to form a region in which the active layer and the second semiconductor layer do not exist, the second semiconductor layer and the active layer located in the region are formed, for example, by performing etching or the like. Here, it is assumed that the first electrode is formed in the first region in which the active layer is formed including the uneven surface. Even if the first semiconductor layer is exposed at a portion where the surface of the active layer on the first semiconductor layer side is recessed toward the first semiconductor layer as the etching progresses, on the first semiconductor layer side in the vicinity thereof At a location where the surface of the active layer is convex toward the first semiconductor layer, it is assumed that the active layer still exists and the first semiconductor layer is not exposed. That is, in order to form the first electrode, etching is performed until the first semiconductor layer is completely exposed at the portion where the surface of the active layer on the first semiconductor layer side is convex toward the first semiconductor layer. It is necessary to advance.
 これに対し、第一電極を、活性層が平坦面で形成された第二領域内に形成する場合には、上記のようなことを注意する必要がなく、単に活性層の膜厚相当分だけエッチングを進行させれば、第一半導体層を露出させることができる。すなわち、第一領域内に第一電極を形成する場合に比べて、エッチング量を減らすことができる。 On the other hand, when the first electrode is formed in the second region in which the active layer is formed to be flat, there is no need to pay attention to the above, and only the film thickness equivalent of the active layer is required. By advancing the etching, the first semiconductor layer can be exposed. That is, the amount of etching can be reduced as compared with the case where the first electrode is formed in the first region.
 エッチング量が増大することは、エッチング時に加えられるエネルギー量が増大することを意味する。発光素子の電気的特性に対する悪影響を出来る限り抑制する観点からは、エッチング時に印加するエネルギー量を小さくすることが好ましい。よって、上記構成によれば、半導体層に凹凸面が形成されている場合であっても、平坦面へのエッチングによって形成された孔部に第一電極を挿入することで実現できるため、複数の素子間の電気的特性を均一化でき、歩留まりの高いビア型構造の半導体発光素子が実現される。 An increase in the amount of etching means an increase in the amount of energy applied at the time of etching. From the viewpoint of suppressing the adverse effect on the electrical characteristics of the light emitting element as much as possible, it is preferable to reduce the amount of energy applied at the time of etching. Therefore, according to the above configuration, even in the case where the concavo-convex surface is formed in the semiconductor layer, it can be realized by inserting the first electrode into the hole portion formed by the etching to the flat surface. A semiconductor light emitting device of via type structure with high yield can be realized because the electrical characteristics between the devices can be made uniform.
 この半導体発光素子は、ビア型の構造のみならず、フリップチップ型の構造とすることができる。 The semiconductor light emitting device can be a flip chip structure as well as a via structure.
 前記第二領域内において、少なくとも前記第二半導体層及び前記活性層を貫通し、前記第一半導体層に達する孔部を有し、
 前記第一電極は、前記活性層及び前記第二半導体層に対して絶縁状態が保持された状態で前記孔部に挿入され、前記第一半導体層に接触するように形成されているものとしても構わない。これにより、歩留まりの良いビア型構造の半導体発光素子が実現される。
In the second region, it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
The first electrode may be inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and may be formed to be in contact with the first semiconductor layer. I do not care. As a result, a semiconductor light emitting device of via type structure with high yield is realized.
 なお、上記の構成において、
 前記活性層が、前記第一領域内において前記第一半導体層側の面及び前記第二半導体層側の面の双方が凹凸面を含んで構成される一方、前記第二領域内において前記第一半導体層側の面及び前記第二半導体層側の面の双方が平坦面で構成されているものとしても構わない。
In the above configuration,
In the first region, the surface on the side of the first semiconductor layer and the surface on the side of the second semiconductor layer include concavo-convex surfaces in the first region, while in the second region Both the surface on the semiconductor layer side and the surface on the second semiconductor layer side may be flat.
 上記の構成によれば、第一電極を形成するに際し、活性層に対しては、当該活性層の膜厚分をエッチングすれば第一半導体層の上面を露出させることができる。これにより、エッチング工程の制御性が容易になり、製造素子の歩留まりが向上する。 According to the above configuration, when forming the first electrode, the upper surface of the first semiconductor layer can be exposed to the active layer by etching the film thickness of the active layer. Thereby, the controllability of the etching process becomes easy, and the yield of the manufactured element is improved.
 ここで、前記第一領域内の前記活性層の凹凸面が窒化物半導体の非極性面で構成され、前記第二領域内の前記活性層の平坦面が窒化物半導体の極性面で構成されているものとしても構わない。 Here, the uneven surface of the active layer in the first region is composed of a nonpolar surface of a nitride semiconductor, and the flat surface of the active layer in the second region is composed of a polar surface of a nitride semiconductor It does not matter if you
 窒化物半導体で構成された半導体発光素子においては、内部電界に起因して発光効率が低下するという別の課題がある。従来、窒化物半導体を用いた半導体発光素子は、c面成長によって作製されていた。ここで「c面成長」とは、c面に垂直な方向、すなわちc軸に沿ってエピタキシャル成長させることを意味する。 In the semiconductor light emitting element made of a nitride semiconductor, there is another problem that the luminous efficiency is lowered due to the internal electric field. Conventionally, a semiconductor light emitting device using a nitride semiconductor has been manufactured by c-plane growth. Here, “c-plane growth” means epitaxial growth along a direction perpendicular to the c-plane, that is, along the c-axis.
 c軸方向に関しては、Ga原子とN原子が非対称的に配置されている。このとき、GaN層の成長面となるc面においては、Ga原子のみを含むGa原子面が僅かにプラスに帯電する一方、N原子のみを含むN原子面が僅かにマイナスに帯電し、結果としてc軸方向に自発分極が発生する。また、GaN結晶層上に異種半導体層をヘテロエピタキシャル成長させた場合、両者の格子定数の違いによって、GaN結晶に圧縮歪や引っ張り歪が生じ、GaN結晶内でc軸方向に圧電分極(ピエゾ分極)が発生する。 In the c-axis direction, Ga atoms and N atoms are arranged asymmetrically. At this time, on the c-plane, which is the growth surface of the GaN layer, the Ga atomic surface containing only Ga atoms is slightly charged negatively, while the N atomic surface containing only N atoms is slightly negatively charged, as a result Spontaneous polarization occurs in the c-axis direction. In addition, when hetero-epitaxially growing a dissimilar semiconductor layer on a GaN crystal layer, compressive strain or tensile strain occurs in the GaN crystal due to the difference in lattice constant between the two, and piezoelectric polarization (piezoelectric polarization) in the c-axis direction in the GaN crystal Occurs.
 活性層は、一般的には量子井戸構造を有している。量子井戸構造を形成するに際しては上記のヘテロエピタキシャル成長が必要となる。よって、c面を成長面として活性層を含む半導体層を成長した場合、量子井戸内に自発分極やピエゾ分極に起因した内部電界がc軸方向に発生する。この結果、電子と正孔の再結合確率が下がって発光効率が低下してしまう。 The active layer generally has a quantum well structure. The above heteroepitaxial growth is required to form a quantum well structure. Therefore, when a semiconductor layer including an active layer is grown with the c-plane as a growth plane, an internal electric field due to spontaneous polarization or piezoelectric polarization is generated in the c-axis direction in the quantum well. As a result, the recombination probability of electrons and holes is lowered, and the light emission efficiency is lowered.
 これに対し、上記の半導体発光素子によれば、第一領域内において活性層が非極性面で構成されるため、全ての活性層が極性面で構成される場合と比較して内部電界が低下し、前記再結合確率が向上する。 On the other hand, according to the above-described semiconductor light emitting device, the active layer is formed of nonpolar planes in the first region, so the internal electric field is reduced compared to the case where all active layers are formed of polar planes. And the recombination probability is improved.
 また、第二領域内においては活性層が極性面で構成されるため、当該領域には平坦面が形成される。そして、この平坦面で構成された第二領域内に第一電極が形成されるため、上述したように隣接する第一電極の寸法の均一化と、複数の素子を製造する場合における素子間の第一電極の寸法の均一化が可能となり、ひいては素子間の電気的特性を均一化することができる。 Further, in the second region, the active layer is formed of a polar surface, so that a flat surface is formed in the region. Then, since the first electrode is formed in the second region formed by the flat surface, as described above, the dimensions of the adjacent first electrodes are made uniform, and between the elements in the case of manufacturing a plurality of elements. The dimensions of the first electrode can be made uniform, and thus the electrical characteristics between the elements can be made uniform.
 前記第二半導体層は、前記第一領域内において前記活性層とは反対側に位置する面が凹凸面を含んで構成され、前記第二領域内において前記活性層とは反対側に位置する面が平坦面で構成されているものとしても構わない。 In the second semiconductor layer, the surface located on the opposite side to the active layer in the first region includes a rough surface, and the surface located on the opposite side to the active layer in the second region May be configured as a flat surface.
 この場合、第一電極を形成するに際し、エッチングが進行して最初に第二半導体層が露出した時点からは、第二半導体層の膜厚及び活性層の膜厚分だけエッチングを進行させれば、第一半導体層を露出させることができる。これにより、エッチング工程の制御性が容易になり、製造素子の歩留まりが向上する。 In this case, when forming the first electrode, if the etching progresses and the second semiconductor layer is first exposed, the etching should proceed by the film thickness of the second semiconductor layer and the film thickness of the active layer. , And the first semiconductor layer can be exposed. Thereby, the controllability of the etching process becomes easy, and the yield of the manufactured element is improved.
 なお、前記第二半導体層は、前記第一領域内及び前記第二領域内において、前記活性層とは反対側に位置する面が平坦面で構成されているものとしても構わない。 The second semiconductor layer may have a flat surface on the side opposite to the active layer in the first area and the second area.
 逆に、前記第二半導体層は、前記第一領域内及び前記第二領域内において、前記活性層とは反対側に位置する面が凹凸面を含んで構成されているものとしても構わない。この凹凸面は、例えば光取り出し効率を向上させることを意図した面とすることができる。 Conversely, the second semiconductor layer may be configured such that the surface opposite to the active layer in the first region and the second region includes an uneven surface. This uneven surface can be, for example, a surface intended to improve the light extraction efficiency.
 第二領域内において、第二半導体層の活性層とは反対側に位置する面が凹凸面を含んで構成されていたとしても、上述したように、活性層の第一半導体層側の面は平坦面で構成されているため、活性層の第一半導体層側の面が凹凸面で構成されている第一領域内に第一電極をを形成する場合と比較して、エッチング量を低下させることができる効果は依然として奏される。すなわち、この構成によれば、光取り出し効率を向上しながらも、歩留まりを向上した素子が実現される。 In the second region, even if the surface of the second semiconductor layer opposite to the active layer is configured to include the uneven surface, as described above, the surface of the active layer on the first semiconductor layer side is Since the flat surface is formed, the etching amount is reduced as compared with the case where the first electrode is formed in the first region in which the surface on the first semiconductor layer side of the active layer is formed by the uneven surface. The effects that can be done are still played. That is, according to this configuration, an element with an improved yield can be realized while improving the light extraction efficiency.
 また、上記半導体発光素子は、
 前記第二半導体層と接触した第二電極を備え、
 前記第一電極は、前記第二電極に対して絶縁状態が保持された状態で前記第一半導体層に接触しているものとしても構わない。
Further, the semiconductor light emitting device is
A second electrode in contact with the second semiconductor layer,
The first electrode may be in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode.
 また、本発明は、半導体発光素子の製造方法であって、
 基板を準備する工程(a)と、
 前記基板の上層に、第一領域内においては少なくとも非極性面を結晶成長面とし、前記第一領域とは異なる第二領域内においては極性面を結晶成長面として、n型又はp型の窒化物半導体からなる第一半導体層を成長させる工程(b)と、
 前記第一半導体層の上層に窒化物半導体からなる活性層を成長させる工程(c)と、
 前記活性層の上層に、前記第一半導体層とは異なる導電型の窒化物半導体からなる第二半導体層を成長させる工程(d)と、
 前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層を露出させる工程(e)と、
 前記第二半導体層及び前記活性層と電気的に絶縁した状態で露出した前記第一半導体層の上面の少なくとも一部に前記第一電極を形成する工程(f)とを有することを特徴とする。
The present invention is also a method of manufacturing a semiconductor light emitting device,
Preparing a substrate (a);
In the upper layer of the substrate, in the first region, at least a nonpolar surface is a crystal growth surface, and in a second region different from the first region, a polar surface is a crystal growth surface, n-type or p-type nitridation Growing a first semiconductor layer made of a semiconductor semiconductor (b);
(C) growing an active layer made of a nitride semiconductor on the first semiconductor layer;
Growing a second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer;
Etching the second semiconductor layer and the active layer in at least a part of the second region to expose the first semiconductor layer on the bottom surface;
And (f) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. .
 この方法によれば、上記第一の構成に係る素子が製造される。 According to this method, the device according to the first configuration is manufactured.
 工程(b)では、第一領域にて少なくとも非極性面を結晶成長面として第一半導体層を成長させる一方、第二領域にて極性面を結晶成長面として第一半導体層を成長させる。これにより、工程(b)が完了した状態では、第一領域において第一半導体層の表面に凹凸が形成される一方、第二領域において第一半導体層の表面は平坦となる。 In the step (b), the first semiconductor layer is grown with the nonpolar plane as the crystal growth plane at least in the first region, and the first semiconductor layer is grown with the polar plane as the crystal growth plane in the second region. Thereby, in a state where the step (b) is completed, the unevenness is formed on the surface of the first semiconductor layer in the first region, while the surface of the first semiconductor layer becomes flat in the second region.
 その後、工程(b)の後に工程(c)を行うことで、第一領域内において第一半導体層の側に位置する面が凹凸面を含んで構成される一方、第一領域とは異なる第二領域内において前記第一半導体層の側に位置する面が平坦面で構成される活性層を成長させることができる。よって、上述したように、工程(e)におけるエッチング時において、第一半導体層を露出させるために必要なエッチング量を低下させることができ、歩留まりの高い素子が実現される。 Thereafter, by performing step (c) after step (b), the surface located on the side of the first semiconductor layer in the first region is configured to include an uneven surface, while the surface different from the first region is It is possible to grow an active layer in which the surface located on the side of the first semiconductor layer in the two regions is a flat surface. Therefore, as described above, at the time of etching in step (e), the amount of etching required to expose the first semiconductor layer can be reduced, and a device with high yield can be realized.
 また、上記の方法によれば、少なくとも第一領域内では、非極性面を結晶成長面とする活性層を成長させることができる。よって、本方法によって製造される半導体発光素子は、極性面を結晶成長面とする活性層のみを有する半導体発光素子に比べて内部電界が緩和され、発光効率が向上する。 Further, according to the above method, an active layer having a nonpolar plane as a crystal growth plane can be grown at least in the first region. Therefore, in the semiconductor light emitting device manufactured by the present method, the internal electric field is relaxed and the light emission efficiency is improved as compared with the semiconductor light emitting device having only the active layer whose crystal growth surface is the polar surface.
 上述した工程(b)を実現するための方法としては、種々の方法を採用することができる。 Various methods can be adopted as a method for realizing the step (b) described above.
 一例としては、工程(a)の後に、基板の上面に窒化物半導体からなる第三半導体層を成長させた後、この第三半導体層に対して、第一領域内において、所定の方向に延伸する溝部(以下、「第一溝部」と呼ぶ。)を形成する工程(b1)を実行する。第一溝部は、基板の面が露出しない範囲内の深さとする。 For example, after the step (a), a third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the third semiconductor layer is stretched in a predetermined direction in the first region. A step (b1) of forming a groove (hereinafter referred to as a "first groove") is performed. The first groove has a depth within a range in which the surface of the substrate is not exposed.
 工程(b1)の実行後、再び第三半導体層を成長させる工程(b2)を実行する。工程(b2)の実行前において、第一領域内には第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第三半導体層が成長することで、第一領域内においては少なくとも非極性面を成長面とした第三半導体層が形成される。一方、第二領域内においては極性面を成長面とする第三半導体層が形成される。 After execution of the step (b1), the step (b2) of growing the third semiconductor layer again is performed. Before the step (b2) is performed, the uneven surface is formed by the presence of the first groove in the first region, and the third semiconductor layer is grown on the uneven surface to form the inside of the first region. In the above, the third semiconductor layer is formed with the growth surface at least a nonpolar surface. On the other hand, in the second region, a third semiconductor layer having a polar plane as a growth surface is formed.
 工程(b2)の実行後、第一半導体層を成長させる工程(b3)を実行する。第一半導体層は、第三半導体層の成長面に引き続き成長することになるため、第一領域においては少なくとも非極性面を成長面として形成され、第二領域においては極性面を成長面として形成される。この工程(b1)~(b3)によって、工程(b)を実現することができる。 After execution of the step (b2), the step (b3) of growing the first semiconductor layer is performed. The first semiconductor layer is formed on the growth surface of the third semiconductor layer so that at least the nonpolar surface is formed as the growth surface in the first region, and the polar surface is formed as the growth surface in the second region. Be done. The step (b) can be realized by the steps (b1) to (b3).
 別の一例としては、工程(b1)の実行後に、第一半導体層を成長させる工程(b3)を実行することで、工程(b)を実現してもよい。すなわち、工程(b3)の実行前において、第一領域内には第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第一半導体層が成長することで、第一領域内においては少なくとも非極性面を成長面とした第一半導体層が形成される。一方、第二領域内においては極性面を成長面とする第一半導体層が成長する。 As another example, the step (b) may be realized by performing the step (b3) of growing the first semiconductor layer after the step (b1) is performed. That is, before the step (b3) is performed, the uneven surface is formed by the presence of the first groove in the first region, and the first semiconductor layer is grown on the uneven surface. In the region, a first semiconductor layer having at least a nonpolar surface as a growth surface is formed. On the other hand, in the second region, a first semiconductor layer having a polar surface as a growth surface is grown.
 更に別の一例としては、工程(a)の後に、基板の上面に窒化物半導体からなる第三半導体層を成長させ、その後に第一半導体層を成長させる工程(b4)を実行する。その後、第一半導体層に対して、第一領域内において、所定の方向に延伸する溝部を形成する工程(b5)を実行する。そして、工程(b5)の実行後、再び第一半導体層を成長させる工程(b6)を実行する。工程(b6)の実行前において、第一領域内には第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第一半導体層が成長することで、第一領域内においては少なくとも非極性面を成長面とした第一半導体層が形成される一方、第二領域内においては極性面を成長面とする第一半導体層が形成される。この工程(b4)~(b6)によって、工程(b)を実現することができる。 As still another example, after the step (a), the third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the step (b4) of growing the first semiconductor layer is performed. Thereafter, in the first region, a step (b5) of forming a groove extending in a predetermined direction is performed on the first semiconductor layer. Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer is performed again. Before the step (b6) is performed, the uneven surface is formed by the presence of the first groove in the first region, and the first semiconductor layer is grown on the uneven surface to form the inside of the first region. In the second semiconductor layer, the first semiconductor layer having the nonpolar plane as the growth plane is formed, and in the second region, the first semiconductor layer having the polar plane as the growth plane is formed. The step (b) can be realized by the steps (b4) to (b6).
 前記工程(e)は、前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層が露出してなる溝部を形成する工程であり、
 前記工程(f)は、前記第二半導体層及び前記活性層と電気的に絶縁した状態で前記溝部内に導電性材料を充填して前記第一電極を形成する工程であるものとしても構わない。
The step (e) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed. Yes,
The step (f) may be a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. .
 この方法によれば、第一電極は第二半導体層及び活性層を貫通する溝部(以下、適宜「第二溝部」と呼ぶ。)内に充填されるため、いわゆるビア構造型の半導体発光素子が実現される。これにより、電流分布密度の均一性が良好となり、高電流駆動に適した半導体発光素子が実現される。 According to this method, the first electrode is filled in a groove penetrating the second semiconductor layer and the active layer (hereinafter referred to as “second groove” as appropriate), so a so-called semiconductor light emitting element of via structure type is obtained. To be realized. Thereby, the uniformity of the current distribution density is improved, and a semiconductor light emitting device suitable for high current driving is realized.
 なお、前記工程(e)は、窒化物半導体からなる層のc面に平行な面をエッチングする工程としても構わない。ここで、本明細書では、「c面に平行な面」とはc面及び実質的にc面に相当する面を指し、実質的にc面に相当する面とはc面に対して傾斜角度が5°以下の範囲内のものを指す。 The step (e) may be a step of etching a plane parallel to the c-plane of the layer made of nitride semiconductor. Here, in the present specification, "a plane parallel to c-plane" refers to a c-plane and a plane substantially corresponding to c-plane, and a plane substantially corresponding to c-plane is inclined to c-plane The angle is in the range of 5 ° or less.
 また、上記方法において、前記工程(d)の終了後、前記工程(e)の開始前に、前記第二半導体層の上面に凹凸形状を形成する工程(g)を有するものとしても構わない。 In the above method, after the step (d) is completed, before the start of the step (e), a step (g) may be formed to form a concavo-convex shape on the upper surface of the second semiconductor layer.
 この方法によれば、光取り出し効率を向上しながらも、歩留まりを向上した素子が実現される。 According to this method, an element with an improved yield can be realized while improving the light extraction efficiency.
 また、上記方法において、前記工程(d)の終了後、前記工程(e)の開始前に、少なくとも前記第一領域内における前記第二半導体層の上層に第二電極を形成する工程(h)を有し、
 前記工程(f)が、前記第二電極と電気的に絶縁した状態で前記第一電極を形成する工程であるものとしても構わない。
In the above method, after the step (d) is completed, before the start of the step (e), a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in the first region. Have
The step (f) may be a step of forming the first electrode in a state of being electrically insulated from the second electrode.
 上記方法によれば、活性層の表面に凹凸形状を有する半導体発光素子において、第一電極を形成する際に、エッチング量を最小限に抑制することができ、歩留まりの高い半導体発光素子が実現される。 According to the above method, in the semiconductor light emitting device having the uneven shape on the surface of the active layer, the etching amount can be minimized when forming the first electrode, and a semiconductor light emitting device with high yield can be realized. Ru.
 次に第二の構成について説明する。
 第二の構成において、前記第一領域内において前記活性層とは反対側に位置する面が凹凸面を含んで構成される一方、前記第二領域内において前記活性層とは反対側に位置する面が平坦面で構成されている。
Next, the second configuration will be described.
In the second configuration, the surface opposite to the active layer in the first region is configured to include an uneven surface, while the surface opposite to the active layer is in the second region. The surface is composed of a flat surface.
 上記の半導体発光素子によれば、第二半導体層が、活性層とは反対側に位置する面に凹凸が形成されているため、活性層から発せられた光を素子外に取り出すことのできる光量が上昇し、光取り出し効率が向上する。 According to the above-described semiconductor light emitting device, since the second semiconductor layer has the concavities and convexities formed on the surface opposite to the active layer, the amount of light capable of extracting the light emitted from the active layer to the outside of the device Increases to improve the light extraction efficiency.
 第一電極は、活性層及び第二半導体層存在しない領域において、第一半導体層に接触するように形成されている。この第一電極は、第二半導体層の前記活性層とは反対側に位置する面が凹凸面を含んで構成されている第一領域内ではなく、第二半導体層の前記活性層とは反対側に位置する面が平坦面で構成されている第二領域内に設けられている。 The first electrode is formed to be in contact with the first semiconductor layer in a region where the active layer and the second semiconductor layer are not present. In the first electrode, the surface of the second semiconductor layer opposite to the active layer is not in the first region including the uneven surface, but opposite to the active layer of the second semiconductor layer. The surface located on the side is provided in a second area which is constituted by a flat surface.
 活性層及び第二半導体層が存在しない領域を形成するためには、当該領域内に位置する第二半導体層及び活性層に対して、例えばエッチング等を施すことで形成されるが、エッチング対象となる第二半導体層の上面が平坦面で構成されるため、エッチング処理時に与えるエネルギーを対象箇所に対して均一的に与えることができる。このため、同一素子に複数の第一電極を形成する場合、この第一電極を形成するためのエッチング領域を同一の寸法で形成できる。よって、製造される各素子間の電気的特性を均一化させることができ、歩留まりの高い半導体発光素子が実現される。 In order to form a region in which the active layer and the second semiconductor layer do not exist, the second semiconductor layer and the active layer located in the region are formed, for example, by etching or the like. Since the upper surface of the second semiconductor layer is a flat surface, energy given at the time of etching can be uniformly given to the target portion. For this reason, when forming a plurality of first electrodes in the same element, etching regions for forming the first electrodes can be formed with the same dimensions. Therefore, the electrical characteristics between the manufactured devices can be made uniform, and a semiconductor light emitting device with high yield can be realized.
 この半導体発光素子は、ビア型の構造のみならず、フリップチップ型の構造とすることができる。 The semiconductor light emitting device can be a flip chip structure as well as a via structure.
 前記第二領域内において、少なくとも前記第二半導体層及び前記活性層を貫通し、前記第一半導体層に達する孔部を有し、
 前記第一電極は、前記活性層及び前記第二半導体層に対して絶縁状態が保持された状態で前記孔部に挿入され、前記第一半導体層に接触するように形成されているものとしても構わない。これにより、歩留まりの良いビア型構造の半導体発光素子が実現される。
In the second region, it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
The first electrode may be inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and may be formed to be in contact with the first semiconductor layer. I do not care. As a result, a semiconductor light emitting device of via type structure with high yield is realized.
 上記の素子において、前記活性層は、非極性面を結晶面とする窒化物半導体で構成されているものとしても構わない。 In the above element, the active layer may be made of a nitride semiconductor having a nonpolar plane as a crystal plane.
 窒化物半導体で構成された半導体発光素子においては、内部電界に起因して発光効率が低下するという別の課題がある。従来、窒化物半導体を用いた半導体発光素子は、c面成長によって作製されていた。ここで「c面成長」とは、c面に垂直な方向、すなわちc軸に沿ってエピタキシャル成長させることを意味する。 In the semiconductor light emitting element made of a nitride semiconductor, there is another problem that the luminous efficiency is lowered due to the internal electric field. Conventionally, a semiconductor light emitting device using a nitride semiconductor has been manufactured by c-plane growth. Here, “c-plane growth” means epitaxial growth along a direction perpendicular to the c-plane, that is, along the c-axis.
 c軸方向に関しては、Ga原子とN原子が非対称的に配置されている。このとき、GaN層の成長面となるc面においては、Ga原子のみを含むGa原子面が僅かにプラスに帯電する一方、N原子のみを含むN原子面が僅かにマイナスに帯電し、結果としてc軸方向に自発分極が発生する。また、GaN結晶層上に異種半導体層をヘテロエピタキシャル成長させた場合、両者の格子定数の違いによって、GaN結晶に圧縮歪や引っ張り歪が生じ、GaN結晶内でc軸方向に圧電分極(ピエゾ分極)が発生する。 In the c-axis direction, Ga atoms and N atoms are arranged asymmetrically. At this time, on the c-plane, which is the growth surface of the GaN layer, the Ga atomic surface containing only Ga atoms is slightly charged negatively, while the N atomic surface containing only N atoms is slightly negatively charged, as a result Spontaneous polarization occurs in the c-axis direction. In addition, when hetero-epitaxially growing a dissimilar semiconductor layer on a GaN crystal layer, compressive strain or tensile strain occurs in the GaN crystal due to the difference in lattice constant between the two, and piezoelectric polarization (piezoelectric polarization) in the c-axis direction in the GaN crystal Occurs.
 活性層は、一般的には量子井戸構造を有している。量子井戸構造を形成するに際しては上記のヘテロエピタキシャル成長が必要となる。よって、c面を成長面として活性層を含む半導体層を成長した場合、量子井戸内に自発分極やピエゾ分極に起因した内部電界がc軸方向に発生する。この結果、電子と正孔の再結合確率が下がって発光効率が低下してしまう。 The active layer generally has a quantum well structure. The above heteroepitaxial growth is required to form a quantum well structure. Therefore, when a semiconductor layer including an active layer is grown with the c-plane as a growth plane, an internal electric field due to spontaneous polarization or piezoelectric polarization is generated in the c-axis direction in the quantum well. As a result, the recombination probability of electrons and holes is lowered, and the light emission efficiency is lowered.
 これに対し、上記の半導体発光素子によれば、活性層が非極性面で構成されるため、全ての活性層が極性面で構成される場合と比較して内部電界が低下し、前記再結合確率が向上する。 On the other hand, according to the above-described semiconductor light emitting device, since the active layer is formed of a nonpolar surface, the internal electric field is reduced as compared with the case where all the active layers are formed of polar surfaces, The probability is improved.
 上記の構成において、前記活性層は、前記第一領域及び前記第二領域にわたって、前記第一半導体層側に位置する面、及び前記第二半導体層の側に位置する面の双方が凹凸面を含んで構成されているものとしても構わない。 In the above configuration, both the surface located on the side of the first semiconductor layer and the surface located on the side of the second semiconductor layer across the first region and the second region are uneven. It does not matter as what is comprised including.
 また、別の態様として、前記活性層は、前記第一領域及び前記第二領域にわたって、前記第一半導体層側に位置する面、及び前記第二半導体層の側に位置する面の双方が平坦面で構成されているものとしても構わない。 In another aspect, the active layer is flat over both the first region and the second region, and a surface located on the side of the first semiconductor layer and a surface located on the side of the second semiconductor layer It does not matter as what is comprised by the surface.
 また、上記半導体発光素子は、
 前記第二半導体層と接触した第二電極を備え、
 前記第一電極は、前記第二電極に対して絶縁状態が保持された状態で前記第一半導体層に接触しているものとしても構わない。
Further, the semiconductor light emitting device is
A second electrode in contact with the second semiconductor layer,
The first electrode may be in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode.
 また、本発明は、
 基板を準備する工程(a)と、
 前記基板の上層に、n型又はp型の窒化物半導体からなる第一半導体層を成長させる工程(b)と、
 前記第一半導体層の上層に窒化物半導体からなる活性層を成長させる工程(c)と、
 前記活性層の上層に、前記第一半導体層とは異なる導電型の窒化物半導体からなる第二半導体層を成長させる工程(d)と、
 前記第二半導体層の上面のうち、第一領域内に位置する前記第二半導体層の上面の少なくとも一部に対して凹凸形状を形成する工程(e)と、
 前記第一領域とは異なる第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層を露出させる工程(f)と、
 前記第二半導体層及び前記活性層と電気的に絶縁した状態で露出した前記第一半導体層の上面の少なくとも一部に前記第一電極を形成する工程(g)とを有することを特徴とする。
Also, the present invention is
Preparing a substrate (a);
Growing a first semiconductor layer made of an n-type or p-type nitride semiconductor on the upper layer of the substrate (b)
(C) growing an active layer made of a nitride semiconductor on the first semiconductor layer;
Growing a second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer;
Forming a concavo-convex shape on at least a part of the upper surface of the second semiconductor layer located in the first region among the upper surfaces of the second semiconductor layer;
Etching the second semiconductor layer and the active layer in at least a part of the second region different from the first region to expose the first semiconductor layer on the bottom surface;
And (g) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. .
 この方法によれば、上記第二の構成に係る素子が製造される。 According to this method, the device according to the second configuration is manufactured.
 上記方法によれば、素子間の寸法の均一化を図りながらも、光取り出し効率の向上した半導体発光素子が製造される。 According to the above method, a semiconductor light emitting device with improved light extraction efficiency is manufactured while achieving uniform dimensions among the devices.
 上記方法において、前記工程(b)は、非極性面を結晶成長面として前記第一半導体層を成長させる工程であるものとしても構わない。これにより、内部電界が低下し、再結合確率が向上した半導体発光素子が実現される。 In the above method, the step (b) may be a step of growing the first semiconductor layer with a nonpolar plane as a crystal growth plane. As a result, a semiconductor light emitting device in which the internal electric field is reduced and the recombination probability is improved is realized.
 ところで、上述した工程(b)を実現するための方法としては、種々の方法を採用することができる。 By the way, various methods can be adopted as a method for realizing the above-described step (b).
 一例としては、工程(a)の後に、基板の上面に窒化物半導体からなる第三半導体層を成長させた後、この第三半導体層に対して所定の方向に延伸する溝部(以下、「第一溝部」と呼ぶ。)を形成する工程(b1)を実行する。第一溝部は、基板の面が露出しない範囲内の深さとする。 As an example, after the step (a), a third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then a groove extending in a predetermined direction with respect to the third semiconductor layer (hereinafter Step (b1) of forming a single groove portion) is performed. The first groove has a depth within a range in which the surface of the substrate is not exposed.
 工程(b1)の実行後、再び第三半導体層を成長させる工程(b2)を実行する。工程(b2)の実行前において、第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第三半導体層が成長することで少なくとも非極性面を成長面とした第三半導体層が形成される。 After execution of the step (b1), the step (b2) of growing the third semiconductor layer again is performed. Before the step (b2) is performed, the uneven surface is formed by the presence of the first groove, and the third semiconductor layer is grown on the uneven surface to form a third semiconductor layer with at least a nonpolar surface as a growth surface. A semiconductor layer is formed.
 工程(b2)の実行後、第一半導体層を成長させる工程(b3)を実行する。第一半導体層は、第三半導体層の成長面に引き続き成長することになるため、少なくとも非極性面を成長面として形成される。この工程(b1)~(b3)によって、工程(b)を実現することができる。 After execution of the step (b2), the step (b3) of growing the first semiconductor layer is performed. The first semiconductor layer is formed on at least the nonpolar surface as the growth surface because the first semiconductor layer is to be continuously grown on the growth surface of the third semiconductor layer. The step (b) can be realized by the steps (b1) to (b3).
 別の一例としては、工程(b1)の実行後に、第一半導体層を成長させる工程(b3)を実行することで、工程(b)を実現してもよい。すなわち、工程(b3)の実行前において、第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第一半導体層が成長することで、少なくとも非極性面を成長面とした第一半導体層が形成される。 As another example, the step (b) may be realized by performing the step (b3) of growing the first semiconductor layer after the step (b1) is performed. That is, before the step (b3) is performed, the uneven surface is formed by the presence of the first groove portion, and the first semiconductor layer is grown on the uneven surface to form at least the nonpolar surface as the growth surface. The first semiconductor layer is formed.
 更に別の一例としては、工程(a)の後に、基板の上面に窒化物半導体からなる第三半導体層を成長させ、その後に第一半導体層を成長させる工程(b4)を実行する。その後、第一半導体層に対して、所定の方向に延伸する溝部を形成する工程(b5)を実行する。そして、工程(b5)の実行後、再び第一半導体層を成長させる工程(b6)を実行する。工程(b6)の実行前において、第一溝部が存在することで凹凸面が形成されており、この凹凸面上に第一半導体層が成長することで、少なくとも非極性面を成長面とした第一半導体層が形成される。この工程(b4)~(b6)によって、工程(b)を実現することができる。 As still another example, after the step (a), the third semiconductor layer made of a nitride semiconductor is grown on the upper surface of the substrate, and then the step (b4) of growing the first semiconductor layer is performed. Thereafter, a step (b5) of forming a groove extending in a predetermined direction is performed on the first semiconductor layer. Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer is performed again. Before execution of the step (b6), the uneven surface is formed by the presence of the first groove portion, and the first semiconductor layer is grown on the uneven surface, so that at least the nonpolar surface is the growth surface. One semiconductor layer is formed. The step (b) can be realized by the steps (b4) to (b6).
 前記工程(f)は、前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層が露出してなる溝部を形成する工程であり、
 前記工程(g)は、前記第二半導体層及び前記活性層と電気的に絶縁した状態で前記溝部内に導電性材料を充填して前記第一電極を形成する工程であるものとしても構わない。
The step (f) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed. Yes,
The step (g) may be a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. .
 この方法によれば、第一電極は第二半導体層及び活性層を貫通する溝部(以下、適宜「第二溝部」と呼ぶ。)内に充填されるため、いわゆるビア構造型の半導体発光素子が実現される。これにより、電流分布密度の均一性が良好となり、高電流駆動に適した半導体発光素子が実現される。 According to this method, the first electrode is filled in a groove penetrating the second semiconductor layer and the active layer (hereinafter referred to as “second groove” as appropriate), so a so-called semiconductor light emitting element of via structure type is obtained. To be realized. Thereby, the uniformity of the current distribution density is improved, and a semiconductor light emitting device suitable for high current driving is realized.
 前記工程(b)は、前記第一領域及び前記第二領域にわたって、非極性面を結晶成長面として前記第一半導体層を成長させる工程であるものとしても構わない。 The step (b) may be a step of growing the first semiconductor layer using a nonpolar surface as a crystal growth surface over the first region and the second region.
 また、上記方法において、前記工程(d)の終了後、前記工程(f)の開始前に、少なくとも前記第一領域内における前記第二半導体層の上層に第二電極を形成する工程(h)を有し、
 前記工程(g)が、前記第二電極と電気的に絶縁した状態で前記第一電極を形成する工程であるものとしても構わない。
In the above method, after the step (d) is completed, before the start of the step (f), a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in the first region. Have
The step (g) may be a step of forming the first electrode in a state of being electrically insulated from the second electrode.
 上記方法によれば、活性層の表面に凹凸形状を有する半導体発光素子において、第一電極を形成する際に、エッチング量を最小限に抑制することができ、歩留まりの高い半導体発光素子が実現される。 According to the above method, in the semiconductor light emitting device having the uneven shape on the surface of the active layer, the etching amount can be minimized when forming the first electrode, and a semiconductor light emitting device with high yield can be realized. Ru.
 本発明によれば、歩留まりの高い半導体発光素子を実現することができる。 According to the present invention, a semiconductor light emitting device with high yield can be realized.
第一の構成の一実施形態の半導体発光素子の構造を模式的に示す図面である。It is drawing which shows typically the structure of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. 第一の構成の一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of one Embodiment of 1st structure. ステップS9において、エッチングする箇所を、第二領域104内にした場合と第一領域103内にした場合の相違点を説明するための図である。FIG. 17 is a diagram for describing the difference between the case where the etching is performed in the second region 104 and the case where the etching is performed in the first region 103 in step S9. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の別の構造を模式的に示す図面である。It is drawing which shows typically another structure of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の別の構造を模式的に示す図面である。It is drawing which shows typically another structure of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of 1st structure. 第一の構成の別実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of another embodiment of a 1st structure. 第一の構成の別実施形態の半導体発光素子の別の構造を模式的に示す図面である。It is drawing which shows typically another structure of the semiconductor light-emitting device of another embodiment of a 1st structure. 第二の構成の第一実施形態の半導体発光素子の構造を模式的に示す図面である。It is drawing which shows typically the structure of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第一実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 1st embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の構造を模式的に示す図面である。It is drawing which shows typically the structure of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の製造工程を示す一工程図である。It is a process drawing which shows the manufacturing process of the semiconductor light-emitting device of 2nd embodiment of 2nd structure. 第二の構成の第二実施形態の半導体発光素子の構造を模式的に示す別の図面である。It is another drawing which shows typically the structure of the semiconductor light-emitting device of 2nd embodiment of 2nd structure.
 本発明の半導体発光素子及びその製造方法につき、図面を参照して説明する。なお、各図において図面の寸法比と実際の寸法比は必ずしも一致しない。 The semiconductor light emitting device of the present invention and the method of manufacturing the same will be described with reference to the drawings. In each of the drawings, the dimensional ratio of the drawings and the actual dimensional ratio do not necessarily coincide.
 [第一の構成]
 本発明の第一の構成について説明する。
[First configuration]
The first configuration of the present invention will be described.
 〈構造〉
 図1は、半導体発光素子の構造を模式的に示す図面であり、いわゆる「ビア構造型」と呼ばれる素子に対応する。図1において、(a)は光取り出し面とは反対側から見たときの模式的な平面図であり、(b)は(a)内におけるA-A線で切断したときの模式的な断面図であり、ここでは[0001]方向及び[1-100]方向で形成される平面で切断したときの模式的な断面図に相当する。
<Construction>
FIG. 1 is a drawing schematically showing the structure of a semiconductor light emitting element, and corresponds to an element called a so-called “via structure type”. In FIG. 1, (a) is a schematic plan view as viewed from the side opposite to the light extraction surface, and (b) is a schematic cross section when cut along line AA in (a). FIG. 10 is a diagram, and corresponds to a schematic cross-sectional view when cut by a plane formed in the [0001] direction and the [1-100] direction here.
 なお、本明細書では、ミラー指数を示すカッコ内の数字の直前に付された符号「-」はその指数の反転を示しており、図面内における「バー」と同義である。また、本明細書において、{1-101}面とは、(1-101)面、及びこの(1-101)面と結晶学的に等価な面、すなわち(10-11)面、(01-11)面、(0-111)面、(-1101)面、及び(-1011)面を含む概念である。また、本明細書において、<11-20>方向とは、[11-20]方向、及びこの[11-20]方向と結晶学的に等価な方向、すなわち[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向、及び[2-1-10]方向を含む概念である。 In the present specification, the symbol “−” attached immediately before the numeral in parentheses indicating the Miller index indicates the inversion of the index, and is the same as “bar” in the drawings. Further, in the present specification, the {1-101} plane means a (1-101) plane and a plane that is crystallographically equivalent to the (1-101) plane, that is, a (10-11) plane, (01 It is a concept including a -11) plane, a (0-111) plane, a (-1101) plane, and a (-1011) plane. In the present specification, the <11-20> direction is the [11-20] direction and a direction crystallographically equivalent to the [11-20] direction, that is, the [1-210] direction, 2110] A concept including a [-1 120] direction, a [-12-10] direction, and a [2-1-10] direction.
 また、本明細書において、単に「AlGaN」という表記をしている場合には、AlとGaを含む窒化物半導体であるという意味を示すものであり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。InGaNやAlInGaNという表記についても同様である。 Further, in the present specification, the term “AlGaN” simply means that the semiconductor is a nitride semiconductor containing Al and Ga, and the description of the composition ratio of Al and Ga is simply omitted. It is not intended to limit the case where the composition ratio of Al and Ga is 1: 1. The same applies to the notation of InGaN or AlInGaN.
 半導体発光素子101は、基板111と、第一半導体層115と、活性層117と、第二半導体層119と、第一電極141とを備えている。第一半導体層115は基板111の上層に形成され、活性層117は第一半導体層115の上層に形成され、第二半導体層119は活性層117の上層に形成されている。また、半導体発光素子101は、第一電極141及び第二電極121を有している。 The semiconductor light emitting device 101 includes a substrate 111, a first semiconductor layer 115, an active layer 117, a second semiconductor layer 119, and a first electrode 141. The first semiconductor layer 115 is formed in the upper layer of the substrate 111, the active layer 117 is formed in the upper layer of the first semiconductor layer 115, and the second semiconductor layer 119 is formed in the upper layer of the active layer 117. The semiconductor light emitting device 101 further includes a first electrode 141 and a second electrode 121.
 ここで、説明の都合上、図1(b)に示すように、半導体発光素子101を第一領域103及び第二領域104の2つの領域に分ける。第二領域104は第一電極141が形成されている領域及びその近傍の領域に対応し、第一領域103は半導体発光素子101において第二領域104よりも第一電極141の配置箇所から離れた領域に対応している。 Here, for convenience of explanation, as shown in FIG. 1B, the semiconductor light emitting device 101 is divided into two regions of a first region 103 and a second region 104. The second region 104 corresponds to the region where the first electrode 141 is formed and the region in the vicinity thereof, and the first region 103 is farther from the position where the first electrode 141 is disposed in the semiconductor light emitting device 101 than the second region 104. Corresponds to the area.
 本実施形態では、活性層117は、第一領域103内において凹凸面を含んで形成されている一方、第二領域104内において平坦面が形成されている。そして、半導体発光素子101は、第二領域104内に孔部107を有しており、この孔部107内に挿入されるように第一電極141が形成されている。 In the present embodiment, the active layer 117 is formed to include an uneven surface in the first region 103, while a flat surface is formed in the second region 104. The semiconductor light emitting element 101 has a hole 107 in the second region 104, and the first electrode 141 is formed so as to be inserted into the hole 107.
 以下、各要素の詳細な構成の一例について説明する。 Hereinafter, an example of a detailed configuration of each element will be described.
  (基板111、素子基板112)
 基板111は、例えばサファイア基板で構成される。また、素子基板112は、CuW、W、Moなどの導電性基板、Siなどの半導体基板、又はAlN等の絶縁性基板に配線パターンを設けたもので構成される。なお、図1(b)に示されるように、素子基板112において、第一電極141に電気的に接続される領域と、第二電極121に電気的に接続される領域との間は絶縁性が確保されている。この絶縁性を確保するための方法は種々の方法を採り得るが、一例としてはパターニングによって実現することができる。
(Substrate 111, Element Substrate 112)
The substrate 111 is made of, for example, a sapphire substrate. Further, the element substrate 112 is configured by providing a wiring pattern on a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate such as AlN. Note that, as shown in FIG. 1B, in the element substrate 112, insulation is provided between the region electrically connected to the first electrode 141 and the region electrically connected to the second electrode 121. Is secured. Although various methods can be adopted as a method for securing this insulation property, an example can be realized by patterning.
  (接合層143)
 接合層143は、例えば、Au-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。この接合層143は、基板111と素子基板112とを接合する際に、両者の密着性を確保するための層として機能している。
(Bonding layer 143)
The bonding layer 143 is made of, for example, Au-Sn, Au-In, Au-Cu-Sn, Cu-Sn, Pd-Sn, Sn or the like. The bonding layer 143 functions as a layer for securing the adhesion between the substrate 111 and the element substrate 112 when bonding the substrate 111 and the element substrate 112.
  (保護層142)
 保護層142は、例えばPt系の金属(TiとPtの合金)、W、Mo、Niなどで構成される。接合層143を介した接合の際に、接合層143を構成する材料が第二電極121側に拡散して、第二電極121における反射率が落ちることによる光取り出し効率の低下を防止する機能を果たしている。
(Protective layer 142)
The protective layer 142 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni or the like. At the time of bonding via the bonding layer 143, the material constituting the bonding layer 143 diffuses to the second electrode 121 side, and the function of preventing a decrease in light extraction efficiency due to a decrease in reflectance at the second electrode 121 is performed. Play.
 なお、図1(b)に示すように、接合層143を構成する材料が第一電極141側に拡散するのを防止する目的で、第一電極141の上面に保護層142を設けても構わない。 Note that as shown in FIG. 1B, a protective layer 142 may be provided on the upper surface of the first electrode 141 for the purpose of preventing the material constituting the bonding layer 143 from diffusing to the first electrode 141 side. Absent.
  (第一電極141)
 第一電極141は、例えばCr-Auで構成される。図1(a)に示すように、本実施形態の半導体発光素子101は、離散的に配置された複数の第一電極141を有する構成である。
(First electrode 141)
The first electrode 141 is made of, for example, Cr-Au. As shown to Fig.1 (a), the semiconductor light-emitting device 101 of this embodiment is the structure which has the some 1st electrode 141 arrange | positioned discretely.
 第一電極141は、第二領域104内における第二半導体層119及び活性層117を貫通し、第一半導体層115に達する孔部107に挿入されることで形成されている。なお、本実施形態では、第一半導体層115がn型半導体層であり、第二半導体層119がp型半導体層であるものとして説明する。このとき、第一電極141はn側電極に相当する。 The first electrode 141 is formed by being inserted into the hole 107 which penetrates the second semiconductor layer 119 and the active layer 117 in the second region 104 and reaches the first semiconductor layer 115. In the present embodiment, the first semiconductor layer 115 is an n-type semiconductor layer, and the second semiconductor layer 119 is a p-type semiconductor layer. At this time, the first electrode 141 corresponds to the n-side electrode.
  (第二電極121)
 第二電極121は、第二半導体層119の面上に形成されており、例えばAg系の金属(NiとAgの合金)、Al、又はRh等を含む金属材料で構成することができる。これらの材料は、活性層117から射出される光を反射させることのできる導電性の材料である。このように構成することで、活性層117から素子基板112の側に向かって放出された光を、第二電極121で反射させて、取り出し面側(基板111側)へと導くことができるので、高い光取り出し効率が実現される。本実施形態では、第二電極121はp側電極に相当する。
(Second electrode 121)
The second electrode 121 is formed on the surface of the second semiconductor layer 119, and can be made of, for example, a metal material containing an Ag-based metal (an alloy of Ni and Ag), Al, Rh, or the like. These materials are conductive materials capable of reflecting the light emitted from the active layer 117. With this configuration, light emitted from the active layer 117 toward the element substrate 112 can be reflected by the second electrode 121 and guided to the extraction surface side (substrate 111 side). , High light extraction efficiency is realized. In the present embodiment, the second electrode 121 corresponds to a p-side electrode.
  (絶縁層154)
 絶縁層154は、上述したように、第一電極141と第二電極121の間の絶縁性、第一電極141と第二半導体層119との間の絶縁性、及び第一電極141と活性層117との間の絶縁性を確保する目的で設けられている。本実施形態では、絶縁層154は、第一電極141の外側面の一部、及び第二電極121の素子基板112側の面の一部に設けられているものとしているが、上記の目的が実現できる範囲内で絶縁層154の形成箇所及び形成態様は適宜変更可能である。なお、絶縁層154はSiO2、SiN、Zr23又はAl23などで構成されるものとして構わない。
(Insulating layer 154)
As described above, the insulating layer 154 has an insulating property between the first electrode 141 and the second electrode 121, an insulating property between the first electrode 141 and the second semiconductor layer 119, and the first electrode 141 and the active layer. It is provided for the purpose of securing insulation between it and 117. In the present embodiment, the insulating layer 154 is provided on a part of the outer surface of the first electrode 141 and a part of the surface of the second electrode 121 on the element substrate 112 side. The formation location and formation mode of the insulating layer 154 can be appropriately changed within the range that can be realized. The insulating layer 154 may be made of SiO 2 , SiN, Zr 2 O 3, Al 2 O 3 or the like.
  (第一半導体層115)
 本実施形態において、第一半導体層115は、n型のAlN層で構成される。なお、AlNの他、一般式Alx2Gay2In1-x2-y2N(0≦x2≦1,0≦y2≦1)で規定されるn型の窒化物半導体層で構成することができる。また、本実施形態では、第一半導体層115は、図2E等を参照して後述するように、非極性面(例えば{1-101}面)に平行な成長面115aと、極性面(例えば{0001}面)に平行な成長面115bを有する。
(First semiconductor layer 115)
In the present embodiment, the first semiconductor layer 115 is composed of an n-type AlN layer. Incidentally, other AlN, general formula Al x2 Ga y2 In 1-x2 -y2 N may be composed of (0 ≦ x2 ≦ 1,0 ≦ y2 ≦ 1) n -type nitride semiconductor layer defined by. Further, in the present embodiment, as described later with reference to FIG. 2E etc., the first semiconductor layer 115 has a growth surface 115a parallel to a nonpolar surface (for example, {1-101} surface) and a polar surface (for example, Growth surface 115 b parallel to the {0001} plane).
  (活性層117)
 本実施形態において、活性層117は、Alx3Ga1-x3N(0<x3≦1)/AlNが一周期又は多周期で積層された構成である。一例として、Al0.8Ga0.2Nからなる発光層とAlNからなる障壁層が多周期繰り返されて構成されている。なお、活性層117の構成は、発光波長に応じて適宜選択される。また本実施形態では、活性層117は、第一半導体層115と同様に、非極性面(例えば{1-101}面)に平行な成長面117aと、極性面(例えば{0001}面)に平行な成長面117bを有する(後述する図2F参照)。なお、活性層117は、Al組成を異ならせることでバンドギャップエネルギーに差を設けた2種類の窒化物半導体層(AlGaN又はAlInGaN)が一周期又は多周期で積層されていても構わない。
(Active layer 117)
In the present embodiment, the active layer 117 has a configuration in which Al x 3 Ga 1-x 3 N (0 <x 3 ≦ 1) / AlN is stacked in one cycle or multiple cycles. As an example, a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN are repeatedly formed in multiple cycles. The configuration of the active layer 117 is appropriately selected according to the light emission wavelength. Further, in the present embodiment, as in the first semiconductor layer 115, in the active layer 117, the growth surface 117a parallel to the nonpolar plane (eg {1-101} plane) and the polar plane (eg {0001} plane) are used. It has parallel growth surfaces 117b (see FIG. 2F described later). In the active layer 117, two types of nitride semiconductor layers (AlGaN or AlInGaN) having a difference in band gap energy by making the Al composition different may be stacked in one cycle or multiple cycles.
  (第二半導体層119)
 本実施形態において、第二半導体層119は、p型Alx4Ga1-X4N(0<x4≦1)からなるp型クラッド層と、p型クラッド層の上層に形成されたp+型GaNからなるp型コンタクト層を含んで構成される。そして、このp型コンタクト層に接触するように第二電極121が形成されている。なお、p型コンタクト層は、p+型Alx5Ga1-X5N(0<x5≦1)で構成しても構わない。
(Second semiconductor layer 119)
In the present embodiment, the second semiconductor layer 119 includes a p - type cladding layer formed of p-type Al x 4 Ga 1 -x 4 N (0 <x 4 ≦ 1) and p + -type GaN formed on the p-type cladding layer. And a p-type contact layer. The second electrode 121 is formed to be in contact with the p-type contact layer. The p-type contact layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 <x5 ≦ 1).
  (第三半導体層113)
 本実施形態において、半導体発光素子101は、第三半導体層113を備えており、この第三半導体層113の上層に第一半導体層115が形成されている。第一半導体層115は、第三半導体層113の上層にエピタキシャル成長することで形成された層である。
(Third semiconductor layer 113)
In the present embodiment, the semiconductor light emitting device 101 includes the third semiconductor layer 113, and the first semiconductor layer 115 is formed on the third semiconductor layer 113. The first semiconductor layer 115 is a layer formed by epitaxial growth on the upper layer of the third semiconductor layer 113.
 本実施形態において、第三半導体層113はAlN層で構成される。なお、AlNの他、一般式Alx1Gay1In1-x1-y1N(0≦x1≦1,0≦y1≦1)で規定される窒化物半導体層で構成することができる。なお、Alx1Gay1In1-x1-y1NのIn組成は1%以下とするのが好ましく、Alx1Gay1In1-x1-y1NのAl組成は、活性層117からの発光波長に応じて適宜選択される。 In the present embodiment, the third semiconductor layer 113 is formed of an AlN layer. In addition to AlN, a nitride semiconductor layer defined by the general formula Al x 1 Ga y 1 In 1-x 1-y N (0 ≦ x 1 ≦ 1, 0 ≦ y 1 ≦ 1) can be used. Incidentally, the emission wavelength from the Al x1 Ga y1 In 1-x1 -y1 N the In composition is preferably 1% or less, Al x1 Ga y1 In 1-x1 -y1 N Al composition, the active layer 117 It is appropriately selected accordingly.
 この第三半導体層113は、第一領域103内において、所定の方向(ここでは[11-20]方向とする。)に沿って延伸する溝部(凹部)114を有している一方、第二領域104内には溝部114を有さない構成である。なお、本実施形態では、溝部114の延伸方向を[11-20]方向とするが、延伸方向は、[11-20]方向に対して結晶学的に等価な方向、すなわち<11-20>方向であるものとして構わないし、他の方向であっても構わない。 The third semiconductor layer 113 has a groove (concave portion) 114 extending along a predetermined direction (here, the [11-20] direction) in the first region 103, while the second semiconductor layer 113 The groove portion 114 is not provided in the region 104. In the present embodiment, although the stretching direction of the groove portion 114 is the [11-20] direction, the stretching direction is a crystallographically equivalent direction to the [11-20] direction, that is, <11-20>. It may be a direction, or may be another direction.
 本構成によれば、活性層117が、非極性面に平行な成長面117a(後述する図2F参照)を有しているため、内部電界の影響が抑制されており、発光効率の高い発光素子が実現される。 According to this configuration, since the active layer 117 has the growth surface 117a (see FIG. 2F described later) parallel to the nonpolar surface, the influence of the internal electric field is suppressed, and the light emitting element with high light emission efficiency Is realized.
 また、ビア構造型の半導体発光素子においては、通常、図1(a)に示すように、同一の素子に複数のビア電極(ここでは第一電極141に対応)が形成される。そして、第一電極141が挿入されている孔部107が形成されている第二領域104は、第二半導体層119及び活性層117が平坦面で構成されている。後述するように、この孔部107はエッチングによって形成されるが、このようにエッチング対象面が平坦面で形成されることで、エッチングエネルギーを第二半導体層119及び活性層117の面に均一的に与えることができる。よって、この第一電極141を挿入するための孔部107を同一の寸法で形成できるので、製造される各半導体発光素子101間の電気的特性が均一化され、高い歩留まりが実現できる。 Further, in the via-structure-type semiconductor light emitting device, as shown in FIG. 1A, a plurality of via electrodes (corresponding to the first electrode 141 in this case) are generally formed on the same device. The second semiconductor layer 119 and the active layer 117 have a flat surface in the second region 104 in which the hole 107 in which the first electrode 141 is inserted is formed. As will be described later, the holes 107 are formed by etching, but the etching target surface is formed flat as described above, so that etching energy is uniformly applied to the surfaces of the second semiconductor layer 119 and the active layer 117. Can be given to Therefore, since the hole 107 for inserting the first electrode 141 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting devices 101 can be made uniform, and a high yield can be realized.
 〈製造方法〉
 半導体発光素子101の製造方法につき、図1及び図2A~図2Qの各図を参照して説明する。なお、以下の図面のうち、図2A~図2G、図2N~図2Q、及び図2H(b)~図2M(b)の各図においては、図1(b)と同様に、各時点における素子を図1(a)内におけるA-A線に対応する箇所で切断したときの模式的な断面図に相当する。また、図2H(a)~図2M(a)は、図1(a)と同様に、各時点における素子を光取り出し面とは反対側から見たときの模式的な平面図に相当する。
<Production method>
The method of manufacturing the semiconductor light emitting device 101 will be described with reference to FIGS. 1 and 2A to 2Q. 2A to 2G, 2N to 2Q, and 2H (b) to 2M (b) among the following drawings, as in FIG. 1 (b), at each time point This corresponds to a schematic cross-sectional view when the element is cut at a location corresponding to the line AA in FIG. 1 (a). 2H (a) to 2M (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 1 (a).
  (ステップS1)
 基板111を準備する(図2A参照)。この基板111としては、一例として(0001)面を有するサファイア基板を用いることができる。
(Step S1)
The substrate 111 is prepared (see FIG. 2A). As the substrate 111, a sapphire substrate having a (0001) plane can be used as an example.
 準備工程として、基板111のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板111を配置し、処理炉内に流量が例えば10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。 As a preparation process, the substrate 111 is cleaned. As a more specific example of this cleaning, the growth substrate 111 is disposed in the processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen at a flow rate of, for example, 10 slm is disposed in the processing furnace. It is carried out by raising the temperature in the furnace to, for example, 1150 ° C. while flowing a gas.
 本ステップS1が工程(a)に対応する。 This step S1 corresponds to the step (a).
  (ステップS2)
 図2Bに示すように、基板111の(0001)面上に、例えばAlNからなる第三半導体層113を形成する。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてトリメチルアルミニウム(TMA)及びアンモニアを処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を1kPa以上70kPa以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が600nmのAlNからなる第三半導体層113を形成した。
(Step S2)
As shown in FIG. 2B, the third semiconductor layer 113 made of, for example, AlN is formed on the (0001) plane of the substrate 111. As an example of the specific method, while the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. to 1600 ° C., nitrogen gas and hydrogen gas are flowed as a carrier gas, and trimethylaluminum (TMA) and ammonia are treated as source gases Supply into the furnace. By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPa or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru. Here, the third semiconductor layer 113 made of AlN and having a film thickness of 600 nm was formed.
 なお、第三半導体層113として、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)を形成する場合には、TMA、アンモニアに加えて、トリメチルガリウム(TMG)、及びトリメチルインジウム(TMI)を組成に応じた所定の流量で供給すればよい。 In the case where Al x 1 Ga y 1 In 1-x 1-y 1 N (0 <x1 ≦ 1, 0 ≦ y1 ≦ 1) is formed as the third semiconductor layer 113, trimethylgallium (in addition to TMA and ammonia TMG) and trimethylindium (TMI) may be supplied at predetermined flow rates according to the composition.
  (ステップS3)
 図2Cに示すように、第三半導体層113のうち、第一領域103内の少なくとも一部の領域に対して、所定の例えば<11-20>方向に沿った溝部(第一溝部)114を形成する。このとき、第二領域104内に対しては溝部を形成しない。この結果、第三半導体層113の上面は、第一領域103内に溝部114が形成され、第二領域104内には溝部114が形成されない。なお、溝部114の底面に基板111が露出しない範囲内の深さで溝部114を形成するように制御するのが好ましい。
(Step S3)
As shown in FIG. 2C, in the third semiconductor layer 113, a groove (first groove) 114 along a predetermined, for example, <11-20> direction is applied to at least a part of the first region 103. Form. At this time, no groove is formed in the second region 104. As a result, the groove 114 is formed in the first region 103 and the groove 114 is not formed in the second region 104 on the top surface of the third semiconductor layer 113. In addition, it is preferable to control so that the groove part 114 is formed in the bottom of the groove part 114 in the depth in the range which the board | substrate 111 does not expose.
 具体的な方法の一例としては、ステップS2まで実行することで得られたウェハを処理炉から取り出し、フォトリソグラフィ法及びリアクティブイオンエッチング法(RIE法)によって第三半導体層113の<11-20>方向に平行な複数の溝を所定の間隔で形成する。なお、図2Cでは、<11-20>方向と結晶学的に等価な一の方向である[11-20]方向に溝部114を延伸させている。 As an example of a specific method, the wafer obtained by performing to step S2 is taken out of the processing furnace, and <11-20 of the third semiconductor layer 113 is formed by photolithography and reactive ion etching (RIE). A plurality of grooves parallel to the direction are formed at predetermined intervals. In FIG. 2C, the groove 114 is stretched in the [11-20] direction which is one direction that is crystallographically equivalent to the <11-20> direction.
 なお、本ステップS3においては、図2Dに示すように、第二領域104の全領域をエッチングして溝部114aを形成することで、第二領域104内の上面を平坦面とするものとしても構わない。以下では、図2Cの状態から工程を進行させる場合についてのみ説明する。 In the present step S3, as shown in FIG. 2D, the entire upper surface of the second region 104 may be made flat by etching the entire region of the second region 104 to form the groove portion 114a. Absent. Below, only when advancing a process from the state of FIG. 2C, it demonstrates.
 本ステップS2-S3が工程(b1)に対応する。 This step S2-S3 corresponds to the step (b1).
  (ステップS4)
 図2Eに示すように、<11-20>方向に沿った溝部114が形成された第三半導体層113の上面に対して、第一半導体層115を形成する。具体的な方法の一例としては、ステップS3の実行完了後のウェハを再びMOCVD装置の炉内に入れ、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA、アンモニア、及びn型ドーパントとしてのテトラエチルシラン等を処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を1kPa以上70kPa以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が3000nmのn型AlNからなる第一半導体層115を形成した。
(Step S4)
As shown in FIG. 2E, the first semiconductor layer 115 is formed on the upper surface of the third semiconductor layer 113 in which the groove portion 114 is formed along the <11-20> direction. As an example of the specific method, the wafer after completion of step S3 is again put into the furnace of the MOCVD apparatus, the furnace temperature of the MOCVD apparatus is set to a temperature of 900.degree. C. or more and 1600.degree. While flowing hydrogen gas, TMA, ammonia, tetraethylsilane as an n-type dopant, etc. are supplied into the processing furnace as source gases. By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPa or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru. Here, the first semiconductor layer 115 made of n-type AlN having a film thickness of 3000 nm was formed.
 なお、第一半導体層115として、n型のAlx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)を形成する場合には、TMA、アンモニア、テトラエチルシランに加えて、TMG、及びTMIを組成に応じた所定の流量で供給すればよい。 Incidentally, as the first semiconductor layer 115, the case of forming the n-type Al x2 Ga y2 In 1-x2 -y2 N (0 <x2 ≦ 1,0 ≦ y2 ≦ 1) is, TMA, ammonia, a tetra ethyl silane In addition, TMG and TMI may be supplied at predetermined flow rates according to the composition.
 基板111の上面が露出しない深さを有する溝部114が形成された第三半導体層113の上面に対して結晶を成長させることで、第一領域103内には、非極性面(ここでは一例として{1-101}面)に平行な成長面115aを有する第一半導体層115が形成される。また、この第一半導体層115は、上面が平坦面のみで構成されていた第二領域104内には、極性面(ここでは一例として{0001}面)に平行な成長面115bを有した状態で成長する。なお、図2Eに示す構成では、第一領域103内において、第一半導体層115は、一部の箇所に極性面に平行な成長面115bを有しているが、第一領域103内において、第一半導体層115が非極性面に平行な成長面115aのみを有する構成であってもよい。 By growing a crystal on the upper surface of the third semiconductor layer 113 in which the groove 114 having a depth to which the upper surface of the substrate 111 is not exposed is formed, a nonpolar surface (here, as an example) A first semiconductor layer 115 having a growth surface 115a parallel to the {1-101} plane is formed. In addition, the first semiconductor layer 115 has a growth surface 115 b parallel to the polar surface (here, {0001} as an example) in the second region 104, the upper surface of which is constituted only by the flat surface. Grow on. In the configuration shown in FIG. 2E, in the first region 103, the first semiconductor layer 115 has the growth surface 115b parallel to the polar plane at a part of the portion, but in the first region 103, The first semiconductor layer 115 may have only the growth surface 115 a parallel to the nonpolar plane.
 本ステップS4が工程(b3)に対応する。なお、ステップS2-S4が工程(b)に対応する。 This step S4 corresponds to the step (b3). Steps S2-S4 correspond to step (b).
  (ステップS5)
 図2Fに示すように、非極性面(ここでは{1-101}面)に平行な成長面115a、及び極性面(ここでは{0001}面)に平行な成長面115bを有する第一半導体層115の上面に、活性層117を成長させる。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程と、原料ガスとしてTMA、TMG及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程とを、周期数に応じて所定回数繰り返す。これにより、多周期のAlx3Ga1-x3N(0<x3≦1)/AlNからなる活性層117が形成される。
(Step S5)
As shown in FIG. 2F, a first semiconductor layer having a growth surface 115a parallel to the nonpolar plane (here, {1-101} plane) and a growth plane 115b parallel to the polar plane (here, {0001} plane) An active layer 117 is grown on top of the surface 115. As a specific example of the method, the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. or more and 1600 ° C. or less, and nitrogen gas and hydrogen gas are flowed as a carrier gas, while TMA and ammonia as a source gas are filmed in the processing furnace. A step of supplying a predetermined time according to the thickness and a step of supplying TMA, TMG and ammonia as source gases into the processing furnace for a predetermined time according to the film thickness are repeated a predetermined number of times according to the number of cycles. Thereby, an active layer 117 made of multi-period Al x 3 Ga 1-x 3 N (0 <x 3 ≦ 1) / AlN is formed.
 なお、活性層117として、Alx3Gay3In1-x3-y3N(0<x3≦1,0≦y3≦1)/Alx4Gay4In1-x4-y4N(0<x4≦1,0≦y4≦1)を形成する場合には、原料ガスとして、TMA、アンモニア、TMG、及びTMIを組成に応じた所定の流量で供給すればよい。 Incidentally, as the active layer 117, Al x3 Ga y3 In 1 -x3-y3 N (0 <x3 ≦ 1,0 ≦ y3 ≦ 1) / Al x4 Ga y4 In 1-x4-y4 N (0 <x4 ≦ 1, In the case of forming 0 ≦ y4 ≦ 1), TMA, ammonia, TMG and TMI may be supplied as source gases at predetermined flow rates according to the composition.
 ステップS4において、非極性面に平行な成長面115a、及び極性面に平行な成長面115bを有する第一半導体層115が形成されているため、この状態で本ステップS5においてエピタキシャル成長させることで、図2Fに示すように、非極性面に平行な成長面117a及び極性面に平行な成長面117bを有する活性層117が形成される。特に、第一領域103内においては、非極性面に平行な成長面117aを有し、第二領域104内においては、極性面に平行な成長面117bを有する活性層117が形成される。なお、図2Fに示すように、活性層117は、第一領域103内においても非極性面に平行な成長面117bを一部有しても構わない。 Since the first semiconductor layer 115 having the growth surface 115 a parallel to the nonpolar surface and the growth surface 115 b parallel to the polar surface is formed in step S 4, the epitaxial growth is performed in this step S 5 in this state. As shown in FIG. 2F, an active layer 117 having a growth surface 117a parallel to the nonpolar plane and a growth surface 117b parallel to the polar plane is formed. In particular, in the first region 103, an active layer 117 having a growth surface 117a parallel to the nonpolar plane and in the second region 104 a growth surface 117b parallel to the polar surface is formed. As shown in FIG. 2F, the active layer 117 may have a growth surface 117b parallel to the nonpolar plane in the first region 103.
 本ステップS5が工程(c)に対応する。 This step S5 corresponds to the step (c).
  (ステップS6)
 図2Gに示すように、活性層117の上面に第二半導体層119を成長させる。具体的な方法の一例としては、MOCVD装置の炉内圧力を100kPa、炉内温度を830℃として、原料ガスとして、アンモニア、TMA及びTMGに加えて、p型不純物を構成するためのビスシクロペンタジエニルマグネシウム(Cp2Mg)を含めて更に成長させる。これにより、活性層117の上層にp型Alx4Ga1-X4N(0<x4≦1)で構成された第二半導体層119が形成される。なお、更に原料ガスの流量を変更してp+型GaN層をその上層に形成しても構わない。この場合、p型Alx4Ga1-X4N(0<x4≦1)とp+型GaN層とによって第二半導体層119が構成される。またp+型GaN層をp+型Alx5Ga1-X5N(0<x5≦1)で構成しても構わない。
(Step S6)
As shown in FIG. 2G, the second semiconductor layer 119 is grown on the upper surface of the active layer 117. As an example of a specific method, a bis-cyclopentan for forming a p-type impurity in addition to ammonia, TMA and TMG as source gases with an in-furnace pressure of 100 kPa and an in-furnace temperature of 830 ° C. in the MOCVD apparatus Further grow with dienyl magnesium (Cp 2 Mg). As a result, the second semiconductor layer 119 formed of p-type Al x 4 Ga 1 -x 4 N (0 <x4 ≦ 1) is formed on the active layer 117. The flow rate of the source gas may be further changed to form the p + -type GaN layer on the upper layer. In this case, the second semiconductor layer 119 is configured by the p-type Al x 4 Ga 1 -x 4 N (0 <x 4 ≦ 1) and the p + -type GaN layer. Also, the p + -type GaN layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 <x5 ≦ 1).
 本実施形態では、本ステップS6が完了した時点において、第二半導体層119の上面は、第一領域103内が凹凸面で構成される一方、第二領域104内が平坦面のみで構成される。 In the present embodiment, at the time when step S6 is completed, the upper surface of the second semiconductor layer 119 is configured by the uneven surface in the first region 103, and is configured by only the flat surface in the second region 104. .
 本ステップS6が工程(d)に対応する。 This step S6 corresponds to the step (d).
  (ステップS7)
 ステップS1-S6を経て得られたウェハに対して活性化処理を行う。より具体的には、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(Step S7)
An activation process is performed on the wafer obtained through steps S1-S6. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  (ステップS8)
 図2Hに示すように、第二半導体層119の上面に第二電極121を形成する。具体的には、第二半導体層119の上面のうち、一以上の島状領域124以外の領域に対して選択的に第二電極121を形成する。このステップS8を経たウェハは、第二半導体層119が島状に露出した領域124と、第二電極121が露出した領域を上面に有する。ここで、前記島状領域124は、第二領域104内に形成される。
(Step S8)
As shown in FIG. 2H, the second electrode 121 is formed on the top surface of the second semiconductor layer 119. Specifically, the second electrode 121 is selectively formed on the region other than the one or more island regions 124 on the upper surface of the second semiconductor layer 119. The wafer having undergone this step S8 has, on the upper surface, a region 124 in which the second semiconductor layer 119 is exposed in an island shape and a region in which the second electrode 121 is exposed. Here, the island region 124 is formed in the second region 104.
 第二電極121の具体的な形成方法は、例えば以下の通りである。 The specific formation method of the second electrode 121 is, for example, as follows.
 まず、第二電極121を形成しない領域に対応した第二半導体層119の上面の領域に、パターニングによってレジストを塗布する。このレジストを塗布する領域は、後に第一電極141を形成する領域及び第一電極141に近くて電流が集中しやすい領域に対応する。その後、レジストの上面を含む全面に、例えばスパッタ装置にて膜厚150nmのAg及び膜厚30nmのNiを成膜する。なお、この材料膜として、第二半導体層119との密着性を高めるために、Ag層の下に膜厚1.5nm程度のNiを成膜しても構わない。 First, a resist is applied by patterning to the region of the upper surface of the second semiconductor layer 119 corresponding to the region where the second electrode 121 is not formed. The area to which the resist is applied corresponds to an area where the first electrode 141 is to be formed later and an area close to the first electrode 141 where current tends to be concentrated. After that, Ag with a film thickness of 150 nm and Ni with a film thickness of 30 nm are formed on the entire surface including the upper surface of the resist by using, for example, a sputtering apparatus. Note that, as the material film, Ni having a film thickness of about 1.5 nm may be formed under the Ag layer in order to enhance the adhesion to the second semiconductor layer 119.
 次に、レジストをリフトオフした後、RTA装置等を用いてドライエア又は不活性ガス雰囲気中で400℃~550℃(例えば400℃)、60秒~300秒間のコンタクトアニール処理を行って、第二電極121を形成する。不活性ガス雰囲気でアニールをした場合、マイグレーションによる第二半導体層119側へのAgの拡散を少なくすることができるため、ドライエア雰囲気の場合よりも更にショットキー効果を高めることができる。 Next, after lifting off the resist, the second electrode is subjected to a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like. Form 121. When annealing is performed in an inert gas atmosphere, the diffusion of Ag to the second semiconductor layer 119 side due to migration can be reduced, so the Schottky effect can be further enhanced than in the case of a dry air atmosphere.
 本ステップS8が工程(h)に対応する。 This step S8 corresponds to the step (h).
  (ステップS9)
 図2Iに示すように、ステップS8を経て露出している、第二領域104内に位置する第二半導体層119の面に対してエッチングを行って第一半導体層115の上面を露出させる。
(Step S9)
As shown in FIG. 2I, the surface of the second semiconductor layer 119 located in the second region 104 exposed through the step S8 is etched to expose the upper surface of the first semiconductor layer 115.
 具体的には、ステップS8の終了時点で形成された第二電極121の上面に対して、パターニングによってレジスト151を塗布する。その後、このレジスト151をマスクとして、第一半導体層115の一部上面が露出するまで、第二半導体層119及び活性層117を、ICP装置を用いたドライエッチングによって除去する。なお、本ステップS9において、第一半導体層115についても一部エッチング除去しても構わない。本ステップS9によって、溝部107が形成される。この溝部107は「第二溝部」に対応する。 Specifically, a resist 151 is applied by patterning to the upper surface of the second electrode 121 formed at the end of step S8. Thereafter, using the resist 151 as a mask, the second semiconductor layer 119 and the active layer 117 are removed by dry etching using an ICP apparatus until a partial upper surface of the first semiconductor layer 115 is exposed. In the step S9, the first semiconductor layer 115 may be partially etched away. The groove part 107 is formed by this step S9. The groove portion 107 corresponds to the “second groove portion”.
 本ステップS9では、平坦面で構成された第二領域104内の第二半導体層119及び活性層117に対してエッチングが行われるため、隣接箇所に対しても同じ寸法のエッチング量で第一半導体層115を露出させることができる。この点につき、図3を参照して説明する。 In this step S9, etching is performed on the second semiconductor layer 119 and the active layer 117 in the second region 104 formed of a flat surface, so that the first semiconductor can be etched with the same size for adjacent portions as well. Layer 115 can be exposed. This point will be described with reference to FIG.
 図3は、本ステップS9において、エッチングする箇所を、第二領域104内にした場合と第一領域103内にした場合の相違点を説明するための図である。図3(a)は、ステップS9で第一領域103内の第二半導体層119及び活性層117に対してエッチングを行って第一半導体層115を露出させた場合の図面に対応する。図3(b)は、図2Iの図面に対応する。 FIG. 3 is a diagram for explaining the difference between the case where the portion to be etched is in the second region 104 and the case in the first region 103 in the present step S9. FIG. 3A corresponds to the drawing when the first semiconductor layer 115 is exposed by etching the second semiconductor layer 119 and the active layer 117 in the first region 103 in step S9. FIG. 3 (b) corresponds to the drawing of FIG. 2I.
 図3(a)の場合、エッチング対象領域内に存在する第二半導体層119及び活性層117は、それぞれ凹凸面を有している。このとき、活性層117が第二半導体層119に向かって凹部を構成している箇所では、活性層117が第二半導体層119に向かって凸部を構成している箇所に比べて、活性層117と第一半導体層115との接触面は、基板111に近い位置に存在する。このことは、例えば、第二半導体層119の上面が凸部を構成している箇所において、第一半導体層115の上面が露出するまでエッチングが進行した場合であっても、未だ活性層117が露出していることを示唆する。 In the case of FIG. 3A, the second semiconductor layer 119 and the active layer 117 present in the etching target region each have an uneven surface. At this time, in a portion where the active layer 117 forms a recess toward the second semiconductor layer 119, the active layer 117 is active layer as compared to a portion forming a protrusion toward the second semiconductor layer 119. The contact surface between the semiconductor layer 117 and the first semiconductor layer 115 exists near the substrate 111. This is because, for example, in a portion where the upper surface of the second semiconductor layer 119 constitutes a convex, the active layer 117 is still present even if the etching proceeds until the upper surface of the first semiconductor layer 115 is exposed. Suggests exposure.
 ステップS9で形成される溝部107は、その後に第一半導体層115に電流を供給するための第一電極141を埋め込むための空間となる。このため、ステップS7では、溝部107の底面の全ての領域において第一半導体層115の上面が露出するまで、エッチングを進行させる必要がある。全ての素子において、活性層117に形成される凹凸部のピッチや高さが同一の寸法を有するとは限らない。よって、図3(a)に示すように、溝部107を第一領域103内に形成しようとした場合には、エッチング量d1を多く確保しておく必要があり、供給するエッチングエネルギーが増大になるおそれがある。 The groove portion 107 formed in step S9 later becomes a space for embedding the first electrode 141 for supplying a current to the first semiconductor layer 115. For this reason, in step S7, it is necessary to advance the etching until the upper surface of the first semiconductor layer 115 is exposed in the entire region of the bottom surface of the groove portion 107. In all the elements, the pitch and the height of the concavo-convex portion formed in the active layer 117 do not necessarily have the same dimension. Therefore, as shown in FIG. 3A, when the groove portion 107 is to be formed in the first region 103, it is necessary to secure a large etching amount d1, and the etching energy to be supplied is increased. There is a fear.
 これに対し、本実施形態のように、第二領域104内をエッチングして溝部107を形成する場合には、活性層117に形成される凹凸部のピッチや高さによらず、成膜された各層(117,119)の膜厚によって予め想定されるエッチング量d2だけ進行させることで、第一半導体層115を露出させることができる。また、本実施形態において、第一半導体層115の上面を露出させるために必要なエッチング量d2は、図3(a)に示すエッチング量d1よりも少なくすることができるため、エッチング時に印加するエネルギー量を少なくすることができる。 On the other hand, in the case of forming the groove portion 107 by etching the inside of the second region 104 as in the present embodiment, the film is formed regardless of the pitch or the height of the uneven portion formed in the active layer 117. The first semiconductor layer 115 can be exposed by advancing it by the etching amount d2 assumed in advance depending on the film thickness of each layer (117, 119). Further, in the present embodiment, the amount of etching d2 required to expose the upper surface of the first semiconductor layer 115 can be made smaller than the amount of etching d1 shown in FIG. The amount can be reduced.
 本ステップS9は工程(e)に対応する。 This step S9 corresponds to step (e).
  (ステップS10)
 次に、ステップS9において形成されていたレジスト151をリフトオフした後、図2Jに示すように、溝部107の底面の中央部及び第二電極121の上面に、パターニングによってレジスト153を形成する。すなわち、溝部107の底面においてレジスト153の外周に第一半導体層115の上面を露出させた状態とする。その後、全面に絶縁層154を形成する。絶縁層154としてはSiO2、SiN、Zr23、AlN、Al23等を用いることができる。
(Step S10)
Next, after lifting off the resist 151 formed in step S9, as shown in FIG. 2J, a resist 153 is formed on the central portion of the bottom of the groove 107 and the upper surface of the second electrode 121 by patterning. That is, the upper surface of the first semiconductor layer 115 is exposed to the outer periphery of the resist 153 at the bottom of the groove portion 107. Thereafter, the insulating layer 154 is formed on the entire surface. The insulating layer 154 can be used SiO 2, SiN, Zr 2 O 3, AlN, Al 2 O 3 or the like.
 その後、図2Kに示すようにレジスト153をリフトオフする。このとき、溝部107の内側面及び第二電極121の一部上面に絶縁層154が形成される。 Thereafter, the resist 153 is lifted off as shown in FIG. 2K. At this time, the insulating layer 154 is formed on the inner side surface of the groove portion 107 and the partial upper surface of the second electrode 121.
  (ステップS11)
 第二電極121の上面にパターニングによってレジスト155を形成する。その後、溝部107(図2K参照)を充填するように、導電性材料を成膜して第一電極141を形成する(図2L参照)。第一電極141の形成方法の一例としては、膜厚100nmのCrと膜厚0.5~3μmのAuを蒸着した後、窒素雰囲気中で250℃、1分間程度のアニール処理を行う。その後、レジスト155をリフトオフする(図2M参照)。
(Step S11)
A resist 155 is formed on the upper surface of the second electrode 121 by patterning. Thereafter, a conductive material is deposited to form the first electrode 141 so as to fill the groove 107 (see FIG. 2K) (see FIG. 2L). As an example of a method of forming the first electrode 141, after Cr having a film thickness of 100 nm and Au having a film thickness of 0.5 to 3 μm are vapor deposited, annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere. Thereafter, the resist 155 is lifted off (see FIG. 2M).
 ステップS10-S11によって、第二電極121と電気的に絶縁した状態で溝部107内に第一電極141が形成される。ステップS10-S11が工程(f)に対応する。 By the steps S10 to S11, the first electrode 141 is formed in the groove portion 107 in a state of being electrically insulated from the second electrode 121. Steps S10 to S11 correspond to step (f).
  (後のステップ)
 露出している第一電極141,第二電極121の上面に保護層142、接合層143を形成し、接合層143を介して素子基板112を接合する(図1参照)。具体的な一例としては以下の通りである。
(Step after)
The protective layer 142 and the bonding layer 143 are formed on the exposed upper surfaces of the first electrode 141 and the second electrode 121, and the element substrate 112 is bonded via the bonding layer 143 (see FIG. 1). A specific example is as follows.
 電子線蒸着装置(EB装置)にて、TiとPtを3周期成膜することで保護層142を形成し、その後、保護層142の上面(Pt表面)に、Ti及びAu-Snハンダを蒸着させることで接合層143を形成する。そして、この接合層143を介して、各電極(141,121)に対して電圧を印加するための素子基板112を貼り合わせる。素子基板112としては、上述したようにCuW、W、Mo等の導電性基板、Si等の半導体基板、又はAlN等の絶縁性基板に配線パターンを設けたものを利用することができる。 The protective layer 142 is formed by forming Ti and Pt three cycles with an electron beam vapor deposition apparatus (EB apparatus), and then Ti and Au-Sn solder are vapor deposited on the upper surface (Pt surface) of the protective layer 142 Thus, the bonding layer 143 is formed. Then, an element substrate 112 for applying a voltage to each of the electrodes (141, 121) is bonded to each other through the bonding layer 143. As the element substrate 112, as described above, a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like provided with a wiring pattern can be used.
 〈別の製造方法〉
 上述の方法では、ステップS2-S4によって工程(b)を実行したが、工程(b)は種々の方法で実現することができる。なお、ステップS5以後については上述した内容と共通であるため割愛する。
<Another manufacturing method>
In the method described above, step (b) is performed by steps S2-S4, but step (b) can be realized in various ways. In addition, since step S5 and subsequent steps are the same as the above-mentioned contents, they are omitted.
 第一の方法は、図2Cに示す状態から、再度第三半導体層113を成長させる工程(b2)を実行した後、ステップS4と同様に第一半導体層115を成長させる方法である(図2N参照)。工程(b2)の実行前において、第一領域103内には溝部114が存在することで凹凸面が形成されており、この凹凸面上に第三半導体層113が成長することで、第一領域103内においては少なくとも非極性面を成長面とした第三半導体層113が形成される。一方、第二領域104内においては極性面を成長面とする第三半導体層113が形成される。よって、その後に第一半導体層115を成長させることで、図2Oに示すように、第一領域103内には非極性面に平行な成長面115aを有する第一半導体層115が形成され、第二領域104内には極性面に平行な成長面115bを有する第一半導体層115が形成される。 The first method is a method of growing the first semiconductor layer 115 in the same manner as step S4, after performing the step (b2) of growing the third semiconductor layer 113 again from the state shown in FIG. 2C (FIG. 2N) reference). Before the step (b2) is performed, the uneven surface is formed by the presence of the groove 114 in the first region 103, and the third semiconductor layer 113 is grown on the uneven surface to form the first region. In 103, the third semiconductor layer 113 having at least a nonpolar surface as a growth surface is formed. On the other hand, in the second region 104, the third semiconductor layer 113 having a polar plane as a growth surface is formed. Therefore, by subsequently growing the first semiconductor layer 115, as shown in FIG. 2O, the first semiconductor layer 115 having the growth surface 115a parallel to the nonpolar plane is formed in the first region 103, and In the two regions 104, a first semiconductor layer 115 having a growth surface 115b parallel to the polar plane is formed.
 第二の方法は、図2Bに示す状態から第一半導体層115を成長させる工程(b4)を実行した後、第一領域内において、所定の例えば<11-20>方向に沿った溝部を形成する工程(b5)を実行する方法である(図2P参照)。そして、工程(b5)の実行後、再び第一半導体層115を成長させる工程(b6)を実行する。工程(b6)の実行前において、第一領域103内には溝部が存在することで凹凸面が形成されており、この凹凸面上に第一半導体層115が成長することで、図2Qに示すように、第一領域103内においては少なくとも非極性面を成長面とした第一半導体層115が形成される一方、第二領域104内においては極性面を成長面とする第一半導体層115が形成される。 In the second method, after the step (b4) of growing the first semiconductor layer 115 from the state shown in FIG. 2B, a groove is formed in a first region, for example, along a predetermined <11-20> direction. (B) is performed (see FIG. 2P). Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer 115 is performed again. Before the step (b6) is performed, the uneven surface is formed by the presence of the groove in the first region 103, and the first semiconductor layer 115 is grown on the uneven surface, as shown in FIG. 2Q. As described above, while the first semiconductor layer 115 having at least a nonpolar surface as a growth surface is formed in the first region 103, the first semiconductor layer 115 having a polar surface as a growth surface in the second region 104 is formed. It is formed.
  [別実施形態]
 以下において、第一の構成に関する別実施形態について説明する。
[Another embodiment]
Hereinafter, another embodiment regarding the first configuration will be described.
 〈1〉 上記実施形態において、図2Gを参照して説明したように、ステップS6の実行後、第二半導体層119は、第一領域103内において上面に凹凸が形成されている一方、第二領域104内において上面が平坦に形成されている。しかし、図4Aに示すように、第二半導体層119の成膜条件によっては、ステップS6の実行後に、第一領域103及び第二領域104の双方にわたって上面が平坦に形成されるものとしても構わない。 <1> In the above embodiment, as described with reference to FIG. 2G, after the step S6 is performed, the second semiconductor layer 119 has the concavo-convex formed on the upper surface in the first region 103, The upper surface is formed flat in the region 104. However, as shown in FIG. 4A, depending on the film forming conditions of the second semiconductor layer 119, the upper surface may be formed flat over both the first region 103 and the second region 104 after step S6 is performed. Absent.
 このような構成においても、ステップS9に係るエッチング時において、図4Bに示すように、第二領域104内において活性層117及び第一半導体層115は平坦面で構成されているため、隣接箇所に対しても同じ寸法のエッチング量で第一半導体層115を露出させることができる。 Even in such a configuration, at the time of the etching according to step S9, as shown in FIG. 4B, the active layer 117 and the first semiconductor layer 115 are formed as flat surfaces in the second region 104, so The first semiconductor layer 115 can be exposed with an etching amount of the same size.
 図4Bの状態の後、上述したステップS10以下のステップを実行することで、図4Cに示す半導体発光素子101が製造される。上記において、図4A及び図4Bは、各時点において、図4C(a)内におけるA-A線に対応する箇所で切断したときの模式的な断面図に相当し、図4Cは、この別実施形態に係る半導体発光素子101を、図1にならって模式的に示したものである。 After the state of FIG. 4B, the semiconductor light emitting device 101 shown in FIG. 4C is manufactured by performing the steps after step S10 described above. In the above, FIG. 4A and FIG. 4B correspond to schematic cross-sectional views when cut at a point corresponding to the line AA in FIG. 4C (a) at each time point, and FIG. The semiconductor light emitting device 101 according to the embodiment is schematically shown following FIG.
 〈2〉 上記別実施形態〈1〉において、図4Aの状態の後、ステップS8に係る第二電極121形成工程の開始前に、露出している第二半導体層119の上面に凹凸加工を施すものとしても構わない(図5A参照)。これは、工程(g)に対応する。 <2> In the above another embodiment <1>, after the state of FIG. 4A, the upper surface of the exposed second semiconductor layer 119 is subjected to asperity processing before the start of the second electrode 121 forming step according to step S8. It does not matter (see FIG. 5A). This corresponds to step (g).
 図5Aでは、第二半導体層119の上面のうち、第一領域103内にのみ凹凸形状105を施している。このような構成は、一例として、第二半導体層119の面のうち、第二領域104内の第二半導体層119に対してマスクをした状態で、露出している第一領域103内の第二半導体層119に対してKOH等のアルカリ溶液を浸すことで実現される。 In FIG. 5A, the concavo-convex shape 105 is provided only in the first region 103 of the top surface of the second semiconductor layer 119. Such a configuration is, by way of example, the surface of the second semiconductor layer 119, with the second semiconductor layer 119 in the second region 104 masked, the second region in the first region 103 exposed. This is realized by immersing an alkaline solution such as KOH in the second semiconductor layer 119.
 このような構成においても、ステップS9に係るエッチング時において、図5Bに示すように、第二領域104内において活性層117及び第一半導体層115は平坦面で構成されているため、隣接箇所に対しても同じ寸法のエッチング量で第一半導体層115を露出させることができる。図5Bの状態の後、上述したステップS10以下のステップを実行することで、図5Cに示す半導体発光素子101が製造される。図5Cに示す半導体発光素子101によれば、第二半導体層119の一部の面に凹凸形状105を有するため、外部への光取り出し効率を向上させることができる。 Even in such a configuration, at the time of the etching according to step S9, as shown in FIG. 5B, since the active layer 117 and the first semiconductor layer 115 are formed as flat surfaces in the second region 104, they are adjacent to each other. The first semiconductor layer 115 can be exposed with an etching amount of the same size. After the state of FIG. 5B, the semiconductor light emitting device 101 shown in FIG. 5C is manufactured by performing the steps after step S10 described above. According to the semiconductor light emitting device 101 shown in FIG. 5C, since the concavo-convex shape 105 is provided on a part of the surface of the second semiconductor layer 119, the light extraction efficiency to the outside can be improved.
 なお、図5Aでは、第一領域103にのみ凹凸形状105を施したが、図6Aに示すように、このステップにおいて、第二半導体層119の上面の全面に凹凸形状105を施すものとしても構わない。この場合であっても、第二領域104内において活性層117は平坦面で形成されているため、ステップS9に係るエッチング時において、隣接箇所に対しても同じ寸法のエッチング量で第一半導体層115を露出させることができる(図6B参照)。図6Bの状態の後、上述したステップS10以下のステップを実行することで、図6Cに示す半導体発光素子101が製造される。 Although the concavo-convex shape 105 is applied only to the first region 103 in FIG. 5A, as shown in FIG. 6A, the concavo-convex shape 105 may be applied to the entire top surface of the second semiconductor layer 119 in this step. Absent. Even in this case, since the active layer 117 is formed to have a flat surface in the second region 104, the first semiconductor layer can be etched with the same size to the adjacent portion during the etching according to step S9. 115 can be exposed (see FIG. 6B). After the state of FIG. 6B, the semiconductor light emitting device 101 shown in FIG. 6C is manufactured by performing the steps after step S10 described above.
 〈3〉 上記の各実施形態では、第一半導体層115をn型半導体層とし、第二半導体層119をp型半導体層として説明したが、これはあくまで一例であって、上記実施形態の構成からn型とp型を反転させた半導体発光素子を本発明から排除する趣旨ではない。 <3> In the above embodiments, the first semiconductor layer 115 is described as an n-type semiconductor layer, and the second semiconductor layer 119 is described as a p-type semiconductor layer, but this is merely an example, and the configuration of the above embodiment It is not intended to exclude from the present invention a semiconductor light emitting device in which n-type and p-type are inverted.
 〈4〉 第一実施形態において、溝部114の延伸方向が<11-20>方向である場合を例に挙げて説明したが、これはあくまで一例であり、活性層117が第一領域103内において非極性面に平行な成長面117aを有して成長することができれば、溝部114の延伸方向は他の方向でも構わない。 <4> In the first embodiment, although the case where the extending direction of the groove portion 114 is the <11-20> direction has been described as an example, this is merely an example, and the active layer 117 is in the first region 103. The extending direction of the groove 114 may be another direction as long as growth can be performed with the growth surface 117a parallel to the nonpolar plane.
 〈5〉 上記の各実施形態では、第一電極141が孔部107内に形成された、ビア型構造の半導体発光素子101について説明した。しかし、例えば第二領域104を基板111の端部領域とすることで、同様に、歩留まりの高い横型やフリップチップ型の半導体発光素子101を実現することができる。 <5> In each of the above embodiments, the semiconductor light emitting device 101 of the via type structure in which the first electrode 141 is formed in the hole portion 107 has been described. However, for example, by using the second region 104 as the end region of the substrate 111, it is possible to realize the horizontal and flip chip type semiconductor light emitting device 101 with high yield.
 [第二の構成]
 本発明の第二の構成について説明する。
[Second configuration]
The second configuration of the present invention will be described.
  [第一実施形態]
 本発明の第一実施形態につき、説明する。
First Embodiment
A first embodiment of the present invention will be described.
 〈構造〉
 図7は、第二の構成の半導体発光素子の構造を模式的に示す図面であり、いわゆる「ビア構造型」と呼ばれる素子に対応する。図7において、(a)は光取り出し面とは反対側から見たときの模式的な平面図であり、(b)は(a)内におけるA-A線で切断したときの模式的な断面図であり、ここでは[0001]方向及び[1-100]方向で形成される平面で切断したときの模式的な断面図に相当する。
<Construction>
FIG. 7 is a drawing schematically showing the structure of the semiconductor light emitting device of the second configuration, and corresponds to a device called a “via structure type”. In FIG. 7, (a) is a schematic plan view as viewed from the side opposite to the light extraction surface, and (b) is a schematic cross section when cut along the line AA in (a). FIG. 10 is a diagram, and corresponds to a schematic cross-sectional view when cut by a plane formed in the [0001] direction and the [1-100] direction here.
 なお、本明細書では、ミラー指数を示すカッコ内の数字の直前に付された符号「-」はその指数の反転を示しており、図面内における「バー」と同義である。また、本明細書において、{1-101}面とは、(1-101)面、及びこの(1-101)面と結晶学的に等価な面、すなわち(10-11)面、(01-11)面、(0-111)面、(-1101)面、及び(-1011)面を含む概念である。また、本明細書において、<11-20>方向とは、[11-20]方向、及びこの[11-20]方向と結晶学的に等価な方向、すなわち[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向、及び[2-1-10]方向を含む概念である。 In the present specification, the symbol “−” attached immediately before the numeral in parentheses indicating the Miller index indicates the inversion of the index, and is the same as “bar” in the drawings. Further, in the present specification, the {1-101} plane means a (1-101) plane and a plane that is crystallographically equivalent to the (1-101) plane, that is, a (10-11) plane, (01 It is a concept including a -11) plane, a (0-111) plane, a (-1101) plane, and a (-1011) plane. In the present specification, the <11-20> direction is the [11-20] direction and a direction crystallographically equivalent to the [11-20] direction, that is, the [1-210] direction, 2110] A concept including a [-1 120] direction, a [-12-10] direction, and a [2-1-10] direction.
 また、本明細書において、単に「AlGaN」という表記をしている場合には、AlとGaを含む窒化物半導体であるという意味を示すものであり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。InGaNやAlInGaNという表記についても同様である。 Further, in the present specification, the term “AlGaN” simply means that the semiconductor is a nitride semiconductor containing Al and Ga, and the description of the composition ratio of Al and Ga is simply omitted. It is not intended to limit the case where the composition ratio of Al and Ga is 1: 1. The same applies to the notation of InGaN or AlInGaN.
 半導体発光素子201は、基板211と、第一半導体層215と、活性層217と、第二半導体層219と、第一電極241とを備えている。第一半導体層215は基板211の上層に形成され、活性層217は第一半導体層215の上層に形成され、第二半導体層219は活性層217の上層に形成されている。また、半導体発光素子201は、第一電極241及び第二電極221を有している。 The semiconductor light emitting device 201 includes a substrate 211, a first semiconductor layer 215, an active layer 217, a second semiconductor layer 219, and a first electrode 241. The first semiconductor layer 215 is formed in the upper layer of the substrate 211, the active layer 217 is formed in the upper layer of the first semiconductor layer 215, and the second semiconductor layer 219 is formed in the upper layer of the active layer 217. The semiconductor light emitting device 201 further includes a first electrode 241 and a second electrode 221.
 ここで、説明の都合上、図7(b)に示すように、半導体発光素子201を第一領域203及び第二領域204の2つの領域に分ける。第二領域204は第一電極241が形成されている領域及びその近傍の領域に対応し、第一領域203は半導体発光素子201において第二領域204よりも第一電極241の配置箇所から離れた領域に対応している。 Here, for convenience of explanation, as shown in FIG. 7B, the semiconductor light emitting device 201 is divided into two regions of a first region 203 and a second region 204. The second region 204 corresponds to the region where the first electrode 241 is formed and the region in the vicinity thereof, and the first region 203 is farther from the position where the first electrode 241 is disposed in the semiconductor light emitting element 201 than the second region 204 Corresponds to the area.
 本実施形態では、第二半導体層219は、第一領域203内において活性層217とは反対側に位置する面が凹凸面を含んで構成される一方、第二領域204内において活性層217とは反対側に位置する面が平坦面で構成されている。そして、半導体発光素子201は、第二領域204内に孔部207を有しており、この孔部207内に挿入されるように第一電極241が形成されている。 In the present embodiment, the second semiconductor layer 219 is configured such that the surface located on the opposite side to the active layer 217 in the first region 203 includes an uneven surface, while the second semiconductor layer 219 includes the active layer 217 in the second region 204. The surface on the opposite side is composed of a flat surface. The semiconductor light emitting element 201 has a hole 207 in the second region 204, and the first electrode 241 is formed so as to be inserted into the hole 207.
 以下、各要素の詳細な構成の一例について説明する。 Hereinafter, an example of a detailed configuration of each element will be described.
  (基板211、素子基板212)
 基板211は、例えばサファイア基板で構成される。また、素子基板212は、CuW、W、Moなどの導電性基板、Siなどの半導体基板、又はAlN等の絶縁性基板に配線パターンを設けたもので構成される。なお、図7(b)に示されるように、素子基板212において、第一電極241に電気的に接続される領域と、第二電極221に電気的に接続される領域との間は絶縁性が確保されている。この絶縁性を確保するための方法は種々の方法を採り得るが、一例としてはパターニングによって実現することができる。図7に示す半導体発光素子201は、基板211の側が光取り出し面を構成する。
(Substrate 211, element substrate 212)
The substrate 211 is made of, for example, a sapphire substrate. The element substrate 212 is configured by providing a wiring pattern on a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like. As shown in FIG. 7B, in the element substrate 212, insulation is provided between a region electrically connected to the first electrode 241 and a region electrically connected to the second electrode 221. Is secured. Although various methods can be adopted as a method for securing this insulation property, an example can be realized by patterning. In the semiconductor light emitting device 201 shown in FIG. 7, the side of the substrate 211 constitutes a light extraction surface.
  (接合層243)
 接合層243は、例えば、Au-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。この接合層243は、基板211と素子基板212とを接合する際に、両者の密着性を確保するための層として機能している。
(Bonding layer 243)
The bonding layer 243 is made of, for example, Au-Sn, Au-In, Au-Cu-Sn, Cu-Sn, Pd-Sn, Sn or the like. The bonding layer 243 functions as a layer for securing the adhesion between the substrate 211 and the element substrate 212 when bonding the substrate 211 and the element substrate 212.
  (保護層242)
 保護層242は、例えばPt系の金属(TiとPtの合金)、W、Mo、Niなどで構成される。接合層243を介した接合の際に、接合層243を構成する材料が第二電極221側に拡散して、第二電極221における反射率が落ちることによる光取り出し効率の低下を防止する機能を果たしている。
(Protective layer 242)
The protective layer 242 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni or the like. At the time of bonding via the bonding layer 243, the material constituting the bonding layer 243 is diffused to the second electrode 221 side, and the function of preventing a decrease in light extraction efficiency due to a decrease in reflectance at the second electrode 221 is performed. Play.
 なお、図7(b)に示すように、接合層243を構成する材料が第一電極241側に拡散するのを防止する目的で、第一電極241の上面に保護層242を設けても構わない。 As shown in FIG. 7B, a protective layer 242 may be provided on the upper surface of the first electrode 241 for the purpose of preventing the material forming the bonding layer 243 from diffusing to the first electrode 241 side. Absent.
  (第一電極241)
 第一電極241は、例えばCr-Auで構成される。図7(a)に示すように、本実施形態の半導体発光素子201は、離散的に配置された複数の第一電極241を有する構成である。
(First electrode 241)
The first electrode 241 is made of, for example, Cr-Au. As shown to Fig.7 (a), the semiconductor light-emitting device 201 of this embodiment is the structure which has the some 1st electrode 241 arrange | positioned discretely.
 第一電極241は、第二領域204内における第二半導体層219及び活性層217を貫通し、第一半導体層215に達する孔部207に挿入されることで形成されている。なお、本実施形態では、第一半導体層215がn型半導体層であり、第二半導体層219がp型半導体層であるものとして説明する。このとき、第一電極241はn側電極に相当する。 The first electrode 241 penetrates the second semiconductor layer 219 and the active layer 217 in the second region 204 and is formed by being inserted into the hole 207 reaching the first semiconductor layer 215. In the present embodiment, the first semiconductor layer 215 is an n-type semiconductor layer and the second semiconductor layer 219 is a p-type semiconductor layer. At this time, the first electrode 241 corresponds to an n-side electrode.
  (第二電極221)
 第二電極221は、第二半導体層219の面上に形成されており、例えばAg系の金属(NiとAgの合金)、Al、又はRh等を含む金属材料で構成することができる。これらの材料は、活性層217から射出される光を反射させることのできる導電性の材料である。このように構成することで、活性層217から素子基板212の側に向かって放出された光を、第二電極221で反射させて、取り出し面側(基板211側)へと導くことができるので、高い光取り出し効率が実現される。本実施形態では、第二電極221はp側電極に相当する。
(Second electrode 221)
The second electrode 221 is formed on the surface of the second semiconductor layer 219, and can be made of, for example, a metal material containing an Ag-based metal (an alloy of Ni and Ag), Al, Rh, or the like. These materials are conductive materials capable of reflecting the light emitted from the active layer 217. With this configuration, light emitted from the active layer 217 toward the element substrate 212 can be reflected by the second electrode 221 and guided to the extraction surface side (the substrate 211 side). , High light extraction efficiency is realized. In the present embodiment, the second electrode 221 corresponds to a p-side electrode.
  (絶縁層254)
 絶縁層254は、上述したように、第一電極241と第二電極221の間の絶縁性、第一電極241と第二半導体層219との間の絶縁性、及び第一電極241と活性層217との間の絶縁性を確保する目的で設けられている。本実施形態では、絶縁層254は、第一電極241の外側面の一部、及び第二電極221の素子基板212側の面の一部に設けられているものとしているが、上記の目的が実現できる範囲内で絶縁層254の形成箇所及び形成態様は適宜変更可能である。なお、絶縁層254はSiO2、SiN、Zr23又はAl23などで構成されるものとして構わない。
(Insulating layer 254)
As described above, the insulating layer 254 has the insulation between the first electrode 241 and the second electrode 221, the insulation between the first electrode 241 and the second semiconductor layer 219, and the first electrode 241 and the active layer. It is provided for the purpose of securing insulation between it and 217. In the present embodiment, the insulating layer 254 is provided on part of the outer surface of the first electrode 241 and part of the surface of the second electrode 221 on the element substrate 212 side, but the above-described object is The formation location and the formation mode of the insulating layer 254 can be appropriately changed within the range that can be realized. Note that the insulating layer 254 may be made of SiO 2 , SiN, Zr 2 O 3, Al 2 O 3 or the like.
  (第一半導体層215)
 本実施形態において、第一半導体層215は、n型のAlN層で構成される。なお、AlNの他、一般式Alx2Gay2In1-x2-y2N(0≦x2≦1,0≦y2≦1)で規定されるn型の窒化物半導体層で構成することができる。また、本実施形態では、図8D等を参照して後述するように、第一半導体層215は、非極性面(例えば{1-101}面)に平行な成長面215aと、極性面(例えば{0001}面)に平行な成長面215bを有する。
(First semiconductor layer 215)
In the present embodiment, the first semiconductor layer 215 is composed of an n-type AlN layer. Incidentally, other AlN, general formula Al x2 Ga y2 In 1-x2 -y2 N may be composed of (0 ≦ x2 ≦ 1,0 ≦ y2 ≦ 1) n -type nitride semiconductor layer defined by. In the present embodiment, as described later with reference to FIG. 8D and the like, the first semiconductor layer 215 includes a growth surface 215a parallel to the nonpolar surface (for example, {1-101} surface) and a polar surface (for example, Growth surface 215 b parallel to the {0001} plane).
  (活性層217)
 本実施形態において、活性層217は、Alx3Ga1-x3N(0<x3≦1)/AlNが一周期又は多周期で積層された構成である。一例として、Al0.8Ga0.2Nからなる発光層とAlNからなる障壁層が多周期繰り返されて構成されている。なお、活性層217の構成は、発光波長に応じて適宜選択される。また本実施形態では、図8E等を参照して後述されるように、活性層217は、第一半導体層215と同様に、非極性面(例えば{1-101}面)に平行な成長面217aと、極性面(例えば{0001}面)に平行な成長面217bを有する。なお、活性層217は、Al組成を異ならせることでバンドギャップエネルギーに差を設けた2種類の窒化物半導体層(AlGaN又はAlInGaN)が一周期又は多周期で積層されていても構わない。
(Active layer 217)
In the present embodiment, the active layer 217 has a configuration in which Al x 3 Ga 1-x 3 N (0 <x 3 ≦ 1) / AlN is stacked in one cycle or multiple cycles. As an example, a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN are repeatedly formed in multiple cycles. The configuration of the active layer 217 is appropriately selected according to the light emission wavelength. Further, in the present embodiment, as described later with reference to FIG. 8E and the like, the active layer 217 is a growth surface parallel to a nonpolar surface (for example, {1-101} surface), like the first semiconductor layer 215. 217a and a growth surface 217b parallel to a polar surface (eg, {0001} surface). In the active layer 217, two types of nitride semiconductor layers (AlGaN or AlInGaN) having a difference in band gap energy by making the Al composition different may be stacked in one cycle or multiple cycles.
  (第二半導体層219)
 本実施形態において、第二半導体層219は、p型Alx4Ga1-X4N(0<x4≦1)からなるp型クラッド層と、p型クラッド層の上層に形成されたp+型GaNからなるp型コンタクト層を含んで構成される。そして、このp型コンタクト層に接触するように第二電極221が形成されている。なお、p型コンタクト層は、p+型Alx5Ga1-X5N(0<x5≦1)で構成しても構わない。
(Second semiconductor layer 219)
In the present embodiment, the second semiconductor layer 219 is a p + -type GaN formed on the p-type cladding layer and a p-type cladding layer made of p-type Al x 4 Ga 1 -X 4 N (0 <x4 ≦ 1). And a p-type contact layer. The second electrode 221 is formed to be in contact with the p-type contact layer. The p-type contact layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 <x5 ≦ 1).
  (第三半導体層213)
 本実施形態において、半導体発光素子201は、第三半導体層213を備えており、この第三半導体層213の上層に第一半導体層215が形成されている。第一半導体層215は、第三半導体層213の上層にエピタキシャル成長することで形成された層である。
(Third semiconductor layer 213)
In the present embodiment, the semiconductor light emitting device 201 includes the third semiconductor layer 213, and the first semiconductor layer 215 is formed on the third semiconductor layer 213. The first semiconductor layer 215 is a layer formed by epitaxial growth on the upper layer of the third semiconductor layer 213.
 本実施形態において、第三半導体層213はAlN層で構成される。なお、AlNの他、一般式Alx1Gay1In1-x1-y1N(0≦x1≦1,0≦y1≦1)で規定される窒化物半導体層で構成することができる。なお、Alx1Gay1In1-x1-y1NのIn組成は1%以下とするのが好ましく、Alx1Gay1In1-x1-y1NのAl組成は、活性層217からの発光波長に応じて適宜選択される。 In the present embodiment, the third semiconductor layer 213 is formed of an AlN layer. In addition to AlN, a nitride semiconductor layer defined by the general formula Al x 1 Ga y 1 In 1-x 1-y N (0 ≦ x 1 ≦ 1, 0 ≦ y 1 ≦ 1) can be used. Incidentally, the emission wavelength from the Al x1 Ga y1 In 1-x1 -y1 N the In composition is preferably 1% or less, Al x1 Ga y1 In 1- x1-y1 Al composition of N, the active layer 217 It is appropriately selected accordingly.
 この第三半導体層213は、所定の方向(ここでは[11-20]方向とする。)に沿って延伸する溝部(凹部)214を有している。なお、本実施形態では、溝部214の延伸方向を[11-20]方向とするが、延伸方向は、[11-20]方向に対して結晶学的に等価な方向、すなわち<11-20>方向であるものとして構わないし、他の方向であっても構わない。 The third semiconductor layer 213 has a groove (concave portion) 214 extending along a predetermined direction (here, the [11-20] direction). In the present embodiment, although the stretching direction of the groove portion 214 is the [11-20] direction, the stretching direction is a crystallographically equivalent direction with respect to the [11-20] direction, that is, <11-20>. It may be a direction, or may be another direction.
 本構成によれば、活性層217が、非極性面に平行な成長面217a(後述する図8E参照)を有しているため、内部電界の影響が抑制されており、発光効率の高い発光素子が実現される。 According to this configuration, since the active layer 217 has the growth surface 217a (see FIG. 8E described later) parallel to the nonpolar surface, the influence of the internal electric field is suppressed, and the light emitting element with high light emission efficiency Is realized.
 また、ビア構造型の半導体発光素子においては、通常、図7(a)に示すように、同一の素子に複数のビア電極(ここでは第一電極241に対応)が形成される。そして、第一電極241が挿入されている孔部207が形成されている第二領域204では、上述したように、第二半導体層219の上面が平坦面で構成されている。後述するように、この孔部207はエッチングによって形成されるが、このようにエッチング対象面が平坦面で形成されることで、エッチングエネルギーを活性層217に均一的に与えることができる。よって、この第一電極241を挿入するための孔部207を同一の寸法で形成できるので、製造される各半導体発光素子201間の電気的特性が均一化され、高い歩留まりが実現できる。 Further, in the via-structure-type semiconductor light emitting device, as shown in FIG. 7A, a plurality of via electrodes (corresponding to the first electrode 241 in this case) are usually formed on the same device. Then, in the second region 204 in which the hole portion 207 in which the first electrode 241 is inserted is formed, as described above, the upper surface of the second semiconductor layer 219 is configured to be a flat surface. As will be described later, the holes 207 are formed by etching. By thus forming the surface to be etched as a flat surface, etching energy can be uniformly applied to the active layer 217. Therefore, since the hole 207 for inserting the first electrode 241 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting elements 201 can be equalized, and a high yield can be realized.
 〈製造方法〉
 第一実施形態に係る半導体発光素子201の製造方法につき、図7及び図8A~図8Qの各図を参照して説明する。なお、以下の図面のうち、図8A~図8G、図8N~図8Q、及び図8H(b)~図8M(b)の各図においては、図7(b)と同様に、各時点における素子を図7(a)内におけるA-A線に対応する箇所で切断したときの模式的な断面図に相当する。また、図8H(a)~図8M(a)は、図7(a)と同様に、各時点における素子を光取り出し面とは反対側から見たときの模式的な平面図に相当する。
<Production method>
The method of manufacturing the semiconductor light emitting device 201 according to the first embodiment will be described with reference to FIGS. 7 and 8A to 8Q. Of the following drawings, in each of FIGS. 8A to 8G, 8N to 8Q, and 8H (b) to 8M (b), as in FIG. 7 (b), at each time point This corresponds to a schematic cross-sectional view when the element is cut at a location corresponding to the line AA in FIG. 7A. Further, FIGS. 8H (a) to 8M (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 7 (a).
  (ステップS21)
 基板211を準備する(図8A参照)。この基板211としては、一例として(0001)面を有するサファイア基板を用いることができる。
(Step S21)
The substrate 211 is prepared (see FIG. 8A). As the substrate 211, a sapphire substrate having a (0001) plane can be used as an example.
 準備工程として、基板211のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板211を配置し、処理炉内に流量が例えば10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。 As a preparation step, the substrate 211 is cleaned. As a more specific example of this cleaning, the growth substrate 211 is disposed in the processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen at a flow rate of, for example, 10 slm is provided in the processing furnace. It is carried out by raising the temperature in the furnace to, for example, 1150 ° C. while flowing a gas.
 本ステップS21が工程(a)に対応する。 This step S21 corresponds to the step (a).
  (ステップS22)
 図8Bに示すように、基板211の(0001)面上に、例えばAlNからなる第三半導体層213を形成する。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてトリメチルアルミニウム(TMA)及びアンモニアを処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を1kPa以上70kPA以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が600nmのAlNからなる第三半導体層213を形成した。
(Step S22)
As shown in FIG. 8B, a third semiconductor layer 213 made of, for example, AlN is formed on the (0001) plane of the substrate 211. As an example of the specific method, while the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. to 1600 ° C., nitrogen gas and hydrogen gas are flowed as a carrier gas, and trimethylaluminum (TMA) and ammonia are treated as source gases Supply into the furnace. By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPA or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru. Here, the third semiconductor layer 213 made of AlN and having a film thickness of 600 nm was formed.
 なお、第三半導体層213として、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)を形成する場合には、TMA、アンモニアに加えて、トリメチルガリウム(TMG)、及びトリメチルインジウム(TMI)を組成に応じた所定の流量で供給すればよい。 As the third semiconductor layer 213, when forming the Al x1 Ga y1 In 1-x1 -y1 N (0 <x1 ≦ 1,0 ≦ y1 ≦ 1) is, TMA, in addition to ammonia, trimethyl gallium ( TMG) and trimethylindium (TMI) may be supplied at predetermined flow rates according to the composition.
  (ステップS23)
 図8Cに示すように、第三半導体層213に対して、所定の例えば<11-20>方向に沿った溝部(第一溝部)214を形成する。溝部214の底面に基板211が露出しない範囲内の深さで溝部214を形成するように制御するのが好ましい。
(Step S23)
As shown in FIG. 8C, a groove (first groove) 214 is formed in the third semiconductor layer 213 along, for example, a predetermined <11-20> direction. It is preferable to control so that the groove part 214 is formed in the bottom of the groove part 214 by the depth in the range which the board | substrate 211 does not expose.
 具体的な方法の一例としては、ステップS22まで実行することで得られたウェハを処理炉から取り出し、フォトリソグラフィ法及びリアクティブイオンエッチング法(RIE法)によって第三半導体層213の<11-20>方向に平行な複数の溝を所定の間隔で形成する。なお、図8Cでは、<11-20>方向と結晶学的に等価な一の方向である[11-20]方向に溝部214を延伸させている。 As an example of the specific method, the wafer obtained by performing up to step S22 is taken out of the processing furnace, and <11-20 of the third semiconductor layer 213 is formed by photolithography and reactive ion etching (RIE). A plurality of grooves parallel to the direction are formed at predetermined intervals. In FIG. 8C, the groove portion 214 is stretched in the [11-20] direction which is one direction that is crystallographically equivalent to the <11-20> direction.
 本ステップS22~S23が工程(b1)に対応する。 The present steps S22 to S23 correspond to the step (b1).
  (ステップS24)
 図8Dに示すように、<11-20>方向に沿った溝部214が形成された第三半導体層213の上面に対して、第一半導体層215を形成する。具体的な方法の一例としては、ステップS23の実行完了後のウェハを再びMOCVD装置の炉内に入れ、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA、アンモニア、及びn型ドーパントとしてのテトラエチルシラン等を処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を1kPa以上70kPa以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が3000nmのn型AlNからなる第一半導体層215を形成した。
(Step S24)
As shown in FIG. 8D, the first semiconductor layer 215 is formed on the upper surface of the third semiconductor layer 213 in which the groove 214 is formed along the <11-20> direction. As an example of the specific method, the wafer after completion of step S23 is again put into the furnace of the MOCVD apparatus, the furnace temperature of the MOCVD apparatus is set to a temperature of 900.degree. C. to 1600.degree. While flowing hydrogen gas, TMA, ammonia, tetraethylsilane as an n-type dopant, etc. are supplied into the processing furnace as source gases. By setting the flow rate ratio (V / III ratio) of TMA and ammonia to a value of 10 or more and 4,000 or less, setting the growth pressure to a value of 1 kPa or more and 70 kPa or less, and adjusting the supply time appropriately, AlN of a desired film thickness is formed. Ru. Here, the first semiconductor layer 215 made of n-type AlN having a film thickness of 3000 nm was formed.
 なお、第一半導体層215として、n型のAlx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)を形成する場合には、TMA、アンモニア、テトラエチルシランに加えて、TMG、及びTMIを、組成に応じた所定の流量で供給すればよい。 Incidentally, as the first semiconductor layer 215, the case of forming the n-type Al x2 Ga y2 In 1-x2 -y2 N (0 <x2 ≦ 1,0 ≦ y2 ≦ 1) is, TMA, ammonia, a tetra ethyl silane In addition, TMG and TMI may be supplied at a predetermined flow rate according to the composition.
 基板211の上面が露出しない深さを有する溝部214が形成された第三半導体層213の上面に対して結晶を成長させることで、非極性面(ここでは一例として{1-101}面)に平行な成長面215aを有する第一半導体層215が形成される。なお、図8Dに示す構成では、第一半導体層215は、一部の箇所に極性面に平行な成長面215bを有しているが、第一半導体層215が非極性面に平行な成長面215aのみを有する構成であってもよい。 By growing a crystal on the upper surface of the third semiconductor layer 213 in which the groove portion 214 having a depth to which the upper surface of the substrate 211 is not exposed is formed, a nonpolar surface (here, {1-101} as an example) is formed. A first semiconductor layer 215 having parallel growth surfaces 215a is formed. In the configuration shown in FIG. 8D, although the first semiconductor layer 215 has the growth surface 215b parallel to the polar surface at a part of the part, the growth surface parallel to the nonpolar surface is the first semiconductor layer 215. It may be a configuration having only 215a.
 本ステップS24が工程(b3)に対応する。なお、ステップS22~S24が工程(b)に対応する。 This step S24 corresponds to the step (b3). Steps S22 to S24 correspond to step (b).
  (ステップS25)
 図8Eに示すように、非極性面(ここでは{1-101}面)に平行な成長面215a、及び極性面(ここでは{0001}面)に平行な成長面215bを有する第一半導体層215の上面に、活性層217を成長させる。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程と、原料ガスとしてTMA、TMG及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程とを、周期数に応じて所定回数繰り返す。これにより、多周期のAlx3Ga1-x3N(0<x3≦1)/AlNからなる活性層217が形成される。
(Step S25)
As shown in FIG. 8E, a first semiconductor layer having a growth surface 215a parallel to the nonpolar plane (here, {1-101} plane) and a growth plane 215b parallel to the polar plane (here, {0001} plane) An active layer 217 is grown on top of 215. As a specific example of the method, the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. or more and 1600 ° C. or less, and nitrogen gas and hydrogen gas are flowed as a carrier gas, while TMA and ammonia as a source gas are filmed in the processing furnace. A step of supplying a predetermined time according to the thickness and a step of supplying TMA, TMG and ammonia as source gases into the processing furnace for a predetermined time according to the film thickness are repeated a predetermined number of times according to the number of cycles. Thus, an active layer 217 made of multi-period Al x 3 Ga 1-x 3 N (0 <x 3 ≦ 1) / AlN is formed.
 なお、活性層217として、Alx3Gay3In1-x3-y3N(0<x3≦1,0≦y3≦1)/Alx4Gay4In1-x4-y4N(0<x4≦1,0≦y4≦1)を形成する場合には、原料ガスとして、TMA、アンモニア、TMG、及びTMIを、組成に応じた所定の流量で供給すればよい。 Incidentally, as the active layer 217, Al x3 Ga y3 In 1 -x3-y3 N (0 <x3 ≦ 1,0 ≦ y3 ≦ 1) / Al x4 Ga y4 In 1-x4-y4 N (0 <x4 ≦ 1, In the case of forming 0 ≦ y4 ≦ 1), TMA, ammonia, TMG, and TMI may be supplied as source gases at a predetermined flow rate according to the composition.
 ステップS24において、非極性面に平行な成長面215a、及び極性面に平行な成長面215bを有する第一半導体層215が形成されているため、この状態で本ステップS25においてエピタキシャル成長させることで、図8Eに示すように、非極性面に平行な成長面217a及び極性面に平行な成長面217bを有する活性層217が形成される。なお、ステップS24において、第一半導体層215が非極性面に平行な成長面215aのみを有する構成である場合には、本ステップS25において、活性層217が非極性面に平行な成長面217aのみを有する構成であっても構わない。 Since the first semiconductor layer 215 having the growth surface 215a parallel to the nonpolar surface and the growth surface 215b parallel to the polar surface is formed in step S24, the epitaxial growth is performed in this step S25 in this state. As shown in 8E, an active layer 217 is formed having a growth surface 217a parallel to the nonpolar plane and a growth surface 217b parallel to the polar plane. If the first semiconductor layer 215 has only the growth surface 215a parallel to the nonpolar plane in step S24, only the growth surface 217a parallel to the nonpolar plane is active in step S25. It may be configured to have
 本ステップS25が工程(c)に対応する。 Step S25 corresponds to step (c).
  (ステップS26)
 図8Fに示すように、活性層217の上面に第二半導体層219を成長させる。具体的な方法の一例としては、MOCVD装置の炉内圧力を100kPa、炉内温度を830℃として、原料ガスとして、アンモニア、TMA及びTMGに加えて、p型不純物を構成するためのビスシクロペンタジエニルマグネシウム(Cp2Mg)を含めて更に成長させる。これにより、活性層217の上層にp型Alx4Ga1-X4N(0<x4≦1)で構成された第二半導体層219が形成される。なお、更に原料ガスの流量を変更してp+型GaN層をその上層に形成しても構わない。この場合、p型Alx4Ga1-X4N(0<x4≦1)とp+型GaN層とによって第二半導体層219が構成される。またp+型GaN層をp+型Alx5Ga1-X5N(0<x5≦1)で構成しても構わない。
(Step S26)
As shown in FIG. 8F, the second semiconductor layer 219 is grown on the upper surface of the active layer 217. As an example of a specific method, a bis-cyclopentan for forming a p-type impurity in addition to ammonia, TMA and TMG as source gases with an in-furnace pressure of 100 kPa and an in-furnace temperature of 830 ° C. in the MOCVD apparatus Further grow with dienyl magnesium (Cp 2 Mg). Thus, the second semiconductor layer 219 formed of p-type Al x 4 Ga 1 -x 4 N (0 <x4 ≦ 1) is formed in the upper layer of the active layer 217. The flow rate of the source gas may be further changed to form the p + -type GaN layer on the upper layer. In this case, the second semiconductor layer 219 is configured by the p-type Al x 4 Ga 1 -x 4 N (0 <x 4 ≦ 1) and the p + -type GaN layer. Also, the p + -type GaN layer may be made of p + -type Al x 5 Ga 1 -x 5 N (0 <x5 ≦ 1).
 本実施形態では、図8Fに示すように、第二半導体層219の上面が平坦面となるように形成されている。第二半導体層219の製膜条件を適宜設定することで、このように第二半導体層219の上面を平坦面とすることが可能である。 In the present embodiment, as shown in FIG. 8F, the upper surface of the second semiconductor layer 219 is formed to be a flat surface. By appropriately setting the film formation conditions of the second semiconductor layer 219, it is possible to make the upper surface of the second semiconductor layer 219 flat as described above.
 本ステップS26が工程(d)に対応する。 This step S26 corresponds to the step (d).
  (ステップS27)
 ステップS21~S26を経て得られたウェハに対して活性化処理を行う。より具体的には、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(Step S27)
The activation process is performed on the wafer obtained through steps S21 to S26. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  (ステップS28)
 次に、第二半導体層219の面のうち、第二領域204内の第二半導体層219に対してマスクをした状態で、露出している第一領域203内の第二半導体層219に対してKOH等のアルカリ溶液を浸す。これにより、図8Gに示すように、第一領域203内にのみ第二半導体層219の上面に凹凸形状205が形成される。
(Step S28)
Next, with respect to the second semiconductor layer 219 in the first region 203 exposed in the state where the second semiconductor layer 219 in the second region 204 is masked among the surfaces of the second semiconductor layer 219, Soak an alkaline solution such as KOH. As a result, as shown in FIG. 8G, the concavo-convex shape 205 is formed on the upper surface of the second semiconductor layer 219 only in the first region 203.
 本ステップS28が工程(e)に対応する。なお、本ステップS28は、ステップS27の前に実行されるものとしても構わない。 This step S28 corresponds to the step (e). Note that this step S28 may be performed before step S27.
  (ステップS29)
 図8Hに示すように、第二半導体層219の上面に第二電極221を形成する。具体的には、第二半導体層219の上面のうち、一以上の島状領域224以外の領域に対して選択的に第二電極221を形成する。このステップS29を経たウェハは、第二半導体層219が島状に露出した領域224と、第二電極221が露出した領域を上面に有する。ここで、前記島状領域224は、第二領域204内に形成される。
(Step S29)
As shown in FIG. 8H, the second electrode 221 is formed on the top surface of the second semiconductor layer 219. Specifically, the second electrode 221 is selectively formed on a region other than the one or more island regions 224 on the upper surface of the second semiconductor layer 219. The wafer having undergone this step S29 has, on the upper surface, a region 224 in which the second semiconductor layer 219 is exposed in an island shape and a region in which the second electrode 221 is exposed. Here, the island region 224 is formed in the second region 204.
 第二電極221の具体的な形成方法は、例えば以下の通りである。 The specific formation method of the second electrode 221 is, for example, as follows.
 まず、第二電極221を形成しない領域に対応した第二半導体層219の上面の領域に、パターニングによってレジストを塗布する。このレジストを塗布する領域は、後に第一電極241を形成する領域及び第一電極241に近くて電流が集中しやすい領域に対応する。その後、レジストの上面を含む全面に、例えばスパッタ装置にて膜厚150nmのAg及び膜厚30nmのNiを成膜する。なお、この材料膜として、第二半導体層219との密着性を高めるために、Ag層の下に膜厚1.5nm程度のNiを成膜しても構わない。 First, a resist is applied by patterning to the region of the upper surface of the second semiconductor layer 219 corresponding to the region where the second electrode 221 is not formed. The region to which the resist is applied corresponds to a region where the first electrode 241 is to be formed later and a region near the first electrode 241 where current tends to be concentrated. After that, Ag with a film thickness of 150 nm and Ni with a film thickness of 30 nm are formed on the entire surface including the upper surface of the resist by using, for example, a sputtering apparatus. As the material film, Ni may be formed to a film thickness of about 1.5 nm under the Ag layer in order to enhance the adhesion to the second semiconductor layer 219.
 次に、レジストをリフトオフした後、RTA装置等を用いてドライエア又は不活性ガス雰囲気中で400℃~550℃(例えば400℃)、60秒~300秒間のコンタクトアニール処理を行って、第二電極221を形成する。不活性ガス雰囲気でアニールをした場合、マイグレーションによる第二半導体層219側へのAgの拡散を少なくすることができるため、ドライエア雰囲気の場合よりも更にショットキー効果を高めることができる。 Next, after lifting off the resist, the second electrode is subjected to a contact annealing treatment at 400 ° C. to 550 ° C. (eg 400 ° C.) for 60 seconds to 300 seconds in a dry air or inert gas atmosphere using an RTA device or the like. Form 221 When annealing is performed in an inert gas atmosphere, the diffusion of Ag to the second semiconductor layer 219 side due to migration can be reduced, so the Schottky effect can be further enhanced compared to the case of a dry air atmosphere.
 本ステップS29が工程(h)に対応する。 This step S29 corresponds to step (h).
  (ステップS30)
 図8Iに示すように、ステップS29を経て露出している、第二領域204内に位置する第二半導体層219の面に対してエッチングを行って第一半導体層215の上面を露出させる。
(Step S30)
As shown in FIG. 8I, the surface of the second semiconductor layer 219 located in the second region 204 and exposed through the step S29 is etched to expose the top surface of the first semiconductor layer 215.
 具体的には、ステップS29の終了時点で形成された第二電極221の上面に対して、パターニングによってレジスト251を塗布する。その後、このレジスト251をマスクとして、第一半導体層215の一部上面が露出するまで、第二半導体層219及び活性層217を、ICP装置を用いたドライエッチングによって除去する。なお、本ステップS30において、第一半導体層215についても一部エッチング除去しても構わない。本ステップS30によって、溝部207が形成される。この溝部207は「第二溝部」に対応する。 Specifically, a resist 251 is applied to the upper surface of the second electrode 221 formed at the end of step S29 by patterning. Thereafter, using the resist 251 as a mask, the second semiconductor layer 219 and the active layer 217 are removed by dry etching using an ICP apparatus until a partial upper surface of the first semiconductor layer 215 is exposed. In the step S30, the first semiconductor layer 215 may be partially etched away. The groove portion 207 is formed by the present step S30. The groove portion 207 corresponds to the “second groove portion”.
 ステップS30で形成される溝部207は、その後に第一半導体層215に電流を供給するための第一電極241を埋め込むための空間となる。このため、ステップS30では、溝部207の底面の全ての領域において第一半導体層215の面が露出するまで、エッチングを進行させる必要がある。 The groove portion 207 formed in step S30 later becomes a space for embedding the first electrode 241 for supplying a current to the first semiconductor layer 215. Therefore, in step S30, it is necessary to advance the etching until the surface of the first semiconductor layer 215 is exposed in the entire region of the bottom surface of the groove portion 207.
 ここで、ステップS28において凹凸形状205が形成されている第二半導体層219の面に対して、本ステップS30を実行する場合について検討する。ステップS28で実行されるウェットエッチング工程は、ドライエッチングに比べて制御性が悪いため、第二半導体層219の表面に形成されている凹凸形状205のピッチや高さはランダムに決定される。この結果、本ステップS30において、溝部207の底面の全ての領域において第一半導体層215の面が露出させるまでに必要なエッチング量は、素子毎に異なる場合が想定される。このため、製造される各素子において、確実に溝部207の底面の全ての領域に第一半導体層215の面を露出させるためには、当該エッチング工程におけるエッチング量を多く確保しておく必要がある。この結果、供給するエッチングエネルギーが増大になるおそれがある。 Here, a case where this step S30 is performed on the surface of the second semiconductor layer 219 on which the concavo-convex shape 205 is formed in step S28 will be examined. Since the wet etching process performed in step S28 has poor controllability compared to dry etching, the pitch and height of the concavo-convex shape 205 formed on the surface of the second semiconductor layer 219 are randomly determined. As a result, in the present step S30, it is assumed that the etching amount required to expose the surface of the first semiconductor layer 215 in the entire region of the bottom surface of the groove portion 207 differs from element to element. For this reason, in order to reliably expose the surface of the first semiconductor layer 215 in the entire region of the bottom surface of the groove portion 207 in each element to be manufactured, it is necessary to secure a large etching amount in the etching step. . As a result, the supplied etching energy may be increased.
 また、エッチング開始時における半導体層の面に凹凸形状205が形成されていることで、投入されるエッチングエネルギーが基板211に平行な面方向に分散されやすく、エッチング開始当初にエッチングが進行しにくい結果、供給するエッチングエネルギーが増大になるおそれがある。 In addition, since the concavo-convex shape 205 is formed on the surface of the semiconductor layer at the start of etching, the etching energy to be introduced is easily dispersed in the plane direction parallel to the substrate 211, and the etching is difficult to progress at the beginning of the etching The etching energy supplied may be increased.
 これに対し、本実施形態のように、第二領域204内をエッチングして溝部207を形成する場合には、エッチング対象領域に係る第二半導体層219の上面が平坦に構成されている。また、活性層217の形状については、第一半導体層215の厚み、溝部207のピッチ及び深さによって制御可能である。つまり、本ステップS29の前の段階で、設定されていた第一半導体層215の厚み、溝部207のピッチ及び深さ等の情報に基づいて、本ステップS30においてどの程度の深さまでエッチングを進行させれば第一半導体層215の面を露出させられるかということを予め算定することができる。つまり、本実施形態に係る方法であれば、第一領域203内をエッチングする場合よりも、エッチング時に印加するエネルギー量を少なくすることができる。 On the other hand, when the inside of the second region 204 is etched to form the groove portion 207 as in the present embodiment, the upper surface of the second semiconductor layer 219 relating to the etching target region is formed flat. The shape of the active layer 217 can be controlled by the thickness of the first semiconductor layer 215 and the pitch and depth of the grooves 207. That is, based on the information such as the thickness of the first semiconductor layer 215 and the pitch and depth of the groove portion 207 set in the step prior to the step S29, the etching is advanced to what depth in the step S30. Then, it can be estimated in advance whether the surface of the first semiconductor layer 215 can be exposed. That is, with the method according to the present embodiment, the amount of energy to be applied at the time of etching can be made smaller than when etching the inside of the first region 203.
 本ステップS30は工程(f)に対応する。 Step S30 corresponds to step (f).
  (ステップS31)
 次に、ステップS30において形成されていたレジスト251をリフトオフした後、図8Jに示すように、溝部207の底面の中央部及び第二電極221の上面に、パターニングによってレジスト253を形成する。すなわち、溝部207の底面においてレジスト253の外周に第一半導体層215の上面を露出させた状態とする。その後、全面に絶縁層254を形成する。絶縁層254としてはSiO2、SiN、Zr23、AlN、Al23等を用いることができる。
(Step S31)
Next, after lifting off the resist 251 formed in step S30, as shown in FIG. 8J, a resist 253 is formed on the central portion of the bottom of the groove portion 207 and the upper surface of the second electrode 221 by patterning. That is, the upper surface of the first semiconductor layer 215 is exposed to the outer periphery of the resist 253 on the bottom surface of the groove portion 207. After that, the insulating layer 254 is formed over the entire surface. As the insulating layer 254, SiO 2, SiN, Zr 2 O 3 , AlN, Al 2 O 3 or the like can be used.
 その後、図8Kに示すようにレジスト253をリフトオフする。このとき、溝部207の内側面及び第二電極221の一部上面に絶縁層254が形成される。 Thereafter, the resist 253 is lifted off as shown in FIG. 8K. At this time, the insulating layer 254 is formed on the inner side surface of the groove portion 207 and the partial upper surface of the second electrode 221.
  (ステップS32)
 第二電極221の上面にパターニングによってレジスト255を形成する。その後、溝部207を充填するように、導電性材料を成膜して第一電極241を形成する(図8L参照)。第一電極241の形成方法の一例としては、膜厚100nmのCrと膜厚0.5~3μmのAuを蒸着した後、窒素雰囲気中で250℃、1分間程度のアニール処理を行う。その後、レジスト255をリフトオフする(図8M参照)。
(Step S32)
A resist 255 is formed on the upper surface of the second electrode 221 by patterning. Thereafter, a conductive material is deposited to form the first electrode 241 so as to fill the groove portion 207 (see FIG. 8L). As an example of a method of forming the first electrode 241, after Cr having a film thickness of 100 nm and Au having a film thickness of 0.5 to 3 μm are deposited, annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere. Thereafter, the resist 255 is lifted off (see FIG. 8M).
 ステップS31~S32によって、第二電極221と電気的に絶縁した状態で溝部207内に第一電極241が形成される。ステップS31~S32が工程(g)に対応する。 By the steps S31 to S32, the first electrode 241 is formed in the groove portion 207 in a state of being electrically insulated from the second electrode 221. Steps S31 to S32 correspond to step (g).
  (後のステップ)
 露出している第一電極241,第二電極221の上面に保護層242、接合層243を形成し、接合層243を介して素子基板212を接合する(図7参照)。具体的な一例としては以下の通りである。
(Step after)
The protective layer 242 and the bonding layer 243 are formed on the exposed upper surfaces of the first electrode 241 and the second electrode 221, and the element substrate 212 is bonded via the bonding layer 243 (see FIG. 7). A specific example is as follows.
 電子線蒸着装置(EB装置)にて、TiとPtを3周期成膜することで保護層242を形成し、その後、保護層242の上面(Pt表面)に、Ti及びAu-Snハンダを蒸着させることで接合層243を形成する。そして、この接合層243を介して、各電極(41,21)に対して電圧を印加するための素子基板212を貼り合わせる。素子基板212としては、上述したようにCuW、W、Mo等の導電性基板、Si等の半導体基板、又はAlN等の絶縁性基板に配線パターンを設けたものを利用することができる。 The protective layer 242 is formed by forming Ti and Pt three cycles with an electron beam vapor deposition apparatus (EB apparatus), and then Ti and Au-Sn solder are vapor deposited on the upper surface (Pt surface) of the protective layer 242 Thus, the bonding layer 243 is formed. Then, an element substrate 212 for applying a voltage to each electrode (41, 21) is bonded to each other through the bonding layer 243. As the element substrate 212, as described above, a conductive substrate of CuW, W, Mo or the like, a semiconductor substrate of Si or the like, or an insulating substrate of AlN or the like provided with a wiring pattern can be used.
 〈別の製造方法〉
 上述の方法では、ステップS22~S24によって工程(b)を実行したが、工程(b)は種々の方法で実現することができる。なお、ステップS25以後については上述した内容と共通であるため割愛する。
<Another manufacturing method>
In the above-described method, step (b) is performed by steps S22 to S24, but step (b) can be realized by various methods. In addition, since step S25 and subsequent steps are the same as the contents described above, they are omitted.
 第一の方法は、図8Cに示す状態から、再度第三半導体層213を成長させる工程(b2)を実行した後、ステップS24と同様に第一半導体層215を成長させる方法である(図8N参照)。工程(b2)の実行前において、第一領域203内には溝部214が存在することで凹凸面が形成されており、この凹凸面上に第三半導体層213が成長することで、少なくとも非極性面213aを成長面とした第三半導体層213が形成される。よって、その後に第一半導体層215を成長させることで、図8Oに示すように、少なくとも非極性面に平行な成長面215aを有する第一半導体層215が形成される。 The first method is a method of growing the first semiconductor layer 215 in the same manner as step S24 after performing the step (b2) of growing the third semiconductor layer 213 again from the state shown in FIG. 8C (FIG. 8N). reference). Before the step (b2) is performed, the uneven surface is formed by the presence of the groove 214 in the first region 203, and the third semiconductor layer 213 is grown on the uneven surface to at least a nonpolar surface. The third semiconductor layer 213 having the surface 213a as a growth surface is formed. Therefore, by subsequently growing the first semiconductor layer 215, as shown in FIG. 8O, the first semiconductor layer 215 having the growth surface 215a at least parallel to the nonpolar plane is formed.
 第二の方法は、図8Bに示す状態から第一半導体層215を成長させる工程(b4)を実行した後、所定の例えば<11-20>方向に沿った溝部を形成する工程(b5)を実行する方法である(図8P参照)。そして、工程(b5)の実行後、再び第一半導体層215を成長させる工程(b6)を実行する。工程(b6)の実行前において、第一半導体層215には凹凸面が形成されており、この凹凸面上に第一半導体層215が再成長することで、図8Qに示すように、少なくとも非極性面に平行な成長面215aを有する第一半導体層215が形成される。 In the second method, after the step (b4) of growing the first semiconductor layer 215 from the state shown in FIG. 8B, the step (b5) of forming a groove along a predetermined <11-20> direction is performed. It is the method to implement (refer FIG. 8P). Then, after the step (b5) is performed, the step (b6) of growing the first semiconductor layer 215 is performed again. Before execution of the step (b6), the first semiconductor layer 215 has an uneven surface, and the first semiconductor layer 215 is regrown on the uneven surface, as shown in FIG. 8Q. A first semiconductor layer 215 is formed having a growth surface 215a parallel to the polar plane.
  [第二実施形態]
 本発明の第二実施形態につき、説明する。なお、本実施形態において、第一実施形態と共通の要素に対しては同一の符号を付し、その説明を適宜割愛する。
Second Embodiment
A second embodiment of the present invention will be described. In the present embodiment, the elements common to the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 〈構造〉
 図9は、第二の構成の第二実施形態の半導体発光素子の構造を模式的に示す図面である。図9は、図7と同様に、(a)は光取り出し面とは反対側から見たときの模式的な平面図であり、(b)は(a)内におけるA-A線で切断したときの模式的な断面図である。第一実施形態と共通の要素に対しては同一の符号を付している。なお、本実施形態の半導体発光素子201aは、非極性面を成長面とする構造ではないため、第一実施形態とは異なり、図面内においてミラー指数を表示していない。
<Construction>
FIG. 9 is a drawing schematically showing the structure of the semiconductor light emitting device of the second embodiment of the second configuration. FIG. 9 is a schematic plan view as seen from the side opposite to the light extraction surface, as in FIG. 7, and (b) is taken along the line AA in (a) It is a typical sectional view of the time. The same reference numerals are given to elements common to the first embodiment. Note that, since the semiconductor light emitting element 201a of this embodiment does not have a structure in which the nonpolar surface is a growth surface, unlike the first embodiment, the Miller index is not displayed in the drawing.
 本実施形態の半導体発光素子201aにおいても、第一実施形態と同様に、第二半導体層219は、第一領域203内において活性層217とは反対側に位置する面が凹凸面で構成される一方、第二領域204内において活性層217とは反対側に位置する面が平坦面で構成されている。そして、半導体発光素子201は、第二領域204内に孔部207を有しており、この孔部207内に挿入されるように第一電極241が形成されている。 Also in the semiconductor light emitting device 201a of the present embodiment, as in the first embodiment, the second semiconductor layer 219 is configured such that the surface located on the opposite side to the active layer 217 in the first region 203 is an uneven surface. On the other hand, the surface opposite to the active layer 217 in the second region 204 is a flat surface. The semiconductor light emitting element 201 has a hole 207 in the second region 204, and the first electrode 241 is formed so as to be inserted into the hole 207.
 本実施形態の半導体発光素子201aにおいても、第一実施形態と同様に、島状領域224はエッチングによって形成される。図9に示すように、エッチング対象面が平坦面で形成されることで、エッチングエネルギーを活性層217に均一的に与えることができる。よって、この第一電極241を挿入するための孔部207を同一の寸法で形成できるので、製造される各半導体発光素子201a間の電気的特性が均一化され、高い歩留まりが実現できる。 Also in the semiconductor light emitting device 201a of the present embodiment, the island-shaped region 224 is formed by etching as in the first embodiment. As shown in FIG. 9, the etching target surface is formed to be a flat surface, so that etching energy can be uniformly applied to the active layer 217. Therefore, since the hole 207 for inserting the first electrode 241 can be formed with the same size, the electrical characteristics among the manufactured semiconductor light emitting devices 201a can be made uniform, and a high yield can be realized.
 〈製造方法〉
 第二実施形態に係る半導体発光素子201aの製造方法につき、図9、及び図10A~図10Eを参照して説明する。なお、図10A~図10B、及び図10C(b)~図10E(b)の各図においては、図9(b)と同様に、各時点における素子を図9(a)内におけるA-A線に対応する箇所で切断したときの模式的な断面図に相当する。また、図10C(a)~図10E(a)は、図9(a)と同様に、各時点における素子を光取り出し面とは反対側から見たときの模式的な平面図に相当する。なお、第一実施形態と共通の箇所については説明を割愛する。
<Production method>
The method of manufacturing the semiconductor light emitting device 201a according to the second embodiment will be described with reference to FIGS. 9 and 10A to 10E. In each of FIGS. 10A to 10B and 10C (b) to 10E (b), as in FIG. 9 (b), the elements at each time point are taken along AA in FIG. 9 (a). It corresponds to a schematic cross-sectional view when cut at a portion corresponding to a line. 10C (a) to 10E (a) correspond to schematic plan views when the device at each time point is viewed from the side opposite to the light extraction surface, as in FIG. 9A. In addition, description is omitted about the part common to 1st embodiment.
  (ステップS41)
 ステップS21と同様に、基板211を準備する。この基板211としては、一例として(0001)面を有するサファイア基板を用いることができる。ステップS41が工程(a)に対応する。
(Step S41)
As in step S21, the substrate 211 is prepared. As the substrate 211, a sapphire substrate having a (0001) plane can be used as an example. Step S41 corresponds to step (a).
  (ステップS42~S44)
 図10Aに示すように、基板211上に第一半導体層215、活性層217、及び第二半導体層219を形成する。具体的な方法の一例は以下の通りである。
(Steps S42 to S44)
As shown in FIG. 10A, the first semiconductor layer 215, the active layer 217, and the second semiconductor layer 219 are formed on the substrate 211. An example of a specific method is as follows.
  (ステップS42)
 まず、基板211の表面に、GaNよりなる低温バッファ層を形成し、更にその上層にGaNよりなる下地層を形成する。これらの低温バッファ層及び下地層がアンドープ層236に対応する。具体的なアンドープ層236の形成方法は、例えば以下の通りである。まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのTMG、及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、基板211の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。
(Step S42)
First, a low temperature buffer layer made of GaN is formed on the surface of the substrate 211, and an underlayer made of GaN is formed thereon. These low temperature buffer layers and underlayers correspond to the undoped layer 236. A specific method of forming the undoped layer 236 is, for example, as follows. First, the pressure in the furnace of the М CVD apparatus is 100 kPa, and the temperature in the furnace is 480 ° C. Then, while flowing nitrogen gas and hydrogen gas each having a flow rate of 5 slm as a carrier gas in the processing furnace, TMG having a flow rate of 50 μmol / min and ammonia having a flow rate of 250,000 μmol / min as a source gas for 68 seconds in the processing furnace Supply. Thereby, a low temperature buffer layer of 20 nm thick made of GaN is formed on the surface of the substrate 211.
 次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、低温バッファ層の表面に、厚みが1.7μmのGaNよりなる下地層を形成する。 Next, the temperature in the furnace of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 μmol / min and ammonia having a flow rate of 250000 μmol / min as a source gas in the processing furnace Feed for 30 minutes. Thereby, an underlayer of 1.7 μm in thickness made of GaN is formed on the surface of the low temperature buffer layer.
 そして、アンドープ層236の上層に第一半導体層215を形成する。引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのTMA、流量が250000μmol/minのアンモニア及び流量が0.013μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、例えばAl0.06Ga0.94Nの組成を有し、Si濃度が5×1019/cm3で、厚みが2μmの第一半導体層215がアンドープ層236の上層に形成される。 Then, the first semiconductor layer 215 is formed on the undoped layer 236. Subsequently, with the temperature in the furnace being 1150 ° C., the pressure in the furnace of the MOCVD apparatus is 30 kPa. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as carrier gas, TMG having a flow rate of 94 μmol / min, TMA having a flow rate of 6 μmol / min, and a flow rate of 250,000 μmol / min as a carrier gas. Ammonia of min and tetraethylsilane with a flow rate of 0.013 μmol / min are fed into the processing furnace for 60 minutes. Thereby, a first semiconductor layer 215 having a composition of Al 0.06 Ga 0.94 N, a Si concentration of 5 × 10 19 / cm 3 , and a thickness of 2 μm is formed on the upper layer of the undoped layer 236.
 なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、n型AlGaN層の上層に、厚みが5nm程度のn型GaNよりなる保護層を有する第一半導体層215を実現してもよい。 After that, the supply of TMA is stopped, and the source gas other than that is supplied for 6 seconds, thereby providing a protective layer made of n-type GaN having a thickness of about 5 nm on the upper layer of the n-type AlGaN layer. The semiconductor layer 215 may be realized.
 上記の説明では、第一半導体層215に含まれるn型不純物をSiとする場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。 In the above description, the n-type impurity contained in the first semiconductor layer 215 is Si, but Ge, S, Se, Sn, Te, or the like can be used as the n-type impurity in addition to Si. .
 このステップS42が工程(b)に対応する。 This step S42 corresponds to the step (b).
  (ステップS43)
 次に、第一半導体層215の上層に、例えばInGaNで構成される発光層及びn型AlGaNで構成される障壁層が周期的に繰り返されてなる活性層217を形成する。
(Step S43)
Next, in the upper layer of the first semiconductor layer 215, an active layer 217 in which a light emitting layer composed of, for example, InGaN and a barrier layer composed of n-type AlGaN are periodically repeated is formed.
 具体的には、まずMOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのTMI及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる発光層及び厚みが7nmのn型AlGaNよりなる障壁層が15周期繰り返されてなる活性層217が、第一半導体層215の上層に形成される。 Specifically, first, the pressure in the furnace of the MOCVD apparatus is 100 kPa, and the temperature in the furnace is 830.degree. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as carrier gas in the processing furnace, TMG having a flow rate of 10 μmol / min and TMI having a flow rate of 12 μmol / min and a flow rate of 300000 μmol / min as source gases. The step of supplying min ammonia for 48 seconds into the processing furnace is performed. Thereafter, a step of supplying TMG with a flow rate of 10 μmol / min, TMA with a flow rate of 1.6 μmol / min, tetraethylsilane with a 0.002 μmol / min and ammonia with a flow rate of 300000 μmol / min into the treatment furnace for 120 seconds. Hereinafter, by repeating these two steps, the active layer 217 in which the light emitting layer made of InGaN and the barrier layer made of n-type AlGaN having a thickness of 7 nm are repeated 15 cycles is repeated by repeating the two steps. Formed in the upper layer of
 このステップS43が工程(c)に対応する。 This step S43 corresponds to the step (c).
  (ステップS44)
 次に、活性層217の上層に、例えばAlGaNで構成される第二半導体層219を形成する。第二半導体層219の具体的な形成方法は例えば以下の通りである。
(Step S44)
Next, the second semiconductor layer 219 made of, for example, AlGaN is formed on the active layer 217. The specific formation method of the second semiconductor layer 219 is, for example, as follows.
 具体的には、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.1μmol/minのCp2Mgを処理炉内に60秒間供給する。これにより、活性層33の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMAの流量を4μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層により第二半導体層219が形成される。 Specifically, the pressure in the furnace of the MOCVD apparatus is maintained at 100 kPa, and the temperature in the furnace is raised to 1025 ° C. while flowing nitrogen gas with a flow rate of 15 slm and hydrogen gas with a flow rate of 25 slm into the processing furnace as carrier gas. Do. Thereafter, as source gases, TMG with a flow rate of 35 μmol / min, TMA with a flow rate of 20 μmol / min, Cp 2 Mg with a flow rate of 0.1 μmol / min for doping ammonia with a flow rate of 250000 μmol / min Supply to the processing furnace for 60 seconds. Thereby, on the surface of the active layer 33, a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed. Thereafter, the flow rate of TMA is changed to 4 μmol / min and the source gas is supplied for 360 seconds to form a hole supply layer having a composition of Al 0.13 Ga 0.87 N with a thickness of 120 nm. The second semiconductor layer 219 is formed by these hole supply layers.
 なお、その後、TMAの供給を停止すると共に、Cp2Mgの流量を0.2μmol/minに変更して原料ガスを20秒間供給することにより、厚みが5nm程度で、p型不純物濃度が1×1020/cm3程度のp型コンタクト層を形成してもよい。この場合、第二半導体層219にはこのp型コンタクト層も含まれる。 After that, while stopping the supply of TMA and changing the flow rate of Cp 2 Mg to 0.2 μmol / min and supplying the source gas for 20 seconds, the thickness is about 5 nm and the p-type impurity concentration is 1 × A p-type contact layer of about 10 20 / cm 3 may be formed. In this case, the second semiconductor layer 219 also includes this p-type contact layer.
 このステップS44が工程(d)に対応する。 This step S44 corresponds to the step (d).
  (ステップS45)
 ウェハに対して活性化処理を行う。より具体的には、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(Step S45)
An activation process is performed on the wafer. More specifically, activation treatment is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal: rapid heating) apparatus.
  (ステップS46)
 次に、第二半導体層219の面のうち、第二領域204内の第二半導体層219に対してマスクをした状態で、露出している第一領域203内の第二半導体層219に対してKOH等のアルカリ溶液を浸す。これにより、図10Bに示すように、第一領域203内にのみ第二半導体層219の上面に凹凸形状205が形成される。
(Step S46)
Next, with respect to the second semiconductor layer 219 in the first region 203 exposed in the state where the second semiconductor layer 219 in the second region 204 is masked among the surfaces of the second semiconductor layer 219, Soak an alkaline solution such as KOH. As a result, as shown in FIG. 10B, the concavo-convex shape 205 is formed on the top surface of the second semiconductor layer 219 only in the first region 203.
 本ステップS46が工程(e)に対応する。なお、本ステップS26は、ステップS45の前に実行されるものとしても構わない。 This step S46 corresponds to the step (e). The present step S26 may be performed before step S45.
  (ステップS47)
 図10Cに示すように、ステップS29と同様に第二電極221を形成する。本ステップS47は工程(h)に対応する。
(Step S47)
As shown in FIG. 10C, the second electrode 221 is formed as in step S29. Step S47 corresponds to step (h).
  (ステップS48)
 図10Dに示すように、ステップS30と同様、ステップS47を経て露出している、第二領域204内に位置する第二半導体層219の面に対してエッチングを行って第一半導体層215の上面を露出させる。本ステップS48では、第一実施形態におけるステップS30と同様に、上面が平坦面で構成された、第二領域204内の第二半導体層219、及びその下方の活性層217に対してエッチングが行われるため、隣接箇所に対しても同じ寸法のエッチング量で第一半導体層215を露出させることができる。
(Step S48)
As shown in FIG. 10D, as in step S30, the upper surface of the first semiconductor layer 215 is etched by etching the surface of the second semiconductor layer 219 located in the second region 204 exposed through step S47. Expose the In this step S48, as in step S30 in the first embodiment, the etching is performed on the second semiconductor layer 219 in the second region 204 and the active layer 217 below the second region 204, the upper surface of which is formed as a flat surface. Therefore, the first semiconductor layer 215 can be exposed to the adjacent portion with the same amount of etching amount.
 本ステップS48は工程(f)に対応する。 Step S48 corresponds to step (f).
  (ステップS49)
 図10Eに示すように、ステップS31~S32と同様の方法で絶縁層254及び第一電極241を形成する。本ステップS49が工程(g)に対応する。
(Step S49)
As shown in FIG. 10E, the insulating layer 254 and the first electrode 241 are formed in the same manner as in steps S31 to S32. Step S49 corresponds to step (g).
  (後のステップ)
 その後も第一実施形態と同様の工程を経て、図9に示すような半導体発光素子201aが実現される。
(Step after)
After that, the semiconductor light emitting device 201a as shown in FIG. 9 is realized through the same steps as the first embodiment.
 なお、この後、基板211を剥離する工程を実行しても構わない。より具体的な一例としては、基板211を上に、素子基板212を下に向けた状態で、基板211側からKrFエキシマレーザを照射して、基板211とエピタキシャル層の界面を分解させることで基板211の剥離を行う。その後、ウェハ上に残存しているGaN(アンドープ層236)を、塩酸等を用いたウェットエッチング、又はICP装置を用いたドライエッチングによって除去し、第一半導体層215を露出させる。この工程を経ることで、図11に示す半導体発光素子201aが実現される。なお、図11は、(a)が光取り出し面側(第一半導体層215側)から見た模式的な平面図であり、(b)が素子201aを(a)におけるA-A線で切断したときの模式的な断面図である。 Note that after this, a step of peeling the substrate 211 may be performed. As a more specific example, with the substrate 211 facing up and the element substrate 212 facing downward, a KrF excimer laser is irradiated from the substrate 211 side to decompose the interface between the substrate 211 and the epitaxial layer. Peel 211. Thereafter, the GaN (undoped layer 236) remaining on the wafer is removed by wet etching using hydrochloric acid or the like or dry etching using an ICP apparatus to expose the first semiconductor layer 215. Through this process, the semiconductor light emitting device 201a shown in FIG. 11 is realized. FIG. 11 is a schematic plan view when (a) is viewed from the light extraction surface side (the first semiconductor layer 215 side), and (b) is a cut along line AA in (a) of the element 201a. It is typical sectional drawing at the time of.
  [別実施形態]
 以下において、第二の構成の別実施形態について説明する。
[Another embodiment]
Hereinafter, another embodiment of the second configuration will be described.
 〈1〉 第一実施形態の構成では、活性層217が、第一領域203及び第二領域204の双方に非極性面に平行な成長面217aを有する場合について説明した。しかし、活性層217は、少なくとも一部の領域において、非極性面に平行な成長面217aを有する構成であるものとしても構わない。 <1> In the configuration of the first embodiment, the case where the active layer 217 has the growth surface 217a parallel to the nonpolar plane in both the first region 203 and the second region 204 has been described. However, the active layer 217 may have a growth surface 217 a parallel to the nonpolar surface in at least a part of the area.
 〈2〉 第一実施形態において、溝部214の延伸方向が<11-20>方向である場合を例に挙げて説明したが、これはあくまで一例であり、活性層217が非極性面に平行な成長面217aを有して成長することができれば、溝部214の延伸方向は他の方向でも構わない。 <2> In the first embodiment, the case where the extending direction of the groove portion 214 is the <11-20> direction has been described as an example, but this is merely an example, and the active layer 217 is parallel to the nonpolar surface The extending direction of the groove portion 214 may be another direction as long as growth can be performed with the growth surface 217a.
 〈3〉 上記の各実施形態では、第一半導体層215をn型半導体層とし、第二半導体層219をp型半導体層として説明したが、これはあくまで一例であって、上記実施形態の構成からn型とp型を反転させた半導体発光素子を本発明から排除する趣旨ではない。 <3> In the above embodiments, the first semiconductor layer 215 is described as an n-type semiconductor layer, and the second semiconductor layer 219 is described as a p-type semiconductor layer, but this is merely an example, and the configuration of the above embodiment It is not intended to exclude from the present invention a semiconductor light emitting device in which n-type and p-type are inverted.
 〈4〉 上記の各実施形態では、第一電極241が孔部207内に形成された、ビア型構造の半導体発光素子201について説明した。しかし、例えば第二領域204を基板211の端部領域とすることで、同様に、歩留まりの高い横型やフリップチップ型の半導体発光素子201を実現することができる。 <4> In each of the above embodiments, the semiconductor light emitting device 201 having the via type structure in which the first electrode 241 is formed in the hole portion 207 has been described. However, for example, by using the second region 204 as the end region of the substrate 211, it is possible to realize the horizontal or flip chip type semiconductor light emitting device 201 with high yield.
    101      :  半導体発光素子
    103      :  第一領域
    104      :  第二領域
    105      :  凹凸形状
    107      :  孔部/溝部(第二溝部)
    111      :  基板
    112      :  素子基板
    113      :  第三半導体層
    114      :  溝部(第一溝部)
    114a     :  溝部(第一溝部)
    115      :  第一半導体層
    117      :  活性層
    119      :  第二半導体層
    121      :  第二電極
    124      :  島状領域
    141      :  第一電極
    142      :  保護層
    143      :  接合層
    151      :  レジスト
    153      :  レジスト
    154      :  絶縁層
    155      :  レジスト
    201,201a      :  半導体発光素子
    203      :  第一領域
    204      :  第二領域
    205      :  凹凸形状
    207      :  孔部/溝部(第二溝部)
    211      :  基板
    212      :  素子基板
    213      :  第三半導体層
    214      :  溝部(第一溝部)
    215      :  第一半導体層
    215a     :  第一半導体層の非極性面
    215b     :  第一半導体層の極性面
    217      :  活性層
    217a     :  活性層の非極性面
    217b     :  活性層の極性面
    219      :  第二半導体層
    221      :  第二電極
    224      :  島状領域
    236      :  アンドープ層
    241      :  第一電極
    242      :  保護層
    243      :  接合層
    251      :  レジスト
    253      :  レジスト
    254      :  絶縁層
    255      :  レジスト
 
101: Semiconductor light emitting element 103: First region 104: Second region 105: Irregular shape 107: Hole / groove (second groove)
111: Substrate 112: Element substrate 113: Third semiconductor layer 114: Groove (first groove)
114a: Groove (first groove)
115: first semiconductor layer 117: active layer 119: second semiconductor layer 121: second electrode 124: island-like region 141: first electrode 142: protective layer 143: bonding layer 151: resist 153: resist 154: insulating layer 155 : Resist 201, 201a: Semiconductor light emitting element 203: First region 204: Second region 205: Irregular shape 207: Hole / groove (second groove)
211: Substrate 212: Element substrate 213: Third semiconductor layer 214: Groove (first groove)
215: first semiconductor layer 215a: nonpolar surface of first semiconductor layer 215b: polar surface of first semiconductor layer 217: active layer 217a: nonpolar surface of active layer 217b: polar surface of active layer 219: second semiconductor layer 221: second electrode 224: island region 236: undoped layer 241: first electrode 242: protective layer 243: bonding layer 251: resist 253: resist 254: insulating layer 255: resist

Claims (24)

  1.  基板と、
     前記基板の上層に形成された、n型又はp型の窒化物半導体からなる第一半導体層と、
     前記第一半導体層の上層に形成された、窒化物半導体からなる活性層と、
     前記活性層の上層に形成された、前記第一半導体層とは異なる導電型の窒化物半導体からなる第二半導体層と、
     前記第一半導体層に接触して形成された第一電極とを有し、
     前記活性層又は前記第一半導体層の少なくとも一方は、前記基板の面に平行な方向に関して、第一領域に凹凸面を含み、前記第一領域とは異なる第二領域が平坦面で構成され、
     前記第一電極は、前記第二領域内において、前記第一半導体層に接触すると共に、前記活性層及び前記第二半導体層に対して絶縁性を有した状態で形成され、
     前記第二領域内において、前記第一電極と接触している領域に位置する前記第一半導体層の上層には前記活性層及び前記第二半導体層が形成されていないことを特徴とする半導体発光素子。
    A substrate,
    A first semiconductor layer formed of an n-type or p-type nitride semiconductor formed in the upper layer of the substrate;
    An active layer formed of a nitride semiconductor, formed on the upper layer of the first semiconductor layer;
    A second semiconductor layer formed of a nitride semiconductor of a conductivity type different from the first semiconductor layer, formed in the upper layer of the active layer;
    And a first electrode formed in contact with the first semiconductor layer,
    At least one of the active layer and the first semiconductor layer includes an uneven surface in a first region in a direction parallel to the surface of the substrate, and a second region different from the first region is a flat surface.
    The first electrode is formed in the second region so as to be in contact with the first semiconductor layer and to have insulation with respect to the active layer and the second semiconductor layer.
    In the second region, the active layer and the second semiconductor layer are not formed on the upper layer of the first semiconductor layer located in the region in contact with the first electrode. element.
  2.  前記活性層は、第一領域内において前記第一半導体層の側に位置する面が凹凸面を含んで構成される一方、前記第二領域内において前記第一半導体層の側に位置する面が平坦面で構成されていることを特徴とする請求項1に記載の半導体発光素子。 The active layer is configured such that the surface located on the side of the first semiconductor layer in the first region includes an uneven surface, and the surface located on the side of the first semiconductor layer in the second region is The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is constituted by a flat surface.
  3.  前記第二領域内において、少なくとも前記第二半導体層及び前記活性層を貫通し、前記第一半導体層に達する孔部を有し、
     前記第一電極は、前記活性層及び前記第二半導体層に対して絶縁状態が保持された状態で前記孔部に挿入され、前記第一半導体層に接触するように形成されていることを特徴とする請求項2に記載の半導体発光素子。
    In the second region, it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
    The first electrode is inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and the first electrode is formed to be in contact with the first semiconductor layer. The semiconductor light emitting device according to claim 2.
  4.  前記第一領域内の前記活性層の凹凸面が窒化物半導体の非極性面で構成され、前記第二領域内の前記活性層の平坦面が窒化物半導体の極性面で構成されていることを特徴とする請求項2又は3に記載の半導体発光素子。 The uneven surface of the active layer in the first region is composed of a nonpolar surface of a nitride semiconductor, and the flat surface of the active layer in the second region is composed of a polar surface of a nitride semiconductor The semiconductor light emitting device according to claim 2 or 3, characterized in that
  5.  前記第二半導体層は、前記第一領域内において前記活性層とは反対側に位置する面が凹凸面を含んで構成され、前記第二領域内において前記活性層とは反対側に位置する面が平坦面で構成されていることを特徴とする請求項2~4のいずれか1項に記載の半導体発光素子。 In the second semiconductor layer, the surface located on the opposite side to the active layer in the first region includes a rough surface, and the surface located on the opposite side to the active layer in the second region The semiconductor light emitting device according to any one of claims 2 to 4, characterized in that
  6.  前記第二半導体層は、前記第一領域内及び前記第二領域内において、前記活性層とは反対側に位置する面が凹凸面を含んで構成されていることを特徴とする請求項2~4のいずれか1項に記載の半導体発光素子。 The second semiconductor layer is characterized in that a surface opposite to the active layer in the first region and the second region includes an uneven surface. The semiconductor light-emitting device according to any one of 4.
  7.  前記第二半導体層は、前記第一領域内及び前記第二領域内において、前記活性層とは反対側に位置する面が平坦面で構成されていることを特徴とする請求項2~4のいずれか1項に記載の半導体発光素子。 The second semiconductor layer is characterized in that a surface located on the opposite side to the active layer in the first region and the second region is a flat surface. The semiconductor light-emitting device according to any one of the above.
  8.  前記第二半導体層と接触した第二電極を備え、
     前記第一電極は、前記第二電極に対して絶縁状態が保持された状態で前記第一半導体層に接触していることを特徴とする請求項2~7のいずれか1項に記載の半導体発光素子。
    A second electrode in contact with the second semiconductor layer,
    The semiconductor according to any one of claims 2 to 7, wherein the first electrode is in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode. Light emitting element.
  9.  請求項2に記載の半導体発光素子の製造方法であって、
     前記基板を準備する工程(a)と、
     前記基板の上層に、前記第一領域内においては少なくとも非極性面を結晶成長面とし、前記第一領域とは異なる前記第二領域内においては極性面を結晶成長面として、n型又はp型の窒化物半導体からなる前記第一半導体層を成長させる工程(b)と、
     前記第一半導体層の上層に窒化物半導体からなる前記活性層を成長させる工程(c)と、
     前記活性層の上層に、前記第一半導体層とは異なる導電型の窒化物半導体からなる前記第二半導体層を成長させる工程(d)と、
     前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層を露出させる工程(e)と、
     前記第二半導体層及び前記活性層と電気的に絶縁した状態で露出した前記第一半導体層の上面の少なくとも一部に前記第一電極を形成する工程(f)とを有することを特徴とする半導体発光素子の製造方法。
    The method of manufacturing a semiconductor light emitting device according to claim 2,
    Preparing the substrate (a);
    In the upper layer of the substrate, at least a nonpolar surface is a crystal growth surface in the first region, and a polar surface is a crystal growth surface in the second region different from the first region, n-type or p-type Growing the first semiconductor layer comprising a nitride semiconductor of
    Growing the active layer of nitride semiconductor on top of the first semiconductor layer (c);
    Growing the second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer;
    Etching the second semiconductor layer and the active layer in at least a part of the second region to expose the first semiconductor layer on the bottom surface;
    And (f) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. Method of manufacturing a semiconductor light emitting device
  10.  前記工程(e)は、前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層が露出してなる溝部を形成する工程であり、
     前記工程(f)は、前記第二半導体層及び前記活性層と電気的に絶縁した状態で前記溝部内に導電性材料を充填して前記第一電極を形成する工程であることを特徴とする請求項9に記載の半導体発光素子の製造方法。
    The step (e) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed. Yes,
    The step (f) is a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. A method of manufacturing a semiconductor light emitting device according to claim 9.
  11.  前記工程(e)は、窒化物半導体からなる層のc面に平行な面をエッチングする工程であることを特徴とする請求項9又は10に記載の半導体発光素子の製造方法。 11. The method of manufacturing a semiconductor light emitting device according to claim 9, wherein the step (e) is a step of etching a plane parallel to the c plane of the layer made of a nitride semiconductor.
  12.  前記工程(d)の終了後、前記工程(e)の開始前に、前記第二半導体層の上面に凹凸形状を形成する工程(g)を有することを特徴とする請求項9~11のいずれか1項に記載の半導体発光素子の製造方法。 12. The method according to any one of claims 9 to 11, further comprising the step (g) of forming a concavo-convex shape on the upper surface of the second semiconductor layer after the end of the step (d) and before the start of the step (e). A method of manufacturing a semiconductor light emitting device according to any one of the preceding items.
  13.  前記工程(d)の終了後、前記工程(e)の開始前に、少なくとも前記第一領域内における前記第二半導体層の上層に第二電極を形成する工程(h)を有し、
     前記工程(f)が、前記第二電極と電気的に絶縁した状態で前記第一電極を形成する工程であることを特徴とする請求項9~12のいずれか1項に記載の半導体発光素子の製造方法。
    After the completion of the step (d), before the start of the step (e), there is a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in at least the first region,
    The semiconductor light emitting device according to any one of claims 9 to 12, wherein the step (f) is a step of forming the first electrode in a state of being electrically insulated from the second electrode. Manufacturing method.
  14.  前記第二半導体層は、前記第一領域内において前記活性層とは反対側に位置する面が凹凸面を含んで構成される一方、前記第二領域内において前記活性層とは反対側に位置する面が平坦面で構成されていることを特徴とする請求項1に記載の半導体発光素子。 The second semiconductor layer is configured such that the surface opposite to the active layer in the first region includes an uneven surface, while the second semiconductor layer is opposite to the active layer in the second region. The semiconductor light emitting device according to claim 1, wherein the surface to be formed is a flat surface.
  15.  前記第二領域内において、少なくとも前記第二半導体層及び前記活性層を貫通し、前記第一半導体層に達する孔部を有し、
     前記第一電極は、前記活性層及び前記第二半導体層に対して絶縁状態が保持された状態で前記孔部に挿入され、前記第一半導体層に接触するように形成されていることを特徴とする請求項14に記載の半導体発光素子。
    In the second region, it has a hole which penetrates at least the second semiconductor layer and the active layer and reaches the first semiconductor layer,
    The first electrode is inserted into the hole in a state in which an insulating state is maintained with respect to the active layer and the second semiconductor layer, and the first electrode is formed to be in contact with the first semiconductor layer. The semiconductor light-emitting device according to claim 14.
  16.  前記活性層は、非極性面を結晶面とする窒化物半導体で構成されていることを特徴とする請求項14又は15に記載の半導体発光素子。 16. The semiconductor light emitting device according to claim 14, wherein the active layer is made of a nitride semiconductor having a nonpolar plane as a crystal plane.
  17.  前記活性層は、前記第一領域及び前記第二領域にわたって、前記第一半導体層側に位置する面、及び前記第二半導体層の側に位置する面の双方が凹凸面を含んで構成されていることを特徴とする請求項16に記載の半導体発光素子。 In the active layer, both the surface located on the side of the first semiconductor layer and the surface located on the side of the second semiconductor layer across the first region and the second region include an uneven surface. The semiconductor light emitting device according to claim 16,
  18.  前記活性層は、前記第一領域及び前記第二領域にわたって、前記第一半導体層側に位置する面、及び前記第二半導体層の側に位置する面の双方が平坦面で構成されていることを特徴とする請求項14又は15に記載の半導体発光素子。 In the active layer, both the surface located on the side of the first semiconductor layer and the surface located on the side of the second semiconductor layer are configured to be flat across the first region and the second region. The semiconductor light emitting device according to claim 14 or 15, characterized in that
  19.  前記第二半導体層と接触した第二電極を備え、
     前記第一電極は、前記第二電極に対して絶縁状態が保持された状態で前記第一半導体層に接触していることを特徴とする請求項14~18のいずれか1項に記載の半導体発光素子。
    A second electrode in contact with the second semiconductor layer,
    The semiconductor according to any one of claims 14 to 18, wherein the first electrode is in contact with the first semiconductor layer in a state in which an insulating state is maintained with respect to the second electrode. Light emitting element.
  20.  請求項14に記載の半導体発光素子の製造方法であって、
     前記基板を準備する工程(a)と、
     前記基板の上層に、n型又はp型の窒化物半導体からなる前記第一半導体層を成長させる工程(b)と、
     前記第一半導体層の上層に窒化物半導体からなる前記活性層を成長させる工程(c)と、
     前記活性層の上層に、前記第一半導体層とは異なる導電型の窒化物半導体からなる前記第二半導体層を成長させる工程(d)と、
     前記第二半導体層の上面のうち、第一領域内に位置する前記第二半導体層の上面の少なくとも一部に対して凹凸形状を形成する工程(e)と、
     前記第一領域とは異なる第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層を露出させる工程(f)と、
     前記第二半導体層及び前記活性層と電気的に絶縁した状態で露出した前記第一半導体層の上面の少なくとも一部に前記第一電極を形成する工程(g)とを有することを特徴とする半導体発光素子の製造方法。
    15. A method of manufacturing a semiconductor light emitting device according to claim 14.
    Preparing the substrate (a);
    Growing the first semiconductor layer made of an n-type or p-type nitride semiconductor on the upper layer of the substrate (b)
    Growing the active layer of nitride semiconductor on top of the first semiconductor layer (c);
    Growing the second semiconductor layer made of a nitride semiconductor of a conductivity type different from that of the first semiconductor layer on the active layer;
    Forming a concavo-convex shape on at least a part of the upper surface of the second semiconductor layer located in the first region among the upper surfaces of the second semiconductor layer;
    Etching the second semiconductor layer and the active layer in at least a part of the second region different from the first region to expose the first semiconductor layer on the bottom surface;
    And (g) forming the first electrode on at least a portion of the top surface of the first semiconductor layer exposed in a state of being electrically insulated from the second semiconductor layer and the active layer. Method of manufacturing a semiconductor light emitting device
  21.  前記工程(f)は、前記第二領域内の少なくとも一部において、前記第二半導体層及び前記活性層をエッチングして、底面に前記第一半導体層が露出してなる溝部を形成する工程であり、
     前記工程(g)は、前記第二半導体層及び前記活性層と電気的に絶縁した状態で前記溝部内に導電性材料を充填して前記第一電極を形成する工程であることを特徴とする請求項20に記載の半導体発光素子の製造方法。
    The step (f) is a step of etching the second semiconductor layer and the active layer in at least a part of the second region to form a groove in the bottom surface of which the first semiconductor layer is exposed. Yes,
    The step (g) is a step of filling the groove with a conductive material in a state of being electrically insulated from the second semiconductor layer and the active layer to form the first electrode. A method of manufacturing a semiconductor light emitting device according to claim 20.
  22.  前記工程(b)は、非極性面を結晶成長面として前記第一半導体層を成長させる工程であることを特徴とする請求項20又は21に記載の半導体発光素子の製造方法。 22. The method of manufacturing a semiconductor light emitting device according to claim 20, wherein the step (b) is a step of growing the first semiconductor layer with a nonpolar surface as a crystal growth surface.
  23.  前記工程(b)は、前記第一領域及び前記第二領域にわたって、非極性面を結晶成長面として前記第一半導体層を成長させる工程であることを特徴とする請求項22に記載の半導体発光素子の製造方法。 The semiconductor light emission according to claim 22, wherein the step (b) is a step of growing the first semiconductor layer using a nonpolar surface as a crystal growth surface over the first region and the second region. Method of manufacturing a device
  24.  前記工程(d)の終了後、前記工程(f)の開始前に、少なくとも前記第一領域内における前記第二半導体層の上層に第二電極を形成する工程(h)を有し、
     前記工程(g)が、前記第二電極と電気的に絶縁した状態で前記第一電極を形成する工程であることを特徴とする請求項20~23のいずれか1項に記載の半導体発光素子の製造方法。
     
    After the completion of the step (d), before the start of the step (f), there is a step (h) of forming a second electrode on the upper layer of the second semiconductor layer in at least the first region,
    The semiconductor light-emitting device according to any one of claims 20 to 23, wherein the step (g) is a step of forming the first electrode in a state of being electrically insulated from the second electrode. Manufacturing method.
PCT/JP2016/055617 2015-03-31 2016-02-25 Semiconductor light emitting element and method for manufacturing same WO2016158111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-074128 2015-03-31
JP2015074128A JP2016195171A (en) 2015-03-31 2015-03-31 Semiconductor light emitting element and manufacturing method of the same
JP2015-073106 2015-03-31
JP2015073106A JP2016192529A (en) 2015-03-31 2015-03-31 Semiconductor light emitting element and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2016158111A1 true WO2016158111A1 (en) 2016-10-06

Family

ID=57004981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055617 WO2016158111A1 (en) 2015-03-31 2016-02-25 Semiconductor light emitting element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016158111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266577A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Nitride semiconductor device and manufacturing method thereof
JP2008130606A (en) * 2006-11-16 2008-06-05 Sony Corp Semiconductor light emitting element and its manufacturing method, light source cell unit, backlight, lighting device, display, electronic device, and semiconductor element and its manufacturing method
JP2010182832A (en) * 2009-02-04 2010-08-19 Panasonic Corp Nitride semiconductor light emitting element and method of manufacturing same
JP2014158024A (en) * 2013-02-14 2014-08-28 Samsung Electronics Co Ltd Light emitting element package and manufacturing method of the same
JP2014187196A (en) * 2013-03-22 2014-10-02 Toshiba Corp Nitride semiconductor light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266577A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Nitride semiconductor device and manufacturing method thereof
JP2008130606A (en) * 2006-11-16 2008-06-05 Sony Corp Semiconductor light emitting element and its manufacturing method, light source cell unit, backlight, lighting device, display, electronic device, and semiconductor element and its manufacturing method
JP2010182832A (en) * 2009-02-04 2010-08-19 Panasonic Corp Nitride semiconductor light emitting element and method of manufacturing same
JP2014158024A (en) * 2013-02-14 2014-08-28 Samsung Electronics Co Ltd Light emitting element package and manufacturing method of the same
JP2014187196A (en) * 2013-03-22 2014-10-02 Toshiba Corp Nitride semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US9871164B2 (en) Nanostructure light emitting device and method of manufacturing the same
JP4098307B2 (en) Nitride semiconductor device and manufacturing method
JP5995302B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP5246213B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP4928874B2 (en) Nitride-based semiconductor light-emitting device manufacturing method and nitride-based semiconductor light-emitting device
WO2014178248A1 (en) Nitride semiconductor light-emitting element
JP5273081B2 (en) Semiconductor light emitting device
JP4451846B2 (en) Method of manufacturing nitride semiconductor device
JP6120204B2 (en) Epitaxial wafer, manufacturing method thereof, and ultraviolet light emitting device
JP4254157B2 (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP2021019075A (en) Manufacturing method of light-emitting device and the light-emitting device
JP4928811B2 (en) Nitride-based semiconductor light-emitting device manufacturing method and nitride-based semiconductor light-emitting device
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
JP2009004524A (en) Nitride-based semiconductor laser element and manufacturing method of nitride-based semiconductor laser element
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JP4255168B2 (en) Nitride semiconductor manufacturing method and light emitting device
WO2016158111A1 (en) Semiconductor light emitting element and method for manufacturing same
JP5149093B2 (en) GaN substrate and manufacturing method thereof, nitride semiconductor device and manufacturing method thereof
JP3562478B2 (en) Method for growing nitride semiconductor and device using the same
JP2016195171A (en) Semiconductor light emitting element and manufacturing method of the same
JP2016192529A (en) Semiconductor light emitting element and manufacturing method of the same
KR101072199B1 (en) Light emitting device and method for fabricating the same
JP2013138093A (en) Nitride semiconductor element and manufacturing method of the same
JP5027743B2 (en) Semiconductor device, nitride semiconductor substrate and manufacturing method thereof
JP4057473B2 (en) Compound semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771995

Country of ref document: EP

Kind code of ref document: A1