WO2016155678A1 - Dispositivo para la extracción de agua del medio ambiente - Google Patents

Dispositivo para la extracción de agua del medio ambiente Download PDF

Info

Publication number
WO2016155678A1
WO2016155678A1 PCT/CO2016/000002 CO2016000002W WO2016155678A1 WO 2016155678 A1 WO2016155678 A1 WO 2016155678A1 CO 2016000002 W CO2016000002 W CO 2016000002W WO 2016155678 A1 WO2016155678 A1 WO 2016155678A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
extraction chamber
tank
liquid desiccant
extracted
Prior art date
Application number
PCT/CO2016/000002
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Velasco Valcke
Original Assignee
Francisco Javier Velasco Valcke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francisco Javier Velasco Valcke filed Critical Francisco Javier Velasco Valcke
Priority to US15/563,560 priority Critical patent/US10675583B2/en
Priority to MX2017012664A priority patent/MX2017012664A/es
Priority to CN201680031290.3A priority patent/CN107847848B/zh
Priority to CA2981226A priority patent/CA2981226C/en
Priority to JP2017551087A priority patent/JP6729915B2/ja
Priority to EP16771432.8A priority patent/EP3278859B1/en
Publication of WO2016155678A1 publication Critical patent/WO2016155678A1/es
Priority to IL254777A priority patent/IL254777B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the present invention relates to dehumidifiers and, in particular, to systems that obtain water from the environment through liquid desiccants.
  • the dehumidification processes have the objective of capturing the humidity of the environment using materials that try to balance the humidity of their surroundings with the level of humidity of their material.
  • desiccants are used to lower the moisture content of the air from thermal processes.
  • a desiccant is a chemical that has a high affinity for moisture, that is, it is capable of extracting water vapor from the air, in relatively large quantities in relation to its weight and volume.
  • the physical process that allows moisture retention or release is the difference in vapor pressure between the surface of the desiccant and the ambient air. Its water retention properties are due to surface adsorption and capillary condensation.
  • Desiccants can be classified as absorbents, which are those that when they retain or release moisture undergo chemical changes, or adsorbents, which are those that when they retain or release moisture, and do so without being accompanied by chemical changes; that is, the only change is the addition of the water vapor mass to the desiccant. Desiccants can be solid or liquid. Many liquid desiccants are absorbent.
  • Dehumidification of the air with desiccants occurs when the vapor pressure of the desiccant surface is lower than that of ambient air.
  • the vapor pressure in the desiccant is increased until equilibrium is experienced. This is achieved when the vapor pressure in the desiccant and in the air are equal.
  • Regeneration or release of adsorbed water vapor is achieved of the desiccant by heating it to increase its vapor pressure, thus removing moisture from the desiccant.
  • This document describes an apparatus for capturing water from the bumpy environment, that is, it is not a continuous process. Additionally, it requires the instrumentation of the plunger for its movement and manipulation of the gates, and it requires at least more than one operator for the manipulation of the apparatus.
  • the present invention is directed to a device that captures water from the environment using liquid desiccants.
  • the device comprises a means of capturing water from the environment by means of a liquid desiccant, an extraction chamber, a first duct where liquid desiccant flows with water from the capture medium to the extraction chamber, a second duct through which liquid desiccant flows from the extraction chamber to the capture medium, a reservoir for disposing of water extracted from the liquid desiccant in the extraction chamber, a third pipeline through which the water extracted from the extraction chamber flows to the tank, a vacuum generator whose suction point and delivery point are operatively connected to the tank to suck the gas contained in the tank and deliver gas into the tank, and a control device that controls the vacuum generator.
  • the third pipe enters the extraction chamber.
  • the liquid desiccant captures the water from the environment through the capture medium, obtaining liquid desiccant with water.
  • the liquid desiccant with water is regenerated in the extraction chamber, in which a pressure and temperature gradient is generated by evaporating the water captured by the liquid desiccant.
  • the pressure and temperature gradient is generated by the water extracted from the liquid desiccant with water, since said extracted water is retained in the third pipeline through which it flows into a reservoir.
  • the vacuum generator sucks the gas contained in the tank, and sucks the extracted water flowing through the third pipeline from the extraction chamber to the tank.
  • the vacuum generator also delivers gas to the tank, generating a pressure gradient inside the tank, which is transmitted through the extracted water contained in the third pipeline and into the extraction chamber, increasing the temperature of the extracted water contained in the third duct, and in the extraction chamber. Consequently, the heat of the extracted water is transferred through the third duct into the extraction chamber.
  • FIG. 1 shows an embodiment of the invention, in which the liquid desiccant with water is spread inside the extraction chamber by means of a sprinkler.
  • the third pipeline through which the extracted water flows enters the extraction chamber where it is wetted by the liquid desiccant with water that spreads through the sprinkler, and the third pipeline is immersed in the liquid desiccant with water that is at the bottom of The extraction chamber.
  • FIG. 2 shows an embodiment of the invention, in which the gas with which the pressure and temperature differential is generated is reused when disposed in a tank.
  • the reservoir of the present invention has a closed tank inside, the extraction chamber is triple-jacket, and the third pipe through which the extracted water flows is immerse in the liquid desiccant with water found at the bottom of the extraction chamber.
  • FIG. 3 shows an embodiment of the extraction chamber of the invention, which is double jacket and the inner jacket has perforations through which the liquid desiccant with water flows into the extraction chamber, and the third pipe through which it flows the extracted water enters the extraction chamber to be wetted by the liquid desiccant with water flowing through the perforations.
  • the third duct is also immersed in the liquid desiccant with water found at the bottom of the extraction chamber.
  • FIG. 4 shows an embodiment of the invention, in which the liquid desiccant with water is spread inside the extraction chamber by means of two sprinklers.
  • the third pipelines through which the extracted water flows enter the extraction chamber where they are wetted by the liquid desiccant with water that is scattered through the sprinklers, and the third pipelines are submerged in the liquid desiccant with water found at the bottom of The extraction chamber.
  • the present invention discloses a device and a process for extracting water from the environment by means of a liquid desiccant.
  • the device of the present invention comprises:
  • the capture medium (1) corresponds to the device component where the liquid desiccant captures water from the environment.
  • the capture means (1) is an inclined tray (which may comprise spirals or partitions) through which the liquid desiccant flows.
  • the capture means (1) is a reservoir in which the liquid desiccant is disposed. Inside the tank flows a gas stream from the environment that has contact with the desiccant in order to capture the water.
  • the capture medium (1) allows the liquid desiccant to have contact with the ambient gas, such that said liquid desiccant captures the water contained in the gas, and in this way liquid desiccant is obtained with water.
  • the ambient gas contains water.
  • the ambient gas may be air or other gaseous fluid that contains water.
  • the capture means (1) comprises a medium that flows gas from the environment into the tray where the liquid desiccant or reservoir flows where the liquid desiccant is disposed.
  • This medium is selected from the group consisting of a fan, a compressor, a turbine, or a combination of the above.
  • the person versed in the art will understand that variations of the capture medium (1) can be designed to optimize the capture of water from the environment depending on the needs of the device.
  • the liquid desiccant with water flows through the first duct (3) of the capture medium (1) to the extraction chamber (2).
  • the sprinkler (9) inside the extraction chamber (2) is located the sprinkler (9), which is connected to the first duct (3).
  • the sprinkler (9) spreads the liquid desiccant with water inside the extraction chamber (2), where due to the pressure and temperature gradient inside the extraction chamber (2) the water of the liquid desiccant evaporates with water.
  • the extracted water flows into the extraction chamber (2) towards the top, enters through the inlet (32) and flows to the third duct (6).
  • the third duct (6) enters the extraction chamber (2) through the interior of the extraction chamber (2) to be wetted by the liquid desiccant with water that spreads through the sprinkler (9).
  • the liquid desiccant with water that comes into contact with the third duct (6) captures the heat of the extracted water flowing through the third duct (6).
  • the third duct (6) is immersed in the liquid desiccant with water found at the bottom of the extraction chamber (2), where it transfers heat to the liquid desiccant with water.
  • the geometry described by the path of the third duct (6) in the extraction chamber (2) can be U-shaped, spiral or any geometry such as to increase the contact area of the third duct (6) with the liquid desiccant with water.
  • the liquid desiccant leaves the extraction chamber (2) through the second duct (4).
  • the extraction chamber (2) is a triple jacket, in which the liquid desiccant with water, flowing through the first duct (3), enters the upper part of the extraction chamber (2) and flows between the outer jacket (12) and the inner jacket (13) until it passes towards the bottom of the extraction chamber (2) through the perforations (15).
  • the perforations (15) are located at the bottom of the inner shirt (13).
  • the extracted water flows through the interior of the extraction chamber (2) towards the top, enters through the inlet (32) to the defined contour between the inner jacket (13) and the second inner jacket (14), and flows towards the bottom of the extraction chamber (2) inside this contour, for its subsequent exit from the extraction chamber (2) through the third duct (6).
  • the second inner jacket (1) is of an insulating material.
  • the extracted water flowing between the inner jacket (13) and the second inner jacket (14) transfers heat to the liquid desiccant with water flowing between the outer jacket (12) and the inner jacket (13) and consequently the liquid desiccant with Water increases its temperature while the extracted water decreases its temperature condensing and at the same time generating a negative pressure inside the extraction chamber (2).
  • the third pipe (6) enters the bottom of the extraction chamber (2), submerged in the volume of liquid desiccant with water contained in the bottom of the extraction chamber (2).
  • the third duct (6) transfers heat to the liquid desiccant with water, increasing the temperature of the latter and, at the same time, the extracted water condenses when its temperature drops.
  • the geometry described by the path of the third pipe (6) inside the extraction chamber (2) can be U, spiral or any geometry that allows to increase the contact area of the third pipe (6) with the liquid desiccant with water .
  • the extraction chamber (2) is double-jacket, in which when the liquid desiccant with water, flowing through the first duct (3), enters the extraction chamber (2 ), the liquid desiccant with water flows between the outer jacket (12) and the inner jacket (13).
  • the inner jacket (13) has perforations (16) in its lateral contour, through which the liquid desiccant with water flows into the extraction chamber (2).
  • the inner jacket (13) is made of a thermal insulating material.
  • the extracted water flows through the interior of the extraction chamber (2) towards the top, enters through the inlet (32) and flows through the third duct (6).
  • the third duct (6) enters the extraction chamber (2) through the interior of the extraction chamber (2) to be wetted by the liquid desiccant with water that drains by gravity from the perforations (16) to the bottom of the extraction chamber (2).
  • the liquid desiccant with water that comes into contact with the third duct (6) captures the heat of the extracted water flowing through the third duct (6).
  • the third duct (6) is immersed in the liquid desiccant with water found at the bottom of the extraction chamber (2), where it transfers heat to the liquid desiccant with water.
  • the geometry described by the path of the third duct (6) at the bottom of the extraction chamber (2) can be U, spiral or any geometry that allows to increase the contact area of the third duct (6) with the liquid desiccant with Water.
  • the liquid desiccant leaves the extraction chamber (2) through the second duct (4).
  • the third duct (6) When the third duct (6) travels the external contour to the extraction chamber (2) prior to entering it, the third duct (6) is preferably covered with an insulating material to prevent heat transfer to the environment.
  • the extraction chamber (2) is coated with a thermal insulating material.
  • the liquid desiccant obtained from the extraction of water from the liquid desiccant with water flows into the capture medium (1) through the second duct (4).
  • a pump (10) is connected to pump the liquid desiccant into the capture medium (1).
  • the water extracted in the extraction chamber (2) flows, through the third duct (6), to the reservoir (5).
  • the valve (31) is arranged along the third pipe (6).
  • the valve (31) allows the flow of water extracted from the extraction chamber (2) to the reservoir (5) (not illustrated in FIG. 3).
  • the first duct (3), the second duct (4) and the third duct (6) are operatively arranged to configure a heat exchanger (18).
  • the third duct (6), and the second duct (4) transfer heat to the first duct (3).
  • first duct (3) and the third duct (6) are operatively arranged to configure the heat exchanger (18), in which the third duct (6) transfers heat to the first pipeline (3).
  • first duct (3) and second duct (4) are operatively arranged to configure the heat exchanger (18), in which the second duct (4) transfers heat to the first duct (3).
  • the heat exchanger (18) is covered by a thermal insulating jacket.
  • the vacuum generator (8) is operatively connected to the tank (5) so that the following activities can be carried out: - suction the gas contained in the tank (5) generating a vacuum inside the tank (5), which sucks the extracted water flowing through the third duct (6), and extracts the extracted water contained in the extraction chamber (2); and - deliver gas to the tank (5) generating a pressure gradient inside the tank (5).
  • the pressure gradient is transmitted through the extracted water and compresses the extracted water contained in the third pipeline (6), and while the valve (31) is closed preventing the return of the extracted water to the extraction chamber (2).
  • the generation of the pressure gradient increases the temperature of the extracted water, transferring the heat through the third duct (6), evaporating the water from the liquid desiccant with water.
  • the valve (11) is connected to the tank (5) by means of which it can be extracted from the extracted water disposed in the tank (5).
  • To the deposit (5) connect the vacuum generator (8).
  • the suction point of the vacuum generator (8) is connected to the tank (5) by the fourth duct (19).
  • a valve (20) is arranged along the fourth pipe (19).
  • the fifth duct (21) is connected, between the suction point of the vacuum generator (8) and the valve (20).
  • the valve (22) is connected along the fifth pipe (21).
  • the sixth pipe (23) is connected, to which the valve (24) is connected.
  • the seventh duct (26) is connected by the valve (25), the valve (25) is connected to the sixth duct (23) between the discharge point of the vacuum generator (8) and the valve (24).
  • the other end of the seventh pipeline (26) is connected along the fourth pipeline (19), between the reservoir (5) and the valve (20).
  • the valves (20) and (24) are closed, and the valves (22) and (25) are open.
  • the vacuum generator (8) sucks the gas from the environment and delivers it inside the tank (5).
  • the tank (5) has a closed tank (17), located inside.
  • the third pipe (6) is connected to the tank (17), delivering in it the water extracted in the extraction chamber (2).
  • liquid desiccant flows with water, and in this way the water extracted in the tank (17) transfers heat to the liquid desiccant with water before entering it into the chamber extraction (2).
  • the valve (11) is connected to the tank (17).
  • the vacuum generator (8) is connected to the tank (17).
  • the suction point of the vacuum generator (8) is connected to the tank (17) by the fourth duct (19).
  • a valve (20) is arranged along the fourth pipe (19).
  • the container (27) is connected, through the seventh pipeline (26).
  • the other end of the seventh pipe (26) is connected along the fourth pipe (19), between the tank (17) and the valve (20).
  • the valve (25) is connected along the seventh pipe (26).
  • valve (31) when a vacuum is generated inside the tank (5) or the tank (17), respectively, the valve (31) is open, allowing the passage of water extracted from the extraction chamber (2) to the tank (5 ) or the tank (17), respectively. This condition also generates a suction effect of the extracted water contained inside the extraction chamber.
  • the vacuum generator (8) is a compressor, although it may be a vacuum pump.
  • the device has: - temperature sensors (28) arranged in the extraction chamber (2), reservoir (5), first duct (3), second duct (4) and third duct (6),
  • the vacuum generator (8) and the pump (10) are connected to the control device (7), to control the on and off, based on the data supplied by the temperature sensors (28), the pressure sensor (29) and the level sensor (30).
  • the temperature sensors (28), the pressure sensor (29) and the level sensor (30) are connected to the control device (7).
  • the sprinklers (9) and (9a) are located inside the extraction chamber (2).
  • the sprinklers (9) and (9a) are connected to the first duct (3), where liquid desiccant flows with water from the capture medium (1).
  • the sprinklers (9) and (9a) spread the liquid desiccant with water inside the extraction chamber (2), where due to the pressure and temperature gradient inside the third duct (6) water from the liquid desiccant evaporates with water .
  • the extracted water flows from inside the extraction chamber to the top, enters through the inlet (32) and flows to the third ducts (6) and (6a).
  • the third pipelines (6) and (6a) enter the extraction chamber (2) through the interior of the extraction chamber (2) to be wetted by the liquid desiccant with water that spreads through the sprinklers (9) and (9a), respectively.
  • the liquid desiccant with water that comes into contact with the third pipelines (6) and (6a) captures the heat of the extracted water flowing through the third pipelines (6) and (6a).
  • the third pipelines (6) and (6a) are submerged in the liquid desiccant with water found at the bottom of the extraction chamber (2), where they transfer heat to the liquid desiccant with water.
  • the geometry described by the path of the third pipelines (6) and (6a) in the extraction chamber (2) can be U, spiral or any geometry that allows to increase the contact area of the third pipelines (6) and ( 6a) with the liquid desiccant with water.
  • the liquid desiccant leaves the extraction chamber (2) through the second duct (4) to the capture medium (1).
  • a pump (10) is connected to pump the liquid desiccant into the capture medium (1).
  • the water extracted in the extraction chamber (2) flows, through the third duct (6) to the reservoir (5), and from the third duct (6a) to the reservoir (5a).
  • the valves (31) and (31a) are respectively arranged.
  • the modality has the tanks (5) and (5a), to which the valves (11) and (line) are connected respectively, by means of which the extracted water can be extracted.
  • the vacuum generator (8) is connected to the tanks (5) and (5a).
  • the suction point of the vacuum generator (8) is connected to the tank (5) by the fourth duct (19).
  • a valve (20) is arranged along the fourth pipe (19).
  • the fifth duct (21) is connected, between the suction point of the vacuum generator (8) and the valve (20).
  • the valve (22) is connected along the fifth pipe (21).
  • the sixth pipe (23) is connected, to which the valve (24) is connected.
  • the seventh duct (26) is connected by the valve (25), the valve (25) is connected to the sixth duct (23) between the discharge point of the vacuum generator (8) and the valve (24).
  • the other end of the seventh pipeline (26) is connected along the fourth pipeline (19), between the reservoir (5) and the valve (20).
  • the suction point of the vacuum generator (8) is connected to the tank (5a) by means of the fourth duct (19a).
  • the fourth pipeline (19a) is connect to the valve (22).
  • One end of the seventh pipeline (26a) is connected to the valve (24) and the other end to the fourth pipeline (19a), between the reservoir (5a) and the valve (22).
  • the other end of the seventh pipeline (26) is connected along the fourth pipeline (19), between the reservoir (5) and the valve (20).
  • the vacuum generator (8) sucks the gas contained in the tank (5) and delivers it to the tank (5a), generating a pressure gradient inside the tank (5a); and - to generate a pressure gradient inside the tank (5) the valves (20) and (24) are closed, and the valves (22) and (25) are open.
  • the vacuum generator (8) sucks the gas from the tank (5a) and delivers it inside the tank (5), generating a vacuum inside the tank (5a).
  • valve (31) when a vacuum is generated inside the tank (5), the valve (31) is open and the valve (31a) is closed, allowing the passage of water extracted from the extraction chamber (2) to the tank (5 ), and the extracted water present in the third duct (6a) between the reservoir (5a) and the valve (31a) increases its pressure and consequently increases the temperature, and condenses.
  • the valve (31a) when a vacuum is generated inside the tank (5a), the valve (31a) is open and the valve (31) is closed, allowing the passage of water extracted from the extraction chamber (2) to the tank (5a) , and the extracted water present in the third duct (6) between the reservoir (5) and the valve (31) increases its pressure and consequently increases the temperature, and condenses.
  • the wetting of the third duct (6) and (6a) by the desiccant liquid with water is continuous.
  • the wetting of the third pipe (6) and (6a) is matched with the closing of the valves (31) and (31a).
  • the above can be achieved by installing valves prior to the connection of the sprinklers (9) and (9a) with the first duct (3), which close while closing the valves (31a) and (31), respectively. That is to say: - when the (31a) closes, the sprinkler valve (9) opens; Y,
  • the first duct (3), the second duct (4) and the third duct (6) and (6a) are operatively arranged to configure a heat exchanger (18).
  • the device has: - temperature sensors (28) arranged in the extraction chamber (2), reservoir (5), first duct (3), second duct (4) and third duct (6), and sensors temperature (28a) arranged in the tank (5a),) and third duct (6a);
  • the vacuum generator (8) and the pump (10) are connected to the control device (7), to control the on and off, based on the data supplied by the temperature sensors (28) and (28a), the pressure sensor (29) and the level sensor (30).
  • the temperature sensors (28) and (28a), the pressure sensor (29) and the level sensor (30) are connected to the control device (7).
  • the components of the device are coated with a thermal insulator with the exception of the control device (7) and the capture means (1).
  • the liquid desiccant to be used may be a solution of some compound of the group of glycols, a brine of Ca (3 ⁇ 4, a brine of NaC3 ⁇ 4, and a combination of the above). If a brine is used as a liquid desiccant:
  • the salt concentration is between 25% to 35% w / w in the liquid desiccant solution with water flowing from the capture medium (1) to the extraction chamber (2);
  • the device of the invention allows the extraction of water in a four-stage process, namely:
  • extracted water refers to the water that is extracted from the liquid desiccant with water, both in gaseous state and liquid state.
  • the water extracted in the gaseous state corresponds to the water evaporated from the liquid desiccant with water, in the extraction chamber (2) and in step (ii).
  • the water extracted in liquid state corresponds to condensed water due to the pressure and temperature gradient, in the third pipeline (6) (and / or third pipeline (6a), according to the modality to be materialized) and in stage (iii).
  • the process executed by the device of the invention does not use heating means in the heating of the liquid desiccant with water for the extraction of water during the operation. That is, the heating of the liquid desiccant with water is not the result of heat delivery by a heating medium, but by the pressure gradient.
  • means of heating verb and grace will be understood as electrical resistors, burners, and other components that supply heat from electrical, solar, wind, thermal and other sources.
  • operation means the operating phase of the device, during which operating variables such as temperature ranges, pressures, among others are stabilized. This phase is preceded by the start-up phase, which corresponds to the start of operation of the equipment until the operation phase is reached.
  • water vapor is disposed inside the extraction chamber (2) so that it is condensed in the third duct (6) and heat is transferred that is received by the liquid desiccant with water to the inside the extraction chamber (2).
  • the water vapor to start the operation of the device can be supplied or generated by evaporating water from the liquid desiccant with water that is disposed inside the extraction chamber.
  • a heat source that is disposed inside the extraction chamber (2). This heat source will only work during the start phase, during the operation phase it will not work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)
  • Drying Of Solid Materials (AREA)
  • Pipeline Systems (AREA)

Abstract

La invención corresponde a un dispositivo y un proceso para extraer agua del ambiente. El dispositivo comprende un medio de captura de agua del ambiente mediante un desecante líquido, una cámara de extracción, un primer ducto por donde fluye desecante liquido con agua desde el medio de captura a la cámara de extracción, un segundo ducto por donde fluye desecante liquido desde la cámara de extracción al medio de captura, un depósito para disponer agua extraída, un tercer ducto por donde fluye el agua desde la cámara de extracción al depósito, un generador de vacío cuyo punto de succión y punto de entrega están operativamente conectados al depósito para succionar el gas contenido en el depósito y entregar gas al interior del depósito, y un dispositivo de control que controla el generador de vacío. La operación del generador de vacío genera un gradiente de presión y temperatura del agua extraída, que conduce a la evaporación del agua al interior de la cámara de extracción.

Description

DISPOSITIVO PARA LA EXTRACCIÓN DE AGUA DEL MEDIO AMBIENTE
Campo de la invención La presente invención está relacionada con deshumidificadores y, en particular, a sistemas que obtienen agua del ambiente a través de desecantes líquidos.
Descripción del estado del arte Los procesos de deshumidificación tienen el objetivo de capturar la humedad del medio ambiente utilizando materiales que tratan de equilibrar la humedad de su entorno con el nivel de humedad de su material. Cuando es necesario combatir elevadas cargas latentes de humedad, se utilizan desecantes para bajar el contenido de humedad del aire de procesos térmicos. Un desecante es una sustancia química que tiene una gran afinidad por la humedad, es decir, es capaz de extraer vapor de agua del aire, en cantidades relativamente grandes con relación a su peso y volumen. El proceso físico que permite la retención o liberación de la humedad es la diferencia en la presión de vapor entre la superficie del desecante y el aire ambiente. Sus propiedades de retención de agua se deben a adsorción superficial y a condensación capilar. Los desecantes pueden ser clasificados como absorbentes, que son los que cuando retienen o liberan humedad experimentan cambios químicos, o adsorbentes, que son los que cuando retienen o liberan humedad, y lo hacen sin estar acompañados de cambios químicos; es decir, el único cambio es la adición de la masa de vapor de agua al desecante. Los desecantes pueden ser sólidos o líquidos. Muchos desecantes líquidos son absorbentes.
La deshumidificación del aire con desecantes ocurre cuando la presión de vapor de la superficie del desecante es inferior a la del aire ambiente. Cuando el vapor de agua es adsorbido, la presión de vapor en el desecante se incrementa hasta experimentar el equilibrio. Este se logra cuando la presión de vapor en el desecante como en el aire son iguales. Para poder reusar el desecante es necesario regenerarlo, es decir, es necesario quitarle la humedad. Se logra la regeneración o liberación de vapor de agua adsorbido del desecante calentándolo para que incremente su presión de vapor, retirando así la humedad del desecante.
El estado de la técnica divulga sistemas de adsorción de humedad del ambiente a partir del uso de materiales desecantes líquidos, en los cuales el desecante líquido captura vapor presente en la atmosfera, y posteriormente lo libera al ser calentado y/o al someterlo a un diferencial de presión. Un documento que evidencia lo anterior, es el US2002/0189448 Al, que divulga un aparato para la manipulación de agua contenida en un fluido.
Este documento describe un aparato para la captura de agua del ambiente en operación por baches, es decir, no es un proceso continuo. Adicionalmente, requiere la instrumentación del embolo para su movimiento y manipulación de las compuertas, y requiere al menos más de un operario para la manipulación del aparato.
Breve descripción del invento
La presente invención está dirigida a un dispositivo que captura agua del ambiente utilizando desecantes líquidos.
El dispositivo comprende un medio de captura de agua del ambiente mediante un desecante líquido, una cámara de extracción, un primer ducto por donde fluye desecante liquido con agua desde el medio de captura a la cámara de extracción, un segundo ducto por donde fluye desecante liquido desde la cámara de extracción al medio de captura, un depósito para disponer agua extraída del desecante líquido en la cámara de extracción, un tercer ducto por donde fluye el agua extraída desde la cámara de extracción al depósito, un generador de vacío cuyo punto de succión y punto de entrega están operativamente conectados al depósito para succionar el gas contenido en el depósito y entregar gas al interior del depósito, y un dispositivo de control que controla el generador de vacío. El tercer ducto ingresa a la cámara de extracción. El desecante líquido captura el agua del ambiente a través del medio de captura, obteniendo desecante líquido con agua. El desecante líquido con agua se regenera en la cámara de extracción, en la cual se genera un gradiente de presión y temperatura evaporando el agua capturada por el desecante líquido. El gradiente de presión y temperatura es generado por el agua extraída del desecante líquido con agua, ya que dicha agua extraída es retenida en el tercer ducto por el cual fluye hacia un depósito. Durante la retención agua extraída, la presión y la temperatura al interior de la cámara de extracción aumentan. El generador de vacío succiona el gas contenido en el depósito, y succiona el agua extraída que fluye por el tercer ducto desde la cámara de extracción al depósito. El generador de vacío también entrega gas al depósito, generando un gradiente de presión al interior del depósito, que se transmite a través del agua extraída contenida en el tercer ducto y al interior de la cámara de extracción, aumentando la temperatura del agua extraída contenida en el tercer ducto, y en la cámara de extracción. Por consiguiente, el calor del agua extraída se transfiere por el tercer ducto hacia el interior de la cámara de extracción.
Descripción de las figuras
La FIG. 1 muestra una modalidad de la invención, en la que el desecante líquido con agua se esparce al interior de la cámara de extracción mediante un aspersor. El tercer ducto por donde fluye el agua extraída ingresa a la cámara de extracción donde se moja por el desecante líquido con agua que se esparce por el aspersor, y el tercer ducto se sumerge en el desecante líquido con agua que se encuentra en el fondo de la cámara de extracción.
La FIG. 2 muestra una modalidad de la invención, en la cual el gas con el que se genera el diferencial de presión y temperatura se reutiliza cuando se dispone en un tanque. El depósito del presente invento tiene en su interior un tanque cerrado, la cámara de extracción es de triple chaqueta, y el tercer ducto por donde fluye el agua extraída se sumerge en el desecante líquido con agua que se encuentra en el fondo de la cámara de extracción.
La FIG. 3 muestra una modalidad de la cámara de extracción de la invención, la cual es de doble chaqueta y la camisa interna tiene perforaciones por las cuales fluye el desecante liquido con agua hacia el interior de la cámara de extracción, y el ducto tercer por donde fluye el agua extraída, ingresa a la cámara de extracción para ser mojado por el desecante liquido con agua que fluye a través de las perforaciones. El tercer ducto también se sumerge en el desecante líquido con agua que encuentra en el fondo de la cámara de extracción.
La FIG.4 muestra una modalidad de la invención, en la cual el desecante líquido con agua se esparce al interior de la cámara de extracción por medio de dos aspersores. Los terceros ductos por donde fluye el agua extraída, ingresan a la cámara de extracción donde se mojan por el desecante líquido con agua que se esparce por los aspersores, y los terceros ductos se sumergen en el desecante líquido con agua que encuentra en el fondo de la cámara de extracción.
Descripción detallada de la invención
La presente invención divulga un dispositivo y un proceso para extraer agua del ambiente mediante un desecante líquido.
Haciendo referencia a la FIG. 1, el dispositivo de la presente invención comprende:
- un medio de captura (1),
- una cámara de extracción (2),
- un primer ducto (3) por donde fluye desecante liquido con agua del medio de captura (1) a la cámara de extracción (2),
- un segundo ducto (4) por donde fluye desecante liquido de la cámara de extracción (2) al medio de captura (1),
- un depósito (5), - un tercer ducto (6) por donde fluye el agua extraída de la cámara de extracción (2) al depósito (5),
- un dispositivo de control (7), y
- un generador de vacío (8).
El medio de captura (1) corresponde al componente del dispositivo donde el desecante liquido captura agua del ambiente. Haciendo referencia a la FIG. 1, FIG. 2 y la FIG. 4, el medio de captura (1) es una bandeja inclinada (que puede comprender espirales o tabiques) por la cual fluye el desecante líquido.
En una modalidad de la invención (no ilustrada), el medio de captura (1) es un depósito en el cual se dispone el desecante líquido. Al interior del depósito fluye una corriente de gas del ambiente que tiene contacto con el desecante con el propósito de realizar la captura del agua. El medio de captura (1) permite que el desecante líquido tenga contacto con el gas del ambiente, de tal forma que dicho desecante líquido captura el agua contenida en el gas, y de esta forma se obtiene desecante líquido con agua.
El gas del ambiente contiene agua. El gas del ambiente puede ser aire u otro fluido gaseoso que contiene agua.
En una modalidad de la invención (no ilustrada), el medio de captura (1) comprende un medio que hace fluir gas del ambiente hacia la bandeja donde fluye el desecante líquido o depósito donde se dispone el desecante líquido. Este medio se selecciona del grupo que consiste de un ventilador, un compresor, una turbina, o una combinación de los anteriores. La persona versada en el arte entenderá que se pueden diseñar variaciones del medio de captura (1) para optimizar la captura de agua del ambiente dependiendo de las necesidades del dispositivo.
En el interior de la cámara de extracción (2) se realiza la extracción de agua del desecante líquido con agua, mediante la evaporación del agua capturada en el medio de captura (1). La evaporación del agua se da al generar un gradiente de presión y temperatura al interior de la cámara de extracción (2) y el tercer ducto (6). Más adelante se explica en detalle la generación del gradiente de presión y temperatura.
Haciendo referencia a la FIG. 1 y la FIG. 2, el desecante líquido con agua fluye a través del primer ducto (3) del medio de captura (1) a la cámara de extracción (2).
Haciendo referencia a la FIG. 1, al interior de la cámara de extracción (2) se localiza el aspersor (9), el cual se conecta con el primer ducto (3). El aspersor (9) esparce el desecante líquido con agua al interior de la cámara de extracción (2), donde debido al gradiente de presión y temperatura al interior de cámara de extracción (2) se evapora el agua del desecante líquido con agua. El agua extraída fluye al interior de la cámara de extracción (2) hacia la parte superior, ingresa por la entrada (32) y fluye hacia el tercer ducto (6). Haciendo referencia a la FIG. 1, el tercer ducto (6) ingresa a la cámara de extracción (2) recorriendo el interior de la cámara de extracción (2) para ser mojada por el desecante líquido con agua que se esparce por el aspersor (9). El desecante líquido con agua que entra en contacto con el tercer ducto (6) captura el calor del agua extraída que fluye por el tercer ducto (6). Al calentarse el desecante líquido con agua, parte del agua que contiene se evapora. El tercer ducto (6) se sumerge en el desecante líquido con agua que se encuentra en el fondo de la cámara de extracción (2), donde transfiere calor al desecante líquido con agua. La geometría descrita por el recorrido del tercer ducto (6) en la cámara de extracción (2) puede ser en U, espiral o cualquier geometría tal que permita aumentar el área de contacto del tercer ducto (6) con el desecante líquido con agua. El desecante líquido sale de la cámara de extracción (2) a través del segundo ducto (4).
Haciendo referencia a la FIG. 2, en una modalidad de la invención, la cámara de extracción (2) es de triple chaqueta, en la cual el desecante líquido con agua, que fluye por el primer ducto (3), ingresa por la parte superior de la cámara de extracción (2) y fluye entre la camisa externa (12) y la camisa interna (13) hasta pasar hacía el fondo de la cámara de extracción (2) por las perforaciones (15). Las perforaciones (15) se localizan en la parte inferior de la camisa interna (13). El agua extraída fluye por el interior de la cámara de extracción (2) hacia la parte superior, ingresa por la entrada (32) al contorno definido entre la camisa interna (13) y la segunda camisa interna (14), y fluye hacia el fondo de la cámara de extracción (2) al interior de este contorno, para su posterior salida de la cámara de extracción (2) a través del tercer ducto (6).
En una modalidad adicional de la invención (no ilustrada), la segunda camisa interna (1 ) es de un material aislante. El agua extraída que fluye entre la camisa interna (13) y la segunda camisa interna (14) transfiere calor al desecante liquido con agua que fluye entre la camisa externa (12) y la camisa interna (13) y por consiguiente el desecante liquido con agua aumenta su temperatura mientras que el agua extraída disminuye su temperatura condensándose y a la vez generando una presión negativa al interior de la cámara de extracción (2). Haciendo referencia a la FIG. 2, el tercer ducto (6) ingresa al fondo de la cámara de extracción (2), sumergido en el volumen de desecante liquido con agua contenido en el fondo de la cámara de extracción (2). En este escenario, el tercer ducto (6) transfiere calor al desecante líquido con agua, aumentando la temperatura de este último y, a la vez, el agua extraída se condensa al bajar su temperatura. La geometría descrita por el recorrido del tercer ducto (6) al interior de la cámara de extracción (2) puede ser en U, espiral o cualquier geometría que permite aumentar el área de contacto del tercer ducto (6) con el desecante liquido con agua.
Haciendo referencia a la FIG. 3, en una modalidad adicional de la invención, la cámara de extracción (2) es de doble chaqueta, en la cual al ingresar el desecante líquido con agua, que fluye por el primer ducto (3), a la cámara de extracción (2), el desecante líquido con agua fluye entre la camisa externa (12) y la camisa interna (13). La camisa interna (13) tiene perforaciones (16) en su contorno lateral, por las cuales fluye el desecante líquido con agua hacia el interior de la cámara de extracción (2). La camisa interna (13) es de un material aislante térmico. El agua extraída fluye por el interior de la cámara de extracción (2) hacia la parte superior, ingresa por la entrada (32) y fluye por el tercer ducto (6). Haciendo referencia a la FIG. 3, el tercer ducto (6) ingresa a la cámara de extracción (2) recorriendo el interior de la cámara de extracción (2) para ser mojada por el desecante líquido con agua que se escurre por gravedad desde las perforaciones (16) hacia el fondo de la cámara de extracción (2). El desecante líquido con agua que entra en contacto con el tercer ducto (6) captura el calor del agua extraída que fluye por el tercer ducto (6). Al calentarse el desecante líquido con agua, parte del agua que contiene se evapora. El tercer ducto (6) se sumerge en el desecante líquido con agua que se encuentra en el fondo de la cámara de extracción (2), donde transfiere calor al desecante líquido con agua.
La geometría descrita por el recorrido del tercer ducto (6) en el fondo de la cámara de extracción (2) puede ser en U, espiral o cualquier geometría que permite aumentar el área de contacto del tercer ducto (6) con el desecante liquido con agua. El desecante líquido sale de la cámara de extracción (2) a través del segundo ducto (4).
Cuando el tercer ducto (6) recorre el contorno externo a la cámara de extracción (2) previo al ingreso a esta, el tercer ducto (6) preferiblemente se recubre con un material aislante para evitar la transferencia de calor al ambiente. Preferiblemente, la cámara de extracción (2) se recubre con un material aislante térmico.
Haciendo referencia a la FIG. 1 y la FIG. 2, el desecante líquido obtenido de la extracción del agua del desecante líquido con agua, fluye hacia el medio de captura (1) a través del segundo ducto (4). A lo largo del segundo ducto (4) se conecta una bomba (10) para bombear el desecante líquido hacia el medio de captura (1).
Haciendo referencia a la FIG. 1 y la FIG. 2, el agua extraída en la cámara de extracción (2) fluye, a través del tercer ducto (6), hacia el deposito (5). Haciendo referencia a la FIG. 1, FIG. 2 y FIG. 3, a lo largo del tercer ducto (6) se dispone la válvula (31). La válvula (31) permite el flujo del agua extraída desde la cámara de extracción (2) hacia el depósito (5) (no ilustrado en la FIG. 3). Haciendo referencia a la FIG. 1 y la FIG. 2, el primer ducto (3), el segundo ducto (4) y el tercer ducto (6) están operativamente dispuestos para configurar un intercambiador de calor (18). En el intercambiador de calor (18) de esta modalidad de la invención, el tercer ducto (6), y el segundo ducto (4), transfieren calor al primer ducto (3).
En otra modalidad de la invención (no ilustrada), el primer ducto (3) y el tercer ducto (6) están operativamente dispuestos para configurar el intercambiador de calor (18), en el cual el tercer ducto (6) transfiere calor al primer ducto (3). En otra modalidad de la invención (no ilustrada), el primer ducto (3) y segundo ducto (4) están operativamente dispuestos para configurar el intercambiador de calor (18), en el cual el segundo ducto (4) transfiere calor al primer ducto (3).
Preferiblemente, el intercambiador de calor (18) está cubierto por una camisa aislante térmica.
Haciendo referencia a la FIG. 1 y la FIG. 2, al depósito (5) se conecta operativamente el generador de vacío (8) de tal manera que se puedan realizar las siguientes actividades: - succionar el gas contenido en el depósito (5) generando un vacío al interior del depósito (5), que succiona el agua extraída que fluye por el tercer ducto (6), y extraiga el agua extraída contenida en la cámara de extracción (2); y - entregar gas al depósito (5) generando un gradiente de presión al interior del depósito (5). El gradiente de presión se transmite a través del agua extraída y comprime el agua extraída contenida en el tercer ducto (6), y mientras la válvula (31) está cerrada impidiendo el retorno del agua extraída hacia la cámara de extracción (2). La generación del gradiente de presión aumenta la temperatura del agua extraída, transfiriendo el calor a través del tercer ducto (6), evaporándose el agua del desecante liquido con agua.
Haciendo referencia a la FIG. 1, al depósito (5) se conecta la válvula (11) mediante la cual se puede extraer del agua extraída dispuesta en el depósito (5). Al depósito (5) se conecta el generador de vacío (8). El punto de succión del generador de vacío (8) se conecta con el deposito (5) mediante el cuarto ducto (19). A lo largo del cuarto ducto (19) se dispone una válvula (20). A lo largo del cuarto ducto (19) se conecta el quinto ducto (21), entre el punto de succión del generador de vacío (8) y la válvula (20). A lo largo del quinto ducto (21) se conecta la válvula (22). En el punto de entrega del generador de vacío (8) se conecta el sexto ducto (23), al cual se conecta la válvula (24). A lo largo del sexto ducto (23) se conecta el séptimo ducto (26) mediante la válvula (25), la válvula (25) se conecta al sexto ducto (23) entre el punto de descarga del generador de vacío (8) y la válvula (24). El otro extremo del séptimo ducto (26) se conecta a lo largo del cuarto ducto (19), entre el deposito (5) y la válvula (20). Mediante la disposición descrita, se tiene que: para generar un vacío al interior del depósito (5) se mantienen cerradas las válvulas (22) y (25), y abiertas las válvulas (20) y (24). Así el generador de vacío (8) succiona el gas contenido en el depósito (5) y lo entrega al ambiente; y
para generar un gradiente de presión al interior del depósito (5) se mantienen cerradas las válvulas (20) y (24), y abiertas las válvulas (22) y (25). Así el generador de vacío (8) succiona el gas del ambiente y lo entrega al interior del depósito (5).
Haciendo referencia a la FIG. 2, en una modalidad de la invención, el depósito (5) tiene un tanque (17) cerrado, localizado en su interior. El tercer ducto (6) se conecta al tanque (17), entregando en éste el agua extraída en la cámara de extracción (2). En el espacio comprendido entre el tanque (17) y el depósito (5) fluye desecante líquido con agua, y de esta manera el agua extraída en el tanque (17) transfiere calor al desecante líquido con agua previo al ingreso del mismo a la cámara de extracción (2). En esta modalidad de la invención, la válvula (11) se conecta al tanque (17). El generador de vacío (8) se conecta al tanque (17). El punto de succión del generador de vacío (8) se conecta con al tanque (17) mediante el cuarto ducto (19). A lo largo del cuarto ducto (19) se dispone una válvula (20). En el punto de entrega del generador de vacío (8) se conecta el contenedor (27), a través del séptimo ducto (26). El otro extremo del séptimo ducto (26) se conecta a lo largo del cuarto ducto (19), entre el tanque (17) y la válvula (20). A lo largo del séptimo ducto (26) se conecta la válvula (25). Mediante la disposición descrita, se tiene que: para generar un vacío al interior del tanque (17) se mantienen cerradas la válvula (25) y abierta la válvula (20). Así el generador de vacío (8) succiona el gas contenido en el tanque (17) y lo entrega a presión al contenedor (27); y para generar un gradiente de presión al interior del tanque (17) se mantiene cerrada la válvula (20), y abierta las válvula (25). Así el contenedor (27) entrega gas a presión al interior del tanque (17).
Haciendo referencia a la FIG.1 y la FIG. 2, cuando se genera un vacío al interior del depósito (5) o el tanque (17), respectivamente, la válvula (31) está abierta, permitiendo el paso de agua extraída desde la cámara de extracción (2) hacia el deposito (5) o el tanque (17), respectivamente. Esta condición también genera un efecto succión del agua extraída contenida en el interior de la cámara de extracción.
Haciendo referencia a la FIG.1 y la FIG. 2, cuando se genera un gradiente de presión al interior del depósito (5) o el tanque (17), respectivamente, la válvula (31) está cerrada, no permitiendo el paso de agua extraída, desde el tercer ducto (6) hacia la cámara de extracción (2). Esta condición genera que: el agua extraída presente en el tercer ducto (6) entre el deposito (5) o el tanque (17) y la válvula (31) aumente su presión y por consiguiente aumente la temperatura, y se condense; y,
la presión aumente al interior de la cámara de extracción (2) y por consiguiente la temperatura, al retenerse el agua extraída que no fluye por el tercer ducto (6). La presión al interior de la cámara de extracción (2) es inferior a la presión atmosférica para mantener el flujo de desecante líquido con agua por el primer ducto (3). Una persona del área técnica, entenderá que la condición de apertura y cierre de la válvula (31) es aplicable a la modalidad de cámara de extracción (2) ilustrada en la FIG. 3. Haciendo referencia a la FIG. 1 y la FIG. 2, el generador de vacío (8) es un compresor, aunque puede ser una bomba de vacío.
Haciendo referencia a la FIG. 1, la FIG. 2 y la FIG. 3, el dispositivo cuenta con: - sensores de temperatura (28) dispuestos en la cámara de extracción (2), depósito (5), primer ducto (3), segundo ducto (4) y tercer ducto (6),
- un sensor de presión (29) dispuestos en la cámara de extracción (2), y,
- un sensor de nivel (30) dispuesto en la cámara de extracción (2). Haciendo referencia a la FIG. 1 y la FIG. 2, al dispositivo de control (7) se conecta el generador de vacío (8) y la bomba (10), para controlar el encendido y apagado, basado en los datos suministrados por los sensores de temperatura (28), el sensor de presión (29) y el sensor de nivel (30). Los sensores de temperatura (28), el sensor de presión (29) y el sensor de nivel (30) se conectan al dispositivo de control (7).
Haciendo referencia a la FIG. 4, en una modalidad de la invención, al interior de la cámara de extracción (2) se localizan los aspersores (9) y (9a). Los aspersores (9) y (9a) se conectan con el primer ducto (3), por donde fluye desecante liquido con agua desde el medio de captura (1). Los aspersores (9) y (9a) esparcen el desecante líquido con agua al interior de la cámara de extracción (2), donde debido al gradiente de presión y temperatura al interior del tercer ducto (6) se evapora agua del desecante líquido con agua. El agua extraída fluye desde interior de la cámara de extracción hacia la parte superior, ingresa por la entrada (32) y fluye hacia los terceros ductos (6) y (6a). Haciendo referencia a la FIG. 4, los terceros ductos (6) y (6a) ingresan a la cámara de extracción (2) recorriendo el interior de la cámara de extracción (2) para ser mojada por el desecante líquido con agua que se esparce por los aspersores (9) y (9a), respectivamente. El desecante líquido con agua que entra en contacto con los terceros ductos (6) y (6a) captura el calor del agua extraída que fluye por los terceros ductos (6) y (6a). Al calentarse el desecante líquido con agua, parte del agua que contiene se evapora. Los terceros ductos (6) y (6a) se sumergen en el desecante líquido con agua que se encuentran en el fondo de la cámara de extracción (2), donde transfieren calor al desecante líquido con agua. La geometría descrita por el recorrido de los terceros ductos (6) y (6a) en la cámara de extracción (2) puede ser en U, espiral o cualquier geometría que permite aumentar el área de contacto de los terceros ductos (6) y (6a) con el desecante liquido con agua. El desecante líquido sale de la cámara de extracción (2) a través del segundo ducto (4) hacia el medio de captura (1). A lo largo del segundo ducto (4) se conecta una bomba (10) para bombear el desecante líquido hacia el medio de captura (1).
Haciendo referencia a la FIG. 4, el agua extraída en la cámara de extracción (2) fluye, a través del tercer ducto (6) hacia el deposito (5), y del tercer ducto (6a) hacia el deposito (5a). A lo largo de los terceros ductos (6) y (6a) se disponen respectivamente las válvulas (31) y (31a).
Haciendo referencia a la FIG. 4, la modalidad cuenta con los depósitos (5) y (5a), a los cuales se conectan respectivamente las válvulas (11) y (l ia), mediante las cuales se puede extraer el agua extraída. A los depósitos (5) y (5a) se conecta el generador de vacío (8). El punto de succión del generador de vacío (8) se conecta con el depósito (5) mediante el cuarto ducto (19). A lo largo del cuarto ducto (19) se dispone una válvula (20). A lo largo del cuarto ducto (19) se conecta el quinto ducto (21), entre el punto de succión del generador de vacío (8) y la válvula (20). A lo largo del quinto ducto (21) se conecta la válvula (22). En el punto de entrega del generador de vacío (8) se conecta el sexto ducto (23), al cual se conecta la válvula (24). A lo largo del sexto ducto (23) se conecta el séptimo ducto (26) mediante la válvula (25), la válvula (25) se conecta al sexto ducto (23) entre el punto de descarga del generador de vacío (8) y la válvula (24). El otro extremo del séptimo ducto (26) se conecta a lo largo del cuarto ducto (19), entre el deposito (5) y la válvula (20). El punto de succión del generador de vacío (8) se conecta con el deposito (5a) mediante el cuarto ducto (19a). El cuarto ducto (19a) se conecta a la válvula (22). Un extremo del séptimo ducto (26a) se conecta a la válvula (24) y el otro extremo al cuarto ducto (19a), entre el deposito (5a) y la válvula (22). El otro extremo del séptimo ducto (26) se conecta a lo largo del cuarto ducto (19), entre el deposito (5) y la válvula (20). Mediante la disposición descrita, se tiene que:
- para generar un vacío al interior del depósito (5) se mantienen cerradas las válvulas (22) y (25), y abiertas las válvulas (20) y (24). Así el generador de vacío (8) succiona el gas contenido en el depósito (5) y lo entrega al depósito (5a), generando un gradiente de presión al interior del depósito (5a); y - para generar un gradiente de presión al interior del depósito (5) se mantienen cerradas las válvulas (20) y (24), y abiertas las válvulas (22) y (25). Así el generador de vacío (8) succiona el gas del depósito (5a) y lo entrega al interior del depósito (5), generando un vacío al interior del depósito (5a). Haciendo referencia a la FIG. 4, cuando se genera un vacío al interior del depósito (5), la válvula (31) está abierta y la válvula (31a) está cerrada, permitiendo el paso de agua extraída desde la cámara de extracción (2) hacia el deposito (5), y el agua extraída presente en el tercer ducto (6a) entre el deposito (5a) y la válvula (31a) aumente su presión y por consiguiente aumente la temperatura, y se condensa. Y cuando se genera un vacío al interior del depósito (5a), la válvula (31a) está abierta y la válvula (31) está cerrada, permitiendo el paso de agua extraída desde la cámara de extracción (2) hacia el deposito (5a), y el agua extraída presente en el tercer ducto (6) entre el deposito (5) y la válvula (31) aumente su presión y por consiguiente aumente la temperatura, y se condensa.
En la modalidad ilustrada en la FIG. 4, el mojado de los tercer ducto (6) y (6a) por el líquido desecante con agua es continuo. Para optimizar la extracción de agua, se hace coincidir el mojado de los tercer ducto (6) y (6a) con el cierre de las válvulas (31) y (31a). Lo anterior se puede lograr instalando válvulas previo a la conexión de los aspersores (9) y (9a) con el primer ducto (3), las cuales cierren al mismo tiempo que cierran las válvulas (31a) y (31), respectivamente. Es decir: - cuando la (31a) se cierra, la válvula del aspersor (9) se abre; y,
- cuando la válvula (31) se cierra, la válvula del aspersor (9a) se abre.
Haciendo referencia a la FIG. 4, el primer ducto (3), el segundo ducto (4) y los tercer ducto (6) y (6a) están operativamente dispuestos para configurar un intercambiador de calor (18).
Haciendo referencia a la FIG. 4, el dispositivo cuenta con: - sensores de temperatura (28) dispuestos en la cámara de extracción (2), depósito (5), primer ducto (3), segundo ducto (4) y tercer ducto (6), y sensores de temperatura (28a) dispuestos en el depósito (5a),) y tercer ducto (6a);
- un sensor de presión (29) dispuestos en la cámara de extracción (2); y, - un sensor de nivel (30) dispuesto en la cámara de extracción (2).
Haciendo referencia a la FIG. 4, al dispositivo de control (7) se conecta el generador de vacío (8) y la bomba (10), para controlar el encendido y apagado, basado en los datos suministrados por los sensores de temperatura (28) y (28a), el sensor de presión (29) y el sensor de nivel (30). Los sensores de temperatura (28) y (28a), el sensor de presión (29) y el sensor de nivel (30) se conectan al dispositivo de control (7).
En una modalidad de la invención los componentes del dispositivo se recubren con un aislante térmico con excepción del dispositivo de control (7) y el medio de captura (1).
El desecante líquido a utilizar puede ser una solución de algún compuesto del grupo de los glicoles, una salmuera de Ca(¾, una salmuera de NaC¾, y una combinación de los anteriores. En caso de utilizarse una salmuera como desecante líquido:
- la concentración de la sal es entre 25% a 35% p/p en la solución de desecante liquido con agua que fluye del medio de captura (1) hacia la cámara de extracción (2); y
- la concentración de la sal es entre 35% a 70% p/p en la solución de desecante líquido que fluye de la cámara de extracción (2) hacia el medio de captura (1). Como se puede apreciar, el dispositivo de la invención permite la extracción de agua en un proceso de cuatro etapas, a saber:
(i) capturar agua del ambiente mediante el desecante líquido. Esta etapa se realiza en el medio de captura (1);
(ii) extraer agua del desecante líquido con agua mediante el calentamiento del desecante líquido con agua a una presión inferior a la presión atmosférica en un volumen confinado. El calentamiento del desecante líquido con agua se realiza en la cámara de extracción (2) (la cual configura el volumen confinado) al generar un gradiente de presión al interior del tercer ducto (6) (y/o tercer ducto (6a), según la modalidad a materializar);
(iii) condensar el agua extraída sometiendo a esta a un gradiente de presión. El agua extraída se somete a un gradiente de presión al interior del tercer ducto 6) (y/o tercer ducto (6a), según la modalidad a materializar), por consiguiente se condensa; y,
(iv) disponer el agua extraída de la etapa (iii) en el depósito (5) (y/o deposito (5a), según la modalidad a materializar).
La frase agua extraída hace referencia al agua que se extrae del desecante líquido con agua, tanto en estado gaseoso y estado líquido. El agua extraída en estado gaseoso corresponde al agua evaporada del desecante líquido con agua, en la cámara de extracción (2) y en la etapa (ii). Y el agua extraída en estado líquido corresponde al agua condensada a causa del gradiente de presión y temperatura, en el tercer ducto (6) (y/o tercer ducto (6a), según la modalidad a materializar) y en la etapa (iii).
El proceso ejecutado por el dispositivo de la invención, no utiliza medios de calentamiento en el calentamiento del desecante líquido con agua para la extracción de agua durante la operación. Es decir, el calentamiento del desecante líquido con agua no es resultado de la entrega de calor por parte de un medio de calentamiento, sino por el gradiente de presión. Para entendimiento de esta invención, se entenderá por medios de calentamiento verbo y gracia resistencias eléctricas, quemadores, y demás componentes que suministren calor a partir de fuentes eléctricas, solares, eólicas, térmicas y demás.
Un técnico en el área técnica entenderá que por el término operación se entiende fase de funcionamiento del dispositivo, durante la cual se estabilizan variables de funcionamiento tales como rangos de temperaturas, presiones, entre otras. A esta fase la precede la fase de arranque, la cual corresponde al inicio de funcionamiento del equipo hasta alcanzar la fase de operación.
Para iniciar el funcionamiento del dispositivo, se dispone vapor de agua al interior de la cámara de extracción (2) de tal manera que este sea condensado en el tercer ducto (6) y se transfiera calor que es recibido por el desecante líquido con agua al interior de la cámara de extracción (2). El vapor de agua para iniciar el funcionamiento del dispositivo, puede ser suministrado o generado al evaporar agua del desecante líquido con agua que se disponga al interior de la cámara de extracción. Para evaporar agua del desecante líquido con agua, se puede hacer uso de una fuente de calor que se disponga al interior de la cámara de extracción (2). Esta fuente de calor solo funcionará durante la fase de inicio, durante la fase de operación no funcionará.
Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, y la persona versada en la técnica entenderá que pueden efectuarse numerosas variaciones y modificaciones que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Un dispositivo para extraer agua del ambiente mediante un desecante líquido, que comprende:
a) un medio de captura de agua del ambiente;
b) una cámara de extracción;
c) un primer ducto por donde fluye desecante liquido con agua desde el medio de captura a la cámara de extracción;
d) un segundo ducto por donde fluye desecante liquido desde la cámara de extracción al medio de captura;
e) un depósito para disponer el agua extraída del desecante líquido en la cámara de extracción;
f) un tercer ducto por donde fluye el agua extraída desde la cámara de extracción al depósito;
g) un generador de vacío cuyo punto de succión y punto de entrega están operativamente conectados al depósito para:
i. succionar el gas contenido en el depósito, y succionando el agua extraída que fluye por el tercer ducto, extrayendo el agua extraída contenida en la cámara de extracción; y
ii. entregar el gas del generador de vacío al depósito, generando un gradiente de presión al interior del depósito, que se transmite a través del agua extraída contenida en el depósito y el agua extraída contenida en el tercer ducto y al interior de la cámara de extracción, aumentando la temperatura del agua extraída en el ducto y en la cámara de extracción; y,
h) un dispositivo de control que controla el generador de vacío;
El dispositivo de la Reivindicación 1, caracterizado porque el medio de captura bandeja inclinada.
3. El dispositivo de la Reivindicación 1, caracterizado porque el medio de captura incluye un medio que hace fluir gas hacia el desecante líquido que fluye por el medio de captura seleccionado del grupo que consiste de ventilador, compresor, turbina o una combinación de los anteriores.
4. El dispositivo de la Reivindicación 1, caracterizado porque el depósito tiene en su interior un tanque en el cual se dispone el agua extraída, y en el volumen comprendido entre el tanque y el resto del volumen del depósito fluye desecante Kquido con agua, proveniente del medio de captura, hacia la cámara de extracción.
5. El dispositivo de la Reivindicación 4, donde el tanque del depósito se caracteriza porque:
- el generador de vacío cuyo punto de succión y punto de entrega están operativamente conectados al tanque para succionar el gas contenido en el depósito y entregar gas al interior del tanque;
- el tercer ducto por donde fluye el agua extraída desde la cámara de extracción al depósito se conecta al tanque; y
- una válvula se conecta al tanque para permitir la salida del agua extraída dispuesta en el tanque.
7. El dispositivo de la Reivindicación 1, caracterizado porque la cámara de extracción es de doble chaqueta, con una camisa externa y una camisa interna.
8. El dispositivo de la Reivindicación 7, donde la cámara de extracción está caracterizada porque:
- el desecante líquido con agua fluye entre la camisa externa y la camisa interna;
- la camisa interna tiene perforaciones en su parte inferior a través de las cuales fluye el descante liquido con agua hacia el fondo de la cámara de extracción; y
- al interior de la cámara de extracción fluye el agua extraída.
9. El dispositivo de la Reivindicación 1, caracterizado porque la cámara de extracción es de triple chaqueta, con una camina externa, una camisa interna y una segunda camisa interna. 10. El dispositivo de la Reivindicación 9, donde la cámara de extracción está caracterizada porque:
- el desecante líquido con agua fluye entre la camisa externa y la camisa interna;
- la camisa interna tiene perforaciones en su parte inferior a través de las cuales fluye el descante liquido con agua hacia el fondo de la cámara de extracción; y.
- al interior de la cámara de extracción fluye el agua extraída hacia la parte superior de la cámara de extracción donde luego fluye entre la camisa interna y la segunda camisa interna para salir de la cámara de extracción.
11. El dispositivo de la Reivindicación 1, caracterizado porque el tercer ducto ingresa a la cámara de extracción y vuelve a salir hacia el depósito.
12. El dispositivo de la Reivindicación 1, caracterizado porque el primer, segundo y tercer ducto están operativamente dispuestos para configurar un intercambiador de calor, en el cual el segundo y tercer ducto transfieren calor al primer ducto.
13. El dispositivo de la Reivindicación 1, caracterizado porque el primer y segundo ducto están operativamente dispuestos para configurar un intercambiador de calor, en el cual el segundo ducto transfiere calor al primer ducto.
14. El dispositivo de la Reivindicación 1, caracterizado porque el primer y tercer ducto están operativamente dispuestos para configurar un intercambiador de calor, en el cual el tercer ducto transfiere calor al primer ducto.
15. El dispositivo de la Reivindicación 1, caracterizado porque el desecante liquido se selecciona del grupo que consiste de glicoles, salmuera de CaCh, salmuera de Na(¾, y combinación de los anteriores.
16. El dispositivo de la Reivindicación 15, caracterizado porque la concentración de CaC^ en salmuera es:
- entre 25% a 35% en la solución de desecante liquido con agua; y,
- entre 35% a 70% en la solución de desecante líquido.
17. El dispositivo de la Reivindicación 1, caracterizado porque el dispositivo de control está operacionalmente conectado a uno o más de los siguientes elementos:
- un sensor de temperatura dispuesto en la cámara de extracción, depósito y ductos;
- un sensor de presión dispuesto en la cámara de extracción; y,
- un sensor de nivel dispuesto en la cámara de extracción.
El dispositivo de la Reivindicación 1, que comprende:
a) una pluralidad de depósitos para disponer agua extraída del desecante líquido con agua en la cámara de extracción;
b) una pluralidad de terceros ductos por donde fluye el agua extraída desde la cámara de extracción a los depósitos;
c) un generador de vacío cuyo punto de succión y punto de entrega están operativamente conectados a la pluralidad de depósitos para succionar el gas contenido en uno de los depósitos de la pluralidad y entregar gas al interior de otro de los depósitos de la pluralidad.
19. Un proceso para extraer de agua del ambiente mediante un desecante líquido, que comprende las siguientes etapas: (i) capturar agua del ambiente mediante el desecante líquido; extraer agua del desecante líquido con agua mediante la generación de un gradiente de presión que caliente el desecante líquido con agua a una presión inferior a la presión atmosférica en un volumen confinado;
condensar el agua extraída sometiendo esta a un gradiente de presión; y, disponer el agua extraída de la etapa (iii).
PCT/CO2016/000002 2015-03-30 2016-03-30 Dispositivo para la extracción de agua del medio ambiente WO2016155678A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/563,560 US10675583B2 (en) 2015-03-30 2016-03-30 Device for the extraction of water from the environment
MX2017012664A MX2017012664A (es) 2015-03-30 2016-03-30 Dispositivo para la extraccion de agua del medio ambiente.
CN201680031290.3A CN107847848B (zh) 2015-03-30 2016-03-30 用于从环境中提取水的装置
CA2981226A CA2981226C (en) 2015-03-30 2016-03-30 Device for the extraction of water from the environment
JP2017551087A JP6729915B2 (ja) 2015-03-30 2016-03-30 周囲から水を抽出するための装置
EP16771432.8A EP3278859B1 (en) 2015-03-30 2016-03-30 Device for the extraction of water from the environment
IL254777A IL254777B (en) 2015-03-30 2017-09-28 A device for extracting water from the environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO15-072388 2015-03-30
CO15072388 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016155678A1 true WO2016155678A1 (es) 2016-10-06

Family

ID=57006565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2016/000002 WO2016155678A1 (es) 2015-03-30 2016-03-30 Dispositivo para la extracción de agua del medio ambiente

Country Status (8)

Country Link
US (1) US10675583B2 (es)
EP (1) EP3278859B1 (es)
JP (1) JP6729915B2 (es)
CN (1) CN107847848B (es)
CA (1) CA2981226C (es)
IL (1) IL254777B (es)
MX (1) MX2017012664A (es)
WO (1) WO2016155678A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235555A4 (en) * 2014-12-15 2019-01-09 Panacea Quantum Leap Technology LLC DEVICE FOR EXTRACTION OF WATER FROM THE ENVIRONMENT
CA2981226C (en) 2015-03-30 2023-05-16 Panacea Quantum Leap Technology Llc Device for the extraction of water from the environment
JPWO2019202927A1 (ja) * 2018-04-16 2021-04-22 シャープ株式会社 空調装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894376A (en) * 1955-10-20 1959-07-14 Surface Combustion Corp Air conditioning apparatus and method
US3064952A (en) * 1960-08-04 1962-11-20 Midland Ross Corp Air conditioning system
JPS61149229A (ja) * 1984-12-25 1986-07-07 Matsushita Electric Ind Co Ltd 再生装置
JPS61259728A (ja) * 1985-05-13 1986-11-18 Konishiroku Photo Ind Co Ltd 除湿装置
JPS6223419A (ja) * 1985-07-24 1987-01-31 Takasago Thermal Eng Co Ltd 湿式除湿機
JPS6223418A (ja) * 1985-07-23 1987-01-31 Takasago Thermal Eng Co Ltd 湿式除湿機
WO1991000759A1 (en) * 1988-06-13 1991-01-24 A. Ahlstrom Corporation Method and apparatus for evaporation of liquids

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA895847A (en) 1972-03-21 O. Meyers Charles Method of and means for reconcentrating liquid desiccant
US3634998A (en) 1969-12-29 1972-01-18 Edwin B Patterson Methods of producing a plurality of well streams
JPS5329258A (en) 1976-08-31 1978-03-18 Kobe Steel Ltd High sulfur content free cutting steel powder manufacturing
JPS5344457A (en) 1977-09-09 1978-04-21 Hitachi Ltd Tank for roll coolant
JPS5543501U (es) * 1978-03-23 1980-03-21
JPS5537714A (en) 1978-09-08 1980-03-15 Hitachi Ltd Pattern fixing method
JPS6014265B2 (ja) 1979-03-22 1985-04-12 三菱電機株式会社 造水・空調システム
JPS61164621A (ja) * 1985-01-17 1986-07-25 Mitsubishi Heavy Ind Ltd 水分又は凝縮性ガスの除去装置
US4900448A (en) 1988-03-29 1990-02-13 Honeywell Inc. Membrane dehumidification
FR2740468B1 (fr) * 1995-10-27 1997-12-12 Inst Francais Du Petrole Procede de sechage de gaz au glycol incluant la purification des rejets gazeux
DE19545335C2 (de) 1995-12-05 2001-04-12 Dornier Gmbh Verfahren und Vorrichtung zur kontinuierlichen Entfeuchtung eines Gasstroms
JP3521101B2 (ja) 1996-01-31 2004-04-19 三郎 久保 空気調和装置
JP3946325B2 (ja) 1997-09-16 2007-07-18 株式会社ニトムズ 空気清浄装置
JPH11132593A (ja) 1997-10-29 1999-05-21 Daikin Ind Ltd 空気調和装置
JPH11132505A (ja) 1997-10-29 1999-05-21 Daikin Ind Ltd 空気調和装置
US6216483B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
IL124978A (en) * 1998-06-17 2003-01-12 Watertech M A S Ltd Method and apparatus for extracting water from atmospheric air
US6156102A (en) 1998-11-10 2000-12-05 Fantom Technologies Inc. Method and apparatus for recovering water from air
ES2251357T3 (es) * 1999-03-14 2006-05-01 Drykor Ltd. Sistema deshumidificador/de acondicionamiento de aire.
US6302944B1 (en) 1999-04-23 2001-10-16 Stuart Alfred Hoenig Apparatus for extracting water vapor from air
US6511525B2 (en) 1999-11-12 2003-01-28 Sandia Corporation Method and apparatus for extracting water from air using a desiccant
US6514321B1 (en) 2000-10-18 2003-02-04 Powermax, Inc. Dehumidification using desiccants and multiple effect evaporators
US7306654B2 (en) 2004-01-30 2007-12-11 Ronald King Method and apparatus for recovering water from atmospheric air
IL163015A (en) * 2004-07-14 2009-07-20 Gad Assaf Systems and methods for dehumidification
TWI404897B (zh) 2006-08-25 2013-08-11 Ducool Ltd 用以管理流體中之水含量的系統及方法
US20100090356A1 (en) 2008-10-10 2010-04-15 Ldworks, Llc Liquid desiccant dehumidifier
EP2652410A1 (en) 2010-12-13 2013-10-23 Ducool, Ltd. Method and apparatus for conditioning air
CO6460087A1 (es) 2011-06-15 2012-06-15 Panacea Quantum Leap Technology Llc Sistema y procedimiento para la extracción del agua del medio ambiente
JP5691040B2 (ja) 2011-10-27 2015-04-01 ダイナエアー株式会社 調湿システム及びその運用監視方法
KR102150817B1 (ko) 2012-03-20 2020-10-16 리니어 랩스, 엘엘씨 향상된 영구 자석 자속밀도를 갖는 개선된 dc 전기 모터/발전기
US9114354B2 (en) 2012-06-04 2015-08-25 Z124 Heat transfer device for water recovery system
IN2014MU00395A (es) 2014-01-30 2015-09-25 Clearford Ind Inc
EP3135365B1 (en) * 2014-04-22 2021-08-11 Panacea Quantum Leap Technology LLC Device for extracting water from the environment
EP3235555A4 (en) 2014-12-15 2019-01-09 Panacea Quantum Leap Technology LLC DEVICE FOR EXTRACTION OF WATER FROM THE ENVIRONMENT
CA2981226C (en) 2015-03-30 2023-05-16 Panacea Quantum Leap Technology Llc Device for the extraction of water from the environment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894376A (en) * 1955-10-20 1959-07-14 Surface Combustion Corp Air conditioning apparatus and method
US3064952A (en) * 1960-08-04 1962-11-20 Midland Ross Corp Air conditioning system
JPS61149229A (ja) * 1984-12-25 1986-07-07 Matsushita Electric Ind Co Ltd 再生装置
JPS61259728A (ja) * 1985-05-13 1986-11-18 Konishiroku Photo Ind Co Ltd 除湿装置
JPS6223418A (ja) * 1985-07-23 1987-01-31 Takasago Thermal Eng Co Ltd 湿式除湿機
JPS6223419A (ja) * 1985-07-24 1987-01-31 Takasago Thermal Eng Co Ltd 湿式除湿機
WO1991000759A1 (en) * 1988-06-13 1991-01-24 A. Ahlstrom Corporation Method and apparatus for evaporation of liquids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278859A4 *

Also Published As

Publication number Publication date
US10675583B2 (en) 2020-06-09
CA2981226A1 (en) 2016-10-06
CN107847848B (zh) 2021-06-08
EP3278859A4 (en) 2018-12-12
EP3278859B1 (en) 2020-12-16
JP2018511469A (ja) 2018-04-26
CA2981226C (en) 2023-05-16
MX2017012664A (es) 2018-06-13
IL254777B (en) 2021-10-31
JP6729915B2 (ja) 2020-07-29
US20180078896A1 (en) 2018-03-22
CN107847848A (zh) 2018-03-27
IL254777A0 (en) 2017-12-31
EP3278859A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
KR102425144B1 (ko) 침지 냉각
EP2501461B1 (en) Device for absorbing water from gas and its use
ES2555988T3 (es) Procedimiento y una instalación de limpieza para limpiar componentes fabricados industrialmente
WO2016155678A1 (es) Dispositivo para la extracción de agua del medio ambiente
KR101749061B1 (ko) 가습기
US10010826B2 (en) Carbon dioxide separation and recovery system
WO2015162599A2 (es) Equipo para la extracción de agua del medio ambiente
KR20090031227A (ko) 크린룸내 직접분무식 기화가습장치 및 습도제어방법
KR100874886B1 (ko) 크린룸내 직접분무식 기화가습장치 및 습도제어방법
CN103357191A (zh) 挥发性有机物处理方法及装置
WO2016143848A1 (ja) 真水生成装置
CN109641174B (zh) 由环境空气获得水的方法和装置
KR20110069253A (ko) 크린룸내 직접분무식 기화가습장치의 습도제어방법
US10617972B2 (en) Device for extracting water from the environment
JP2006255627A (ja) 除湿機
JP2007253067A (ja) 湿式除湿機
JP6696638B2 (ja) ガス分析用前処理装置
KR101757335B1 (ko) 진공식 무송풍 냉각탑
CN102589255A (zh) 真空闪蒸节能型独立除湿系统
JP2009074717A (ja) 被処理物乾燥装置
JP4852958B2 (ja) 有機溶剤回収システム
KR20150061303A (ko) 수분함유체의 용해수분 제거장치
TWM496016U (zh) 前段減壓蒸餾器
JP2012115733A (ja) 汚染土壌の浄化装置
KR20220105674A (ko) 하수 처리기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2981226

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 254777

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017551087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563560

Country of ref document: US

Ref document number: MX/A/2017/012664

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE