WO2016154887A1 - 以氧化石墨烯为正极的一种锌离子电池 - Google Patents

以氧化石墨烯为正极的一种锌离子电池 Download PDF

Info

Publication number
WO2016154887A1
WO2016154887A1 PCT/CN2015/075483 CN2015075483W WO2016154887A1 WO 2016154887 A1 WO2016154887 A1 WO 2016154887A1 CN 2015075483 W CN2015075483 W CN 2015075483W WO 2016154887 A1 WO2016154887 A1 WO 2016154887A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
zinc
negative electrode
graphene oxide
ion battery
Prior art date
Application number
PCT/CN2015/075483
Other languages
English (en)
French (fr)
Inventor
魏春光
Original Assignee
深圳市寒暑科技新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市寒暑科技新能源有限公司 filed Critical 深圳市寒暑科技新能源有限公司
Priority to PCT/CN2015/075483 priority Critical patent/WO2016154887A1/zh
Priority to US15/562,972 priority patent/US20180114987A1/en
Publication of WO2016154887A1 publication Critical patent/WO2016154887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This patent belongs to the field of battery technology, and specifically relates to a zinc ion battery using graphene oxide as a positive electrode.
  • the secondary battery can be recycled repeatedly, effectively reducing waste of resources and pollution to the environment.
  • the Chinese patent (CN 101540417A) invents a zinc ion battery which comprises manganese dioxide (MnO 2 ) as a positive electrode, zinc as a negative electrode, and an aqueous solution containing zinc ions as an electrolyte to form a rechargeable zinc ion battery.
  • Such zinc ion rechargeable battery of the present invention based on two behavioral Zn 2+ ions: Zn 2+ ions quickly reversible insertion and extraction behavior of manganese dioxide material having a large tunnels, on the other hand, can Zn 2+ ions Rapid reversible dissolution and deposition in a neutral electrolyte containing Zn 2+ ions such as zinc sulfate or zinc nitrate.
  • the charge-discharge specific capacity of this rechargeable zinc ion battery is about 200 mAh per gram (mAh/g).
  • the positive electrode of the zinc ion battery of this patent replaces manganese dioxide with graphene oxide, and the electrolyte solution containing manganese ion and zinc ion is used as the electrolyte, and the performance of the battery is greatly improved, and the charge-discharge specific capacity reaches 1200 mAh/g.
  • Graphene oxide is an intermediate product for preparing graphene by a redox method and is also an oxide of graphene. It is a product obtained by oxidizing a graphite raw material. Its structure is based on graphene and a large number of oxygen-containing functional groups are attached: the upper surface layer of graphene oxide has a large number of hydroxyl groups and epoxy groups, and at the edge It is attached with a large number of functional groups such as carboxyl groups and carbonyl groups.
  • Graphene oxide due to the introduction of a large number of oxygen-containing groups on the surface and edges, is easy to modify and functionalize, and maintains chemical stability. Because the oxidation process destroys the highly conjugated structure of graphene to some extent, the graphene oxide It has a large specific surface area and a layered structure.
  • Graphene needs to be expanded and reduced by graphene oxide at high temperature and vacuum. Therefore, graphene oxide is simpler than graphene, and does not require high temperature and vacuum conditions of graphene. Therefore, the equipment required for preparation is simple, and graphite oxide is used.
  • the olefin can greatly simplify the manufacturing process of the material, reduce the cost of the manufacturing equipment, and reduce the manufacturing cost of the material. Therefore, the use of graphene oxide can greatly reduce the manufacturing cost of the battery while maintaining the high capacity of the battery.
  • the invention provides a rechargeable zinc ion battery with graphene oxide as a positive electrode, which is composed of a positive electrode, a negative electrode, a separator between the two, and a neutral electrolyte containing manganese ions and zinc ions.
  • the active material of the negative electrode is zinc element
  • the positive electrode active material is graphene oxide.
  • the electrolytic solution is a liquid material having a soluble salt containing zinc and manganese as a solute, water as a solvent, and ionic conductivity.
  • the positive electrode includes a current collector and a positive electrode film attached to the current collector, and the positive electrode film may be made of the active material of the positive electrode, an electronic conductive agent, and a binder.
  • the electronic conductive agent may be graphite, carbon black, acetylene black, carbon fiber or carbon nanotubes, etc., and the added amount is less than 50% of the mass of the positive electrode film;
  • the binder may be polytetrafluoroethylene, water-soluble rubber, and polyposition Tetrafluoroethylene or cellulose is added in an amount of 20% or less of the mass of the positive electrode film.
  • the negative electrode may be made of zinc pox or zinc powder.
  • the negative electrode may also adopt the following scheme: the negative electrode includes a current collector and a negative electrode film attached to the current collector, and the negative electrode film may be made of zinc powder and a binder, and a corrosion inhibitor may be further added to the negative electrode film and/or In the electronic conductive agent, the amount of the electron conductive agent added is 50% or less of the mass of the negative electrode film, the amount of the corrosion inhibitor added is not more than the mass of the negative electrode film, and the amount of the binder added is 50% or less of the mass of the negative electrode film.
  • the invention adopts a new system, which greatly improves the electrochemical performance of the battery by utilizing the redox reaction of divalent manganese ions in the electrolyte.
  • the bivalent manganese ions in the electrolyte oxidation reaction MnO 2 positive electrode adhered on the surface of graphene oxide, zinc ions are extracted from the tunnel MnO 2, MnO 2 is generated by the ZnMn 2 O 4.
  • MnO 2 attached to the surface of the positive electrode is reduced to divalent manganese ions, and zinc ions in the electrolyte are embedded in a large tunnel of MnO 2 to form ZnMn 2 O 4 .
  • Fig. 1(a) is a transmission electron micrograph of a graphene oxide electrode sheet charged to 1.55 V. It can be seen from Fig. 2 that a large amount of MnO 2 is formed on the surface of the graphene oxide during charging.
  • Fig. 1(b) is a transmission electron micrograph of a graphene oxide electrode sheet discharged to 1.00 V. At this time, there is no particle on the surface of the graphene oxide, indicating that MnO 2 attached to the surface of the cathode is reduced to divalent manganese during discharge. ion.
  • Graphene needs to be expanded and reduced by graphene oxide at high temperature and vacuum. Therefore, graphene oxide is simpler than graphene, and does not require high temperature and vacuum conditions of graphene. Therefore, the equipment required for preparation is simple, and graphite oxide is used.
  • the olefin can greatly simplify the manufacturing process of the material, reduce the cost of the manufacturing equipment, and reduce the manufacturing cost of the material. Therefore, the use of graphene oxide can greatly reduce the manufacturing cost of the battery while maintaining the high capacity of the battery.
  • the zinc ion battery using graphene oxide as a positive electrode of the invention has the characteristics of high capacity, no pollution, low cost and good cycle performance. It has been proved by experiments that the battery capacity of the invention can be as high as 1200 mAh/g or more. It is foreseeable that such zinc ion batteries can be widely used in personal digital, notebook, electric toys, cordless phones, game machines, experimental devices, portable data terminals, palm computers, personal audio video devices and the like.
  • Figure 1 (a) A zinc ion battery with graphene oxide as a positive electrode is charged to a 1.55V positive electrode TEM; (b) with oxidation The graphene is a positive zinc ion battery discharged to a 1.00V positive electrode TEM.
  • Figure 2 CV curve of cell1 at a rate of 0.1 mV/s
  • Cell2 provides a charge and discharge curve of 0.1 A/g
  • positive electrode sheet 50 mg of graphene oxide, 14.28 mg of conductive agent acetylene black and 7.14 mg of binder polytetrafluoroethylene were uniformly stirred, coated on stainless steel foil, dried in a vacuum oven at 80 ° C, and then washed The sheet obtained a positive electrode sheet 1, a positive electrode sheet 2 and a positive electrode sheet 3 having a diameter of 1.5 cm.
  • negative electrode sheet 0.35 g of zinc powder, conductive agent acetylene black, carbon nanotubes and binder were uniformly stirred and coated on a 0.1 mm thick zinc poise, dried in a vacuum oven at 80 ° C, and then punched The sheet obtained a negative electrode sheet 1, a negative electrode sheet 2, and a negative electrode sheet 3 having a diameter of 1.5 cm.
  • a positive electrode sheet 1, a negative electrode sheet 1, and an aqueous solution of 2 mol/L ZnSO 4 and 1 mol/L MnSO 4 were used as an electrolyte to assemble a battery, which was designated as Cell 1.
  • the CV curve of Cell 1 at a rate of 0.1 mV/s has been tested as shown in Figure 2.
  • the voltage is 1.56V, and the oxidation peak at 1.61V, which represents the oxidation of divalent manganese ions into MnO 2 and zinc in the electrolyte.
  • the ions are removed from the MnO 2 large tunnel.
  • the voltage is 1.28V, which is a reduction peak at 1.37V, which means that MnO 2 attached to the surface of the positive electrode is reduced to divalent manganese ions and zinc ions are embedded in the MnO 2 large tunnel.
  • a positive electrode sheet 2, a negative electrode sheet 2, and an aqueous solution of 2 mol/L ZnSO 4 and 1 mol/L MnSO 4 were used as an electrolyte to assemble a battery, which was designated as Cell 2.
  • Cell 2 After testing, the cycle life of Cell 2 at a current density of 0.1 A/g is shown in Fig. 3, and the charge and discharge curve of cell 2 providing 0.1 A/g is shown in Fig. 4.
  • a positive electrode sheet 3, a negative electrode sheet 3, and an aqueous solution of 2 mol/L ZnSO 4 and 1 mol/L MnSO 4 were used as an electrolyte to assemble a battery, which was designated as Cell 3.
  • the cycle life of Cell 3 at a current density of 5 A/g has been tested as shown in Figure 5.

Abstract

本发明涉及一种以氧化石墨烯为正极的一种锌离子电池,其由正极、负极、介于两者之间的隔离膜以及电解质组成,负极的活性材料以锌元素为主,正极的活性材料为氧化石墨烯,电解质是以锌的可溶性盐和锰的可溶性盐为溶质、水为溶剂并具有离子导电性的液态电解质。该电池具有容量高、成本低和可重复充放电等特性,可广泛应用于移动电话、个人数字记事本、无绳电话、电动玩具、游戏机、个人音频视频装置、便携式数据终端、掌上计算机、实验装置等领域。

Description

无标题 技术领域
本专利属于电池领域技术,具体涉及到一种以氧化石墨烯为正极的锌离子电池。
背景技术
相比于一次电池,二次电池可以重复循环利用,有效地减少了资源的浪费和对环境的污染。
中国专利(CN 101540417A)发明了一种锌离子电池,它以二氧化锰(MnO2)为正极,以锌为负极,以含有锌离子的水溶液为电解液,组成可充电锌离子电池。这种可充电锌离子电池的发明基于Zn2+离子的两种行为:Zn2+离子在大隧道的二氧化锰材料中有快速可逆的嵌入和脱出行为,另外一方面,Zn2+离子可以在含Zn2+离子的中性电解液(如硫酸锌或硝酸锌)中进行快速可逆的溶解和沉积。这种可充电锌离子电池充放电比容量大概在200毫安时每克(mAh/g)左右。
对任一电池而言,电极容量的提高对电池性能有很大的影响。本专利锌离子电池正极用氧化石墨烯代替二氧化锰,用含有锰离子和锌离子的水溶液为电解液,电池的性能有了很大的提高,充放电比容量达到1200mAh/g。
发明内容
氧化石墨烯是利用氧化还原法制备石墨烯的中间产物,也是石墨烯的一种氧化物。它是石墨原料经过氧化处理后得到的产品,它的结构是在石墨烯的基础上外接大量的含氧功能团:氧化石墨烯的上下表层接有大量羟基和环氧基,而在边缘处则附有大量的羧基和羰基等功能团。氧化石墨烯,由于在表面及边缘上大量含氧基团的引入,易于修饰与功能化,且保持着化学稳定性,由于氧化过程一定程度上破坏了石墨烯高度共轭结构,使得氧化石墨烯有着较大的比表面积和层状结构。
石墨烯需经过氧化石墨烯在高温下和真空中膨胀并还原制成,因此氧化石墨烯相比石墨烯制备过程简单,无需石墨烯的高温和真空条件,因此制备所需设备简单,用氧化石墨烯可以大幅简化材料的制造工艺,降低制造设备的成本和降低材料的制造成本,因此使用氧化石墨烯能大幅降低电池制造成本,同时保持电池高容量的特点。
本发明提出的是一种以氧化石墨烯为正极的可充电锌离子电池,由正极、负极、介于两者之间的隔离膜以及含有锰离子和锌离子的中性电解液组成,其特征在于负极的活性物质为锌元素,正极活性物质为氧化石墨烯,电解液为以含有锌和锰的可溶性盐为溶质、水为溶剂且具有离子导电性的液态材料。所述正极包括集流体和附着于集流体上的正极膜,正极膜可以由正极的所述活性材料、电子导电剂和粘结剂制成。其中,电子导电剂可以采用石墨、碳黑、乙炔黑、炭纤维或炭纳米管等,添加量为正极膜质量的50%以下;粘结剂可以采用聚四氟乙烯、水溶性橡胶、聚偏四氟乙烯或纤维素等,添加量为正极膜质量的20%以下。所述负极可以由锌泊或锌粉制成。负极也可以采用以下方案:负极包括集流体和附着于集流体上的负极膜,所述负极膜可以由锌粉和粘结剂制成,也可以进一步在负极膜中添加缓蚀剂和/或电子导电剂,其中,电子导电剂的添加量为负极膜质量的50%以下,缓蚀剂的添加量为负极膜质量的以下,粘结剂的添加量为负极膜质量的50%以下。
本发明采用了一种新的体系,利用电解液中二价锰离子的氧化还原反应大幅度地提高了电池的电化学性能。电池在充电过程中,电解液中的二价锰离子发生氧化反应生成MnO2附着在正极氧化石墨烯的表面,锌离子从MnO2隧道中脱出,由ZnMn2O4生成了MnO2。电池放电过程中,附着在正极表面的MnO2又被还原为二价锰离子,电解液中的锌离子嵌入在MnO2的大隧道中生成ZnMn2O4
图1(a)为充电到1.55V时氧化石墨烯电极片的透射电镜照片,由图2可以看出充电时氧化石墨烯表面有大量MnO2生成。图1(b)为放电到1.00V时氧化石墨烯电极片的透射电镜照片,此时氧化石墨烯表面没有颗粒存在,说明在放电过程中附着在正极表面的MnO2又被还原为二价锰离子。
石墨烯需经过氧化石墨烯在高温下和真空中膨胀并还原制成,因此氧化石墨烯相比石墨烯制备过程简单,无需石墨烯的高温和真空条件,因此制备所需设备简单,用氧化石墨烯可以大幅简化材料的制造工艺,降低制造设备的成本和降低材料的制造成本,因此使用氧化石墨烯能大幅降低电池制造成本,而保持电池高容量的特点。
本发明的以氧化石墨烯为正极的锌离子电池具有容量高、无污染、成本低和循环性能好等特性。经实验证明,本次发明的电池容量可高达1200mAh/g以上。可以预见这种锌离子电池可广泛应用于个人数字、记事本、电动玩具、无绳电话、游戏机、实验装置、便携式数据终端、掌上计算机、个人音频视频装置等领域。
附图说明:
图例1:(a)以氧化石墨烯为正极的锌离子电池充电到1.55V正极片TEM;(b)以氧化 石墨烯为正极的锌离子电池放电到1.00V正极片TEM。
图例2:cell1在速率为0.1mV/s下的CV曲线;
图例3:cell2在电流密度为0.1A/g时的循环寿命;
图例4:cell2提供0.1A/g的充放电曲线;
图例5:cell3在电流密度为5A/g时的循环寿命;
具体实施例:
实施例1:
正极片的制备:将50毫克氧化石墨烯、14.28mg导电剂乙炔黑和7.14mg粘结剂聚四氟乙烯搅拌均匀后涂覆于不锈钢箔上,于80摄氏度真空干燥箱中烘干,而后冲片得到直径为1.5厘米的正极片1,正极片2和正极片3。
负极片的制备:将0.35克的锌粉、导电剂乙炔黑、碳纳米管和粘结剂搅拌均匀后涂覆在0.1毫米厚的锌泊上,在于80℃真空干燥箱中烘干,而后冲片得到直径为1.5cm的负极片1,负极片2和负极片3。
电解液的制备:以2摩尔每升ZnSO4和1mol/L MnSO4的水溶液为电解液。
以正极片1、负极片1和2mol/L ZnSO4和1mol/L MnSO4的水溶液做电解液组装成电池,记为Cell 1。经测试,Cell 1在速率为0.1mV/s的CV曲线见图2。
由图2的CV曲线,可以看出在充放电过程中有明显的氧化还原峰,电压为1.56V,1.61V时为氧化峰,代表着电解液中二价锰离子的氧化成MnO2和锌离子从MnO2大隧道中脱出。电压为1.28V,1.37V时为还原峰,代表着附着在正极表面的MnO2又被还原为二价锰离子和锌离子嵌入到MnO2大隧道中。
以正极片2、负极片2和2mol/L ZnSO4和1mol/L MnSO4的水溶液做电解液组装成电池,记为Cell 2。经测试,Cell 2在电流密度为0.1A/g时的循环寿命见图3,cell2提供0.1A/g的充放电曲线见图4。
以正极片3、负极片3和2mol/L ZnSO4和1mol/L MnSO4的水溶液做电解液组装成电池,记为Cell 3。经测试,Cell 3在电流密度为5A/g时的循环寿命见图5。

Claims (8)

  1. 一种以氧化石墨烯为正极的锌离子电池,由正极、负极、介于两者之间的隔离膜以及含有阴阳离子并具有离子导电性的电解质组成,其特征在于:所述负极的活性材料以锌元素为主;所述正极的活性材料是氧化石墨烯;所述电解质是以锌的可溶性盐和锰的可溶性盐为溶质、水为溶剂并具有离子导电性的液态或凝胶态材料。
  2. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述正极包括集流体和附着于集流体上的正极膜,正极膜由正极的所述活性材料、电子导电剂和粘结剂制成。
  3. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述负极由纯金属锌、锌的合金或锌粉制成。
  4. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述负极包括集流体和附着于集流体上的负极膜,该负极膜由锌粉和粘结剂制成。
  5. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述负极包括集流体和附着于集流体上的负极膜,该负极膜由锌粉、粘结剂和缓蚀剂制成。
  6. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述负极包括集流体和附着于集流体上的负极膜,该负极膜由锌粉、粘结剂和电子导电剂制成。
  7. 根据权利要求1所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述负极包括集流体和附着于集流体上的负极膜,该负极膜由锌粉、粘结剂、缓蚀剂和电子导电剂制成,电子导电剂的添加量为负极膜质量的50%以下,缓蚀剂的添加量为负极膜质量的1%以下。
  8. 根据权利要求1-7任一项所述的以氧化石墨烯为正极的锌离子电池,其特征在于:所述锌的可溶性盐为硝酸锌、硫酸锌或氯化锌,锰的可溶性盐为硝酸锰、硫酸锰或氯化锰。
PCT/CN2015/075483 2015-03-31 2015-03-31 以氧化石墨烯为正极的一种锌离子电池 WO2016154887A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/075483 WO2016154887A1 (zh) 2015-03-31 2015-03-31 以氧化石墨烯为正极的一种锌离子电池
US15/562,972 US20180114987A1 (en) 2015-03-31 2015-03-31 Rechargeable zinc ion battery with graphene oxide as positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075483 WO2016154887A1 (zh) 2015-03-31 2015-03-31 以氧化石墨烯为正极的一种锌离子电池

Publications (1)

Publication Number Publication Date
WO2016154887A1 true WO2016154887A1 (zh) 2016-10-06

Family

ID=57005387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075483 WO2016154887A1 (zh) 2015-03-31 2015-03-31 以氧化石墨烯为正极的一种锌离子电池

Country Status (2)

Country Link
US (1) US20180114987A1 (zh)
WO (1) WO2016154887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937268A (zh) * 2021-10-11 2022-01-14 西北工业大学 具有超长循环寿命的纤维状柔性水系锌离子电池及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642236B (zh) * 2019-09-02 2022-10-11 吉首大学 一种锌基水系电池负极材料及其制备方法
CN111653834B (zh) * 2020-06-05 2021-10-08 恩力能源科技(安徽)有限公司 水系电解液、水系金属离子电池及其制备方法
CN112803028A (zh) * 2020-12-17 2021-05-14 华中师范大学 一种超快充电的锰锌电池
CN114171726A (zh) * 2021-10-20 2022-03-11 广西大学 水系锌离子电池金属锌负极的制备方法及应用
CN113991086B (zh) * 2021-10-28 2023-06-20 东北师范大学 一种锌离子电池负极复合材料及其制备方法和应用
CN114628680A (zh) * 2022-03-14 2022-06-14 辽宁大学 用于水系锌离子电池的十三氧六钒电极材料的制备方法和应用
CN114823158B (zh) * 2022-05-19 2023-07-25 一汽解放汽车有限公司 一种锌离子电容器及其制备方法与蓄电池
CN115557534B (zh) * 2022-09-09 2023-07-18 江苏师范大学 一种水系锌离子电池复合正极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN104240966A (zh) * 2014-09-09 2014-12-24 清华大学深圳研究生院 部分还原的氧化石墨烯复合材料及其制备方法
CN104272522A (zh) * 2014-03-04 2015-01-07 清华大学深圳研究生院 一种可充电锌离子电池
CN104272523A (zh) * 2014-04-03 2015-01-07 清华大学深圳研究生院 一种锌离子可充电电池及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173594B2 (ja) * 1998-08-31 2001-06-04 株式会社ファインセル マンガン塩(ii)とカ−ボン粉末を添加した硫酸亜鉛(ii)水溶液二次電池
KR101938103B1 (ko) * 2009-08-07 2019-01-11 징크파이브 파워, 인크. 탄소 섬유 아연 음극
US9484160B2 (en) * 2013-09-23 2016-11-01 Nanotek Instruments, Inc. Large-grain graphene thin film current collector and secondary batteries containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN104272522A (zh) * 2014-03-04 2015-01-07 清华大学深圳研究生院 一种可充电锌离子电池
CN104272523A (zh) * 2014-04-03 2015-01-07 清华大学深圳研究生院 一种锌离子可充电电池及其制造方法
CN104240966A (zh) * 2014-09-09 2014-12-24 清华大学深圳研究生院 部分还原的氧化石墨烯复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937268A (zh) * 2021-10-11 2022-01-14 西北工业大学 具有超长循环寿命的纤维状柔性水系锌离子电池及制备方法
CN113937268B (zh) * 2021-10-11 2024-01-30 西北工业大学 具有超长循环寿命的纤维状柔性水系锌离子电池及制备方法

Also Published As

Publication number Publication date
US20180114987A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2016154887A1 (zh) 以氧化石墨烯为正极的一种锌离子电池
JP6143945B2 (ja) 亜鉛イオン二次電池及びその製造方法
CN102013527B (zh) 可充电锌离子电池
CN105826520A (zh) 一种基于锌-磷酸铁锰锂的水系高电压混合离子二次电池
CN110767880A (zh) 一种用于锂二次电池的补锂浆料及锂二次电池的制备方法
CN102005615B (zh) 可充电的镍离子电池
CN102110858B (zh) 以钒的氧化物为正极的可充电锌离子电池
CN102683757B (zh) 一种高容量可充电锌离子电池
CN104272522B (zh) 一种可充电锌离子电池
CN103700860A (zh) 一种锂离子电池
CN105826559A (zh) 一种以氧化石墨烯为正极的可充电锌离子电池
JP2012243463A5 (zh)
CN111785898A (zh) 一种基于纤维素的一体化锌离子电池及其制备方法
CN104882637B (zh) 电解液和电化学储能装置
CN101630728A (zh) 一种高能量密度锂二次电池电极及其制备方法
CN102097661A (zh) 以锰酸锌为正极的可充电锌离子电池
WO2016141861A1 (zh) 电池、电池组和不间断电源
JP2011096470A (ja) 全固体リチウムイオン二次電池における負極材および全固体リチウムイオン二次電池の製造方法
WO2018090161A1 (zh) 以金属铜为负极集流体的可充电锌离子电池
JP5154104B2 (ja) リチウムイオン二次電池およびその正極板の製造方法
CN102097662B (zh) 一种锌离子电池
CN112736239A (zh) 锌离子电池负极及其制备方法、及锌离子电池
JP2013089528A (ja) 電池用電極板および電池
CN103427119B (zh) 电池
US20230030182A1 (en) Battery for achieving high cycle life and zinc utilization in secondary zinc anodes using electrocoagulants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886873

Country of ref document: EP

Kind code of ref document: A1