WO2016151784A1 - 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム - Google Patents
3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム Download PDFInfo
- Publication number
- WO2016151784A1 WO2016151784A1 PCT/JP2015/059006 JP2015059006W WO2016151784A1 WO 2016151784 A1 WO2016151784 A1 WO 2016151784A1 JP 2015059006 W JP2015059006 W JP 2015059006W WO 2016151784 A1 WO2016151784 A1 WO 2016151784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modeling
- model
- dimensional
- data
- shrinkage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/40—Structures for supporting workpieces or articles during manufacture and removed afterwards
- B22F10/43—Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
- G05B19/4099—Surface or curve machining, making 3D objects, e.g. desktop manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35134—3-D cad-cam
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49007—Making, forming 3-D object, model, surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/26—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a technique for generating a shrinkage suppression structure for a three-dimensional structure.
- Patent Document 1 discloses a technique for generating support mesh data for supporting a laminated object at the time of producing a three-dimensional object.
- the technique described in the above document is intended to support a three-dimensional structure.
- SLS selective laser sintering
- a high power laser or electron beam or other focused heat source is used to burn a small particle of plastic, metal, or ceramic powder into a mass that represents a three-dimensional object.
- bonding or bonding there is no mention of a method for suppressing the shrinkage of a shaped article accompanying a decrease in temperature. Therefore, distortion, twisting, cracking, or the like occurs in the shape of the three-dimensional structure due to shrinkage caused by a decrease in temperature during or after modeling.
- An object of the present invention is to provide a technique for solving the above-described problems.
- an information processing apparatus provides: An acquisition means for acquiring additive manufacturing data of a three-dimensional modeling model; When the width in a predetermined direction of the modeled object on the layered surface is equal to or greater than the threshold value, the modeled data obtained by adding the shrinkage suppression structure model for suppressing the contraction after the layered modeling in the predetermined direction to the three-dimensional model is generated.
- Data generation means Is provided.
- a method for generating a shrinkage-suppressing structure for a three-dimensional structure includes: An acquisition step of acquiring additive manufacturing data of the three-dimensional modeling model; Data generation for generating 3D modeling data of a 3D modeling model to which a shrinkage suppression structure for suppressing shrinkage after layered modeling is added in the predetermined direction when the width of the modeled object on the laminated surface is equal to or greater than a threshold value Steps, including.
- the three-dimensional structure shrinkage suppression structure generation program is: An acquisition step of acquiring additive manufacturing data of the three-dimensional modeling model; Data generation for generating 3D modeling data of a 3D modeling model to which a shrinkage suppression structure for suppressing shrinkage after layered modeling is added in the predetermined direction when the width of the modeled object on the laminated surface is equal to or greater than a threshold value Steps, Is executed on the computer.
- a three-dimensional modeling system includes: Model generation means for generating layered modeling data of a three-dimensional modeling model from data representing a three-dimensional modeling object; Data generation for generating 3D modeling data of a 3D modeling model to which a shrinkage suppression structure for suppressing shrinkage after layered modeling is added in the predetermined direction when the width of the modeled object on the laminated surface is equal to or greater than a threshold value Means, According to the layered modeling data of the three-dimensional modeling model generated by the data generating unit, the layered modeling unit that models the three-dimensional modeled object to which the shrinkage suppression structure is added; Is provided.
- a method for producing a three-dimensional structure includes: A model generation step of generating layered modeling data of a three-dimensional modeling model from data representing a three-dimensional modeling object; Data generation for generating 3D modeling data of a 3D modeling model to which a shrinkage suppression structure for suppressing shrinkage after layered modeling is added in the predetermined direction when the width of the modeled object on the laminated surface is equal to or greater than a threshold value Process, In accordance with the layered modeling data of the three-dimensional modeling model generated in the data generation step, a layered modeling step of modeling the three-dimensional modeled object to which the shrinkage suppression structure is added; including.
- the present invention it is possible to form a desired three-dimensional structure by suppressing the shrinkage of the structure due to a decrease in temperature in the laminated portion during the formation of the three-dimensional structure.
- the information processing apparatus 100 is an apparatus that generates a shrinkage suppression structure for a three-dimensional structure.
- the information processing apparatus 100 includes an acquisition unit 101 and a data generation unit 102.
- the acquisition unit 101 acquires the layered modeling data 111 of the three-dimensional modeling model.
- the data generation unit 102 converts the shrinkage suppression structure model 112 for suppressing contraction after the stack modeling in the predetermined direction into a three-dimensional modeling model.
- the added layered modeling data 113 is generated.
- a shrinkage suppression structure model for suppressing shrinkage after additive manufacturing is added to the three-dimensional object model, and the object is contracted due to a decrease in temperature in the laminated part during the formation of the three-dimensional object. By suppressing this, a desired three-dimensional structure can be formed.
- the three-dimensional modeling system according to the present embodiment is a shrinkage suppression structure model for suppressing shrinkage after layered modeling in a predetermined direction in the information processing apparatus when the width in a predetermined direction of the modeled object on the stacked surface exceeds a threshold value.
- the layered modeling data in which is added to the three-dimensional modeling model is generated.
- the 3D modeling system deletes the shrinkage suppression structure from the 3D model that has been layered and modeled after modeling the 3D model to which the shrinkage suppression structure has been added according to the 3D modeling data of the 3D modeling model. .
- the addition of the shrinkage suppression structure model is performed by cutting the three-dimensional modeling model in two directions perpendicular to the stacking direction perpendicular to the stacking direction, and setting the position where the cutting length is equal to or greater than the threshold as the additional position.
- the shrinkage suppression structure model is a plate-like structure model having a length that extends in a predetermined direction and can suppress shrinkage after layered modeling, and the first modeling layer is in close contact with the modeling object support. Further, the shrinkage suppression structure model is added at a position where it can be deleted from the three-dimensional structure after the layered modeling.
- a plurality of shrinkage suppression structure models that differ in any one of shape, thickness, and area are stored and added from a plurality of shrinkage suppression structure models based on the shape and cutting length of the three-dimensional modeling model.
- the shrinkage suppression structure model to be selected is selected.
- FIG. 2 is a diagram showing an outline of addition of the shrinkage suppression structure 223 according to the present embodiment.
- the left figure shows a plan view of the three-dimensional modeling model viewed from above the laminated surface
- the right figure shows a perspective view of the three-dimensional modeled object that has been three-dimensionally modeled.
- an outline 211 of the three-dimensional modeling model viewed from above the laminated surface is shown.
- the cross-sectional length obtained by cutting the contour 211 of the three-dimensional modeling model at regular intervals in the axial direction orthogonal to the stacked surface, that is, the width of the three-dimensional modeling model on the stacked surface is calculated.
- a rib-like shrinkage suppression structure model 213 is added in the direction of the cutting line (or surface) outside the cutting position of the portion 212 whose cross-sectional length (width) is equal to or greater than a predetermined threshold, and modeling is performed on the three-dimensional modeling apparatus.
- the new 3D modeling model 210 is generated, and the layered modeling data to be provided to the 3D modeling apparatus is generated.
- the 3D model 220 as shown in the right figure is layered based on the provided layered modeling data.
- a rib-shaped shrinkage suppression structure 223 is added to the portion 212 in which the cross-sectional length (width) of the obtained three-dimensional structure 221 is equal to or greater than a predetermined threshold value in the three-dimensional structure 220 that has been layered.
- the shrinkage suppression structure 223 is deleted from the layered 3D model 220 by a shrinkage suppression structure deletion device or the like, and the desired 3D model 221 is obtained.
- FIG. 3 is a block diagram illustrating a configuration of a three-dimensional modeling system 300 including the information processing apparatus 310 according to the present embodiment.
- the 3D modeling system 300 includes an information processing apparatus 310 for generating the 3D modeling data of the 3D modeling model, and a 3D modeling apparatus 320 that 3D models the 3D model according to the 3D modeling data.
- FIG. 3 shows a configuration in which the information processing device 310 and the three-dimensional modeling device 320 are connected by communication.
- an integrated device is a configuration that is further separated into a plurality of devices according to function. May be.
- the information processing apparatus 310 includes a communication control unit 311, a layered modeling data generation unit 312, a display unit 313, an operation unit 314, a shrinkage suppression structure model addition unit 315, and a three-dimensional modeling model acquisition unit 316. Prepare.
- the communication control unit 311 controls communication with the 3D modeling apparatus 320 and transmits the layered modeling data generated by the layered modeling data generation unit 312 to the 3D modeling apparatus 320. In addition, when the communication control unit 311 receives the additive manufacturing data of the three-dimensional modeling model acquired by the three-dimensional modeling model acquisition unit 316 via communication, the communication control unit 311 transmits the received additive manufacturing data to the three-dimensional modeling model acquisition unit 316. hand over.
- the 3D modeling model acquisition unit 316 acquires the layered modeling data of the 3D modeling model for layered modeling of the 3D modeled object via the communication control unit 311 or via a bus from a storage medium or the like.
- the information processing apparatus 310 may have a function of acquiring data representing a three-dimensional structure and generating layered modeling data of a three-dimensional modeling model. This process may be shared by the layered modeling data generation unit 312.
- the display unit 313 displays a 3D modeling model, a shrinkage suppression structure model, or a 3D modeling model to which the shrinkage suppression structure model is added, and notifies the user.
- the operation unit 314 receives an operation input such as an instruction to add a shrinkage suppression structure model by the user.
- the shrinkage suppression structure model addition unit 315 selects a shrinkage suppression structure model and performs 3D modeling in response to prediction of the model shrinkage at the time of the layered modeling of the 3D modeling model acquired by the 3D modeling model acquisition unit 316. Place it at a selected position in the model.
- the layered modeling data generation unit 312 generates new layered modeling data from the added three-dimensional modeling model in which the shrinkage suppression structure model is arranged.
- the layered modeling data generation unit 312 includes a data transmission unit that transmits new layered modeling data to the three-dimensional modeling apparatus 320 via the communication control unit 311.
- the three-dimensional modeling apparatus 320 includes a modeling control unit 321 and a layered modeling unit 322.
- the modeling control unit 321 controls the layered modeling of the three-dimensional modeled object by the layered modeling unit 322 according to the layered modeling data of the three-dimensional modeling model received from the communication control unit 311.
- the additive manufacturing unit 322 selectively melts the shape of the three-dimensional object for each lamination with a laser beam or the like under the control of the object controller 321 to laminate the three-dimensional object.
- the layered modeling method of the three-dimensional modeling apparatus 320 is not limited. In the present embodiment, any additive manufacturing method may be used as long as it becomes a high temperature at the time of additive manufacturing and shrinkage of the object is generated when the temperature is lowered.
- a three-dimensional model is manufactured by the following process.
- the information processing apparatus 310 or another apparatus generates layered modeling data of a three-dimensional modeling model from data representing a three-dimensional modeled object.
- the data generation process when the width in the predetermined direction of the three-dimensional object on the laminated surface is equal to or larger than the threshold value, a shrinkage suppression structure for suppressing the shrinkage after the three-dimensional modeling is added in the predetermined direction.
- Layered modeling data of a three-dimensional modeling model is generated.
- the three-dimensional modeling apparatus 320 models a three-dimensional modeled object to which the shrinkage suppression structure is added according to the layered modeling data of the three-dimensional model generated in the data generating process.
- FIG. 4A is a block diagram illustrating a configuration of the shrinkage suppression structure model adding unit 315 according to the present embodiment.
- the contraction suppression structure model addition unit 315 includes a model contraction prediction unit 401, a contraction suppression structure model database 402, a contraction suppression structure model selection and arrangement unit 403, and a three-dimensional modeling model generation unit 404. .
- the shrinkage suppression structure model addition unit 315 executes the addition of the shrinkage suppression structure model in response to an instruction to add the shrinkage suppression structure model by the operation unit 314.
- material characteristics used in the three-dimensional modeling apparatus 320 fine parameters used for modeling shrinkage prediction and shrinkage suppression structure model selection and arrangement may be input. If the model of the three-dimensional modeling apparatus 320 and the material to be used are input, the parameters may be set.
- the modeling object contraction prediction unit 401 uses the data of the 3D modeling model passed from the 3D modeling model acquisition unit 316, the material used by the 3D modeling apparatus 320 for additive manufacturing, and the temperature information when the additive manufacturing is performed.
- the contraction state of the three-dimensionally shaped three-dimensional structure is predicted from attributes such as the shape and material characteristics of the three-dimensional structure model.
- the stacked portion becomes high temperature during stacking, and then easily contracts with a decrease in temperature due to heat dissipation of three-dimensional modeling.
- the contracted state is also affected by the layered modeling speed of the three-dimensional modeling apparatus 320.
- the shrinkage suppression structure model database 402 stores a shrinkage suppression structure model to be added in response to the modeling object shrinkage prediction of the three-dimensional modeling model.
- the shrinkage suppression structure model database 402 may store the shrinkage suppression structure models one by one, or may be stored as a set of a plurality of models in association with the state of the model shrinkage prediction. Good.
- the structure is stored as a shrinkage suppression structure model composed of a set of models added to both sides of a place where the cutting length (width of the modeled object) is equal to or greater than a threshold value.
- a more suitable set of shrinkage suppression structure models such as a set of a plurality of positions in the same cutting direction may be stored.
- the shrinkage suppression structure model selection and arrangement unit 403 selects a shrinkage prediction structure model from the shrinkage suppression structure model database 402 in response to the modeling object shrinkage prediction by the modeling object shrinkage prediction unit 401, and the three-dimensional modeling model. Determine the placement.
- the 3D modeling model generation unit 404 adds the shrinkage suppression structure model selected and arranged by the shrinkage suppression structure model selection and placement unit 403 to the 3D modeling model, and generates a new 3D modeling model.
- the 3D modeling model generation unit 404 outputs the 3D modeling model data obtained by adding the shrinkage suppression structure model to the layered modeling data generation unit 312, and outputs and displays the data on the display unit 313.
- FIG. 4B is a block diagram illustrating the configuration of the modeled object shrinkage prediction unit 401 according to the present embodiment.
- the modeling object contraction prediction unit 401 includes a three-dimensional modeling model storage unit 411, a modeled object width calculation position setting unit 412, a modeled object width calculation unit 413, and a contraction prediction position determination unit 414.
- the 3D modeling model storage unit 411 stores data of the 3D modeling model sent from the 3D modeling model acquisition unit 316.
- the modeled object width calculation position setting unit 412 sets a direction and a cutting interval for cutting the laminated surface of the three-dimensional modeling model input by the user through the operation unit 314. It should be noted that even if the user does not input the direction and cutting interval for cutting the laminated surface, it is a preset value, or a set value based on the shape characteristics of the 3D modeling model or the characteristics of the modeling material. May be.
- the modeled object width calculation unit 413 cuts the three-dimensional modeled model stored in the three-dimensional modeled model storage unit 411 in accordance with the direction or cutting interval for cutting the laminated surface set by the modeled object width calculation position setting unit 412. Then, the modeled object width (cutting length) is calculated.
- the shrinkage predicted position determination unit 414 determines the cut position as the modeled object contraction predicted position when the modeled object width (cutting length) calculated by the modeled object width calculation unit 413 is equal to or greater than the predetermined threshold 415. Then, the modeled object contraction predicted position is output to the contraction suppressing structure model selection and arrangement unit 403.
- FIG. 5A is a diagram illustrating a configuration of a three-dimensional modeling model generation table 510 according to the present embodiment.
- It is a table used for generating a three-dimensional modeling model in a virtual space in order to calculate a modeled object width (cutting length) according to the interval.
- the 3D modeling model generation table 510 stores 3D modeling model data 511, data 512 indicating a virtual space for generating a 3D modeling model, and a 3D modeling model 513 generated in the virtual space.
- the data 512 indicating the virtual space the X-axis and Y-axis of the stacked surface and the Z-axis in the stacking direction are set as the virtual space.
- FIG. 5B is a diagram illustrating a configuration of a modeled object width calculation position setting table 520 according to the present embodiment.
- the modeled object width calculation position setting table 520 is used for the modeled object width calculation position setting unit 412 to set the width calculation direction and the calculation interval.
- the modeled object width calculation position setting table 520 stores a width calculation direction 521 and a width calculation interval 522.
- the (X + Y) axis direction indicated in the width calculation direction 521 indicates a direction of 45 degrees between the plus direction of the X axis and the plus direction of the Y axis
- the (XY) axis direction is The direction of 45 degrees between the positive direction of the X axis and the negative direction of the Y axis is shown.
- “0” in the width calculation interval 522 indicates that this axis is not used, but the use of the axis may be stored as a separate flag.
- FIG. 5C is a diagram showing a configuration of the shrinkage suppression structure model selection arrangement table 530 according to the present embodiment.
- the shrinkage suppression structure model selection / arrangement table 530 is for the shrinkage suppression structure model selection and placement unit 403 to select and place a shrinkage suppression structure model from the shrinkage suppression structure model database 402 based on the prediction of the structure shrinkage. Used for.
- the shrinkage suppression structure model selection arrangement table 530 includes a modeling object width calculation value 532 corresponding to the modeling object width calculation position 531, a threshold 533 that is a criterion for determining whether or not to add a contraction suppression structure model, and a threshold 533.
- the shrinkage suppression structure addition / non-addition 534 that is the determination result based on the above and the shrinkage prediction value 535 predicted based on the decrease in temperature, material, width (length), and the like are stored.
- the set of the model width calculation position 531 (X-axis direction, Y-coordinate) indicates the position of the Y-coordinate in the cross section in the X-axis direction.
- a set of (Y axis direction, X coordinate) indicates the position of the X coordinate in the cross section in the Y axis direction.
- Thx and Thy are shown as threshold values, they may be different values depending on directions or the same value.
- “ ⁇ ” in the shrinkage suppression structure addition / non-addition 534 indicates the addition of the shrinkage suppression structure model whose modeling object width calculation value 532 is equal to or greater than the threshold value, and “ ⁇ ” indicates that the modeling object width calculation value 532 is the threshold value.
- Figure 2 illustrates the non-addition of less than a shrinkage suppression structure model.
- FIG. 5D is a diagram showing a configuration of the shrinkage suppression structure model database 402 according to the present embodiment.
- the configuration of the shrinkage suppression structure model database 402 is not limited to FIG. 5D.
- the shrinkage suppression structure model database 402 stores an attribute 542, a size 543, and a shape 544 in association with the shrinkage suppression structure model ID 541.
- the shrinkage suppression structure model database 402 stores the shrinkage suppression predicted value 545 calculated based on the attribute 542, the size 543, and the shape 544.
- the shrinkage-suppressing structure model selection and arrangement unit 403 is, for example, an appropriate shrinkage-suppressing structure model or a combination of shrinkage-suppressing structure models based on the predicted shrinkage value 535 and the expected shrinkage suppression value 545 of the modeled object described above. To decide.
- FIG. 6 is a block diagram illustrating a hardware configuration of the information processing apparatus 310 according to the present embodiment.
- a CPU (Central Processing Unit) 610 is a processor for arithmetic control, and implements a functional configuration unit of the information processing apparatus 310 in FIG. 3 by executing a program.
- a ROM (Read Only Memory) 620 stores initial data and fixed data such as a program.
- the communication control unit 311 communicates with the three-dimensional modeling apparatus 320 via a network. Note that the number of CPUs 610 is not limited to one, and may be a plurality of CPUs or may include a GPU (Graphics Processing Unit) for image processing.
- the communication control unit 311 preferably has a CPU independent of the CPU 610 and writes or reads transmission / reception data in a RAM (Random Access Memory) 640 area.
- the input / output interface 660 preferably has a CPU independent of the CPU 610 and writes or reads input / output data to / from the area of the RAM 640. Therefore, the CPU 610 recognizes that the data has been received or transferred to the RAM 640 and processes the data. Further, the CPU 610 prepares the processing result in the RAM 640 and leaves the subsequent transmission or transfer to the communication control unit 311, the DMAC, or the input / output interface 660.
- DMAC Direct Memory Access Controller
- the RAM 640 is a random access memory that the CPU 610 uses as a temporary storage work area. In the RAM 640, an area for storing data necessary for realizing the present embodiment is secured.
- the acquired 3D modeling model data 511 is data of the 3D modeling model acquired by the information processing apparatus 310.
- the 3D modeling model generation table 510 is a table for generating a 3D modeling model in the virtual space from the 3D modeling model data.
- the modeled object width calculation position setting table 520 is a table for setting a position for calculating the modeled object width.
- the shrinkage suppression structure model selection / arrangement table 530 is a table for selecting a shrinkage suppression structure model from the shrinkage suppression structure model database 402 on the basis of the predicted shrinkage of the formation and placing it at the additional position of the 3D modeling model.
- the generated 3D modeling model data 641 is layered modeling data of a 3D modeling model to which a shrinkage suppression structure model is added.
- the input / output data 642 is data input / output via the input / output interface 660.
- the transmission / reception data 643 is data transmitted / received via the communication control unit 311.
- the storage 650 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
- the shrinkage suppression structure model database 402 is a database that stores the shrinkage suppression structure model in a searchable manner.
- the storage 650 stores the following programs.
- the information processing device control program 651 is a control program that controls the entire information processing device 310.
- the shrinkage suppression structure model addition module 652 is a module for adding an appropriate shrinkage suppression structure model corresponding to the structure shrinkage prediction of the three-dimensional modeling model.
- the contraction suppression structure model addition module 652 includes a model contraction prediction module and a contraction suppression structure model selection / arrangement module.
- the additive manufacturing data generation module 653 is a module that generates additive manufacturing data of a three-dimensional modeling model to which a shrinkage suppression structure model is added.
- the input / output interface 660 interfaces input / output data with input / output devices.
- a display unit 313 and an operation unit 314 are connected to the input / output interface 660. Further, a storage medium control device or the like may be connected.
- RAM 640 and the storage 650 in FIG. 6 do not show programs and data related to general-purpose functions and other realizable functions that the information processing apparatus 310 has.
- FIG. 7A is a flowchart showing a three-dimensional structure manufacturing procedure of the three-dimensional structure forming system 300 according to this embodiment. 7A shows an example in which the information processing apparatus 310 generates the layered modeling data of the three-dimensional model, but the generation of the layered modeling data may be executed by another external device.
- step S701 the information processing apparatus 310 acquires data representing a three-dimensional structure.
- step S703 the information processing apparatus 310 generates the layered modeling data of the three-dimensional modeling model corresponding to the acquired data.
- step S705 the information processing apparatus 310 performs an addition process of the shrinkage suppression structure model to the three-dimensional modeling model as an application of the present embodiment, and transmits the layered modeling data to the three-dimensional modeling apparatus 320. To do.
- step S707 the three-dimensional modeling apparatus 320 manufactures a three-dimensional structure to which the shrinkage suppression structure is added according to the received layered modeling data to which the shrinkage suppression structure model is attached.
- step S709 the three-dimensional modeling system 300 deletes the shrinkage suppression structure from the three-dimensional modeled object manufactured by a predetermined device (not shown). In this way, a desired three-dimensional structure is manufactured.
- FIG. 7B is a flowchart showing the procedure of the heat dissipation structure model addition process (S705) of the information processing apparatus 310 according to the present embodiment.
- This flowchart is an application including a shrinkage suppression structure generation program, and is executed by the CPU 610 using the RAM 640, and implements the functional components of the information processing apparatus 310 in FIG.
- the information processing apparatus 310 acquires the layered modeling data of the three-dimensional modeling model in step S711.
- the information processing apparatus 310 predicts shrinkage of the modeled object during the layered modeling based on the data of the three-dimensional model.
- the information processing apparatus 310 selects a contraction suppression structure model corresponding to the model contraction prediction from the contraction suppression structure model database 402 and arranges it in the three-dimensional modeling model.
- step S717 the information processing apparatus 310 generates the layered modeling data of the three-dimensional modeling model to which the shrinkage suppression structure model is added.
- step S719 the information processing apparatus 310 transmits the layered modeling data of the three-dimensional modeling model to the three-dimensional modeling apparatus 320, and ends the heat dissipation structure model addition process (S705).
- FIG. 7C is a flowchart illustrating a procedure of a model contraction prediction process (S713) according to the present embodiment.
- step S721 the information processing apparatus 310 generates a 3D modeling model in a predetermined virtual 3D space based on the 3D modeling model data.
- step S723 the information processing apparatus 310 sets a position for calculating the shaped object width. The setting of the position for calculating the shaped object width may be based on an input by the user or may be set by the information processing apparatus 310.
- step S725 the information processing apparatus 310 calculates the shaped article width (length in the cutting direction) while sequentially updating the set calculation positions.
- step S727 the information processing apparatus 310 determines whether or not the modeled object width (the length in the cutting direction) is equal to or greater than a threshold value.
- the information processing apparatus 310 stores the calculated position as the additional position of the shrinkage suppression structure in step S729.
- the information processing apparatus 310 proceeds to step S731.
- step S731 the information processing apparatus 310 determines whether the calculation of the width of the modeled object (the length in the cutting direction) obtained by cutting the entire three-dimensional model and the comparison with the threshold value have been completed. If the calculation of the entire three-dimensional modeling model has not been completed, the information processing apparatus 310 returns to step S725 and repeats the process for the next cut surface. When the calculation of the entire three-dimensional modeling model is completed, the modeling object contraction prediction process (S713) ends.
- the information processing apparatus according to the present embodiment is different from the second embodiment in that division in a predetermined direction corresponding to the laminated surface is division at regular intervals in four directions intersecting the laminated surface at equal angles. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 8 is a diagram showing an outline of addition of the shrinkage suppression structure 823 according to the present embodiment.
- the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
- the left figure shows a plan view of the three-dimensional modeling model viewed from above the laminated surface
- the right figure shows a perspective view of the three-dimensional modeled object that has been laminated.
- an outline 211 of the three-dimensional modeling model viewed from above the laminated surface is shown.
- the cross-sectional length obtained by cutting the contour 211 of the three-dimensional modeling model at constant intervals in four directions, that is, an axial direction orthogonal to the laminated surface and further in the middle direction thereof, that is, three-dimensional modeling on the laminated surface. Calculate the width of the model.
- a rib-like shrinkage suppression structure model 813 is added in the direction of the cutting line (or surface) outside the cutting position of the portion 812 whose cross-sectional length (width) is equal to or greater than a predetermined threshold, and modeling is performed on the three-dimensional modeling apparatus.
- the new 3D modeling model 810 is generated, and the layered modeling data to be provided to the 3D modeling apparatus is generated.
- the 3D model 820 as shown in the right figure is layered and modeled based on the provided layered modeling data.
- a rib-like shrinkage suppression structure 823 is added to a portion 812 where the cross-sectional length (width) of the desired three-dimensional structure 221 is equal to or greater than a predetermined threshold.
- the shrinkage suppression structure 823 is deleted from the layered three-dimensional structure 820 by a shrinkage suppression structure deletion device or the like, and the desired three-dimensional structure 221 is obtained.
- the present embodiment it is possible to select a suitable position of the shrinkage suppression structure model for suppressing the shrinkage after the layered shaping by another simplified process and add it to the three-dimensional shaping model.
- the information processing apparatus cuts the three-dimensional modeling model by a straight line passing through the center of the stacking surface perpendicular to the stacking direction, compared with the second and third embodiments, and the cutting length thereof. The difference is that the position where the height exceeds the threshold is selected as the position to which the shrinkage suppression structure model is added.
- Other configurations and operations are the same as those of the second embodiment and the third embodiment. Therefore, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 9 is a diagram showing an outline of addition of the shrinkage suppression structure 923 according to the present embodiment.
- the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
- the left figure shows a plan view of the three-dimensional modeling model viewed from above the laminated surface
- the right figure shows a perspective view of the three-dimensional modeled object that has been laminated.
- an outline 211 of the three-dimensional modeling model viewed from above the laminated surface is shown.
- the cross-sectional length obtained by cutting the outline 211 of the 3D modeling model with a surface that rotates around the center of the 3D modeling model at regular intervals on the stacked surface, that is, the 3D modeling on the stacked surface. Calculate the width of the model.
- a rib-shaped shrinkage suppression structure model 913 is added in the direction of the cutting line (or surface) outside the cutting position of the portion 912 whose cross-sectional length (width) is equal to or greater than a predetermined threshold, and modeling is performed on the three-dimensional modeling apparatus.
- the new 3D modeling model 910 is generated, and the layered modeling data to be provided to the 3D modeling apparatus is generated.
- the 3D model 920 as shown in the right figure is layered and modeled based on the provided layered modeling data.
- a rib-shaped shrinkage suppression structure 923 is added to a portion 912 in which the cross-sectional length (width) of the desired three-dimensional structure 221 is equal to or greater than a predetermined threshold value in the three-dimensional structure 920 that has been layered.
- the shrinkage suppression structure 923 is deleted from the three-dimensionally modeled three-dimensional object 920 by a shrinkage suppression structure deletion device or the like, and the desired three-dimensional structure 221 is obtained.
- the present embodiment it is possible to select a suitable position of the shrinkage suppression structure model for suppressing shrinkage after the layered modeling by a further simplified process and add it to the three-dimensional modeling model.
- the cross section of the additional portion of the shrinkage suppression structure model to the three-dimensional modeling model is compared with the cross section of the shrinkage suppression structure model as compared with the second to fourth embodiments.
- the shrinkage suppression structure is deleted from the three-dimensional structure after layered modeling and made cheaper. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 10 is a diagram showing an outline of addition of the shrinkage suppression structure according to the present embodiment.
- FIG. 10 the same components as those in FIG. Further, in FIG. 10, a perspective view (corresponding to the right view of FIG. 2) of the three-dimensional structure that has been layered is omitted.
- FIG. 10 shows a plan view of the three-dimensional modeling model as viewed from above the lamination surface, and shows an outline 211 of the three-dimensional modeling model as viewed from above the lamination surface.
- the rib-like connecting portion 1014 of the three-dimensional modeling model is thin in the direction of the cutting line (or surface) outside the cutting position of the portion 212 whose cross-sectional length (width) is equal to or greater than a predetermined threshold.
- the shrinkage-suppressing structure model 1013 thus added is added to form a new three-dimensional modeling model 1010 to be modeled by the three-dimensional modeling apparatus, and the layered modeling data to be provided to the three-dimensional modeling apparatus is generated.
- the details of the connection state can be seen from the enlarged view 1015 of the connection portion 1014.
- the shrinkage-suppressing structure can be easily deleted from the three-dimensional structure that has been three-dimensionally modeled by the three-dimensional modeling apparatus based on such layered modeling data.
- the shrinkage suppression structure added to suppress shrinkage after the layered modeling can be easily deleted from the three-dimensional modeled object.
- the information processing apparatus compared with the second embodiment to the fifth embodiment, the layered modeling data of the three-dimensional model, the layered modeling data of the three-dimensional model added with the shrinkage suppression structure, and The difference is that it has a shrinkage suppression structure learning unit that evaluates the shrinkage suppression structure based on the measurement data of the three-dimensional structure as a result of the layered modeling. Since other configurations and operations are the same as those in the second to fifth embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 11 is a block diagram illustrating a configuration of the shrinkage suppression structure model adding unit 1115 according to the present embodiment.
- the same functional components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
- the learning database 1102 is based on the layered modeling data of the acquired three-dimensional model, the layered modeling data of the three-dimensional model added with the shrinkage suppression structure model, and the measurement data of the three-dimensional modeled result of the layered modeling. Evaluate the shrinkage suppression structure model. Then, based on the evaluation result, the shrinkage suppression structure model database 402 is modified to select a more appropriate shrinkage suppression structure model and add a more appropriate shrinkage suppression structure model.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
Abstract
Description
3次元造形モデルの積層造形データを取得する取得手段と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物モデルを前記3次元造形モデルに付加した積層造形データを生成するデータ生成手段と、
を備える。
3次元造形モデルの積層造形データを取得する取得ステップと、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成ステップと、
を含む。
3次元造形モデルの積層造形データを取得する取得ステップと、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成ステップと、
をコンピュータに実行させる。
3次元造形物を表わすデータから3次元造形モデルの積層造形データを生成するモデル生成手段と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成手段と、
前記データ生成手段が生成した前記3次元造形モデルの積層造形データに従って、前記収縮抑制構造物を付加した3次元造形物を造形する積層造形手段と、
を備える。
3次元造形物を表わすデータから3次元造形モデルの積層造形データを生成するモデル生成工程と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成工程と、
前記データ生成工程において生成された前記3次元造形モデルの積層造形データに従って、前記収縮抑制構造物を付加した3次元造形物を造形する積層造形工程と、
を含む。
本発明の第1実施形態としての情報処理装置100について、図1を用いて説明する。情報処理装置100は、3次元造形物の収縮抑制構造を生成する装置である。
次に、本発明の第2実施形態に係る情報処理装置を含む3次元造形システムについて説明する。本実施形態に係る3次元造形システムは、積層面における造形物の所定方向の幅が閾値を超える場合、情報処理装置において、所定方向に積層造形後の収縮を抑制するための収縮抑制構造物モデルを3次元造形モデルに付加した積層造形データを生成する。そして、3次元造形システムは、3次元造形モデルの積層造形データに従って、収縮抑制構造物を付加した3次元造形物を造形した後、積層造形された3次元造形物から収縮抑制構造物を削除する。
図2は、本実施形態に係る収縮抑制構造物223の付加の概要を示す図である。
図3は、本実施形態に係る情報処理装置310を含む3次元造形システム300の構成を示すブロック図である。
この3次元造形システム300においては、3次元造形物が以下の工程により製造される。まず、モデル生成工程では、情報処理装置310あるいは他の装置において、3次元造形物を表わすデータから3次元造形モデルの積層造形データを生成する。次に、情報処理装置310において、データ生成工程では、積層面における造形物の所定方向の幅が閾値以上の場合、所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成する。積層造形工程では、3次元造形装置320において、データ生成工程において生成された3次元造形モデルの積層造形データに従って、収縮抑制構造物を付加した3次元造形物を造形する。
図4Aは、本実施形態に係る収縮抑制構造物モデル付加部315の構成を示すブロック図である。
図4Bは、本実施形態に係る造形物収縮予測部401の構成を示すブロック図である。
図5Aは、本実施形態に係る3次元造形モデル生成テーブル510の構成を示す図である。3次元造形モデル生成テーブル510は、造形物幅算出部413が3次元造形モデル記憶部411に記憶されたデータから、造形物幅算出位置設定部412によって設定された積層面を切断する方向や切断間隔に従って、造形物幅(切断長さ)を算出するため、仮想空間に3次元造形モデルを生成するのに使用されるテーブルである。
図5Bは、本実施形態に係る造形物幅算出位置設定テーブル520の構成を示す図である。造形物幅算出位置設定テーブル520は、造形物幅算出位置設定部412が幅算出方向と算出間隔とを設定するために使用される。
図5Cは、本実施形態に係る収縮抑制構造物モデル選択配置テーブル530の構成を示す図である。収縮抑制構造物モデル選択配置テーブル530は、収縮抑制構造物モデル選択および配置部403が、構造物収縮予測に基づいて収縮抑制構造物モデルデータベース402から収縮抑制構造物モデルを選択して配置するために使用される。
図5Dは、本実施形態に係る収縮抑制構造物モデルデータベース402の構成を示す図である。なお、収縮抑制構造物モデルデータベース402の構成は図5Dに限定されない。
図6は、本実施形態に係る情報処理装置310のハードウェア構成を示すブロック図である。
図7Aは、本実施形態に係る3次元造形システム300の3次元造形物製造手順を示すフローチャートである。なお、図7Aにおいては、情報処理装置310が3次元造形モデルの積層造形データを生成する例を示すが、積層造形データの生成は外部の他の装置で実行されてもよい。
図7Bは、本実施形態に係る情報処理装置310の放熱構造物モデル付加処理(S705)の手順を示すフローチャートである。このフローチャートは収縮抑制構造生成プログラムからなるアプリケーションであり、CPU610がRAM640を使用して実行し、図3の情報処理装置310の機能構成部を実現する。
図7Cは、本実施形態に係る造形物収縮予測処理(S713)の手順を示すフローチャートである。
次に、本発明の第3実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態と比べると、積層面に対応する所定方向の分断が、積層面を等角度で交わる4方向に一定間隔の分断である点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
図8は、本実施形態に係る収縮抑制構造物823の付加の概要を示す図である。なお、図8において、図2と同様の構成要素には同じ参照番号を付して、説明を省略する。
次に、本発明の第3実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態および第3実施形態と比べると、3次元造形モデルを、積層方向と垂直な積層面の中心を通る直線で切断して、その切断長さが閾値を超える位置を、収縮抑制構造物モデルを付加する位置として選択する点で異なる。その他の構成および動作は、第2実施形態と第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
図9は、本実施形態に係る収縮抑制構造物923の付加の概要を示す図である。なお、図9において、図2と同様の構成要素には同じ参照番号を付して、説明を省略する。
次に、本発明の第3実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態乃至第4実施形態と比べると、収縮抑制構造物モデルの3次元造形モデルへの付加部分の断面を、収縮抑制構造物モデルの断面に比較して狭くすることにより、収縮抑制構造物が積層造形後の3次元造形物から削除し安くした点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
図10は、本実施形態に係る収縮抑制構造物の付加の概要を示す図である。なお、図10において、図2と同様の構成要素には同じ参照番号を付して、説明を省略する。また、図10には、積層造形された3次元造形物の斜視図(図2の右図に相当)は省略する。
次に、本発明の第6実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態乃至第5実施形態と比べると、3次元造形モデルの積層造形データと、収縮抑制構造物を付加した3次元造形モデルの積層造形データと、積層造形結果の3次元造形物の計測データとに基づいて、収縮抑制構造物を評価する収縮抑制構造学習部を有する点で異なる。その他の構成および動作は、第2実施形態から第5実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
図11は、本実施形態に係る収縮抑制構造物モデル付加部1115の構成を示すブロック図である。なお、図11において図4と同様の機能構成部には同じ参照番号を付して、説明を省略する。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
Claims (15)
- 3次元造形モデルの積層造形データを取得する取得手段と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物モデルを前記3次元造形モデルに付加した積層造形データを生成するデータ生成手段と、
を備える情報処理装置。 - 前記データ生成手段は、
前記3次元造形モデルを、積層方向と垂直な積層面を所定方向に一定間隔で切断して、その切断長さが前記閾値以上の位置を付加位置として選択する選択手段と、
前記選択された付加位置に、前記所定方向に延びる前記収縮抑制構造物モデルを付加する収縮抑制構造物モデル付加手段と、
を有する、請求項1に記載の情報処理装置。 - 前記選択手段は、積層面を直交する2方向に一定間隔で切断する、または、積層面を等角度で交わる4方向に一定間隔で切断する、請求項2に記載の情報処理装置。
- 前記選択手段は、積層面の中心を通る直線で切断する、請求項2に記載の情報処理装置。
- 前記データ生成手段は、
形状、厚みおよび面積のいずれか1つが異なる複数の収縮抑制構造物モデルを格納する格納手段と、
前記3次元造形モデルの形状および前記切断長さに基づいて、前記複数の収縮抑制構造物モデルから、付加する収縮抑制構造物モデルを選択する収縮抑制構造物モデル選択手段と、
を有する、請求項2乃至4のいずれか1項に記載の情報処理装置。 - 前記収縮抑制構造物モデルは、前記所定方向に延びて積層造形後の収縮を抑制可能な長さの構造物モデルである、請求項1乃至5のいずれか1項に記載の情報処理装置。
- 前記構造物モデルにおいて、最初の造形層は造形物支持台に密着している、請求項6に記載の情報処理装置。
- 前記収縮抑制構造物モデルは、積層造形後の3次元造形物から削除できる位置に付加される、請求項1乃至7のいずれか1項に記載の情報処理装置。
- 前記収縮抑制構造物モデルの前記3次元造形モデルへの付加部分の断面は、前記収縮抑制構造物モデルの断面に比較して狭い、請求項1乃至8のいずれか1項に記載の情報処理装置。
- 前記付加後の3次元造形モデルの積層造形データを、3次元造形物を積層造形する積層造形装置に送信するデータ送信手段を、さらに備える請求項1乃至9のいずれか1項に記載の情報処理装置。
- 前記取得した3次元造形モデルの積層造形データと、前記収縮抑制構造物を付加した3次元造形モデルの積層造形データと、積層造形結果の3次元造形物の計測データとに基づいて、前記収縮抑制構造物を評価する収縮抑制構造学習手段を、さらに備える請求項1乃至10のいずれか1項に記載の情報処理装置。
- 3次元造形モデルの積層造形データを取得する取得ステップと、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成ステップと、
を含む3次元造形物の収縮抑制構造生成方法。 - 3次元造形モデルの積層造形データを取得する取得ステップと、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成ステップと、
をコンピュータに実行させる3次元造形物の収縮抑制構造生成プログラム。 - 3次元造形物を表わすデータから3次元造形モデルの積層造形データを生成するモデル生成手段と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成手段と、
前記データ生成手段が生成した前記3次元造形モデルの積層造形データに従って、前記収縮抑制構造物を付加した3次元造形物を造形する積層造形手段と、
を備える3次元造形システム。 - 3次元造形物を表わすデータから3次元造形モデルの積層造形データを生成するモデル生成工程と、
積層面における造形物の所定方向の幅が閾値以上の場合、前記所定方向に積層造形後の収縮を抑制するための収縮抑制構造物を付加した3次元造形モデルの積層造形データを生成するデータ生成工程と、
前記データ生成工程において生成された前記3次元造形モデルの積層造形データに従って、前記収縮抑制構造物を付加した3次元造形物を造形する積層造形工程と、
を含む3次元造形物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016510857A JP6077717B1 (ja) | 2015-03-24 | 2015-03-24 | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム |
EP15886337.3A EP3159146A4 (en) | 2015-03-24 | 2015-03-24 | 3d printing system, method for producing 3d printed object, information processing device, method for generating shrink-resistant structure in 3d object, and program for generating shrink-resistant structure in 3d printed object |
PCT/JP2015/059006 WO2016151784A1 (ja) | 2015-03-24 | 2015-03-24 | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム |
US15/124,284 US20170014903A1 (en) | 2015-03-24 | 2015-03-24 | Three-dimensional fabricating system, method of manufacturing three-dimensional fabricated object, information processing apparatus, method of generating shrinkage suppression structure of three-dimensional fabricated object, and program for generating shrinkage suppression structure of three-dimensional fabricated object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/059006 WO2016151784A1 (ja) | 2015-03-24 | 2015-03-24 | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016151784A1 true WO2016151784A1 (ja) | 2016-09-29 |
Family
ID=56977062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059006 WO2016151784A1 (ja) | 2015-03-24 | 2015-03-24 | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170014903A1 (ja) |
EP (1) | EP3159146A4 (ja) |
JP (1) | JP6077717B1 (ja) |
WO (1) | WO2016151784A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020040246A (ja) * | 2018-09-07 | 2020-03-19 | セイコーエプソン株式会社 | 三次元造形物の製造装置、三次元造形物の製造システム及び三次元造形物の製造方法 |
JP2020517500A (ja) * | 2017-04-28 | 2020-06-18 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | 付加製造制御システム |
US11036203B2 (en) | 2018-03-16 | 2021-06-15 | Ricoh Company, Ltd. | Fabrication system, fabrication estimation system, information processing apparatus, fabricating apparatus, fabricating method, and recording medium |
JP2021094754A (ja) * | 2019-12-16 | 2021-06-24 | キヤノン株式会社 | 光造形装置、及び該装置を用いた光造形方法 |
JP2021122968A (ja) * | 2020-01-31 | 2021-08-30 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置、及び情報処理プログラム |
JP7508929B2 (ja) | 2020-07-31 | 2024-07-02 | セイコーエプソン株式会社 | 機械学習装置 |
JP7543755B2 (ja) | 2020-07-23 | 2024-09-03 | セイコーエプソン株式会社 | 機械学習装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110570512B (zh) | 2018-06-06 | 2024-02-02 | 哈米尔顿森德斯特兰德公司 | 包括利用形状变换的补偿建模方法的增材制造 |
JP7091876B2 (ja) * | 2018-06-22 | 2022-06-28 | 株式会社リコー | 造形装置、制御装置および方法 |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
JP2020138394A (ja) | 2019-02-27 | 2020-09-03 | 株式会社リコー | 造形装置、システム、方法およびプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05265659A (ja) * | 1992-01-31 | 1993-10-15 | Cubital Ltd | デジタル化システム及び方法 |
JP2002324088A (ja) * | 2001-04-24 | 2002-11-08 | Hitachi Ltd | 構造物の設計支援装置 |
JP2015016680A (ja) * | 2013-07-10 | 2015-01-29 | 幸彦 高田 | 原価低減のための三次元立体造形システムおよびこのシステムを用いた原価低減のための三次元立体造形方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5216616A (en) * | 1989-06-26 | 1993-06-01 | Masters William E | System and method for computer automated manufacture with reduced object shape distortion |
US5238639A (en) * | 1990-10-31 | 1993-08-24 | 3D Systems, Inc. | Method and apparatus for stereolithographic curl balancing |
EP1384564B1 (en) * | 2001-04-23 | 2006-06-28 | Sekisui Chemical Co., Ltd. | Method and apparatus for producing laminated composite |
JP3689414B2 (ja) * | 2003-06-03 | 2005-08-31 | 東洋通信機株式会社 | 弾性表面波デバイスの製造方法 |
GB0715621D0 (en) * | 2007-08-10 | 2007-09-19 | Rolls Royce Plc | Support architecture |
CN102186888B (zh) * | 2008-08-12 | 2013-03-27 | 三菱丽阳株式会社 | 连续制造丙烯酸系树脂薄板的方法 |
EP2362822A2 (en) * | 2008-09-26 | 2011-09-07 | Mikro Systems Inc. | Systems, devices, and/or methods for manufacturing castings |
US8813824B2 (en) * | 2011-12-06 | 2014-08-26 | Mikro Systems, Inc. | Systems, devices, and/or methods for producing holes |
US9886526B2 (en) * | 2012-10-11 | 2018-02-06 | University Of Southern California | 3D printing shrinkage compensation using radial and angular layer perimeter point information |
-
2015
- 2015-03-24 JP JP2016510857A patent/JP6077717B1/ja active Active
- 2015-03-24 EP EP15886337.3A patent/EP3159146A4/en not_active Withdrawn
- 2015-03-24 US US15/124,284 patent/US20170014903A1/en not_active Abandoned
- 2015-03-24 WO PCT/JP2015/059006 patent/WO2016151784A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05265659A (ja) * | 1992-01-31 | 1993-10-15 | Cubital Ltd | デジタル化システム及び方法 |
JP2002324088A (ja) * | 2001-04-24 | 2002-11-08 | Hitachi Ltd | 構造物の設計支援装置 |
JP2015016680A (ja) * | 2013-07-10 | 2015-01-29 | 幸彦 高田 | 原価低減のための三次元立体造形システムおよびこのシステムを用いた原価低減のための三次元立体造形方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3159146A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020517500A (ja) * | 2017-04-28 | 2020-06-18 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | 付加製造制御システム |
JP7097391B2 (ja) | 2017-04-28 | 2022-07-07 | ダイバージェント テクノロジーズ, インコーポレイテッド | 付加製造制御システム |
US11036203B2 (en) | 2018-03-16 | 2021-06-15 | Ricoh Company, Ltd. | Fabrication system, fabrication estimation system, information processing apparatus, fabricating apparatus, fabricating method, and recording medium |
JP2020040246A (ja) * | 2018-09-07 | 2020-03-19 | セイコーエプソン株式会社 | 三次元造形物の製造装置、三次元造形物の製造システム及び三次元造形物の製造方法 |
JP7096528B2 (ja) | 2018-09-07 | 2022-07-06 | セイコーエプソン株式会社 | 三次元造形物の製造装置、三次元造形物の製造システム及び三次元造形物の製造方法 |
JP2021094754A (ja) * | 2019-12-16 | 2021-06-24 | キヤノン株式会社 | 光造形装置、及び該装置を用いた光造形方法 |
JP7490356B2 (ja) | 2019-12-16 | 2024-05-27 | キヤノン株式会社 | 光造形装置、及び該装置を用いた光造形方法 |
JP2021122968A (ja) * | 2020-01-31 | 2021-08-30 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置、及び情報処理プログラム |
JP7439547B2 (ja) | 2020-01-31 | 2024-02-28 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置、及び情報処理プログラム |
JP7543755B2 (ja) | 2020-07-23 | 2024-09-03 | セイコーエプソン株式会社 | 機械学習装置 |
JP7508929B2 (ja) | 2020-07-31 | 2024-07-02 | セイコーエプソン株式会社 | 機械学習装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6077717B1 (ja) | 2017-02-08 |
JPWO2016151784A1 (ja) | 2017-04-27 |
EP3159146A1 (en) | 2017-04-26 |
EP3159146A4 (en) | 2018-02-28 |
US20170014903A1 (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6077717B1 (ja) | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の収縮抑制構造生成方法および3次元造形物の収縮抑制構造生成プログラム | |
EP3507079B1 (en) | Improved additive manufacturing of a three-dimensional object | |
JP6033668B2 (ja) | Cam装置及び製品形状加工方法 | |
JP2020179466A (ja) | 軌道計画装置、軌道計画方法及びプログラム | |
US20160147217A1 (en) | Techniques for generating materials to satisfy design criteria | |
US10274935B2 (en) | System, method, and computer program for creating geometry-compliant lattice structures | |
CN108351906B (zh) | 用于具有晶格结构的部件的建模的系统和方法 | |
JP6077716B1 (ja) | 3次元造形システム、3次元造形物の製造方法、情報処理装置、3次元造形物の放熱用構造生成方法および3次元造形物の放熱用構造生成プログラム | |
JP6806736B2 (ja) | 位置情報表示システム | |
JPWO2016121120A1 (ja) | 3次元造形システム、情報処理装置、3次元造形モデル配置方法および3次元造形モデル配置プログラム | |
JP2013246830A (ja) | 有限要素解析モデルを用いた熱影響部を有する構造体の数値的シミュレーション | |
WO2019167650A1 (ja) | 工具経路を生成するための方法及び装置 | |
CN104376155A (zh) | 微桁架结构设计平台及其设计方法 | |
JP5343052B2 (ja) | 構造物解析方法、プログラムおよび解析装置 | |
JP6781201B2 (ja) | 仮想オブジェクト表示システム | |
JP2017210650A (ja) | 三次元造形支援装置及び三次元造形支援方法 | |
Zhang et al. | Research and implementation of integrated methods of unsupported printing and five-axis CNC machining technology | |
JP6433565B1 (ja) | 立体造形用データ生成プログラム | |
JP2013088988A (ja) | メッシュ作成装置、メッシュ作成方法、メッシュ作成プログラム | |
JP7157208B2 (ja) | プリント装置によって実行される方法、及びプリント装置 | |
CN117390775B (zh) | 一种粘性笛卡尔网格生成方法、设备、介质及系统 | |
KR101591311B1 (ko) | 다중 적용이 가능한 커튼 월 그리드 시스템 | |
JP2018030373A (ja) | 3次元積層造形システム、3次元積層造形方法、積層造形制御装置およびその制御方法と制御プログラム | |
TW202306725A (zh) | 干擾檢查裝置 | |
JP2015099444A (ja) | 原動機モジュールの動作範囲のシミュレーション方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016510857 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15124284 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15886337 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015886337 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015886337 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |