WO2016150288A1 - 光纤线路路由查找方法、故障检测方法及检测系统 - Google Patents

光纤线路路由查找方法、故障检测方法及检测系统 Download PDF

Info

Publication number
WO2016150288A1
WO2016150288A1 PCT/CN2016/075424 CN2016075424W WO2016150288A1 WO 2016150288 A1 WO2016150288 A1 WO 2016150288A1 CN 2016075424 W CN2016075424 W CN 2016075424W WO 2016150288 A1 WO2016150288 A1 WO 2016150288A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
fiber line
port
optical
Prior art date
Application number
PCT/CN2016/075424
Other languages
English (en)
French (fr)
Inventor
吕根良
Original Assignee
吕根良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吕根良 filed Critical 吕根良
Priority to US15/561,142 priority Critical patent/US10931394B2/en
Publication of WO2016150288A1 publication Critical patent/WO2016150288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • H04B10/0731Testing or characterisation of optical devices, e.g. amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0069Network aspects using dedicated optical channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the invention relates to a route search and fault detection method for an optical fiber line, which relates to route lookup and fault detection in each connection link in an optical fiber line transmission, covering a fiber dry branch, a branch line transmission route, a telecommunication room line route, and an FTTx fiber to terminal line route search. And fault detection.
  • the device consists of a transmitter 101 and a receiver 102.
  • the transmitter is operated. 101 is fixed on the optical cable that needs to find the route, the transmitter bends the optical cable to press the transmitting head on the optical cable, and sends a signal; the receiver 102 bends and fixes each optical cable in a cluster of unknown optical cables to find the optical cable with the signal, and finally Position the cable.
  • the operation time is long, and the equipment is expensive, it is only suitable for finding a small number of optical cable routes, or verifying the existing optical cable routing, and is not suitable for a large number of optical fiber route searching.
  • the technical problem solved by the present invention is to provide a fiber line route searching and fault detecting method which is economical and fast, and can monitor the quality of the connection, in view of the above-mentioned deficiencies of the prior art.
  • the technical solution adopted by the present invention is:
  • An optical fiber line route searching method wherein the optical fiber line includes an optical port and a routing port, wherein: a photosensitive element is disposed on a fiber connection point of each routing port, and an input is used in the optical fiber line of different optical ports.
  • a detection light wave that generates overflow light is generated at the splicing point, and the overflow port corresponding to the optical port is found by the overflow light detected by the photosensitive element.
  • a photosensitive unit including the photosensitive element is disposed on the routing port, and the photosensitive unit performs an audible and/or illuminating reminder when the photosensitive element detects an overflow of light.
  • optical fiber line routing fault detecting method wherein the optical fiber line comprises an optical port and a routing port, wherein: the photosensitive element disposed on the fiber connecting point of each routing port is input in the optical fiber line of different optical ports for inputting The detection light wave of the overflow light is generated at the fiber splicing point, and the fiber line fault is detected by comparing the overflow light intensity in the fiber splicing point detected by the photosensitive element with the set overflow light intensity threshold value.
  • a photosensitive unit including the photosensitive element is disposed on the routing port, and the photosensitive unit performs an audible and/or illuminating reminder when the photosensitive element detects that the overflow light intensity is greater than the overflow light intensity threshold.
  • An optical fiber line detection system comprising:
  • a detecting light wave emitting unit disposed at an optical port end of the optical fiber line and emitting a detecting light wave transmitted in the optical fiber;
  • a photosensitive unit comprises a photosensitive element disposed at a plurality of routing junctions at the other end of the optical fiber line for optically sensing the overflow light of the detection light wave in the connection point of the optical fiber port.
  • the photosensitive unit further includes a reminder element for sounding and or emitting light when the photosensitive element senses overflow light.
  • the method further includes: a comparison unit that compares the detected light intensity of the photosensitive element with a set light intensity threshold.
  • controller unit that connects a plurality of photosensitive units and assigns a unique ID code to each photosensitive unit. Triggering the photosensitive unit through the connection point, and sending the ID code to the computer management unit by wire or wirelessly;
  • a computer management unit manages a plurality of detection light wave transmitting units and controller units through Ethernet, binds detection of the light wave transmitting unit and the ID codes of the respective fiber routing ports, establishes a fiber routing database file, and assists the construction personnel in performing fiber jumper and failure.
  • Checking; periodic command detection light wave transmitting unit sends detection light waves to detect the connection status of the optical fiber line, and predict the origin of the fault in advance.
  • the method further includes: a handheld terminal, receiving the jump job ticket issued by the computer management unit, and uploading the completed jump job ticket to the computer management unit.
  • the invention provides a photosensitive unit at each connection point for performing light sensing and light intensity threshold measurement on the detection light wave in the fiber port connection point, and can realize sound and light display at the connection point on-site to guide the construction personnel to find the route.
  • the invention detects the light wave transmitting unit, and adopts three methods of manual, optical switch automatic and optical fiber coupled wave to automatically detect and detect light waves; the automatic mode is controlled by the computer management unit to transmit.
  • the invention detects the wavelength of the light wave from 380 nm to 800 nm, and the light intensity is from 1 mW to 10 mW.
  • the detection light wave can establish an additional detection optical port according to the transmission distance. When the connection point is not completely connected, a light overflow that can be quickly and accurately sensed by the photodiode or the photoresistor is generated, thereby realizing fast and accurate detection of the optical path at a low cost by the simplest detection device.
  • the optical fiber line route finding and fault detecting method of the invention when the field fiber route jumps or changes the jumper, the constructor downloads the jump task list from the computer management unit through the handheld terminal, and the construction point guides the positioning to perform the jump connection. After the jumper is completed, the computer automatically detects the jumper connection point and verifies the ID code sent by the controller unit through the controller unit. If it is wrong, the correct command is sent to the construction personnel through the handheld terminal. If it is correct, the construction personnel are notified through the handheld terminal. After the completion of the task jump, the construction personnel can also log in to the computer database to view the jump results.
  • the optical fiber line route searching and fault detecting method of the invention when the field fiber routing fails, the computer management unit transmits the test light wave, and receives the information of each connection point reminding unit to find the light intensity abnormal point or the non-feedback connection point, and Forming a fault handling task list and guiding the positioning of the construction point for troubleshooting. After the fault is removed, the computer unit automatically detects the connection status of the connection point of the entire link. If the fault is not resolved, the correct command is sent to the construction personnel through the handheld terminal, if correct Then, the construction personnel are notified through the handheld terminal to complete the task.
  • the optical fiber line route searching and fault detecting method Compared with the existing optical fiber route searching method, the optical fiber line route searching and fault detecting method provided by the present invention has the following advantages: 1.
  • the method uses the original optical path to transmit the detecting wave, and does not cause any bending damage to the original optical cable. 2. This method only needs to replace the movable adapter with the photosensitive unit, the gland or the welding protection shell, so that the one-to-one corresponding route search response can be realized, the routing efficiency of the route is greatly improved, and the operability is high. 3.
  • This method can link all the connection points in the optical fiber active connection, mechanical field connection, welding and other optical paths, and can be upgraded to a part of the intelligent routing management system, and the fiber routing intelligent transformation is gradually completed step by step. ,efficient. 4.
  • This method truly connects the routing information in the optical fiber with the external port ID in real time, zero error management, automatic binding of the fiber number and port ID, high efficiency, and less dependence on the construction personnel. 5.
  • the method and the reminder unit added at the connection point do not cause additional loss to the original information transmission, and are safe and reliable.
  • the method can also monitor the connection point of the fiber network to facilitate maintenance personnel to troubleshoot.
  • the method can realize real-time monitoring of the connection point through networking, and the network manager can also set a timed inspection program in the computer terminal to detect the abnormality of the fiber connection early, and prevent the problem before it occurs.
  • FIG. 1 is a schematic diagram of detection of a light spillover effect based on a splicing point of the present invention
  • FIG. 2 is a schematic diagram of the operation of the optical switch automatically detecting the light wave
  • Figure 3 is a schematic diagram of the operation of the fiber-optic coupled wave automatic emission detecting light wave
  • Figure 5 is a schematic diagram of the detection of the existing detector.
  • 1 communication light wave
  • 2 detection light wave
  • 3 guide fiber core
  • 4 glass coating layer
  • 5 fiber connection point
  • 6 photosensitive element
  • 7 photosensitive unit
  • 8 detection light wave emission unit
  • 8-1 manual Mode 8-2 optical switch
  • 8-3 fiber coupled wave
  • 9 - controller unit 10 - computer management unit.
  • the optical fiber line route finding and fault detecting method of the present invention installs and sets the photosensitive element 6 at each splicing point, and activates the light escaping effect of detecting the light wave 2 by the incomplete connection of the fiber splicing point 5, and activates Corresponding to the photosensitive circuit associated with the photosensitive element 6 disposed at the splicing point 5, and performing sound and light display at the splicing point to guide the construction personnel to perform route searching;
  • the optical fiber line route finding and fault detection method of the present invention can also be upgraded to a fiber optic line.
  • the route search and fault detection system is configured to compare the overflow light intensity in the connection point 5 with the threshold value, and upload the corresponding port ID identification code to the computer management unit 10 via the controller unit 9, automatically and detecting the line optical port and other The connection point is bound, and the quality of the connection status is judged to realize the intelligent management of the fiber routing.
  • the fiber line route lookup and fault detection system includes:
  • a splicing point sensing unit 7 is configured to perform light sensing and light intensity threshold measurement on the detection light wave 2 in the fiber port connection point 5, and can realize sound and light display at the connection point on-site to guide the construction personnel to find a route.
  • the second detecting light wave transmitting unit 8 emits the detecting light wave by using the manual 8-1, the optical switch automatic 8-2 or the optical fiber coupling multiplex automatic 8-3; the automatic mode is controlled by the computer management unit 10.
  • the three controller unit 9 is connected to the plurality of photosensitive units 7, and is assigned to each photosensitive unit unique ID code, and transmits the ID code to the computer management unit 10 by wire or wirelessly by triggering the connection point photosensitive unit 7.
  • the four computer management unit 10 manages the plurality of detection light wave transmitting units 8 and the controller unit 9 through the Ethernet, binds the detection light wave transmitting unit 8 and the ID codes of the respective fiber routing ports, establishes a fiber routing database file, and assists the construction personnel to perform the optical fiber. Jumper and fault troubleshooting; periodic command detection light wave transmitter unit 8 sends detection light wave 2, which is used to detect the connection status of the optical fiber line, and predict the fault origin in advance.
  • the wavelength of the detection light wave 2 is 380 nm to 800 nm, and the light intensity is 1 mW to 10 mW.
  • the detection light wave can be set according to the transmission distance, and an additional detection optical port is set. Light overflow that can be quickly and accurately perceived by the photosensitive element 6 is generated by diffuse reflection in the case where the splicing point 5 is not completely connected.
  • the computer management unit 10 is bound to the client ONT file for reference.
  • the optical fiber line route finding and fault detecting method of the present invention when the field fiber route jumps or changes the jumper, the constructor downloads the jump task list from the computer management unit 10 through the APP software, and the construction point guide position is used for the jump connection. After the jumper is completed, the computer management unit 10 automatically detects the jump connection point and verifies the ID code sent by the connection point through the controller 9 unit. If the error occurs, the correction instruction is sent to the construction personnel through the APP, and if it is correct, the APP is passed. After informing the construction personnel to complete the task jump, the construction personnel can also log in to the computer database to view the jump results.
  • the optical fiber line route finding and fault detecting method of the invention when the field fiber routing fails, The computer management unit 10 transmits the test light wave 2, and obtains the light intensity abnormal point or the non-feedback connection point by receiving the information of each connection point photosensitive unit 7, and forms a fault processing task list, and the construction point guiding positioning for fault troubleshooting, and troubleshooting After that, the computer management unit 10 automatically detects the connection status of the connection point of the entire link. If the failure is not resolved, the correction instruction is sent to the construction personnel through the APP. If it is correct, the construction personnel are notified by the APP to complete the task.

Abstract

本发明公开了一种光纤线路路由查找方法、故障检测方法及检测系统,光纤线路包括光口和路由端口,在每个路由端口的光纤接续点上设置感光元件,在不同光口的光纤线路内输入用于在光纤接续点上产生溢出光的检测光波,通过感光元件检测到的溢出光找出光口对应的路由端口;感光单元还包括一提醒元件,该提醒元件用于当感光元件感应到溢出光时发声和或发光。本发明在每个接续点设置感光单元,用于对光纤端口接续点中的检测光波进行光感应和光强度门槛测定,并在接续点现场实现声光显示,指导施工人员查找路由。通过对光纤连接点的实时监控,实现光纤路由的识别以及对连接性能劣化程度的鉴别,实时掌控光纤物理连接状态,实现智能化光纤网络路由管理。

Description

光纤线路路由查找方法、故障检测方法及检测系统 技术领域
本发明涉及光纤线路路由查找及故障检测方法,涉及光纤线路传输中的各个连接环节中的路由查找以及故障检测,覆盖光纤干、支线传输路由、电信机房线路路由、FTTx光纤到终端线路路由的查找及故障检测。
背景技术
随着光纤通信的迅猛发展,光纤线路日益增多,由于光缆铺设前期技术受限并未实现科学的光纤路由管理,造成光纤线路路由混乱,涉及从干线到末端用户的各个环节,尤其是机房ODF架管理,纸质标签不规范、丢损、配线信息不准、维护人员更迭等给后期维护带来了极大隐患。当线路发生故障或差错时,线路路由的查找非常繁琐,费时费力,根本无法满足客户对网络维护的需要,此问题也成为光通信界的难题。
当前在光纤路由查找方面,使用最普遍的是加拿大EXFO公司生产的“光纤纤序查找仪”,该设备由一个发射器101和一个接受器102组成,参照图5所示,工作时把发射器101固定在需要查找路由的光缆上,发射器弯曲光缆把发射头压紧在光缆上,发送信号;接受器102在一簇未知光缆中对每个光缆进行弯曲固定,寻找有信号的光缆,最终定位光缆。此方案由于需要对查找目标进行弯曲压紧固定,操作时间长,而且设备昂贵,仅适合于查找少量光缆路由,或验证现有光缆路由,不适合大量的光纤路由查找。
在光纤配线架及端口智能化管理系统方面,大多厂家提出了基于RFID的光纤智能ODF管理方法,此方法仅适于新建机房路由。通过附加在适配器座上的RFID识别器和插头上的RFID标签,对光纤路由进行一一对应并进行电子录入。此方法仅仅起到替代纸质标签的作用,无法对老机房进行整治,对接续点状态也无法进行监控,在标签丢失、识别器损坏或系统故障或崩溃时,数据恢复的工作量极大,维修时间长,无法满足运营商对光纤路由管理的需要。由于涉及光纤跳纤、ODF配线托盘等,使用时需要各个厂商多环节支持,普及困难。
发明内容
本发明解决的技术问题是针对上述现有技术的不足,提供一种既经济又快速,又可监控接续质量的光纤线路路由查找及故障检测方法。
为解决上述技术问题,本发明采用的技术方案是:
一种光纤线路路由查找方法,其中,光纤线路包括光口和路由端口,其特征在于:在每个路由端口的光纤接续点上设置感光元件,在不同光口的光纤线路内输入用于在光纤接续点上产生溢出光的检测光波,通过感光元件检测到的溢出光找出光口对应的路由端口。
在所述的路由端口上设置有包含所述感光元件的感光单元,所述的感光单元在所述感光元件检测到溢出光时进行发声和或发光提醒。
一种光纤线路路由故障检测方法,其中,光纤线路包括光口和路由端口,其特征在于:在每个路由端口的光纤连接点上设置的感光元件,在不同光口的光纤线路内输入用于在光纤接续点上产生溢出光的检测光波,通过感光元件检测到的光纤接续点中的溢出光强度与设定的溢出光强度门槛值比对实现光纤线路故障的检测。
在所述的路由端口上设置有包含所述感光元件的感光单元,所述感光单元在所述感光元件检测到溢出光强度大于所述溢出光强度门槛值时进行发声和或发光提醒。
一种光纤线路检测系统,其特征在于,包括:
一检测光波发射单元,设置在光纤线路的光口端并发出在光纤内传输的检测光波;
一感光单元,包括一设置在光纤线路另一端多个路由接续点的感光元件,用于对所述检测光波在光纤端口接续点中的溢出光进行光感应。
所述的感光单元还包括一提醒元件,该提醒元件用于当所述感光元件感应到溢出光时发声和或发光。
还包括:一比较单元,将所述感光元件检测到溢出光强度与设定的光强度门槛进行比较。
还包括:
一控制器单元,连接多个感光单元,并分配给每个感光单元唯一ID码,通 过接续点感光单元的触发,利用有线或无线方式发送ID码到计算机管理单元;
一计算机管理单元,通过以太网管理多个检测光波发射单元和控制器单元,绑定检测光波发射单元和各个光纤路由端口的ID码,建立光纤路由数据库档案,辅助施工人员进行光纤跳接和故障排查;周期性命令检测光波发射单元发送检测光波,用以检测光纤线路连接状况,提前预判故障由来。
还包括:一手持终端,接收所述计算机管理单元发出的跳接任务单和向所述计算机管理单元上传已完成跳接任务单。
本发明在每个接续点设置感光单元,用于对光纤端口接续点中的检测光波进行光感应和光强度门槛测定,并能够在接续点现场实现声光显示,用于指导施工人员查找路由。
本发明检测光波发射单元,采用手动、光开关自动、光纤耦合合波自动三种方式发射检测光波;自动方式由计算机管理单元的控制发射。
本发明检测光波的波长为380纳米-800纳米,光强度1毫瓦-10毫瓦,检测光波可根据传输距离需要,设立附加检测光口。在接续点不完全连接情况下产生可被光敏二极管或光敏电阻快速并准确感知的光溢出,从而通过最简单的检测器件,在低成本下实现光路的快速准确检测。
本发明的光纤线路路由查找及故障检测方法,当现场光纤路由跳接或变更跳接时,施工人员通过手持终端从计算机管理单元上下载跳接任务单,以及施工点导引定位进行跳接,跳接完毕后,计算机自动检测跳接接续点并校验接续点通过控制器单元发送的ID码,如果错误,则通过手持终端发送纠正指令给施工人员,如果正确,则通过手持终端通知施工人员完成任务跳接完毕后,施工人员也可以登陆计算机数据库,查看跳接结果。
本发明的光纤线路路由查找及故障检测方法,当现场光纤路由出现故障时,计算机管理单元发射测试光波,通过接收各个接续点提醒单元的信息,找出光强度异常点或未反馈接续点,并形成故障处理任务单,以及施工点引导定位进行故障排查,故障排除后,计算机单元自动检测整个链路的接续点连接状况,如果故障未解决,则通过手持终端发送纠正指令给施工人员,如果正确,则通过手持终端通知施工人员完成任务。
与现有光纤路由查找方法相比,本发明所提供的光纤线路路由查找及故障检测方法有如下优点:1、本方法利用原有光路发射检测波,对原有光缆不产生任何弯曲损坏。2、本方法只需要更换带有感光单元的活动适配器、压盖或熔接保护壳,就可以实现一一对应的路由查找响应,大大提高了路由的查找效率,可操作性高。3、本方法可以把光纤活动连接、机械现场连接、熔接等光路中所有的接续点链接在一起,可以升级为智能化路由管理系统的一环,循序渐进完成光纤路由智能化改造,此方案成本低、效率高。4、本方法把光纤内的路由信息和外部端口ID真正的并联在一起,零错误管理,纤内编号与端口ID自动绑定,效率高,对施工人员的依赖少。5、本方法和在接续点增设的提醒单元对原有信息传输不产生附加损耗,安全可靠。6、本方法还可对光纤网络接续点进行监控,方便维护人员排障。7、本方法可以通过联网实现接续点实时监控,网络管理商也可以在计算机终端设定定时巡检程序,提早发现光纤接续异常点,防患于未然。
附图说明
图1为本发明基于接续点光溢出效应检测的原理图;
图2为光开关自动发射检测光波工作原理图;
图3为光纤耦合合波自动发射检测光波工作原理图;
图4手动发射检测光波工作原理图:
图5为现有检测仪的检测原理图。
标记说明
1—通信光波;2—检测光波;3—导光纤芯;4—玻璃涂覆层;5—光纤接续点;6—感光元件;7—感光单元;8—检测光波发射单元;8-1手动方式;8-2光开关;8-3光纤耦合合波;9—控制器单元;10—计算机管理单元。
具体实施方式
结合附图,对本发明作详细说明:
如图1所示,本发明光纤线路路由查找及故障检测方法,在每个接续点上安装设置感光元件6,利用光纤接续点5不完全连接带来的对检测光波2的光溢出效应,激活相应接续点5上设置的感光元件6关联的感光回路,并在接续点现场进行声光显示,指导施工人员进行路由查找;
如图2所示,本发明光纤线路路由查找及故障检测方法,还可升级为光纤线 路路由查找及故障检测系统,通过对接续点5中的溢出光强度与门槛值比对测定,经由控制器单元9向计算机管理单元10上传对应端口ID识别码,自动与检测线路光口及其它连接点进行绑定,并判断连接状态的优劣情况,来实现光纤路由的智能化管理。
如图2、3所示,光纤线路路由查找及故障检测系统包括:
一接续点感光单元7,用于对光纤端口接续点5中的检测光波2进行光感应和光强度门槛测定,并能够在接续点现场实现声光显示,用于指导施工人员查找路由。
二检测光波发射单元8,采用手动8-1、光开关自动8-2或光纤耦合合波自动8-3三种方式发射检测光波;自动方式由计算机管理单元10的控制发射。
三控制器单元9,连接多个感光单元7,并分配给每个感光单元唯一ID码,通过接续点感光单元7的触发,利用有线或无线方式发送ID码到计算机管理单元10。
四计算机管理单元10,通过以太网管理多个检测光波发射单元8和控制器单元9,绑定检测光波发射单元8和各个光纤路由端口的ID码,建立光纤路由数据库档案,辅助施工人员进行光纤跳接和故障排查;周期性命令检测光波发射器单元8发送检测光波2,用以检测光纤线路连接状况,提前预判故障由来。
检测光波2的波长为380纳米-800纳米,光强度1毫瓦-10毫瓦,检测光波可根据传输距离需要,设立附加检测光口。在接续点5不完全连接情况下通过漫反射产生可被感光元件6快速并准确感知的光溢出。
本发明的光纤线路路由查找及故障检测方法,光纤路由及接续点状态及ID码上传至数据库中后,在计算机管理单元10中与客户端ONT档案绑定备查。
本发明的光纤线路路由查找及故障检测方法,当现场光纤路由跳接或变更跳接时,施工人员通过APP软件从计算机管理单元10上下载跳接任务单,以及施工点导引定位进行跳接,跳接完毕后,计算机管理单元10自动检测跳接接续点并校验接续点通过控制器9单元发送的ID码,如果错误,则通过APP发送纠正指令给施工人员,如果正确,则通过APP通知施工人员完成任务跳接完毕后,施工人员也可以登陆计算机数据库,查看跳接结果。
本发明的光纤线路路由查找及故障检测方法,当现场光纤路由出现故障时, 计算机管理单元10发射测试光波2,通过接收各个接续点感光单元7的信息,找出光强度异常点或未反馈接续点,并形成故障处理任务单,以及施工点引导定位进行故障排查,故障排除后,计算机管理单元10自动检测整个链路的接续点连接状况,如果故障未解决,则通过APP发送纠正指令给施工人员,如果正确,则通过APP通知施工人员完成任务。

Claims (10)

  1. 一种光纤线路路由查找方法,其中,光纤线路包括光口和路由端口,其特征在于:在每个路由端口的光纤接续点(5)上设置感光元件(6),在不同光口的光纤线路内输入用于在光纤接续点上产生溢出光的检测光波,通过感光元件(6)检测到的溢出光找出光口对应的路由端口。
  2. 根据权利要求1所述的光纤线路路由查找方法,其特征在于:在所述的路由端口上设置有包含所述感光元件(6)的感光单元(7),所述的感光单元(7)在所述感光元件(6)检测到溢出光时进行发声和或发光提醒。
  3. 一种光纤线路路由故障检测方法,其中,光纤线路包括光口和路由端口,其特征在于:在每个路由端口的光纤连接点(5)上设置的感光元件(6),在不同光口的光纤线路内输入用于在光纤接续点上产生溢出光的检测光波,通过感光元件(6)检测到的光纤接续点(5)中的溢出光强度与设定的溢出光强度门槛值比对实现光纤线路故障的检测。
  4. 根据权利要求3所述的光纤线路路由故障检测方法,其特征在于:在所述的路由端口上设置有包含所述感光元件(6)的感光单元(7),所述感光单元(7)在所述感光元件(6)检测到溢出光强度大于所述溢出光强度门槛值时进行发声和或发光提醒。
  5. 一种光纤线路检测系统,其特征在于,包括:
    一检测光波发射单元(8),设置在光纤线路的光口端并发出在光纤内传输的检测光波;
    一感光单元,包括一设置在光纤线路另一端多个路由接续点的感光元件(6),用于对所述检测光波在光纤端口接续点(5)中的溢出光进行光感应。
  6. 根据权利要求5所述的一种光纤线路检测系统,其特征在于,还包括:
    所述的感光单元还包括一提醒元件,该提醒元件用于当所述感光元件感应到溢出光时发声和或发光。
  7. 根据权利要求5所述的一种光纤线路检测系统,其特征在于,还包括:
    一比较单元,将所述感光元件检测到溢出光强度与设定的光强度门槛进行比 较。
  8. 根据权利要求7所述的一种光纤线路检测系统,其特征在于,还包括:
    一控制器单元(9),连接多个感光单元(7),并分配给每个感光单元(7)唯一ID码,通过接续点感光单元(7)的触发,利用有线或无线方式发送ID码到计算机管理单元;
    一计算机管理单元(10),通过以太网管理多个检测光波发射单元(8)和控制器单元(9),绑定检测光波发射单元(8)和各个光纤路由端口的ID码,建立光纤路由数据库档案,辅助施工人员进行光纤跳接和故障排查;周期性命令检测光波发射单元(8)发送检测光波(2),用以检测光纤线路连接状况,提前预判故障由来。
  9. 根据权利要求8所述的一种光纤线路检测系统,其特征在于,还包括:
    一手持终端,接收所述计算机管理单元(10)发出的跳接任务单和向所述计算机管理单元上传已完成跳接任务单。
  10. 根据权利要求5、6、7或8所述的一种光纤线路检测系统,其特征在于,检测光波(2)的波长为380纳米-800纳米,光强度1毫瓦-10毫瓦;检测光波可根据传输距离需要,设立附加检测光口。
PCT/CN2016/075424 2015-03-23 2016-03-03 光纤线路路由查找方法、故障检测方法及检测系统 WO2016150288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/561,142 US10931394B2 (en) 2015-03-23 2016-03-03 Optical-fiber link routing look-up method, fault detection method and diagnostic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510129231.7 2015-03-23
CN201510129231.7A CN104717008B (zh) 2015-03-23 2015-03-23 光纤线路路由查找方法、故障检测方法及检测系统

Publications (1)

Publication Number Publication Date
WO2016150288A1 true WO2016150288A1 (zh) 2016-09-29

Family

ID=53416019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075424 WO2016150288A1 (zh) 2015-03-23 2016-03-03 光纤线路路由查找方法、故障检测方法及检测系统

Country Status (3)

Country Link
US (1) US10931394B2 (zh)
CN (1) CN104717008B (zh)
WO (1) WO2016150288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514628A (zh) * 2022-09-25 2022-12-23 四川旅游学院 光纤布线和故障定位方法
CN116760464A (zh) * 2023-05-25 2023-09-15 江苏泽宇智能电力股份有限公司 一种基于深度学习的光纤资源管理系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608705B (zh) * 2015-12-29 2017-12-11 Chunghwa Telecom Co Ltd Use of transmission network to alarm optical cable abnormality and its computer program product
US10613035B2 (en) * 2018-01-17 2020-04-07 Chromera, Inc. Optically determining the condition of goods
CN108512597B (zh) * 2018-06-04 2024-04-12 南京续点通信科技有限公司 一种光纤线路损耗及光纤端面损耗检测系统
WO2020037545A1 (zh) * 2018-08-22 2020-02-27 江苏续点通信科技有限公司 光纤网络智能维护系统及光纤网络智能维护app
CN109511020B (zh) * 2018-11-08 2021-08-17 南京续点通信科技有限公司 一种跳线路由查找方法
CN109922387A (zh) * 2019-01-17 2019-06-21 江苏续点通信科技有限公司 一种路由查找方法及其装置和路由查找系统
CN110855355B (zh) * 2019-11-21 2023-03-31 南京邮电大学 一种光纤配线路由的层叠式智能排查系统及排查方法
CN111934756A (zh) * 2020-07-24 2020-11-13 中山水木光华电子信息科技有限公司 一种光缆路由识别和故障诊断系统及方法
CN113805281A (zh) * 2021-08-26 2021-12-17 深圳市中为通讯技术有限公司 一种实时发光的光纤通讯适配器
CN114745049B (zh) * 2022-06-13 2022-08-16 武汉普惠海洋光电技术有限公司 光缆断点位置检测方法及光缆断点位置检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598838A (zh) * 2008-05-15 2009-12-09 日立电线株式会社 通信光检测器
CN101867492A (zh) * 2010-06-13 2010-10-20 邹美余 光纤路由管理系统及方法
CN103048116A (zh) * 2012-12-19 2013-04-17 华为技术有限公司 一种光纤在位检测方法及装置、微控制器
US20140050472A1 (en) * 2012-08-20 2014-02-20 Adva Optical Networking Se Mobile terminal for servicing a telecommunication system
CN103647601A (zh) * 2013-12-13 2014-03-19 国家电网公司 一种光纤监测系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842821B2 (ja) * 1995-12-27 1999-01-06 住友電気工業株式会社 無切断光通信装置および無切断光通信方法
JP2005284250A (ja) * 2004-03-04 2005-10-13 Nakagawa Kenkyusho:Kk 通信システム及び漏洩光ファイバ
US7920764B2 (en) * 2007-05-04 2011-04-05 Anthony Stephen Kewitsch Electrically traceable and identifiable fiber optic cables and connectors
CN201114066Y (zh) * 2007-09-14 2008-09-10 黄中海 一种多测试口的光配线架
US8213791B2 (en) * 2008-05-15 2012-07-03 Hitachi Cable, Ltd. Communication light detecting device
CN101964680B (zh) * 2009-07-23 2013-12-18 华为技术有限公司 端口识别系统、方法及故障定位的方法
JP2011215409A (ja) * 2010-03-31 2011-10-27 Fujikura Ltd 調心方法および調心装置
JP5469191B2 (ja) * 2012-03-27 2014-04-09 株式会社フジクラ 光学部品、及び、これを用いた光ファイバ増幅器及びレーザ装置
CN102739309B (zh) * 2012-06-15 2014-12-24 烽火通信科技股份有限公司 智能odn系统中快速感知端口状态的方法
JP6201320B2 (ja) * 2013-01-16 2017-09-27 富士通株式会社 光モジュールおよび光モジュールのモニタ方法
JP6020329B2 (ja) * 2013-04-18 2016-11-02 日立金属株式会社 通信光検知構造並びにこれを備えた通信光検知光コネクタ及び通信光検知光ケーブル
CN204517816U (zh) * 2015-03-23 2015-07-29 吕根良 光纤线路检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598838A (zh) * 2008-05-15 2009-12-09 日立电线株式会社 通信光检测器
CN101867492A (zh) * 2010-06-13 2010-10-20 邹美余 光纤路由管理系统及方法
US20140050472A1 (en) * 2012-08-20 2014-02-20 Adva Optical Networking Se Mobile terminal for servicing a telecommunication system
CN103048116A (zh) * 2012-12-19 2013-04-17 华为技术有限公司 一种光纤在位检测方法及装置、微控制器
CN103647601A (zh) * 2013-12-13 2014-03-19 国家电网公司 一种光纤监测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514628A (zh) * 2022-09-25 2022-12-23 四川旅游学院 光纤布线和故障定位方法
CN115514628B (zh) * 2022-09-25 2024-04-05 四川旅游学院 光纤布线和故障定位方法
CN116760464A (zh) * 2023-05-25 2023-09-15 江苏泽宇智能电力股份有限公司 一种基于深度学习的光纤资源管理系统
CN116760464B (zh) * 2023-05-25 2024-05-07 江苏泽宇智能电力股份有限公司 一种基于深度学习的光纤资源管理系统

Also Published As

Publication number Publication date
CN104717008A (zh) 2015-06-17
US10931394B2 (en) 2021-02-23
US20180054274A1 (en) 2018-02-22
CN104717008B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2016150288A1 (zh) 光纤线路路由查找方法、故障检测方法及检测系统
CN106253974B (zh) 用于认证通信链路的物理参数的系统和方法
CN102752042B (zh) 光线路监视装置和光线路监视方法
US8692984B2 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
WO2016023332A1 (zh) 一种光网络智能化的实现方法以及装置
WO2015196638A1 (zh) 光纤检测方法、检测设备、检测平台及网元管理系统
US20230344720A1 (en) High-resolution optical backscatter method to discover physical topology of complex, interconnected fiber optic network and automatically monitor and troubleshoot its performance
CN108512597B (zh) 一种光纤线路损耗及光纤端面损耗检测系统
US11860058B2 (en) Fiber-optic testing source and fiber-optic testing receiver for multi-fiber cable testing
JP2015520379A (ja) マルチファイバ光ケーブルにおけるファイバのシーケンスを識別するためのシステムおよび方法
JP6998164B2 (ja) 光給電システム
CN109813525B (zh) 一种光缆识别装置及识别方法
CN208768070U (zh) 一种光纤线路损耗及光纤端面损耗检测系统
US20120155857A1 (en) Method, apparatus and unit for detecting fault of submarine device
CN113037369B (zh) 一种光纤路由探测的系统及相应的路由探测方法
CN103427898B (zh) 一种确定无源光纤网络分支故障点的方法及系统
WO2016101466A1 (zh) 一种智能odn标识系统及装置
JP6106144B2 (ja) 光ファイバ試験装置及び光ファイバ試験システム
JP5315269B2 (ja) 光設備判定システム及び判定方法
CN204517816U (zh) 光纤线路检测系统
TWI700907B (zh) 光纖迴路障礙診斷方法
CN116707633A (zh) 一种全光链路快速故障快速识别方法
US6157443A (en) Method and system for transporting data for monitoring optical fibers
CN207732764U (zh) 一种光缆断裂的监测定位装置
CN105451104A (zh) 采用智能管理终端进行工单导航的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561142

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767665

Country of ref document: EP

Kind code of ref document: A1