WO2016148296A1 - タイヤトレッド用ゴム組成物および空気入りタイヤ - Google Patents

タイヤトレッド用ゴム組成物および空気入りタイヤ Download PDF

Info

Publication number
WO2016148296A1
WO2016148296A1 PCT/JP2016/058829 JP2016058829W WO2016148296A1 WO 2016148296 A1 WO2016148296 A1 WO 2016148296A1 JP 2016058829 W JP2016058829 W JP 2016058829W WO 2016148296 A1 WO2016148296 A1 WO 2016148296A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
group
parts
styrene
Prior art date
Application number
PCT/JP2016/058829
Other languages
English (en)
French (fr)
Inventor
加藤 学
亮太 高橋
隆裕 岡松
美昭 桐野
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112016001294.2T priority Critical patent/DE112016001294T5/de
Priority to CN201680010742.XA priority patent/CN107250244A/zh
Priority to US15/557,701 priority patent/US20180051163A1/en
Publication of WO2016148296A1 publication Critical patent/WO2016148296A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a rubber composition for a tire tread and a pneumatic tire.
  • the pneumatic tire is composed of various members such as a tire tread portion, a bead portion, and a sidewall portion, and each member constituting the pneumatic tire is made of a rubber composition containing carbon black, a rubber component, or the like. Formed using.
  • Patent Document 1 discloses a rubber composition containing styrene / butadiene copolymer rubber, carbon black, N, N′-diphenyl-p-phenylenedinitrone (nitrone compound) and the like. (See Example 2).
  • Patent Document 2 discloses a rubber composition for tire tread used for forming a rubber containing 10 parts by weight of a diene rubber including styrene butadiene rubber, 40 to 90 parts by weight of silica, and the like.
  • Race tires and high-performance tires as described above are superior in handling stability at high speeds compared to pneumatic tires used for driving ordinary vehicles, and tires for high-speed driving for a long time. It is required to have excellent property stability.
  • a method for improving steering stability during high-speed traveling for example, improving the rubber hardness and storage elastic modulus of the tire can be mentioned.
  • a method for improving the property stability of a tire when traveling at high speed for a long time there is an improvement in wear resistance and breaking strength at high temperature. This is because if the high-speed running is performed for a long time, the tire is maintained in a high temperature state for a long time, so that damage to the tire increases and the property stability of the tire decreases.
  • racing tires and high-performance tires are required to have properties that are more strictly suitable for various road conditions (dry road surfaces, wet road surfaces, etc.) compared to pneumatic tires used for running ordinary vehicles. It is done.
  • a racing tire is required to have grip performance suitable for a wet road surface (excellent wet grip performance) when the road surface is wet (when it is a wet road surface).
  • high-performance tires are required to have excellent wet grip properties from the viewpoint of improving safety.
  • the amount of silica in the rubber composition may be increased, which tends to improve fuel efficiency (low). Realization of fuel efficiency).
  • Patent Document 2 In order to further improve the performance of the rubber composition for a tire tread having a high silica content as described in Patent Document 2, the present inventors have disclosed a nitrone compound as described in Patent Document 1.
  • styrene-butadiene rubber modified with (N, N′-diphenyl-p-phenylene dinitrone) was studied. However, it has been found that the resulting rubber composition has low wet grip properties, fuel efficiency, breaking strength at high temperatures, and wear resistance when formed into a tire. In some cases, the rubber hardness is low.
  • the present invention when the present invention is made into a tire, it is excellent in handling stability (rubber hardness and storage elastic modulus) during high speed running and property stability during long running (wear resistance and breaking strength at high temperature), And it aims at providing the rubber composition for tire treads excellent in wet grip property and fuel consumption performance, and a pneumatic tire using the same.
  • the present inventor has found that the use of a carboxy-modified polymer obtained by modifying a styrene-butadiene rubber with a nitrone compound having a carboxy group makes it possible to improve the handling stability and long driving speed at high speeds when used as a tire.
  • the present inventors have found that the property stability during time running is excellent and that the wet grip property and the fuel efficiency are also excellent, and the present invention has been achieved. That is, the present inventor has found that the above problem can be solved by the following configuration.
  • the content of the inorganic filler is 70 to 170 parts by mass with respect to 100 parts by mass of the diene rubber
  • the silica content is 70 to 160 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the carboxy-modified polymer is obtained by modifying styrene-butadiene rubber (A) with a nitrone compound (B) having a carboxy group, and the content of the carboxy-modified polymer in the diene rubber is 10 to 100 mass.
  • the styrene unit content in the styrene-butadiene rubber (A) is 36% by mass or more, Of all the double bonds derived from butadiene of the styrene-butadiene rubber (A), when the ratio (mol%) modified by the nitrone compound (B) having a carboxy group is defined as the modification rate, the carboxy A rubber composition for a tire tread, in which a modification rate of the modified polymer is 0.02 to 4.0 mol%.
  • the nitrone compound (B) having a carboxy group is N-phenyl- ⁇ - (4-carboxyphenyl) nitrone, N-phenyl- ⁇ - (3-carboxyphenyl) nitrone, N-phenyl- ⁇ - (2-carboxyl). Selected from the group consisting of phenyl) nitrone, N- (4-carboxyphenyl) - ⁇ -phenylnitrone, N- (3-carboxyphenyl) - ⁇ -phenylnitrone and N- (2-carboxyphenyl) - ⁇ -phenylnitrone
  • the rubber composition for a tire tread according to the above [1] which is a compound to be obtained.
  • [3] Furthermore, it contains a cyclic polysulfide represented by the general formula (s) described later,
  • the amount of the nitrone compound (B) having a carboxy group used for modifying the styrene-butadiene rubber (A) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber.
  • [5] A pneumatic tire using the tire tread rubber composition according to any one of the above [1] to [4] as a tire tread.
  • the tire tread when a tire is used, the tire tread has excellent handling stability at high speed and property stability during long running, and excellent wet grip and fuel efficiency. Rubber composition and a pneumatic tire obtained using the rubber composition can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the rubber composition for tire treads of the present invention contains an inorganic filler containing silica and a diene rubber containing a carboxy-modified polymer.
  • the content of the inorganic filler is 70 to 170 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the silica content is 70 to 160 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the carboxy-modified polymer is obtained by modifying the styrene-butadiene rubber (A) with a nitrone compound (B) having a carboxy group, and the diene rubber has a content of the carboxy-modified polymer of 10 to 10%. 100% by mass.
  • the styrene unit content in the styrene-butadiene rubber (A) is 36% by mass or more.
  • the modification rate of the carboxy-modified polymer is 0.02 to 4.0 mol%. Since the rubber composition of the present invention has such a configuration, it can form a tire tread that is excellent in handling stability and property stability during long-time running, and also excellent in wet grip properties and fuel efficiency. Although the details of this reason have not been clarified, it is speculated that the following reason contributes.
  • the rubber composition of the present invention contains a carboxy-modified polymer obtained by modifying a styrene-butadiene rubber (A) with a nitrone compound (B) having a carboxy group. Therefore, it is considered that the carboxy group at the nitrone-modified site in the carboxy-modified polymer interacts with the silica in the rubber composition to increase the dispersibility of the silica. As a result, it is considered that the action of improving the wet grip property and fuel consumption performance (low rolling resistance) by silica is enhanced.
  • the carboxy group at the nitrone-modified site in the carboxy-modified polymer interacts with the silica in the rubber composition, thereby forming a strong bond between the rubber component and the silica and increasing the crosslinking point, thereby increasing the crosslinking density.
  • the rubber hardness is improved, and it is considered that high breaking strength can be exhibited even at high temperatures.
  • the storage elastic modulus and the wear resistance are also improved by improving the physical strength of the rubber.
  • the diene rubber contained in the rubber composition of the present invention contains a carboxy-modified polymer.
  • the carboxy-modified polymer is obtained by modifying the styrene-butadiene rubber (A) with a nitrone compound (B) having a carboxy group.
  • the content of the carboxy-modified polymer in the diene rubber is 10 to 100% by mass, preferably 50 to 90% by mass, and more preferably 60 to 80% by mass.
  • the content of the carboxy-modified polymer is within the above range, the function of the carboxy-modified polymer is sufficiently exhibited.
  • the content of the carboxy-modified polymer is less than 10% by mass, at least one of the rubber hardness, wet grip property, fuel efficiency, storage elastic modulus, breaking strength at high temperature, and wear resistance is poor. It will be enough.
  • the carboxy-modified polymer can be obtained by modifying the styrene-butadiene rubber (A) as described above.
  • a styrene-butadiene rubber (A) can be produced using a styrene monomer and a butadiene monomer.
  • the styrene monomer used for the production of the styrene-butadiene rubber (A) is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2 -Ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, dimethylaminomethylstyrene And dimethylaminoethyl styrene.
  • styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable, and styrene is more preferable.
  • These styrene monomers can be used alone or in combination of two or more.
  • the butadiene monomer used in the production of the styrene-butadiene rubber (A) is not particularly limited, and examples thereof include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3 -Dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like.
  • 1,3-butadiene or isoprene is preferably used, and 1,3-butadiene is more preferably used.
  • These butadiene monomers can be used alone or in combination of two or more.
  • the production method (polymerization method) of the styrene-butadiene rubber (A) is not particularly limited, and examples thereof include solution polymerization and emulsion polymerization.
  • the styrene-butadiene rubber (A) any of solution-polymerized styrene-butadiene rubber and emulsion-polymerized styrene-butadiene rubber may be used. From the viewpoint of further improving handling stability and the like, solution-polymerized styrene-butadiene rubber It is preferable to use rubber.
  • the content of styrene units in the styrene-butadiene rubber (A) is 36% by mass or more, preferably 36 to 50% by mass, and more preferably 36 to 40% by mass.
  • the content of the styrene unit is in the above range, the rubber hardness of the tire and the breaking strength at high temperatures are improved.
  • the content of the styrene unit is less than 36% by mass, the rubber hardness of the tire and the breaking strength at high temperature decrease.
  • the content of styrene units in the styrene-butadiene rubber represents the ratio (mass%) of the styrene monomer units in the styrene-butadiene rubber.
  • the weight average molecular weight (Mw) of the styrene-butadiene rubber (A) is preferably 100,000 to 1,800,000, and preferably 300,000 to 1,500,000, from the viewpoint of handleability. It is more preferable.
  • the weight average molecular weight (Mw) is measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • nitrone compound (B) having a carboxy group As described above, the carboxy-modified polymer of the present invention is modified using a nitrone compound (B) having a carboxy group (hereinafter also simply referred to as “carboxy nitrone” or “carboxy nitrone (B)”).
  • the carboxy nitrone is not particularly limited as long as it is a nitrone having at least one carboxy group (—COOH).
  • nitrone refers to a compound having a nitrone group represented by the following formula (1).
  • the carboxy nitrone is preferably a compound represented by the following general formula (2).
  • X and Y each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or an aromatic heterocyclic group which may have a substituent. However, at least one of X and Y has a carboxy group as a substituent.
  • Examples of the aliphatic hydrocarbon group represented by X or Y include an alkyl group, a cycloalkyl group, and an alkenyl group.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, and n-octyl group.
  • alkyl groups having 1 to 6 carbon atoms are more preferred.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. Among them, a cycloalkyl group having 3 to 10 carbon atoms is preferable, and a cycloalkyl group having 3 to 6 carbon atoms is preferable. More preferred.
  • alkenyl group include a vinyl group, a 1-propenyl group, an allyl group, an isopropenyl group, a 1-butenyl group, and a 2-butenyl group. Among them, an alkenyl group having 2 to 18 carbon atoms is preferable. An alkenyl group having 2 to 6 carbon atoms is more preferable.
  • Examples of the aromatic hydrocarbon group represented by X or Y include an aryl group and an aralkyl group.
  • the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Among them, an aryl group having 6 to 14 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. A phenyl group and a naphthyl group are more preferable.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, and a phenylpropyl group. Among them, an aralkyl group having 7 to 13 carbon atoms is preferable, an aralkyl group having 7 to 11 carbon atoms is more preferable, and a benzyl group is preferable. Further preferred.
  • Examples of the aromatic heterocyclic group represented by X or Y include, for example, pyrrolyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group (imidazole group), oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group. (Pyridine group), furan group, thiophene group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and the like. Of these, a pyridyl group is preferable.
  • the group represented by X and Y has a substituent other than the carboxy group (hereinafter also referred to as “other substituent”) as long as at least one has a carboxy group as a substituent as described above. You may do it.
  • Other substituents that the group represented by X or Y may have are not particularly limited, and examples thereof include alkyl groups having 1 to 4 carbon atoms, hydroxy groups, amino groups, nitro groups, sulfonyl groups, alkoxy groups. Group, halogen atom and the like.
  • aromatic hydrocarbon group having such a substituent examples include an aryl group having a substituent such as a tolyl group and a xylyl group; and a substituent such as a methylbenzyl group, an ethylbenzyl group, and a methylphenethyl group.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (b).
  • m and n each independently represent an integer of 0 to 5, and the sum of m and n is 1 or more.
  • the integer represented by m is preferably an integer of 0 to 2, more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing carboxynitrone is improved and the synthesis is facilitated.
  • the integer represented by n is preferably an integer of 0 to 2, more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing carboxynitrone is improved and the synthesis is facilitated.
  • the total of m and n (m + n) is preferably 1 to 4, and more preferably 1 to 2.
  • Such carboxynitrones represented by the general formula (b) are not particularly limited, but N-phenyl- ⁇ - (4-carboxyphenyl) nitrones represented by the following formula (b1) and the following formula (b2): N-phenyl- ⁇ - (3-carboxyphenyl) nitrone represented, N-phenyl- ⁇ - (2-carboxyphenyl) nitrone represented by the following formula (b3), N represented by the following formula (b4) -(4-carboxyphenyl) - ⁇ -phenylnitrone, N- (3-carboxyphenyl) - ⁇ -phenylnitrone represented by the following formula (b5), and N- ( A compound selected from the group consisting of 2-carboxyphenyl) - ⁇ -phenylnitrone is preferred.
  • the method for synthesizing carboxynitrone is not particularly limited, and a conventionally known method can be used.
  • a compound having a hydroxyamino group (—NHOH) and a compound having an aldehyde group (—CHO) and a carboxy group have a molar ratio of hydroxyamino group to aldehyde group (—NHOH / —CHO) of 1.0.
  • the carboxy-modified polymer of the present invention can be obtained by modifying the styrene-butadiene rubber (A) with a nitrone compound (B) having a carboxy group.
  • the reaction mechanism during the production of the carboxy-modified polymer is to react carboxynitrone (B) with the double bond of styrene-butadiene rubber (A).
  • the method for producing the carboxy-modified polymer is not particularly limited.
  • the styrene-butadiene rubber (A) and the carboxynitrone (B) are mixed at 100 to 200 ° C. for 1 to 30 minutes. A method is mentioned.
  • the amount of the carboxynitrone (B) used to synthesize the carboxy-modified polymer by modifying the styrene-butadiene rubber (A) (hereinafter also referred to as “CPN amount converted value”) is the diene type.
  • the amount is preferably 0.1 to 10 parts by weight, and more preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of rubber.
  • the CPN amount converted value is within the above range, the wet grip property and the fuel consumption performance tend to be further improved.
  • 35 parts by mass of a carboxy-modified polymer is contained in 100 parts by mass of a diene rubber, and the carboxy-modified polymer is obtained by reacting 100 parts by mass of SBR with 1 part by mass of carboxynitrone.
  • the amount converted value is 0.35 parts by mass.
  • the charge amount (addition amount) of carboxynitrone (B) is not particularly limited, but is 0.1 to 20 parts by mass with respect to 100 parts by mass of styrene-butadiene rubber (A). It is preferably 1 to 5 parts by mass.
  • the modification rate of the carboxy-modified polymer is 0.02 to 4.0 mol%, and more preferably 0.10 to 2.0 mol%.
  • the lower limit value of the modification rate is preferably 0.20 mol% or more.
  • the modification rate represents the ratio (mol%) modified by carboxynitrone (B) among all double bonds derived from butadiene (butadiene unit) of the styrene-butadiene rubber (A).
  • the modification rate can be determined, for example, by performing NMR measurement of SBR before and after modification.
  • a carboxy-modified polymer having a modification rate of 100 mol% also corresponds to a diene rubber.
  • the diene rubber may contain a rubber component other than the carboxy-modified polymer (hereinafter also referred to as “other diene rubber”).
  • Other diene rubbers are not particularly limited, but natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), aromatic vinyl-conjugated diene copolymer rubber (for example, unmodified SBR (styrene-butadiene) Rubber), SBR modified by other than nitrone compound (B) having carboxy group, acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR).
  • NR but natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • aromatic vinyl-conjugated diene copolymer rubber for example, unmodified SBR (styrene-butadiene) Rubber
  • the rubber composition of the present invention contains an inorganic filler.
  • the inorganic filler contained in the rubber composition of the present invention contains silica and an inorganic filler other than silica (hereinafter also referred to as “other inorganic filler”).
  • other inorganic fillers include carbon black, calcium carbonate, clay, talc and the like, and it is preferable to use carbon black.
  • the content of the inorganic filler is 70 to 170 parts by weight, preferably 80 to 130 parts by weight, and more preferably 90 to 120 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the content of the inorganic filler is within the above range, wet grip properties, fuel efficiency, rubber hardness, breaking strength at high temperatures, and the like can be improved.
  • the content of the inorganic filler is less than the lower limit, wet grip properties and fuel efficiency are lowered, and when the content of the inorganic filler exceeds the upper limit, the rubber hardness and the breaking strength at high temperature are lowered.
  • silica Specific examples of silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like, and these may be used alone. Two or more kinds may be used in combination.
  • the content of silica is 70 to 160 parts by weight, preferably 80 to 160 parts by weight, and more preferably 90 to 160 parts by weight with respect to 100 parts by weight of the diene rubber.
  • wet grip properties and fuel efficiency can be improved.
  • the silica content is less than the lower limit, wet grip properties and fuel efficiency are lowered, and when the silica content exceeds the upper limit, rubber hardness and breaking strength at high temperatures are lowered.
  • the silica preferably has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of 50 to 230 m 2 / g, and more preferably 100 to 185 m 2 / g.
  • CTAB adsorption specific surface area is a surrogate property of the surface area that silica can use for adsorption with the silane coupling agent, and the amount of CTAB adsorption on the silica surface is determined according to JIS K6217-3: 2001 “Part 3: Determination of specific surface area”. It is a value measured in accordance with “Method-CTAB adsorption method”.
  • the rubber composition of the present invention preferably contains carbon black as an inorganic filler.
  • the content of carbon black is preferably 10 to 100 parts by weight, more preferably 10 to 80 parts by weight, and more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the diene rubber. Further preferred. When the carbon black content is within the above range, it is possible to balance rubber hardness, breaking strength at high temperature, wet grip property, and fuel efficiency.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is not particularly limited, but is preferably 100 to 200 [m 2 / g], and more preferably 120 to 195 [m 2 / g].
  • the nitrogen adsorption specific surface area (N 2 SA) is determined according to JIS K6217-2: 2001 “Part 2: Determination of specific surface area—nitrogen adsorption method—single point method”. It is a measured value.
  • the rubber composition of the present invention preferably contains a cyclic polysulfide as a vulcanizing agent.
  • a cyclic polysulfide represented by the following general formula (s) from the viewpoint of further improving rubber hardness and breaking strength at high temperature.
  • R represents a substituted or unsubstituted alkylene group having 4 to 8 carbon atoms, a substituted or unsubstituted oxyalkylene group having 4 to 8 carbon atoms (“—R 1 —O—”, R 1 represents an alkylene group having 4 to 8 carbon atoms), or —R 2 —O—R 3 — (R 2 and R 3 each independently represents an alkylene group having 1 to 7 carbon atoms) Represents.
  • X represents an average of 3 to 5 numbers.
  • N represents an integer of 1 to 5.
  • R has 4 to 8 carbon atoms, preferably 4 to 7 carbon atoms.
  • a substituent in R of the said general formula (s) a phenyl group, a benzyl group, a methyl group, an epoxy group, an isocyanate group, a vinyl group, a silyl group etc. are mentioned, for example.
  • S represents sulfur.
  • x is an average number of 3 to 5, and preferably an average number of 3.5 to 4.5.
  • n is an integer of 1 to 5, and preferably an integer of 1 to 4.
  • the cyclic polysulfide represented by the general formula (s) can be produced by an ordinary method, and examples thereof include a production method described in JP-A-2007-92086.
  • the rubber composition of the present invention preferably contains a silane coupling agent for the purpose of improving the reinforcing performance of the tire.
  • the content when the silane coupling agent is blended is preferably 2 to 16 parts by mass, and more preferably 4 to 10 parts by mass with respect to 100 parts by mass of the silica.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, Bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxy Silane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N Dimethyl
  • bis- (3-triethoxysilylpropyl) tetrasulfide and / or bis- (3-triethoxysilylpropyl) disulfide is preferably used from the viewpoint of reinforcing effect.
  • Si75 [bis- (3-triethoxysilylpropyl) disulfide; manufactured by Evonik Degussa] and the like can be mentioned.
  • the rubber composition of the present invention may contain a terpene resin.
  • a terpene resin it is preferable to use an aromatic modified terpene resin.
  • the content is preferably 2 to 20 parts by mass and more preferably 4 to 18 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the aromatic modified terpene resin is obtained by polymerizing a terpene and an aromatic compound.
  • terpenes include ⁇ -pinene, ⁇ -pinene, dipentene, limonene and the like.
  • aromatic compound include styrene, ⁇ -methylstyrene, vinyl toluene, indene and the like.
  • a styrene-modified terpene resin is preferable as the aromatic-modified terpene resin.
  • the rubber composition of the present invention may further contain an additive as long as the effect and purpose are not impaired.
  • the additive include zinc oxide (zinc white), stearic acid, adhesive resin, peptizer, anti-aging agent, wax, processing aid, aroma oil, liquid polymer, and terpene other than aromatic terpene resin.
  • Various additives generally used for rubber compositions such as vulcanizing agents (for example, sulfur) other than cyclic resins, thermosetting resins, and cyclic polysulfides, and vulcanization accelerators may be mentioned.
  • the method for producing the rubber composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method of doing is mentioned.
  • a known method and apparatus for example, a Banbury mixer, a kneader, a roll, etc.
  • the method of doing is mentioned.
  • the rubber composition of the present invention contains sulfur or a vulcanization accelerator, components other than sulfur and the vulcanization accelerator are first mixed at a high temperature (preferably 80 to 140 ° C.), cooled, and then sulfur. Or it is preferable to mix a vulcanization accelerator.
  • the rubber composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
  • the rubber composition of the present invention is used for manufacturing a pneumatic tire. Especially, it is used suitably for the tire tread of a pneumatic tire (preferably a pneumatic tire for competitions and a pneumatic tire for high-performance vehicles traveling on public roads).
  • the pneumatic tire of the present invention is a pneumatic tire manufactured by using the above-described rubber composition of the present invention for a tire tread.
  • FIG. 1 shows a schematic partial sectional view of a tire representing an example of an embodiment of the pneumatic tire of the present invention, but the pneumatic tire of the present invention is not limited to the embodiment shown in FIG.
  • reference numeral 1 represents a bead portion
  • reference numeral 2 represents a sidewall portion
  • reference numeral 3 represents a tire tread portion.
  • a carcass layer 4 in which fiber cords are embedded is mounted, and an end portion of the carcass layer 4 is folded around the bead core 5 and the bead filler 6 from the inside to the outside of the tire.
  • a belt layer 7 is disposed over the circumference of the tire outside the carcass layer 4.
  • a rim cushion 8 is disposed at a portion in contact with the rim.
  • the tire tread portion 3 is formed of the above-described rubber composition of the present invention.
  • the pneumatic tire of the present invention can be manufactured, for example, according to a conventionally known method. Moreover, as gas with which a tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
  • inert gas such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure
  • the pneumatic tire of the present invention is excellent in handling stability (rubber hardness and storage elastic modulus) at high speed running and stability (wear resistance and breaking strength at high temperature) at high speed running for a long time, It is suitably used for racing tires and high-performance tires, and particularly suitable for wet road surfaces.
  • the SBR used (“Tuffden E581” manufactured by Asahi Kasei Chemicals Corporation) corresponds to “S-SBR2” described later, and the content of styrene units (styrene content) is 37% by mass.
  • the obtained modified SBR1 was subjected to NMR measurement to obtain the modification rate.
  • the modification rate of the modified SBR1 was 0.21 mol%.
  • the modification rate was determined as follows. That is, for SBR before and after denaturation, the peak area around 8.08 ppm (attributed to two protons adjacent to the carboxy group) was determined by 1 H-NMR measurement (CDCl 3 , 400 MHz, TMS) using CDCl 3 as a solvent. The denaturation rate was determined by measurement.
  • the 1 H-NMR measurement of the modified SBR1 was carried out using a sample dried under reduced pressure after repeating twice purification by dissolving the modified SBR1 in toluene and precipitating it in methanol.
  • the SBR used (“Tuffden E581” manufactured by Asahi Kasei Chemicals Corporation) corresponds to “S-SBR2” described later, and the content of styrene units (styrene content) is 37% by mass.
  • the obtained modified SBR2 was subjected to NMR measurement to obtain a modification rate.
  • the modification rate of the modified SBR2 was 0.23 mol%.
  • the method for obtaining the modification rate is as described above.
  • ⁇ Preparation of rubber composition for tire tread> The components shown in Table 1 below were blended in the proportions (parts by mass) shown in Table 1 below. Specifically, first, components excluding sulfur and a vulcanization accelerator among the components shown in Table 1 below were mixed for 5 minutes with a Banbury mixer at 80 ° C. Next, using a roll, sulfur and a vulcanization accelerator were mixed to obtain each rubber composition for tire tread (hereinafter, “tire rubber composition for tire tread” is also simply referred to as “rubber composition”). .
  • the nitrone amount converted value represents the mass part of the nitrone compound used for the synthesis of the modified polymer (modified SBR1 or modified SBR2) with respect to 100 parts by mass of the diene rubber.
  • the nitrone amount converted value is synonymous with the above-described CPN amount converted value.
  • the modification rate represents the modification rate of the above-described modified polymer (modified SBR1 or modified SBR2).
  • the modification efficiency represents the ratio of the nitrone compound used in the reaction to the charged amount of the nitrone compound.
  • the values in S-SBR1, S-SBR2, modified SBR1, and modified SBR2 are the contents (parts by mass) including the oil component, and the numbers in parentheses are the contents of the rubber components (mass). Part).
  • S-SBR1 Solution-polymerized styrene butadiene rubber, styrene content: 36% by mass, weight average molecular weight (Mw): 1,470,000, Tg: ⁇ 13 ° C., containing 37.5 parts by mass of oil for 100 parts by mass of rubber component Oil exhibition, “Toughden E680” manufactured by Asahi Kasei Chemicals
  • S-SBR2 solution-polymerized styrene butadiene rubber, styrene content: 37% by mass, weight average molecular weight (Mw): 1.26 million, Tg: ⁇ 27 ° C., containing 37.5 parts by mass of oil for 100 parts by mass of rubber component Oil exhibition, “Toughden E581” manufactured by Asahi Kasei Chemicals Modified SBR1: Modified SBR1 synthesized as described above (carboxynitrone modified SBR), an oil-extended product containing 37.5 parts
  • Modified SBR2 Modified SBR2 synthesized as described above (diphenylnitrone) Modified SBR), oil-extended product containing 37.5 parts by mass of oil with respect to 100 parts by mass of rubber component, carbon black: “Seast 9M” manufactured by Tokai Carbon Co., Ltd., nitrogen adsorption specific surface area 142 m 2 / g Silica: Zeosil 1165MP (CTAB adsorption specific surface area: 152 m 2 / g, manufactured by Rhodia) Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide, manufactured by Evonik Degussa) ⁇ Stearic acid: Stearic acid YR (manufactured by NOF Corporation) -Terpene resin: YS resin TO125 (manufactured by Yasuhara Chemical) ⁇ Oil: Extract No.
  • Zinc flower Zinc flower No. 3 (manufactured by Shodo Chemical Co., Ltd.)
  • Sulfur Oil-treated sulfur (manufactured by Karuizawa Refinery)
  • Vulcanization accelerator Noxeller CZ-G (manufactured by Ouchi Shinsei Chemical Co., Ltd.)
  • the cyclic polysulfide was synthesized as follows. First, 1.98 g (0.02 mol) of 1,2-dichloroethane and 1197 g (2 mol) of a 30% sodium polysulfide (Na 2 S 4 ) aqueous solution were added to toluene (500 g), and then 0.64 g of tetrabutylammonium bromide. (0.1 mol) was added and reacted at 50 ° C. for 2 hours.
  • Examples 1 to 3 that contain carboxynitrone-modified SBR are all rubber hardness, wet grip properties, fuel efficiency, storage Excellent elastic modulus, breaking strength and wear resistance.
  • the tire rubber compositions of Examples 1 to 3 since the rubber hardness and the storage elastic modulus were excellent, it was shown that when the tire was used, the steering stability during high-speed running was excellent. .
  • it is excellent in wear resistance and breaking strength at high temperatures it was shown that the tire has excellent property stability when running at high speed for a long time.
  • Example 2 when the carboxynitrone-modified SBR content in the diene rubber is 50% by mass or more (Example 2), the wet grip property is particularly excellent. It was shown to be. On the other hand, Comparative Example 2 which did not contain carboxynitrone-modified SBR and contained diphenylnitrone-modified SBR had insufficient wet grip properties, fuel efficiency, breaking strength and abrasion resistance. Further, Comparative Example 3 which did not contain carboxynitrone-modified SBR but contained diphenylnitrone-modified SBR had insufficient rubber hardness, wet grip properties, fuel efficiency, breaking strength and abrasion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明の課題は、タイヤにしたときに、高速走行時の操縦安定性および長時間走行時の性状安定性に優れ、かつ、ウェットグリップ性および燃費性能に優れたタイヤトレッド用ゴム組成物、およびこれを用いて得られる空気入りタイヤを提供することである。本発明のタイヤトレッド用ゴム組成物は、シリカを含む無機充填剤と、カルボキシ変性ポリマーを含むジエン系ゴムと、を含有する。上記無機充填剤の含有量は、上記ジエン系ゴム100質量部に対して、70~170質量部である。上記シリカの含有量は、上記ジエン系ゴム100質量部に対して70~160質量部である。上記カルボキシ変性ポリマーが、スチレン-ブタジエンゴム(A)をカルボキシ基を有するニトロン化合物(B)によって変性することで得られ、上記ジエン系ゴム中の上記カルボキシ変性ポリマーの含有量が10~100質量%である。上記スチレン-ブタジエンゴム(A)中のスチレン単位の含有量は、36質量%以上である。上記カルボキシ変性ポリマーの変性率は、0.02~4.0mol%である。

Description

タイヤトレッド用ゴム組成物および空気入りタイヤ
 本発明は、タイヤトレッド用ゴム組成物および空気入りタイヤに関する。
 空気入りタイヤは、例えば、タイヤトレッド部、ビード部、サイドウォール部など種々の部材から構成されており、空気入りタイヤを構成する各部材は、カーボンブラックやゴム成分等を含有するゴム組成物を用いて形成される。
 このようなゴム組成物として、特許文献1には、スチレン・ブタジエン共重合体ゴム、カーボンブラック、N,N’-ジフェニル-p-フェニレンジニトロン(ニトロン化合物)などを含有するゴム組成物が示されている(実施例2参照)。
 ところで、上記の空気入りタイヤは、一般車両に用いられるだけでなく、公道を走行する高性能車両や、サーキットを走行する競技車両などに用いられる場合がある。
 このような競技車両に用いられるタイヤ(以下、単に「競技用タイヤ」または「レース用タイヤ」ともいう。)や、高性能車両に用いられるタイヤ(以下、単に「高性能タイヤ」ともいう。)の形成に用いられるタイヤトレッド用ゴム組成物として、特許文献2には、スチレンブタジエンゴム等を含むジエン系ゴム10重量部、シリカ40~90重量部、などを含有するものが開示されている。
特開2007-70439号公報 特開2014-189698号公報
 上記のようなレース用タイヤや高性能タイヤは、一般車両の走行に使用する空気入りタイヤと比較して、高速走行時の操縦安定性に優れることや、高速走行を長時間行う際のタイヤの性状安定性に優れることが要求される。
 このような要求のうち、高速走行時の操縦安定性を向上するための方法としては、例えば、タイヤのゴム硬度や貯蔵弾性率を向上することが挙げられる。
 また、高速走行を長時間行う際のタイヤの性状安定性を向上するための方法としては、耐摩耗性や高温時の破断強度を向上することが挙げられる。高速走行を長時間行うと、タイヤが高温状態のまま長時間維持されることになるので、タイヤに対するダメージが増大して、タイヤの性状安定性が低下するためである。
 さらに、レース用タイヤや高性能タイヤは、一般車両の走行に使用する空気入りタイヤと比較して、より厳密に各種の路面状態(乾燥路面や湿潤路面など)に適した性質を持つことが求められる。例えば、レース用タイヤについては、路面が湿潤状態である場合(ウェットな路面である場合)、ウェットな路面に適したグリップ性能を有する(ウェットグリップ性に優れる)ことが求められる。また、高性能タイヤについては、より安全性を高める等の観点から、ウェットグリップ性に優れることが求められる。
 このようなウェットグリップ性を高めるために、特許文献2に示されているように、ゴム組成物中のシリカの配合量を増加させる場合があり、これにより燃費性能も向上する傾向にある(低燃費の実現)。
 しかしながら、本発明者らが、特許文献2に記載されているようなシリカの配合量の多いゴム組成物について検討したところ、タイヤにしたときのウェットグリップ性および燃費性能についてはある程度良好ではあるものの、さらなる改良が必要であることがわかった。また、ゴム硬度、貯蔵弾性率、高温時の破断強度、および耐摩耗性については、未だ十分とはいえないものであった。
 本発明者らは、特許文献2に記載されているようなシリカの含有量が高いタイヤトレッド用ゴム組成物について、さらにその性能を向上させるべく、特許文献1に記載されているようなニトロン化合物(N,N’-ジフェニル-p-フェニレンジニトロン)で変性したスチレン-ブタジエンゴムを用いることを検討した。
 しかしながら、得られるゴム組成物は、タイヤにしたときに、ウェットグリップ性、燃費性能、高温時の破断強度、および耐摩耗性が低いものとなることがわかった。また、ゴム硬度が低いものとなる場合があった。
 そこで、本発明は、タイヤにしたときに、高速走行時の操縦安定性(ゴム硬度および貯蔵弾性率)および長時間走行時の性状安定性(耐摩耗性および高温時の破断強度)に優れ、かつ、ウェットグリップ性および燃費性能に優れたタイヤトレッド用ゴム組成物、およびこれを使用した空気入りタイヤを提供することを目的とする。
 本発明者は、上記課題について鋭意検討した結果、カルボキシ基を有するニトロン化合物でスチレン-ブタジエンゴムを変性したカルボキシ変性ポリマーを用いることにより、タイヤにしたときに、高速走行時の操縦安定性および長時間走行時の性状安定性に優れ、かつ、ウェットグリップ性および燃費性能にも優れたものとなることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
[1]
 シリカを含む無機充填剤と、カルボキシ変性ポリマーを含むジエン系ゴムと、を含有し、
 前記無機充填剤の含有量が、前記ジエン系ゴム100質量部に対して、70~170質量部であり、
 前記シリカの含有量が、前記ジエン系ゴム100質量部に対して、70~160質量部であり、
 前記カルボキシ変性ポリマーが、スチレン-ブタジエンゴム(A)を、カルボキシ基を有するニトロン化合物(B)によって変性することで得られ、前記ジエン系ゴム中の前記カルボキシ変性ポリマーの含有量が10~100質量%であり、
 前記スチレン-ブタジエンゴム(A)中のスチレン単位の含有量が、36質量%以上であり、
 前記スチレン-ブタジエンゴム(A)の有するブタジエンに由来する全ての二重結合のうち、前記カルボキシ基を有するニトロン化合物(B)によって変性された割合(mol%)を変性率とした場合、前記カルボキシ変性ポリマーの変性率が0.02~4.0mol%である、タイヤトレッド用ゴム組成物。
[2]
 前記カルボキシ基を有するニトロン化合物(B)が、N-フェニル-α-(4-カルボキシフェニル)ニトロン、N-フェニル-α-(3-カルボキシフェニル)ニトロン、N-フェニル-α-(2-カルボキシフェニル)ニトロン、N-(4-カルボキシフェニル)-α-フェニルニトロン、N-(3-カルボキシフェニル)-α-フェニルニトロンおよびN-(2-カルボキシフェニル)-α-フェニルニトロンからなる群より選択される化合物である、上記[1]に記載のタイヤトレッド用ゴム組成物。
[3]
 さらに、後述する一般式(s)で表される環状ポリスルフィドを含有し、
 前記環状ポリスルフィドの含有量が、前記ジエン系ゴム100質量部に対して、0.2~5質量部である、上記[1]または[2]に記載のタイヤトレッド用ゴム組成物。
[4]
 前記スチレン-ブタジエンゴム(A)を変性する際に使用する前記カルボキシ基を有するニトロン化合物(B)の量が、前記ジエン系ゴム100質量部に対して、0.1~10質量部である、上記[1]~[3]のいずれか1つに記載のタイヤトレッド用ゴム組成物。
[5]
 上記[1]~[4]のいずれか1つに記載のタイヤトレッド用ゴム組成物をタイヤトレッドに使用した空気入りタイヤ。
 以下に示すように、本発明によれば、タイヤにしたときに、高速走行時の操縦安定性および長時間走行時の性状安定性に優れ、かつ、ウェットグリップ性および燃費性能に優れたタイヤトレッド用ゴム組成物、およびこれを用いて得られる空気入りタイヤを提供することができる。
本発明の空気入りタイヤの実施形態の一例を表すタイヤの部分断面概略図である。
 以下に、本発明のタイヤトレッド用ゴム組成物、および、空気入りタイヤについて説明する。
 なお、本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[タイヤトレッド用ゴム組成物]
 本発明のタイヤトレッド用ゴム組成物(以下、単に「ゴム組成物」ともいう。)は、シリカを含む無機充填剤と、カルボキシ変性ポリマーを含むジエン系ゴムと、を含有する。
 ここで、上記無機充填剤の含有量は、上記ジエン系ゴム100質量部に対して、70~170質量部である。また、上記シリカの含有量は、上記ジエン系ゴム100質量部に対して、70~160質量部である。
 さらに、上記カルボキシ変性ポリマーは、スチレン-ブタジエンゴム(A)を、カルボキシ基を有するニトロン化合物(B)によって変性することで得られ、上記ジエン系ゴム中の上記カルボキシ変性ポリマーの含有量が10~100質量%である。
 また、上記スチレン-ブタジエンゴム(A)中のスチレン単位の含有量は、36質量%以上である。さらに、上記カルボキシ変性ポリマーの変性率は、0.02~4.0mol%である。
 本発明のゴム組成物は、このような構成をとるために、操縦安定性および長時間走行時の性状安定性に優れ、かつ、ウェットグリップ性および燃費性能にも優れたタイヤトレッドを形成できる。
 この理由の詳細は明らかになっていないが、以下の理由がその一因となっているものと推測される。
 すなわち、本発明のゴム組成物は、スチレン-ブタジエンゴム(A)を、カルボキシ基を有するニトロン化合物(B)によって変性することで得られるカルボキシ変性ポリマーを含有する。そのため、カルボキシ変性ポリマー中のニトロン変性部位におけるカルボキシ基がゴム組成物中のシリカと相互作用し、シリカの分散性を高めると考えられる。その結果、シリカによるウェットグリップ性および燃費性能(低転がり抵抗性)を向上する作用が高まったものと考えられる。
 また、カルボキシ変性ポリマー中のニトロン変性部位におけるカルボキシ基がゴム組成物中のシリカと相互作用することにより、ゴム成分とシリカとの強固な結合が形成されて架橋点が増加することで、架橋密度が増加する結果、ゴム硬度が向上し、高温時においても高い破断強度を発揮できるものと考えられる。また、このようにゴムの物理的な強度が向上することにより、貯蔵弾性率および耐摩耗性も向上したものと推測される。
 以下、本発明のゴム組成物に含まれる成分、および含まれ得る成分について詳述する。
〔ジエン系ゴム〕
 本発明のゴム組成物に含有されるジエン系ゴムは、カルボキシ変性ポリマーを含む。
<カルボキシ変性ポリマー>
 カルボキシ変性ポリマーは、カルボキシ基を有するニトロン化合物(B)によってスチレン-ブタジエンゴム(A)を変性することで得られる。
 上記ジエン系ゴム中のカルボキシ変性ポリマーの含有量は、10~100質量%であり、50~90質量%であることが好ましく、60~80質量%であることがより好ましい。カルボキシ変性ポリマーの含有量が上記範囲内にあることで、カルボキシ変性ポリマーの有する機能が十分に発揮される。
 一方、カルボキシ変性ポリマーの含有量が10質量%未満であると、ゴム硬度、ウェットグリップ性、燃費性能、貯蔵弾性率、高温時の破断強度、および耐摩耗性のうち、少なくとも1つの性能が不十分となる。
(スチレン-ブタジエンゴム(A))
 上記のカルボキシ変性ポリマーは、上述のように、スチレン-ブタジエンゴム(A)を変性することで得られる。
 このようなスチレン-ブタジエンゴム(A)は、スチレン単量体およびブタジエン単量体を用いて製造することができる。
 スチレン-ブタジエンゴム(A)の製造に使用されるスチレン単量体としては、特に制限されないが、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどを挙げることができる。これらの中でも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましく、スチレンがより好ましい。これらのスチレン単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 上記スチレン-ブタジエンゴム(A)の製造に使用されるブタジエン単量体としては、特に制限されないが、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエンなどが挙げられる。これらの中でも、1,3-ブタジエン、またはイソプレンを用いることが好ましく、1,3-ブタジエンを用いることがより好ましい。これらのブタジエン単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 上記スチレン-ブタジエンゴム(A)の製造方法(重合方法)としては、特に制限されず、例えば溶液重合や乳化重合等が挙げられる。上記スチレン-ブタジエンゴム(A)としては、溶液重合スチレン-ブタジエンゴムおよび乳化重合スチレン-ブタジエンゴムのいずれを用いてもよいが、操縦安定性などをより向上するという観点から、溶液重合スチレン-ブタジエンゴムを用いることが好ましい。
 上記スチレン-ブタジエンゴム(A)のスチレン単位の含有量は、36質量%以上であり、36~50質量%であることが好ましく、36~40質量%であることがより好ましい。スチレン単位の含有量が上記範囲にあることで、タイヤのゴム硬度や高温時の破断強度が向上する。一方、スチレン単位の含有量が36質量%未満であると、タイヤのゴム硬度や高温時の破断強度が低下する。
 なお、本発明において、スチレン-ブタジエンゴムのスチレン単位の含有量とは、スチレン-ブタジエンゴム中のスチレン単量体単位の割合(質量%)を表す。
 上記スチレン-ブタジエンゴム(A)の重量平均分子量(Mw)は、取扱い性などの観点から、100,000~1,800,000であることが好ましく、300,000~1,500,000であることがより好ましい。なお、本明細書において、重量平均分子量(Mw)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定したものとする。
(カルボキシ基を有するニトロン化合物(B))
 本発明のカルボキシ変性ポリマーは、上述のとおり、カルボキシ基を有するニトロン化合物(B)(以下、単に「カルボキシニトロン」または「カルボキシニトロン(B)」ともいう。)を用いて変性されたものである。
 カルボキシニトロンは少なくとも1個のカルボキシ基(-COOH)を有するニトロンであれば特に限定されない。ここで、ニトロンとは、下記式(1)で表されるニトロン基を有する化合物を指す。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、*は結合位置を表す。
 上記カルボキシニトロンは、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(2)中、XおよびYは、それぞれ独立に、置換基を有してもよい、脂肪族炭化水素基、芳香族炭化水素基、または、芳香族複素環基を表す。ただし、XおよびYの少なくとも一方は、置換基としてカルボキシ基を有する。
 XまたはYで表される脂肪族炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基などが挙げられる。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基などが挙げられ、なかでも、炭素数1~18のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられ、なかでも、炭素数3~10のシクロアルキル基が好ましく、炭素数3~6のシクロアルキル基がより好ましい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基などが挙げられ、なかでも、炭素数2~18のアルケニル基が好ましく、炭素数2~6のアルケニル基がより好ましい。
 XまたはYで表される芳香族炭化水素基としては、例えば、アリール基、アラルキル基などが挙げられる。
 アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基などが挙げられ、なかでも、炭素数6~14のアリール基が好ましく、炭素数6~10のアリール基がより好ましく、フェニル基、ナフチル基がさらに好ましい。
 アラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基などが挙げられ、なかでも、炭素数7~13のアラルキル基が好ましく、炭素数7~11のアラルキル基がより好ましく、ベンジル基がさらに好ましい。
 XまたはYで表される芳香族複素環基としては、例えば、ピロリル基、フリル基、チエニル基、ピラゾリル基、イミダゾリル基(イミダゾール基)、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、ピリジル基(ピリジン基)、フラン基、チオフェン基、ピリダジニル基、ピリミジニル基、ピラジニル基等が挙げられる。なかでも、ピリジル基が好ましい。
 XおよびYで表される基は、上述したように少なくとも一方が置換基としてカルボキシ基を有していれば、カルボキシ基以外の置換基(以下、「他の置換基」ともいう。)を有していてもよい。
 XまたはYで表される基が有してもよい他の置換基としては、特に限定されず、例えば、炭素数1~4のアルキル基、ヒドロキシ基、アミノ基、ニトロ基、スルホニル基、アルコキシ基、ハロゲン原子などが挙げられる。
 なお、このような置換基を有する芳香族炭化水素基としては、例えば、トリル基、キシリル基などの置換基を有するアリール基;メチルベンジル基、エチルベンジル基、メチルフェネチル基などの置換基を有するアラルキル基;等が挙げられる。
 上記一般式(2)で表される化合物は、下記一般式(b)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(b)中、mおよびnは、それぞれ独立に、0~5の整数を示し、mとnとの合計が1以上である。
 mが示す整数としては、カルボキシニトロンを合成する際の溶媒への溶解度が良好になり合成が容易になるという理由から、0~2の整数が好ましく、0~1の整数がより好ましい。
 nが示す整数としては、カルボキシニトロンを合成する際の溶媒への溶解度が良好になり合成が容易になるという理由から、0~2の整数が好ましく、0~1の整数がより好ましい。
 また、mとnとの合計(m+n)は、1~4が好ましく、1~2がより好ましい。
 このような一般式(b)で表されるカルボキシニトロンとしては特に制限されないが、下記式(b1)で表されるN-フェニル-α-(4-カルボキシフェニル)ニトロン、下記式(b2)で表されるN-フェニル-α-(3-カルボキシフェニル)ニトロン、下記式(b3)で表されるN-フェニル-α-(2-カルボキシフェニル)ニトロン、下記式(b4)で表されるN-(4-カルボキシフェニル)-α-フェニルニトロン、下記式(b5)で表されるN-(3-カルボキシフェニル)-α-フェニルニトロン、および、下記式(b6)で表されるN-(2-カルボキシフェニル)-α-フェニルニトロンからなる群より選択される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-I000006
 カルボキシニトロンの合成方法は特に限定されず、従来公知の方法を用いることができる。例えば、ヒドロキシアミノ基(-NHOH)を有する化合物と、アルデヒド基(-CHO)およびカルボキシ基を有する化合物とを、ヒドロキシアミノ基とアルデヒド基とのモル比(-NHOH/-CHO)が1.0~1.5となる量で、有機溶媒(例えば、メタノール、エタノール、テトラヒドロフラン等)下で、室温で1~24時間撹拌することにより、両基が反応し、カルボキシ基とニトロン基とを有する化合物(カルボキシニトロン)を与える。
(カルボキシ変性ポリマーの製造方法)
 本発明のカルボキシ変性ポリマーは、上述の通り、スチレン-ブタジエンゴム(A)を、カルボキシ基を有するニトロン化合物(B)で変性することにより得られる。
 カルボキシ変性ポリマーの製造時の反応機構は、スチレン-ブタジエンゴム(A)の二重結合に対して、カルボキシニトロン(B)を反応させるものである。カルボキシ変性ポリマー(カルボキシニトロン変性SBR)を製造する方法は特に制限されないが、例えば、上記スチレン-ブタジエンゴム(A)と上記カルボキシニトロン(B)とを、100~200℃で1~30分間混合する方法が挙げられる。
 このとき、下記式(4-1)または下記式(4-2)に示すように、上記スチレン-ブタジエンゴム(A)が有するブタジエンに由来する二重結合と上記カルボキシニトロン(B)が有するニトロン基との間で、環化付加反応が起こり、五員環を与える。なお、下記式(4-1)は1,4-結合とニトロン基との反応を表し、下記式(4-2)は1,2-ビニル結合とニトロン基との反応を表す。また、式(4-1)および(4-2)はブタジエンが1,3-ブタジエンの場合の反応を表すものであるが、ブタジエンが1,3-ブタジエン以外の場合も同様の反応により五員環を与える。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記スチレン-ブタジエンゴム(A)を変性して、上記カルボキシ変性ポリマーを合成するために使用する上記カルボキシニトロン(B)の量(以下、「CPN量換算値」ともいう。)は、上記ジエン系ゴム100質量部に対して、0.1~10質量部であることが好ましく、0.3~3質量部であることが好ましい。CPN量換算値が上記範囲内にあることで、ウェットグリップ性や燃費性能がより向上する傾向にある。
 なお、例えば、100質量部のジエン系ゴム中に35質量部のカルボキシ変性ポリマーが含まれ、カルボキシ変性ポリマーが100質量部のSBRと1質量部のカルボキシニトロンとを反応させることで得られたものである場合、35質量部のカルボキシ変性ポリマーのうち、カルボキシ変性ポリマーの合成に使用されたカルボキシニトロン(B)は、0.35質量部(=35×(1/101))であるので、CPN量換算値は0.35質量部である。
 カルボキシ変性ポリマーの合成において、カルボキシニトロン(B)の仕込み量(添加量)は特に制限されないが、スチレン-ブタジエンゴム(A)100質量部に対して、0.1~20質量部であることが好ましく、1~5質量部であることがより好ましい。
(変性率)
 カルボキシ変性ポリマーの変性率は、0.02~4.0mol%であり、0.10~2.0mol%であることがより好ましい。また、上記変性率の下限値は、0.20mol%以上であることが好ましい。
 ここで、変性率とは、上記スチレン-ブタジエンゴム(A)が有するブタジエン(ブタジエン単位)に由来する全ての二重結合のうち、カルボキシニトロン(B)によって変性された割合(mol%)を表し、例えばブタジエンが1,3-ブタジエンであれば、カルボキシニトロンによる変性によって上記式(4-1)または上記式(4-2)の構造が形成された割合(mol%)を表す。変性率は、例えば、変性前後のSBRのNMR測定を行うことで求めることができる。
 なお、本明細書において、変性率が100mol%のカルボキシ変性ポリマーもジエン系ゴムに該当するものとする。
(その他のジエン系ゴム)
 上記ジエン系ゴムは、カルボキシ変性ポリマー以外のゴム成分(以下、「その他のジエン系ゴム」ともいう。)を含んでいてもよい。その他のジエン系ゴムとしては特に制限されないが、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、芳香族ビニル-共役ジエン共重合ゴム(例えば、未変性のSBR(スチレン-ブタジエンゴム)、カルボキシ基を有するニトロン化合物(B)以外によって変性されたSBR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。これらの中でも、未変性のSBRを用いることが好ましい。このような未変性のSBRの好ましい態様は、上述したスチレン-ブタジエンゴム(A)と同様である。
〔無機充填剤〕
 本発明のゴム組成物は、無機充填剤を含有する。本発明のゴム組成物に含まれる無機充填剤は、シリカと、シリカ以外の無機充填剤(以下、「他の無機充填剤」ともいう。)を含むものである。
 このような他の無機充填剤としては、例えば、カーボンブラック、炭酸カルシウム、クレー、タルク等が挙げられ、カーボンブラックを用いることが好ましい。
 無機充填剤の含有量は、上記ジエン系ゴム100質量部に対して、70~170質量部であり、80~130質量部であることが好ましく、90~120質量部であることがより好ましい。無機充填剤の含有量が上記範囲内にあることで、ウェットグリップ性、燃費性能、ゴム硬度、高温時の破断強度などを向上できる。一方、無機充填剤の含有量が下限値未満になるとウェットグリップ性や燃費性能が低下し、無機充填剤の含有量が上限値を超えると、ゴム硬度や高温時の破断強度が低下する。
(シリカ)
 シリカとしては、具体的には、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 シリカの含有量は、上記ジエン系ゴム100質量部に対して、70~160質量部であり、80~160質量部であることが好ましく、90~160質量部であることがより好ましい。シリカの含有量が上記範囲内にあることで、ウェットグリップ性および燃費性能を向上できる。一方、シリカの含有量が下限値未満になるとウェットグリップ性や燃費性能が低下し、シリカの含有量が上限値を超えると、ゴム硬度や高温時の破断強度が低下する。
 上記シリカは、セチルトリメチルアンモニウムブロマイド(CTAB)吸着比表面積が、50~230m2/gであるのが好ましく、100~185m2/gであるのがより好ましい。
 なお、CTAB吸着比表面積は、シリカがシランカップリング剤との吸着に利用できる表面積の代用特性であり、シリカ表面へのCTAB吸着量をJIS K6217-3:2001「第3部:比表面積の求め方-CTAB吸着法」にしたがって測定した値である。
(カーボンブラック)
 本発明のゴム組成物は、無機充填剤として、カーボンブラックを含有することが好ましい。
 カーボンブラックの含有量は、上記ジエン系ゴム100質量部に対して、10~100質量部であることが好ましく、10~80質量部であることがより好ましく、10~60質量部であることがさらに好ましい。カーボンブラックの含有量が上記範囲内にあることで、ゴム硬度や高温時の破断強度とウェットグリップ性や燃費性能のバランスをとることができる。
 カーボンブラックの窒素吸着比表面積(N2SA)は特に制限されないが、100~200[m/g]であることが好ましく、120~195[m/g]であることがより好ましい。
 ここで、窒素吸着比表面積(N2SA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。
〔環状ポリスルフィド〕
 本発明のゴム組成物は、加硫剤として、環状ポリスルフィドを含有することが好ましい。環状ポリスルフィドとしては、ゴム硬度や高温時の破断強度をより向上するという観点から、下記一般式(s)で表される環状ポリスルフィドを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(s)中、Rは、置換もしくは非置換の炭素数4~8のアルキレン基、置換もしくは非置換の炭素数4~8のオキシアルキレン基(「-R-O-」、Rは炭素数4~8のアルキレン基を表す。)、または、-R-O-R-(RおよびRは、それぞれ独立に、炭素数1~7のアルキレン基を表す。)を表す。また、xは平均3~5の数を表す。また、nは1~5の整数を表す。
 上記一般式(s)において、Rの炭素数は、4~8であり、4~7であることが好ましい。
 また、上記一般式(s)のRにおける置換基としては、例えば、フェニル基、ベンジル基、メチル基、エポキシ基、イソシアネート基、ビニル基、シリル基などが挙げられる。
 なお、上記一般式(s)において、Sは、硫黄を表す。
 xは、平均3~5の数であり、平均3.5~4.5の数であることが好ましい。
 nは、1~5の整数であり、1~4の整数であることが好ましい。
 一般式(s)で表される環状ポリスルフィドは、通常の方法で製造することができ、例えば、特開2007-92086号公報に記載の製造方法が挙げられる。
〔シランカップリング剤〕
 本発明のゴム組成物は、タイヤの補強性能を向上させる理由から、シランカップリング剤を含有するのが好ましい。
 上記シランカップリング剤を配合する場合の含有量は、上記シリカ100質量部に対して、2~16質量部であるのが好ましく、4~10質量部であるのがより好ましい。
 上記シランカップリング剤としては、具体的には、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィド等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、補強性改善効果の観点から、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドおよび/またはビス-(3-トリエトキシシリルプロピル)ジスルフィドを使用することが好ましく、具体的には、例えば、Si69[ビス-(3-トリエトキシシリルプロピル)テトラスルフィド;エボニック・デグッサ社製]、Si75[ビス-(3-トリエトキシシリルプロピル)ジスルフィド;エボニック・デグッサ社製]等が挙げられる。
〔任意成分〕
 本発明のゴム組成物は、テルペン系樹脂を含有してもよい。テルペン系樹脂の中でも、芳香族変性テルペン樹脂を用いることが好ましい。
 芳香族変性テルペン樹脂を含有する場合の含有量は、上記ジエン系ゴム100質量部に対して、2~20質量部であることが好ましく、4~18質量部であることがより好ましい。
 芳香族変性テルペン樹脂は、テルペンと芳香族化合物とを重合することにより得られる。テルペンとしては、例えばα-ピネン、β-ピネン、ジペンテン、リモネンなどが例示される。芳香族化合物としては、例えばスチレン、α-メチルスチレン、ビニルトルエン、インデンなどが例示される。なかでも芳香族変性テルペン樹脂としてスチレン変性テルペン樹脂が好ましい。
 本発明のゴム組成物は、必要に応じて、その効果や目的を損なわない範囲でさらに添加剤を含有することができる。
 上記添加剤としては、例えば、酸化亜鉛(亜鉛華)、ステアリン酸、接着用樹脂、素練り促進剤、老化防止剤、ワックス、加工助剤、アロマオイル、液状ポリマー、芳香族テルペン樹脂以外のテルペン系樹脂、熱硬化性樹脂、環状ポリスルフィド以外の加硫剤(例えば、硫黄)、加硫促進剤、などのゴム組成物に一般的に使用される各種添加剤が挙げられる。
<タイヤトレッド用ゴム組成物の製造方法>
 本発明のゴム組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明のゴム組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは80~140℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
 また、本発明のゴム組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
〔用途〕
 本発明のゴム組成物は空気入りタイヤの製造に用いられる。なかでも、空気入りタイヤ(好ましくは、競技用の空気入りタイヤ、および、公道を走行する高性能車両用の空気入りタイヤ)のタイヤトレッドに好適に用いられる。
[空気入りタイヤ]
 本発明の空気入りタイヤは、上述した本発明のゴム組成物をタイヤトレッドに使用して製造した空気入りタイヤである。
 図1に、本発明の空気入りタイヤの実施態様の一例を表すタイヤの部分断面概略図を示すが、本発明の空気入りタイヤは図1に示す態様に限定されるものではない。
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
 左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 ビード部1においては、リムに接する部分にリムクッション8が配置されている。
 なお、タイヤトレッド部3は上述した本発明のゴム組成物により形成されている。
 本発明の空気入りタイヤは、例えば、従来公知の方法に従って製造できる。また、タイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを使用できる。
 本発明の空気入りタイヤは、高速走行時の操縦安定性(ゴム硬度および貯蔵弾性率)および高速走行を長時間する際の安定性(耐摩耗性および高温時の破断強度)に優れることから、競技用タイヤおよび高性能タイヤに好適に用いられ、特にウェットな路面に対して好適に使用される。
 以下、実施例により、本発明についてさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。
<カルボキシニトロンの合成>
 2Lナスフラスコに、40℃に温めたメタノール(900mL)を入れ、ここに、下記式(b-1)で表されるテレフタルアルデヒド酸(30.0g)を加えて溶かした。この溶液に、下記式(a-1)で表されるフェニルヒドロキシアミン(21.8g)をメタノール(100mL)に溶かしたものを加え、室温で19時間撹拌した。撹拌終了後、メタノールからの再結晶により、下記式(c-1)で表されるニトロン化合物(カルボキシニトロン)を得た(41.7g)。収率は86%であった。
Figure JPOXMLDOC01-appb-C000010

<ジフェニルニトロンの合成>
 300mLナスフラスコに、下記式(b-2)で表されるベンズアルデヒド(42.45g)およびエタノール(10mL)を入れ、ここに、下記式(a-1)で表されるフェニルヒドロキシアミン(43.65g)をエタノール(70mL)に溶かしたものを加え、室温で22時間撹拌した。撹拌終了後、エタノールからの再結晶により、下記式(c-2)で表されるジフェニルニトロンを白色の結晶として得た(65.40g)。収率は83%であった。
Figure JPOXMLDOC01-appb-C000011
<カルボキシニトロン変性SBR(変性SBR1)の合成>
 120℃のバンバリーミキサーにSBR(旭化成ケミカルズ社製「タフデンE581」)を投入して2分間素練りを行った。その後、上述のとおり合成したカルボキシニトロンをSBR100質量部に対して1質量部投入し、160℃で5分間混合することで、SBRをカルボキシニトロンによって変性した。得られたカルボキシニトロン変性SBRを変性SBR1とする。
 なお、使用したSBR(旭化成ケミカルズ社製「タフデンE581」)は、後述する「S-SBR2」に相当し、スチレン単位の含有量(スチレン量)が37質量%である。
 得られた変性SBR1についてNMR測定を行い、変性率を求めたところ、変性SBR1の変性率は0.21mol%であった。変性率は、具体的には以下のとおり求めた。すなわち、変性前後のSBRについて、CDClを溶媒としたH-NMR測定(CDCl、400MHz、TMS)により、8.08ppm付近(カルボキシ基に隣接する2つのプロトンに帰属する)のピーク面積を測定し、変性率を求めた。なお、変性SBR1のH-NMR測定は、変性SBR1をトルエンに溶解して、メタノールに沈殿させる精製を2回繰り返した後に、減圧下で乾燥したサンプルを用いて測定した。
<ジフェニルニトロン変性SBR(変性SBR2)の合成>
 120℃のバンバリーミキサーにSBR(旭化成ケミカルズ社製「タフデンE581」)を投入して2分間素練りを行った。その後、上述のとおり合成したジフェニルニトロンをSBR100質量部に対して1質量部投入し、160℃で5分間混合することで、SBRをジフェニルニトロンによって変性した。得られたジフェニルニトロン変性SBRを変性SBR2とする。
 なお、使用したSBR(旭化成ケミカルズ社製「タフデンE581」)は、後述する「S-SBR2」に相当し、スチレン単位の含有量(スチレン量)が37質量%である。
 得られた変性SBR2についてNMR測定を行い、変性率を求めたところ、変性SBR2の変性率は0.23mol%であった。変性率の求め方は上述のとおりである。
<タイヤトレッド用ゴム組成物の調製>
 下記第1表に示される成分を、下記第1表に示される割合(質量部)で配合した。
 具体的には、まず、下記第1表に示される成分のうち硫黄および加硫促進剤を除く成分を、80℃のバンバリーミキサーで5分間混合した。次に、ロールを用いて、硫黄および加硫促進剤を混合し、各タイヤトレッド用ゴム組成物(以下、「タイヤトレッド用ゴム組成物」を単に「ゴム組成物」ともいう。)を得た。
<加硫ゴムシートの作製>
 得られた各ゴム組成物(未加硫)を、金型(15cm×15cm×0.2cm)中、160℃で15分間プレス加硫して、加硫ゴムシートを作製した。
<ゴム硬度の評価>
 得られた各加硫ゴムシートについて、JIS K6253に準拠し、デュロメータのタイプAにより温度20℃で測定した。結果を第1表に示す(ゴム硬度)。結果は、比較例1の値を100とする指数で表した。この値が大きいほど、タイヤにしたときのゴム硬度に優れるものとして評価できる。
<ウェットグリップ性の評価>
 得られた各加硫ゴムシートについて、粘弾性スペクトロメーター(東洋精機製作所社製)により、初期歪み10%、振幅±2%、周波数20Hz、温度0℃の条件で、損失正接(tanδ(0℃))を測定した。結果を第1表に示す(ウェットグリップ性)。結果は、比較例1のtanδ(0℃)を100とする指数で表した。この値が大きいほど、タイヤにしたときのウェットグリップ性に優れるものとして評価できる。
<燃費性能の評価>
 温度60℃の条件で行った以外は、ウェットグリップ性の評価と同様にして、(tanδ(60℃))を測定した。結果を第1表に示す(燃費性能)。結果は、tanδ(0℃)の値を逆数として、比較例1の値を「100」とする指数で表した。この値が大きいほど、タイヤにしたときの燃費性能に優れるもの(低燃費)として評価できる。
<貯蔵弾性率性の評価>
 得られた各加硫ゴムシートについて、粘弾性スペクトロメーター(東洋精機製作所社製)により、初期歪み10%、振幅±2%、周波数20Hz、温度60℃における貯蔵弾性率(E’)を測定した。結果を第1表に示す。結果は、比較例1の貯蔵弾性率(E’)を100とする指数で表した。この値が大きいほど、タイヤにしたときの操縦安定性に優れるものとして評価できる。
<破断強度の評価>
 得られた加硫ゴムシートについて、JIS K6251:2010に準拠し、JIS3号ダンベル型試験片(厚さ2mm)を打ち抜き、温度100℃、引張り速度500mm/分の条件で破断強度(破断時の応力)を測定した。結果を第1表に示す(破断強度)。結果は、比較例1の破断強度を100とする指数で表した。この値が大きいほど、タイヤにしたときの破断強度に優れるものとして評価できる。
<耐摩耗性の評価>
 得られた加硫ゴムシートについて、ASTM-D2228に準拠して、ピコ摩耗試験機を使用して摩耗量を測定した。結果を第1表に示す(耐摩耗性)。結果は、摩耗量を逆数として、比較例1の値を「100」とする指数で表した。この値が大きいほど(つまり、摩耗量が少ないほど)、タイヤにしたときの耐摩耗性に優れるものとして評価できる。
 第1表中、ニトロン量換算値は、ジエン系ゴム100質量部に対する、変性ポリマー(変性SBR1または変性SBR2)の合成に使用されたニトロン化合物の質量部を表す。なお、変性にカルボキシニトロンを用いた場合には、ニトロン量換算値は、上述したCPN量換算値と同義である。
 また、変性率は、上述した変性ポリマー(変性SBR1または変性SBR2)の変性率を表す。変性効率は、ニトロン化合物の仕込み量に対する、反応に使用されたニトロン化合物の割合を表す。
 また、第1表中、S-SBR1、S-SBR2、変性SBR1、変性SBR2における数値は、オイル分を含む含有量(質量部)であり、括弧内の数値は、ゴム成分の含有量(質量部)を表す。
Figure JPOXMLDOC01-appb-T000012
 上記第1表に示されている各成分の詳細は以下のとおりである。
・S-SBR1:溶液重合スチレンブタジエンゴム、スチレン量:36質量%、重量平均分子量(Mw):147万、Tg:-13℃、ゴム成分100質量部に対しオイル分37.5質量部を含む油展品、旭化成ケミカルズ社製「タフデンE680」
・S-SBR2:溶液重合スチレンブタジエンゴム、スチレン量:37質量%、重量平均分子量(Mw):126万、Tg:-27℃、ゴム成分100質量部に対しオイル分37.5質量部を含む油展品、旭化成ケミカルズ社製「タフデンE581」
・変性SBR1:上述の通り合成した変性SBR1(カルボキシニトロン変性SBR)、ゴム成分100質量部に対しオイル分37.5質量部を含む油展品
・変性SBR2:上述の通り合成した変性SBR2(ジフェニルニトロン変性SBR)、ゴム成分100質量部に対しオイル分37.5質量部を含む油展品
・カーボンブラック:東海カーボン社製「シースト9M」、窒素吸着比表面積142m2/g
・シリカ:Zeosil 1165MP(CTAB吸着比表面積:152m2/g、ローディア社製)
・シランカップリング剤:Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド、エボニックデグサ社製)
・ステアリン酸:ステアリン酸YR(日油社製)
・テルペン樹脂:YSレジンTO125(ヤスハラケミカル社製)
・オイル:エキストラクト4号S(昭和シェル石油社製)
・亜鉛華:亜鉛華3号(正同化学社製)
・硫黄:油処理硫黄(軽井沢精錬所社製)
・加硫促進剤:ノクセラー CZ-G(大内新興化学工業社製)
・環状ポリスルフィド:式(s)において、R=-(CH22O(CH22-、x(平均)=4、n=2~3の環状ポリスルフィド。
 なお、環状ポリスルフィドは、次のようにして合成した。
 まず、1,2-ジクロロエタン1.98g(0.02mol)と30%多硫化ソーダ(Na24)水溶液1197g(2mol)をトルエン(500g)に加えた後、更にテトラブチルアンモニウムブロマイド0.64g(0.1mol)を入れ、50℃で2時間反応させた。続いて、反応温度を90℃に上げ、ジクロロエチルホルマール311g(1.8mol)をトルエン300gに溶かした溶液を1時間かけて滴下し、更に5時間反応させた。反応後、有機層を分離し、減圧下90℃で濃縮して、上述した還状ポリスルフィドを405g得た(収率96.9%)。
 第1表から分かるように、カルボキシニトロン変性SBRを含有しない比較例1と比較して、カルボキシニトロン変性SBRを含有する実施例1~3はいずれも、ゴム硬度、ウェットグリップ性、燃費性能、貯蔵弾性率、破断強度および耐摩耗性に優れていた。
 このように、実施例1~3のタイヤゴム組成物によれば、ゴム硬度および貯蔵弾性率に優れていることから、タイヤにしたときに、高速走行時の操縦安定性に優れることが示された。同様に、耐摩耗性および高温時の破断強度に優れていることから、高速走行を長時間行う際のタイヤの性状安定性に優れることが示された。
 また、実施例1および2との対比において、ジエン系ゴム中におけるカルボキシニトロン変性SBRの含有量が50質量%以上であるものを用いると(実施例2)、ウェットグリップ性が特に優れたものとなることが示された。
 一方、カルボキシニトロン変性SBRを含有せず、ジフェニルニトロン変性SBRを含有する比較例2は、ウェットグリップ性、燃費性能、破断強度および耐摩耗性が不十分であった。
 また、カルボキシニトロン変性SBRを含有せず、ジフェニルニトロン変性SBRを含有する比較例3は、ゴム硬度、ウェットグリップ性、燃費性能、破断強度および耐摩耗性が不十分であった。
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション

Claims (5)

  1.  シリカを含む無機充填剤と、カルボキシ変性ポリマーを含むジエン系ゴムと、を含有し、
     前記無機充填剤の含有量が、前記ジエン系ゴム100質量部に対して、70~170質量部であり、
     前記シリカの含有量が、前記ジエン系ゴム100質量部に対して、70~160質量部であり、
     前記カルボキシ変性ポリマーが、スチレン-ブタジエンゴム(A)を、カルボキシ基を有するニトロン化合物(B)によって変性することで得られ、前記ジエン系ゴム中の前記カルボキシ変性ポリマーの含有量が10~100質量%であり、
     前記スチレン-ブタジエンゴム(A)中のスチレン単位の含有量が、36質量%以上であり、
     前記スチレン-ブタジエンゴム(A)の有するブタジエンに由来する全ての二重結合のうち、前記カルボキシ基を有するニトロン化合物(B)によって変性された割合(mol%)を変性率とした場合、前記カルボキシ変性ポリマーの変性率が0.02~4.0mol%である、タイヤトレッド用ゴム組成物。
  2.  前記カルボキシ基を有するニトロン化合物(B)が、N-フェニル-α-(4-カルボキシフェニル)ニトロン、N-フェニル-α-(3-カルボキシフェニル)ニトロン、N-フェニル-α-(2-カルボキシフェニル)ニトロン、N-(4-カルボキシフェニル)-α-フェニルニトロン、N-(3-カルボキシフェニル)-α-フェニルニトロンおよびN-(2-カルボキシフェニル)-α-フェニルニトロンからなる群より選択される化合物である、請求項1に記載のタイヤトレッド用ゴム組成物。
  3.  さらに、一般式(s)で表される環状ポリスルフィドを含有し、
     前記環状ポリスルフィドの含有量が、前記ジエン系ゴム100質量部に対して、0.2~5質量部である、請求項1または2に記載のタイヤトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001

    (上記一般式(s)中、Rは、置換もしくは非置換の炭素数4~8のアルキレン基、置換もしくは非置換の炭素数4~8のオキシアルキレン基(「-R-O-」、Rは炭素数4~8のアルキレン基を表す。)、または、-R-O-R-(RおよびRは、それぞれ独立に、炭素数1~7のアルキレン基を表す。)を表す。また、xは平均3~5の数を表す。また、nは1~5の整数を表す。)
  4.  前記スチレン-ブタジエンゴム(A)を変性する際に使用する前記カルボキシ基を有するニトロン化合物(B)の量が、前記ジエン系ゴム100質量部に対して、0.1~10質量部である、請求項1~3のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  5.  請求項1~4のいずれか1項に記載のタイヤトレッド用ゴム組成物をタイヤトレッドに使用した空気入りタイヤ。
PCT/JP2016/058829 2015-03-19 2016-03-18 タイヤトレッド用ゴム組成物および空気入りタイヤ WO2016148296A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016001294.2T DE112016001294T5 (de) 2015-03-19 2016-03-18 Kautschukzusammensetzung für Reifenlaufflächen und Luftreifen
CN201680010742.XA CN107250244A (zh) 2015-03-19 2016-03-18 轮胎胎面用橡胶组合物及充气轮胎
US15/557,701 US20180051163A1 (en) 2015-03-19 2016-03-18 Rubber composition for tire treads and pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056621 2015-03-19
JP2015056621A JP6024781B2 (ja) 2015-03-19 2015-03-19 タイヤトレッド用ゴム組成物および空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2016148296A1 true WO2016148296A1 (ja) 2016-09-22

Family

ID=56919734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058829 WO2016148296A1 (ja) 2015-03-19 2016-03-18 タイヤトレッド用ゴム組成物および空気入りタイヤ

Country Status (5)

Country Link
US (1) US20180051163A1 (ja)
JP (1) JP6024781B2 (ja)
CN (1) CN107250244A (ja)
DE (1) DE112016001294T5 (ja)
WO (1) WO2016148296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944851A (zh) * 2017-08-01 2020-03-31 横滨橡胶株式会社 充气轮胎
JP2020059775A (ja) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 トレッド用ゴム組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081766B1 (ko) * 2016-09-09 2020-02-26 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
JP2021523261A (ja) * 2018-05-04 2021-09-02 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物
JP2020059773A (ja) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 タイヤ用ゴム組成物、トレッドおよびタイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213183A (ja) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2014101400A (ja) * 2012-11-16 2014-06-05 Yokohama Rubber Co Ltd:The 変性ポリマー
JP5578249B1 (ja) * 2013-03-08 2014-08-27 横浜ゴム株式会社 ホットメルト接着剤組成物
JP2014189698A (ja) * 2013-03-28 2014-10-06 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2015098591A (ja) * 2013-10-18 2015-05-28 横浜ゴム株式会社 ゴム組成物およびゴム製品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213183A (ja) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2014101400A (ja) * 2012-11-16 2014-06-05 Yokohama Rubber Co Ltd:The 変性ポリマー
JP5578249B1 (ja) * 2013-03-08 2014-08-27 横浜ゴム株式会社 ホットメルト接着剤組成物
JP2014189698A (ja) * 2013-03-28 2014-10-06 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2015098591A (ja) * 2013-10-18 2015-05-28 横浜ゴム株式会社 ゴム組成物およびゴム製品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944851A (zh) * 2017-08-01 2020-03-31 横滨橡胶株式会社 充气轮胎
JP2020059775A (ja) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 トレッド用ゴム組成物
JP7243115B2 (ja) 2018-10-05 2023-03-22 住友ゴム工業株式会社 トレッド用ゴム組成物

Also Published As

Publication number Publication date
JP6024781B2 (ja) 2016-11-16
DE112016001294T5 (de) 2017-11-30
JP2016175986A (ja) 2016-10-06
CN107250244A (zh) 2017-10-13
US20180051163A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
US9416252B2 (en) Rubber composition for tire tread
JP5316660B2 (ja) タイヤトレッド用ゴム組成物
US9150712B2 (en) Rubber composition for tire tread
US9567451B2 (en) Rubber composition for use in tire treads
WO2016148296A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5691456B2 (ja) タイヤトレッド用ゴム組成物
US9790353B2 (en) Rubber composition and pneumatic tire
US9757982B2 (en) Rubber composition and pneumatic tire
US10011707B2 (en) Rubber composition and pneumatic tire
WO2013157545A1 (ja) タイヤ用ゴム組成物、空気入りタイヤ
US9803031B2 (en) Modified polymer, rubber composition and pneumatic tire
JP7103434B2 (ja) 空気入りタイヤ
JP2018150531A (ja) 重荷重用タイヤ用ゴム組成物および空気入りタイヤ
JP5949987B1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5838760B2 (ja) タイヤトレッド用ゴム組成物
WO2016167289A1 (ja) ゴム組成物及びタイヤ
WO2019070016A1 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019065240A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5962809B1 (ja) タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557701

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001294

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765125

Country of ref document: EP

Kind code of ref document: A1