WO2016148190A1 - 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置 - Google Patents

基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置 Download PDF

Info

Publication number
WO2016148190A1
WO2016148190A1 PCT/JP2016/058322 JP2016058322W WO2016148190A1 WO 2016148190 A1 WO2016148190 A1 WO 2016148190A1 JP 2016058322 W JP2016058322 W JP 2016058322W WO 2016148190 A1 WO2016148190 A1 WO 2016148190A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dielectric
pattern
convex portion
manufacturing
Prior art date
Application number
PCT/JP2016/058322
Other languages
English (en)
French (fr)
Inventor
奈津子 青田
英雄 会田
豊 木村
友喜 川又
小林 秀行
諏訪 充史
千香 谷口
Original Assignee
並木精密宝石株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社, 東レ株式会社 filed Critical 並木精密宝石株式会社
Publication of WO2016148190A1 publication Critical patent/WO2016148190A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to a substrate and a manufacturing method thereof, a light emitting element and a manufacturing method thereof, and an apparatus having the substrate or the light emitting element.
  • LEDs Light Emitting Diodes
  • EL Electro Luminescence
  • Group 3-5 compound semiconductors It has been put into practical use.
  • the Group 3-5 compound semiconductor is a direct transition type semiconductor, and can operate stably at a higher temperature than an element using another semiconductor.
  • group 3-5 compound semiconductors are widely used in various lighting devices, illuminations, electronic devices and the like because of their high energy conversion efficiency and long life.
  • Such LED light-emitting elements are formed on the surface of a sapphire (Al 2 O 3) substrate, and a schematic diagram of the structure is shown in FIG. FIG. 3).
  • an n-type GaN contact layer (n-GaN layer) 102 is formed on the surface of the sapphire substrate 101 via a low-temperature growth buffer layer (not shown) made of a GaN-based semiconductor material. Is formed.
  • An n-type electrode is formed on the n-GaN layer 102.
  • An n-type AlGaN cladding layer (not shown, omitted in some cases), an InGaN light emitting layer (active layer) 103, and a p-type AlGaN cladding layer 104 are formed on the n-GaN layer 102, and p-type AlGaN cladding layer 104 is formed thereon.
  • a type GaN contact layer 105 is formed. Further, on the p-type GaN contact layer 105, an ITO (indium tin oxide) transparent electrode 106 and a metal electrode are formed as a p-type electrode.
  • the InGaN light-emitting layer 103 employs a multiple quantum well structure (MQW: Multiple Quantum Well) composed of an InGaN well layer and an InGaN (GaN) barrier layer.
  • MQW Multiple Quantum Well
  • An n-type electrode layer 107 is formed on the n-GaN layer 102 where the InGaN light-emitting layer 103 is not formed.
  • the light emitted from the InGaN light emitting layer 103 of the light emitting element 100 is extracted from the p-type electrode and / or the sapphire substrate 101.
  • reduction of dislocations is a problem.
  • a lattice constant difference occurs between the lattice constant of sapphire and the lattice constant of GaN, and this lattice constant difference causes high density non-light emission in the GaN crystal. Threading dislocations that act as recombination centers occur. Due to this threading dislocation, the light output (internal quantum efficiency) and the endurance life are decreased, and the leakage current is increased.
  • the refractive index of GaN is about 2.4
  • the refractive index of sapphire is about 1.8
  • the refractive index of air is 1.0, between GaN and sapphire, about 0.6, and between GaN and air.
  • a refractive index difference of about 1.4 occurs. Due to this refractive index difference, the light emitted from the InGaN light emitting layer 103 repeats total reflection between the p-type electrode, the interface between GaN and air, and the sapphire substrate 101.
  • the light is confined in the InGaN light emitting layer 103 by this total reflection and is self-absorbed while propagating through the InGaN light emitting layer 103, or is absorbed by an electrode or the like, and is finally converted into heat. That is, a phenomenon occurs in which the light extraction efficiency of the light emitting element is significantly reduced due to the limitation of total reflection due to the difference in refractive index.
  • a light emitting device in which a concavo-convex pattern is formed on the surface of a sapphire substrate and the GaN layers 102 to 105 and electrodes are formed on the concavo-convex pattern.
  • a method for forming the uneven pattern there is a method of etching the surface of the sapphire substrate.
  • an uneven pattern composed of a dielectric material such as SiO 2 , ZrO 2 , TiO 2 or the like having a refractive index smaller than that of GaN is formed on the surface of a flat sapphire substrate.
  • the formed light emitting element is disclosed (for example, refer to FIG. 1 of Patent Document 1).
  • the pattern of the convex portion 109 made of a dielectric is formed on the surface of the sapphire substrate 101.
  • an uneven refractive index interface can be formed below the InGaN light emitting layer 103. Accordingly, a part of the light generated in the InGaN light emitting layer 103 and propagated in the lateral direction and absorbed inside the light emitting element 108 is brought out of the sapphire substrate 101 and the InGaN light emitting layer 103 by the light scattering effect of the convex portion 109. It becomes possible to extract, and the light extraction efficiency can be improved.
  • Patent Document 1 a normal photolithography technique is used for pattern formation of the convex portion 109. That is, when forming the convex portion 109, a photoresist film made of novolac resin or the like is formed on the SiO 2 film separately from the SiO 2 film that is the base of the convex portion 109, and then the photoresist film is formed through the mask. A pattern was formed, and the SiO 2 film had to be formed by etching using the patterned photoresist film as a new mask. Accordingly, a photoresist film forming process, exposure, development process, and SiO 2 film etching process are essential, which increases the number of processes and causes an increase in cost due to the increase in the number of processes.
  • the convex portion 109 is formed by photolithography technique and etching processing, the photoresist film must be exposed and developed.
  • the cross-sectional shape of the convex portion 109 that can be formed is limited to a trapezoidal shape, the degree of freedom of the convex shape that can be formed is low. Therefore, realization of improved light extraction efficiency and production of a convex portion having a cross-sectional shape that can shorten the growth time of the GaN layer covering the convex portion is the photolithography of the photoresist film formed on the dielectric film. It was difficult with the technology and etching using it as a mask.
  • the present invention has been made in view of the above circumstances, imparting photosensitivity to the dielectric film composition itself, and enabling the formation of a convex pattern without a photoresist film, thereby reducing the number of processes and processes.
  • An object of the present invention is to provide a substrate having a desired pattern on the surface, a method for manufacturing the same, a light emitting element, and a method for manufacturing the same, which can reduce the cost associated with the reduction of the number.
  • the above-mentioned subject is achieved by the following present invention. That is, (1) The method of manufacturing a substrate according to the present invention prepares a flat substrate, Forming a dielectric containing a photosensitive agent on the substrate surface; The dielectric is patterned, and the dielectric having a desired pattern is formed on the substrate surface.
  • the dielectric is preferably annealed after the dielectric pattern is formed, and the dielectric having the desired pattern is formed on the substrate surface. . In another embodiment of the substrate manufacturing method, the dielectric is preferably post-baked after the dielectric pattern is formed and before the annealing.
  • the post-baking is performed in a temperature range of 100 ° C. or higher and 400 ° C. or lower.
  • the annealing is preferably performed in a temperature range of 700 ° C. or higher and 1700 ° C. or lower.
  • the dielectric is a siloxane resin composition, a titanium oxide-containing siloxane resin composition, a zirconium oxide-containing siloxane resin composition, or an alumina-containing siloxane resin composition. It is preferable that it is either.
  • substrate of this invention forms the said dielectric material on the said substrate surface by apply
  • the dielectric is directly patterned on the substrate surface in the desired pattern, Next, the substrate having the dielectric formed on the substrate surface is pre-baked, Next, the dielectric is exposed, Preferably, the dielectric is annealed to form the dielectric with the desired pattern on the substrate surface.
  • substrate of this invention forms the said dielectric material on the said substrate surface by apply
  • the mold is pressed against the dielectric to cure the dielectric,
  • the dielectric is annealed to form the dielectric with the desired pattern on the substrate surface.
  • substrate of this invention prepares the said board
  • the manufacturing method of the light emitting element of this invention prepares the said board
  • the substrate of the present invention is characterized in that it has a pattern made of island-shaped protrusions on a flat substrate surface, and the protrusions are made of a dielectric.
  • the substrate can be provided in a light source, a display, or a solar cell.
  • the convex portion is curved (having a curved surface).
  • the dielectric constituting the convex portion has one of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 as a main component. .
  • the convex portion has a curved surface as a whole, the top portion and the side portion are not distinguished, and a flat surface is not present.
  • the convex portion has a hemispherical shape.
  • the planar shape of the convex portion is circular or elliptical.
  • the substrate of the present invention preferably has the desired pattern on the surface of the substrate.
  • the substrate of the present invention has the pattern at a uniform pitch on the surface of the substrate, and the defective portion of the pattern where the pattern is not formed at the surface portion of the pitch is the pitch.
  • the total number of the patterns on the surface when formed is preferably from 0% to 50%.
  • the light emitting device of the present invention is a light emitting device including at least one of a GaN layer, an AlN layer, and an InN layer formed on the convex portion and the substrate. Note that the light-emitting element is preferably provided in a light source or a display.
  • the substrate surface can be formed without forming a photoresist film. It is possible to form a desired pattern of convex portions on the top. Accordingly, the number of processes can be reduced, the process can be facilitated, and the cost of the substrate can be reduced as the number of processes is reduced. Note that the substrate thus obtained can be applied to a light source, a display, a substrate, and the like.
  • the fluidity of the dielectric can be improved by performing post-baking in a temperature range of 100 ° C. or more and 400 ° C. or less, the entire pattern of the dielectric can be obtained.
  • a part of the top / side portion can be rounded and formed into a curved shape, and the light extraction efficiency of the light emitting element can be improved.
  • the convex portion formed in a curved shape shortens the lateral growth time of the GaN layer when forming a GaN layer or the like, so the growth of the GaN layer Time can be shortened.
  • the photosensitive agent component of the convex portion can be removed by annealing. It is possible to prevent organic components from being mixed into a light emitting device such as a GaN layer. Furthermore, it is possible to prevent the growth of the GaN layer from occurring on the convex portion or to make the growth difficult. By suppressing the growth of the GaN layer on the convex portion, the FACELO growth mode can be realized, so that a GaN layer having a reduced dislocation density can be formed. In addition, since the post-annealed convex portion can be provided with heat resistance, the shape and physical properties of the convex portion can be maintained even under the deposition temperature (about 1000 ° C.) during the deposition of the n-GaN layer.
  • the siloxane resin composition, the titanium oxide-containing siloxane resin composition, the zirconium oxide-containing siloxane resin composition, and the alumina-containing siloxane resin composition have good coverage, A uniform dielectric with a uniform thickness or height can be formed on the substrate surface without forming a resist film. Furthermore, since the shrinkage in curing is small compared to other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins, it is easy to form protrusions on the substrate surface with the desired height, size, and pitch. Is possible.
  • the siloxane resin composition, titanium oxide-containing siloxane resin composition, zirconium oxide-containing siloxane resin composition, and alumina-containing siloxane resin composition are compared with other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins. Since cracks are unlikely to occur after curing, voids are unlikely to occur in the dielectric of the convex portion, and gaps (voids) are also unlikely to occur at the interface between the convex portion and the GaN layer during the growth of the GaN layer. Accordingly, deterioration of electrical characteristics in the light emitting element can be prevented.
  • a pattern can be formed on the substrate surface without forming a photoresist film. Can be formed. Accordingly, the number of processes can be reduced, the process can be facilitated, and the cost of the substrate can be reduced as the number of processes is reduced. Furthermore, since the process time is short, a substrate having a desired pattern on the surface can be manufactured in a short time.
  • the degree of freedom of the type of the convex pattern can be increased.
  • the convex portions having a desired size, pitch and height can be formed on the substrate surface with simple equipment and at low cost.
  • a pattern can be formed.
  • the light scattering effect is obtained at each convex portion by forming the convex portion on the surface of the substrate. Accordingly, part of the light absorbed inside the light emitting element can be extracted to the outside of the substrate and the InGaN light emitting layer, and the light extraction efficiency of the light emitting element can be improved. Note that the light-emitting element thus obtained can be applied to a light source, a display, and the like.
  • a desired pattern consisting of convex portions can be formed on the substrate surface, so that the pattern can be formed on the substrate surface without forming a photoresist film. It becomes possible to form. Accordingly, the number of steps can be reduced, the number of steps can be simplified, and the cost of the light-emitting element can be reduced, and the light-emitting element with improved light extraction efficiency can be manufactured.
  • the convex portion formed in a curved shape shortens the lateral growth time of the GaN layer when forming a GaN layer or the like, so the growth of the GaN layer Time can be shortened.
  • the material constituting the convex portion into a dielectric whose main component is SiO 2 , TiO 2 , ZrO 2 , or Al 2 O 3 . It is possible to prevent the growth of the GaN layer from occurring on the portion or to make the growth difficult. By suppressing the growth of the GaN layer on the convex portion, the FACELO growth mode can be realized, so that a GaN layer having a reduced dislocation density can be formed.
  • the convex portion formed in a curved surface has a shorter lateral growth time during the formation of the GaN layer or the like than the convex portion having a trapezoidal shape or a rectangular shape in cross section. It becomes possible to shorten the growth time of the layer.
  • the patterning step of the dielectric layer can be facilitated by setting the planar shape of the convex portion to a circle or an ellipse.
  • the planar shape of the convex portion can be set to a circle, in addition to the above effects, even if reflection, refraction, attenuation, etc. of light by a plurality of convex portions interact with each other (for example, interference), the directionality to the interaction Since light is emitted uniformly in all directions, a light-emitting element with high light extraction efficiency can be manufactured.
  • the total number of missing portions of the pattern with respect to the ratio of the total number of patterns on the surface of the substrate is set to 0% or more and 50% or less, so that the same substrate is formed. Variation in light output between the manufactured light emitting elements can be reduced.
  • FIG. 3 is an enlarged side view of the substrate shown in FIG.
  • FIG. 2 It is the fragmentary top view which expands the board
  • FIG. 5 is a partial plan view showing only convex portions of the substrate shown in FIG.
  • FIG. 4 is an enlarged side view of the substrate shown in FIG. (d) FIG.
  • FIG. 5 is a partial plan view showing only convex portions of the substrate shown in FIG. (a) It is a partial top view which shows only the convex part which concerns on this invention and a planar shape is a triangle. (b) A partial plan view showing only convex portions having a hexagonal plan shape according to the present invention. It is an enlarged side view which shows the board
  • FIG. 4 (b) is an enlarged side view of the substrate of the modified example of the substrate shown in FIG. 4 (c).
  • FIG. 7 is an enlarged side view of a substrate of a modified example of the substrate shown in FIG.
  • (a) An enlarged view of a convex portion showing a growth stage of a GaN layer in a trapezoidal convex portion.
  • (b) An enlarged view of the convex portion showing the growth stage of the GaN layer in the convex portion having a rectangular shape.
  • a substrate 1 having a desired pattern on its surface is a base substrate of an LED light emitting element 8 (hereinafter referred to as “light emitting element 8” as appropriate).
  • the substrate 1 has a pattern made of island-shaped convex portions 1b on the surface of the flat substrate 1a. Furthermore, the convex part 1b is comprised with a dielectric material.
  • the island shape means that each protrusion 1b has an independent protrusion from the top of the protrusion 1b to the height of the surface of the substrate 1a in the thickness direction of the substrate 1a. Therefore, if each convex portion 1b has an independent convex shape from the top of the convex portion 1b to the height of the surface of the substrate 1a, the island-shaped pattern is satisfied, and the substrate 1a is oriented in the substrate plane direction (FIG. 1). (Or from the top to the bottom in FIG. 2), whether the convex portions 1b are separated from each other, or whether the side portions of the convex portions 1b are in contact with each other on the bottom surface of the convex portion 1b, that is, the surface of the substrate 1a. ,both are fine.
  • the convex portions 1b By forming the convex portions 1b on the surface of the substrate 1a, a light scattering effect can be obtained at each convex portion 1b. Therefore, part of the light absorbed inside the light emitting element 8 can be extracted to the outside of the substrate 1a and the InGaN light emitting layer 3, and the light extraction efficiency of the light emitting element 8 can be improved.
  • n-type GaN contact layer (n-GaN layer) 2 starts from the surface of the substrate 1a between the convex portions 1b, that is, a flat portion that is not the convex portion 1b, and as the thickness of the n-GaN layer 2 increases, The side and top of the convex portion 1b are covered. Therefore, a GaN layer is formed so as to cover the surface of the substrate 1a and the pattern of the protrusions 1b.
  • the substrate 1a may be any material that can grow a group 3-5 compound semiconductor, such as sapphire (Al 2 O 3 ), Si, SiC, GaAs, InP, spinel, etc.
  • sapphire is a group 3-5.
  • sapphire substrate Most preferable in terms of formation of a compound semiconductor.
  • the description will be continued by taking the sapphire substrate as an example of the substrate 1a.
  • the surface of the substrate 1a may be appropriately selected from the C surface, A surface, R surface, etc., or may be inclined from these surfaces.
  • the surface of the substrate 1a which is the growth start location of the n-GaN layer 2, is in a mirror state with a surface roughness Ra of about 1 nm or less, which prevents the occurrence of defects during crystal growth in the n-GaN layer 2. It is particularly preferable from the viewpoint.
  • mirror polishing may be performed.
  • the material of the convex portion 1b is a dielectric containing a photosensitive agent.
  • the pattern of the convex portion 1b can be formed on the substrate 1a even without a photoresist film (that is, an etching mask for the convex portion 1b forming film) as described later. It can be formed on the surface.
  • a composition containing a binder resin and a photosensitizer in a dielectric mainly composed of any one of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 is preferable.
  • a siloxane resin is preferable.
  • dielectric composition examples include a photosensitive siloxane resin composition, a photosensitive titanium oxide-containing siloxane resin composition, a photosensitive zirconium oxide-containing siloxane resin composition, and a photosensitive alumina-containing siloxane resin composition.
  • the siloxane resin composition contains a polymer having a main skeleton with a siloxane bond.
  • the polymer having a main skeleton by a siloxane bond is not particularly limited, but preferably has a weight average molecular weight (Mw) of 1,000 to 100,000, more preferably 2,000 to 50,000 in terms of polystyrene measured by GPC (gel permeation chromatography). .
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the siloxane resin composition, titanium oxide-containing siloxane resin composition, zirconium oxide-containing siloxane resin composition, and alumina-containing siloxane resin composition have good coverage, it is uniform on the surface of the substrate 1a without forming a photoresist film. A uniform dielectric with a uniform thickness or height can be formed. Furthermore, since the cure shrinkage is small compared to other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins, the convex portion 1b can be easily formed on the surface of the substrate 1a with the desired height, size, and pitch. It becomes possible to do.
  • the siloxane resin composition, titanium oxide-containing siloxane resin composition, zirconium oxide-containing siloxane resin composition, and alumina-containing siloxane resin composition are compared with other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins. Since cracks do not easily occur after curing, voids are unlikely to occur in the dielectric of the convex portion, and gaps (voids) are unlikely to occur at the interface between the convex portion 1b and the GaN layer during the growth of the GaN layer (2 to 5). . Therefore, deterioration of electrical characteristics in the light emitting element 8 can be prevented.
  • the pitch refers to the minimum distance among the center-to-center distances between adjacent convex portions 1b.
  • the material constituting the convex portion 1b is made of a dielectric material mainly composed of SiO 2 , TiO 2 , ZrO 2 , or Al 2 O 3 , thereby generating growth of the GaN layer on the convex portion 1b. Prevention or generation of growth can be made difficult.
  • the FACELO growth mode can be realized, so that it is possible to form a GaN layer with a reduced dislocation density.
  • the size of the protrusions 1b and the pitch between the protrusions 1b can be set to at least ⁇ / (4n) or more when the emission wavelength in the GaN layer of the light-emitting element 8 is set to ⁇ . Is preferable in that it becomes scattered or diffracted.
  • the size of the convex portion 1b is variously set according to the planar shape of the convex portion 1b, but as will be described later, the radius of the planar shape is a circle, and the elliptical radius is the radius in the minor axis direction, as will be described later. In the case of a length or a polygon, the length is represented by the length of one side that forms the side of the convex portion 1b.
  • N is the refractive index of the GaN layer, and is about 2.4 as an example.
  • the refractive index of the dielectric is preferably different from at least the refractive index of gallium nitride (GaN).
  • the refractive index of the dielectric is smaller than that of gallium nitride (GaN) from the viewpoint of preventing light from being transmitted to the substrate side and improving the luminance of the light emitting element.
  • the pitch between the convex portions 1b is preferably 50 ⁇ m or less from the viewpoint of reducing the total number of times of light reflection due to scattering or diffraction. .
  • the pitch between the convex portions 1b is more preferably 20 ⁇ m or less. More preferably, the pitch between the convex portions is set to 10 ⁇ m or less, and by setting the pitch to 10 ⁇ m or less, the light scattering surface is increased and the probability of light scattering or diffraction is increased. The light extraction efficiency can be further improved.
  • the convex portion 1b is formed in a curved shape. That is, at least a part of the convex portion 1b has a curved surface. Since a part of the convex portion 1b is formed in a curved surface shape, the light extraction efficiency of the light emitting element 8 can be further improved. Furthermore, the convex portion 1b formed into a curved surface has a cross-sectional shape in a plane perpendicular to the substrate in comparison with a trapezoidal shape or a rectangular shape. Since the direction growth time is shortened, the growth time of the GaN layer can be shortened.
  • the GaN layer when the GaN layer is laterally grown on the convex portion 13 having a trapezoidal side shape from FIG. 7 (a) or on the convex portion 14 having a rectangular side shape from FIG. 7 (b). As shown by the arrows, the GaN layer has to be grown in two stages: once on the side portions 13a and 14a and then on the top surfaces 13b and 14b. On the other hand, in the convex portion 1b in which the entire pattern is formed into a curved shape from FIG. 10 (c), a GaN layer can be formed on the convex portion 1b by continuous lateral growth as indicated by an arrow. It becomes possible to shorten the growth time of the layer.
  • the growth of the GaN layer on the side part 1c can be quickly transferred to the top part 1d.
  • Time can be shortened.
  • the growth of the GaN layer is promptly promoted on the side part, and the growth of the GaN layer can be transferred to the top part. It can be shortened.
  • the planar shape is substantially polygonal as shown in FIG. 5 (a) or (b), and the side shape is the side portion 1c as shown in FIG.
  • An example is a shape that is inclined and has a convex top 1d formed into a curved surface.
  • the taper angle ⁇ When the taper angle ⁇ is 90 °, the cross-sectional shape of the convex portion 1b is rectangular, and when the taper angle ⁇ is 180 °, there is no flat portion 1b. In order to fill the projection 1b with the GaN layer, the taper angle ⁇ needs to be at least 90 ° or more.
  • Approximate polygon refers to a triangle or hexagon, and does not need to be a geometrically perfect polygon, but includes polygons with rounded corners and sides for reasons of processing.
  • planar shape of the protrusion 1b By forming the planar shape of the protrusion 1b into a triangle or hexagon, it has an apex in a plane substantially parallel to the growth stable surface of the GaN layer, and is substantially parallel to the growth stable surface of the GaN layer.
  • a straight line that intersects a flat surface can be used as a component side.
  • the convex portion 1b is formed with a curved surface so that there is no distinction between the top portion and the side portion, and it has a curved shape with no flat surface, thereby improving the light extraction efficiency.
  • the convex portion 1b is more preferably hemispherical as shown in FIG. Therefore, the curvature at each part of the convex part 1b is larger than 0, and there is no corner except the part where the convex part 1b and the substrate 1a are continuous. Further, the substrate 1a and the convex portion 1b shown in FIG. 3A, FIG. 4C, and FIG.
  • FIG. 6A. 6A (a) and 6 (b) may have a modification as shown in FIG. 6A. 6A (a) and 6 (b), in the case where the entire convex portion 1b is formed of a curved surface, the curved surface has an inflection point on the way, and the top curved surface is in front of and behind the inflection point.
  • the curved surface 1f has a curvature with a sign opposite to that of the curvature.
  • the modification shown in FIG. 6A (c) has a side portion 1c in part, and has a curved surface 1f having a curvature with a sign opposite to that of the curvature of the top curved surface before and after the side portion 1c.
  • a curved surface 1f may be similarly formed on the convex portion 1b in FIG.
  • the planar shape of the convex portion 1b is preferably circular as shown in FIG. 3 (b) or elliptical as shown in FIGS. 4 (b) and 4 (d).
  • the circular planar convex portion 1b is more preferable.
  • the planar shape it is possible to facilitate a patterning process to be described later of the dielectric layer.
  • All the convex portions 1b formed on the surface of the substrate 1a are desirably the same size and shape, but there may be a slight difference in size, shape, or curvature for each convex portion 1b.
  • the arrangement form of the protrusions 1b is not limited, and may be an arrangement form with a regular pitch such as a lattice arrangement structure, or an arrangement form with an irregular pitch.
  • a circular or elliptical shape and a substantially polygonal shape may be used on the surface of one substrate 1a as the planar shape of the convex portion 1b.
  • the pattern of the convex portion 1b be formed on the surface of the substrate 1a periodically with a uniform size, height, shape and pitch.
  • a part of the convex portion 1b is removed from the periodic structure, there is a variation in light output between elements of the light emitting element fabricated on the substrate 1a. Therefore, the total number of places where the pattern of the convex part 1b is not formed on the surface part of the substrate 1a where the convex part 1b is to be formed at a uniform pitch (the missing part of the pattern of the convex part 1b) is the uniform pitch.
  • the pattern of the convex portion 1b it is desirable to be within a range of 0% to 50% with respect to the total number of patterns on the surface of the substrate 1a. With such a configuration, it is possible to reduce variations in light output between the light emitting elements 8 manufactured on the same substrate 1a.
  • the ratio of the total number of missing portions of the pattern to the total number of patterns on the surface of the substrate 1a (the total number of defective portions of the pattern / the total number of patterns on the surface of the substrate 1a) is referred to as “pattern loss” and thereafter List accordingly.
  • the pattern loss ratio exceeds 50%, the number of convex portions 1b on the surface of the substrate 1a becomes insufficient for lateral growth of the GaN layer, and crystal defects are easily introduced into the GaN layer.
  • the GaN layer can be more easily grown in the lateral direction and crystal defects are less likely to be introduced.
  • the rate can be improved, which is more preferable.
  • the pattern loss ratio in the range of 0% to 15%, the surface roughness during the formation of the n-GaN layer is reduced, and the amount of In incorporation during the subsequent formation of the InGaN light emitting layer is reduced to the substrate 1a. Since it can be made uniform in the plane, the wavelength variation of the light emitting element can be further reduced, which is more preferable.
  • Element 8 is manufactured.
  • the p-type electrode 6 is formed on the p-type GaN contact layer 5 together with the metal electrode, and the n-type electrode layer 7 is formed on the n-GaN layer 2 where the InGaN light-emitting layer 3 is not formed. For example, as shown in FIG.
  • the two or more GaN layers are an n-type GaN contact layer (n-GaN layer) 2, an InGaN light emitting layer (active layer) 3, a p-type AlGaN cladding layer 4, and a p-type GaN.
  • the contact layer 5 is mentioned, it is not limited to this structure.
  • a structure comprising at least a layer having n-type conductivity, a layer having p-type conductivity, and a layer of a Group 3-5 nitride compound semiconductor having a light emitting layer sandwiched therebetween is preferable.
  • the group 3-5 nitride compound semiconductor formed on the substrate 1 is not limited to the GaN layer, and may be changed to include at least one of the AlN layer and the InN layer. Specifically, after forming a buffer layer made of AlN or the like on the substrate 1, the n-GaN layer 2 is formed.
  • the buffer layer may be a layer made of GaN.
  • FIG. 8 is a schematic view showing a manufacturing process of a convex portion made of a dielectric containing a photosensitizer by a photolithography method, which is one embodiment of the manufacturing method of the present embodiment.
  • FIG. 9 is a schematic diagram illustrating a manufacturing process of an imprint method, which is another embodiment of the manufacturing method of the present embodiment.
  • FIG. 10 is a schematic view showing a manufacturing process of an ink jet method, which is another embodiment of the manufacturing method of the present embodiment.
  • a flat substrate 1a is first prepared, and then FIGS. 8 (b), 9 (b), and 10 (b).
  • a dielectric 1e containing a photosensitive agent and having photosensitivity is formed on the surface of the substrate 1a, the dielectric 1e is patterned, and the protrusion 1b made of a dielectric having a desired pattern is formed on the substrate. Formed on the 1a surface.
  • the dielectric 1e is formed as a film having a constant thickness, and in the manufacturing method of FIG. 10, it is formed into a plurality of convex shapes.
  • the flat substrate 1a means that the surface of the substrate 1a on which the dielectric 1e is patterned is in a mirror state, and the surface roughness Ra is about 1 nm or less.
  • the desired pattern refers to a pattern composed of island-shaped convex portions 1b.
  • a desired pattern consisting of the protrusion 1b can be formed on the surface of the substrate 1a, so that a photoresist film (an etching mask for the protrusion 1b forming film) It is possible to form a pattern on the surface of the substrate 1a without forming a film. Accordingly, the number of processes can be reduced, the process can be facilitated, and the cost of the substrate 1 can be reduced as the number of processes is reduced.
  • siloxane resin composition is taken as an example of the dielectric 1e and will be described in detail for each process.
  • the description will be given by taking the case where the substrate 1a is made of sapphire (hereinafter referred to as “sapphire substrate 1a” as appropriate) as an example.
  • the sapphire substrate 1a is UV / O 3 cleaned, then washed with water, and dehydrated and baked. Further, the sapphire substrate 1a is subjected to an HMDS (hexamethyldisilazane) process and baked. As shown in FIGS. 8 (a), 9 (a), and 10 (a), a sapphire substrate 1a is formed as a flat substrate. Prepare.
  • a siloxane resin composition is uniformly applied onto the surface of the sapphire substrate 1a by a spinner.
  • the siloxane resin composition is used as a material for forming the convex portion 1b, the covering property is good, so that a uniform dielectric with a uniform thickness or height can be formed on the surface of the substrate 1a. Furthermore, since the cure shrinkage is small compared to other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins, the convex portion 1b can be easily formed on the surface of the substrate 1a with the desired height, size, and pitch. It becomes possible to do. In addition, siloxane resin compositions are less susceptible to cracking after curing than other resins, titanium oxide-containing resins, zirconium oxide-containing resins, and alumina-containing resins. During the growth of the layers (2 to 5), voids are less likely to occur at the interface between the convex portion 1b and the GaN layer. Therefore, deterioration of the electrical characteristics of the light emitting element 8 can be prevented.
  • the process of the photolithography method is as follows. As described above, the dielectric 1e is applied on the surface of the substrate 1a, thereby forming a film of the dielectric 1e on the surface of the substrate 1a (see FIG. 8B). Thereafter, the substrate 1a having the dielectric 1e film formed on the surface of the substrate 1a is pre-baked, and then the dielectric 1e film is exposed to a desired pattern using a mask 10 as shown in FIG. 8C. . Further, the exposed dielectric 1e is developed (see FIG. 8D), and the developed dielectric 1e is post-baked. Further, as shown in FIG.
  • the dielectric 1e is annealed after post-baking, and the desired pattern of the dielectric 1e (the dielectric 1e becomes the convex portion 1b at the time of FIG. 8 (e)) is formed on the substrate. Form on the 1a surface.
  • the developed dielectric 1e is post-baked and then the dielectric 1e is annealed.
  • the invention is not limited to this, and the developed dielectric 1e may be annealed without being post-baked.
  • the process of imprint method is as follows. As described above, the dielectric 1e is applied on the surface of the substrate 1a to form a film of the dielectric 1e on the surface of the substrate 1a (see FIG. 9B). Thereafter, the mold 11 is pressed against the film of the dielectric 1e and the dielectric is cured by light irradiation (see FIG. 9C). Next, the dielectric 1e is post-baked (see FIG. 9 (d)), and as shown in FIG. 9 (e), the dielectric 1e is annealed after the post-baking, and the dielectric 1e having a desired pattern (FIG. 9). At the time of (e), the dielectric 1e becomes the convex portion 1b) on the surface of the substrate 1a.
  • the process of the inkjet method is as follows. Instead of applying the siloxane resin composition by the spinner as described above, the dielectric 1e is directly formed in a desired pattern on the surface of the substrate 1a directly from the nozzle 12 (see FIG. 10B). Next, the substrate 1a on which the dielectric 1e is formed is pre-baked, and the dielectric 1e is post-baked after exposure (see FIG. 10C). Further, as shown in FIG. 10 (d), the dielectric 1e is annealed after post-baking, and the desired pattern of the dielectric 1e (the dielectric 1e becomes the convex portion 1b at the time of FIG. 10 (d)) is formed on the substrate. Form on the 1a surface. Note that the dielectric 1e may be annealed as it is without performing post-baking even in the imprint method or the inkjet method.
  • the exposure light source in the photolithography method is the g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength) from the viewpoint of forming a fine pattern. 248 nm), ArF excimer laser (wavelength 193 nm) and the like are preferable.
  • there are positive and negative types of dielectric 1e film but the pattern becomes finer, that is, the resolution is high, and reflow easily occurs during post-baking and annealing, resulting in a rounded pattern.
  • the positive type is preferable because it is easy. In the case of a positive type, it is necessary to develop without baking after exposure.
  • the exposure apparatus is preferably an apparatus capable of a reduction projection exposure method from the viewpoint that the pattern can be miniaturized.
  • a chemical solution that dissolves the siloxane resin composition is used as a developing solution in the photolithography method, and there are cases of an organic solvent and an organic or inorganic alkali.
  • TMAH Tetra-methyl-ammonium-hydroxyde
  • KOH potassium hydroxide
  • the dielectric 1e is further post-baked after forming the pattern of the dielectric 1e by the photolithography method, the imprint method, and the ink jet method.
  • the rinse liquid adhering to the substrate 1a and the dielectric 1e is removed by heating.
  • the dielectric 1e is annealed to form a desired pattern of the dielectric 1e on the surface of the substrate 1a.
  • the fluidity of the dielectric 1e can be improved, so the entire pattern of the dielectric 1e or a part of the top / side is rounded.
  • it can be formed into a curved surface, and the light extraction efficiency of the light emitting element 8 can be improved.
  • the convex portion 1b formed into a curved surface has a lateral shape of the GaN layer when the GaN layer (2 to 5) is formed, as compared with a convex portion having a trapezoidal shape or a rectangular shape (for example, the convex portion 109). Since the direction growth time is shortened, the growth time of the GaN layer can be shortened.
  • the fluidity of the dielectric 1e becomes insufficient, and the entire pattern of the dielectric 1e or a part of the top / side cannot be formed into a curved surface.
  • the temperature exceeds 400 ° C., the fluidity of the dielectric 1e increases and a desired resolution pattern cannot be obtained.
  • the desired pattern can be formed on the substrate 1a without any photoresist film (the mask for etching the convex 1b formation film). It becomes possible to mold into. Furthermore, by removing the components of the photosensitive agent by annealing, it is possible to prevent organic components from being mixed into the light emitting element 8 such as the GaN layer (2 to 5).
  • the removal of the photosensitive agent component means that the photosensitive agent is liquefied by annealing and removed by evaporation.
  • the substrate 1 having a desired pattern on the surface can be manufactured in a short time.
  • the mold 11 material for example, a material having a high ultraviolet transmittance, such as quartz, may be used.
  • the quartz mold is prepared by first preparing quartz, then applying a resist on the quartz substrate, and exposing and developing the island-like pattern by a normal photolithography method or electron beam drawing method. Next, Al is deposited to a thickness of about 100 nm, lifted off, and further, quartz is etched to a predetermined depth using a reactive ion etching (RIE) apparatus using CHF 3 (methane trifluoride) with Al as a mask. I do.
  • RIE reactive ion etching
  • CHF 3 methane trifluoride
  • the dielectric 1e is cured by irradiating the mold 11 with ultraviolet rays.
  • the direction of irradiating ultraviolet rays may be from the mold 11 side, or since the sapphire substrate 1a is a transparent body, the ultraviolet rays may be irradiated from the sapphire substrate 1a side.
  • the material of the mold 11 does not necessarily need to be a transparent body, and therefore, a material other than quartz, for example, an opaque body such as silicon may be used.
  • sapphire can be used for the mold 11 as a transparent material.
  • the mold 11 when the mold 11 is pressed against the dielectric 1e, it may be performed in a vacuum atmosphere so that bubbles are not taken into each dielectric 1e.
  • the thermal nanoimprint method which hardens the dielectric material 1e with a heat
  • the mold 11 After curing the island-shaped dielectric 1e, the mold 11 is pulled away, and unnecessary dielectric remaining on the portion corresponding to the convex portion of the mold 11 (portion other than the island-shaped dielectric 1e) is removed by an oxygen RIE apparatus.
  • the nanoimprint method for forming a desired pattern it is possible to form a pattern of convex portions 1b having a desired size, pitch, and height on the surface of the substrate 1a with simple equipment and at low cost. I can do it.
  • This dielectric pattern is not completely removed in the subsequent process, but it is preferable that a device is formed by leaving a protrusion formed of a dielectric, and the protrusion remains permanently until the final product.
  • the pattern can be directly formed by using the ink jet method for forming a desired pattern, the degree of freedom of the pattern type of the convex portion 1b can be increased.
  • This dielectric pattern is not completely removed in the subsequent process, but it is preferable that a device is formed by leaving a protrusion formed of a dielectric, and the protrusion remains permanently until the final product.
  • the photolithography method is preferable because it is the most versatile among the photolithography method, the imprint method, and the ink jet method.
  • the dielectric pattern is not completely removed in subsequent steps, leaving the protrusions formed of the dielectric to make the device, which protrusions remain permanently until the final product.
  • the photosensitive agent component of the convex portion 1b can be removed, so that the organic component to the light emitting element 8 such as the GaN layer (2 to 5) Mixing can be prevented. Furthermore, it is possible to prevent the growth of the GaN layer from occurring on the convex portion 1b or to make the growth difficult. By suppressing the growth of the GaN layer on the convex portion 1b, the FACELO growth mode can be realized, so that it is possible to form a GaN layer with a reduced dislocation density.
  • the shape and physical properties of the convex portion 1b can be maintained even under the deposition temperature (about 1000 ° C.) at the time of forming the n-GaN layer. it can. If the temperature is lower than 700 ° C., any of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 cannot be a main component. Also, if it exceeds 1700 ° C, the melting point of any of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 that is the main component of the convex part 1b will be exceeded, and this may cause distortion of the shape of the convex part 1b. It is not preferable.
  • the annealing temperature range is set to a temperature range of more than 1000 ° C. to 1700 ° C. or less, so that impurities contained in the pattern can be reduced and influence on device characteristics can be reduced. Furthermore, it is more preferable that the annealing temperature range is set to a temperature range of 1100 ° C. or higher and 1700 ° C. or lower because adhesion between the substrate 1a and the pattern can be improved. By improving the adhesion between the substrate 1a and the pattern, it is possible to prevent the pattern from being lost, and it is possible to reduce adverse effects on the yield such as wavelength variation and luminance variation of the manufactured light emitting element.
  • a method for manufacturing the light emitting element 8 will be described. First, a substrate 1 having a desired pattern on the surface manufactured by the manufacturing method described so far is prepared, and at least one of a GaN layer, an AlN layer, and an InN layer is formed on the convex portion 1b and the substrate 1a. Thus, the light emitting element 8 is manufactured.
  • the GaN layers 2 to 5 shown in FIG. 1 may be grown by a known method such as an epitaxial growth method, or different film formation methods and / or conditions for each of the GaN layers 2 to 5 are adopted. Then, the film may be formed. Epitaxial growth includes homo-epitaxial growth and hetero-epitaxial growth. Other examples of the film forming method include liquid phase film forming methods such as a plating method, but it is preferable to use a vapor phase film forming method such as a sputtering method or a CVD method (Chemical Vapor Deposition).
  • MOCVD method Metal-Organic-Chemical-Vapor-Deposition
  • MOVPE method Metal-Organic-Vapor Phase Epittaxy
  • HVPE method HVPE method It is more preferable to use a vapor deposition method such as (Hydrideydvapor phase epitaxy) or MBE method (Molecular Beam Epitaxy).
  • the material constituting each semiconductor layer is also preferably an inorganic material such as a metal material, a metal oxide material, and an inorganic semiconductor material, and all the layers are formed of these materials. It is desirable to be composed of an inorganic material. However, when the MOCVD method is used as a film forming method, an organic material derived from an organic metal may be included in the inorganic material of the semiconductor layer.
  • a buffer layer made of GaN or AlN is formed on the surface of the sapphire substrate 1 on the convex portion 1b side, an n-GaN layer 2, an InGaN light emitting layer (active layer) 3, and a p-type AlGaN cladding layer 4 And the p-type GaN contact layer 5 are formed in this order. Then, the light emitting element 8 is obtained by performing predetermined post-processing.
  • the convex portion 1b is made of a dielectric, a crystal plane having a specific plane orientation is not exposed on the surface of the convex portion 1b, and nuclei that are the starting points of the growth of the n-GaN layer 2 are not easily generated.
  • the crystal growth of the GaN layer from the side of the convex portion 1b is suppressed because the crystal plane having a specific plane orientation is not exposed at the side of the convex portion 1b.
  • at least a part (for example, the top part) of the convex part 1b is formed in a curved surface and has almost no flat part or very narrow, the GaN layer does not grow.
  • the n-GaN layer 2 grows easily because nuclei of GaN are easily generated. .
  • the growth of the n-GaN layer 2 starts from the surface of the substrate 1a between the convex portions 1b, that is, from a flat portion that is not the convex portion 1b, and the thickness of the n-GaN layer 2 increases.
  • the n-GaN layer 2 grows in the lateral direction (horizontal direction) and covers the side and top portions of the convex portion 1b as shown in FIG.
  • the thickness of the n-GaN layer 2 finally becomes greater than the height of the convex portion 1b, the surface of the substrate 1a and the pattern of the convex portion 1b are covered with the n-GaN layer 2 as shown in FIG.
  • the surface of the flat n-GaN layer 2 is observed.
  • the side portion of the convex portion 1b becomes a lateral growth region of the n-GaN layer 2, it is possible to prevent the occurrence of dislocation from the side portion of the convex portion 1b. Furthermore, by forming at least a part (for example, the top part) of the convex part 1b in a curved surface shape, there can be almost no flat part or it can be very narrow. Therefore, since the growth of the n-GaN layer 2 from the convex portion 1b can be suppressed or prevented, the occurrence of dislocation in the n-GaN layer 2 near the convex portion 1b can also be prevented. As described above, the number of threading dislocations can be reduced as compared with a GaN layer grown on a flat substrate.
  • a buffer layer made of GaN or AlN it is possible to prevent film quality and film thickness variations in the film thickness direction of the n-GaN layer 2.
  • the p-type electrode 6 is formed by an electron beam evaporation method. Further, the n-GaN layer 2 is exposed by etching using ICP-RIE at a location where the InGaN light emitting layer 3 is not formed on the n-GaN layer 2. Then, an n-type electrode layer 7 having a Ti / Al laminated structure is formed on the exposed n-GaN layer 2 by electron beam evaporation, and a p-type metal made of Ti / Al is formed on the p-type electrode 6. The electrode 9 was formed and the light emitting element 8 was produced.
  • the p-type electrode 6 and the n-type electrode layer 7 may be made of metal such as Ni, Au, Pt, Pd, Rh.
  • the convex portions 1b By forming the convex portions 1b on the surface of the substrate 1a, a light scattering effect can be obtained at each convex portion 1b. Therefore, part of the light absorbed inside the light emitting element 8 can be extracted to the outside of the substrate 1a and the InGaN light emitting layer 3, and the light extraction efficiency of the light emitting element 8 can be improved.
  • a desired pattern consisting of the protrusions 1b can be formed on the surface of the substrate 1a, so that a photoresist film (an etching mask for the protrusion 1b forming film) can be formed. ) Can be formed on the surface of the substrate 1a without forming a film. Accordingly, it is possible to reduce the number of steps, facilitate the steps, and reduce the cost of the light emitting element 8 due to the reduction in the number of steps, and manufacture the light emitting element 8 with improved light extraction efficiency.
  • an island pattern may be directly formed on the surface of the substrate 1a by performing dry etching or wet etching on the surface of the substrate 1a using the pattern of the convex portion 1b made of a dielectric as a mask.
  • Example 1 the present invention will be described with reference to Example 1, but the present invention is not limited to Example 1 below.
  • a flat sapphire substrate was prepared in which the substrate surface was a C-plane and the surface roughness was Ra1 nm.
  • the sapphire substrate is UV / O 3 cleaned for 5 minutes, then washed with water, and dehydrated and baked at 130 ° C. for 3 minutes using a hot plate.
  • HMDS (hexamethyldisilazane) chemical solution was applied to the surface of the sapphire substrate after dehydration baking by a spinner in two steps of 300 rpm for 10 seconds and 700 rpm for 10 seconds. Thereafter, the sapphire substrate was baked with a hot plate at 120 ° C. for 50 seconds.
  • a film made of a siloxane resin composition is formed on a sapphire substrate surface as a dielectric having a refractive index smaller than that of GaN 2.4 and containing naphthoquinonediazide-5-sulfonic acid ester as a photosensitive agent by a spinner. It was formed in a two-step process at 700 rpm for 10 seconds and 1500 rpm for 30 seconds. As a result, a siloxane resin composition film having a thickness of 1.55 ⁇ m was formed.
  • positive type photosensitive siloxane ER-S2000 manufactured by Toray Industries, Inc. reffractive index of prebaked film: 1.52 (632.8 nm): prism coupler method
  • a photolithography method was employed as a method for forming a desired pattern on the sapphire substrate surface from the siloxane resin composition film.
  • the sapphire substrate on which the siloxane resin composition film was formed was prebaked at 110 ° C. for 3 minutes using a hot plate, and then the siloxane resin composition film was subjected to pattern exposure.
  • the siloxane resin composition was prepared by creating a positive mask so as to form a pattern in which the planar shape of the convex portion was circular, the circular diameter was 4.9 ⁇ m, and the pitch between the convex portions was 6.0 ⁇ m. The film was exposed.
  • the siloxane resin composition film was a positive type, and a contact exposure apparatus was used as the exposure apparatus.
  • the exposed siloxane resin composition film was developed. 2.38 wt% -TMAH was used as the developer, and the siloxane resin composition film was immersed in the developer for 60 seconds. Thereafter, the sapphire substrate and the developed siloxane resin composition were post-baked on a hot plate at 230 ° C. for 3 minutes.
  • the developed siloxane resin composition on the sapphire substrate was annealed at 1000 ° C. for 1 hour in the air atmosphere to form a desired pattern and side-shaped convex portions on the surface of the sapphire substrate.
  • Plane shape Circular circle diameter: 4.9 ⁇ m Height: 0.47 ⁇ m
  • Pitch 6.0 ⁇ m
  • Side surface shape curved surface shape formed entirely as a curved surface (see FIGS. 12 and 13)
  • Protrusion pattern loss rate 10%
  • Example 2 The same as Example 1 except that the positive photosensitive siloxane ER-S2000 manufactured by Toray Industries, Inc., which is a siloxane resin composition, was changed to a positive photosensitive titanium oxide-containing siloxane ER-S3000 manufactured by Toray Industries, Inc. A desired pattern and side surface-shaped convex portions were formed on the surface of the sapphire substrate. Refractive index of pre-baked film 1.78 (632.8nm) The prism coupler method was adopted.
  • Plane shape Circular circle diameter: 4.9 ⁇ m Height: 1.00 ⁇ m
  • Pitch 6.0 ⁇ m
  • Side surface shape curved surface shape formed entirely as a curved surface (see FIGS. 12 and 13)
  • Protrusion pattern loss rate 12%
  • Example 2 The same as in Example 1 except that the positive photosensitive siloxane ER-S2000 manufactured by Toray Industries, Inc., which is a siloxane resin composition, was changed to a positive photosensitive zirconium oxide-containing siloxane ER-S3100 manufactured by Toray Industries, Inc. A desired pattern and side surface-shaped convex portions were formed on the surface of the sapphire substrate. Refractive index of pre-baked film 1.64 (632.8nm) The prism coupler method was adopted. -Convex-
  • Plane shape Circular circle diameter: 4.9 ⁇ m Height: 1.50 ⁇ m
  • Pitch 6.0 ⁇ m
  • Side surface shape curved surface shape formed entirely as a curved surface (see FIGS. 12 and 13)
  • Protrusion pattern loss rate 14%
  • a comparative example will be described below.
  • a SiO 2 film is formed by a plasma CVD method, and then a photoresist film is formed on the SiO 2 film, and the photoresist film is exposed and developed in the same manner as in Example 1 to describe Example 1.
  • the photoresist film was patterned as shown in the pattern.
  • the SiO 2 film was dry-etched using the patterned photoresist film as a mask.
  • Example 1 ⁇ Evaluation> About Example 1 and the comparative example, the number of required processes and lead time until convex part formation were evaluated. As a result, an evaluation result was obtained that the required number of steps in Example 1 was 8 and the lead time was 70 minutes. On the other hand, the required number of steps in the comparative example was 9, and the lead time was 110 minutes. From the above evaluation results, it was confirmed that this example can realize a reduction in the number of steps and a reduction in lead time. If the case and the substrate mass production becomes large diameter, in the comparative example, it will be limited in the number of processed wafers by the apparatus size of the SiO 2 film of the film forming process and the SiO 2 film of the dry etching process, further leads The difference in time becomes noticeable.
  • the above-described substrate and light emitting element can be applied to the following apparatuses and devices.
  • the light source 101 for the illumination 100 and an embedded light source such as a device can be applied.
  • These light sources are particularly suitable for blue visible light to ultraviolet light when the light emitting element is composed of nitrogen (N) in the group V element, so as to emit blue visible light or ultraviolet light. It can be used for necessary equipment.
  • a light source for emitting blue light (short wavelength) a light source such as a traffic light, a projector, and an endoscope
  • a light source 201 for one of the three primary colors of the color display 200 see FIG.
  • a light source for optical pickup, and an ultraviolet light Light can be used as a light source for a sterilizer or refrigerator for emitting light.
  • lighting devices such as fluorescent lamps (for example, plant-growing lighting), display backlights, vehicle lights, projectors, and camera flashes can be produced by combining white with a fluorescent paint. It can be used as a light source.
  • the light-emitting element of the present application is not limited to nitride-based compound semiconductors, and needless to say, the application range is not limited to the above.
  • the substrate of the present application is not only a light emitting element but also a light receiving element that receives light from various directions, and is a substrate of a photodiode, a solar cell, or a substrate 301 of a photovoltaic power generation panel 300.
  • a light emitting element but also a light receiving element that receives light from various directions
  • a substrate of a photodiode, a solar cell, or a substrate 301 of a photovoltaic power generation panel 300 can be used as
  • Substrate having a desired pattern on its surface 1a Substrate 2b Projection 2 n-type GaN contact layer (n-GaN layer) 3 InGaN light emitting layer (active layer) 4 p-type AlGaN cladding layer 5 p-type GaN contact layer 6 p-type electrode 7 n-type electrode layer 8 LED light emitting element 9 metal electrode 10 mask 11 mold 12 nozzle 13 trapezoidal convex portion 14 rectangular convex portion 100 lighting device 101 Light source (light emitting element) 200 Display Device 201 Light Source (Light Emitting Element) 300 Solar cell 301 Substrate

Abstract

【課題】 誘電体膜組成そのものに感光性を付与し、フォトレジスト膜無しでも凸部パターン形成を可能とすることで、工程数の削減と、工程数削減に伴う低コスト化を可能とした、所望のパターンを面上に有する基板とその製造方法、及び発光素子とその製造方法を提供する。 【解決手段】 平坦な基板を用意し、感光剤を含有する誘電体を基板面上に形成し、誘電体をパターン形成して、所望のパターンの誘電体を基板面上に形成することで、平坦な基板の面上に、島状の凸部からなるパターンを有し、凸部が誘電体から構成される基板を得る。

Description

基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置
 本発明は、基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置に関するものである。
 発光ダイオード(LED: Light Emitting Diode)は、化合物半導体の特性を用いて、電気エネルギーを光エネルギーに変換するEL(Electro Luminescence)素子の一種であり、3-5族化合物半導体を利用した発光ダイオードが実用化されている。その3-5族化合物半導体は直接遷移型半導体であり、他の半導体を用いた素子より高温で安定した動作が可能である。更に3-5族化合物半導体は、エネルギー変換効率が良いことや長寿命であることから種々の照明デバイスやイルミネーション、電子機器等に多く使われている。
 このようなLEDの発光素子(以下、適宜「発光素子」と表記)は、サファイア(Al2O3)基板の面上に形成されており、その構造の模式図を図17に示す(例えば、特許文献1の図3参照)。図17より従来の発光素子100では、サファイア基板101の面上に、GaN系半導体材料からなる低温成長バッファ層(図示せず)を介して、n型GaNコンタクト層(n-GaN層)102が形成されている。n-GaN層102にはn型電極が形成されている。そのn-GaN層102上にはn型AlGaNクラッド層(図示せず。場合によっては省略される)、InGaN発光層(活性層)103、p型AlGaNクラッド層104が形成され、その上にp型GaNコンタクト層105が形成される。更にp型GaNコンタクト層105上にはp型電極としてのITO(酸化インジウム錫)透明電極106及び金属電極が形成されている。InGaN発光層103は、InGaN井戸層とInGaN(GaN)障壁層から構成される多重量子井戸構造(MQW: Multiple Quantum Well)が採用される。また、n-GaN層102上のInGaN発光層103が形成されていない箇所に、n型電極層107が形成される。
 発光素子100のInGaN発光層103で発光した光は、p型電極及び、又はサファイア基板101から取り出されるが、この発光効率を向上させるためには、転位の低減が課題となる。しかし、サファイア基板101の上に成長させたGaN層には、サファイアの格子定数とGaNの格子定数との間に格子定数差が発生し、この格子定数差によりGaN結晶中に高密度の非発光再結合中心として働く貫通転位が発生する。この貫通転位が原因で光出力(内部量子効率)および耐久寿命が減少すると共に、リーク電流の増加が生じてしまう。
 更に、青色領域の波長においては、GaNの屈折率は約2.4、サファイアの屈折率は約1.8、空気の屈折率は1.0と、GaNとサファイアとの間には約0.6、GaNと空気との間には約1.4もの屈折率差が発生する。この屈折率差のために、InGaN発光層103から発光した光は、p型電極やGaNと空気の界面やサファイア基板101との間で全反射を繰り返す。光はこの全反射によりInGaN発光層103に閉じ込められてInGaN発光層103中を伝搬する間に自己吸収されるか、電極などに吸収され、最終的に熱に変換される。即ち、屈折率差に起因する全反射の制限のために発光素子の光取出効率が大幅に低下するという現象が生じている。
 光取出効率を向上させるために、例えばサファイア基板面上に凹凸パターンを形成し、その凹凸パターン上に上記各GaN層102乃至105や電極を形成した発光素子が開示されている。凹凸パターンの形成としては、サファイア基板表面をエッチング加工する方法がある。さらに、より凹凸パターンの製造効率を向上させた発光素子として、GaNより屈折率が小さいSiO2、ZrO2、TiO2等の誘電体で構成される凹凸パターンを、平坦なサファイア基板の面上に形成した発光素子が開示されている(例えば、特許文献1の図1参照)。
 図18に示すように特許文献1開示の発光素子108では、サファイア基板101の面上に、誘電体で構成した凸部109のパターンを形成している。このようにサファイア基板101表面に凸部109のパターンを形成することにより、InGaN発光層103の下方に凹凸状の屈折率界面を形成することが出来る。従って、InGaN発光層103で発生し横方向に伝播して発光素子108内部で吸収されてしまう光の一部を、凸部109の光散乱効果により、サファイア基板101及びInGaN発光層103の外部に抽出することが可能となり、光取出効率を向上させることが出来る。更に、サファイア基板101の表面をエッチング加工することなく、発光素子108の発光効率を向上させることが可能になると共に、FACELO(Facet-Controlled Epitaxial Lateral Overgrowth)の成長モードを実現することができ、転位密度が減少したGaN系の発光素子を得ることができる。
特開2009-54898号公報
 しかしながら、特許文献1等では、凸部109のパターン形成に、通常のフォトリソグラフィ技術を用いる。すなわち、凸部109の形成時に、凸部109の基となるSiO2膜とは別に、ノボラック樹脂などからなるフォトレジスト膜をSiO2膜上に形成した上で、マスクを介してフォトレジスト膜をパターン形成し、パターン形成されたフォトレジスト膜を新たなマスクとして、SiO2膜をエッチングによりパターン形成しなければならなかった。従って、フォトレジスト膜の成膜工程や露光、現像工程、及びSiO2膜のエッチング工程が必須となるため、工程数が増加し、工程数増加に伴うコストの高騰も引き起こしていた。
 また、フォトリソグラフィ技術とエッチング加工で凸部109を形成した場合、フォトレジスト膜の露光、現像の工程を経なければならない。この場合、形成可能な凸部109の断面形状は台形型に限られるため、形成できる凸部形状の自由度が低くなる。そのため、光取出効率の向上の実現並びに、凸部を覆うGaN層の成長時間を短縮可能とする断面形状を有する凸部を作製することは、誘電体膜上に形成したフォトレジスト膜のフォトリソグラフィ技術とそれをマスクとしたエッチング加工では難しかった。
 また、パターン形成されたSiO2膜を新たなマスクにして、エッチング加工によりサファイア基板表面にパターン形成を行おうとしても、やはり途中のSiO2膜パターン製造工程でフォトレジスト膜のフォトリソグラフィ技術とエッチング加工が必須であった。従って、工程数の増加と工程数増加に伴うコストの高騰を引き起こしていた。
 本発明は、上記事情に鑑みてなされたものであり、誘電体膜組成そのものに感光性を付与し、フォトレジスト膜無しでも凸部パターン形成を可能とすることで、工程数の削減と、工程数削減に伴う低コスト化を可能とした、所望のパターンを面上に有する基板とその製造方法、及び発光素子とその製造方法の提供を目的とする。
 上記課題は、以下の本発明により達成される。即ち、
 (1)本発明の、基板の製造方法は、平坦な基板を用意し、
 感光剤を含有する誘電体を前記基板面上に形成し、
 前記誘電体をパターン形成して、所望のパターンの前記誘電体を前記基板面上に形成することを特徴とする。
 (2)本発明の、基板の製造方法の一実施形態は、前記誘電体のパターン形成後に前記誘電体をアニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することが好ましい。
 また、基板の製造方法の他の実施形態は、前記誘電体のパターン形成後であって前記アニーリング前に前記誘電体をポストベークすることが好ましい。
 (3)また本発明の、基板の製造方法の他の実施形態は、前記ポストベークを100℃以上400℃以下の温度範囲で行うことが好ましい。
 (4)また本発明の、基板の製造方法の他の実施形態は、前記アニーリングを700℃以上1700℃以下の温度範囲で行うことが好ましい。
 (5)また本発明の、基板の製造方法の他の実施形態は、前記誘電体がシロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物のいずれかであることが好ましい。
 (6)また本発明の、基板の製造方法の他の実施形態は、前記誘電体を前記基板面上に塗布することで、前記誘電体を前記基板面上に形成し、
 次に、前記誘電体を前記基板面上に形成した前記基板をプリベークし、
 次に、マスクを用いて前記誘電体を所望の前記パターンに露光し、
 次に、露光した前記誘電体を現像し、
 前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することが好ましい。
 (7)また本発明の、基板の製造方法の他の実施形態は、前記誘電体を、所望の前記パターンで前記基板面上に直接パターン形成し、
 次に、前記誘電体を前記基板面上に形成した前記基板をプリベークし、
 次に、前記誘電体を露光し、
 前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することが好ましい。
 (8)また本発明の、基板の製造方法の他の実施形態は、前記誘電体を前記基板面上に塗布することで、前記誘電体を前記基板面上に形成し、
 次に、モールドを前記誘電体に押し付けて前記誘電体を硬化させ、
 前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することが好ましい。
 (9)また本発明の、基板の製造方法は、前記基板を用意し、
 前記パターンをマスクにして、前記基板の表面をエッチング処理し、前記基板の表面に所望の前記パターンを形成することを特徴とする。
 (10)また本発明の、発光素子の製造方法は、前記基板を用意し、
 前記凸部及び前記基板上に、GaN層、AlN層、InN層の少なくとも一層を形成し、発光素子を製造することを特徴とする。
 (11)また、本発明の基板は、平坦な基板の面上に、島状の凸部からなるパターンを有すると共に、前記凸部が誘電体から構成されることを特徴とする。なお、当該基板は、光源やディスプレイ、また太陽電池に備えられることができる。
 (12)本発明の、基板の一実施形態は、前記凸部の少なくとも一部が、曲面状である(曲面を有する)ことが好ましい。
 (13)また本発明の、基板の他の実施形態は、前記凸部を構成する誘電体が、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とすることが好ましい。
 (14)また本発明の、基板の他の実施形態は、前記凸部は、全体が曲面であって、頂部及び側部の区別がなく、平坦面が存在しない曲面形状を有することが好ましい。
 (15)また本発明の、基板の他の実施形態は、前記凸部が半球形であることが好ましい。
 (16)また本発明の、基板の他の実施形態は、前記凸部の平面形状が円形又は楕円形であることが好ましい。
 (17)また本発明の基板は、前記基板の表面に所望の前記パターンを有することが好ましい。
 (18)また本発明の基板は、前記基板の表面に均一なピッチで前記パターンを有し、且つ前記ピッチの前記表面箇所に前記パターンが形成されていない前記パターンの欠損箇所が、前記ピッチで形成される場合の前記表面における前記パターンの全数に対して、0%以上50%以下であることが好ましい。
 (19)また本発明の、発光素子は、前記凸部及び前記基板上に形成された、GaN層、AlN層、InN層の少なくとも一層を含む発光素子であることを特徴とする。
 なお、当該発光素子は、光源やディスプレイに備えられることが好ましい。
 前記(1)、(9)、(11)(17)の何れかの発明に依れば、感光剤を含有する誘電体をパターン形成するので、フォトレジスト膜を成膜すること無く、基板面上に凸部からなる所望のパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う基板の低コスト化が実現される。なお、このようにして得られた基板は、光源やディスプレイ、基板などに適用できる。
 更に、前記(2)の発明に依れば、所望の凸部パターン形成後の誘電体にアニーリングを施すことで、基板面上に所望のパターンを、任意の側面形状に成形することが可能となる。更に、感光剤の成分をアニーリングにより除去することで、GaN層などの発光素子への有機成分の混入を防ぐことができる。
 更に、前記(3)の発明に依れば、ポストベークを100℃以上400℃以下の温度範囲で行うことにより、誘電体の流動性を高めることが可能となる為、誘電体のパターンの全体又は、頂部/側部の一部を丸めて曲面状に成形することが可能となり、発光素子の光取出効率を向上させることが可能となる。更に、断面形状が台形形状又は矩形形状の凸部と比較すると、曲面状に成形された凸部は、GaN層などの成膜時にGaN層の横方向成長時間が短くなるので、GaN層の成長時間を短縮することが可能となる。
 更に、前記(4)の発明に依れば、アニーリングを、700℃以上1700℃以下の温度範囲で行うことにより、凸部の感光剤成分をアニーリングにより除去することが出来るため、前記のようにGaN層などの発光素子への有機成分の混入を防止することが出来る。更に、凸部上でのGaN層の成長発生の防止、或いは成長発生を困難とすることも可能となる。凸部上でのGaN層の成長を抑制することにより、FACELOの成長モードを実現することが出来る為、転位密度が減少したGaN層を形成することが可能となる。また、アニーリング後の凸部に耐熱性をもたせることが出来るためにより、n-GaN層の成膜時の成膜温度(約1000℃)下においても凸部の形状および物性を保つことができる。
 更に、前記(5)の発明に依れば、シロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物は被覆性が良好であるため、フォトレジスト膜を成膜すること無く基板表面に均一な厚み又は高さでむらの無い誘電体を形成することが出来る。更に他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化収縮が小さいため、所望通りの高さと大きさ及びピッチで凸部を基板面上に容易に形成することが可能となる。またシロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物は、他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化後にクラックが生じ難いため、凸部の誘電体中に空隙が発生しにくく、GaN層の成長時に凸部とGaN層の界面にも隙間(ボイド)が発生しにくくなる。従って発光素子において電気特性の悪化を防ぐことが出来る。
 更に、前記(6)の発明に依れば、フォトリソグラフィ法で感光剤を含有する誘電体で構成した所望のパターン形成を用いることにより、フォトレジスト膜を成膜すること無く基板面上にパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う基板の低コスト化が実現される。更に、工程の時間が短いので、所望のパターンを面上に有する基板を、短時間で作製することが出来る。
 更に、前記(7)の発明に依れば、所望のパターン形成にインクジェット法を用いることにより、直接、パターン形成を行うことが出来るので、凸部パターンの種類の自由度を高められる。
 更に、前記(8)の発明に依れば、所望のパターン形成にナノインプリント法を用いることにより、簡便な設備でしかも低コストに基板面上に所望の大きさ、ピッチ、高さの凸部のパターンを形成することが出来る。
 また、前記(10)又は(19)の発明に依れば、凸部が基板の表面上に形成されることによって、各凸部で光散乱効果が得られる。従って、発光素子内部で吸収されてしまう光の一部を、基板及びInGaN発光層の外部に取り出すことが可能となり、発光素子の光取出効率を向上させることが出来る。なお、このようにして得られた発光素子は、光源やディスプレイなどに適用できる。
 更に、感光剤を含有する誘電体をパターン形成することで、凸部からなる所望のパターンを基板面上に形成することが出来るので、フォトレジスト膜を成膜すること無く基板面上にパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う発光素子の低コスト化が実現されると共に、前記光取出効率が向上された発光素子を製造することが出来る。
 更に、前記(12)の発明に依れば、凸部の一部が曲面状に形成されていることにより、発光素子の光取出効率をより向上させることが可能となる。更に、断面形状が台形形状又は矩形形状の凸部と比較すると、曲面状に成形された凸部は、GaN層などの成膜時にGaN層の横方向成長時間が短くなるので、GaN層の成長時間を短縮することが可能となる。
 更に、前記(13)の発明に依れば、凸部を構成する材料を、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とする誘電体にすることにより、凸部上でのGaN層の成長発生を防止、或いは成長発生を困難とすることが出来る。凸部上でのGaN層の成長を抑制することにより、FACELOの成長モードを実現することが出来る為、転位密度が減少したGaN層を形成することが可能となる。
 更に、前記(14)又は(15)の発明に依れば、凸部全体が曲面で形成されることで頂部及び側部の区別がなく、平坦面が存在しない曲面形状なので、発光素子の光取出効率を向上させることが可能となる。更に、凸部を半球形に成形することで、より前記光取出効率を向上させることが出来る。勿論前記の通り、断面形状が台形形状又は矩形形状の凸部と比較すると、曲面状に成形された凸部は、GaN層などの成膜時にGaN層の横方向成長時間が短くなるので、GaN層の成長時間を短縮することが可能となる。
 更に、前記(16)の発明に依れば、凸部の平面形状を円形又は楕円形に設定することで、誘電体層のパターニング工程を容易化することが可能となる。特に前記平面形状を円形に設定することにより、前記効果に加えて、複数の凸部による光の反射・屈折・減衰等が互いに相互作用(例えば干渉)を起こしても、その相互作用に方向性が無く、光が全方向に均一に発せられるため、光取出効率の高い発光素子を作製することが出来る。
 更に、前記(18)の発明に依れば、前記基板の表面におけるパターンの全数の割合に対する、前記パターンの欠損箇所の全数を、0%以上50%以下に設定することで、同じ基板上に作製した発光素子の素子間における光出力のバラつきを低減することができる。
本発明に係る発光素子の構造を示す模式図である。 本発明に係る所望のパターンを面上に有する基板を示す模式図である。 (a) 図2に示す基板の拡大側面図である。(b) 図2に示す基板を拡大し、凸部のみを示す部分平面図である。 (a) 本発明に係り、平面形状が楕円の凸部のパターンを面上に有する基板を示す、拡大側面図である。(b) 図4(a)に示す基板の、凸部のみを示す部分平面図である。(c) 図4(a)に示す基板を90度異なる方向から見た拡大側面図である。(d) 図4(c)に示す基板の、凸部のみを示す部分平面図である。 (a) 本発明に係り、平面形状が三角形の凸部のみを示す部分平面図である。(b) 本発明に係り、平面形状が六角形の凸部のみを示す部分平面図である。 本発明に係り、平面形状が略多角形の凸部のパターンを面上に有する基板を示す、拡大側面図である。 基板の変形例の基板の拡大側面図である。(a) 図3(a)に示す基板の変形例の基板の拡大側面図である。(b) 図4(c)に示す基板の変形例の基板の拡大側面図である。(c) 図6に示す基板の変形例の基板の拡大側面図である。 (a) 台形形状の凸部における、GaN層の成長段階を示す、凸部拡大図である。(b) 矩形形状の凸部における、GaN層の成長段階を示す、凸部拡大図である。(c) パターン全体が曲面状に成形された凸部における、GaN層の成長段階を示す、凸部拡大図である。(d) 頂部の一部が曲面状に成形された凸部における、GaN層の成長段階を示す、凸部拡大図である。 本実施形態の製造方法に係る一つの形態である、フォトリソグラフィ法の製造工程を示す模式図である。 本実施形態の製造方法に係る他の形態である、インプリント法の製造工程を示す模式図である。 本実施形態の製造方法に係る他の形態である、インクジェット法の製造工程を示す模式図である。 本発明に係る発光素子の製造過程を示す断面図である。 本発明の実施例の凸部断面形状を示すAFM像である。 本発明の実施例の凸部形状を示すAFM斜視像である。 本発明の発光素子を有する光源を備える照明装置である。 本発明の発光素子を有する光源を備えるディスプレイ装置である。 本発明の基板を備える太陽電池である。 従来の発光素子の構造を示す模式図である。 従来の他の発光素子の構造を示す模式図である。
 以下、図1~図7を参照して、発光素子用GaN層の形成に用いられる、所望のパターンを面上に有する基板及びその基板を用いた発光素子の、本実施形態を説明する。図1より、所望のパターンを面上に有する基板1(以下、適宜「基板1」と表記)は、LED発光素子8(以下、適宜「発光素子8」と表記)の下地基板である。更に図2に示すように、基板1は平坦な基板1aの面上に、島状の凸部1bからなるパターンを有する。更に、凸部1bは誘電体で構成される。
 前記島状とは、基板1aの厚み方向において、凸部1bの頂部から基板1a表面の高さに亘って、各々の凸部1bが独立した凸形状を有することを指す。従って、凸部1bの頂部から基板1a表面の高さまで、各々の凸部1bが独立した凸形状を有していれば、島状のパターンを満たしており、基板1aを基板平面方向(図1又は図2の上から下に向かう方向)から見た時に、互いの凸部1bが離れているか、又は、凸部1bの底面即ち基板1a表面で凸部1bの側部が互いに接しているかの、どちらでも良い。
 凸部1bが基板1aの表面上に形成されることによって、各凸部1bで光散乱効果が得られる。従って、発光素子8内部で吸収されてしまう光の一部を、基板1a及びInGaN発光層3の外部に取り出すことが可能となり、発光素子8の光取出効率を向上させることが出来る。
 n型GaNコンタクト層(n-GaN層)2の成長は凸部1bの間の基板1a表面、即ち凸部1bではない平坦部から始まり、n-GaN層2の厚さが厚くなるに伴い、凸部1bの側部及び頂部を覆っていく。従って、基板1aの表面と凸部1bのパターンを覆ってGaN層が形成される。
 基板1aは、サファイア(Al2O3)、Si、SiC、GaAs、InP、スピネル等のような、3-5族化合物半導体が成長可能な材料であれば良いが、特にサファイアが3-5族化合物半導体の形成という点で最も好ましい。以下、サファイア基板を基板1aの例に取り、説明を続ける。
 サファイア基板を基板1aに使用する場合は、基板1a表面はC面、A面、R面等から適宜選択、又はこれら表面から傾斜していても良い。
 又、n-GaN層2の成長開始箇所となる基板1aの表面は、表面粗さRaで1nm以下程度の鏡面状態であることが、n-GaN層2内の結晶成長時の欠陥発生防止の点から特に好ましい。基板1aの表面を鏡面状態とするためには、例えば鏡面研磨を施せば良い。
 凸部1bの材料は、感光剤を含有する誘電体とする。感光剤を含有する誘電体で凸部1bを形成することにより、後述するようにフォトレジスト膜(即ち、凸部1b形成膜のエッチング用マスク)が無くとも、凸部1bのパターンを基板1aの面上に形成することが可能となる。更に凸部1bを形成する誘電体としては、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とする誘電体にバインダー樹脂、感光剤が含まれる組成物が好ましく、樹脂としてはシロキサン樹脂が好ましい。誘電体組成物としては例えば感光性のシロキサン樹脂組成物、感光性の酸化チタン含有シロキサン樹脂組成物、感光性の酸化ジルコニウム含有シロキサン樹脂組成物、感光性のアルミナ含有シロキサン樹脂組成物が挙げられる。
 シロキサン樹脂組成物は、シロキサン結合による主骨格を持つ重合体を含有する。シロキサン結合による主骨格を持つ重合体は特に制限されないが、好ましくはGPC(ゲルパーミネーションクロマトグラフィ)で測定されるポリスチレン換算で重量平均分子量(Mw)が1000~100000、さらに好ましくは2000~50000である。Mwが1000より小さいと塗膜性が悪くなり、100000より大きいとパターン形成時の現像液に対する溶解性が悪くなる。
 シロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物は被覆性が良好であるため、フォトレジスト膜を成膜すること無く基板1a表面に均一な厚み又は高さでむらの無い誘電体を形成することが出来る。更に他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化収縮が小さいため、所望通りの高さと大きさ及びピッチで凸部1bを基板1a面上に容易に形成することが可能となる。またシロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物は、他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化後にクラックが生じ難いため、凸部の誘電体中に空隙が発生しにくく、GaN層(2乃至5)の成長時に凸部1bとGaN層の界面に隙間(ボイド)が発生しにくくなる。従って、発光素子8において電気特性の悪化を防ぐことが出来る。尚、前記ピッチとは、隣接する凸部1bどうしの中心間距離のうち、最小距離を指す。
 更に凸部1bを構成する材料を、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とする誘電体にすることにより、凸部1b上でのGaN層の成長発生を防止、或いは成長発生を困難とすることが出来る。凸部1b上でのGaN層の成長を抑制することにより、FACELOの成長モードを実現することが出来る為、転位密度が減少したGaN層を形成することが可能となる。
 また、凸部1bの大きさと凸部1bどうしのピッチは、発光素子8のGaN層中における発光波長をλと設定したときに、少なくともλ/(4n)以上に設定することが、十分に光を散乱又は回折になる、という点で好ましい。なお凸部1bの大きさとは、凸部1bの平面形状により種々設定されるものの、その平面形状が後述のように、円形の場合は半径の長さ、楕円形の場合は短軸方向の半径長さ、多角形の場合は凸部1bの構成辺となる一辺の長さ、で表すこととする。また、nとはGaN層の屈折率であり、一例としては約2.4である。なお、基板1aが発光素子8に用いられる場合、誘電体の屈折率は、少なくとも窒化ガリウム(GaN)の屈折率と異なることが好ましい。また、基板側への光の透過を防止して、発光素子の輝度を向上させるという点から、誘電体の屈折率が窒化ガリウム(GaN)の屈折率よりも小さい方が、より好ましい。
 また、全てのGaN層2乃至5の総膜厚が30μm以下の場合、凸部1b間のピッチは50μm以下であることが、散乱又は回折による光の全反射回数を減少させるとの観点から好ましい。更に、GaN層の結晶性向上(即ち、ピット発生防止)の観点から、凸部1b間のピッチは20μm以下であることが更に好ましい。より好ましくは、凸部間のピッチを10μm以下と設定することであり、前記ピッチを10μm以下と設定することにより、光散乱面が増えて光の散乱又は回折の確率が高まり、発光素子8の光取出効率を一層向上させることが可能となる。
 凸部1bの側面形状は図3(a)、図4(a)及び(c)、又は図6に示すように、少なくとも凸部1bの一部が曲面状に形成されていることが好ましい。即ち、凸部1bの少なくとも一部は曲面を有する。凸部1bの一部が曲面状に形成されていることにより、発光素子8の光取出効率をより向上させることが可能となる。更に、基板と垂直な面における断面形状が台形形状又は矩形形状の凸部と比較すると、曲面状に成形された凸部1bは、GaN層(2乃至5)などの成膜時にGaN層の横方向成長時間が短くなるので、GaN層の成長時間を短縮することが可能となる。より詳述すると、図7(a)より側面形状が台形形状の凸部13、又は同図(b)より側面形状が矩形形状の凸部14の上にGaN層を横方向成長させようとすると、GaN層は矢印で示すように、一旦側部13a、14aで成長し、次に頂部13b、14bの平面上を成長するという、二段階の成長を経なければならない。一方、同図(c)よりパターン全体が曲面状に成形された凸部1bでは、矢印で示すように一続きの横方向成長によりGaN層を凸部1b上に形成することが出来るため、GaN層の成長時間を短縮することが可能となる。また、同図(d)より頂部の一部が曲面状に成形された凸部1bでは、側部1cでのGaN層の成長を速やかに頂部1dに移行することが出来るため、GaN層の成長時間を短縮することが可能となる。側部の一部が曲面状に成形された凸部でも、側部で速やかにGaN層の成長が促され、そのGaN層の成長を頂部に移行することが出来るので、GaN層の成長時間を短縮することが可能となる。
 具体的な凸部1bの形状の1つの形態としては、平面形状は図5(a)又は(b)に示すように略多角形で、且つ側面形状は図6に示すように側部1cが傾斜しており、且つ凸部頂部1dが曲面に形成された形状が挙げられる。
 テーパ角θが90°の時は、凸部1bの断面形状は矩形となり、180°の時は凸部1bが全くない平らな状態となる。GaN層によって凸部1bを埋めるためには、テーパ角θが少なくとも90°以上であることが必要である。
 略多角形とは、三角形又は六角形を指し、幾何学的に完全な多角形である必要はなく、加工上の理由等から角や辺に丸みを帯びている多角形も含めるものとする。凸部1bの平面形状を、三角形又は六角形に成形することにより、GaN層の成長安定面に対してほぼ平行な面に頂点を有し、且つ、GaN層の成長安定面に対してほぼ平行な面と交叉する直線を構成辺とすることが出来る。
 また凸部1b平面形状の別形態として、凸部1b全体が曲面で形成されることで頂部及び側部の区別がなく、平坦面が存在しない曲面形状を有することが、前記光取出効率の向上とのGaN層(2乃至5)の横方向成長時間の短縮という点からより好ましく、凸部1bが図3(a)に示すように半球形であることが更に好ましい。従って、凸部1bの各部位における曲率は0より大きく、凸部1bと基板1aとが連続する箇所を除いて角部は存在しない。また、上述した図3(a)、図4(c)、および図6にそれぞれ示した基板1aと凸部1bは、図6Aに示すような変形例を有していてもよい。図6A(a)と(b)に示す変形例は、凸部1b全体が曲面で形成される場合においてその曲面が途中で変曲点を有し、その変曲点の前後で頂部の曲面の曲率とは逆の符号の曲率を有する曲面1fを有する。また、図6A(c)に示す変形例は、一部に側部1cを有し、その側部1cの前後で頂部の曲面の曲率とは逆の符号の曲率を有する曲面1fを有する。この変形例においては、基板1aから凸部1bにかけてなだらかに連続するので、GaN層の成長が促され、さらに成長時間を短縮することが可能となる。なお、図4(a)の凸部1bにも、同様に曲面1fを形成してもよい。
 更に凸部1bの平面形状は、図3(b)に示すように円形か、又は、図4(b)及び(d)に示すように楕円形であることが好ましい。しかし円形に形成することにより、複数の凸部1b,1b,…による光の反射・屈折・減衰等が互いに相互作用(例えば干渉)を起こしても、その相互作用に方向性が無く、光が全方向に均一に発せられるため、光取出効率の高い発光素子8を作製することが出来る。従って、円形の平面形状の凸部1bの方がより好ましい。また、平面形状を円形又は楕円形に設定することで、誘電体層の後述するパターニング工程を容易化することが可能となる。
 基板1a表面に形成される全ての凸部1bは、同じ大きさ、形状が望ましいが、凸部1b毎に大きさ、形状、又は前記曲率に少し差があっても良い。また凸部1bの配列形態にも制限は無く、格子状配列構造のように規則的なピッチによる配列形態であっても良いし、不規則なピッチでの配列形態であっても良い。或いは、凸部1bの平面形状として円形又は楕円形と、略多角形形状を、1つの基板1a面上に併用しても良い。
 しかし凸部1bのパターンはその大きさ、高さ、形状、ピッチが均一に、周期的に基板1aの表面に形成されることが望ましい。その周期構造から凸部1bの一部が抜けてしまったりすると、基板1a上に作製した発光素子の素子間の光出力バラつきが発生する。そのため、均一なピッチで凸部1bが形成されるべき基板1aの表面箇所に、凸部1bのパターンが形成されていない箇所(凸部1bのパターンの欠損箇所)の全数は、均一なピッチで凸部1bのパターンが形成される場合の、基板1aの表面におけるパターンの全数に対して、0%以上50%以下の範囲内であることが望ましい。このような構成により、同じ基板1a上に作製した発光素子8の素子間における光出力のバラつきを低減することができる。前記基板1aの表面におけるパターンの全数に対する、前記パターンの欠損箇所の全数の割合(前記パターンの欠損箇所の全数/前記基板1aの表面におけるパターンの全数)を、「パターンロス」と以後、必要に応じて記載する。パターンロスの割合が50%を超えると、基板1a表面における凸部1bの数がGaN層を横方向成長させるために不十分となり、GaN層へ結晶欠陥が導入されやすくなる。
 更に、パターンロスの割合を0%以上から30%以下の範囲で作製することにより、GaN層をより横方向成長させやすくなり、結晶欠陥が導入されにくくなるため、発光素子の静電耐圧の収率を改善できるようになり、より好ましい。更に、パターンロスの割合を0%以上15%以下の範囲で作製することにより、n-GaN層成膜時の表面粗さを低減し、その後のInGaN発光層形成時のIn取り込み量を基板1a面内で均一にすることができるため、発光素子の波長バラつきをより低減できるようになり、より好ましい。
 以上のような基板1の面上に形成された、凸部1b及び基板1a上に、2つ以上のGaN層2乃至5及びp型電極6とn型電極層7を形成することで、発光素子8を製造する。p型電極6はp型GaNコンタクト層5上に金属電極と共に形成され、n型電極層7はn-GaN層2上のInGaN発光層3が形成されていない箇所に形成される。2つ以上のGaN層とは、例えば図1に示すように、n型GaNコンタクト層(n-GaN層)2、InGaN発光層(活性層)3、p型AlGaNクラッド層4、及びp型GaNコンタクト層5が挙げられるが、この構造に限定されない。少なくともn型導電性を有する層、p型導電性を有する層、これらの間に挟まれた発光層を有する3-5族窒化化合物半導体の層からなる構成のものが好ましい。活性層3としては、Inx Gay Alz N(但し、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3-5族窒化化合物半導体からなる層が好ましい。
 前記基板1上に形成させる3-5族窒化化合物半導体は、GaN層に限定されず、AlN層またはInN層の何れか一層を、少なくとも含むように変更しても良い。具体的には、AlN等からなるバッファ層を基板1上に形成した上でn-GaN層2を形成することが挙げられる。なお前記バッファ層には、GaNからなる層を用いても良い。
 次に基板1の製造方法を、図8~図11を参照しながら説明する。図8は、本実施形態の前記製造方法に係る一つの形態である、フォトリソグラフィ法で感光剤を含有する誘電体で構成した凸部の製造工程を示す模式図である。図9は、本実施形態の前記製造方法に係る他の形態である、インプリント法の製造工程を示す模式図である。図10は、本実施形態の前記製造方法に係る他の形態である、インクジェット法の製造工程を示す模式図である。
 図8(a)、図9(a)、図10(a)に示すように、まず平坦な基板1aを用意し、次に図8(b)、図9(b)、図10(b)に示すように、感光剤を含有し、感光性を有する誘電体1eを基板1a面上に形成し、誘電体1eをパターン形成して、所望のパターンの誘電体からなる前記凸部1bを基板1a面上に形成する。図8及び図9に示す製造方法においては、誘電体1eは一定の厚みの膜として形成され、図10の製造方法においては、複数の凸形状に形成される。なお、基板1aが平坦とは、誘電体1eをパターン形成する基板1aの表面が鏡面状態であることを指し、表面粗さRaで1nm以下程度である。また、所望のパターンとは、島状の凸部1bからなるパターンを指す。
 感光剤を含有する誘電体をパターン形成することで、前記凸部1bからなる所望のパターンを基板1a面上に形成することが出来るので、フォトレジスト膜(凸部1b形成膜のエッチング用マスク)を成膜すること無く基板1a面上にパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う基板1の低コスト化が実現される。
 更に、前記誘電体1eとして前記シロキサン樹脂組成物を例に取り、個々の工程毎に詳細に説明する。以下、基板1aがサファイア製(以下、適宜「サファイア基板1a」と記す)の場合を例に取り、説明を進める。
 前記図8(a)、図9(a)、図10(a)の前工程として、サファイア基板1aをUV/O3洗浄し、その後水洗いし、脱水ベークを行う。更に、サファイア基板1aにHMDS(ヘキサメチルジシラザン)工程を施し、ベークを行い、図8(a)、図9(a)、図10(a)に示すように、平坦な基板としてサファイア基板1aを用意する。
 次に図8(b)又は図9(b)においては、そのサファイア基板1aの面上にシロキサン樹脂組成物をスピナーによって均一に塗布する。
 シロキサン樹脂組成物を凸部1bの形成材料に用いることで、被覆性が良好であるため、基板1a表面に均一な厚み又は高さでむらの無い誘電体を形成することが出来る。更に他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化収縮が小さいため、所望通りの高さと大きさ及びピッチで凸部1bを基板1a面上に容易に形成することが可能となる。またシロキサン樹脂組成物は、他の樹脂、酸化チタン含有樹脂、酸化ジルコニウム含有樹脂、アルミナ含有樹脂と比較して硬化後にクラックが生じ難いため、凸部の誘電体中に空隙が発生しにくく、GaN層(2乃至5)の成長時に凸部1bとGaN層の界面に隙間(ボイド)が発生しにくくなる。従って、発光素子8の電気特性の悪化を防ぐことが出来る。
 シロキサン樹脂組成物を基板1a面上に形成した後に、そのシロキサン樹脂組成物から前記所望のパターンを基板1a面上に形成する方法は、幾つかあり、例えば、前記のフォトリソグラフィ法、インプリント法、及びインクジェット法の3つの方法が挙げられる。
 フォトリソグラフィ法の工程は以下の通りである。前記の通り、誘電体1eを基板1aの面上に塗布することで、誘電体1eの膜を基板1aの面上に形成する(図8(b)参照)。その後、誘電体1eの膜を基板1a面上に形成した基板1aをプリベークし、次に図8(c)に示すように、マスク10を用いて誘電体1eの膜を所望のパターンに露光する。更に、露光した誘電体1eを現像し(図8(d)参照)、現像した誘電体1eをポストベークする。更に図8(e)に示すように、ポストベーク後に誘電体1eをアニーリングし、所望のパターンの誘電体1e(図8(e)の時点で、誘電体1eは凸部1bとなる)を基板1a面上に形成させる。なお、上記例では、現像した誘電体1eをポストベークした後誘電体1eをアニーリングしたが、これに限定されず、ポストベークを行わずに現像した誘電体1eをそのままアニーリングしてもよい。
 インプリント法の工程は以下の通りである。前記の通り、誘電体1eを基板1aの面上に塗布することで、誘電体1eの膜を基板1aの面上に形成する(図9(b)参照)。その後、モールド11を誘電体1eの膜に押し付けて前記誘電体を光照射によって硬化させる(図9(c)参照)。次に、誘電体1eをポストベークし(図9(d)参照)、更に図9(e)に示すように、ポストベーク後に誘電体1eをアニーリングし、所望のパターンの誘電体1e(図9(e)の時点で、誘電体1eは凸部1bとなる)を基板1a面上に形成させる。
 インクジェット法の工程は以下の通りである。前記のようなスピナーによるシロキサン樹脂組成物の塗布に換えて、誘電体1eをノズル12から直接、基板1a面上に直所望のパターンでパターン形成する(図10(b)参照)。次に、誘電体1eを面上に形成した基板1aをプリベークし、更に誘電体1eを露光後にポストベークする(図10(c)参照)。更に図10(d)に示すように、ポストベーク後に誘電体1eをアニーリングし、所望のパターンの誘電体1e(図10(d)の時点で、誘電体1eは凸部1bとなる)を基板1a面上に形成させる。なお、インプリント法またはインクジェット法でも、ポストベークを行わずに、誘電体1eをそのままアニーリングしてもよい。
 フォトリソグラフィ法における、露光の光源としては、微細なパターンを形成するとの観点から、高圧水銀灯のg線(波長 436nm)、h線(波長405nm)、i線(波長365nm)、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)などが好ましい。また、誘電体1eの膜としてはポジ型と、ネガ型があるが、パターンの微細化、すなわち解像度が高い点、さらには、ポストベーク時、アニーリング時にリフローがかかりやすく、パターンの形状が丸くなりやすいという点でポジ型が好ましい。ポジ型の場合、露光後、ベークせず、現像する必要がある。露光後、60℃以上でベークした場合、露光部のシロキサンが縮合反応し、現像液に対する溶解性が低下、パターンを形成することができず、好ましくない。
 ポジ型感光性シロキサンには、感光剤として、ナフトキノンジアジド-5-スルホン酸エステルが好ましく用いられる。露光装置はパターンの微細化が可能との観点から、縮小投影露光手法が可能な装置が好ましい。
 また、フォトリソグラフィ法での現像液には、シロキサン樹脂組成物を溶解する薬液が使用され、有機溶剤の場合と、有機または無機アルカリの場合がある。しかしながら、水酸化カリウム(KOH)などの無機アルカリでは後工程への混入を避けられないとの観点から、有機アルカリであるTMAH(Tetra-methyl-ammonium-hydroxyde)が最も好ましい。
 前記の通り、フォトリソグラフィ法、インプリント法、インクジェット法共に、誘電体1eのパターン形成後に、更に誘電体1eをポストベークする。ポストベークにより、基板1a及び誘電体1eに付着したリンス液が加熱によって除去される。更にポストベーク後に誘電体1eをアニーリングし、所望のパターンの誘電体1eを基板1a面上に形成する。
 ポストベークを100℃以上400℃以下の温度範囲で行うことにより、誘電体1eの流動性を高めることが可能となる為、誘電体1eのパターンの全体又は、頂部/側部の一部を丸めて曲面状に成形することが可能となり、発光素子8の光取出効率を向上させることが可能となる。更に、断面形状が台形形状又は矩形形状の凸部(例えば凸部109)と比較すると、曲面状に成形された凸部1bは、GaN層(2乃至5)などの成膜時にGaN層の横方向成長時間が短くなるので、GaN層の成長時間を短縮することが可能となる。なお、100℃未満では、誘電体1eの流動性が不充分となり、誘電体1eのパターンの全体又は、頂部/側部の一部を曲面状に成形することが出来なくなる。また、400℃超では、誘電体1eの流動性が大きくなり、所望の解像度パターンが得られない。
 所望のパターン形成後の誘電体1eにアニーリングを施すことで、フォトレジスト膜(凸部1b形成膜のエッチング用マスク)を成膜すること無く基板1a面上に所望のパターンを、任意の側面形状に成形することが可能となる。更に、感光剤の成分をアニーリングにより除去することで、GaN層(2乃至5)などの発光素子8への有機成分の混入を防ぐことができる。なお感光剤成分の除去とは、アニーリングにより感光剤が液化され、蒸発により除去されることを指す。
 更に、所望のパターン形成にフォトリソグラフィ法を用いることにより、フォトレジスト膜(即ち、凸部1b形成膜のエッチング用マスク)を成膜すること無く基板1a面上にパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う基板1の低コスト化が実現される。更に、フォトリソグラフィ法工程の時間が短いので、所望のパターンを面上に有する基板1を、短時間で作製することが出来る。
 インプリント法について更に詳述する。モールド11材としては、例えば石英製等のように紫外線の透過率の良い材料を用いれば良い。石英モールドの作成方法は、先ず石英を用意し、次に石英基板上にレジストを塗布し、通常のフォトリソグラフィ法または電子線描画法により島状のパターンを露光し現像する。次に、Alを100nm程度蒸着し、リフトオフし、更にAlをマスクとしてCHF3(三フッ化メタン)を用いたRIE(Reactive Ion Etching:反応性イオンエッチング)装置で石英を所定の深さまでエッチング加工を行う。所定の深さとは、凸部1bの高さと同一とする。エッチング加工後に残った不要なAlはリン酸で除去し、最後に純水で洗浄し乾燥させ、石英モールドを完成させる。
 このようなモールド11を、誘電体1eに押しつけたまま、モールド11を通して紫外線を照射して誘電体1eを硬化させる。この時紫外線を照射する方向はモールド11側からとしても良いし、サファイア基板1aが透明体であるので、サファイア基板1a側から紫外線を照射しても構わない。なお、基板1a側から紫外線を照射する場合は、モールド11の材料は必ずしも透明体である必要は無いので、石英以外の材質、例えばシリコンなどの不透明体を用いても構わない。また、透明な材料としてサファイアをモールド11に使うことも出来る。
 なお、モールド11を誘電体1eに押しつけた時に、各々の誘電体1e内に気泡が取り込まれないように、真空雰囲気中で行っても良い。なお、ここではインプリント法として光ナノインプリント法による例を示したが、この他に熱によって誘電体1eを硬化させる熱ナノインプリント法を用いることも出来る。
 島状の誘電体1eを硬化後にモールド11を引き離し、モールド11の凸部に相当する部分(島状の誘電体1e以外の部分)に残った、不要な誘電体を酸素RIE装置により除去する。
 以上のように、所望のパターン形成にナノインプリント法を用いることにより、簡便な設備でしかも低コストに基板1a面上に所望の大きさ、ピッチ、高さの凸部1bのパターンを形成することが出来る。この誘電体パターンはその後の工程で完全に除去せずに、誘電体で形成された突起を残してデバイスを作り、この突起は最終製品まで永久に残ることが好ましい。
 又、所望のパターン形成にインクジェット法を用いることにより、直接、パターン形成することが可能となるため、凸部1bのパターンの種類の自由度を高められる。この誘電体パターンはその後の工程で完全に除去せずに、誘電体で形成された突起を残してデバイスを作り、この突起は最終製品まで永久に残ることが好ましい。
 なお、上記のフォトリソグラフィ法、インプリント法、及びインクジェット法のうち、最も汎用性が高いという点で、フォトリソグラフィ法が好ましい。誘電体パターンはその後の工程で完全に除去せずに、誘電体で形成された突起を残してデバイスを作り、この突起は最終製品まで永久に残ることが好ましい。
 更にアニーリングを、700℃以上1700℃以下の温度範囲で行うことにより、凸部1bの感光剤成分を除去することが出来るため、GaN層(2乃至5)などの発光素子8への有機成分の混入を防止することが出来る。更に、凸部1b上でのGaN層の成長発生の防止、或いは成長発生を困難とすることも可能となる。凸部1b上でのGaN層の成長を抑制することにより、FACELOの成長モードを実現することが出来る為、転位密度が減少したGaN層を形成することが可能となる。さらに、アニーリング後の凸部1bに耐熱性をもたせることが出来るためにより、n-GaN層の成膜時の成膜温度(約1000℃)下においても凸部1bの形状および物性を保つことができる。なお、700℃未満では、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とすることが出来なくなる。また1700℃超では、凸部1bの主要成分であるSiO2、TiO2、ZrO2、Al2O3のいずれかの融点を超えてしまい、凸部1bの形状の歪みを招くおそれがあるため、好ましくない。
 また、アニーリングの温度範囲を1000℃超から1700℃以下の温度範囲に設定することにより、パターンに含まれる不純物を低減し、デバイス特性への影響を低減できるようになるため、より好ましい。更に、アニーリングの温度範囲を1100℃以上から1700℃以下の温度範囲に設定することにより、基板1aとパターンとの密着性を向上させることが出来る為、より好ましい。基板1aとパターンとの密着性の向上により、パターン抜けを防止することが可能となり、作製した発光素子の波長バラつき、輝度バラつきなどの収率への悪影響を低減することができる。
 次に、発光素子8の製造方法について説明する。これまで説明した製造方法により製造された、所望のパターンを面上に有する基板1をまず用意し、凸部1b及び基板1a上に、GaN層、AlN層、InN層の少なくとも一層を形成することで、発光素子8を製造する。
 図1に示すGaN層2乃至5は、例えばエピタキシャル成長法等の公知の方法で成長させれば良いし、又は、GaN層2乃至5の各層毎に異なる成膜方法および/または成膜条件を採用して成膜しても良い。エキタピシャル成長とは、ホモエキタピシャル成長、ヘテロエキタピシャル成長を含む。成膜法としては他にメッキ法などの液相成膜法も挙げられるが、スパッタリング法やCVD法(Chemical Vapor Deposition)などの気相成膜法を用いることが好ましい。更に、発光素子8の製造を目的として3-5族窒化化合物半導体層などの半導体層を成膜する場合、MOCVD法(Metal Organic Chemical Vapor Deposition)、MOVPE法(Metal Organic Vapor Phase Epitaxy)、HVPE法(Hydride vapor phase epitaxy)、MBE法(Molecular Beam Epitaxy)などの気相成膜法を利用することがより好ましい。基板1bに用いる材料がサファイアなどの無機材料の場合、各半導体層を構成する材料も、金属材料、金属酸化物材料、無機半導体材料などの無機材料とすることが好ましく、全ての層がこれらの無機材料から構成されることが望ましい。但し、MOCVD法を成膜法として用いた場合、半導体層の無機材料中に有機金属由来の有機物を含有させても良い。
 まず、サファイア製の基板1の凸部1b側の面上に、GaNまたはAlNからなるバッファ層を成膜し、n-GaN層2、InGaN発光層(活性層)3、p型AlGaNクラッド層4、及びp型GaNコンタクト層5をこの順に成膜形成する。その後、所定の後加工を行うことで発光素子8を得る。
 凸部1bは誘電体で構成されるので、凸部1b表面に特定の面方位の結晶面が露出している訳では無く、n-GaN層2の成長の始点となる核が生成しにくい。即ち、凸部1bの側部では特定の面方位の結晶面が露出していないため、凸部1b側部からのGaN層の結晶成長は抑制される。また、凸部1bの少なくとも一部(例えば頂部)は曲面状に形成され平らな部分がほとんど無いか非常に狭いため、GaN層が成長しない。しかし基板1の面上には特定の面方位の結晶面が全面に露出しているので(例えば、サファイアのC面等)、GaNの核が生成しやすくn-GaN層2が成長していく。
 従って、図11(a)に示すように、n-GaN層2の成長は凸部1bの間の基板1a表面、即ち凸部1bではない平坦部から始まり、n-GaN層2の厚さが厚くなるに伴い、n-GaN層2は横方向(水平方向)に成長し、図11(b)に示すように凸部1bの側部及び頂部を覆っていく。最終的にn-GaN層2の厚みが凸部1bの高さ以上になると、基板1aの表面と凸部1bのパターンは図11(c)に示すようにn-GaN層2で覆われ、平面方向から見ると、平らなn-GaN層2の表面が観察されるだけとなる。
 従って、凸部1bの側部はn-GaN層2の横方向成長領域となるので、凸部1bの側部からの転位発生を防止することが可能となる。更に凸部1bの少なくとも一部(例えば頂部)を曲面状に形成することにより、平らな部分がほとんど無いか非常に狭く出来る。従って、凸部1bからのn-GaN層2の成長を抑制又は防止出来るので、凸部1b付近のn-GaN層2内の転位発生も防止出来る。以上により、平坦な基板上に成長させたGaN層よりも貫通転位の数を少なくすることが出来る。
 更に、GaNまたはAlNからなるバッファ層を形成することにより、n-GaN層2の膜厚方向における膜質や膜厚ばらつきなどを防止することが出来る。
 更に、GaN層3乃至5を公知方法で成膜後、p型電極6を電子ビーム蒸着法により形成する。更にn-GaN層2上のInGaN発光層3が形成されていない箇所に、ICP-RIEを使ってエッチング加工を行ってn-GaN層2を露出させる。そして露出したn-GaN層2の上にTi/Alの積層構造からなるn型電極層7を、電子ビーム蒸着法により形成し、p型電極6の上にTi/Alからなるp型の金属電極9を形成して、発光素子8を作製した。なお、p型電極6及びn型電極層7には、Ni、Au、Pt、Pd、Rh等の金属を用いても良い。
 凸部1bが基板1aの表面上に形成されることによって、各凸部1bで光散乱効果が得られる。従って、発光素子8内部で吸収されてしまう光の一部を、基板1a及びInGaN発光層3の外部に取り出すことが可能となり、発光素子8の光取出効率を向上させることが出来る。
 更に、感光剤を含有する誘電体をパターン形成することで、凸部1bからなる所望のパターンを基板1a面上に形成することが出来るので、フォトレジスト膜(凸部1b形成膜のエッチング用マスク)を成膜すること無く基板1a面上にパターンを形成することが可能となる。従って工程数の削減と工程の容易化、及び工程数削減に伴う発光素子8の低コスト化が実現されると共に、前記光取出効率が向上された発光素子8を製造することが出来る。
 又、更に誘電体からなる凸部1bのパターンをマスクにして、基板1a表面をドライエッチングまたはウェットエッチング処理することにより、基板1a表面に直接、島状パターンを形成しても良い。
 以下に、実施例1を挙げて本発明を説明するが、本発明は以下の実施例1にのみ限定されるものではない。
-製造方法-
 まず、基板表面がC面で且つ表面粗さRa1nmの鏡面状態とされた、平坦なサファイア基板を用意した。そのサファイア基板を5分間UV/O3洗浄し、その後水洗いし、ホットプレートにより130℃で3分間脱水ベークを行う。更に、脱水ベーク後のサファイア基板表面にHMDS(hexamethyldisilazane:ヘキサメチルジシラザン)薬液をスピナーにより、300rpmで10秒間更に700rpmで10秒間の2段階の工程で塗布した。その後、サファイア基板をホットプレートにより120℃で50秒間ベークした。
 次にGaNの屈折率2.4よりも屈折率が小さく、且つ感光剤として、ナフトキノンジアジド-5-スルホン酸エステルを含有する誘電体として、シロキサン樹脂組成物からなる膜をサファイア基板面上に、スピナーにより700rpmで10秒間更に1500rpmで30秒間の2段階の工程で形成した。その結果、厚さ1.55μmのシロキサン樹脂組成物膜が形成された。なおシロキサン樹脂組成物には、東レ(株)製ポジ型感光性シロキサンER-S2000(プリベーク膜の屈折率1.52(632.8nm) プリズムカプラー法)を採用した。
 本実施例では、前記シロキサン樹脂組成物膜から所望のパターンをサファイア基板面上に形成する方法として、フォトリソグラフィ法を採用した。シロキサン樹脂組成物膜が面上に形成されたサファイア基板を、ホットプレートにより110℃で3分間プリベークし、次にシロキサン樹脂組成物膜をパターン露光した。本実施例では、凸部の平面形状は円形で、その円形の直径が4.9μm、且つ凸部間のピッチが6.0μmのパターンを形成するようにポジ用マスクを作成して、シロキサン樹脂組成物膜を露光した。露光の光源には、光照射エネルギーがi-line換算で65mJ/cm2である、g,h,i線からなるブロード光を用いた(g線=436nm、h線=405nm、i線=365nm)。また、シロキサン樹脂組成物膜としてはポジ型とし、露光装置にはコンタクト露光装置を用いた。
 更に、露光したシロキサン樹脂組成物膜を現像した。現像液には2.38wt%-TMAHを用い、その現像液に60秒間シロキサン樹脂組成物膜を浸すことで行った。その後、サファイア基板及び現像したシロキサン樹脂組成物を230℃で3分間ホットプレートにてポストベークした。
 更にポストベーク後にサファイア基板上の現像したシロキサン樹脂組成物を、大気雰囲気中で1000℃1時間アニーリングして、所望のパターン及び側面形状の凸部をサファイア基板の面上に形成した。
-凸部-
 以上の工程により製造された、凸部を確認したところ、下記のようなパターン及びSiO2含有の凸部が確認された。
平面形状:円形
円形の直径:4.9μm
高さ:0.47μm
ピッチ:6.0μm
側面形状:全体が曲面で形成された曲面形状(図12及び図13参照)
凸部のパターンロスの割合:10%
-製造方法-
 シロキサン樹脂組成物である東レ(株)製ポジ型感光性シロキサンER-S2000を、東レ(株)製ポジ型感光性酸化チタン含有シロキサンER-S3000に変更した他は、実施例1と同様にして、所望のパターン及び側面形状の凸部をサファイア基板の面上に形成した。プリベーク膜の屈折率1.78(632.8nm) プリズムカプラー法を採用した。
-凸部-
 以上の工程により製造された、凸部を確認したところ、下記のようなパターン及びTiO2含有の凸部が確認された。
平面形状:円形
円形の直径:4.9μm
高さ:1.00μm
ピッチ:6.0μm
側面形状:全体が曲面で形成された曲面形状(図12及び図13参照)
凸部のパターンロスの割合:12%
-製造方法-
 シロキサン樹脂組成物である東レ(株)製ポジ型感光性シロキサンER-S2000を、東レ(株)製ポジ型感光性酸化ジルコニウム含有シロキサンER-S3100に変更した他は、実施例1と同様にして、所望のパターン及び側面形状の凸部をサファイア基板の面上に形成した。プリベーク膜の屈折率1.64(632.8nm) プリズムカプラー法を採用した。
-凸部-
 以上の工程により製造された、凸部を確認したところ、下記のようなパターン及びZrO2含有の凸部が確認された。
平面形状:円形
円形の直径:4.9μm
高さ:1.50μm
ピッチ:6.0μm
側面形状:全体が曲面で形成された曲面形状(図12及び図13参照)
凸部のパターンロスの割合:14%
比較例
 以下に比較例を説明する。比較例では、SiO2膜をプラズマCVD法で成膜し、その後SiO2膜上にフォトレジスト膜を形成し、実施例1と同様に前記フォトレジスト膜を露光、現像して、実施例1記載のパターンのように前記フォトレジスト膜をパターン形成した。パターン形成したフォトレジスト膜をマスクにして、SiO2膜のドライエッチングを行った。
 出来上がった凸部のパターン及びSiO2含有量を確認したところ、実施例1の凸部と同様な結果が得られた。
<評価>
 実施例1及び比較例について、凸部形成までの所要工程数とリードタイムを評価した。その結果、実施例1の所要工程数は8、リードタイムは70分との評価結果が得られた。一方、比較例の所要工程数は9、リードタイムは110分であった。以上の評価結果から、本実施例が工程数の削減及びリードタイム短縮を実現可能であることが確認された。大量生産の場合や基板が大口径になった場合には、比較例では、SiO2膜の成膜工程やSiO2膜のドライエッチング工程の装置サイズによってウェハ処理枚数が限定されてしまい、更にリードタイムの差が顕著になる。
 上述した基板及び発光素子は、以下の装置や機器等に適用できる。たとえば、当該発光素子を備えることにより、図14に示すように、照明100のための光源101や機器等の組み込み光源として適用できる。これらの光源は、当該発光素子がV族元素の内の窒素(N)で構成される場合、特に青色の可視光から紫外光に好適なため、青色の可視光や紫外光を発光させるために必要な機器等に利用できる。たとえば、青色光(短波長)を発するための照明、信号機、投光器、内視鏡などの光源、カラーディスプレイ200の三原色の1つの光源201(図15参照)、光ピックアップのための光源、及び紫外光は発するための殺菌庫、冷蔵庫などの光源として利用できる。また、蛍光塗料の塗布面と組み合わせて白色や電球色を生成することで、蛍光灯などの照明機器(例えば、植物育成用照明)、ディスプレイのバックライト、車両用の灯火、プロジェクタ、カメラ用フラッシュなどの光源として利用できる。もちろん、本願の発光素子は、窒化物系の化合物半導体に限定されるものではないので、その適用範囲も上記に限定されるものではないことはいうまでもない。
 また、図16に示すように、本願の基板は、発光素子としてだけではなく、様々な方向からの光を受光する受光素子として、フォトダイオードの基板、太陽電池や太陽光発電パネル300の基板301として利用することができる。
 なお、本発明は、例示した実施例や適用例に限定するものではなく、特許請求の範囲の各項に記載された内容から逸脱しない範囲の構成による実施が可能である。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
   1 所望のパターンを面上に有する基板
   1a 基板
   2b 凸部
   2 n型GaNコンタクト層(n-GaN層)
   3 InGaN発光層(活性層)
   4 p型AlGaNクラッド層
   5 p型GaNコンタクト層
   6 p型電極
   7 n型電極層
   8 LED発光素子
   9 金属電極
   10 マスク
   11 モールド
   12 ノズル
   13 台形形状の凸部
   14 矩形形状の凸部
   100 照明装置
   101 光源(発光素子)
   200 ディスプレイ装置
   201 光源(発光素子)
   300 太陽電池
   301 基板

Claims (23)

  1.  平坦な基板を用意し、
     感光剤を含有する誘電体を前記基板面上に形成し、
     前記誘電体をパターン形成して、所望のパターンの前記誘電体を前記基板面上に形成する、基板の製造方法。
  2.  前記誘電体のパターン形成後に前記誘電体をアニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することを特徴とする、請求項1記載の基板の製造方法。
  3.  前記誘電体のパターン形成後であって前記アニーリング前に前記誘電体をポストベークすることを特徴とする、請求項2記載の基板の製造方法。
  4.  前記ポストベークを100℃以上400℃以下の温度範囲で行うことを特徴とする、請求項3記載の基板の製造方法。
  5.  前記アニーリングを700℃以上1700℃以下の温度範囲で行うことを特徴とする、請求項2乃至4の何れかに記載の基板の製造方法。
  6.  前記誘電体がシロキサン樹脂組成物、酸化チタン含有シロキサン樹脂組成物、酸化ジルコニウム含有シロキサン樹脂組成物、アルミナ含有シロキサン樹脂組成物のいずれかであることを特徴とする、請求項1乃至5の何れかに記載の基板の製造方法。
  7.  前記誘電体を前記基板面上に塗布することで、前記誘電体を前記基板面上に形成し、
     次に、前記誘電体を前記基板面上に形成した前記基板をプリベークし、
     次に、マスクを用いて前記誘電体を所望の前記パターンに露光し、
     次に、露光した前記誘電体を現像し、
     前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することを特徴とする、請求項2乃至6の何れかに記載の基板の製造方法。
  8.  前記誘電体を、所望の前記パターンで前記基板面上に直接パターン形成し、
     次に、前記誘電体を前記基板面上に形成した前記基板をプリベークし、
     次に、前記誘電体を露光し、
     前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することを特徴とする、請求項2乃至6の何れかに記載の基板の製造方法。
  9.  前記誘電体を前記基板面上に塗布することで、前記誘電体を前記基板面上に形成し、
     次に、モールドを前記誘電体に押し付けて前記誘電体を硬化させ、
     前記誘電体を前記アニーリングし、所望の前記パターンの前記誘電体を前記基板面上に形成することを特徴とする、請求項2乃至6の何れかに記載の基板の製造方法。
  10.  請求項1乃至9の何れかに記載の、基板を用意し、
     前記パターンをマスクにして、前記基板の表面をエッチング処理し、前記基板の表面に所望の前記パターンを形成することを特徴とする、基板の製造方法。
  11.  請求項1乃至10の何れかに記載の基板を用意し、
     凸部及び前記基板上に、GaN層、AlN層、InN層の少なくとも一層を形成し、
     発光素子を製造する発光素子の製造方法。
  12.  基板の平坦な面上に、島状の凸部からなるパターンを有し、前記凸部が誘電体から構成されることを特徴とする基板。
  13.  前記凸部の少なくとも一部が、曲面状であることを特徴とする、請求項12に記載の基板。
  14.  前記凸部を構成する誘電体が、SiO2、TiO2、ZrO2、Al2O3のいずれかを主要成分とすることを特徴とする、請求項12又は13に記載の基板。
  15.  前記凸部は、全体が曲面であって、頂部及び側部の区別がなく、平坦面が存在しない曲面形状を有することを特徴とする、請求項12乃至14の何れかに記載の基板。
  16.  前記凸部は半球形であることを特徴とする、請求項15に記載の基板。
  17.  前記凸部の平面形状が円形又は楕円形であることを特徴とする、請求項12乃至16の何れかに記載の基板。
  18.  請求項12乃至17の何れかに記載の前記基板において、
     前記基板の表面に所望の前記パターンを有することを特徴とする基板。
  19.  請求項12乃至17の何れかに記載の前記基板において、
     前記基板の表面に均一なピッチで前記パターンを有し、且つ前記ピッチの前記表面箇所に前記パターンが形成されていない前記パターンの欠損箇所が、前記ピッチで形成される場合の前記表面における前記パターンの全数に対して、0%以上50%以下であることを特徴とする基板。
  20.  請求項12乃至19の何れかに記載の基板と、前記凸部及び前記基板上に形成された、GaN層、AlN層、InN層の少なくとも一層を含む発光素子。
  21.  請求項20に記載の発光素子を備える光源。
  22.  請求項20に記載の発光素子を備えるディスプレイ。
  23.  請求項12乃至19の何れかに記載の基板を備える太陽電池。
PCT/JP2016/058322 2015-03-19 2016-03-16 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置 WO2016148190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056823 2015-03-19
JP2015056823A JP2018110137A (ja) 2015-03-19 2015-03-19 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置

Publications (1)

Publication Number Publication Date
WO2016148190A1 true WO2016148190A1 (ja) 2016-09-22

Family

ID=56920046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058322 WO2016148190A1 (ja) 2015-03-19 2016-03-16 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置

Country Status (3)

Country Link
JP (1) JP2018110137A (ja)
TW (1) TW201703291A (ja)
WO (1) WO2016148190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085424A (ja) * 2016-11-22 2018-05-31 セイコーエプソン株式会社 光電変換素子及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862463A4 (en) * 2018-10-02 2022-06-01 Japan Science and Technology Agency HETEROEPTAXIAL STRUCTURE AND METHOD FOR PRODUCTION THEREOF, METAL LAMINATE PRODUCT CONTAINING HETEROEPTAXIAL STRUCTURE AND METHOD FOR PRODUCTION THEREOF, AND NANO-GAP ELECTRODE AND METHOD FOR PRODUCTION OF NANO-GAP ELECTRODE
US11211527B2 (en) * 2019-12-19 2021-12-28 Lumileds Llc Light emitting diode (LED) devices with high density textures
RU2747132C1 (ru) * 2020-08-21 2021-04-28 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления нитридного светоизлучающего диода

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653135A (ja) * 1992-05-07 1994-02-25 E I Du Pont De Nemours & Co 有機高分子膜にパタンを作成する方法
JP2004014297A (ja) * 2002-06-06 2004-01-15 Jsr Corp 感光性誘電体形成用組成物、誘電体および電子部品
JP2004206941A (ja) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP2004273671A (ja) * 2003-03-07 2004-09-30 Kyocera Chemical Corp 積層セラミックコンデンサの内部電極用材料
JP2004345917A (ja) * 2003-05-23 2004-12-09 Fujifilm Arch Co Ltd 無機材料膜、無機材料膜構造物、およびその製造方法並びに転写フィルム
JP2007036240A (ja) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd 垂直構造の窒化ガリウム系発光ダイオード素子、及びその製造方法
JP2007116097A (ja) * 2005-09-22 2007-05-10 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに窒化物系iii−v族化合物半導体成長用基板ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
JP2007150053A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 光インプリント用スタンパおよびそれを用いた発光装置の製造方法
WO2008081717A1 (ja) * 2006-12-22 2008-07-10 Showa Denko K.K. Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
WO2011040248A1 (ja) * 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
WO2011048809A1 (ja) * 2009-10-21 2011-04-28 パナソニック株式会社 太陽電池およびその製造方法
JP2011091374A (ja) * 2009-09-11 2011-05-06 Samco Inc サファイア基板のエッチング方法
JP2012524997A (ja) * 2009-04-29 2012-10-18 エスエヌユー アールアンドディービー ファウンデーション パターンが形成された基板の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653135A (ja) * 1992-05-07 1994-02-25 E I Du Pont De Nemours & Co 有機高分子膜にパタンを作成する方法
JP2004014297A (ja) * 2002-06-06 2004-01-15 Jsr Corp 感光性誘電体形成用組成物、誘電体および電子部品
JP2004206941A (ja) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP2004273671A (ja) * 2003-03-07 2004-09-30 Kyocera Chemical Corp 積層セラミックコンデンサの内部電極用材料
JP2004345917A (ja) * 2003-05-23 2004-12-09 Fujifilm Arch Co Ltd 無機材料膜、無機材料膜構造物、およびその製造方法並びに転写フィルム
JP2007036240A (ja) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd 垂直構造の窒化ガリウム系発光ダイオード素子、及びその製造方法
JP2007116097A (ja) * 2005-09-22 2007-05-10 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに窒化物系iii−v族化合物半導体成長用基板ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
JP2007150053A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 光インプリント用スタンパおよびそれを用いた発光装置の製造方法
WO2008081717A1 (ja) * 2006-12-22 2008-07-10 Showa Denko K.K. Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2012524997A (ja) * 2009-04-29 2012-10-18 エスエヌユー アールアンドディービー ファウンデーション パターンが形成された基板の製造方法
JP2011091374A (ja) * 2009-09-11 2011-05-06 Samco Inc サファイア基板のエッチング方法
WO2011040248A1 (ja) * 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
WO2011048809A1 (ja) * 2009-10-21 2011-04-28 パナソニック株式会社 太陽電池およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085424A (ja) * 2016-11-22 2018-05-31 セイコーエプソン株式会社 光電変換素子及びその製造方法

Also Published As

Publication number Publication date
JP2018110137A (ja) 2018-07-12
TW201703291A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
CN110729282B (zh) 一种Micro-LED显示芯片及其制备方法
JP5054366B2 (ja) ナノ構造物が形成された基板の製造方法及び発光素子並びにその製造方法
WO2016148190A1 (ja) 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置
KR101004310B1 (ko) 광추출 효율이 향상된 발광 소자 및 그 제조 방법
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
WO2015041007A1 (ja) 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置
CN110797442A (zh) 一种图形化衬底、led外延片及图形化衬底制备方法
JP5306779B2 (ja) 発光素子及びその製造方法
KR101233062B1 (ko) 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법
KR101023135B1 (ko) 이중요철구조의 기판을 갖는 반도체 발광소자 및 그 제조방법
KR101233768B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR101215299B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
CN103811614B (zh) 具有异质材料结构的发光元件及其制造方法
TW200847482A (en) Pyramidal photonic crystal light emitting device
KR20160092635A (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR20100011835A (ko) 고효율 발광 다이오드용 기판의 제조방법
JP2015129057A (ja) 凹凸構造を有する結晶基板
JP2016072619A (ja) 凸構造を有する基板の製造方法および凸構造を有する基板
TWI527265B (zh) 適用於發光二極體之圖形化基板及其製造方法
KR101216664B1 (ko) 회절광학소자를 적용한 고광도 발광다이오드의 제조방법 및 이 방법을 이용하여 제조되는 고광도 발광다이오드
CN114864774B (zh) 图形化衬底的制备方法及具有空气隙的led外延结构
KR20130046402A (ko) 반도체 발광소자 및 그 제조방법
KR101063110B1 (ko) 표면에 패턴이 형성된 사파이어 기판 제조방법
TWI511330B (zh) 具透光錐結構之圖形化基板及其製造方法
CN115332411A (zh) 用于微缩型led的衬底及其制备方法、外延片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP