TW200847482A - Pyramidal photonic crystal light emitting device - Google Patents

Pyramidal photonic crystal light emitting device Download PDF

Info

Publication number
TW200847482A
TW200847482A TW96144947A TW96144947A TW200847482A TW 200847482 A TW200847482 A TW 200847482A TW 96144947 A TW96144947 A TW 96144947A TW 96144947 A TW96144947 A TW 96144947A TW 200847482 A TW200847482 A TW 200847482A
Authority
TW
Taiwan
Prior art keywords
layer
led
light
semiconductor material
cone
Prior art date
Application number
TW96144947A
Other languages
Chinese (zh)
Other versions
TWI342629B (en
Inventor
James Mckenzie
Tom Lee
Majd Zoorob
Original Assignee
Luxtaltek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/564,213 external-priority patent/US7700962B2/en
Priority claimed from US11/564,207 external-priority patent/US7615398B2/en
Application filed by Luxtaltek Corp filed Critical Luxtaltek Corp
Publication of TW200847482A publication Critical patent/TW200847482A/en
Application granted granted Critical
Publication of TWI342629B publication Critical patent/TWI342629B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A light-emitting device (LED) is described which comprises a light generating layer disposed between first and second layers of semiconductor material, each having a different type of doping. An upper surface of the first layer has either a tiling arrangement of pyramidal or frustro-pyramidal protrusions of semiconductor material surrounded by a material of different refractive index, or it has a tiling arrangement of inverted pyramidal or inverted frustro-pyramidal indentations in the semiconductor material filled by a material of different refractive index. Each comprises a photonic band structure. The protrusions or indentations and their tiling arrangement are configured for efficient extraction of light from the device via the upper surface of the first layer and in a beam with an emission profile that is substantially more directional than from a Lambertian source. An enhanced device employs a reflector beneath the second layer to utilise the microcavity effect. Methods for fabricating the device are also described, which employs anisotropic wet etching to produce the pyramidal protrusions or the inverted pyramidal indentations.

Description

200847482 九、發明說明: 【發明所屬之技術領域】 發明領域 本叙明有關於具有改良光汲出及方向性的發光二極 5體,且特別是與應用光子晶體結構的裝置有關。 t先前技術孺 發明背景 發光二極體(LEDs)的光以一個順向偏壓的p_n接面為 基礎且隶近已充分到達高亮度而使其適合作為新的固態照 10明應用以及替換投影器光源。透過高效率LEDs的經濟增 益,連同其高可靠性,長使用壽命及環境利益而使其能進 入這些市場内。尤其,在固態照明的應用中要求LED超越 目前藉由可選擇之日光燈照明技術所達成的效率。 液晶顯示器(LCD)面板的背光單元(BLU)是一 LCD面 15 板之性能中的關鍵元件。現在,大多數的LCD面板使用小 型陰極螢光燈(ccfl)光源。然而,這些光源因有一些問題而 不理想,包括不佳的色域、環境回收和製造爭議、厚度和 輪廓、高電壓條件、不良熱管理、重量和高耗電量等。為 了要減少這些問題,LCD製造業者正在推行LED背光照明 20 單元。這些提議在許多領域皆能提供助益,包括色域、較 低的耗電量、輪廓薄,電壓需求低、良好熱管理及重量低。 現今的LED背光照明系統將LED分配於LED的背面 上,如同US7052152中所說明對於小顯示器而言這些通常 是低成本設計。然而,對於較大的LCD面板而言,例如大 200847482200847482 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a light-emitting diode 5 having improved light exiting and directivity, and in particular to a device employing a photonic crystal structure. BACKGROUND OF THE INVENTION The light of light-emitting diodes (LEDs) is based on a forward-biased p_n junction and is sufficiently close to high brightness to make it suitable as a new solid-state illumination application and replacement projection. Light source. The economic benefits of high-efficiency LEDs, along with their high reliability, long life and environmental benefits, enable them to enter these markets. In particular, in solid-state lighting applications, LEDs are required to exceed the efficiency currently achieved with alternative fluorescent lighting technologies. The backlight unit (BLU) of a liquid crystal display (LCD) panel is a key component in the performance of an LCD panel. Most LCD panels now use a small cathode fluorescent lamp (ccfl) source. However, these sources are not ideal due to some problems, including poor color gamut, environmental recycling and manufacturing controversy, thickness and profile, high voltage conditions, poor thermal management, weight and high power consumption. In order to reduce these problems, LCD manufacturers are implementing LED backlighting unit 20. These proposals can be helpful in many areas, including color gamut, lower power consumption, thin profile, low voltage requirements, good thermal management, and low weight. Today's LED backlighting systems distribute LEDs on the back side of the LEDs, which are typically low cost designs for small displays as described in US7052152. However, for larger LCD panels, for example, large 200847482

於32吋,使光均勻地分配在LCD面板之背部所需要的LED 數目使此一途徑成本上不再具有經濟性。在US7052152中提 出124 LEDs應用作為一32吋LCD面板顯示器。 對於一些應用而吕’《 —種更為各向同性或一 led的朗 5伯特光分配是被需要的且一種用來達成此一性質的技術是 粗化光通過而結合的表面。一特定程度的粗缝度視led之 製作程序而定可為固有者。然而,藉由利用諸如蝕刻技術, 一控制程度的表面粗糙可被達成以改進由LED發出之光的 不規則性以及均句性。 10 US2006/0181899 和 US2006/0181903揭露一安排成使光 平均地分散在完整的LCD面板表面上的光學導光板或波 導。藉由使用側懸掛式LED光源光被耦合至導光板中。當 與直接LED背光照明相較下,側懸掛式因每單位面積之背 光LCD中所需之LEDs數目顯著減少而為有利者。已有μ叶 15 LCD面板可利用少至光源照明的建議。然而使漫 射在LCD面板上的光最大化則需要將LED光最佳搞合至導 光板中。 高亮度LEDs應用上的另一應用領域是前投式和背投 式投影機的光引擎。低效率和短壽命一直是習知高強度放 20電型投影機光引擎的障礙,以致其被消費市場採用受 到延滯。在本申請案中光源的集光率值需要小於或與微型 顯示器集光率值相配。此一互適性對於改進完整光投射引 擎之整體系統效率非常重要。此外,總發光輸出高及耗電 ΐ低亦非常重要,尤其在大的背投料幕(Α於料)及前投 200847482 :、,v"用中此為被需要者。為使熱控制問題減至最低 ^需要低耗電量。來自_組具有小集光率數值的紅色、綠 座色的單顏&LED域被乡路傳輸以在投影系統中 、生所需要的顏色。此可免除色環及相義外成本的需 5 求。集光率數值五可β π ΠΤ 值么了依舨下列的方程式計算·· ^ Αχ η2 Xsin(a) ⑴ 式中E是光源的集光率,枝發光裝置的表面積,且“ 是光源半角。因此,可瞭解到對於投射應用而言,發光源 的準直程度是-項關鍵因素且減少光源之半角能顯著地改 10 善光引擎的整體效率。 led的整體效率可藉由三個主要因素定量即内量子 效率、注人效率、以及紋出效率。減少由—LED之光没 出效率的主要限制因素之一是發出光子的全内反射及它們 被捕陷在形成LED的高折射率材料中。這些被捕陷的波導 15模態傳佈在LED的結構中直至它們被散射或再吸收為止。 LED結構的厚度決定可被支持的模態數目。 US5779924和US5955749兩者皆描述使用定義在led 之半導體層中的光子晶體結構影響光傳佈通過淺表構造。 所形成的光子帶結構容使捕陷模態被汲出且因而增加光沒 20出效率且最終增加LED的總外部效率。在一LED中使用光 子晶體結構比其他光 >及出技術有利的原因在於它們隨著 LED的有效表面積縮放大小,因而提供一種改進_大面積 南受度LED結構之光 >及出的理想方法。LED大小的縮放比 例對於需要絕對發光輸出的固態發光應用十分重要。然 200847482 而許夕這些光子晶體[馳的總光没出不及更傳統的表面 粗化LED高。 US6831302和US2〇〇5/〇285132描述利用以蘇氮化物 (GaN)為基礎的材料製作具有光子晶體結構之發光二極體 5的方法。在兩案的例子中處理上皆包含最後會影響LED晶 圓產里與成本的許多複雜而昂貴的步驟。尤其,us683i3〇2 4田述一包括下列步驟的製作方法··在一匹配單晶晶圓的晶 格上生長一n-GaN層,一有效QW區域和一p-GaN層,接著 在頂端表面上共熔鍵合一底層封裝或封袭載板、晶圓覆晶 1〇封衣、生長晶圓剝離(利用一諸如雷射剝離之技術)、表面拋 光以提供一光學平滑的表面(使用一諸如化學機械拋光之 私序)’在该表面上界定一光子晶體(藉由一諸如奈米壓印, 微影,或雷射攝影術),且最後使光子晶體利之一適 當的乾(例如RIE或ICP)或濕蝕刻轉移至GaN材料。 15 所牽涉之複雜處理步驟之一是晶圓的拋光,由於在控 制跨越整個晶圓表面品質上的困難,該步驟會對生產量有 不利的影響。佈於全表面上的小擦傷可能影響傳佈於LED 晶圓上之電流且最終造成一使整個led短路的路徑,或對 正向電壓有不不良影響。另外,GaN淺表結構的厚度對光 20子晶體的光汲出圖形的有效設計很重要。高折射率作用成 一鬲度多模態波導,因而厚度決定了 LED異質結構存在的 模態數目。因使用一拋光程序而造成對LED結構絕對厚度 的不良控制,最終影響由一處理批次到另一處理批次的 LED晶圓整體輸出。 200847482 個複‘的製作步驟是界定如Qnm至5〇〇ηΐχι範圍間 的J規拉一階光子晶體的特徵間距,以及200nm至400nm的 孔直在特徵。此種圖形目前利用奈米壓印或雷射攝影術定 義幻者目萷對於在LED晶圓上之此一小型特徵尚非一種 5成熟的技術且僅可達成低生產量。除此之外,該技術的缺 失為丨I造量需要較鬲的成本。後者的微影技術缺失在於 複雜的對準及穩定性以及低產量。 因此對一種新型態的具表面圖形LED有所需求,該 LED表現得比習知表面粗化或光子晶體LED裝置更佳且可 10 依一簡單和具有成本效益的方法被製作。 【發明内容】 發明概要 依據本發明的第一層面,一個發光裝置(LED)包含: 一第一層,包含一具有第一型攙雜之第一半導體材料; 15 一第二層,包含一具有第二型攙雜的第二半導體材 料;以及 一配置在第一層與第二層之間的光產生層, 其中该弟一層具有一退離光產生層的上表面及一接近 光產生層的下表面,且其中在光產生層中所產生的光由 20 LED結構經由第一層的上表面出現,該第一層進一步包含 第一半導體材料所組成的角錐型或截錐型上表面突出部莫 瓦配置,該突出部由一與第一半導體材料之折射率不同的 材料所圍繞’其中突出部之蓋瓦配置與周圍材料構成—光 子帶結構,且其中該突出部及其蓋瓦配置的安排使得由 200847482 led結構形成通過上表面之光實質上比得自一朗伯特源光 源的光更具有方向性。 依據本發明的第二層面,一發光裝置(LED)包括·· 一第一層,包含一具有一第一型攙雜的第一半導體材 5 料; 第二層,包含一具有一第二型攙雜的一第二半導體 材料;以及,At 32 inches, the number of LEDs required to evenly distribute light across the back of the LCD panel makes this approach no longer cost effective. The 124 LEDs application is presented in US7052152 as a 32" LCD panel display. For some applications, Lue's more isotropic or a led lang 5 bert light distribution is needed and one technique used to achieve this property is to combine the roughening of light through the surface. A certain degree of roughness may be inherent to the production process of the led. However, by utilizing, for example, etching techniques, a controlled degree of surface roughness can be achieved to improve the irregularity and uniformity of the light emitted by the LED. 10 US 2006/0181899 and US 2006/0181903 disclose an optical light guide or waveguide arranged to evenly distribute light over the surface of a complete LCD panel. Light is coupled into the light guide by using a side-mounted LED source. When compared to direct LED backlighting, side suspension is advantageous because the number of LEDs required per unit area of the backlight LCD is significantly reduced. There are already μ-leaf 15 LCD panels that can take advantage of the low-light source recommendations. However, maximizing the light diffused on the LCD panel requires optimal integration of the LED light into the light guide. Another area of application for high-brightness LEDs is the light engines of front-projection and rear-projection projectors. Low efficiency and short life have been obstacles to the conventional high-intensity 20-light projector light engine, which has been delayed by the consumer market. The etendue value of the source in the present application needs to be less than or matched to the microdisplay etendue value. This interoperability is important to improve the overall system efficiency of a complete light projection engine. In addition, the high total output of the light and the low power consumption are also very important, especially in the case of the large rear projection screen (for the material) and the front projection 200847482:,, v" In order to minimize thermal control problems, low power consumption is required. The single-color & LED fields from the _ group with small etendue values are transmitted by the township to produce the desired color in the projection system. This eliminates the need for color ring and cost. The etendue value of five can be β π ΠΤ value is calculated according to the following equation·· ^ Αχ η2 Xsin(a) (1) where E is the etendue of the light source, the surface area of the branching device, and “is the half angle of the light source. Therefore, it can be understood that for projection applications, the degree of collimation of the illumination source is a key factor and reducing the half angle of the light source can significantly change the overall efficiency of the good light engine. The overall efficiency of the led can be quantified by three main factors. That is, internal quantum efficiency, injection efficiency, and graining efficiency. One of the main limiting factors for reducing the light-out efficiency of LEDs is the total internal reflection of photons and their trapping in the high refractive index material forming the LED. These trapped waveguides 15 are modally propagated in the structure of the LED until they are scattered or reabsorbed. The thickness of the LED structure determines the number of modes that can be supported. Both US5779924 and US5955749 are described using the definition in led. The photonic crystal structure in the semiconductor layer affects the light transmission through the superficial structure. The formed photonic band structure allows the trapping mode to be extracted and thus increases the efficiency of the light and ultimately increases the LED. The overall external efficiency. The use of photonic crystal structures in an LED is more advantageous than other light> and the technology is that they scale with the effective surface area of the LED, thus providing an improvement _ large area south-acceptance LED structure light &gt The ideal method for LED size scaling is very important for solid-state lighting applications that require absolute illuminating output. However, these photonic crystals are not as good as the more conventional surface roughening LEDs. And US 2 〇〇 5 / 〇 285132 describe a method of fabricating a light-emitting diode 5 having a photonic crystal structure using a material based on a sulphide (GaN). In both cases, the processing includes the final effect on the LED crystal. There are many complicated and expensive steps in the production and cost. In particular, us683i3〇2 4 Tian Yiyi includes the following steps: · An n-GaN layer is grown on the lattice of a matched single crystal wafer. a QW region and a p-GaN layer, followed by eutectic bonding on the top surface to an underlying package or encapsulation carrier, wafer flip-chip sealing, growth wafer stripping (using a strip such as laser stripping) Technology), surface polishing to provide an optically smooth surface (using a private sequence such as chemical mechanical polishing) to define a photonic crystal on the surface (by a method such as nanoimprint, lithography, or laser photography) And finally, one of the photonic crystals is properly dried (eg RIE or ICP) or wet etched to the GaN material. 15 One of the complex processing steps involved is the polishing of the wafer, due to the quality of the control across the entire wafer surface. Difficulties, this step will have an adverse effect on throughput. Small scratches on the full surface may affect the current spreading on the LED wafer and eventually cause a path that shorts the entire led, or No adverse effects. In addition, the thickness of the GaN superficial structure is important for the effective design of the light exiting pattern of the light sub-crystal. The high refractive index acts as a multi-mode waveguide, and the thickness determines the number of modes present in the LED heterostructure. Poor control of the absolute thickness of the LED structure due to the use of a polishing process ultimately affects the overall output of the LED wafer from one process batch to another. The fabrication process of 200847482 is to define the feature spacing of the first-order photonic crystals of the J-scale between Qnm and 5〇〇ηΐχ, and the straightness of the holes from 200nm to 400nm. Such graphics are currently using nanoimprint or laser photography to define the illusion that this small feature on LED wafers is not yet a mature technology and can only achieve low throughput. In addition, the lack of this technology requires a relatively low cost. The latter's lithography technology is missing due to complex alignment and stability and low throughput. There is therefore a need for a new type of surface patterned LED that behaves better than conventional surface roughening or photonic crystal LED devices and can be fabricated in a simple and cost effective manner. SUMMARY OF THE INVENTION In accordance with a first aspect of the present invention, a light emitting device (LED) includes: a first layer comprising a first semiconductor material having a first type of doping; 15 a second layer comprising a first a second type doped second semiconductor material; and a light generating layer disposed between the first layer and the second layer, wherein the first layer has an upper surface retreating from the light generating layer and a lower surface adjacent to the light generating layer And wherein the light generated in the light generating layer is present by the 20 LED structure via the upper surface of the first layer, the first layer further comprising a pyramidal or truncated cone shaped upper surface protrusion of the first semiconductor material Arranged, the protrusion is surrounded by a material different from the refractive index of the first semiconductor material, wherein the tiling arrangement of the protrusion is formed with the surrounding material-photonic band structure, and wherein the arrangement of the protrusion and its tiling arrangement is such that The light formed by the 200847482 led structure through the upper surface is substantially more directional than the light from a Lambertian source. According to a second aspect of the present invention, a light emitting device (LED) includes a first layer comprising a first semiconductor material having a first type of doping; and a second layer comprising a second type doped a second semiconductor material; and,

一配置在第一層與第二層之間的光產生層,其中第一 層有一遠離光產生層之上表面及一接近該光產生層的下表 1〇面,且其中在光產生層中所產生的光通過第-層的上表面 由ED構^的出現,該第一層進一步包含一在第一半導體 材料中由上表面朝向光產生層延伸,且由一折射率與第一 半導體材料不同之材料所組成之倒角錐型或倒截錐型凹痕 1瓦配置,其中該凹痕的蓋瓦配置及周圍 …光子帶結構,且其中該凹痕及其蓋瓦配 得透過該上表面從led的結構出現的光比得自一朗伯特光 源者更具有方向性。 -朗伯特光源在任一方向每單位立體角之光通量與該 -方向與其所由之發射的表面法線之間所成角度的餘弦成a light generating layer disposed between the first layer and the second layer, wherein the first layer has a surface away from the upper surface of the light generating layer and a surface of the lower surface adjacent to the light generating layer, and wherein the light generating layer is in the light generating layer The generated light is formed by the ED structure through the upper surface of the first layer, the first layer further comprising an extension from the upper surface toward the light generating layer in the first semiconductor material, and a refractive index and the first semiconductor material a chamfered or inverted truncated indented 1 watt configuration of different materials, wherein the tiling of the dent is disposed and surrounded by a photonic band structure, and wherein the dent and its tiling are adapted to pass through the upper surface The light emerging from the structure of the LED is more directional than the one obtained from a Lambertian source. - the cosine of the angle between the luminous flux per unit solid angle of the Lambert source in either direction and the surface normal to which it is emitted

比例。此導致球形分配的均一發光。一LED包括一依據本 發明之結構,該結構結合更大方向性的發光以及由裝置所 產生之練合至發射光束之效率上的改進。此可透過角錐 型或截錐型表面突出部,或倒角錐型或倒截錐型凹痕的新 穎蓋瓦配置被達成角錐型。 10 200847482 有二種較佳的光子盍瓦配置,即短程與長程有序光子 晶體,短程無序但長程有序準光子晶體,短程間隔有序但 長私無序無疋形盍瓦模式。在無定形的情況下,鄰接角錐 狀區域被固定而旋轉對稱性隨機化。 5 本發明中所提出的一高階角錐狀或倒角錐狀光子晶體proportion. This results in a uniform illumination of the spherical distribution. An LED includes a structure in accordance with the present invention that combines greater directional illumination and improved efficiency in the efficiency of the beam produced by the device. This can be achieved by a pyramidal or truncated cone shaped surface projection, or a chamfered or inverted truncated dent in a new tiling configuration. 10 200847482 There are two preferred photonic silicon configurations, namely short-range and long-range ordered photonic crystals, short-range disordered but long-range ordered quasi-photonic crystals, short-range interval ordered but long-spatial disordered and non-small-form tile patterns. In the case of amorphous, the adjacent pyramidal regions are fixed and the rotational symmetry is randomized. 5 A high-order pyramidal or chamfered cone photonic crystal proposed in the present invention

或準晶體模式當與較為習知的一階光子晶體模式比較時可 七供增加的光沒出。光子晶體的精心設計也允許定制由裝 置所產生之遠場光。詳言之,具有一角度之侧壁之突出部 的角錐形狀或凹痕的倒角錐形狀,以及它們的界定明確蓋 10瓦配置能從LED汲出一比從朗伯特光源更為準直的光束, 甚至在具有大晶格常數(>1μη1)的模式下亦如此。 較佳地’角錐型突出部或倒角錐型的凹痕具有一大於 1·〇μιη的尺寸。然而,他們的尺寸可大於i 5哗或2〇叫或 甚至於大於2·5μιη。相對上較大的角錐體或倒角錐體尺寸釋 15出製作上的容差且亦意表在角錐型突出部或倒角錐型壓形Or quasi-crystal mode can be used to increase the amount of light when compared to the more conventional first-order photonic crystal mode. The careful design of the photonic crystal also allows for the customization of the far-field light produced by the device. In particular, the pyramidal shape of the pyramid with an angled side wall or the chamfered cone shape of the indentation, and their definitively defined 10 watt configuration, can extract a more collimated beam from the LED than from a Lambertian source. This is true even in a mode with a large lattice constant (>1μη1). Preferably, the 'tapered-shaped projection or the chamfered-cone shaped dimple has a size greater than 1·〇μηη. However, their size may be greater than i 5 哗 or 2 〇 or even greater than 2·5 μιη. The relatively large pyramid or chamfer cone size releases the tolerance of the fabrication and is also intended to be in the pyramidal or chamfered cone

成之前不需要作表面拋光,因它們的尺寸充分大於殘餘的 表面粗度。 此外’更佳者是蓋瓦配置的間距尺寸上大於15)Lmi或 2·5μηι甚至於大於3.0。 20 對於許多應用而言,突出部或凹痕最好配置成使得一 顯著比例(>35%)的光在一對垂直軸具有一 3〇。半角的中央 圓錐中被汲出。最好是大於37%、38%或甚至於40%從中央 圓錐中被汲出。此能使光有效且均一地耦合至狹長的光導 中而該光導通常與光源一起被使用在投射應用場合。 11 200847482 或者’角錐體或倒角錐體以及蓋瓦圖形可配置成使得 光主要以比此為大的角度以-種侧邊發光型式被沒出。 例如’光可以一被瞄準之環或像油炸圈餅一樣的分配圍繞 垂直轴被秦出。在此_情況下,分配的中心可與垂直轴成 5 -大於或等於3〇。、4()。、5()。或⑼。之角度,或相等地與表面 相等地成小於或等於60。、50。、40。或30。的角度。 具有第一型攙雜的第一半導體材料可以是攙雜或pSurface polishing is not required prior to formation because their dimensions are sufficiently larger than the residual surface roughness. In addition, 'better is the spacing of the tiling configuration is greater than 15) Lmi or 2·5μηι even greater than 3.0. 20 For many applications, the projections or indentations are preferably configured such that a significant proportion (> 35%) of the light has a 3 〇 on a pair of vertical axes. The central cone of the half-angle is pulled out. Preferably, greater than 37%, 38% or even 40% is scooped out of the central cone. This enables light to be efficiently and uniformly coupled into the elongated light guide which is typically used with the light source in projection applications. 11 200847482 Or 'The pyramid or chamfer cone and the tile pattern can be configured such that light is predominantly out of the side illumination pattern at a greater angle than this. For example, the light can be split out around the vertical axis as a ring of sight or a donut-like distribution. In this case, the center of the distribution can be 5 - greater than or equal to 3 与 from the vertical axis. , 4 (). , 5 (). Or (9). The angle, or equal to the surface, is less than or equal to 60. 50. 40. Or 30. Angle. The first semiconductor material having the first type of doping may be doped or p

型攙雜,該-情況下具有第二型攙雜之第二半導體材料將 被p型攙雜或η型攙雜。 10 第一層可包含一層埋入第一半導體材料中之一預定深 度的蝕刻停止材料,該一情況下由第一半導體材料所形成 的突出部可從蝕刻停止材料之一表面延伸且倒錐狀凹痕將 一直延伸至蝕刻停止材料層。Type doping, in which case the second semiconductor material having the second type of doping will be p-type doped or n-type doped. The first layer may include a layer of etch stop material buried in the first semiconductor material at a predetermined depth, in which case the protrusion formed by the first semiconductor material may extend from one surface of the etch stop material and be inverted. The dent will extend all the way to the etch stop material layer.

在一特別的較佳實施例中,第一半導體材料包含11型攙 15雜GaN或InGaN且第二半導體材料包含1)型攙雜之GaN或 InGaN。最好光產生層包括一GaN-InGaN之多重量子井構 造。從角錐體的直徑方面而言,較高階的光子晶體尺寸典 型地在Ι.Ομιη至3·0μηι範圍内,惟此係依一範圍之因素而 定’包括波長,遠場圖形、LED厚度以及整體GaN異質結構 20内的多重量子井構造。適當的餘刻停止材料包括AlGaN和 InGaN 〇 為了更進一步提高光汲出,LED最好進一步包含一光 學反射器以反射傳遞自第一層上沒出表面的光,否則該光 不會被汲出。光學反射器設置於鄰近第二半導體材料的第 12 200847482 一層以使付弟·一層位於光產生層和反射1§之間。 較適宜地,光學反射器包括一金屬材料單一層,或其 可包含一多層電介質結構。可供選擇地,光學反射器可能 包含一分佈式布拉袼反射器(DBR)或一全方向反射器 5 (ODR)。 較適宜地’光產生層和光學反射器之間的分隔距離是 構成一可提高朝向第一層之上光汲出表面傳播之生成光量 的微腔。此微腔效應在光汲出效率上甚至提供一超越光學 反射器之單純反射的更大光汲出效率提升。一最佳的分隔 10是光產生層之波長的0.5-0.7倍之間。當一微腔存在時,最 好角錐型突出部或倒角錐型凹痕以及其蓋瓦配置被組配成 能夠與微腔效應有最佳的配合作用以進一步提高光由LED 及出的效率。 依照本發明的第三層面,一光學投影儀單元的光引擎 15包括多數依據第一或弟二層面的發光裝置。上述之led特 別適合用來應用在固態照明光源中,包括前後投影儀。 依照本發明的第四層面,一種根據第一層面製作一發 光裝置(LED)的方法包含的步驟是·· 提供一發光裝置異質結構,包括一包含有一具有一第 20 一型摻雜之第一半導體材料的第一層,一包含有一具有第 一型捧雜之弟一半導體的第二層,以及一設置在該第一與 第二層之間的光產生層,其中該第一層具有一遠離光產生 層的上表面與一接近光產生層的下表面,且其中在光產生 層中所產生的光透過第一層的上表面由LED結構顯現, 200847482 在第-層上形成-蚀刻光罩,該光罩包含光軍材 塊,該島塊位於一對應一預定蓋瓦配置的位置,其中7…、 光罩的步驟包含之數個步驟為: 沈積一層光阻劑在該第一層上; 5 依據預定的蓋瓦配置藉由曝光形成光阻劑圖形;以及, 除去未曝光的光阻劑而在對應於預定蓋瓦配 留下光阻劑之島塊; 置 在第-層中沿預定晶體平面藉由等向性濕餘刻第一半In a particularly preferred embodiment, the first semiconductor material comprises 11-type 杂 15 GaN or InGaN and the second semiconductor material comprises 1) doped GaN or InGaN. Preferably, the light generating layer comprises a multiple quantum well structure of GaN-InGaN. In terms of the diameter of the pyramid, the higher order photonic crystal size is typically in the range of Ι.Ομιη to 3·0μηι, but it depends on a range of factors including wavelength, far field pattern, LED thickness and overall Multiple quantum well structures within the GaN heterostructure 20. Suitable residual stop materials include AlGaN and InGaN. To further enhance light exit, the LED preferably further includes an optical reflector to reflect light transmitted from the surface of the first layer that would otherwise not be ejected. The optical reflector is disposed adjacent to a layer of 12 200847482 of the second semiconductor material such that the layer is located between the light generating layer and the reflection 1 §. Preferably, the optical reflector comprises a single layer of metallic material or it may comprise a multilayer dielectric structure. Alternatively, the optical reflector may comprise a distributed Brass reflector (DBR) or an omnidirectional reflector 5 (ODR). Preferably, the separation distance between the light-generating layer and the optical reflector is such that a microcavity that increases the amount of generated light propagating toward the light-extracting surface above the first layer is formed. This microcavity effect provides even greater light extraction efficiency over the optical reflection of the optical reflector in terms of light extraction efficiency. An optimum separation 10 is between 0.5 and 0.7 times the wavelength of the light generating layer. When a microcavity is present, the best pyramidal or chamfered indentation and its tiling arrangement are combined to provide optimal coordination with the microcavity effect to further increase the efficiency of light from the LED. In accordance with a third aspect of the present invention, the light engine 15 of an optical projector unit includes a plurality of illumination devices in accordance with the first or second level. The above-mentioned leds are particularly suitable for use in solid state lighting sources, including front and rear projectors. In accordance with a fourth aspect of the present invention, a method of fabricating a light emitting device (LED) according to a first level includes the steps of providing a light emitting device heterostructure comprising: a first one having a 20th type doping a first layer of a semiconductor material, comprising a second layer having a first type of semiconductor, and a light generating layer disposed between the first and second layers, wherein the first layer has a Moving away from the upper surface of the light generating layer and a lower surface close to the light generating layer, and wherein the light generated in the light generating layer passes through the upper surface of the first layer is visualized by the LED structure, 200847482 forming an etching light on the first layer a cover, the light cover comprises a light military block, the island block is located at a position corresponding to a predetermined tile arrangement, wherein the step of the photomask comprises a plurality of steps of: depositing a layer of photoresist on the first layer 5; forming a photoresist pattern by exposure according to a predetermined tiling configuration; and removing the unexposed photoresist to form an island block corresponding to the predetermined tiling with the photoresist; placed in the first layer Borrowing along a predetermined crystal plane I an isotropic wet engraved first half

㈣材料至-駭深度在鮮材料之島塊下的位置形成 10第一半導體材料的角錐型或截錐型突出部;以及, 除去光罩材料之島塊以留下預定的角錐型或截錐型突 出部蓋瓦配置,該突出部與一不同折射率之周圍材料相組 合以構成一光子帶結構。 w 15 20 依照本發明的第五層 1 垔衣作一依據第二層面 發光裝置(LED)的方法包括之步驟為: 提供-發光裝置異質結構,料f結構包括一迄 具有第-型攙雜的第-半導體材料之第—層,一包^ 有第二型攙雜的第二半導體材料之第二^及__= 該第-與第二層間之光產生層,其中該第—層具有一 離光產生層之上表面與-鄰近該光產 中在該光產生層所產生之先通過該第表面: led構造顯現,(d) material to - 骇 depth at the location under the island of fresh material to form 10 pyramidal or truncated cone shaped portions of the first semiconductor material; and, removing the island block of the reticle material to leave a predetermined pyramid or truncated cone A type of tab tiling arrangement that combines with a surrounding material of a different index of refraction to form a photonic strip structure. w 15 20 The fifth layer 1 according to the present invention as a method according to the second level light-emitting device (LED) comprises the steps of: providing a light-emitting device heterostructure, the material f structure comprising a first-type doped a first layer of the first semiconductor material, a second portion of the second semiconductor material having the second type doping, and a light generating layer between the first and second layers, wherein the first layer has a separation The upper surface of the light generating layer is adjacent to the light generated in the light generating layer, and the first surface is formed by the led surface:

該光罩包括位置對應 ’其中形成光罩的步 在第一層上形成一蝕刻光罩, 於一預定蓋瓦配置之缺失光罩材料 14 200847482 驟包含: 依_定1瓦配置藉由曝光形成光阻劑圖形;以及, 除去未曝光的轨劑以在對應於預定蓋瓦配置之位 置留下缺失光阻劑島塊; 藉由預疋晶體平面以等向性濕㈣該第—半導體 = 預定深度,以在第一半導體第一層中缺失光罩 材料之島塊下方位置形成角錐型或截錐型凹痕;以及,The reticle includes a position corresponding to the step in which the reticle is formed to form an etched reticle on the first layer, and the reticle material 14 is disposed in a predetermined tiling arrangement. The method includes: forming a watt by 1 watt by exposure a photoresist pattern; and, removing the unexposed orbital agent to leave a missing photoresist island block at a position corresponding to the predetermined tile configuration; by pre-twisting the crystal plane to be isotropic wet (four) the first semiconductor = predetermined Depth to form a pyramid or truncated cone indentation below the island block where the reticle material is missing in the first layer of the first semiconductor;

除去剩餘的光罩材料而在第—半導體材料中留下倒 角錐型或倒截錐型之凹痕的預定蓋瓦配置,該凹痕包括 一周圍之第—半導體材料折射率不同的材料且-起構 成一光子帶結構。 ^光裝置異質結構本身可藉任何適當的習知程序製 作’包括覆晶封裝程序。Removing a remaining reticle material leaving a predetermined tiling arrangement of chamfered or inverted truncated dents in the first semiconductor material, the dent comprising a surrounding material having a different refractive index of the first semiconductor material and - It forms a photonic band structure. The optical device heterostructure itself may be fabricated by any suitable conventional procedure 'including flip chip packaging procedures.

$阻劑層可能本身能是光罩層,此—情況下光罩材料 之島塊為光阻劑之島塊。藉由曝光形成光阻劑圖形的任何 適备程序皆可被利用,包括紫外線微影。未曝光的光阻劑 使用適當的顯影劑除去且餘留的未曝光光阻劑島塊藉由 剝離去除。有多種不同的蝕刻劑可用來作等向性的濕蝕 刻,包括KOH、NaOH或H3P〇4溶液。 20 可選擇地’ 一較硬的光罩材料可被使用,該光罩材料 對於等向性的濕蝕刻具有抗蝕刻性。因此需要更進一步的 程序步驟。 在第四層面的方法中,形成一蝕刻光罩的步驟最好進 一步包含以下步驟: 15 200847482 材料 在沈積光阻劑層的步驟前於第一層上沈積一層硬光罩 在除去光阻劑的步驟之後除去硬光罩材料以在光 之島塊下面留下硬光罩材料島塊 P且劑 以及 除去光阻劑的剩餘島塊留下蝕刻光罩,蝕刻光、 對應於預定蓋瓦配置之位置的硬光罩材料島塊。構成 在第五層面的方法中,形成一姓刻光罩的步驟最 一步包含以下步驟: 進 10 材料 在沈積光阻劑層之步驟前在第一層上沈積一 層硬光罩The resist layer may itself be a photomask layer, in which case the island of the reticle material is an island of photoresist. Any suitable procedure for forming a photoresist pattern by exposure can be utilized, including ultraviolet lithography. The unexposed photoresist is removed using a suitable developer and the remaining unexposed photoresist islands are removed by lift-off. A variety of different etchants are available for isotropic wet etching, including KOH, NaOH or H3P〇4 solutions. 20 Alternatively, a harder reticle material can be used which is etch resistant to isotropic wet etching. Therefore, further procedural steps are required. In the method of the fourth aspect, the step of forming an etch mask preferably further comprises the steps of: 15 200847482 material depositing a hard mask on the first layer before removing the photoresist layer before the step of depositing the photoresist layer After the step, the hard mask material is removed to leave a hard mask material island P under the island of light and the agent and the remaining island block from which the photoresist is removed leaving an etch mask that etches light corresponding to the predetermined tile configuration Location of hard reticle material island blocks. In the method of the fifth aspect, the step of forming a mask is further included in the following steps: Into the 10 material, a layer of hard mask is deposited on the first layer before the step of depositing the photoresist layer.

在除去光阻劑的步驟之後除去硬光罩材料以在光阻劑 之島塊下面留下缺失硬光罩材料之島塊;以及, 片 =剩餘光阻劑以留下_光罩,_光罩構成對應 於預定1瓦配置之位置的缺失硬光罩材料島塊。 15Removing the hard mask material after the step of removing the photoresist to leave an island block missing the hard mask material under the island of photoresist; and, sheet = residual photoresist to leave a reticle, _ light The cover constitutes a missing hard reticle material island block corresponding to a predetermined one watt configuration. 15

、適當的硬光罩材料包括藉PECVD沈積之吨或邮4 或者藉由濺鍍或紐沈積的—金屬。_旦角錐型突出部已4 經形成,硬光罩材料_餘島塊藉由—適當的濕或乾㈣ 程序除去。同樣地,-旦倒跡型凹痕已被形成,圍植島 塊的剩餘硬光罩材料藉-適當的濕或乾⑽]程序除去Γ 20纟第四層面的方法中,等向雜刻的深度將決定是截 錐型抑或是角錐型突出部被形成以及其尺寸。然而,如果 根據钱刻速度與姓刻時間,則等向性姓刻深度的精確控制 可能很困難。因此,-餞刻停止層可被用來確保餘刻在一 特定深度被終止。同樣地,如果以在第五層面的方法中, 16 200847482 等向性的深度蝕刻將決定形成凹痕的尺寸。 — 如果以蝕刻速 凹 度與蝕刻時間為依據,等向性的精確控制蝕刻深声門铲可 能會有_。此外,需魏刻停止層以便形^ 痕0 5 較佳地,發光裝置異質結構的第一層包含_層埋入第 N#Suitable hard reticle materials include ton or post 4 deposited by PECVD or metal deposited by sputtering or rutting. The eagle-shaped pyramid has been formed, and the hard reticle material is removed by a suitable wet or dry (four) procedure. Similarly, the inverted dent has been formed, and the remaining hard reticle material surrounding the island block is removed by the appropriate wet or dry (10) procedure to remove the 层面 20 纟 fourth layer. The depth will determine whether the truncated cone or pyramidal protrusion is formed and its size. However, if the time is priced according to the speed of the money and the time of the last name, the precise control of the depth of the isotropic name may be difficult. Therefore, the etch stop layer can be used to ensure that the utterance is terminated at a particular depth. Similarly, if in the method of the fifth level, 16 200847482 isotropic deep etching will determine the size of the indentation. — If the etch rate is based on the etch rate and the etch time, an isotropic precision control etched the deep shovel may have _. In addition, it is necessary to form a stop layer in order to form a mark 0 5 . Preferably, the first layer of the heterostructure of the light-emitting device comprises a layer buried in the N#

-半導體材料巾之預定的深度祕刻停止材料。第一半導 體材料之等向性钱刻接著將繼續直到抵達钱刻停止材料層 為止,如此提供製作方法的較高均勻性與可重覆性。在第 五層面的方法中,倒平頭或截錐型凹痕允許被形成。 1〇 ·目& ’本發明也提供—光子晶體型態LED結構的簡化 衣k方i 11¾ _低成本光微影技術或類似程序使〆大 型特徵光子晶體定義被轉移至_咖上且不需要複雜的拋 光程序。 圖式簡單說明 15 本發明之實例現在將詳細地參照圖式說明,其中:- The predetermined depth of the semiconductor material towel is used to stop the material. The isotropic burn of the first half of the conductor material will then continue until the arrival of the stop material layer, thus providing a higher uniformity and reproducibility of the fabrication process. In the fifth aspect method, a flattened or truncated cone type dimple is allowed to be formed. 1 〇 ·目 & 'The invention also provides - a simplified photonic crystal structure of the LED structure i 113⁄4 _ low-cost photolithography technology or similar program enables the large-scale feature photonic crystal definition to be transferred to _ coffee and not A complicated polishing procedure is required. BRIEF DESCRIPTION OF THE DRAWINGS 15 Examples of the invention will now be described in detail with reference to the drawings, in which:

圖表示發明所提出之裝置的—橫截面; 第2A圖表不以一規則正方晶格排列的角錐體; 第2BH表残_12次對稱性準晶體排列的角錐體; 第3圖以量子井對鏡像間隔距離之函數表示一⑽之 20 LED的常態化光照強度; 第4 A至4 D圖繪不製作_發光裝置以高速覆晶封裝為 基礎的製造方法; 第4E至41_示製作第奶圖中所示裝置之上層中角錐 體光子晶體構造的附加製造步驟; 17 200847482 第从圖表示對於—角錐型光子晶體-LED而言,與-無 圖形結構之裝置相較光沒出提高-30。圓錐; 第5B圖表不對於—角錐型光子晶體-LED而言,與-無 圖形結構之裝置相較總光汲出提高·, 5 奴圖表示對於不_角錐型光子晶體發光裝置而言 在30°圓錐中之光的百分比; 第6A圖表不對一依據本發明一較佳實施例之光子晶體 -LED構造的遠場圖形; 第6 B圖繪不為依據身本發明另一較佳實施例之光子晶 10體-LED結構的遠場圖形; 第7 A圖出不使用發明的製作方法被形成的隔離角錐體 的一電子顯微影像圖; 第7B圖緣示使用本發明的製作方法被形成的一角錐體 的光子準晶體配置的電子顯微影像圖; 15 第8A圖是一習知光子晶體-LED與一具有微腔之角錐 型光子晶體-LED相較於一無圖形結構LED的光汲出提高對 光子晶體填充部分之一圖形; 第8B圖是一角錐型光子晶體_LED相較於具有及不具 有微腔之無圖形結構LED的光汲出提高對光子晶體填充部 2〇 分之一圖形;以及, 弟®疋角錐型光子晶體-LED相較於一無圖形結構 LED的的光汲出提高對LED異質結構核厚度的圖形。 第10圖繪示倒角錐型裝置之一橫截面; 第11A至liD圖說明製作一發光裝置之一高速覆晶封 18 200847482 裝程序為基礎的製造方法; 第11E圖至111圖說明在第111圖所示之裝置的上層中 製作一倒角錐型或截頭倒角錐型光子晶體構造之附加製造 步驟; 5 第12A圖繪示一角錐型光子晶體-LED與一無圖形結構 裝置相較在一 30。圓錐中的光汲出提高。 第12B圖繪示一角錐型光子晶體-LED與一無圖形結構 裝置相較的總光汲出提高;The figure shows the cross section of the device proposed by the invention; the 2A chart does not have a pyramid arranged in a regular square lattice; the 2BH table has a pyramid of 12th symmetric quasicrystals arranged; The function of the image separation distance represents the normalized illumination intensity of a (10) 20 LED; the 4A to 4D diagrams are not fabricated. The manufacturing method based on the high speed flip chip package; 4E to 41_ shows the production of the milk Additional manufacturing steps for the pyramidal photonic crystal construction in the upper layer of the device shown in the figure; 17 200847482 The following figure shows that for a pyramidal photonic crystal-LED, the light is not improved compared to the device without a graphic structure. . Cone; Figure 5B is not for the pyramid-type photonic crystal-LED, compared to the device with no pattern structure, the total light output is improved. 5 The slave map indicates 30° for the non-pyramid photonic crystal illuminator. The percentage of the light in the cone; the 6A chart is not a far field pattern of the photonic crystal-LED structure according to a preferred embodiment of the present invention; the 6B drawing is not based on the photon according to another preferred embodiment of the present invention. a far field pattern of a crystal 10 body-LED structure; FIG. 7A shows an electron micrograph of an isolated pyramid formed without using the inventive method; FIG. 7B shows a method formed using the fabrication method of the present invention Electron microscopic image of the photonic quasi-crystal configuration of a pyramid; 15 Figure 8A is a conventional photonic crystal-LED with a microcavity pyramidal photonic crystal-LED compared to a non-graphic LED Increasing the pattern of the filling portion of the photonic crystal; FIG. 8B is a graph of the pyramidal photonic crystal_LED compared to the light-emitting of the non-graphical LED with and without the microcavity ;as well as, The pattern of the core thickness of the LED heterostructure is improved by the light output of the LED® pyramidal photonic crystal-LED compared to a non-graphical structure. Figure 10 is a cross-sectional view of one of the chamfered cone-shaped devices; the 11A-liD diagram illustrates a method for fabricating a high-speed flip-chip seal of a light-emitting device 18 200847482; 11E to 111 are illustrated at the 111th An additional manufacturing step of fabricating a chamfered or truncated cone-shaped photonic crystal structure in the upper layer of the apparatus shown in FIG. 5; FIG. 12A illustrates a pyramidal photonic crystal-LED compared to a non-graphical structure device 30. The light in the cone increases. Figure 12B illustrates the increase in total pupil output of a pyramidal photonic crystal-LED compared to a device without a graphic structure;

第12C圖緣示不同的角錐型光子晶體發光裝置在3〇。圓 10 錐中之光的百分比; 第13圖繪示依據本發明之一較佳實施例的光子晶體 -LED構造的遠場圖形特性曲線; 第14圖繪示一使用本發明的製作方法被形絲隔離倒 角錐體的的角錐體的一電子顯微影像圖; 15 帛15A圖是一習知光子晶體-led與-具有微腔之角錐Figure 12C shows a different pyramidal photonic crystal illuminator at 3 〇. The percentage of light in a circle of 10 cones; Figure 13 is a diagram showing the far-field pattern characteristic of a photonic crystal-LED structure according to a preferred embodiment of the present invention; and Figure 14 is a diagram showing the shape of the method of the present invention. An electron micrograph of a pyramid of a wire isolated chamfer cone; 15 帛 15A is a conventional photonic crystal - led and - with a microcavity pyramid

型光子晶體-LED相較於一無圖形結構LED的光汲出提高對 光子晶體填充部分之一圖形; 第15B圖是一倒角錐型光子晶體_led相較於一具有及 不具有微腔之無圖形結構LED的光沒出提高對光子晶體填 20 充部分之一圖形。 ’、 C實施方式】 較佳實施例之詳細說明 本^明的-項目的是提供改良的光沒出以及發光裝置 的定制遠場發射。這些裝置可應用大範圍的發光半導體材 19 200847482 料系統,包括但未受限於,InGaN、InGaP、InGaAs、InP 或ZnO。發明說明將側重於實施於綠光InGaN發光裝置中的 定向光汲出技術。然而,設計能在其他利用此一材料的發 射波長(諸如藍或紫外線),以及利用其他材料系統的發射波 5 長,諸如適於發射紅及黃色波長的InGaP中被最佳化及實 施。 在本發明的較佳實施中所提出的一種新穎高階角錐型 光子晶體(PC)或準晶體圖形在與一階光子晶體結構相較之 下提供增加之光汲出。光子晶體設計也考慮到定制由裝置 10發出之遠場光分配。光子晶體子區域的角錐型形狀及其良 好定義之蓋瓦配置容使由裝置以一光束汲出光,該一方式 較諸由一朗伯特光源的光汲出更為準直。一可供製造該裝 置的簡化程序也將被描述。 就角錐體直徑而言,較高階的光子晶體尺寸在尺寸方 15面大於丨·0哗且可能大於1·5μπι或2·0μιη,且尺寸上可大到 3·0μηι· ’ 5μιη和4·0μηι但不限於此。這係取決於遠場圖形, LED厚度及量子井在GaN異質結構中之位置而變化。 第1圖繪示本發明提出之發光裝置的一橫截面,該發光 裝置包括週期性地突出於于n型攙雜GaN或InGaN層上的角 20錐體ΗΠ、準晶態、無定形或其他複雜的有序或重覆蓋瓦配 置。角錐型盍瓦配置被設計成提供容許被捕陷的光進入光 子晶體之布洛赫模態的色散帶。一旦光進入布洛赫模態 内,光子晶體即提供一使光進入自由空間的方式。 第1圖所示之裝置包含-發光異質結構,該異質結構包 20 200847482 括一 n-GaN或InGaN頂層1 〇2及一下方的p_型GaN或InGaN 層104,——多重量子井(MQW)結構103存在於這些層之間。 在p-型層104之下方存在一反射層1〇5,反射層可為金屬反 射器形式諸如銀,或呈一DBR或全方向反射器(ODR)形式。The photonic crystal-LED has a pattern of filling the photonic crystal compared to the light-emitting of a non-patterned LED; FIG. 15B is a chamfered cone photonic crystal _led compared to one with and without a microcavity The light of the graphic structure LED does not increase the pattern of the filling portion of the photonic crystal. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is directed to providing improved light exit and custom far field emission of a light emitting device. These devices can be used with a wide range of luminescent semiconductor materials, including but not limited to, InGaN, InGaP, InGaAs, InP or ZnO. SUMMARY OF THE INVENTION A focus will be placed on directional light extraction techniques implemented in green InGaN light emitting devices. However, the design can be optimized and implemented in other emission wavelengths (such as blue or ultraviolet) that utilize such a material, as well as in the use of other material systems, such as InGaP, which is suitable for emitting red and yellow wavelengths. A novel high order pyramidal photonic crystal (PC) or quasi-crystal pattern proposed in a preferred embodiment of the present invention provides increased light extraction compared to a first order photonic crystal structure. The photonic crystal design also takes into account the customization of the far-field light distribution by the device 10. The pyramidal shape of the photonic crystal sub-region and its well-defined tiling arrangement allow the device to illuminate with a beam of light that is more collimated than the light exiting from a Lambertian source. A simplified procedure for making the device will also be described. In terms of the pyramid diameter, the higher order photonic crystal size is larger than 丨·0哗 on the dimension side 15 and may be larger than 1·5μπι or 2·0μιη, and the size can be as large as 3·0μηι· ' 5μιη and 4·0μηι But it is not limited to this. This depends on the far field pattern, the thickness of the LED, and the location of the quantum well in the GaN heterostructure. 1 is a cross-sectional view of a light-emitting device of the present invention comprising an angle 20 pyramidal, quasi-crystalline, amorphous or other complex periodically protruding from an n-type doped GaN or InGaN layer. Ordered or heavily covered tile configuration. The pyramidal tile configuration is designed to provide a dispersion band that allows trapped light to enter the Bloch mode of the photonic crystal. Once the light enters the Bloch mode, the photonic crystal provides a way to get the light into free space. The device shown in Fig. 1 comprises a luminescent heterostructure, the heterostructure package 20 200847482 comprising an n-GaN or InGaN top layer 1 〇 2 and a lower p_ type GaN or InGaN layer 104, - multiple quantum wells (MQW) Structure 103 exists between these layers. There is a reflective layer 1〇5 beneath the p-type layer 104, which may be in the form of a metal reflector such as silver, or in the form of a DBR or omnidirectional reflector (ODR).

5 發光結構被一載體底板或載片106支持。在一較佳實施例 中,載體底板包括一具有高導熱率的導電材料諸如金屬或 金屬合金或是石夕或礙化石夕。在另一較佳實施例中存在一姓 刻停止層,107,蝕刻停止層可由像是AlGaN,InGaN等材 料所形成但不限於此,該蝕刻停止層容許角錐體深度的精 10 確控制。此層是埋設η-型層101和102之間。 本發明中較佳的光子蓋瓦配置主要有三種,且該等配 置具有下列性質:短程及長程有序,即光子晶體;短程平 移無序但長程有序’即光子準晶體;以及短程間隔有序且 長程無序,即無定形蓋瓦配置。在一無定形配置情況下, 15鄰接之角錐型和倒角錐型區域之間的間隔距離是固定的但 迴轉對稱隨機化。5 The light emitting structure is supported by a carrier substrate or carrier 106. In a preferred embodiment, the carrier substrate comprises a conductive material having a high thermal conductivity such as a metal or metal alloy or a stone or stone. In another preferred embodiment, there is a stop stop layer 107, which may be formed of, but not limited to, a material such as AlGaN, InGaN, etc., which allows for precise control of the pyramid depth. This layer is buried between the n-type layers 101 and 102. There are three preferred photonic tile configurations in the present invention, and the configurations have the following properties: short-range and long-range order, that is, photonic crystal; short-range translation disorder but long-range ordering, that is, photon quasicrystal; and short-range interval Sequence and long-range disorder, that is, amorphous tiling configuration. In the case of an amorphous configuration, the separation distance between the 15 adjacent pyramidal and chamfered conical regions is fixed but rotationally symmetrically randomized.

這些圖形定義的種類亦可包括具有上述蓋瓦配置的重 覆單元。另外,他們能區域可包括具有缺陷的區域,亦即 角錐體與倒角錐體被除去或角錐體的形狀或大小被修正的 2〇區域。子區域亦可由具有未被蝕刻之尖銳頂點區域的角錐 體組成,引發平頭(截頭)角錐體。 圖形定義可藉一些參數賦與特徵,包括定義成分隔二 鄰接角錐體或倒角錐體中心之距離的晶格間距,以及角錐 體結晶學曝光面與GaN晶格之間所形成的角度0。在本發 21 200847482 明的一層面一蝕刻停止層107被用來控制蝕刻深度。此可允 許角錐體基部直徑的正確控制。就一特定蝕刻深度d而言, 角錐體的基部直徑φ是: Φ = 2^d/tan(0) (2) 5 本發明的一個主要主要層面是利用結晶學上對齊的大 型特徵來提供最大圖形再現準確度以及和放鬆的位置準確 度。The types of these graphic definitions may also include a repeating unit having the above-described tiling configuration. In addition, they can include areas with defects, i.e., corners and chamfers are removed or the shape or size of the pyramid is corrected. The sub-region may also consist of a pyramid having a sharp apex region that is not etched, causing a flat (truncated) pyramid. The graphical definition can be characterized by a number of parameters, including the lattice spacing defined as the distance separating the two adjacent pyramids or the center of the chamfer, and the angle 0 formed between the crystallographic exposure surface of the pyramid and the GaN lattice. An etch stop layer 107 is used to control the etch depth at a level as described in the present invention. This allows proper control of the diameter of the base of the pyramid. For a particular etch depth d, the base diameter φ of the pyramid is: Φ = 2^d/tan(0) (2) 5 A major primary aspect of the invention is the use of large features that are crystallographically aligned to provide maximum Graphic reproduction accuracy as well as relaxed positional accuracy.

六角形角錐體或倒角錐體(在〇平面GaN中被形成)能 排列成一規則模式 '準結晶態模式、無定形模式或其他的 10適當排列。第2A圖中所示之一例中六角形的角錐體以一規 則的正方形晶格排列而形成一光子晶體。第2B圖緣示一排 列成一 12對稱正方-三角準晶體蓋瓦的角錐體或倒角錐體 以形成一光子準晶體。Hexagonal pyramids or chamfer cones (formed in tantalum GaN) can be arranged in a regular pattern 'quasi-crystalline mode, amorphous mode or other 10 suitable arrangements. In one of the examples shown in Fig. 2A, the hexagonal pyramids are arranged in a regular square lattice to form a photonic crystal. Figure 2B shows a row of pyramids or chamfers of a 12-symmetric square-triangular quasi-crystal tiling to form a photonic quasicrystal.

本發明的一增強型式應用一置放在發光區域下方的光 15學反射斋以將朝上方傳播的光向下反射。此外,發光區域 與反射器之間的分隔距離被設計成基於所謂的微腔效應提 南朝上發射之光。角錐型或倒角錐型光子晶體接著與微腔 效應結合更進一步提高光汲出而被最佳化。如 2003年4月7日在Appl.PhysLett.82,14,2221中揭述,下列方程 2 0式描述在一 L E D頂表面的相對功率強度為Q w區域和反射 器間之分隔距離的函數: E2 = y^〇2+ wr2+2w〇wrcos(n+0+0f) (3) Φ’ 二 2 Tt(2dcos(e))an (4) 式中的相關數如下: 22 200847482 W(f=發射光振幸昌; 反射光振輻; 鏡上反射的相移; Φ由於發射光與反射光之間的路徑長度差所致的相 5移,該才目移隨著微腔和,間的間隔距離以及㈣材料的入 射角和波長而改變;以及,相對法線的發射角。 為說明微腔效應,第3圖為由一具有一反射鏡之GaN L E D所獲付之光強度為量子井與反射鏡間之距離的函數 圖。該強度對由一不具反射鏡之GaN LED所獲得之強度常 10態化,藉以說明其增強。為簡化起見,假設反射鏡具有100% 之反射率。很明顯地當與一個無反射鏡的平坦GaN發光裝 置相較最咼有大約多3·5倍的光被汲出。有關反射器單獨的 貢獻,此相當於因微腔效應而有大約多175倍的光被汲 出。1子井置放在與反射鏡的正確距離處是在一 LED中獲 15 得最大光汲出效率的關鍵。 當與一朗伯特光源的相較之下微腔效應也在LED之遠 場輻射形狀中導入偏差。在本發明的背景中,增加波瓣輻 射可與表面光子晶體結構共同被最佳化,俾使得能比個別 應用兩種光汲出技術所期望者從LED有更大的光汲出及方 2〇向性。微腔效應在異質結構内減少發射的均質性,藉此允 許内部入射至光子晶體的光更為準直。 由於高深寬比特徵以及光子帶結構提供的大介電對比 度,LED的波導模態可與光子帶結構的色散帶有效地重疊 以谷使其間有強麵合。然而,在一厚核心内部的等方性發 23 200847482 射情況之下,有許多波導模態被建立。是以光子晶體的色 散帶無法設計成與所有的捕陷模態重疊。然而,藉由利用 微腔準直光束可減少建立之波導模態數目。隨之光子的帶 結構可被最佳化設計俾有效汲出捕陷於LED中的更為緊密 5間隔且數目較少的模態。An enhanced version of the invention applies a light placed beneath the illumination area to reflect light propagating upwardly downward. Furthermore, the separation distance between the illuminating region and the reflector is designed to raise the upwardly emitted light based on the so-called microcavity effect. The pyramidal or chamfered cone photonic crystals are then optimized in combination with the microcavity effect to further enhance light exit. As described in Appl. PhysLett. 82, 14, 2221, on April 7, 2003, Equation 20 below describes the relative power intensity at the top surface of an LED as a function of the separation distance between the Qw region and the reflector: E2 = y^〇2+ wr2+2w〇wrcos(n+0+0f) (3) Φ' 2 2 Tt(2dcos(e))an (4) The correlation in the equation is as follows: 22 200847482 W(f= Emitted light vibration; the reflected light vibration; the phase shift of the mirror reflection; Φ due to the difference in path length between the emitted light and the reflected light, the phase shifts with the microcavity and the interval between The distance and (4) the incident angle and wavelength of the material change; and the emission angle relative to the normal. To illustrate the microcavity effect, Figure 3 shows the light intensity obtained by a GaN LED with a mirror as a quantum well and A plot of the distance between the mirrors. This intensity is often 10-stated by the intensity of a GaN LED without a mirror to illustrate its enhancement. For simplicity, the mirror is assumed to have a reflectivity of 100%. It is apparent that approximately three to five times more light is ejected than a flat mirrorless GaN light-emitting device. The only contribution, which is equivalent to about 175 times more light due to the microcavity effect, is that the placement of a subwell at the correct distance from the mirror is the key to achieving maximum light extraction efficiency in an LED. The microcavity effect also introduces a bias in the far field radiation shape of the LED when compared to a Lambertian source. In the context of the present invention, increasing the lobe radiation can be optimized along with the surface photonic crystal structure, It enables greater light extraction and square diversion from LEDs than those required by the two applications. The microcavity effect reduces the homogeneity of emission within the heterostructure, thereby allowing internal incidence to the photonic crystal. The light is more collimated. Due to the high aspect ratio characteristics and the large dielectric contrast provided by the photonic band structure, the waveguide mode of the LED can effectively overlap with the dispersion band of the photonic band structure to have a strong face between the valleys. An isotropic wave inside a thick core 23 200847482 Under the shooting situation, many waveguide modes are established. The dispersion band of the photonic crystal cannot be designed to overlap with all trap modes. However, by utilizing The number of modes waveguide cavity may reduce the collimated light beam construction. Photonic band structure may subsequently be pumped out to serve effectively caught in catching LED 5 in more closely spaced and smaller number of modes to optimize the design.

本發明的一更進一步層面是一種具有上述之角錐型結 構之光子帶結構的led簡化製造方法。一種可行的製造程 序繪不於第4A至41圖。最初,一η型攙雜GaN或InGaN層401 是藉由金屬有機化學氣相蒸汽沈澱(MOCVD)或其他類似 10技術(像是ΜβΕ)在一晶格匹配的基質410上生長,通常所使 用的基質是藍寶石,GaN以及SiC。在本發明之一較佳實施 例中,一由諸如為InGaN或AlGaN之一材料所形成的蝕刻停 止層409被埋入n-GaN層中。η-GaN或InGaN層持續生長為蝕 刻停止層403上方之層408。多重GaN_InGaN量子井402接著 15由一型GaN層403生長。此一階段所生產的完成LED異質 結構繪示於第4A圖。A still further aspect of the present invention is a simplified lead manufacturing method for a photonic band structure having the above-described pyramidal structure. A possible manufacturing procedure is not shown in Figures 4A through 41. Initially, an n-type doped GaN or InGaN layer 401 is grown on a lattice-matched substrate 410 by metal organic chemical vapor phase vapor deposition (MOCVD) or other similar 10 techniques (such as ΜβΕ), usually used. It is sapphire, GaN and SiC. In a preferred embodiment of the invention, an etch stop layer 409 formed of a material such as InGaN or AlGaN is buried in the n-GaN layer. The η-GaN or InGaN layer continues to grow to a layer 408 over the etch stop layer 403. Multiple GaN_InGaN quantum wells 402 are then grown 15 by a type GaN layer 403. The completed LED heterostructure produced in this stage is shown in Figure 4A.

反射鏡404接者沈積在如第4B圖所示的p-GaN層403 頂邓。反射器可以是金屬的,包括諸如銀或金之一層由錢 鍍或蒸鍍沈積的適當金屬。或者,反射器可為一呈分佈反 20饋反射器(DBR)或全方向反射器(ODR)形式的介電多層。此 種構造可利用諸如PECVD之技術藉由濺鍍沈積。 如第4C圖所示,第4B圖的異質結構接著被結合至一基 質405。基質405最好為一提供良好導熱與導電性的金屬合 金,但可由其他材料諸如Sic或si組成。在結合操作前可在 24 200847482 反射鏡404上沈積其他層以辅助結合程序。 在最後的習知製作步驟中,藍寶石基質41〇接著利用雷 射剝離或其他相似技術除去以提供如第4〇圖中所示之異質 結構。雖然典型上蝕刻停止層不存在,此一結構可形成一 5最終的完整習知裝置。雷射剝離程序使.GaN層401的表面 粗糙(典型地達5〇nm至3〇〇nm等級)。在一比較傳統的裝置 中,表面可更進一步被粗化以改進光汲出。在本發明的一 層面中,光子帶結構角錐體的尺寸與表面粗度相較之下較 大,因此在定義圖形前不需要拋光表面。 10 第4E至4I圖所示為依據本發明製作一如第41圖中所示 之裝置的增加製程步驟。 第4E圖繪示掩蔽層的沈積。特別是圖中繪示一可取捨 的方法步驟,藉以使-硬光罩層4〇6被沈積以供後續轉移所 需要的圖形至η-GaN層401。硬光罩層由PECVD沈積的Si〇2 15或S!3N4所構成或是其可為一藉由雜或蒸鑛沈積的金屬。 一光阻劑407接著沈積在硬光罩4〇6上。然而,在一些情況 中,可能省卻硬光罩層而光阻劑層4〇7直接被沈積至〜⑽ 層401上。 由於角錐型特徵的尺寸大,光阻劑407可利用標準紫外 20線微影技術曝光以使其具有所需蓋瓦配置的圖形。曝光區 域的橫向形狀可對應於所需角錐體的橫截面形狀,或是可 為較簡單的形狀,諸如正方形。已曝光的光阻劑接著顯影 留下對應於角錐體頂點之所需位置的分離材料島塊,如第 4F圖所不。如果硬光罩4〇6存在,則利用尺圧、icp或一類似 25 200847482 程序乾钱刻。這一個步驟將圖形定義由光阻劑407轉移至硬 光罩406 ’如第4G圖所示。剩餘的光阻劑407接著被剝離。 接著’ n-GaN層401利用一等向性濕蝕刻被晶體濕蝕 刻’如第4H圖所示。一濕蝕刻GaN的較佳方法是使用一浴 5溫度範圍由室溫至l〇〇°C的1M到8M濃度範圍KOH溶液。蝕 刻時間範圍大約在45分鐘左右。可選替的濕蝕刻劑包含 NaOH或 H3P〇4 〇The mirror 404 is deposited on the p-GaN layer 403 as shown in Fig. 4B. The reflector may be metallic, including a suitable metal such as silver or gold deposited by evaporation or evaporation. Alternatively, the reflector can be a dielectric multilayer in the form of a distributed inverse feedback reflector (DBR) or an omnidirectional reflector (ODR). Such a construction can be deposited by sputtering using techniques such as PECVD. As shown in Fig. 4C, the heterostructure of Fig. 4B is then bonded to a substrate 405. Substrate 405 is preferably a metal alloy that provides good thermal and electrical conductivity, but may be comprised of other materials such as Sic or Si. Additional layers may be deposited on the 24 200847482 mirror 404 prior to the bonding operation to aid in the bonding process. In the final conventional fabrication step, the sapphire substrate 41 is then removed by laser lift-off or other similar technique to provide a heterostructure as shown in Figure 4. Although typically the etch stop layer is not present, this structure can form a final, conventional device. The laser lift-off procedure roughens the surface of the .GaN layer 401 (typically on the order of 5 〇 nm to 3 〇〇 nm). In a more conventional device, the surface can be further roughened to improve light exit. In one aspect of the invention, the size of the photonic band structure pyramid is larger than the surface roughness, so that no polishing surface is required prior to defining the pattern. 10 Figures 4E through 4I illustrate an incremental process step for fabricating a device as shown in Figure 41 in accordance with the present invention. Figure 4E depicts the deposition of the masking layer. In particular, a method step is shown in which the hard mask layer 4〇6 is deposited for subsequent transfer of the desired pattern to the η-GaN layer 401. The hard mask layer is composed of PECVD-deposited Si〇2 15 or S!3N4 or it may be a metal deposited by hetero or vapor. A photoresist 407 is then deposited on the hard mask 4〇6. However, in some cases, the hard mask layer may be omitted and the photoresist layer 4〇7 is deposited directly onto the ~(10) layer 401. Due to the large size of the pyramidal features, the photoresist 407 can be exposed using standard ultraviolet 20-line lithography techniques to have a pattern of the desired tile configuration. The lateral shape of the exposed area may correspond to the cross-sectional shape of the desired pyramid, or may be a relatively simple shape such as a square. The exposed photoresist is then developed leaving a separate island of material corresponding to the desired location of the pyramid apex, as shown in Figure 4F. If the hard mask 4〇6 is present, use the ruler, icp or a similar 25 200847482 program to make money. This step transfers the pattern definition from the photoresist 407 to the hard mask 406' as shown in Fig. 4G. The remaining photoresist 407 is then stripped. Next, the 'n-GaN layer 401 is wet etched by the crystal by an isotropic wet etching as shown in Fig. 4H. A preferred method of wet etching GaN is to use a bath of KOH at a temperature ranging from room temperature to 1 °C in the range of 1 M to 8 M. The etching time range is about 45 minutes. Optional wet etchant contains NaOH or H3P〇4 〇

藉餘刻程序形成的六角形角錐體的晶面是GaN晶體的 { 10-M }平面。他們與角錐體底部形成一角度58 4。。蝕 10刻停止層409之存在容許高度的正確控制故亦使角錐體的 基部直徑能正確控制。最後,如果一硬光罩406被使用,則 其可利用一適當的濕或乾蝕刻程序除去而留下第41圖中所 示之最終結構。The crystal plane of the hexagonal pyramid formed by the residual process is the { 10-M } plane of the GaN crystal. They form an angle 58 4 with the bottom of the pyramid. . The presence of the etch stop layer 409 allows the correct control of the height and thus allows the base diameter of the pyramid to be properly controlled. Finally, if a hard mask 406 is used, it can be removed using a suitable wet or dry etch procedure leaving the final structure shown in Figure 41.

第7A圖繪示由此一方法所製造之一種角錐體的掃瞄式 15電子顯微照片。在此一情況,角錐體被隔離且使用較佳製 作實施例被形成,小晶界面{ 10-1-1 }示於701。第7B圖為 此種角錐體之一光子準晶體蓋瓦的掃瞒式電子顯微照片, 該一蓋瓦已經利用較佳製作技術被蝕刻在n_GaN頂面中。角 錐體7被安排成一正方形-三角形的蓋瓦且第7B圖所示之結 20 構線展示條繪示底層的蓋瓦正方形和三角形,而圓圈強調 準晶體圖形的頂點。 在較佳實施例中,包括層401,409和408的複合n-GaN 上部區域設置在發光構造上方。因此,光從層402發出且在 最後經由401區域放出前經歷多重内部反射。 26 200847482 一個厚的n-GaN生長區域必需減少缺陷密度以便形成 高品質量子井(QW)層,且因而改善LED的内部量子效率。 為了製造上的利ϋ上部區域(層401 ’ 409和408)作為跪彳弓之 QW區域402的一保護層,防止其在角錐體的濕蝕刻期間受 5到彳貝害且將QW區域的表面復合極小化。對區域之餘刻 也會因減少最大有效發光區域而不利地影響LED的總發光 輸出。Fig. 7A is a scanning 15 electron micrograph of a pyramid produced by this method. In this case, the pyramids are isolated and formed using a preferred fabrication embodiment, and the small crystal interface { 10-1-1} is shown at 701. Figure 7B is a broom electron micrograph of a photonic quasi-crystal tiling of such a pyramid, which has been etched into the top surface of the n-GaN using a preferred fabrication technique. The pyramids 7 are arranged in a square-triangle tiling and the knots shown in Fig. 7B show the tiling squares and triangles of the bottom layer, while the circles emphasize the apex of the quasi-crystal pattern. In a preferred embodiment, the composite n-GaN upper region including layers 401, 409, and 408 is disposed over the light emitting structure. Thus, light is emitted from layer 402 and undergoes multiple internal reflections before being finally released via the 401 region. 26 200847482 A thick n-GaN growth region must reduce the defect density in order to form a high quality quantum well (QW) layer and thus improve the internal quantum efficiency of the LED. In order to manufacture the upper upper region (layers 401 '409 and 408) as a protective layer of the QW region 402 of the zygomatic arch, it is prevented from being damaged by 5 to the mussel during the wet etching of the pyramid and the surface of the QW region Minimal compounding. The rest of the area will also adversely affect the total illuminating output of the LED by reducing the maximum effective illuminating area.

另外,有關於光汲出的改進,所需要的角錐體直徑尺 寸達1·75μπι之級度,中心之間距為2·5μπι。尺寸限制了層4〇1 10的最小厚度,因此角錐體最好位於厚的n-GaN層上。同時, 為了改進光汲出,藉由蝕刻減少存在異質結構中的捕陷模 悲數目以減少LED波導區域的總厚度。此可使光子帶结構 與一較大百分比之捕陷模態重疊,藉以提供如第8圖中所示 的改進光汲出。另外,n-GaN為高度傳導性者且此一性質使 15得獨立電流傳佈層沈積在光子結構頂部表面的需求減至最In addition, with regard to the improvement of the light extraction, the required pyramidal diameter is up to a scale of 1.75 μm, and the distance between the centers is 2·5 μm. The size limits the minimum thickness of the layer 4〇1 10, so the pyramid is preferably located on the thick n-GaN layer. At the same time, in order to improve the pupil output, the total number of trapping modes in the heterostructure is reduced by etching to reduce the total thickness of the LED waveguide region. This allows the photonic band structure to overlap with a larger percentage of trapping modes to provide improved light exit as shown in FIG. In addition, n-GaN is highly conductive and this property minimizes the need for 15 separate current spreading layers to deposit on the top surface of the photonic structure.

少,該獨立電流傳佈層之沈積對於由裝置光汲出有不利的 影響。 數值模擬的成果繪示於第5A,5B和5C圖,說明典型角 錐型光子帶結構裝置的表現。Z軸顯示與一具反射器之非圖 20形化LED相較的總光汲出提高因素。成果繪製成沿X軸501 為填充部分(以%計)之函數圖形且沿γ軸5〇2為光子帶結構 之間距(以nm計)的函數。填充部分定義為直徑/間距*1〇〇。 第5A圖繪示一角錐型光子晶體與一具有一底部反射器 的無圖形結構LED相較在一中央30。圓錐中的光沒出提 27 200847482 高。成果顯示對於一間距2500nm及一填充部分75%,且在 一 d = 〇·6/ λ n〜13lnm之位置的QW區域下方有一最佳化微 腔設計時,最大提高為5·45。這些參數相當於一以2.5μπι間 距相間隔一具有約1·9μηι角錐體直徑的裝置。 5 使用一2D有限差分時域法實施模擬。重要的是注意這 些模擬未併入由2D轉換成在空間中的3D模擬時的數值偏 差因而使實驗成果被預期提供更大的光汲出值。 第5 Β圖以晶格常數與填充部分函數表示相較於一具有 一底部反射器的無圖形結構LED的光汲出提高。如第5Α圖 10中所不,成果的重點是最佳的操作範圍出現在一間距 2500nm且填充部分為75%,QWs之下具有一最佳化微腔設 計處。 最後,第5C圖表示—具有角錐型光子晶體結構之裝置 的光在30。圓錐中的百分比。如圖中所見,由裝置發出的光 15高達45%可被導向於垂直於裝置表面具有一3〇。半角的中心 圓錐中。此相當於與-朗伯特發光裝置相較在一定向圓錐 中有多出84%的光。方向性的增加是由於角錐體的有序排 列以及角錐體的絲良好斜側壁。與—般的直㈣、_、 空氣桿相較,斜側壁可在30。圓錐内提供大約多出3〇%的光。 2〇 第6A和6B圖為一平面中之光分布的橫戴面 。成果以沿 X軸的遠場角601的函數作圖且表示光強度由一底部有 一反射器之未具圖形LED對其歸—化。遠場圖形是參考 LED的表面垂直線。第6A_示晶格常數為丨獅⑽且角錐 體直匕為1120nm之LED的遠場圖形,該LED的總光及出提 28 200847482 高至高於具有一反射器以及最佳化微腔之發光裝置的2·67 倍。在30°圓錐中的提高是4.57倍且在30°圓錐中含有總光汲 出光的40.5%。 第6Β圖顯示晶格常數為2500nm且角錐體直徑為 5 1870nm之LED的遠場圖形,該LED的總光汲出提高大於具 有一反射器以及一最佳化微腔之發光裝置的3.61倍。30。圓 錐中的提高是5.45倍且在30°圓錐中含有總量光的35.8%。Less, the deposition of the independent current spreading layer has an adverse effect on the light exit from the device. The results of the numerical simulations are shown in Figures 5A, 5B and 5C, illustrating the performance of a typical pyramidal photonic band structure device. The Z-axis shows the overall light output improvement factor compared to a reflector that is not a 20-shaped LED. The results are plotted as a function of the fill portion (in %) along the X-axis 501 and along the γ-axis 5〇2 as a function of the distance (in nm) between the photonic band structures. The fill portion is defined as diameter/pitch*1〇〇. Figure 5A illustrates a pyramidal photonic crystal in a central portion 30 compared to a non-patterned LED having a bottom reflector. The light in the cone is not out. 27 200847482 High. The results show a maximum increase of 5.45 for an optimized microcavity design with a pitch of 2500 nm and a fill portion of 75% and a QW region below a position of d = 〇·6/ λ n~13lnm. These parameters correspond to a device having a cone diameter of about 1·9 μηη spaced apart by a distance of 2.5 μπι. 5 Simulate the simulation using a 2D finite difference time domain method. It is important to note that these simulations do not incorporate numerical deviations from 2D to 3D simulations in space and thus allow experimental results to be expected to provide greater pupil output values. The fifth diagram is enhanced by the lattice constant and the fill portion function representation compared to the light exit of a non-patterned LED having a bottom reflector. As shown in Figure 5, Figure 10, the focus of the results is that the optimal operating range occurs at a pitch of 2500 nm and a fill portion of 75% with an optimized microcavity design under QWs. Finally, Figure 5C shows that the light of the device having the pyramidal photonic crystal structure is at 30. The percentage in the cone. As seen in the figure, up to 45% of the light 15 emitted by the device can be directed to have a 3 垂直 perpendicular to the surface of the device. The center of the half angle is in the cone. This corresponds to an 84% more light in a directional cone than the -Lambert illuminator. The increase in directionality is due to the ordered arrangement of the pyramids and the good oblique side walls of the pyramids. Compared with the straight (four), _, and air rods, the inclined side wall can be 30. Approximately 3% more light is provided within the cone. 2〇 Figures 6A and 6B show the transverse wear of the light distribution in a plane. The result is plotted as a function of the far field angle 601 along the X axis and indicates that the light intensity is normalized by a non-patterned LED having a reflector at the bottom. The far field pattern is the vertical line on the surface of the reference LED. 6A_ shows the far-field pattern of the LED with the lattice constant of the lion (10) and the pyramidal diameter of 1120 nm, the total light and the extraction of the LED 28 200847482 is higher than the luminescence with a reflector and optimized microcavity 2.67 times the device. The increase in the 30° cone is 4.57 times and contains 40.5% of the total pupil output in the 30° cone. Figure 6 shows the far field pattern of an LED with a lattice constant of 2500 nm and a pyramidal diameter of 5 1870 nm. The total light output of the LED is increased by 3.61 times that of a light-emitting device having a reflector and an optimized microcavity. 30. The increase in the cone was 5.45 times and contained 35.8% of the total light in the 30° cone.

此相當於與一朗伯特發光裝置相較在一定向圓錐中有多出 46%的光。 10 下列表1就相同的綠色GaNLED設計成一包含蝕刻空This corresponds to 46% more light in a directional cone than a Lambertian illuminator. 10 Below Table 1 is the same green GaN LED designed to include an etched empty

氣桿之一階光子晶體LED的簡單朗伯特發射器,以及設計 成一包含蝕刻角錐體之角錐型光子晶體LED,以總發射光 之百分比表示在一狹窄30。圓錐角内發射之光的比較。就光 子晶體裝置而言,尺寸被最佳化而在3〇◦圓錐中汲出最大百 15分比之光。一階光子晶體尺寸是由一間距為350nm,直徑大 約是210nm且蝕刻深度為12〇nm左右的晶格空氣桿所組 成,而角錐型光子晶體尺寸係如上所述。 表1 裝置類型 朗伯特LED 光子晶體LED 角錐型光子晶體 LED 在30°圓錐中的 光百分比 24.9 34.9 45.0 如同所見,方向性之增加可在使用一更為優化的結構 中獲得。 第8A和8B圖說明當一光子帶結構以一微腔發光裝置 29 200847482 最仏化k叮達成的光沒出增加。本例中一間距為5且有 一簡單反射器之常規光子晶體與一間距相同但亦具有一微 腔反射器的倒角錐型光子晶體比較。在第8人與88圖中總體 光提而802以光子晶體填充部分801之函數作圖。 5 在第8A圖中,實線803表示一由具有一反射器的非圖形 化LED總光汲出增加歸一至輸出中。虛線8〇4代表兼具有微 腔與反射裔的光子晶體與一具有一反射器之非圖形化LED 相較的總光汲出提高。第8B圖突出由於微腔效應所獲得之 立曰加光及出效果。虛線8〇5顯示當結合微腔、歸一化至具有 10 一反射器及一微腔的非圖形化LED時,與實線803相較之下 所增加的光子晶體光汲出效果,顯示當從一僅具有一簡單 反射器的非圖形化LED歸一化至同一裝置時的結果。因此 結合效應所造成的差別增加清楚可見。 第9圖就角錐型及倒角錐型兩者說明減少一光子之帶 15結構發光異質結構區域厚度的效應。光沒出9〇2與具有一反 射器的裸平坦LED才目較對以奈米變化的led異質結構核心 厚度901作圖。可清楚看見的是當異質結構的厚度減少時, 光沒出量增加。在本實例中的情況,光子晶體結構尺寸和 成何予對所有的異質結構厚度被固定且未應用微腔效應。 口匕對於光汲出而吕明顯地角錐型結構被餘刻至異質結 構中是有利的,因LED的有效厚度會被減少。 f本發明的另一較佳實施中,一新穎的高階倒角錐型 光子晶體(PC)或準晶體圖形被提出,與一階光子晶體圖形 相車乂韻形提供增加的光汲出。光子晶體設計也考慮到裝 30 200847482 置發出之遠場光分配的定制。光子晶體子區域的倒角錐形 狀以及其被良好疋義的盖瓦配置允許光以一比從一朗伯特 光源更為準直的光束從裝置中汲出。製造該裝置的一個簡 化程序也將被描述。 5 根據倒角錐體直徑,較高階的光子晶體尺寸大於Ι.Ομχη 且可能大於1·5μπι或2·0μηι,以及可大到但不限於3·0μηι、 3·5μπι與4·0μηι。此係依遠場圖形、LED的厚度以及量子井 在GaN異質結構之光產生區域中的位置而變化。A simple Lambert emitter of a gas-pole one-step photonic crystal LED, and a pyramidal photonic crystal LED designed to include an etched pyramid, is represented by a percentage of total emitted light at a narrow 30. A comparison of the light emitted within the cone angle. In the case of a photonic crystal device, the size is optimized to extract a maximum of 15 parts of light in a 3-inch cone. The first-order photonic crystal size is composed of a lattice air rod having a pitch of 350 nm, a diameter of about 210 nm, and an etching depth of about 12 Å, and the pyramidal photonic crystal size is as described above. Table 1 Device Types Lambert LED Photonic Crystal LED Pyramid Photonic Crystal LED Percentage of light in a 30° cone 24.9 34.9 45.0 As can be seen, the increase in directivity can be achieved with a more optimized structure. Figures 8A and 8B illustrate the increase in light achieved when a photonic band structure is maximized by a microcavity illumination device. In this example, a conventional photonic crystal having a pitch of 5 and having a simple reflector is compared to a chamfered cone photonic crystal having the same pitch but also having a microcavity reflector. The overall light is extracted in Figures 8 and 88 and 802 is plotted as a function of photonic crystal filling portion 801. 5 In Fig. 8A, solid line 803 indicates that a total of the non-patterned LEDs with a reflector is added to the output to the output. The dashed line 8〇4 represents an increase in the total pupil output of a photonic crystal having both a microcavity and a reflector and a non-patterned LED having a reflector. Fig. 8B highlights the effect of the vertical light addition and the effect obtained by the microcavity effect. The dashed line 8〇5 shows the increased photonic crystal light-off effect compared to the solid line 803 when combined with the microcavity, normalized to a non-patterned LED having 10 reflectors and a microcavity, The result of a non-patterned LED with only a simple reflector normalized to the same device. Therefore, the increase in the difference caused by the combined effect is clearly visible. Figure 9 illustrates the effect of reducing the thickness of a photo-emitting heterostructure region for both a pyramidal and a chamfered cone. The light is out of 9〇2 and the bare flat LED with a reflector is compared to the thickness of the led heterostructure core 901, which varies in nanometers. It can be clearly seen that when the thickness of the heterostructure is reduced, the amount of light is increased. In the case of this example, the photonic crystal structure size and composition were fixed for all heterostructure thicknesses and no microcavity effect was applied. The mouth is advantageous for the light to exit and the pyramid structure is left to the heterostructure, since the effective thickness of the LED is reduced. In another preferred embodiment of the invention, a novel high-order chamfer cone photonic crystal (PC) or quasi-crystal pattern is proposed which provides increased light output with the first-order photonic crystal pattern. The photonic crystal design also takes into account the customization of the far-field light distribution issued by 30 200847482. The chamfered cone shape of the photonic crystal sub-region and its well-defined tiling configuration allow light to be extracted from the device by a beam that is more collimated than from a Lambertian source. A simplified procedure for making the device will also be described. 5 According to the chamfer cone diameter, the higher order photonic crystal size is larger than Ι.Ομχη and may be greater than 1·5μπι or 2·0μηι, and may be large but not limited to 3·0μηι, 3·5μπι and 4·0μηι. This is a function of the far field pattern, the thickness of the LED, and the position of the quantum well in the light generating region of the GaN heterostructure.

第10圖說明所提出之發光裝置的橫截面,其包含以一 10週期性之準晶體、無定型或其他複合有序或重覆蓋瓦配置 钱刻在η型攙雜GaN或InGaN層中的角錐體1〇〇1。倒角錐型 蓋瓦配置被設計提供讓捕陷的光耦合至光子晶體的布洛赫 模態中的分散帶。一旦光被耦合至布洛赫模態中,光子晶 體提供一使光耦合至自由空間内的手段。 15 第1〇圖所示之裝置包含一發光異質結構,該異質結構Figure 10 illustrates a cross-section of the proposed illumination device comprising pyramids engraved in an n-type doped GaN or InGaN layer with a periodicity of 10, quasi-crystal, amorphous or other composite ordered or heavily covered tiles. 1〇〇1. The chamfered cone tiling configuration is designed to provide a dispersion band for the trapped light to couple into the Bloch mode of the photonic crystal. Once the light is coupled into the Bloch mode, the photonic crystal provides a means of coupling the light into the free space. 15 The device shown in Figure 1 comprises a luminescent heterostructure, the heterostructure

包括一η-GaN或InGaN頂層1002以及一下方之ρ-型GaN或 InGaN層1004,並有一多重量子井(MQW)結構1003介於這 兩層之間。在p-型層104之下存在一反射層1〇〇5,該反射層 可為一DBR形式的金屬反射器,金屬諸如為銀,或全方向 20 反射器(〇DR)形式。發光結構可被一載具基板或托板1006 支持。在一較佳實施例中,載具基板包括一具有一高導熱 性之導電材料諸如金屬或金屬合金或者矽或碳化矽中之 另外,光子晶體可由具有缺陷的區域,亦即倒角錐體 31 200847482 被移除或倒角錐體的形狀或大小被修正的區域所組成。子 區域亦可由具有未被钱刻之尖銳頂點區域所組成,引發形 成扁平頂部(截頭)倒角錐體。An η-GaN or InGaN top layer 1002 and a lower p-type GaN or InGaN layer 1004 are included, and a multiple quantum well (MQW) structure 1003 is interposed between the two layers. Below the p-type layer 104 there is a reflective layer 1 〇〇 5 which may be a metal reflector in the form of a DBR, such as silver, or an omnidirectional 20 reflector (〇DR). The light emitting structure can be supported by a carrier substrate or pallet 1006. In a preferred embodiment, the carrier substrate comprises a conductive material having a high thermal conductivity such as a metal or a metal alloy or tantalum or tantalum carbide. The photonic crystal may be a defective region, that is, a chamfer cone 31 200847482 The area where the shape or size of the chamfered cone is removed or corrected. The sub-areas may also be composed of sharp apex regions that are not engraved, resulting in a flat top (frusto) chamfer.

圖形定義可由一些參數表示特性,包括定義成分隔二 5 鄰接角錐體或倒角錐體中心之距離的晶格間距和角錐體結 晶學曝光面間所形成以及GaN晶格的水平結晶之間的角度 0。在本發明的一層面一蝕刻停止層1007被用來控制蝕刻 深度。此可允許角錐體基部直徑的正確控制。就一特定姓 刻深度d而言,角錐體的基部直徑φ是: 10 O=2xd/tan(0)(5)The graphical definition can be characterized by a number of parameters, including the lattice spacing defined as the distance between the two adjacent pyramids or the center of the chamfer cone and the angle between the crystallographically exposed faces of the pyramidal and the horizontal crystallization of the GaN lattice. . An etch stop layer 1007 is used to control the etch depth at a level of the present invention. This allows for proper control of the diameter of the base of the pyramid. For a specific surname depth d, the base diameter φ of the pyramid is: 10 O=2xd/tan(0)(5)

本發明的進一層面是一種具有上述倒角錐體型式之光 子帶結構的LED的簡化製造方法。一可能製造方法的兩種 變化繪示於第11A至11J圖。起始一η型攙雜GaN或InGaN層 1101藉金屬有機化學蒸汽沈積(MOCVD)或其他類似技術 15 (諸如MBE)生長在一晶格匹配的基質mo上。一般所使用的 基質是藍寶石,GaN及SiC。在本發明的一個特別實施例 中,一由一材料諸如InGaN或AlGaN所形成的钱刻停止層 409埋入η-GaN層中。n_GaN或InGaN層在蝕刻停止層上方持 續生長為層1108。多個GaN-InGaN量子井11〇2被生長且隨 20 繼一P-型GaN層1103。此一階段所製造的完整LED異質結構 疊層繪示於第11A圖。 如第11B圖所示,一反射鏡1104接著被沈積在p-GaN層 1103之頂部。反射器可以是金屬的,包括一層適當的金屬, 諸如藉由濺鍍或蒸鍍沈積的銀或金。或者,反射器可由一 32 200847482 呈分布反饋器(DBR)或全向反射器(ODR)形式之介電多層 堆疊所組成。此種構造可使用諸如PECVD之沈積技術以濺 鑛方式沈積。 如第11C圖所示,第11B圖的異質結構接著被結合於一 5基貝1105。該基質11〇5最好是一金屬合金,因金屬合金可 具有良好的導熱及導電性,但亦可由其他材料諸如siC或Si 組成。在結合操作前可將另一些層沈積在反射鏡1104上以 辅助結合操作。A further aspect of the invention is a simplified method of fabricating an LED having the chamfer cone type photonic band structure described above. Two variations of a possible manufacturing method are shown in Figures 11A through 11J. A starting n-type doped GaN or InGaN layer 1101 is grown on a lattice-matched substrate mo by metal organic chemical vapor deposition (MOCVD) or other similar technique 15 (such as MBE). The substrates generally used are sapphire, GaN and SiC. In a particular embodiment of the invention, a etch stop layer 409 formed of a material such as InGaN or AlGaN is buried in the η-GaN layer. The n-GaN or InGaN layer continues to grow as layer 1108 above the etch stop layer. A plurality of GaN-InGaN quantum wells 11〇2 are grown and followed by a P-type GaN layer 1103. The complete LED heterostructure stack produced in this stage is shown in Figure 11A. As shown in Fig. 11B, a mirror 1104 is then deposited on top of the p-GaN layer 1103. The reflector can be metallic, including a suitable layer of metal, such as silver or gold deposited by sputtering or evaporation. Alternatively, the reflector may be comprised of a 32 200847482 dielectric multilayer stack in the form of a distributed feedback (DBR) or omnidirectional reflector (ODR). Such a construction can be deposited in a splashing manner using deposition techniques such as PECVD. As shown in Fig. 11C, the heterostructure of Fig. 11B is then bonded to a 5 base 1105. The substrate 11〇5 is preferably a metal alloy which may have good thermal and electrical conductivity, but may also be composed of other materials such as siC or Si. Additional layers may be deposited on the mirror 1104 prior to the bonding operation to aid in the bonding operation.

在最後的習知製作步驟中,藍寶石基質1110接著利用 10 雷射剝離或其他的類似技術除去以提供如第11D圖中所示 之異質結構。雖然典型地可能並無蝕刻停止層,此一結構 仍可能形成一最終完成的習知裝置。雷射剝離程序使得 n-GaN層的表面1101粗糙。(典型地為5〇nm至300nm等級)。 在一個比較傳統的裝置中,此一表面可能更進一步被粗化 15 以改進光汲出。在本發明的一層面,光子帶結構角錐體的 尺寸相形於表面粗糙度較大,因此在定義圖形之前不需要 拋光表面。 第11E至111或11J圖表示依據本發明製作最終裝置時 所需要的增加程序步驟’如第11我和11J圖所示。就最後_ 20 步驟示於第111圖之程序的的實施例而言,姓刻停止層η〇9 不存在於前述步驟11Α至11Η中,但存在於製成如第lu圖所 示裝置的實施例中。 第11E圖表示掩蔽層之沈積。特別是一可取捨的方法步 驟示於圖中,藉以使一硬光罩層1106被沈積以供接著將需 33 200847482 要的圖形轉移至n-GaN層1101。此可由一藉由PECVD沈積 之Si〇2或SUN*所組成,或其可為一藉由濺鍍或蒸鍍沈積的 金屬。一層光阻劑1107接著被沈積在硬光罩1106上。然而, 在一些情況下可省卻硬光罩層而光阻劑1107直接沈積至 5 n-GaN 層 1101 之上。In the final conventional fabrication step, the sapphire substrate 1110 is then removed using a 10 laser lift or other similar technique to provide a heterostructure as shown in Figure 11D. While there may typically be no etch stop layers, this configuration may still result in a well-formed conventional device. The laser lift-off procedure roughens the surface 1101 of the n-GaN layer. (typically 5 〇 nm to 300 nm grade). In a more conventional device, this surface may be further coarsened 15 to improve light extraction. At one level of the invention, the size of the photonic strip structure pyramid is relatively large in surface roughness, so that no polished surface is required prior to defining the pattern. Fig. 11E to 111 or 11J show the steps of increasing the procedure required for making the final apparatus in accordance with the present invention' as shown in Figs. 11 and 11J. With respect to the embodiment of the procedure of the last -12 step shown in Fig. 111, the last stop layer η 〇 9 is not present in the aforementioned steps 11 Α to 11 ,, but exists in the implementation of the apparatus as shown in Fig. In the example. Figure 11E shows the deposition of the masking layer. In particular, a method step is shown in the figure whereby a hard mask layer 1106 is deposited for subsequent transfer of the pattern required by 33 200847482 to the n-GaN layer 1101. This may consist of a Si 2 or SUN* deposited by PECVD, or it may be a metal deposited by sputtering or evaporation. A layer of photoresist 1107 is then deposited on the hard mask 1106. However, in some cases the hard mask layer may be omitted and the photoresist 1107 deposited directly onto the 5 n-GaN layer 1101.

由於倒角錐型特徵的尺寸大,光阻劑1107可利用標準 紫外線微影定義所需要的蓋瓦配置圖形。曝光區域的橫向 形狀可對應於所需要之倒角錐體的橫截面,或可以是更簡 單的形狀諸如正方形。曝光的光阻劑接著顯影留下對應於 10所需倒角錐體頂點位置的分離材料島塊,如第11F圖所示。 如果硬光罩1106存在,則利用尺正、ICP或一類似程序乾蝕 刻。此一步驟將圖形定義由光阻劑11〇7轉移至硬光罩1〇6, 如第11G圖所示。剩餘的光阻劑4〇7接著被剝離。Due to the large size of the chamfered cone features, the photoresist 1107 can define the desired tiling pattern using standard UV lithography. The lateral shape of the exposed area may correspond to the cross section of the desired chamfer, or may be a simpler shape such as a square. The exposed photoresist is then developed to leave a separate island of material corresponding to the desired apex position of the chamfer cone, as shown in Figure 11F. If the hard mask 1106 is present, it is dry etched using a ruler, ICP or a similar procedure. This step transfers the graphic definition from the photoresist 11〇7 to the hard mask 1〇6 as shown in Fig. 11G. The remaining photoresist 4〇7 is then stripped.

接著,n-GaN層1101利用一等向性濕蝕刻晶體濕蝕刻, 15如第11Η圖所示。一較佳之濕蝕刻G aN的方法是使用一浴溫 度範圍自室溫至1〇〇乞的1%到8]^濃度範圍尺〇11溶液。蝕刻 k間範圍大約在45分鐘左右。可選替的濕餘刻劑包含 或HsPO4。藉蝕刻程序形成的六角形倒角錐體的晶面是 曰曰體的{ 10-M }平面。他們與角錐體底部形成一角度 20 58·4。。最後,若一硬光罩4〇6被使用,财可利用一適當的 濕或乾姓刻程序除去而留下第UI圖中所示之最終結構。 被倒角錐體的絕對尺寸主要將被钱刻硬光罩區域的尺 寸所決疋。硬光罩的周長將提供一姓刻停止障壁且且允許 GaN的頂表®(c平面)向下敍刻形成倒角錐體。倒角錐體的 34 200847482 名義直㈣和在侧硬料_周長上任何㈣ f向距離相等。其次,㈣錐體的直徑也由不同晶體的 平面的選擇性_速率且因此由總糊時間決定。 在一可選替的實施例中,—姓刻停止層,11〇9,被埋 5置在層蘭和腫之間的n型攙雜材料中。該餘刻停止芦包 含:諸如规必,InGaN的材料,但亦可使用其他材料^ 亥Ητ止層1109之存在容許形成截頭倒角錐體(倒截錐體)且 亦各許對角錐型結構作正確控制同時姓刻時間決定倒角錐Next, the n-GaN layer 1101 is wet etched using an isotropic wet etch crystal, 15 as shown in FIG. A preferred method of wet etching G aN is to use a bath temperature ranging from room temperature to 1% to 1 Torr to a concentration range of 11 solutions. The range between the etchings k is about 45 minutes. An optional wet residual agent contains or HsPO4. The crystal plane of the hexagonal chamfer cone formed by the etching process is the { 10-M } plane of the corpus callosum. They form an angle of 20 58·4 with the bottom of the pyramid. . Finally, if a hard mask 4〇6 is used, it can be removed by a suitable wet or dry process to leave the final structure shown in the UI diagram. The absolute size of the chamfered cone will be largely determined by the size of the hard mask area. The perimeter of the hard mask will provide a last-stop barrier and allow the top surface of the GaN® (c-plane) to be down-cut to form a chamfer. The chamfer cones of 34 200847482 are nominally straight (four) and are equal in distance to any (four) f-direction on the side hard material _ circumference. Secondly, the diameter of the (iv) cone is also determined by the selectivity_rate of the plane of the different crystals and hence by the total paste time. In an alternative embodiment, the surname stop layer, 11〇9, is buried 5 in the n-type doping material between the layer blue and the swollen. The remaining stop reed includes: such as the rule, InGaN material, but other materials can also be used ^ The presence of the stop layer 1109 allows the formation of a truncated chamfer cone (reverse cone) and also a diagonal pyramid structure Correct control while the last name determines the chamfer

體的絕對直徑。第糊之插入圖刪Τ顯示截頭倒角錐體 10結構的放大頂視圖。 +第Μ圖所示為此-程序所製成之倒角錐體的一掃晦式 電子顯微照片。在此-情況中,角錐體被隔離而且利用較 佳製作實施例形成,晶體的{1(Μ.1}小晶界面示於7〇1。 在較佳實施例中,包括層1101,11〇9和11〇8的複合 15 上部區域1被設置在發光構造上方。因此,光從層11〇2 兔出且在最後經由1101區域放出前經歷多重内部反射。The absolute diameter of the body. The insertion of the second paste is shown in the enlarged top view of the truncated chamfer cone 10 structure. + Figure 所示 shows a broom electron micrograph of the chamfer cone made for this program. In this case, the pyramids are isolated and formed using the preferred fabrication embodiment, and the {1 (Μ.1} small crystal interface of the crystal is shown at 7〇1. In the preferred embodiment, layers 1101, 11〇 are included. The composite 15 upper region 1 of 9 and 11〇8 is placed above the illuminating structure. Therefore, light exits from the layer 11〇2 and undergoes multiple internal reflections before being finally discharged through the 1101 region.

一個厚的n-GaN生長區域必需減少缺陷密度以便形成 阿品質量子井(QW)層,且因而改善led的内部量子效率。 為了製造上的利益,上部區域(層11〇1,11〇9和11〇8)作為脆 20弱之QW區域n〇2的一保護層,防止其在倒角錐體的濕蝕刻 期間受到損害且將QW區域的表面復合極小化。對QW區域 之飿刻也會因減少最大有效發光區域而對LED的總發光輸 出有不利影響。 另外,有關於光學汲出之改進,所需要的倒角錐體尺 35 200847482 寸為1·75μιη之級度’直控位於一2.5gm之間距的中央。該尺 寸限制了層1101的最小厚度,因此角錐體最好位於厚的 n-GaN層上。同時,為了改進光汲出,藉蝕刻減少存在異質 結構中的捕陷模態數目以減少LED波導區域的總厚度。此 5可使光子帶結構與較大百分比的捕陷模態重疊,藉以提供 如第15圖中所示之進光汲出。另外,n_GaN&具高度傳導性 且此丨生貝使知系要沈積在光子帶結構頂部表面的獨立電 流傳佈層減至最少,該沈積之獨立電流傳佈層對裝置之光 汲出有不利的影響。 10 數值模擬的成果繪示於第12A,12B和12C圖,說明典 型倒角錐型光子帶結構裝置的表現。2轴顯示與一具反射器 之非圖形化LED相較的總光汲出提高因素。成果沿又軸12〇2 繪成光子帶結構之間距(Wnm計)的函數。填充部分定義成 直徑/間距* 1〇〇。 15 第12A圖繪示一倒角錐型光子晶體與一具有底部反射 斋之無圖形結構LED相較在一中央30。圓錐中的光汲出提 高。成果顯示對於一間距1500nm及一填充部分100%,且在 一d — 0·6/ λ η〜131nm之位置的QW區域下方有一最佳化微 腔設計時’最大提高為4.90。這些參數相當於一以1.5μιη間 20距相間隔一具有約1·5μιη倒角錐體直徑的裝置。 與在角錐形之例子中相同地使用一 2 D有限差分時域法 實施模擬’因此在本例中此一實驗結果亦被預期提供甚至 更大的光汲出值。 第UB圖以晶格常數與填充部分函數表示相較於一具 36 200847482 有一底部反射器的無圖形結構LED的光沒出提高。如第i2A 圖中所不’成果的重點在於最佳操作範圍出現在一間距 !5_威填絲分為議%,QWs之下具有―最佳化微腔設 計處。 5 取後,第Μ圖表示—具有倒角錐型光子晶體結構之裝 置的光在30。圓錐中的百分比。如圖中所見,由裝置發出的 光南達39%可被導向於垂直於裝置表面具有一3〇。半角的中 心圓錐中。此相當於與__特發光m較在一定向圓 錐中有多出57%的光。方向性增加是由於倒角錐體的有序 10排列以及倒角錐體的良好定義斜侧壁。斜側壁與一般的直 側壁、姓刻、空氣桿相較可在3〇。圓錐内提供大約多出15% 的光。 第13圖為一倒角錐形結構在一平面上之光分布的橫截 面。成果以沿X軸的遠場角1301的函數作圖且表示光強度 15 1302由一底部有一反射器之未具圖形LED對其歸一化。遠A thick n-GaN growth region must reduce the defect density to form a quality quantum well (QW) layer and thus improve the internal quantum efficiency of the LED. For the benefit of manufacture, the upper regions (layers 11〇1, 11〇9 and 11〇8) act as a protective layer for the fragile 20 weak QW region n〇2, preventing it from being damaged during wet etching of the chamfer cone and The surface recombination of the QW region is minimized. The engraving of the QW region also adversely affects the total illumination output of the LED by reducing the maximum effective illumination area. In addition, with regard to the improvement of the optical pick-up, the required chamfer cone 35 200847482 is a grade of 1.75 μm, and the direct control is located at the center of a distance of 2.5 gm. This size limits the minimum thickness of layer 1101, so the pyramid is preferably located on a thick n-GaN layer. At the same time, in order to improve the pupil output, the number of trap modes in the heterostructure is reduced by etching to reduce the total thickness of the LED waveguide region. This 5 overlaps the photonic band structure with a larger percentage of trapping modes to provide the exit pupil as shown in FIG. In addition, n_GaN & is highly conductive and this twin is made to minimize the independent current spreading layer deposited on the top surface of the photonic strip structure. The independent current spreading layer of the deposit adversely affects the light output of the device. The results of the numerical simulation are shown in Figures 12A, 12B and 12C, illustrating the performance of a typical chamfer cone photonic band structure. The 2-axis display shows an increase in total light output compared to a non-patterned LED with a reflector. The results are plotted along the axis 12〇2 as a function of the distance between the photonic band structures (Wnm). The fill portion is defined as diameter/pitch* 1〇〇. 15 Figure 12A shows a chamfered cone photonic crystal in a central 30 compared to a non-graphic LED having a bottom reflection. The light in the cone is raised. The results show a maximum increase of 4.90 for an optimized microcavity design for a pitch of 1500 nm and a filled portion of 100%, and below the QW region at a position of d - 0 · 6 / λ η ~ 131 nm. These parameters correspond to a device having a chamfer diameter of about 1.5 μm separated by a distance of between 1.5 μm and 20 μm. The simulation was carried out using a 2D finite-difference time domain method as in the case of the pyramidal cone. Thus, in this case, the results of this experiment are also expected to provide even larger pupil values. The UB diagram has a lattice constant and a fill portion function as compared to a 36 200847482 light having a bottom reflector without a patterned reflector. As shown in the i2A figure, the focus of the results is that the optimal operating range appears at a distance of !5_Well filling is divided into %, and under QWs there is "optimized microcavity design." 5 After taking the figure, the figure shows that the light with the chamfered cone-shaped photonic crystal structure is at 30. The percentage in the cone. As seen in the figure, 39% of the light emitted by the device can be directed to have a 3 垂直 perpendicular to the surface of the device. In the center cone of the half angle. This is equivalent to 57% more light than the __ special illuminator m in an oriented cone. The increase in directivity is due to the ordered 10 arrangement of the chamfer cones and the well defined oblique side walls of the chamfer cone. The oblique side wall can be 3 较 compared with the normal straight side wall, the surname, and the air rod. Approximately 15% more light is provided inside the cone. Figure 13 is a cross section of the light distribution of a chamfered pyramid structure on a plane. The result is plotted as a function of the far field angle 1301 along the X-axis and indicates that the light intensity 15 1302 is normalized by a non-patterned LED with a reflector at the bottom. far

場圖形是參考LED的表面垂直線。第13圖顯示晶格常數為 1500mn且角錐體直徑為1500nm之LED的遠場圖形,該LED 的總光汲出提高至比一具有一反射器以及最佳化微腔之發 光裝置的2.98倍。在30°圓錐中的提高是4.85倍且30。圓錐中 20 含有總汲出光的38.6%。 下列表2就相同的綠色GaNLED設計成一包含蝕刻空 氣桿之一階光子晶體LED的簡單朗伯特發射器,以及設計 成一包含蝕刻倒角錐體之角錐型光子晶體LED,以總發射 光之百分比表示在一狹窄30。圓錐角内發射之光的比較。就 37 200847482 光子晶體裝置而言,尺寸被最佳化而在30。圓錐中汲出最大 百分比之光。一階光子晶體尺寸是由一間距為35〇nm,直徑 大約是21〇nm且蝕刻深度為12〇11111左右的晶格空氣桿所組 成’而倒角錐型光子晶體尺寸係如上所述。 裝置類型 朗伯特LED 光子晶體LED 角錐型光子晶體 LED 光在30°圓錐中 的百分比 24.9 34.9 38.6The field pattern is the vertical line of the surface of the reference LED. Figure 13 shows the far field pattern of an LED having a lattice constant of 1500 nm and a pyramidal diameter of 1500 nm. The total light output of the LED is increased to 2.98 times that of a light-emitting device having a reflector and an optimized microcavity. The increase in the 30° cone is 4.85 times and 30. 20 of the cone contains 38.6% of the total light emitted. Table 2 below shows the same green GaN LED as a simple Lambertian emitter containing an etched air rod one-order photonic crystal LED, and a pyramidal photonic crystal LED containing an etched chamfer cone, expressed as a percentage of total emitted light. In a narrow 30. A comparison of the light emitted within the cone angle. For the 37 200847482 photonic crystal device, the size is optimized at 30. The largest percentage of light is extracted from the cone. The first-order photonic crystal size is composed of a lattice air rod having a pitch of 35 〇 nm and a diameter of about 21 〇 nm and an etching depth of about 12 〇 11111. The chamfered cone photonic crystal size is as described above. Device Type Lambert LED Photonic Crystal LED Pyramid Photonic Crystal LED Light in a 30° Cone 24.9 34.9 38.6

如同所見,方向性之增加可在使用一更為優化的結構 中獲得。As can be seen, the increase in directionality can be obtained using a more optimized structure.

弟15A和15B圖說明當一光子帶結構以一微腔發光裝 10置袁佳化時可達成的光没出增加。本例中一間距為5〇〇nm 且有一簡單反射器之常規光子晶體與一間距相同但亦具有 一微腔反射器的倒角錐型光子晶體比較。在第15A與15B圖 中總體光提雨1502以光子晶體填充部分1501之函數作圖。 在第15A圖中,實線1503表示一由具有一反射器的非圖 15形化LED總光汲出增加歸一至輸出中。虛線1504代表兼具 有微腔與反射器的光子晶體與一具有一反射器之非圖形化 LED相較的總光汲出提高。第15B圖突出由於微腔效應所獲 得之增加光汲出效果。虛線1505顯示當結合微腔、歸一化 至具有一反射器及一微腔的非圖形化LED時與實線1503相 20 較增加光子晶體的光汲出效果,顯示當從一僅具有一簡單 反射器的非圖形化LED歸一化至同一裝置時的結果。因此 結合效應所造成的差別增加清楚可見。 38 200847482 熟習該技藝的人士將可理解到本發明能使高效率及指 向性的發光裝置被實現,因而令其可作為可能存在之光源 的實用替代光源。本發明在於角錐型突出部及倒角錐型蝕 刻以及其蓋瓦配置的精心設計,該一精心設計能產生一對 5 有效光耦合最佳化的光子帶結構,同時能夠控制由裝置所 發出之光的傳佈及遠場性質。該裝置的實用性可藉提供一 簡單的圖形定義與蝕刻程序來製作該裝置而被提高,且該 裝置能夠容易地用來加強製作較傳統裝置的現存技術。The figures 15A and 15B illustrate that the light that can be achieved when a photonic band structure is placed in a microcavity light-emitting device is increased. In this example, a conventional photonic crystal having a pitch of 5 〇〇 nm and having a simple reflector is compared with a chamfered cone photonic crystal having the same pitch but also having a microcavity reflector. The overall light rain 1502 is plotted as a function of the photonic crystal fill portion 1501 in Figures 15A and 15B. In Fig. 15A, solid line 1503 indicates that a total light output from a non-figure LED having a reflector is added to the output. Dotted line 1504 represents a total optical output enhancement of a photonic crystal having both a microcavity and a reflector compared to a non-patterned LED having a reflector. Figure 15B highlights the increased light extraction effect due to the microcavity effect. Dotted line 1505 shows that when combined with a microcavity, normalized to a non-patterned LED having a reflector and a microcavity, the photon effect of the photonic crystal is increased with the solid line 1503, showing that there is only one simple reflection from one. The result of the non-patterned LEDs normalized to the same device. Therefore, the increase in the difference caused by the combined effect is clearly visible. 38 200847482 It will be appreciated by those skilled in the art that the present invention enables high efficiency and directivity illumination devices to be implemented, thereby making it a useful alternative source of light for possible sources. The present invention is elaborately designed with pyramidal projections and chamfered cone etching and its tiling arrangement, which is designed to produce a pair of 5 effective optical coupling optimized photonic band structures while controlling the light emitted by the device. The spread and the nature of the far field. The utility of the device can be improved by providing a simple graphical definition and etching procedure to make the device, and the device can be readily utilized to enhance existing techniques for making more conventional devices.

【圖式簡單說明2 10 第1圖表示發明提出之裝置的一橫截面; 第2A圖表示以一規則正方晶格排列的角錐體; 第2B圖表示以一 12次對稱性準晶體排列的角錐體; 第3圖以量子井鏡像間隔距離之函數表現一 GaN之 LED的常態化光照強度; 15 第4A至4D圖繪示製作一發光裝置以高速覆晶封裝為 基礎的製造方法;BRIEF DESCRIPTION OF THE DRAWINGS [10] Figure 1 shows a cross section of the device proposed by the invention; Figure 2A shows a pyramid arranged in a regular square lattice; and Figure 2B shows a pyramid arranged in a 12-symmetric quasicrystal. Figure 3 shows the normalized illumination intensity of a GaN LED as a function of the distance between the mirrors of the quantum wells; 15 Figures 4A to 4D illustrate the fabrication of a light-emitting device based on a high-speed flip chip package;

第4E至41圖繪示製作第4D圖中所示裝置之上層中角錐 體光子晶體構造的附加製造步驟; 第5A圖表示對於一角錐型光子晶體-LED而言,與一無 20 圖形結構之裝置相較光汲出提高一 30°圓錐; 第5B圖表示對於一角錐型光子晶體-LED而言,與一無 圖形結構之裝置相較總光汲出提高; 第5C圖表示對於不同的角錐型光子晶體發光裝置而言 在30°圓錐中之光的百分比; 39 200847482 第6A圖表示對一依據本發明一較佳實施例之光子晶體 -LED構造的遠場圖形; 第6B圖繪示為依據身本發明另一較佳實施例之光子晶 體-LED結構的遠場圖形; 5 第7A圖出示使用發明的製作方法被形成的隔離角錐體 的一電子顯微影像圖; 第7 B圖綠示使用本發明的製作方法被形成的一角錐體 的光子準晶體配置的電子顯微影像圖; 第8A圖是一習知光子晶體·LED與一具有微腔之角錐 ίο型光子晶體-led相較於一無圖形結構LED的光汲出提高對 光子晶體填充部分之一圖形·, 弟圖疋角錐型光子晶體-LED相較於具有及不具 有微腔之無圖形結構LED的光汲出提高對光子晶體填充部 分之一圖形;以及, 第固疋角錐型光子晶體-LED相較於一無圖形結構 LED的的光汲出提高對咖異質結構核心、厚度的圖形。 第10圖繪示倒角錐型裝置之一橫截面; 第UA至11D圖說明製作一發光裝置之一高速覆晶封 裝程序為基礎的製造方法; 弟E圖至111圖說明在第iij圖所示之裝置的上層中 製作倒角錐型或截頭倒角錐型光子晶體構造之附加製造 步驟; ° 第12A圖繪示一角錐型光子晶體-LED與一無圖形結構 裝置相較在-30。圓錐中的光沒出提高。 40 200847482 第12B圖繪示-角錐型光子晶體_融與_無圖形結構 裝置相較的總光汲出提高; 第12C圖繪示不同的角錐型光子晶體發光裝置在3〇。圓 錐中之光的百分比; 5 第13圖繪示依據本發明之一較佳實施例的光子晶體 -LED構造的遠場圖形特性曲線; 第14圖繪示一使用本發明的製作方法被形成的隔離倒 角錐體的的角錐體的一電子顯微影像圖; 第15A圖疋一習知光子晶體—led與一具有微腔之角錐 10型光子晶體-LED相較於一無圖形結構LED的光汲出提高對 光子晶體填充部分之一圖形; 第15 B圖是一倒角錐型光子晶體丄E D相較於一具有及 不具有微腔之無圖形結構LED的光汲出提高對光子晶體填 充部分之一圖形。 15 【主要元件符號說明】 101…角錐體 403···ρ-型層 102···頂層 4〇4…反射鏡 103···多重量子井結構 405.··基質 104···ρ-型層 406…硬光罩層 105···反射層 407…光阻劑層 106…载片 408…層 107·.·餘刻停止層 409…餘刻停止層 401 ···!!,攙雜層 410…藍寶石基質 402.··多重量子井 1001···角錐體 200847482 1004.. .P-型層 1005.. .反射層 1006.. .托板 1101…η型攙雜層 1102.. . GaN-InGaN 量子井 1103.. . p-型層 1104.. .反射鏡 1105.. .基質 1106.. .硬光罩層 1107.. .光阻劑 1109.. .蝕刻停止層 1110.. .基質4E to 41 are diagrams showing an additional manufacturing step of fabricating the pyramidal photonic crystal structure in the upper layer of the device shown in FIG. 4D; FIG. 5A is a view showing a pyramidal photonic crystal-LED and a 20-free graphic structure. The device is increased by a 30° cone compared to the pupil; Figure 5B shows that for a pyramidal photonic crystal-LED, the total pupil output is improved compared to a device without a graphic structure; Figure 5C shows the different pyramidal photons for different angles. Percentage of light in a 30° cone for a crystal illuminating device; 39 200847482 Figure 6A shows a far field pattern for a photonic crystal-LED configuration in accordance with a preferred embodiment of the present invention; Figure 6B shows A far field pattern of a photonic crystal-LED structure according to another preferred embodiment of the present invention; 5 Figure 7A shows an electron micrograph of an isolated pyramid formed using the fabrication method of the invention; An electron micrograph of a photonic quasi-crystal configuration of a pyramid formed by the fabrication method of the present invention; FIG. 8A is a conventional photonic crystal LED compared with a photonic crystal-led with a microcavity The light-emitting of the non-graphical structure LED increases the pattern of the filling portion of the photonic crystal. The image of the photonic crystal-filled portion of the LED is improved compared to the light-emitting of the non-graphical LED with and without the microcavity. One of the graphics; and, the first solid angle pyramidal photonic crystal-LED, compared to the optical output of a non-graphical LED, improves the pattern of the core and thickness of the heterogeneous structure. Figure 10 is a cross-sectional view of a chamfer-cone type device; Figures UA to 11D illustrate a manufacturing method based on a high-speed flip chip package process for fabricating a light-emitting device; Figure E to Figure 111 shows the image shown in Figure iij An additional manufacturing step of making a chamfered or truncated cone-shaped photonic crystal structure in the upper layer of the device; ° Figure 12A shows a pyramidal photonic crystal-LED compared to a non-graphical device at -30. The light in the cone did not increase. 40 200847482 Figure 12B shows that the pyramidal photonic crystal _ fused with _ no graphic structure compared to the total optical output of the device; Figure 12C shows different pyramidal photonic crystal illuminating devices at 3 〇. Percentage of light in the cone; 5 Figure 13 illustrates a far field pattern characteristic of a photonic crystal-LED configuration in accordance with a preferred embodiment of the present invention; and Figure 14 illustrates a method of fabrication using the fabrication method of the present invention. An electron micrograph of the pyramid of the isolated chamfer cone; Figure 15A shows a conventional photonic crystal-led light with a microcavity pyramid type 10 photonic crystal-LED compared to a non-patterned LED汲 提高 提高 提高 提高 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Graphics. 15 [Description of main component symbols] 101...Corner cone 403···ρ-type layer 102···Top layer 4〇4...Mirror 103···Multiple quantum well structure 405.··Base 104···ρ-type Layer 406...hard mask layer 105···reflective layer 407...photoresist layer 106...carrier 408...layer 107·.recess stop layer 409...remaining stop layer 401···!!, doping layer 410 ...Sapphire Matrix 402.··Multiple Quantum Wells 1001···Corners 200847482 1004.. P-type Layer 1005.. Reflective Layer 1006.. Pallet 1101...n-type Doping Layer 1102.. GaN-InGaN Quantum well 1103.. p-type layer 1104.. mirror 1105.. substrate 1106.. hard mask layer 1107.. photoresist 1109.. etch stop layer 1110.. substrate

t 42t 42

Claims (1)

200847482 十、申請專利範圍: 1. 一種發光裝置(LED)包含: 一第一層,包含一具有第一型攙雜之第一半導體材 料; 5 一第二層,包含一具有第二型攙雜的第二半導體材 料;以及 一配置在第一層與第二層之間的光產生層,200847482 X. Patent application scope: 1. A light-emitting device (LED) comprises: a first layer comprising a first semiconductor material having a first type doping; 5 a second layer comprising a second type doped a semiconductor material; and a light generating layer disposed between the first layer and the second layer, 其中該第一層具有一遠離光產生層的上表面及一 接近光產生層的下表面,且其中在光產生層中所產生的 10 光由LED結構經由第一層的上表面出現,該第一層進一 步包含第一半導體材料所組成的角錐型或截錐型上表 面突出部蓋瓦配置,該突出部由一與第一半導體材料之 折射率不同的材料所圍繞,其中突出部之蓋瓦配置與周 圍材料構成一光子帶結構,且其中該突出部及其蓋瓦配 15 置的安排使得由LED結構形成通過上表面之光實質上 比得自一朗伯特源光源的光更具有方向性。Wherein the first layer has an upper surface away from the light generating layer and a lower surface adjacent to the light generating layer, and wherein 10 light generated in the light generating layer is formed by the LED structure via the upper surface of the first layer, the first The layer further comprises a pyramidal or truncated conical upper surface protrusion tile arrangement of the first semiconductor material, the protrusion being surrounded by a material different from the refractive index of the first semiconductor material, wherein the tiling of the protrusion Configuring a photonic strip structure with the surrounding material, and wherein the projections and their tiling arrangement are arranged such that light formed by the LED structure through the upper surface is substantially more directional than light from a Lambertian source source . 2. —種發光裝置(LED)包括: 一第一層,包含一具有一第一型攙雜的第一半導體 材料; 20 —第二層,包含一具有一第二型攙雜的一第二半導 體材料;以及, 一配置在第一層與第二層之間的光產生層,其中第 一層有一遠離光產生層之上表面及一接近該光產生層 的下表面,且其中在光產生層中所產生的光通過第一層 43 200847482 的上表面由LED構造的出現,該第一層進一步包含一在 第一半導體材料中由上表面朝向光產生層延伸,且由一 折射率與第一半導體材料不同之材料所組成之倒角錐 型或倒截錐型凹痕蓋瓦配置,其中該凹痕的蓋瓦配置及 5 周圍第一半導體材料包含一光子帶結構,且其中該凹痕 及其蓋瓦配置的安排使得透過該上表面從LED的結構 出現的光比得自一朗伯特光源者更具有方向性。2. A light emitting device (LED) comprising: a first layer comprising a first semiconductor material having a first type of doping; and a second layer comprising a second semiconductor material having a second type of doping And a light generating layer disposed between the first layer and the second layer, wherein the first layer has a surface away from the upper surface of the light generating layer and a lower surface adjacent to the light generating layer, and wherein the light generating layer is in the light generating layer The generated light passes through the upper surface of the first layer 43 200847482 by the LED structure, the first layer further comprising a first semiconductor material extending from the upper surface toward the light generating layer, and a refractive index and the first semiconductor a chamfered or inverted truncated dent tiling arrangement of materials having different materials, wherein the tiling arrangement of the dent and the first semiconductor material surrounding the rib comprises a photonic band structure, and wherein the dent and the cover thereof The arrangement of the tile arrangement is such that light emerging from the structure of the LED through the upper surface is more directional than that obtained from a Lambertian source. 3.如申請專利範圍第1或第2項之LED,其中蓋瓦配置包含 一光子晶體,一光子準晶體或一個無定形蓋瓦式樣。 10 4.如申請專利範圍第3項之LED,其中蓋瓦配置包含光子 晶體,一光子準晶體,或一個無定形蓋瓦式樣。 5. 如前述申請專利範圍中任一項的LED,其中蓋瓦配置包 括一缺陷。 6. 如申請專利範圍第1-5項中任何一項的LED,其中該突出 15 部或凹痕具有一大於Ι.Ομπι的尺寸。3. The LED of claim 1 or 2, wherein the tiling arrangement comprises a photonic crystal, a photonic quasicrystal or an amorphous tiling pattern. 10 4. The LED of claim 3, wherein the tiling arrangement comprises a photonic crystal, a photonic quasicrystal, or an amorphous tiling pattern. 5. The LED of any of the preceding claims, wherein the tiling arrangement comprises a defect. 6. The LED of any one of claims 1-5, wherein the protrusion 15 or the indentation has a size greater than Ι.Ομπι. 7. 如申請專利範圍第1-5項中任何一項的LED,其中該突出 部或凹痕具有一大於1·5μιη的尺寸。 8. 如申請專利範圍第1-5項中任何一項的LED,其中該突出 部或凹痕具有一大於2.Ομπι的尺寸。 20 9.如申請專利範圍第1-5項中任何一項的LED,其中該突出 部或凹痕具有一大於2·5μιη的尺寸。 10. 如申請專利範圍第1-9項中任何一項的LED,其中該蓋瓦 配置的間距大於1.5μηι。 11. 如申請專利範圍第1-9項中任何一項的LED,其中該蓋瓦 44 200847482 配置的間距大於2.0μπΐ。 12. 如申請專利範圍第1-9項中任何一項的LED,其中該蓋瓦 配置的間距大於2.5μηι。 13. 如申請專利範圍第1-9項中任何一項的LED,其中該蓋瓦 5 配置的間距大於3·0μηι。 14. 如前述申請專利範圍中任一項之LED,進一步包含一排 列成鄰接第二半導體材料之第二層的光反射器,使得該 第二層位於光產生層與反射器之間。 15·如申請專利範圍第14項之LED,其中光產生層和光學反 10 射器之間的一間隔距離可包括一提高朝第一層之上表 面傳播之產生光量的微腔。 16.如申請專利範圍第15項之LED,其中該突出部或凹痕以 及它們的蓋瓦配置是被配置成與微腔效應有最佳的的 配合以進一步提高自LED汲出光的效率。 15 17.如申請專利範圍第1-16項中任一項的LED,其中透過上 表面由L E D結構所顯現的光超過3 5 %是在一對表面法線 之半角為30。的圓錐内。 18. 如申請專利範圍第1-16項中任一項之LED,其中透過上 表面由LED結構所顯現的光超過37%是在一對表面法線 20 之半角為30°的圓錐内。 19. 如申請專利範圍第1-16項中任一項之LED,其中透過上 表面由LED結構所顯現的光超過38%是在一對表面法線 之半角為30°的圓錐内。 20. 如申請專利範圍第1-16項中任一項之LED,其中超過 45 200847482 40%由LED結構所產生通過上表面的光是在一對表面法 線之半角為30。的圓錐内。 21·如申明專利範圍第〗_16項中任一項之,其中透過上 5 10 15 20 表面從LED結構所顯現的光分佈集中在以一相對上表 面小於或等於6〇。的角度内。 22·如申請專利範圍1·16的任何的LED,其中透過上表由 LED、、Ό構所顯現的光分佈集中在以—相對上表面小於 或等於50。的角度内。7. The LED of any one of clauses 1-5, wherein the protrusion or indent has a size greater than 1·5 μm. 8. The LED of any of claims 1-5, wherein the protrusion or indent has a size greater than 2. Ομπι. The LED of any one of claims 1-5, wherein the protrusion or indent has a size greater than 2.5 μm. 10. The LED of any of claims 1-9, wherein the tile arrangement has a pitch greater than 1.5 μm. 11. The LED of any one of claims 1-9, wherein the tiling 44 200847482 is configured with a spacing greater than 2.0 μπΐ. 12. The LED of any of claims 1-9, wherein the tile arrangement has a pitch greater than 2.5 μm. 13. The LED of any one of claims 1-9, wherein the tiling 5 is disposed at a pitch greater than 3·0μηι. 14. The LED of any of the preceding claims, further comprising a light reflector arranged adjacent to the second layer of the second semiconductor material such that the second layer is between the light generating layer and the reflector. 15. The LED of claim 14, wherein a spacing distance between the light generating layer and the optical reflector comprises a microcavity that increases the amount of light that propagates toward the surface above the first layer. 16. The LED of claim 15 wherein the projections or indentations and their tile configurations are configured to optimally cooperate with the microcavity effect to further increase the efficiency of light extraction from the LED. The LED of any one of claims 1 to 16, wherein the light that appears through the upper surface from the L E D structure exceeds 35 % by a half angle at a half of a pair of surface normals. Inside the cone. 18. The LED of any of claims 1-16, wherein more than 37% of the light emerging from the LED structure through the upper surface is within a cone of 30° to a half of the surface normal 20 . 19. The LED of any of claims 1-16, wherein more than 38% of the light emerging from the LED structure through the upper surface is within a cone of 30° at a half of a pair of surface normals. 20. The LED of any one of claims 1 to 16, wherein more than 45 200847482 40% of the light generated by the LED structure passing through the upper surface is 30 at a half angle of a pair of surface normals. Inside the cone. 21. The invention as claimed in any one of the preceding claims, wherein the light distribution from the LED structure through the upper surface of the 5 10 15 20 is concentrated on a relative surface of less than or equal to 6 〇. Within the angle. 22. The LED of any of claims 1 to 16, wherein the light distribution manifested by the LED, the structure through the upper surface is concentrated on - the upper surface is less than or equal to 50. Within the angle. 23·如申印專利範圍第Μ6項中任一項之[ED,其中透過上 表面由LED的結構所顯現的光分佈集中在一相對上表 面小於或等於4〇。的角度内。 24.如申請專利範圍第項中任-項之LED,其中透過上 表面由LED結構所顯現的光分佈集中在一相對上表面 小於或等於30。的角度内。23. The ED of any of the above-mentioned patents, wherein the light distribution exhibited by the structure of the LED through the upper surface is concentrated on a relative upper surface of less than or equal to 4 〇. Within the angle. 24. The LED of any of clauses, wherein the light distribution manifested by the LED structure through the upper surface is concentrated on an upper surface that is less than or equal to 30. Within the angle. 25·如㈣申請專利範圍中任-項的LED,其中該第-層自 括-埋置在第_半導體材料中之_預心罙度的一層爸 亭场料’以使得在第—半導體材料上所形成的突出 X似止材制之—表面延伸,或使得第一半導 =才料中之凹痕'僅延伸至侧停止材料層的一表面。 26·如所述中請專利範圍中任—項之咖,其中該第 體材料包括iM參雜— , GaN。 雜祕且弟-斗導體材料包括p_摻雜 範圍第1項之突出部之第 該方法包括之步驟為·· 27·種可供製作具有如中請專利 一層的發光裝置(led)的方法, 46 200847482 5 10 提供一發光裝置異質結構,包括一包含有一具有一 第一型摻雜之第一半導體材料的第一層,一包含有一具 有第二型摻雜之第二半導體的第二層,以及一設置在該 第一與第二層之間的光產生層,其中該第一層具有一遠 離光產生層的上表面與一接近光產生層的下表面,且其 中在光產生層中所產生的光透過第一層的上表面由 LED結構顯現, 在第一層上形成一蝕刻光罩,該光罩包含光罩材料 島塊,该島塊位於一對應一預定蓋瓦配置的位置,其中 形成光罩的步驟包含之數個步驟為: 沈積一層光阻劑在該第一層上; 據預疋的盖瓦配置藉由曝光形成光阻劑圖形;以 及,25. (4) The LED of any of the patent applications, wherein the first layer is self-contained-embedded in the first semiconductor material, and the first semiconductor material is used in the first semiconductor material. The protrusion X formed thereon is formed by a stopper-surface extension, or such that the first semi-conductor = the indentation in the material only extends to a surface of the side stop material layer. 26. The coffee of any of the patent claims, wherein the first material comprises iM doped, GaN. The method of including the protruding portion of the p-doping range item 1 includes the steps of the method for producing a light-emitting device (led) having a layer as claimed in the patent application. 46 200847482 5 10 providing a light emitting device heterostructure comprising a first layer comprising a first type doped first semiconductor material and a second layer comprising a second type doped second semiconductor And a light generating layer disposed between the first and second layers, wherein the first layer has an upper surface away from the light generating layer and a lower surface adjacent to the light generating layer, and wherein in the light generating layer The generated light is transmitted through the LED structure through the upper surface of the first layer, and an etch mask is formed on the first layer, the reticle includes an island block of the reticle material, and the island block is located at a position corresponding to a predetermined tiling arrangement. The step of forming the photomask includes the steps of: depositing a layer of photoresist on the first layer; forming a photoresist pattern by exposure according to the pre-twisted tile arrangement; 15 矛、去未曝光的光阻劑而在對應於預定 位置留下光阻劑之島塊; 瓦配置 在第-層中沿就⑽平聽㈣向性 一半導體材料至-就較在鮮材料之^下;; 置形成弟—半導體材料的角錐型或截錐型突出部;15 spear, to the unexposed photoresist and leave the island block of photoresist in the corresponding position; the tile is placed in the first layer along the (10) flat (four) directional semiconductor material to - in the fresh material a pyramidal or truncated cone shaped protrusion of a semiconductor material; 20 际言圮罩材料之島塊以留下預定的角錐 聖大出4盍瓦配置,該突出部與一不同折射率 料相組合以構成一光子帶結構。 j 28.如申請專簡圍第則之方法,其中該形成 的步驟更進—步包括下列步驟: 47 200847482 在沈積光阻劑層的步驟前於第一層上沈積一硬光 罩材料; ' 在除去光阻劑的步驟之後除去硬光罩材料以在光 阻劑之島塊下面留下硬光罩材料; 除去光阻_剩餘島塊以留下_光罩,該触刻光 罩包括對應於預定蓋瓦配置之位置上的硬光罩材料島 塊。 29·-種製作如申請專利範圍第2項之具有凹痕之第一層的 發光裝置(LE_方法,該方法包括之步驟為:曰 提供-發光裝置異質結構,該異質結構包括一包含 具有第一型攙雜的第一半導體材料之第一層,一包含具 有第二型攙雜的第二半導體材料之第二層以及一排列 在該第-與第二層間之光產生層,其中該第—層具有一 遂離光產生層之上表面與一鄰近該光產生層的下表面 且其中在該光產生層所產生之光通過該第一層之上表 面從LED構造顯現, 在第一層上形成一蝕刻光罩,該光罩包括位置對 應於-預定盍瓦配置之缺失光罩材料,其中形成光罩的 步驟包含: 依據預疋盍瓦配置藉由曝光形成光阻劑圖形;以 及, 除去未曝光的光阻劑以在對應於預定蓋瓦配置之 位置留下缺失光阻劑島塊; 藉由沿預定晶體平面以等向性濕蝕刻該第一半導 48 200847482 體材料至-預定深度,以在第第1中 2材料之島塊下方位置形成角錐型或戴錐型凹痕;:除去剩餘的光罩材料而在第_ 倒角錐型或倒截錐型之凹痕的財蓋瓦配置,括-周圍之第-半導體材料折射率不同=且=構成一光子帶結構。 起 30·如申請專利範圍第29項之方法,其中形成一蝕史… 步驟更進-步包含以下步輝· v #刻光罩的 10 於沈積光阻劑層的步驟之前在第 # 硬光罩材料; 層上沈積一層 15 20 在除去光阻劑之步驟後除去硬光罩材料以在缺失 光阻劑島塊下方留下缺失硬光罩材料;以及 除去剩餘的姐_留下_光罩,該侧光罩於 ^應於預定蓋瓦配置的位置留下構成缺失硬光罩的島 塊。 31.tr專利範圍第27·30項中任-項的方法,其中該發 光衣f異質結構的第一層包含埋入第-半導體材料中 之預疋凍度的一層蝕刻阻擋材料。 32.2請專利範圍第31項之方法,其t該預定深度符合發 光衣置之一需要厚度。 33·ΓΙΓ專圍第31項之方法,射該狀深度符的截 、’31大出部或倒截錐型凹痕之_需 34·如申請專利範中 …固昂"jj項中任一項的方法,其中該發 49 200847482 光裝置異質結構使用一高速覆晶封裝程序被製造。20 The island block of the enamel material is left to leave a predetermined pyramid. The sacred 4 watt configuration is combined with a different refractive index material to form a photonic band structure. j 28. The method of applying the stipulations of the stipulations, wherein the step of forming further comprises the steps of: 47 200847482 depositing a hard reticle material on the first layer before the step of depositing the photoresist layer; Removing the hard mask material after the step of removing the photoresist to leave a hard mask material under the island of photoresist; removing the photoresist_remaining island block to leave a mask, the touch mask including An island block of hard reticle material at a location where the tiling is predetermined. 29. A light-emitting device (LE_ method) for producing a first layer having a dimple as claimed in claim 2, the method comprising the steps of: providing a light-emitting device heterostructure, the heterostructure comprising an inclusion a first layer of a first doped first semiconductor material, a second layer comprising a second semiconductor material having a second type of doping, and a light generating layer disposed between the first and second layers, wherein the first The layer has a top surface away from the light generating layer and a lower surface adjacent to the light generating layer and wherein light generated in the light generating layer emerges from the LED structure through the upper surface of the first layer, on the first layer Forming an etch mask, the reticle including a missing reticle material corresponding to a predetermined tiling configuration, wherein the step of forming the reticle comprises: forming a photoresist pattern by exposure according to the pre-tile configuration; and, removing An unexposed photoresist leaving a missing photoresist island at a location corresponding to a predetermined tile configuration; by first isotropically wet etching the first semiconductor 48 200847482 body material along a predetermined crystal plane to - a predetermined depth to form a pyramid or a cone-shaped indentation at a position below the island block of the first 1st material; the removal of the remaining mask material in the _ chamfer cone or the inverted cone type dent The tiling arrangement includes - the surrounding - the semiconductor material has a different refractive index = and = constitutes a photonic band structure. 30. The method of claim 29, wherein an etch history is formed... The step further comprises the following steps Step · v v reticle 10 before the step of depositing the photoresist layer on the #th hard reticle material; deposit a layer 15 20 on the layer after the step of removing the photoresist remove the hard reticle material in the absence of light A missing hard reticle material is left underneath the resist island block; and the remaining smear_left reticle is removed, and the side reticle leaves the island block constituting the missing hard reticle at a position where the predetermined tiling is disposed. The method of any one of clause 27, wherein the first layer of the luminescent material f heterostructure comprises a layer of etch stop material embedded in the pre-freezing degree of the first semiconductor material. The method of item 31, wherein the predetermined depth is in accordance with the illuminating garment One needs thickness. 33. ΓΙΓ ΓΙΓ 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The method of any of the items jj, wherein the optical device heterostructure is manufactured using a high speed flip chip packaging process. 5050
TW96144947A 2006-11-28 2007-11-27 Pyramidal photonic crystal light emitting device TWI342629B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/564,213 US7700962B2 (en) 2006-11-28 2006-11-28 Inverted-pyramidal photonic crystal light emitting device
US11/564,207 US7615398B2 (en) 2006-11-28 2006-11-28 Pyramidal photonic crystal light emitting device

Publications (2)

Publication Number Publication Date
TW200847482A true TW200847482A (en) 2008-12-01
TWI342629B TWI342629B (en) 2011-05-21

Family

ID=39126629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144947A TWI342629B (en) 2006-11-28 2007-11-27 Pyramidal photonic crystal light emitting device

Country Status (4)

Country Link
KR (1) KR101281504B1 (en)
HK (1) HK1138432A1 (en)
TW (1) TWI342629B (en)
WO (1) WO2008065373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459593B (en) * 2009-06-19 2014-11-01 Fu Der Lai Structure of light emitting diodes for increase of light emitting efficiency

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190560B2 (en) 2010-05-18 2015-11-17 Agency For Science Technology And Research Method of forming a light emitting diode structure and a light diode structure
GB2487917B (en) 2011-02-08 2015-03-18 Seren Photonics Ltd Semiconductor devices and fabrication methods
CN102299243A (en) * 2011-09-14 2011-12-28 青岛理工大学 Thin film flip chip photonic crystal light-emitting diode (LED) chip and manufacturing method thereof
EP2597687B1 (en) * 2011-11-23 2016-02-03 Imec Method for producing a GaN LED device
CN104103727A (en) * 2013-04-09 2014-10-15 江苏稳润光电有限公司 LED chip capable of improving quantum efficiency, and preparation method thereof
KR102200075B1 (en) * 2014-12-22 2021-01-11 엘지이노텍 주식회사 Uv light emitting device and lighting system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233268B2 (en) 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
US7012279B2 (en) * 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
US7385226B2 (en) * 2004-03-24 2008-06-10 Epistar Corporation Light-emitting device
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
US7509012B2 (en) * 2004-09-22 2009-03-24 Luxtaltek Corporation Light emitting diode structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459593B (en) * 2009-06-19 2014-11-01 Fu Der Lai Structure of light emitting diodes for increase of light emitting efficiency

Also Published As

Publication number Publication date
TWI342629B (en) 2011-05-21
WO2008065373A1 (en) 2008-06-05
KR101281504B1 (en) 2013-07-03
KR20090099537A (en) 2009-09-22
HK1138432A1 (en) 2010-08-20

Similar Documents

Publication Publication Date Title
US7700962B2 (en) Inverted-pyramidal photonic crystal light emitting device
US7615398B2 (en) Pyramidal photonic crystal light emitting device
US7485482B2 (en) Method for manufacturing vertical group III-nitride light emitting device
US7166871B2 (en) Light emitting systems
JP4755901B2 (en) High brightness nitride micro light emitting diode and method for manufacturing the same
JP5054366B2 (en) MANUFACTURING METHOD FOR SUBSTRATE WITH NANOSTRUCTURE, LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
EP2220696B1 (en) Led with enhanced light extraction
US7521273B2 (en) Light emitting device methods
JP6286026B2 (en) Light emitting diode components
JP2011061219A (en) Vertical structure group-iii nitride light-emitting element and method of manufacturing the same
TW200847482A (en) Pyramidal photonic crystal light emitting device
JP2012044132A (en) Light-emitting apparatus with coating substrate composed of material having high optical density
JP2007214576A (en) Nitride semiconductor light-emitting device and manufacturing method therefor
US20120068214A1 (en) Optoelectronic device and method for manufacturing the same
TW200828624A (en) Light-emitting diode and method for manufacturing the same
TW200929624A (en) White light emitting diode chip and manufacturing method thereof
Lee et al. GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission
US20160225942A1 (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
WO2012045222A1 (en) Light emitting device and manufacturing method thereof
KR20100041138A (en) Gan light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors and method of thereof
KR101598845B1 (en) manufacturing method of complex pattern with GaN light emitting doide using wet etching and GaN light emitting doide thereby
TWI502768B (en) Optoelectronic semiconductor device and method for manufacturing the same
TW202026233A (en) Patterned photoelectric substrate with improved luminous efficiency, light-emitting diode and manufacturing method thereof including forming first and second patterned structures, forming first and second metal layers, and forming a filling layer
KR101300805B1 (en) Light emitting diode and its manufacturing method
KR100987358B1 (en) Light emitting diode in which the photonic crystal structure is formed and the method for manufacturing the same