TWI502768B - Optoelectronic semiconductor device and method for manufacturing the same - Google Patents

Optoelectronic semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TWI502768B
TWI502768B TW098146249A TW98146249A TWI502768B TW I502768 B TWI502768 B TW I502768B TW 098146249 A TW098146249 A TW 098146249A TW 98146249 A TW98146249 A TW 98146249A TW I502768 B TWI502768 B TW I502768B
Authority
TW
Taiwan
Prior art keywords
semiconductor device
nitride layer
photoelectric conversion
optoelectronic semiconductor
carrier
Prior art date
Application number
TW098146249A
Other languages
Chinese (zh)
Other versions
TW201123535A (en
Inventor
Li Ming Chang
Ting Chia Ko
De Shan Kuo
Tsun Kai Ko
Schang Jing Hon
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW098146249A priority Critical patent/TWI502768B/en
Publication of TW201123535A publication Critical patent/TW201123535A/en
Application granted granted Critical
Publication of TWI502768B publication Critical patent/TWI502768B/en

Links

Landscapes

  • Led Devices (AREA)

Description

光電半導體裝置及其製造方法Photoelectric semiconductor device and method of manufacturing same

本發明係關於一種光電半導體裝置及其製造方法,特別是一種具有孔洞結構以提升正面出光效果之光電半導體裝置。The present invention relates to an optoelectronic semiconductor device and a method of fabricating the same, and more particularly to an optoelectronic semiconductor device having a hole structure to enhance the front side light-emitting effect.

隨著科技的發展,生活中電子產品的應用愈為廣泛,朝向更輕薄的趨勢發展。其中,電子產品中若有照明或顯示的功能,光源的選用將直接影響產品的尺寸以及亮度與顯示的表現。由於發光二極體(light emitting diode,LED)具有體積小、反應速度快、低耗能、可靠度高、色域選擇性高、環保無汞等優點,已廣泛地應用於照明、看板及顯示器之背光源等多種用途。With the development of science and technology, the application of electronic products in life is more extensive, and the trend toward thinner and thinner is developing. Among them, if there is illumination or display function in the electronic product, the choice of the light source will directly affect the size of the product as well as the brightness and display performance. Light-emitting diodes (LEDs) have been widely used in lighting, signage, and displays because of their small size, fast response speed, low energy consumption, high reliability, high color gamut selectivity, and environmentally friendly mercury-free. A variety of uses such as backlights.

習知的發光二極體通常包含一基板、一n型半導體層、一p型半導體層、以及位於n型半導體層與p型半導體層間之一發光層。其發光原理係為,在一適當的順向偏壓下,電子與電洞分別從n型半導體層與p型半導體層中注入發光層,並在發光層中結合後以光的形式將能量釋放出來。如此一來,只要持續地從n型半導體層及p型半導體層中分別提供電子及電洞,使得其電子與電洞之結合而發光之動作持續進行,便可使發光二極體之發光層持續發光。A conventional light-emitting diode generally includes a substrate, an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting layer between the n-type semiconductor layer and the p-type semiconductor layer. The principle of illumination is that, under a proper forward bias, electrons and holes are injected into the light-emitting layer from the n-type semiconductor layer and the p-type semiconductor layer, respectively, and combined in the light-emitting layer to release energy in the form of light. come out. In this way, as long as the electrons and the holes are continuously supplied from the n-type semiconductor layer and the p-type semiconductor layer, the combination of the electrons and the holes and the light emission are continued, so that the light-emitting layer of the light-emitting diode can be made. Continuously glowing.

多數商業化之發光二極體係由三五族半導體所構成,其中,包含氮化物的發光二極體可發出藍光或綠光,常被稱為氮化物發光二極體。氮化物發光二極體所發出之藍光搭配適當之螢光粉可調製白光。然而,發光層所生之光係等向性(isotropy)發射,其本質上不易呈現準直(collimation)或非等向性(anisotropy)之光場(light field)。因此,如何提供各式光場已成為現階段發光二極體元件的發展課題之一。Most commercial light-emitting diode systems are composed of three or five semiconductors, and the nitride-containing light-emitting diode emits blue or green light, often referred to as a nitride light-emitting diode. The blue light emitted by the nitride light-emitting diode can be modulated with white light by a suitable phosphor. However, the isotropy emission of the light system produced by the luminescent layer is not inherently difficult to present a collimation or an anisotropy light field. Therefore, how to provide various types of light fields has become one of the development topics of the current LED components.

本發明之一目的在於提供一種光電半導體裝置及其製造方法,於製程中在光電半導體裝置內形成孔洞結構,以改變光線前進方向使其趨向或朝向載具的法線方向,進而增加正向之出光量。An object of the present invention is to provide an optoelectronic semiconductor device and a method of fabricating the same, in which a hole structure is formed in the optoelectronic semiconductor device to change the direction in which the light travels toward or toward the normal direction of the carrier, thereby increasing the forward direction. The amount of light emitted.

本發明之另一目的在於提供一種光電半導體裝置及其製造方法,光電半導體裝置內之孔洞結構係形成具有光學散射效果的空氣透鏡,較佳地,例如排列成一菲涅耳透鏡(Fresnel lens),以增加正向出光量。本發明之光電半導體裝置可依據發光二極體之尺寸,製作不同形狀之孔洞結構的搭配,以促使光線盡可能地朝向載具的法線方向行進,減少光線於光電半導體裝置及載具間所產生之損失,進而提高光萃取效率(light extraction efficiency)。Another object of the present invention is to provide an optoelectronic semiconductor device and a method of fabricating the same, wherein the hole structure in the optoelectronic semiconductor device forms an air lens having an optical scattering effect, preferably, for example, arranged as a Fresnel lens. To increase the amount of positive light output. The optoelectronic semiconductor device of the present invention can make a combination of different shapes of hole structures according to the size of the light emitting diodes, so as to promote the light as far as possible toward the normal direction of the carrier, and reduce the light between the optoelectronic semiconductor device and the carrier. The resulting loss, in turn, increases light extraction efficiency.

為達上述目的,本發明揭露一種光電半導體裝置,其包含一載具、設置於載具之上之一光電轉換結構、及至少一內部表面,載具朝向光電轉換結構之面上可定義一法線方向,至少一內部表面形成於光電半導體裝置中,以定義至少一孔洞結構,且至少一孔洞結構具有一折射率,當光電轉換結構可進行光電轉換並發射光線投射至至少一孔洞結構時,光線適可因應至少一孔洞結構之折射率而反射,並以遠離載具且朝法線方向行進。To achieve the above objective, the present invention discloses an optoelectronic semiconductor device comprising a carrier, a photoelectric conversion structure disposed on the carrier, and at least one internal surface, and the carrier can be defined on a surface of the photoelectric conversion structure. In the line direction, at least one inner surface is formed in the optoelectronic semiconductor device to define at least one hole structure, and at least one hole structure has a refractive index, when the photoelectric conversion structure can perform photoelectric conversion and emit light to be projected to at least one hole structure, The light is suitably reflected by the refractive index of at least one of the holes and travels away from the carrier and toward the normal.

本發明更揭露一種製造上述光電半導體裝置之方法,包含下列步驟:(a)提供一載具,且於載具之一外表面上定義一法線方向;(b)形成一圖案化之氮化物層,其具有至少一內部表面,不沿法線方向延伸;(c)形成一光電轉換結構於載具上;及(d)形成至少一孔洞結構於光電半導體裝置內,其中,至少一孔洞結構具有一折射率,可反射光電轉換結構發射之光線。The present invention further discloses a method of fabricating the above-described optoelectronic semiconductor device, comprising the steps of: (a) providing a carrier and defining a normal direction on an outer surface of one of the carriers; (b) forming a patterned nitride a layer having at least one inner surface that does not extend in a normal direction; (c) forming a photoelectric conversion structure on the carrier; and (d) forming at least one hole structure in the optoelectronic semiconductor device, wherein at least one hole structure It has a refractive index that reflects the light emitted by the photoelectric conversion structure.

本發明更揭露另一種製造上述光電半導體裝置之方法,包含下列步驟:(a)提供一載具;(b)磊晶形成一光電轉換結構於載具上;(c)蝕刻光電轉換結構以形成至少一貫穿孔;以及(d)於至少一貫穿孔內,局部非等向性蝕刻光電半導體裝置。The present invention further discloses another method for fabricating the above-described optoelectronic semiconductor device, comprising the steps of: (a) providing a carrier; (b) epitaxially forming a photoelectric conversion structure on the carrier; and (c) etching the photoelectric conversion structure to form At least consistently perforating; and (d) partially anisotropically etching the optoelectronic semiconductor device in at least a consistent perforation.

為讓上述目的、技術特徵、和優點能更明顯易懂,下文係以較佳實施例配合所附圖式進行詳細說明。The above objects, technical features, and advantages will be more apparent from the following description.

以下將透過數個實施例來解釋本發明之光電半導體裝置,然而,關於實施例之說明僅為闡釋本發明,而非用以限制本發明。The optoelectronic semiconductor device of the present invention will be explained below through several embodiments. However, the description of the embodiments is merely illustrative of the invention and is not intended to limit the invention.

請參考第1A~1D圖,本發明之第一實施例係揭露一種光電半導體裝置,其中,第1A圖係光電半導體裝置1之上視平面圖,第1B圖係第1A圖之光電半導體裝置1沿B-B’剖面線之剖面示意圖,而第1C圖及第1D圖係第1A圖之光電半導體裝置1沿C-C’剖面線之剖面示意圖。Referring to FIGS. 1A to 1D, a first embodiment of the present invention discloses an optoelectronic semiconductor device, wherein FIG. 1A is a top plan view of the optoelectronic semiconductor device 1, and FIG. 1B is a photo-semiconductor device 1 of FIG. A cross-sectional view of the B-B' hatching, and a schematic cross-sectional view of the optoelectronic semiconductor device 1 along the C-C' section line in the 1C and 1D drawings.

本實施例之光電半導體裝置1包含一載具11及一光電轉換結構13。較佳地,載具11係一藍寶石(Sapphire)基板,其面向光電轉換結構13之側可定義一法線方向N。光電轉換結構13係一發光二極體,設置於載具11上。詳言之,光電轉換結構13包含一n型氮化物層(n-nitride layer)131、一多重量子井(multiple quantum well,MQW)133及一p型氮化物層(p-nitride layer)135,較佳地,n型氮化物層131係接近載具11配置,多重量子井133係形成於n型氮化物層131與p型氮化物層135之間,當電子與電洞分別從n型氮化物層131與p型氮化物層135注入多重量子井133,在多重量子井133中結合後以光的形式將能量釋放出來,藉此,光電轉換結構13可進行光電轉換以發射一光線。The optoelectronic semiconductor device 1 of the present embodiment includes a carrier 11 and a photoelectric conversion structure 13. Preferably, the carrier 11 is a sapphire substrate whose side facing the photoelectric conversion structure 13 defines a normal direction N. The photoelectric conversion structure 13 is a light-emitting diode and is disposed on the carrier 11. In detail, the photoelectric conversion structure 13 includes an n-nitride layer 131, a multiple quantum well (MQW) 133, and a p-nitride layer 135. Preferably, the n-type nitride layer 131 is disposed close to the carrier 11, and the multiple quantum well 133 is formed between the n-type nitride layer 131 and the p-type nitride layer 135, and the electron and the hole are respectively from the n-type. The nitride layer 131 and the p-type nitride layer 135 are implanted into the multiple quantum wells 133, and are combined in the multiple quantum wells 133 to release energy in the form of light, whereby the photoelectric conversion structure 13 can be photoelectrically converted to emit a light.

此外,光電半導體裝置1的內部更形成有孔洞結構15,其可分別由光電半導體裝置1中的內部表面所定義。較佳地,孔洞結構15係為於製程中所定義出之中空結構。孔洞結構15具有一折射率,當光線於光電半導體裝置1中行進至孔洞結構15時,由於孔洞結構15內外部材料折射率之差異(例如,氮化鎵之折射率約介於2~3之間,空氣的折射率為1),光線將會在孔洞結構15處改變方向,藉此,可控制光線以遠離載具11且朝之法線方向N行進。Further, the inside of the optoelectronic semiconductor device 1 is further formed with a hole structure 15 which can be respectively defined by an inner surface in the optoelectronic semiconductor device 1. Preferably, the hole structure 15 is a hollow structure defined in the process. The hole structure 15 has a refractive index, and when the light travels to the hole structure 15 in the optoelectronic semiconductor device 1, the refractive index of the material inside and outside the hole structure 15 is different (for example, the refractive index of gallium nitride is about 2 to 3) Between, the refractive index of the air is 1), the light will change direction at the hole structure 15, whereby the light can be controlled to move away from the carrier 11 and toward the normal direction N.

於本實施例中,孔洞結構15係沿法線方向N,以貫穿光電轉換結構13的方式,蝕刻形成於光電轉換結構13內。孔洞結構15沿法線方向N之投影,係呈現為圓形、環形、矩形、菱形、或前述選擇之任意組合。複數之孔洞結構15沿法線方向N之投影所呈現之分布型態可以為規則分布(例如,以矩型陣列分布或環形陣列分布,如第1A圖所示)、或不規則分布。於一具體實施例中,相鄰二個孔洞結構15之間隔係約3微米(μm)。應用上,孔洞結構15之間隔可依照光電轉換結構13內之光路需求設計,在此不作限制。In the present embodiment, the hole structure 15 is formed in the photoelectric conversion structure 13 by etching in the normal direction N so as to penetrate the photoelectric conversion structure 13. The projection of the hole structure 15 in the normal direction N is presented as a circle, a ring, a rectangle, a diamond, or any combination of the foregoing. The distribution pattern of the plurality of holes 15 in the normal direction N may be a regular distribution (for example, a rectangular array distribution or a circular array distribution, as shown in FIG. 1A), or an irregular distribution. In one embodiment, the spacing between adjacent two aperture structures 15 is about 3 microns (μm). In application, the spacing of the hole structures 15 can be designed according to the optical path requirements in the photoelectric conversion structure 13 and is not limited herein.

孔洞結構15可形成於光電半導體裝置1中的任何位置,如n型氮化物層131與載具11之間、或n型氮化物層131中。此外,光電半導體裝置1可更包含一緩衝層17,設置於光電轉換結構13與載具11之間。光電半導體裝置1內可更包含一反射層(圖未示),設置於多重量子井133與載具11之間,以將多重量子井133所產生的光線反射遠離載具11再利用。The hole structure 15 may be formed at any position in the optoelectronic semiconductor device 1, such as between the n-type nitride layer 131 and the carrier 11, or in the n-type nitride layer 131. In addition, the optoelectronic semiconductor device 1 may further include a buffer layer 17 disposed between the photoelectric conversion structure 13 and the carrier 11. The optoelectronic semiconductor device 1 further includes a reflective layer (not shown) disposed between the multiple quantum wells 133 and the carrier 11 to reflect the light generated by the multiple quantum wells 133 away from the carrier 11 for reuse.

請再次參閱第1A圖,光電半導體裝置更包含p型電極21、與p型電極連接之p型延伸電極211、及n型電極23,隨著面積的增加,單靠電極將無法把電流均勻地分布於表層。因此光電半導體裝置1可更設有一透明電極層19,形成於光電轉換結構13上,透明電極層19可增加側向電流,以提升發光效率。其中,p型電極21與p型延伸電極211係形成於透明電極層19上。Referring again to FIG. 1A, the optoelectronic semiconductor device further includes a p-type electrode 21, a p-type extension electrode 211 connected to the p-type electrode, and an n-type electrode 23. As the area increases, the electrode alone cannot uniformly conduct the current. Distributed on the surface. Therefore, the optoelectronic semiconductor device 1 can further be provided with a transparent electrode layer 19 formed on the photoelectric conversion structure 13, and the transparent electrode layer 19 can increase the lateral current to improve the luminous efficiency. The p-type electrode 21 and the p-type extension electrode 211 are formed on the transparent electrode layer 19.

本發明之第二實施例如第2A圖所示,其係為第二實施例之光電半導體裝置1之剖面示意圖。於本實施例中,孔洞結構15係於光電半導體裝置1之磊晶製程中形成於n型氮化物層131中,而無需施以蝕刻加工。第2A圖所示之孔洞結構15,垂直法線方向N之剖面係呈現為三角形,或者,亦可設計孔洞結構15之剖面為半圓形、矩形、梯形或其它形狀,或者各種形狀的組合;此外,本實施例之孔洞結構15沿法線方向N之投影,亦可為各種形狀,如第2B~2D圖所示,可為圓形、矩形、或菱形等等,可依照實際上將光線反射至趨向或朝向法線方向N的需要加以設計與選擇。A second embodiment of the present invention is shown in Fig. 2A, which is a schematic cross-sectional view of the optoelectronic semiconductor device 1 of the second embodiment. In the present embodiment, the hole structure 15 is formed in the n-type nitride layer 131 in the epitaxial process of the optoelectronic semiconductor device 1 without performing an etching process. In the hole structure 15 shown in FIG. 2A, the vertical normal direction N is a triangular shape, or the hole structure 15 may be designed to have a semicircular shape, a rectangular shape, a trapezoidal shape or the like, or a combination of various shapes; In addition, the projection of the hole structure 15 of the embodiment in the normal direction N may also be various shapes, as shown in FIG. 2B to FIG. 2D, and may be circular, rectangular, or diamond-shaped, etc., and may actually be light. The need to reflect to or toward the normal direction N is designed and selected.

本實施例之孔洞結構15沿法線方向N之投影亦呈現一分布型態,例如第1A圖所示之矩型陣列分布或第2E圖所示之環形陣列分布。第2E圖所示之孔洞結構15沿法線方向N之同心圓分布,使孔洞結構15排列成一菲涅耳透鏡(Fresnel lens)。The projection of the hole structure 15 of the present embodiment along the normal direction N also exhibits a distribution pattern, such as the rectangular array distribution shown in FIG. 1A or the annular array distribution shown in FIG. 2E. The hole structures 15 shown in Fig. 2E are distributed concentrically in the normal direction N, and the hole structures 15 are arranged in a Fresnel lens.

請再次參閱第1C圖,本發明之第三實施例係揭露一種用以製造前述第一實施例之光電半導體裝置之方法。首先,磊晶形成光電轉換結構13於載具11上,包含依序形成n型氮化物層131、多重量子井133及p型氮化物層135;然後,對光電轉換結構13進行乾蝕刻,以打穿光電轉換結構13而形成貫穿孔151。Referring again to FIG. 1C, a third embodiment of the present invention discloses a method for fabricating the optoelectronic semiconductor device of the first embodiment described above. First, epitaxial formation of the photoelectric conversion structure 13 on the carrier 11 includes sequentially forming an n-type nitride layer 131, a multiple quantum well 133, and a p-type nitride layer 135; then, the photoelectric conversion structure 13 is dry etched to The through-hole 151 is formed by punching through the photoelectric conversion structure 13.

接著,蝕刻液(例如草酸(Oxalic acid))引入貫穿孔151內,以局部且非等向性地蝕刻光電半導體裝置13,以形成孔洞結構15。一種較佳實施方式係為,於載具11與n型氮化物層131之間形成緩衝層17,而貫穿孔151係貫穿光電轉換結構13及緩衝層17。故於貫穿孔151內施加草酸時,恰可對緩衝層17進行側向之濕蝕刻,利用高蝕刻選擇比的蝕刻方式,將n型氮化物層131之底層及緩衝層17掏空,以形成孔洞結構15。如第1D圖所示,若採用非等向性蝕刻,則孔洞結構15可形成為斜面,易言之,利用蝕刻液對不同材料、結晶結構、或結晶品質的蝕刻速率,可定義出孔洞結構15的頂端角度及其相對應之尺寸。Next, an etching liquid such as Oxalic acid is introduced into the through hole 151 to partially and non-isotropically etch the optoelectronic semiconductor device 13 to form the hole structure 15. In a preferred embodiment, the buffer layer 17 is formed between the carrier 11 and the n-type nitride layer 131, and the through hole 151 extends through the photoelectric conversion structure 13 and the buffer layer 17. Therefore, when oxalic acid is applied in the through hole 151, the buffer layer 17 may be subjected to lateral wet etching, and the underlayer of the n-type nitride layer 131 and the buffer layer 17 may be hollowed out by an etching method with a high etching selectivity ratio to form Hole structure 15. As shown in FIG. 1D, if anisotropic etching is used, the hole structure 15 can be formed as a bevel. In other words, the hole structure can be defined by the etching rate of the etching solution for different materials, crystal structures, or crystal qualities. The top angle of 15 and its corresponding size.

本發明之第四實施例如第3A~3H圖所示,其係製造上述第二實施例之光電半導體裝置1之方法。首先,如第3A圖所示,提供載具11,並於載具11上形成氮化物層(例如n型氮化物層131),載具11較佳係藍寶石(Sapphire)基板,載具11之一外表面適以定義一法線方向N。然後,如第3B~3F圖所示,針對n型氮化物層131進行圖案化。詳言之,如第3B圖所示,先於n型氮化物層131上形成一光阻層132,進一步參閱第3C圖,以黃光製程定義光阻層132以形成一圖案。接下來,如第3D圖所示,形成一抗蝕刻層134,例如二氧化矽(SiO2 )層,然後如第3E圖所示,去除部分光阻層132及其上之抗蝕刻層134,僅保留部分抗蝕刻層134。如第3F圖,續針對n型氮化物層131未受到抗蝕刻層134覆蓋的部分,進行非等向性蝕刻,例如進行一感應耦合電漿(inductive coupling plasma,ICP)蝕刻。The fourth embodiment of the present invention is shown in Figs. 3A to 3H, which is a method of manufacturing the photovoltaic device 1 of the second embodiment. First, as shown in FIG. 3A, a carrier 11 is provided, and a nitride layer (for example, an n-type nitride layer 131) is formed on the carrier 11. The carrier 11 is preferably a sapphire substrate, and the carrier 11 An outer surface is adapted to define a normal direction N. Then, as shown in FIGS. 3B to 3F, the n-type nitride layer 131 is patterned. In detail, as shown in FIG. 3B, a photoresist layer 132 is formed on the n-type nitride layer 131. Referring further to FIG. 3C, the photoresist layer 132 is defined by a yellow light process to form a pattern. Next, as shown in FIG. 3D, an anti-etching layer 134, such as a cerium oxide (SiO 2 ) layer, is formed, and then, as shown in FIG. 3E, a portion of the photoresist layer 132 and the anti-etching layer 134 thereon are removed. Only a portion of the anti-etching layer 134 is retained. As shown in FIG. 3F, for the portion of the n-type nitride layer 131 not covered by the anti-etching layer 134, an anisotropic etching is performed, for example, an inductive coupling plasma (ICP) etching.

然後,施加草酸、氫氧化鉀、或磷酸硫酸溶液等蝕刻液,對n型氮化物層131進行局部且非等向性的濕蝕刻。藉由上述步驟,可形成圖案化之n型氮化物層131,其具有至少一內部表面,其係偏離法線方向N延伸。接下來,即可選擇將抗蝕刻層134移除。Then, an etching solution such as oxalic acid, potassium hydroxide or a phosphoric acid sulfuric acid solution is applied to partially and non-isotropically wet the n-type nitride layer 131. By the above steps, a patterned n-type nitride layer 131 having at least one inner surface extending away from the normal direction N can be formed. Next, the anti-etching layer 134 can be selectively removed.

接著,可繼續其他製程以形成光電轉換結構13於載具11上,並保留孔洞結構15於光電半導體裝置1內。其中,孔洞結構15具有一折射率,適可作為空氣透鏡,以反射/折射光電轉換結構13所發射之光線。Next, other processes may be continued to form the photoelectric conversion structure 13 on the carrier 11, and the hole structure 15 is left in the optoelectronic semiconductor device 1. The hole structure 15 has a refractive index suitable as an air lens to reflect/refract light emitted by the photoelectric conversion structure 13.

本發明之第五實施例如第4A~4G圖所示,其係製造上述第二實施例之光電半導體裝置1之另一種方法,首先,如第4A圖所示,先提供載具11(如藍寶石基板),然後於載具11上形成二氧化矽(SiO2 )層130;接著,如第4B圖所示,形成一圖案化之光阻層132於二氧化矽層130上,較佳地,如第4B圖所示之步驟係針對圖案化之光阻層132進行熱回熔(thermal reflow)製程,以形成圓頂狀或近似圓頂狀之結構;如第4C圖所示,對於圖案化之光阻層132及二氧化矽層130進行非等向性蝕刻,使得去除光阻層13的同時,圓頂狀結構可以移轉至二氧化矽層130。藉此,形成圖案化之二氧化矽層130。The fifth embodiment of the present invention is shown in Figs. 4A to 4G, which is another method of manufacturing the above-described second embodiment of the optoelectronic semiconductor device 1. First, as shown in Fig. 4A, the carrier 11 (such as sapphire) is first provided. Substrate), then a cerium oxide (SiO 2 ) layer 130 is formed on the carrier 11; then, as shown in FIG. 4B, a patterned photoresist layer 132 is formed on the cerium oxide layer 130, preferably, The step shown in FIG. 4B is a thermal reflow process for the patterned photoresist layer 132 to form a dome-shaped or approximately dome-shaped structure; as shown in FIG. 4C, for patterning The photoresist layer 132 and the ceria layer 130 are anisotropically etched such that the dome-shaped structure can be transferred to the ceria layer 130 while the photoresist layer 13 is removed. Thereby, the patterned ceria layer 130 is formed.

如第4D圖所示,形成一氮化物層(如包含一氮化鎵層)以覆蓋圖案化之二氧化矽層130;接著如第4E及4F圖所示,進行一感應耦合電漿(inductive coupling plasma,ICP)蝕刻,以蝕刻n型氮化物層131至圖案化之二氧化矽層130得以局部暴露,然後對圖案化之二氧化矽層130進行緩衝氧化物蝕刻(buffered oxide etch,BOE),以掏空並去除圖案化之二氧化矽層130而形成孔洞結構15。惟對二氧化矽層130的蝕刻,並不限定由頂端開始,亦可由側邊進行。As shown in FIG. 4D, a nitride layer (eg, including a gallium nitride layer) is formed to cover the patterned ceria layer 130; then, as shown in FIGS. 4E and 4F, an inductively coupled plasma is performed (inductive). Coupling plasma, ICP) etching to etch the n-type nitride layer 131 to the patterned ceria layer 130 for local exposure, and then buffering oxide etch (BOE) of the patterned ceria layer 130 The hole structure 15 is formed by hollowing out and removing the patterned ceria layer 130. However, the etching of the ceria layer 130 is not limited to the beginning but also by the side.

最後,如第4G圖所示,繼續磊晶以形成光電轉換結構13,並保留孔洞結構15於光電半導體裝置1內。Finally, as shown in FIG. 4G, epitaxy is continued to form the photoelectric conversion structure 13, and the hole structure 15 is left in the optoelectronic semiconductor device 1.

在前述第三~五實施例中,皆可先形成緩衝層17或反射層(圖未示)於載具11上。且在磊晶形成光電轉換結構13之後,最後在形成透明電極層19於光電轉換結構13上,以及形成p型電極21及與p型電極21連接之p型延伸電極211於透明電極層19上,並於適當位置形成n型電極23。In the foregoing third to fifth embodiments, the buffer layer 17 or the reflective layer (not shown) may be formed on the carrier 11 first. After the epitaxial formation of the photoelectric conversion structure 13, finally, the transparent electrode layer 19 is formed on the photoelectric conversion structure 13, and the p-type electrode 21 and the p-type extension electrode 211 connected to the p-type electrode 21 are formed on the transparent electrode layer 19. And forming an n-type electrode 23 at an appropriate position.

綜上所述,本發明所提供之光電半導體裝置及其製造方法,可在光電半導體裝置中形成孔洞結構,作為反射光線的空氣透鏡,藉此,光電半導體結構所發射的光線,得以導向載具的法線方向,進而提升光電半導體裝置之正向出光效率。In summary, the optoelectronic semiconductor device and the method for fabricating the same according to the present invention can form a hole structure in the optoelectronic semiconductor device as an air lens for reflecting light, whereby the light emitted by the optoelectronic semiconductor structure can be guided to the carrier. The normal direction of the device further enhances the forward light extraction efficiency of the optoelectronic semiconductor device.

上述之實施例僅用以例舉本發明之實施態樣、及闡釋本發明之技術特徵,並非用來限制本發明之範疇。任何熟悉此技術者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,本發明之權利範圍應以申請專利範圍為準。The embodiments described above are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of the present invention. Any changes or equivalents that can be easily made by those skilled in the art are within the scope of the invention, and the scope of the invention should be determined by the scope of the claims.

1...光電半導體裝置1. . . Photoelectric semiconductor device

11...載具11. . . vehicle

13...光電轉換結構13. . . Photoelectric conversion structure

130...二氧化矽層130. . . Ceria layer

131...n型氮化物層131. . . N-type nitride layer

132...光阻層132. . . Photoresist layer

133...多重量子井133. . . Multiple quantum well

134...抗蝕刻層134. . . Anti-etching layer

135...p型氮化物層135. . . P-type nitride layer

15...孔洞結構15. . . Hole structure

151...貫穿孔151. . . Through hole

17...緩衝層17. . . The buffer layer

19...透明電極層19. . . Transparent electrode layer

21p...型電極21p. . . Type electrode

211p...型延伸電極211p. . . Extended electrode

23n...型電極23n. . . Type electrode

N...法線方向N. . . Normal direction

第1A圖係本發明第一實施例之光電半導體裝置之上視圖;1A is a top view of the optoelectronic semiconductor device of the first embodiment of the present invention;

第1B圖係本發明第一實施例之光電半導體裝置沿第1A圖之沿B-B’剖面線之剖面示意圖;1B is a schematic cross-sectional view of the optoelectronic semiconductor device according to the first embodiment of the present invention taken along line B-B' of FIG. 1A;

第1C圖及第1D圖係本發明第一實施例之光電半導體裝置沿第1A圖之沿C-C’剖面線之剖面示意圖;1C and 1D are schematic cross-sectional views of the optoelectronic semiconductor device according to the first embodiment of the present invention taken along line C-C' of FIG. 1A;

第2A圖係本發明第二實施例之光電半導體裝置之剖面示意圖;2A is a schematic cross-sectional view showing a photoelectric semiconductor device according to a second embodiment of the present invention;

第2B~2E圖係本發明第二實施例之光電半導體裝置內之孔洞結構之示意圖;2B to 2E are schematic views showing a hole structure in the photoelectric semiconductor device according to the second embodiment of the present invention;

第3A~3H圖係本發明第四實施例中,光電半導體裝置之製程示意圖;及3A-3H are schematic diagrams of processes of an optoelectronic semiconductor device in a fourth embodiment of the present invention; and

第4A~4G圖係本發明第五實施例中,光電半導體裝置之製程示意圖。4A to 4G are schematic views showing the process of the photoelectric semiconductor device in the fifth embodiment of the present invention.

1...光電半導體裝置1. . . Photoelectric semiconductor device

11...載具11. . . vehicle

13...光電轉換結構13. . . Photoelectric conversion structure

131...n型氮化物層131. . . N-type nitride layer

133...多重量子井133. . . Multiple quantum well

135...p型氮化物層135. . . P-type nitride layer

15...孔洞結構15. . . Hole structure

151...貫穿孔151. . . Through hole

17...緩衝層17. . . The buffer layer

19...透明電極層19. . . Transparent electrode layer

N...法線方向N. . . Normal direction

Claims (9)

一種光電半導體裝置,包含:一載具,包含一上表面,定義一法線方向;一光電轉換結構,設置於該載具之上,該光電轉換結構係可進行光電轉換以發射一光線;以及至少一內部表面,包含該光電轉換結構的一下表面以及該載具之一上表面,形成於該光電半導體裝置中,以定義至少一孔洞結構,該至少一孔洞結構係為至少一中空結構,且沿該法線方向,貫穿該光電轉換結構;其中,該至少一孔洞結構係具有一折射率,使該光線行進至該至少一孔洞結構時改變方向,並遠離該載具朝該法線方向行進。 An optoelectronic semiconductor device comprising: a carrier comprising an upper surface defining a normal direction; and a photoelectric conversion structure disposed on the carrier, the photoelectric conversion structure being photoelectrically convertible to emit a light; At least one inner surface, including a lower surface of the photoelectric conversion structure and an upper surface of the carrier, formed in the optoelectronic semiconductor device to define at least one hole structure, the at least one hole structure being at least one hollow structure, and Along the normal direction, the photoelectric conversion structure is penetrated; wherein the at least one hole structure has a refractive index that changes direction when the light travels to the at least one hole structure, and moves away from the carrier toward the normal direction . 如請求項1所述之光電半導體裝置,其中該至少一孔洞結構沿該法線方向之投影,係呈現為圓形、環形、矩形及菱形之其中之一,及/或其中該至少一孔洞結構垂直該法線方向之剖面,係呈現為三角形、半圓形、矩形、及梯形之其中之一。 The optoelectronic semiconductor device of claim 1, wherein the projection of the at least one hole structure along the normal direction is one of a circular shape, a circular shape, a rectangular shape, and a diamond shape, and/or the at least one hole structure The section perpendicular to the normal direction is one of a triangle, a semicircle, a rectangle, and a trapezoid. 如請求項1所述之光電半導體裝置係包含複數孔洞結構,該等孔洞結構沿該法線方向之投影呈現一分布型態,及/或其中該分布型態係為矩型陣列分布及環形陣列分布之其中之一。 The optoelectronic semiconductor device of claim 1 includes a plurality of pore structures, the projections of the pore structures along the normal direction exhibiting a distribution pattern, and/or wherein the distribution patterns are rectangular array distributions and annular arrays. One of the distributions. 如請求項1所述之光電半導體裝置,其中該光電轉換結構包含一n型氮化物層、一p型氮化物層、及位於該n型氮化物層與該p型氮化物層間之一多重量子井。 The optoelectronic semiconductor device of claim 1, wherein the photoelectric conversion structure comprises an n-type nitride layer, a p-type nitride layer, and a plurality of between the n-type nitride layer and the p-type nitride layer Quantum well. 如請求項4所述之光電半導體裝置,其中該光電轉換結構之該n型氮化物層係接近該載具。 The optoelectronic semiconductor device of claim 4, wherein the n-type nitride layer of the photoelectric conversion structure is adjacent to the carrier. 一種製造一光電半導體裝置之方法,包含下列步驟:提供一載具,包含一上表面,定義一法線方向;形成一圖案化之氮化物層,其具有至少一內部表面,偏離該法線方向延伸;形成一光電轉換結構於該載具上,其中該內部表面包含該光電轉換結構的一下表面以及該載具之一上表面;及形成至少一孔洞結構於該光電半導體裝置內,其中,該至少一孔洞結構係為至少一中空結構,該至少一孔洞結構具有一折射率,可反射該光電轉換結構發射之一光線。 A method of fabricating an optoelectronic semiconductor device comprising the steps of: providing a carrier comprising an upper surface defining a normal direction; forming a patterned nitride layer having at least one interior surface offset from the normal direction Extending; forming a photoelectric conversion structure on the carrier, wherein the inner surface includes a lower surface of the photoelectric conversion structure and an upper surface of the carrier; and forming at least one hole structure in the optoelectronic semiconductor device, wherein The at least one hole structure is at least one hollow structure, and the at least one hole structure has an index of refraction that reflects a light emitted by the photoelectric conversion structure. 如請求項6所述之方法,其中該形成一圖案化之氮化物層之步驟,包含:形成一氮化物層;圖案化該氮化物層;及局部地非等向性蝕刻該氮化物層,其中該非等向性蝕刻該氮化物層之步驟,係進行一感應耦合電漿(inductive coupling plasma,ICP)蝕刻或係施加草酸、氫氧化鉀、或磷酸硫酸溶液,對該氮化物層進行濕蝕刻。 The method of claim 6, wherein the step of forming a patterned nitride layer comprises: forming a nitride layer; patterning the nitride layer; and partially anisotropically etching the nitride layer, The step of anisotropically etching the nitride layer is performed by performing an inductive coupling plasma (ICP) etching or applying an oxalic acid, potassium hydroxide or phosphoric acid sulfuric acid solution to wet-etch the nitride layer. . 如請求項6所述之方法,其中該形成一圖案化之氮化物層之步驟,包含:形成一圖案化之二氧化矽(SiO2 )層;形成一氮化物層以覆蓋該圖案化之二氧化矽層;及去除該圖案化之二氧化矽層。The method of claim 6, wherein the step of forming a patterned nitride layer comprises: forming a patterned cerium oxide (SiO 2 ) layer; forming a nitride layer to cover the patterned second a ruthenium oxide layer; and removing the patterned ruthenium dioxide layer. 一種製造一光電半導體裝置之方法,包含下列步驟:提供一載具; 磊晶形成一光電轉換結構於該載具上;蝕刻該光電轉換結構以形成至少一貫穿孔;及於該至少一貫穿孔內,局部非等向性蝕刻該光電半導體裝置,以形成至少一孔洞結構於該光電轉換結構及該載具之間,其中該局部非等向性蝕刻之步驟,係於該至少一貫穿孔內施加草酸以對該緩衝層進行濕蝕刻。A method of fabricating an optoelectronic semiconductor device comprising the steps of: providing a carrier; Epitaxially forming a photoelectric conversion structure on the carrier; etching the photoelectric conversion structure to form at least a uniform via; and locally anisotropically etching the optoelectronic semiconductor device in the at least one of the through holes to form at least one hole structure Between the photoelectric conversion structure and the carrier, wherein the step of partial anisotropic etching is performed by applying oxalic acid to the at least one of the perforations to wet etch the buffer layer.
TW098146249A 2009-12-31 2009-12-31 Optoelectronic semiconductor device and method for manufacturing the same TWI502768B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098146249A TWI502768B (en) 2009-12-31 2009-12-31 Optoelectronic semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098146249A TWI502768B (en) 2009-12-31 2009-12-31 Optoelectronic semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201123535A TW201123535A (en) 2011-07-01
TWI502768B true TWI502768B (en) 2015-10-01

Family

ID=45046715

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098146249A TWI502768B (en) 2009-12-31 2009-12-31 Optoelectronic semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI502768B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541577B (en) * 2001-07-16 2003-07-11 Motorola Inc Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
US20040041164A1 (en) * 1999-12-03 2004-03-04 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
CN1280961C (en) * 2000-06-19 2006-10-18 日亚化学工业株式会社 Nitride semiconductor substrate and method for manufacturing same, and nitride semiconductor device using said substrate
EP1469569B1 (en) * 2003-03-08 2007-01-24 Samsung Electronics Co., Ltd. Semiconductor laser diode assembly
US7563625B2 (en) * 2005-01-11 2009-07-21 SemiLEDs Optoelectronics Co., Ltd. Method of making light-emitting diodes (LEDs) with improved light extraction by roughening

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041164A1 (en) * 1999-12-03 2004-03-04 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
CN1280961C (en) * 2000-06-19 2006-10-18 日亚化学工业株式会社 Nitride semiconductor substrate and method for manufacturing same, and nitride semiconductor device using said substrate
TW541577B (en) * 2001-07-16 2003-07-11 Motorola Inc Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
EP1469569B1 (en) * 2003-03-08 2007-01-24 Samsung Electronics Co., Ltd. Semiconductor laser diode assembly
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
US7563625B2 (en) * 2005-01-11 2009-07-21 SemiLEDs Optoelectronics Co., Ltd. Method of making light-emitting diodes (LEDs) with improved light extraction by roughening

Also Published As

Publication number Publication date
TW201123535A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
US10050181B2 (en) Light emitting diode and fabrication method thereof
KR100568297B1 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US9257603B2 (en) Light emitting diode
TWI450419B (en) Light emitting diode
KR101004310B1 (en) Light emitting diode and method for manufacturing the same
JP6286026B2 (en) Light emitting diode components
JP5181371B2 (en) Semiconductor light emitting device
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
KR101383357B1 (en) Light emitting device package and method of making the same
JP2007168066A (en) Manufacturing method of substrate with nanostructure formed thereon, light emitting element, and its manufacturing method
CN100524865C (en) Method for preparing GaN-based LED with photon crystal structure
TWI501421B (en) Optoelectronic device and method for manufacturing the same
KR20050092947A (en) Anti-reflected high efficiency light emitting diode device
TW201424037A (en) Method for making light emitting diode and a light emitting diode
TW201822380A (en) Light emitting diode chip
TW200847482A (en) Pyramidal photonic crystal light emitting device
US20210296530A1 (en) Vehicular display element comprising high density mini-pixel led array
JP2012074701A (en) Pattern substrate and light emitting diode using the same
TWI543386B (en) Circular photonic crystal structure, light emitting diode device and photoelectric conversion device
TWI502768B (en) Optoelectronic semiconductor device and method for manufacturing the same
CN216250771U (en) Composite pattern substrate and LED epitaxial structure comprising same
TWI484663B (en) Semiconductor light-emitting device and manufacturing method thereof
US20090159916A1 (en) Light source with reflective pattern structure
CN102130220B (en) Photoelectric semiconductor device and manufacturing method thereof
TWI398968B (en) Light emitting diode structure and method of manufacturing the same