WO2016148048A1 - シールリング - Google Patents

シールリング Download PDF

Info

Publication number
WO2016148048A1
WO2016148048A1 PCT/JP2016/057718 JP2016057718W WO2016148048A1 WO 2016148048 A1 WO2016148048 A1 WO 2016148048A1 JP 2016057718 W JP2016057718 W JP 2016057718W WO 2016148048 A1 WO2016148048 A1 WO 2016148048A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
seal ring
dynamic pressure
pressure generating
present
Prior art date
Application number
PCT/JP2016/057718
Other languages
English (en)
French (fr)
Inventor
真以子 宮崎
陽平 酒井
吉村 健一
将太 當間
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to US15/557,955 priority Critical patent/US10408349B2/en
Priority to EP16764878.1A priority patent/EP3273117B1/en
Priority to CN201680014654.7A priority patent/CN107407418B/zh
Priority to KR1020177025728A priority patent/KR101972253B1/ko
Priority to JP2017506515A priority patent/JP6245406B2/ja
Publication of WO2016148048A1 publication Critical patent/WO2016148048A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the present invention relates to a seal ring that seals an annular gap between a shaft and a shaft hole of a housing.
  • Patent Document 2 A technique is also known in which a groove communicating from the inner peripheral surface side to the outer peripheral surface side is provided on the sliding surface side of the seal ring so that foreign matters are excluded from the sliding surface of the seal ring.
  • Patent Document 2 A technique is also known in which a groove communicating from the inner peripheral surface side to the outer peripheral surface side is provided on the sliding surface side of the seal ring so that foreign matters are excluded from the sliding surface of the seal ring.
  • An object of the present invention is to provide a seal ring that can stably reduce rotational torque while suppressing leakage of a fluid to be sealed.
  • the present invention employs the following means in order to solve the above problems.
  • the seal ring of the present invention is Fluid pressure in a region to be sealed, which is mounted in an annular groove provided on the outer periphery of the shaft, and is configured to seal the annular gap between the shaft and the housing that rotate relatively to change the fluid pressure.
  • a groove having a second groove leading into the groove is provided;
  • the first groove includes a dynamic pressure generating groove configured such that the groove bottom is shallower at the end in the circumferential direction than the center in the circumferential direction, and the groove bottom is more than the groove bottom of the dynamic pressure generating groove. Deeper, with a foreign material catching groove that can catch foreign matter, A 1st groove
  • channel is provided in the position settled in the sliding area
  • the fluid to be sealed since the fluid to be sealed is guided into the groove portion, the fluid pressure acting on the seal ring from the high pressure side and the pressure ring acting on the seal ring from the low pressure side in the range where the groove portion is provided. Fluid pressure is offset. Thereby, the pressure receiving area of the fluid pressure with respect to the seal ring can be reduced. Further, when the seal ring slides with respect to the low-pressure side wall surface in the annular groove, dynamic pressure is generated by the fluid to be sealed flowing out from the dynamic pressure generating groove to the sliding portion. Thereby, the force of the direction away from a side wall surface with respect to a seal ring generate
  • the groove bottom of the dynamic pressure generating groove is configured so that the end in the circumferential direction is shallower than the center in the circumferential direction, so that the above dynamic pressure is effectively generated by the wedge effect. Can be made.
  • the rotational torque can be effectively reduced by combining the reduction of the pressure receiving area and the generation of force in the direction away from the side wall surface with respect to the seal ring due to the dynamic pressure. Become.
  • the dynamic pressure generating function by the dynamic pressure generating groove is also prevented from being damaged by the foreign matter. Furthermore, since the 1st groove
  • the dynamic pressure generating grooves may be provided on both sides of the center in the circumferential direction in the first groove.
  • the foreign matter capturing groove is provided over the entire circumferential region in the first groove.
  • the groove bottom of the foreign matter capturing groove may be configured to gradually become shallower toward the second groove.
  • the foreign matter that has entered from the second groove can be efficiently guided to the foreign matter capturing groove, and the foreign matter can be prevented from entering the dynamic pressure generating groove.
  • the dynamic pressure generating groove is provided so that the radial width increases toward the end in the circumferential direction.
  • the groove bottom of the second groove is preferably deeper than the groove bottom of the dynamic pressure generating groove and set to a depth capable of capturing foreign matter.
  • the seal ring of the present invention is Fluid pressure in a region to be sealed, which is mounted in an annular groove provided on the outer periphery of the shaft, and is configured to seal the annular gap between the shaft and the housing that rotate relatively to change the fluid pressure.
  • a seal ring for holding In the seal ring that slides against the side wall surface on the low pressure side in the annular groove On the sliding surface side that slides against the side wall surface, A first groove extending in the circumferential direction, provided at a position within a sliding region that slides relative to the side wall surface; A second groove that extends from the inner peripheral surface to a position that enters the central position in the circumferential direction of the first groove, guides the fluid to be sealed into the first groove, and discharges foreign matter to the inner peripheral surface side; Is provided,
  • the first groove has a pair of grooves configured so that the groove bottom is shallower at the circumferential end than at the circumferential center on both sides in the circumferential direction across the portion where the second groove has entered.
  • the seal ring since the fluid to be sealed is guided into the first groove and the second groove provided on the sliding surface side of the seal ring, in the range where these are provided, the seal ring is changed from the high pressure side.
  • the fluid pressure acting on the seal ring cancels out the fluid pressure acting on the seal ring from the low pressure side. Thereby, the pressure receiving area of the fluid pressure with respect to the seal ring can be reduced.
  • the seal ring slides with respect to the low-pressure side wall surface in the annular groove, dynamic pressure is generated by the fluid to be sealed flowing out from the dynamic pressure generating groove to the sliding portion. Thereby, the force of the direction away from a side wall surface with respect to a seal ring generate
  • the groove bottom of the dynamic pressure generating groove is configured so that the end in the circumferential direction is shallower than the center in the circumferential direction, so that the above dynamic pressure is effectively generated by the wedge effect.
  • the rotational torque can be effectively reduced by combining the reduction of the pressure receiving area and the generation of force in the direction away from the side wall surface with respect to the seal ring due to the dynamic pressure.
  • the dynamic pressure generating grooves are provided on both sides in the circumferential direction across the portion where the second groove enters, the dynamic pressure generating function can be exhibited regardless of the rotation direction of the seal ring with respect to the shaft. Can do.
  • channel is provided in the position settled in the sliding area
  • a second groove deeper than the groove bottom of the dynamic pressure generating groove is provided, and foreign matter that has entered the sliding portion can be discharged to the inner peripheral surface side by the second groove. Accordingly, it is possible to prevent the dynamic pressure generating function by the dynamic pressure generating groove from being damaged by the foreign matter.
  • a barrier between the pair of dynamic pressure generating grooves and outside the second groove in a radial direction that prevents the flow of the fluid to be sealed from one dynamic pressure generating groove to the other dynamic pressure generating groove A part may be provided.
  • the groove bottom of the second groove is preferably constituted by a stepped step surface in which the groove depth increases from the radially outer side toward the inner side.
  • the groove bottom of the second groove is provided with an inclined surface whose groove depth increases from the outside in the radial direction toward the inside.
  • FIG. 1 is a side view of a seal ring according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of a side view of the seal ring according to Embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged view of a side view of the seal ring according to Embodiment 1 of the present invention.
  • FIG. 4 is a partially enlarged view of the seal ring according to Embodiment 1 of the present invention as viewed from the outer peripheral surface side.
  • FIG. 5 is a partially enlarged view of the seal ring according to Embodiment 1 of the present invention as viewed from the inner peripheral surface side.
  • FIG. 1 is a side view of a seal ring according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of a side view of the seal ring according to Embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged view of a side view of the seal ring
  • FIG. 6 is a schematic cross-sectional view showing a state in use of the seal ring according to Embodiment 1 of the present invention.
  • FIG. 7 is a partially enlarged view of a side view of the seal ring according to the first embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the seal ring according to the first embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a seal ring according to Embodiment 1 of the present invention.
  • FIG. 10 is a partially enlarged view of a side view of the seal ring according to the second embodiment of the present invention.
  • FIG. 11 is a partially enlarged view of a side view of a seal ring according to Embodiment 3 of the present invention.
  • FIG. 12 is a partially enlarged view of a side view of a seal ring according to Embodiment 4 of the present invention.
  • FIG. 13 is a partially enlarged view of a side view of a seal ring according to Embodiment 5 of the present invention.
  • FIG. 14 is a partially enlarged view of a side view of a seal ring according to Embodiment 6 of the present invention.
  • FIG. 15 is a partially enlarged view of a side view of a seal ring according to Embodiment 7 of the present invention.
  • FIG. 16 is a schematic cross-sectional view of a seal ring according to Embodiment 7 of the present invention.
  • FIG. 17 is a partially enlarged view of a side view of the seal ring according to the eighth embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a seal ring according to Example 8 of the present invention.
  • FIG. 19 is a partially enlarged view of a side view of a seal ring according to Embodiment 9 of the present invention.
  • FIG. 20 is a partially enlarged view of a side view of a seal ring according to Embodiment 10 of the present invention.
  • FIG. 21 is a side view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 22 is a partially enlarged view of a side view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 23 is a partially enlarged view of a side view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a seal ring according to Example 8 of the present invention.
  • FIG. 19 is a partially enlarged view of a side view of a seal ring according to Embodiment 9
  • FIG. 24 is a partially enlarged view of the seal ring according to the second embodiment of the present invention as viewed from the outer peripheral surface side.
  • FIG. 25 is a partially enlarged view of the seal ring according to the second embodiment of the present invention as viewed from the inner peripheral surface side.
  • FIG. 26 is a partially enlarged view of a side view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 27 is a schematic cross-sectional view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 28 is a schematic cross-sectional view showing a state when the seal ring according to the second embodiment of the present invention is used.
  • FIG. 29 is a schematic cross-sectional view showing a state in use of the seal ring according to the second embodiment of the present invention.
  • FIG. 30 is a partially enlarged view of a side view of a seal ring according to Embodiment 11 of the present invention.
  • FIG. 31 is a schematic sectional view of a seal ring according to Example 11 of the present invention.
  • FIG. 32 is a schematic cross-sectional view of a seal ring according to Example 11 of the present invention.
  • FIG. 33 is a schematic sectional view of a seal ring according to Example 11 of the present invention.
  • FIG. 34 is a partially enlarged view of a side view of a seal ring according to Embodiment 12 of the present invention.
  • FIG. 35 is a schematic sectional view of a seal ring according to Embodiment 12 of the present invention.
  • FIG. 36 is a schematic sectional view of a seal ring according to Embodiment 12 of the present invention.
  • FIG. 37 is a schematic sectional view of a seal ring according to Embodiment 12 of the present invention.
  • FIG. 38 is a partially enlarged view of a side view of a seal ring according to Embodiment 13 of the present invention.
  • FIG. 39 is a partially enlarged view of a side view of a seal ring according to Embodiment 14 of the present invention.
  • FIG. 40 is a schematic sectional view of a seal ring according to Example 14 of the present invention.
  • FIG. 41 is a schematic sectional view of a seal ring according to Embodiment 14 of the present invention.
  • FIG. 42 is a schematic sectional view of a seal ring according to Embodiment 14 of the present invention.
  • FIG. 43 is a partially enlarged view of a side view of a seal ring according to Embodiment 15 of the present invention.
  • FIG. 44 is a schematic sectional view of a seal ring according to Embodiment 15 of the present invention.
  • FIG. 45 is a schematic sectional view of a seal ring according to Example 15 of the present invention.
  • FIG. 46 is a schematic sectional view of a seal ring according to a modification of the fifteenth embodiment of the present invention.
  • FIG. 1 is a side view of a seal ring according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of a side view of the seal ring according to the first embodiment of the present invention, and is an enlarged view of a circled portion in FIG.
  • FIG. 3 is a partially enlarged view of a side view of the seal ring according to the first embodiment of the present invention, and is an enlarged view of a circled portion in FIG. 1 as viewed from the opposite side.
  • FIG. 4 is a partially enlarged view of the seal ring according to the first embodiment of the present invention as viewed from the outer peripheral surface side, and is an enlarged view of a circled portion in FIG. 1 as viewed from the outer peripheral surface side.
  • FIG. 5 is a partially enlarged view of the seal ring according to the first embodiment of the present invention as viewed from the inner peripheral surface side, and is an enlarged view of the circled portion in FIG. 1 as viewed from the inner peripheral surface side.
  • FIG. 6 is a schematic cross-sectional view showing a state in use of the seal ring according to Embodiment 1 of the present invention.
  • the seal ring 100 is mounted in an annular groove 210 provided on the outer periphery of the shaft 200, and rotates relative to the shaft 200 and the housing 300 (the inner periphery of the shaft hole through which the shaft 200 in the housing 300 is inserted.
  • the annular gap between the first and second surfaces is sealed.
  • the seal ring 100 maintains the fluid pressure in the region to be sealed configured so that the fluid pressure (hydraulic pressure in the present embodiment) changes.
  • the fluid pressure in the region on the right side of the seal ring 100 in FIG. 6 is configured to change.
  • the seal ring 100 plays a role of holding the fluid pressure in the region to be sealed on the right side in the drawing via the seal ring 100.
  • the fluid pressure in the sealing target region is low and no load is applied.
  • the fluid pressure in the sealing target region increases.
  • the left side shows an unloaded state
  • the right side shows a state in which a differential pressure is generated (a state in which the fluid pressure in the region to be sealed is increased).
  • the seal ring 100 is made of a resin material such as polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE). Further, the peripheral length of the outer peripheral surface of the seal ring 100 is configured to be shorter than the peripheral length of the inner peripheral surface of the shaft hole of the housing 300 and is configured not to have a tightening allowance. Therefore, in a state where the fluid pressure is not acting, the outer peripheral surface of the seal ring 100 can be in a state separated from the inner peripheral surface of the housing 300 (see the left side in FIG. 6).
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • the seal ring 100 is provided with an abutment portion 110 at one place in the circumferential direction.
  • a groove 120 is provided on the sliding surface side of the seal ring 100.
  • the seal ring 100 according to the present embodiment has a configuration in which the above-described joint portion 110 and a plurality of groove portions 120 are formed on an annular member having a rectangular cross section.
  • this is merely a description of the shape, and does not necessarily mean that the annular member having a rectangular cross section is used as a material to perform the process of forming the joint portion 110 and the plurality of groove portions 120.
  • the plurality of groove portions 120 may be obtained by cutting, and the manufacturing method is not particularly limited.
  • the configuration of the joint portion 110 according to the present embodiment will be described with reference to FIGS. 2 to 5 in particular.
  • the joint part 110 according to the present embodiment employs a special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side wall surfaces.
  • the first fitting convex portion 111 and the first fitting concave portion 114 are provided on the outer peripheral surface side on one side via the cutting portion, and the outer peripheral surface side on the other side is provided.
  • a second fitting concave portion 113 into which the first fitting convex portion 111 is fitted and a second fitting convex portion 112 to be fitted into the first fitting concave portion 114 are provided.
  • the end surface 115 on the inner peripheral surface side on one side and the end surface 116 on the inner peripheral side on the other side face each other through the cutting portion.
  • the “cutting portion” includes not only the case of being cut by cutting, but also the case of being obtained by molding.
  • the case of the special step cut is shown as an example of the abutment portion 110, but the abutment portion 110 is not limited to this, and a straight cut, a bias cut, a step cut, or the like may be employed.
  • a low-elasticity material such as PTFE
  • the end portion may be provided without providing the joint portion 110.
  • a plurality of groove portions 120 are provided at equal intervals over the entire circumference excluding the vicinity of the joint portion 110 in the side surface on the sliding surface side of the seal ring 100 (see FIG. 1).
  • the plurality of grooves 120 are provided to generate dynamic pressure when the seal ring 100 slides with respect to the low-pressure side (L) side wall surface 211 of the annular groove 210 provided in the shaft 200.
  • the groove 120 has a first groove extending in the circumferential direction and a second groove extending from the circumferential center position of the first groove to the inner circumferential surface and guiding the fluid to be sealed into the first groove. is doing.
  • the first groove includes a dynamic pressure generating groove configured such that the groove bottom is shallower at the end in the circumferential direction than the center in the circumferential direction, and the groove bottom is a groove of the dynamic pressure generating groove. Deeper than the bottom, it has a foreign matter catching groove capable of catching foreign matter. Further, the first groove is provided at a position that fits within the sliding region X where the seal ring 100 slides relative to the low-pressure side (L) side wall surface 211.
  • the annular gap between the relatively rotating shaft 200 and the housing 300 is sealed, and the fluid pressure in the region to be sealed (the region on the high pressure side (H)) configured to change the fluid pressure. Can be held.
  • the shaft 200 and the housing 300 are relatively rotated, the shaft 200 slides between the side wall surface 211 on the low pressure side (L) of the annular groove 210 and the seal ring 100.
  • dynamic pressure is generated when the fluid to be sealed flows out from the dynamic pressure generating groove in the groove 120 provided on the side surface on the sliding surface side of the seal ring 100 to the sliding portion.
  • the fluid to be sealed flows from the end portion on the counterclockwise direction side of the dynamic pressure generating groove to the sliding portion. To do. Further, when the seal ring 100 rotates counterclockwise in FIG. 1 with respect to the annular groove 210, the fluid to be sealed flows out from the end portion on the clockwise direction side of the dynamic pressure generating groove to the sliding portion. To do.
  • the seal ring 100 slides with respect to the low pressure side (L) side wall surface 211 in the annular groove 210, dynamic pressure is generated by the fluid to be sealed flowing out from the dynamic pressure generating groove to the sliding portion. To do. Thereby, a force in a direction away from the side wall surface 211 is generated with respect to the seal ring 100.
  • the groove bottom of the dynamic pressure generating groove is configured so that the end in the circumferential direction is shallower than the center in the circumferential direction, so that the above dynamic pressure is effectively generated by the wedge effect. Can be made.
  • the dynamic pressure generating function by the dynamic pressure generating groove is also prevented from being damaged by the foreign matter. That is, it is possible to suppress foreign matter from being caught between the dynamic pressure generating groove and the side wall surface 211. Thereby, it can suppress that a dynamic pressure effect will be reduced, and can suppress that wear is accelerated
  • FIG. 7 is a partially enlarged view of a side view of the seal ring according to the first embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • FIG. 8 is a schematic cross-sectional view of the seal ring according to the first embodiment of the present invention, which is a cross-sectional view along AA in FIG.
  • FIG. 9 is a schematic cross-sectional view of the seal ring according to the first embodiment of the present invention, and is a BB cross-sectional view in FIG.
  • the groove portion 120 is provided on the sliding surface side of the seal ring 100.
  • the groove part 120 according to the present embodiment extends from the circumferential center of the first groove 121 to the inner peripheral surface of the first groove 121 extending in the circumferential direction, and guides the fluid to be sealed into the first groove 121.
  • the second groove 122 is configured.
  • the first groove 121 is configured so that the radial width is constant. As described in the above embodiment, the first groove 121 is provided at a position that fits within the sliding region X where the seal ring 100 slides with respect to the low-pressure side (L) side wall surface 211 of the annular groove 210. ing.
  • the first groove 121 includes a dynamic pressure generating groove 121a configured such that the groove bottom is shallower at the end in the circumferential direction than the center in the circumferential direction, and the groove bottom has a dynamic pressure generating groove 121a.
  • the foreign material capturing groove 121b is deeper than the groove bottom and capable of capturing the foreign material.
  • the dynamic pressure generating groove 121a is provided on each side of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width gradually increases from the center in the circumferential direction toward the end in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured such that the planar shape thereof is a trapezoid.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign matter capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and in a portion on the inner peripheral surface side and outer peripheral surface side of the pair of dynamic pressure generating grooves 121a. Yes.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and set to a depth capable of catching foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • the dynamic pressure generating grooves 121a are provided on both sides of the center in the circumferential direction in the first groove 121, respectively, so that it relates to the rotational direction of the seal ring 100 relative to the shaft 200.
  • the dynamic pressure generating function by the dynamic pressure generating groove 121a can be exhibited.
  • the dynamic pressure generating groove 121a is provided so that the radial width increases toward the end in the circumferential direction, the diameter of the fluid to be sealed that flows out from the dynamic pressure generating groove 121a to the sliding portion. The width of the direction can be widened.
  • the groove bottom of the second groove 121b is set deeper than the groove bottom of the dynamic pressure generating groove 121a so as to capture foreign matter. Therefore, the second groove 122 also exhibits a function of capturing foreign matter, and can further suppress the foreign matter from entering the dynamic pressure generating groove 121a.
  • FIG. 10 shows a second embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 10 is a partially enlarged side view of the seal ring according to the second embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width is constant. Accordingly, the pair of dynamic pressure generating grooves 121a is configured so that the planar shape thereof is substantially square.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign matter capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and a portion on the inner peripheral surface side of the pair of dynamic pressure generating grooves 121a.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and can capture foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • the dynamic pressure generating groove 121a is provided on each side of the first groove 121 with respect to the center in the circumferential direction, so that it relates to the rotational direction of the seal ring 100 relative to the shaft 200.
  • the dynamic pressure generating function by the dynamic pressure generating groove 121a can be exhibited.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a, and is set to a depth capable of capturing foreign matter. Therefore, the second groove 122 also exhibits a function of capturing foreign matter, and can further suppress the foreign matter from entering the dynamic pressure generating groove 121a.
  • FIG. 11 shows a third embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 11 is a partially enlarged view of a side view of the seal ring according to the third embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width is constant. Accordingly, the pair of dynamic pressure generating grooves 121a is configured so that the planar shape thereof is substantially square.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign matter capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and a portion on the outer peripheral surface side of the pair of dynamic pressure generating grooves 121a.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and can capture foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • FIG. 12 shows a fourth embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 12 is a partially enlarged view of a side view of the seal ring according to the fourth embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width is constant. Accordingly, the pair of dynamic pressure generating grooves 121a is configured so that the planar shape thereof is substantially square.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign material capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and in a portion on the inner peripheral surface side and outer peripheral surface side of the pair of dynamic pressure generating grooves 121a. Yes.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and can capture foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • FIG. 13 shows a fifth embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 13 is a partially enlarged side view of the seal ring according to the fifth embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width gradually increases from the center in the circumferential direction toward the end in the circumferential direction.
  • the dynamic pressure generating groove 121 a is provided along the outer peripheral surface side in the first groove 121.
  • the pair of dynamic pressure generating grooves 121a is configured such that the planar shape thereof is a triangle.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign matter capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and a portion on the inner peripheral surface side of the pair of dynamic pressure generating grooves 121a.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and can capture foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • FIG. 14 shows a sixth embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 14 is a partial enlarged view of a side view of a seal ring according to Embodiment 6 of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width gradually increases from the center in the circumferential direction toward the end in the circumferential direction.
  • the dynamic pressure generating groove 121a is provided in the first groove 121 along the inner peripheral surface side.
  • the pair of dynamic pressure generating grooves 121a is configured such that the planar shape thereof is a triangle.
  • the foreign matter capturing groove 121b is provided in the first groove 121 over the entire region in the circumferential direction. More specifically, the foreign matter capturing groove 121b is provided in a central portion in the circumferential direction in the first groove 121 and a portion on the outer peripheral surface side of the pair of dynamic pressure generating grooves 121a.
  • the groove bottom of the second groove 122 is set deeper than the groove bottom of the dynamic pressure generating groove 121a and can capture foreign matter. More specifically, the depth of the groove bottom of the second groove 122 and the depth of the groove bottom of the foreign matter capturing groove 121b are set to be the same.
  • FIG. 15 and 16 show a seventh embodiment of the present invention.
  • This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 15 is a partially enlarged side view of the seal ring according to the seventh embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • FIG. 16 is a schematic cross-sectional view of a seal ring according to Embodiment 7 of the present invention, which is a CC cross-sectional view in FIG.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width is constant. Accordingly, the pair of dynamic pressure generating grooves 121a is configured so that the planar shape thereof is substantially square.
  • the foreign matter capturing groove 121b is provided only in the circumferential center of the first groove 121. More specifically, the foreign matter capturing groove 121 b is provided only on the extension line of the second groove 122 in the first groove 121.
  • the dynamic pressure generating groove 121a is provided on each side of the first groove 121 with respect to the center in the circumferential direction, so that it relates to the rotational direction of the seal ring 100 relative to the shaft 200.
  • the dynamic pressure generating function by the dynamic pressure generating groove 121a can be exhibited.
  • FIG. 17 is a partially enlarged view of a side view of the seal ring according to the eighth embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • 18 is a schematic sectional view of a seal ring according to an eighth embodiment of the present invention, which is a DD sectional view in FIG.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured so that the radial width is constant. Accordingly, the pair of dynamic pressure generating grooves 121a is configured so that the planar shape thereof is substantially square.
  • the foreign matter capturing groove 121b is provided only in the circumferential center of the first groove 121. More specifically, the foreign matter capturing groove 121 b is provided only on the extension line of the second groove 122 in the first groove 121. In the case of the present embodiment, unlike the case of the seventh embodiment, the groove bottom of the foreign matter capturing groove 121b is configured to gradually become shallower toward the second groove 122.
  • the dynamic pressure generating groove 121a is provided on each side of the first groove 121 with respect to the center in the circumferential direction, so that it relates to the rotational direction of the seal ring 100 relative to the shaft 200.
  • the dynamic pressure generating function by the dynamic pressure generating groove 121a can be exhibited.
  • the groove bottom of the foreign matter capturing groove 121b is configured to become gradually shallower toward the second groove 122, the foreign matter that has entered from the second groove 122 is efficiently removed. Thus, it can be guided to the foreign matter capturing groove 121b. Thereby, it can suppress further that a foreign material penetrate
  • FIG. 19 shows a ninth embodiment of the present invention. This embodiment is a modification of the first embodiment, and the area where the dynamic pressure generating groove 121a and the foreign matter capturing groove 121b are arranged is different from the first embodiment.
  • FIG. 19 is a partially enlarged side view of the seal ring according to the ninth embodiment of the present invention, and is an enlarged view of the vicinity where the groove 120 is provided.
  • the dynamic pressure generating grooves 121a are provided on both sides of the first groove 121 with respect to the center in the circumferential direction.
  • the pair of dynamic pressure generating grooves 121a is configured to gradually become shallower from the circumferential center to the circumferential end.
  • the groove bottoms of the pair of dynamic pressure generating grooves 121a are constituted by flat inclined surfaces.
  • the pair of dynamic pressure generating grooves 121a is configured such that the radial width gradually increases from the circumferential center side toward the circumferential end.
  • the pair of dynamic pressure generating grooves 121a is configured such that the planar shape thereof is a trapezoid.
  • the foreign matter capturing groove 121b is provided only in the circumferential center of the first groove 121. More specifically, the foreign matter capturing groove 121 b is provided only on the extension line of the second groove 122 in the first groove 121.
  • the dynamic pressure generating groove 121a is provided on each side of the first groove 121 with respect to the center in the circumferential direction, so that it relates to the rotational direction of the seal ring 100 relative to the shaft 200.
  • the dynamic pressure generating function by the dynamic pressure generating groove 121a can be exhibited.
  • the dynamic pressure generating groove 121a is provided so that the radial width increases toward the end in the circumferential direction, the diameter of the fluid to be sealed that flows out from the dynamic pressure generating groove 121a to the sliding portion. The width of the direction can be widened.
  • FIG. 20 shows a tenth embodiment of the present invention.
  • the present embodiment is a modification of the ninth embodiment, and only the planar shape of the foreign matter capturing groove 121b is different. That is, in the ninth embodiment, the planar shape of the foreign matter capturing groove 121b is rectangular, whereas in the present embodiment, the planar shape of the foreign matter capturing groove 121b is an outer peripheral surface with respect to the rectangular shape. The side is arcuate. Also in the present embodiment, it is possible to obtain the same operational effects as in the case of the ninth embodiment.
  • the regions where the dynamic pressure generating grooves 121a and the foreign matter capturing grooves 121b are arranged are not limited to those shown in the first to tenth embodiments, and various arrangements can be adopted. Further, in each of the above Examples 1 to 10, the case where the groove bottom of the dynamic pressure generating groove 121a is constituted by a flat inclined surface has been described. However, the curved surface swells toward the inner peripheral surface side or the outer peripheral surface side. You may comprise by a planar inclined surface. Further, the groove 120 may be provided only on one side of the seal ring 100 or may be provided on both sides. In short, the surface on which the groove 120 is provided may be a sliding surface.
  • FIG. 21 is a side view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 22 is a partially enlarged view of a side view of the seal ring according to the second embodiment of the present invention, and is an enlarged view of a circled portion in FIG.
  • FIG. 23 is a partially enlarged view of a side view of a seal ring according to Embodiment 2 of the present invention, and is an enlarged view of a circled portion in FIG. 21 as viewed from the opposite side.
  • FIG. 24 is a partially enlarged view of the seal ring according to the second embodiment of the present invention as viewed from the outer peripheral surface side, and is an enlarged view of a circled portion in FIG. 21 as viewed from the outer peripheral surface side.
  • FIG. 25 is a partially enlarged view of the seal ring according to Embodiment 2 of the present invention as viewed from the inner peripheral surface side, and is an enlarged view of the circled portion in FIG. 21 as viewed from the inner peripheral surface side.
  • FIG. 26 is a partially enlarged view of a side view of the seal ring according to the second embodiment of the present invention, and is an enlarged view showing the vicinity where the first groove and the second groove are provided.
  • FIG. 27 is a schematic cross-sectional view of a seal ring according to Embodiment 2 of the present invention, and is a cross-sectional view along AA in FIG. 28 and 29 are schematic cross-sectional views showing a state in use of the seal ring according to Embodiment 2 of the present invention.
  • FIG. 28 shows a no-load state
  • FIG. 29 shows a state where a differential pressure is generated.
  • the seal ring in FIGS. 28 and 29 corresponds to the BB cross-sectional view in FIG.
  • the seal ring 100X according to the present embodiment is mounted in an annular groove 210 provided on the outer periphery of the shaft 200, and rotates relative to the shaft 200 and the housing 300 (the inner periphery of the shaft hole through which the shaft 200 in the housing 300 is inserted.
  • the annular gap between the first and second surfaces is sealed.
  • the seal ring 100X maintains the fluid pressure in the region to be sealed configured so that the fluid pressure (hydraulic pressure in the present embodiment) changes.
  • the fluid pressure in the region on the right side of the seal ring 100X in FIGS. 28 and 29 is configured to change.
  • the seal ring 100X plays a role of maintaining the fluid pressure in the region to be sealed on the right side in the drawing via the seal ring 100X.
  • the fluid pressure in the sealing target region is low and no load is applied.
  • the fluid pressure in the sealing target region increases.
  • FIG. 29 shows a state in which the fluid pressure on the right side in the drawing is higher than the fluid pressure on the left side.
  • the right side in FIG. 29 is referred to as a high pressure side (H)
  • the left side is referred to as a low pressure side (L).
  • the seal ring 100X is made of a resin material such as polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE).
  • PEEK polyether ether ketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • the circumferential length of the outer circumferential surface of the seal ring 100X is shorter than the circumferential length of the inner circumferential surface of the shaft hole of the housing 300, and is configured so as not to have a tightening margin. Therefore, in the state where the fluid pressure is not acting, the outer peripheral surface of the seal ring 100X can be separated from the inner peripheral surface of the shaft hole of the housing 300 (see FIG. 28).
  • the seal ring 100X is provided with an abutment portion 110X at one place in the circumferential direction.
  • a first groove 121X and a second groove 122X are provided on the sliding surface side of the seal ring 100X.
  • the seal ring 100X according to the present embodiment has a configuration in which the above-described joint portion 110X, the plurality of first grooves 121X, and the plurality of second grooves 122X are formed on an annular member having a rectangular cross section.
  • this is merely an explanation of the shape, and it is always necessary to perform processing for forming the joint portion 110X, the plurality of first grooves 121X, and the plurality of second grooves 122X using an annular member having a rectangular cross section as a material.
  • the configuration of the joint portion 110X according to the present embodiment will be described with reference to FIGS.
  • the joint portion 110X according to the present embodiment employs a special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side wall surfaces.
  • the first fitting convex portion 111X and the first fitting concave portion 114X are provided on the outer peripheral surface side on one side via the cutting portion, and the outer peripheral surface side on the other side is provided.
  • a second fitting recess 113X into which the first fitting projection 111X is fitted and a second fitting projection 112X to be fitted into the first fitting recess 114X are provided.
  • the end surface 115X on the inner peripheral surface side on one side and the end surface 116X on the inner peripheral side on the other side are opposed to each other through the cutting portion. Since the special step cut is a known technique, a detailed description thereof will be omitted, but it has a characteristic of maintaining a stable sealing performance even if the circumference of the seal ring 100X changes due to thermal expansion and contraction.
  • the “cutting portion” includes not only the case of being cut by cutting, but also the case of being obtained by molding.
  • a plurality of first grooves 121X and second grooves 122X are provided at equal intervals over the entire circumference except for the vicinity of the joint portion 110X in the side surface on the sliding surface side of the seal ring 100 (see FIG. 21).
  • the plurality of first grooves 121 ⁇ / b> X are provided to generate dynamic pressure when the seal ring 100 ⁇ / b> X slides with respect to the low-pressure side (L) side wall surface 211 in the annular groove 210 provided in the shaft 200. .
  • the first groove 121X is configured to extend in the circumferential direction.
  • the second groove 122X is provided so as to extend from the inner peripheral surface of the seal ring 100X to a position entering the center position in the circumferential direction of the first groove 121X.
  • the second groove 122X guides the fluid to be sealed into the first groove 121X and plays a role of discharging foreign matter to the inner peripheral surface side of the seal ring 100X.
  • the first groove 121X is configured such that the groove bottom is shallower at the end in the circumferential direction than the center in the circumferential direction on both sides in the circumferential direction across the portion where the second groove 122X has entered.
  • a pair of dynamic pressure generating grooves 121Xa is provided (see FIGS. 26 and 27).
  • the groove bottom of the dynamic pressure generating groove 121Xa is constituted by a flat inclined surface.
  • the dynamic pressure generating groove 121Xa is not limited to the example shown in the drawings, and various known pressures may be used as long as the dynamic pressure generating groove 121Xa has a function of generating a dynamic pressure when the sealing target fluid is discharged from the groove to the sliding portion. Technology can be adopted.
  • the first groove 121X is provided at a position where the seal ring 100X fits in the sliding area S where the seal ring 100X slides with respect to the low-pressure side (L) side wall surface 211 (see FIG. 29). Therefore, leakage of the sealing target fluid from the first groove 121X to the low pressure side (L) is suppressed.
  • the groove bottom of the second groove 122X is deeper than the groove bottom of the dynamic pressure generating groove 121Xa. Accordingly, the second groove 122 exhibits a function of guiding the fluid to be sealed into the first groove 121 and discharging foreign matter that has entered the sliding portion to the inner peripheral surface side of the seal ring 100X.
  • FIG. 29 shows a state where the engine is started and a differential pressure is generated via the seal ring 100X (a state in which the pressure on the right side in the drawing is higher than the pressure on the left side).
  • the seal ring 100X is in close contact with the side wall surface 211 on the low pressure side (L) of the annular groove 210 and the inner peripheral surface of the shaft hole of the housing 300.
  • the annular gap between the relatively rotating shaft 200 and the housing 300 is sealed, and the fluid pressure in the region to be sealed (the region on the high pressure side (H)) configured to change the fluid pressure. Can be held.
  • the shaft 200 and the housing 300 rotate relatively, they slide between the low pressure side (L) side wall surface 211 of the annular groove 210 and the seal ring 100X.
  • dynamic pressure is generated when the fluid to be sealed flows out from the dynamic pressure generating groove 121a provided on the sliding surface side of the seal ring 100X to the sliding portion.
  • the seal ring 100X rotates in the clockwise direction in FIG.
  • the fluid to be sealed flows from the counterclockwise end of the dynamic pressure generating groove 121Xa to the sliding portion. leak.
  • the seal ring 100X rotates in the counterclockwise direction in FIG. 21 with respect to the annular groove 210, the fluid to be sealed flows from the end of the dynamic pressure generating groove 121a on the sliding side to the sliding portion. leak.
  • the dynamic pressure is generated by the fluid to be sealed flowing out from the dynamic pressure generating groove 121Xa to the sliding portion.
  • the groove bottom of the dynamic pressure generating groove 121Xa is configured so that the end portion in the circumferential direction is shallower than the center in the circumferential direction. Can be generated.
  • the dynamic pressure generating grooves are provided on both sides in the circumferential direction across the portion into which the second groove 122X has entered, the dynamic pressure generating function is provided regardless of the rotational direction of the seal ring 100X with respect to the shaft 200. It can be demonstrated.
  • the first groove 121X is provided at a position within the sliding region S that slides with respect to the side wall surface 211, the leakage amount of the fluid to be sealed from the first groove 121X can be suppressed.
  • a second groove 122X having a deeper bottom than the groove bottom of the dynamic pressure generating groove 121Xa is provided, and foreign matter that has entered the sliding portion can be discharged to the inner peripheral surface side by the second groove 122X. . Accordingly, it is possible to prevent the dynamic pressure generating function of the dynamic pressure generating groove 121Xa from being damaged by the foreign matter. That is, it is possible to prevent foreign matter from being caught between the dynamic pressure generating groove 121Xa and the side wall surface 211. Thereby, it can suppress that a dynamic pressure effect will be reduced, and can suppress that wear is accelerated
  • FIG. 30 is a partial enlarged view of a side view of the seal ring according to the eleventh embodiment of the present invention, and is an enlarged view of the vicinity where the first groove 121X and the second groove 122X are provided.
  • FIG. 31 is a schematic sectional view of a seal ring according to an eleventh embodiment of the present invention, which is a CC sectional view in FIG. 32 is a schematic cross-sectional view of a seal ring according to Example 11 of the present invention, which is a DD cross-sectional view in FIG.
  • FIG. 33 is a schematic cross-sectional view of a seal ring according to Example 11 of the present invention, and is an EE cross-sectional view in FIG.
  • the first groove 121X extending in the circumferential direction, and the center position in the circumferential direction of the first groove 121X from the inner peripheral surface of the seal ring 100X.
  • a second groove 122X extending to the position of entering.
  • the pair of dynamic pressure generating grooves 121Xa in the first groove 121X is configured to have a constant radial width. Then, between the pair of dynamic pressure generating grooves 121Xa and outside the second groove 122X in the radial direction, a sealing target from one dynamic pressure generating groove 121Xa to the other dynamic pressure generating groove 121Xa.
  • a barrier portion 123X that prevents the flow of fluid is provided. The surface of the barrier portion 123X is flush with the side surface of the seal ring 100X (excluding the portion where the first groove 121X and the second groove 122X are provided).
  • the effects described in the second embodiment can be obtained by the first groove 121X and the second groove 122X according to the present example configured as described above.
  • the fluid flowing from one dynamic pressure generating groove 121Xa to the other dynamic pressure generating groove 121Xa is directed radially inward in the second groove 122X by the barrier portion 123X. It becomes easy to flow. That is, when the seal ring 100X rotates counterclockwise in FIG. 30 with respect to the annular groove 210, the fluid flowing from the dynamic pressure generating groove 121Xa on the left side to the right dynamic pressure generating groove 121Xa in the figure.
  • the second groove 122X is obstructed by the barrier portion 123X, so that the second groove 122X can easily flow inward in the radial direction.
  • the barrier portion 123X prevents the second groove 122X from flowing inward in the radial direction. Thereby, the foreign matter that has entered the sliding surface is positively discharged to the inner peripheral surface side of the seal ring 100.
  • FIG. 34 is a partially enlarged side view of the seal ring according to the twelfth embodiment of the present invention, and is an enlarged view of the vicinity where the first groove 121X and the second groove 122X are provided.
  • FIG. 35 is a schematic cross-sectional view of a seal ring according to Embodiment 12 of the present invention, which is a cross-sectional view taken along CC in FIG. 36 is a schematic cross-sectional view of a seal ring according to Embodiment 12 of the present invention, and is a DD cross-sectional view in FIG.
  • FIG. 37 is a schematic cross-sectional view of a seal ring according to Embodiment 12 of the present invention, and is a cross-sectional view taken along the line EE in FIG.
  • the first groove 121X extending in the circumferential direction, and the circumference in the first groove 121X from the inner peripheral surface of the seal ring 100X.
  • a second groove 122 ⁇ / b> X extending to a position entering the central position in the direction is provided.
  • the pair of dynamic pressure generating grooves 121Xa in the first groove 121X is configured to have a constant radial width.
  • a barrier portion 123Xa that prevents the flow of fluid is provided.
  • the barrier portion 123Xa in the present embodiment is configured to be lower in height than the barrier portion 123X in the eleventh embodiment. That is, the surface of the barrier portion 123Xa in the present embodiment is positioned slightly inside the side surface (excluding the portion where the first groove 121X and the second groove 122X are provided) in the seal ring 100X.
  • FIG. 38 is a partially enlarged side view of the seal ring according to the thirteenth embodiment of the present invention, and is an enlarged view of the vicinity where the first groove 121X and the second groove 122X are provided.
  • the first groove 121X extending in the circumferential direction, and the circumference in the first groove 121X from the inner peripheral surface of the seal ring 100X.
  • a second groove 122 ⁇ / b> X extending to a position entering the central position in the direction is provided.
  • the pair of dynamic pressure generating grooves 121Xa in the first groove 121X is configured to have a constant radial width.
  • a barrier portion 123Xb that prevents the flow of fluid is provided.
  • the inner peripheral surface side of the barrier portion 123Xb is configured by a curved surface.
  • the same function and effect as in the case of the eleventh embodiment can be obtained.
  • the inner peripheral surface side of the barrier portion 123Xb is configured by a curved surface, the flow of fluid from the dynamic pressure generating groove 121Xa to the second groove 122X can be made smooth.
  • FIG. 39 is a partial enlarged view of a side view of the seal ring according to the fourteenth embodiment of the present invention, and is an enlarged view of the vicinity where the first groove 121X and the second groove 122X are provided.
  • 40 is a schematic cross-sectional view of a seal ring according to Embodiment 14 of the present invention, which is a CC cross-sectional view in FIG. 41 is a schematic cross-sectional view of a seal ring according to Embodiment 14 of the present invention, which is a DD cross-sectional view in FIG. 42 is a schematic cross-sectional view of a seal ring according to Embodiment 14 of the present invention, and is an EE cross-sectional view in FIG.
  • the first groove 121X extending in the circumferential direction, and the center position in the circumferential direction of the first groove 121X from the inner peripheral surface of the seal ring 100X.
  • a second groove 122X extending to the position of entering.
  • the pair of dynamic pressure generating grooves 121Xa in the first groove 121X is configured to have a constant radial width.
  • channel 122X which concerns on a present Example is comprised by the step-like level
  • the groove bottom of the second groove 122X is constituted by a two-step step surface composed of a radially inner groove bottom surface 122Xa and a radially outer groove bottom surface 122Xb.
  • the groove bottom surface 122a on the radially inner side is configured to have a deeper groove bottom than the groove bottom surface 122Xb on the radially outer side.
  • the case where the groove bottom of the second groove 122X is configured by two step surfaces has been described, but it may be configured by three or more step surfaces.
  • the groove bottom of the second groove 122X is formed by a stepped step surface having a groove depth that increases from the radially outer side to the inner side.
  • the entered foreign matter can be positively discharged to the inner peripheral surface side of the seal ring 100X.
  • FIG. 43 is a partial enlarged view of a side view of the seal ring according to the fifteenth embodiment of the present invention, and is an enlarged view of the vicinity where the first groove 121X and the second groove 122X are provided.
  • 44 is a schematic cross-sectional view of a seal ring according to Embodiment 15 of the present invention, which is a CC cross-sectional view in FIG. 45 is a schematic cross-sectional view of a seal ring according to Embodiment 15 of the present invention, and is an EE cross-sectional view in FIG.
  • FIG. 46 is a schematic sectional view of a seal ring according to a modification of the fifteenth embodiment of the present invention.
  • the first groove 121X extending in the circumferential direction, and the center position in the circumferential direction of the first groove 121X from the inner peripheral surface of the seal ring 100X.
  • a second groove 122X extending to the position of entering.
  • the pair of dynamic pressure generating grooves 121Xa in the first groove 121X is configured to have a constant radial width.
  • channel 122X which concerns on a present Example is comprised by the inclined surface 122Xc from which a groove depth becomes deep toward inner side from the outer side of radial direction.
  • the effects described in the second embodiment can be obtained by the first groove 121X and the second groove 122X according to the present example configured as described above.
  • the groove bottom of the second groove 122X is configured by the inclined surface 122Xc having a groove depth that increases from the outer side to the inner side in the radial direction, and thus enters the second groove 122X. Foreign matter can be positively discharged to the inner peripheral surface side of the seal ring 100X.
  • the case where the entire groove bottom of the second groove 122X is configured as an inclined surface has been shown, but for example, as in the modification shown in FIG. 46, among the groove bottom surfaces of the second groove 122X,
  • the radially outer side may be constituted by a plane, and the radially inner side may be constituted by an inclined surface 122Xd in which the groove depth increases from the radially outer side toward the inner side. Even in this case, the same effect can be obtained.
  • the groove bottom of the dynamic pressure generating groove 121Xa is constituted by a flat inclined surface
  • the curved surface shape which swells to the inner peripheral surface side or the outer peripheral surface side. You may comprise by the inclined surface.
  • the first groove 121X and the second groove 122X may be provided only on one side of the seal ring 100X, or may be provided on both sides. In short, the surface on which the first groove 121X and the second groove 122X are provided may be a sliding surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Devices (AREA)
  • Mechanical Sealing (AREA)

Abstract

密封対象流体の漏れを抑制しつつ、安定的に回転トルクを低減可能なシールリングを提供する。摺動面側には、周方向に伸びる第1溝(121)と、第1溝(121)における周方向の中央の位置から内周面に至るまで伸び、密封対象流体を第1溝(121)内に導く第2溝(122)とを有する溝部(120)が設けられており、第1溝(121)は、溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される動圧発生用溝(121a)と、溝底が動圧発生用溝(121a)の溝底よりも深く、異物を捕捉可能な異物捕捉用溝(121b)とを備えると共に、第1溝(121)は、側壁面に対して摺動する摺動領域内に収まる位置に設けられることを特徴とする。

Description

シールリング
 本発明は、軸とハウジングの軸孔との間の環状隙間を封止するシールリングに関する。
 自動車用のAutomatic Transmission(AT)やContinuously Variable Transmission(CVT)などにおいては、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止するシールリングが設けられている。近年、環境問題対策として低燃費化が進められており、上記シールリングにおいては、回転トルクを低減させる要求が高まっている。そこで、従来、シールリングの摺動面側に密封対象流体を導き、動圧を発生させる溝を設ける技術が知られている(特許文献1参照)。しかしながら、このような技術においては、密封対象流体中に異物が含まれている場合、溝内に異物が噛みこまれることで、動圧効果が低減されて回転トルクの低減効果が十分に発揮されなくなってしまうだけでなく、摩耗が促進され、シール性が低下してしまうおそれもある。
 また、異物がシールリングの摺動面から排除されるように、シールリングの摺動面側に、内周面側から外周面側に連通する溝を設ける技術も知られている(特許文献2参照)。しかしながら、このような技術の場合には、密封対象流体が溝から漏れるため、漏れ量が多くなってしまうおそれがある。
特開平8-121603号公報 特開2002-276815号公報
 本発明の目的は、密封対象流体の漏れを抑制しつつ、安定的に回転トルクを低減可能なシールリングを提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明のシールリングは、
 軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域の流体圧力を保持するシールリングであって、
 前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
 前記側壁面に対して摺動する摺動面側には、周方向に伸びる第1溝と、第1溝における周方向の中央の位置から内周面に至るまで伸び、密封対象流体を第1溝内に導く第2溝とを有する溝部が設けられており、
 第1溝は、溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される動圧発生用溝と、溝底が該動圧発生用溝の溝底よりも深く、異物を捕捉可能な異物捕捉用溝とを備えると共に、
 第1溝は、前記側壁面に対して摺動する摺動領域内に収まる位置に設けられることを特徴とする。
 本発明によれば、溝部内に密封対象流体が導かれるため、溝部が設けられている範囲においては、高圧側からシールリングに対して作用する流体圧力と低圧側からシールリングに対して作用する流体圧力が相殺される。これにより、シールリングに対する流体圧力の受圧面積を減らすことができる。また、シールリングが環状溝における低圧側の側壁面に対して摺動する際に、動圧発生用溝から摺動部分に密封対象流体が流出することにより動圧が発生する。これにより、シールリングに対して側壁面から離れる方向の力が発生する。そして、動圧発生用溝の溝底は、周方向の中央に比べて周方向の端部の方が浅くなるように構成されているので、楔効果により、上記の動圧を効果的に発生させることができる。以上のように、受圧面積が減ることと、動圧によりシールリングに対して側壁面から離れる方向に力が発生することとが相俟って、回転トルクを効果的に低減させることが可能となる。
 また、異物捕捉用溝により異物が捕捉されるため、異物によって動圧発生用溝による動圧発生機能が損なわれてしまうことも抑制される。更に、第1溝は、側壁面に対して摺動する摺動領域内に収まる位置に設けられているので、密封対象流体の漏れを抑制することができる。
 また、前記動圧発生用溝は、第1溝内において、周方向の中心に対して両側にそれぞれ備えられているとよい。
 これにより、軸に対するシールリングの回転方向に関係なく、動圧発生用溝による動圧発生機能を発揮させることができる。
 ここで、前記異物捕捉用溝は、第1溝内において、周方向の全領域に亘って備えられているとよい。
 また、前記異物捕捉用溝は、第1溝内において、周方向の中央にのみ備えられている構成も採用することができる。
 前記異物捕捉用溝の溝底は、第2溝に向かって徐々に浅くなるように構成されているとよい。
 これにより、第2溝から侵入してきた異物を効率的に異物捕捉用溝に導くことができ、動圧発生用溝に異物が侵入してしまうことを抑制することができる。
 前記動圧発生用溝は、周方向の端部に向かって径方向の幅が拡がるように設けられているとよい。
 これにより、動圧発生用溝から摺動部分に流出させる密封対象流体の径方向の幅を広くすることができる。
 第2溝の溝底は、前記動圧発生用溝の溝底よりも深く、異物を捕捉可能な深さに設定されているとよい。
 これにより、第2溝においても、異物を捕捉する機能が発揮されるので、動圧発生用溝に異物が侵入してしまうことを抑制することができる。
 また、本発明のシールリングは、
 軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域の流体圧力を保持するシールリングであって、
 前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
 前記側壁面に対して摺動する摺動面側には、
 前記側壁面に対して摺動する摺動領域内に収まる位置に設けられ、かつ周方向に伸びる第1溝と、
 内周面から第1溝における周方向の中央の位置に進入する位置まで伸び、かつ密封対象流体を第1溝内に導くと共に、異物を内周面側に排出可能な第2溝と、
 が設けられると共に、
 第1溝には、第2溝が進入した部位を挟んで周方向の両側に、それぞれ溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される一対の動圧発生用溝が設けられており、
 第2溝の溝底は、前記動圧発生用溝の溝底よりも深く構成されていることを特徴とする。
 本発明によれば、シールリングにおける摺動面側に設けられた第1溝及び第2溝内に密封対象流体が導かれるため、これらが設けられている範囲においては、高圧側からシールリングに対して作用する流体圧力と低圧側からシールリングに対して作用する流体圧力が相殺される。これにより、シールリングに対する流体圧力の受圧面積を減らすことができる。また、シールリングが環状溝における低圧側の側壁面に対して摺動する際に、動圧発生用溝から摺動部分に密封対象流体が流出することにより動圧が発生する。これにより、シールリングに対して側壁面から離れる方向の力が発生する。そして、動圧発生用溝の溝底は、周方向の中央に比べて周方向の端部の方が浅くなるように構成されているので、楔効果により、上記の動圧を効果的に発生させることができる。以上のように、受圧面積が減ることと、動圧によりシールリングに対して側壁面から離れる方向に力が発生することとが相俟って、回転トルクを効果的に低減させることが可能となる。また、動圧発生用溝は、第2溝が進入した部位を挟んで周方向の両側にそれぞれ設けられているので、軸に対するシールリングの回転方向に関係なく、動圧発生機能を発揮させることができる。また、第1溝は側壁面に対して摺動する摺動領域内に収まる位置に設けられているので、第1溝からの密封対象流体の漏れ量を抑制することができる。更に、動圧発生用溝の溝底よりも底の深い第2溝が設けられており、この第2溝によって摺動部に侵入した異物を内周面側に排出させることができる。従って、異物によって動圧発生用溝による動圧発生機能が損なわれてしまうことも抑制される。
 前記一対の動圧発生用溝の間であって、第2溝よりも径方向外側には、一方の動圧発生用溝から他方の動圧発生用溝への密封対象流体の流れを妨げる障壁部が設けられているとよい。
 これにより、一方の動圧発生用溝から他方の動圧発生用溝への流れる流体は、障壁部によって、第2溝において、径方向の内側に向かうように流れ易くなる。これにより、摺動面に侵入した異物は積極的にシールリングの内周面側に排出される。
 第2溝の溝底は、径方向の外側から内側に向かって溝深さが深くなる階段状の段差面により構成されているとよい。また、第2溝の溝底には、径方向の外側から内側に向かって溝深さが深くなる傾斜面が設けられていることも好適である。このような構成を採用することで、第2溝内に進入した異物を積極的にシールリングの内周面側に排出させることができる。
 以上説明したように、本発明によれば、密封対象流体の漏れを抑制しつつ、安定的に回転トルクを低減させることができる。
図1は本発明の実施形態1に係るシールリングの側面図である。 図2は本発明の実施形態1に係るシールリングの側面図の一部拡大図である。 図3は本発明の実施形態1に係るシールリングの側面図の一部拡大図である。 図4は本発明の実施形態1に係るシールリングを外周面側から見た図の一部拡大図である。 図5は本発明の実施形態1に係るシールリングを内周面側から見た図の一部拡大図である。 図6は本発明の実施形態1に係るシールリングの使用時の状態を示す模式的断面図である。 図7は本発明の実施例1に係るシールリングの側面図の一部拡大図である。 図8は本発明の実施例1に係るシールリングの模式的断面図である。 図9は本発明の実施例1に係るシールリングの模式的断面図である。 図10は本発明の実施例2に係るシールリングの側面図の一部拡大図である。 図11は本発明の実施例3に係るシールリングの側面図の一部拡大図である。 図12は本発明の実施例4に係るシールリングの側面図の一部拡大図である。 図13は本発明の実施例5に係るシールリングの側面図の一部拡大図である。 図14は本発明の実施例6に係るシールリングの側面図の一部拡大図である。 図15は本発明の実施例7に係るシールリングの側面図の一部拡大図である。 図16は本発明の実施例7に係るシールリングの模式的断面図である。 図17は本発明の実施例8に係るシールリングの側面図の一部拡大図である。 図18は本発明の実施例8に係るシールリングの模式的断面図である。 図19は本発明の実施例9に係るシールリングの側面図の一部拡大図である。 図20は本発明の実施例10に係るシールリングの側面図の一部拡大図である。 図21は本発明の実施形態2に係るシールリングの側面図である。 図22は本発明の実施形態2に係るシールリングの側面図の一部拡大図である。 図23は本発明の実施形態2に係るシールリングの側面図の一部拡大図である。 図24は本発明の実施形態2に係るシールリングを外周面側から見た図の一部拡大図である。 図25は本発明の実施形態2に係るシールリングを内周面側から見た図の一部拡大図である。 図26は本発明の実施形態2に係るシールリングの側面図の一部拡大図である。 図27は本発明の実施形態2に係るシールリングの模式的断面図である。 図28は本発明の実施形態2に係るシールリングの使用時の状態を示す模式的断面図である。 図29は本発明の実施形態2に係るシールリングの使用時の状態を示す模式的断面図である。 図30は本発明の実施例11に係るシールリングの側面図の一部拡大図である。 図31は本発明の実施例11に係るシールリングの模式的断面図である。 図32は本発明の実施例11に係るシールリングの模式的断面図である。 図33は本発明の実施例11に係るシールリングの模式的断面図である。 図34は本発明の実施例12に係るシールリングの側面図の一部拡大図である。 図35は本発明の実施例12に係るシールリングの模式的断面図である。 図36は本発明の実施例12に係るシールリングの模式的断面図である。 図37は本発明の実施例12に係るシールリングの模式的断面図である。 図38は本発明の実施例13に係るシールリングの側面図の一部拡大図である。 図39は本発明の実施例14に係るシールリングの側面図の一部拡大図である。 図40は本発明の実施例14に係るシールリングの模式的断面図である。 図41は本発明の実施例14に係るシールリングの模式的断面図である。 図42は本発明の実施例14に係るシールリングの模式的断面図である。 図43は本発明の実施例15に係るシールリングの側面図の一部拡大図である。 図44は本発明の実施例15に係るシールリングの模式的断面図である。 図45は本発明の実施例15に係るシールリングの模式的断面図である。 図46は本発明の実施例15の変形例に係るシールリングの模式的断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施形態及び実施例に基づいて例示的に詳しく説明する。ただし、これら実施形態及び実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。なお、本実施形態及び実施例に係るシールリングは、自動車用のATやCVTなどの変速機において、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止する用途に用いられるものである。また、以下の説明において、「高圧側」とは、シールリングの両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、シールリングの両側に差圧が生じた際に低圧となる側を意味する。
 (実施形態1)
 図1~図6を参照して、本発明の実施形態1に係るシールリングについて説明する。図1は本発明の実施形態1に係るシールリングの側面図である。図2は本発明の実施形態1に係るシールリングの側面図の一部拡大図であり、図1において丸で囲った部分の拡大図である。図3は本発明の実施形態1に係るシールリングの側面図の一部拡大図であり、図1において丸で囲った部分を反対側から見た拡大図である。図4は本発明の実施形態1に係るシールリングを外周面側から見た図の一部拡大図であり、図1において丸で囲った部分を外周面側から見た拡大図である。図5は本発明の実施形態1に係るシールリングを内周面側から見た図の一部拡大図であり、図1において丸で囲った部分を内周面側から見た拡大図である。図6は本発明の実施形態1に係るシールリングの使用時の状態を示す模式的断面図である。
 <シールリングの構成>
 本実施形態に係るシールリング100は、軸200の外周に設けられた環状溝210に装着され、相対的に回転する軸200とハウジング300(ハウジング300における軸200が挿通される軸孔の内周面)との間の環状隙間を封止する。これにより、シールリング100は、流体圧力(本実施形態では油圧)が変化するように構成された密封対象領域の流体圧力を保持する。ここで、本実施形態においては、図6中のシールリング100よりも右側の領域の流体圧力が変化するように構成されている。そして、シールリング100は、シールリング100を介して図中右側の密封対象領域の流体圧力を保持する役割を担っている。なお、自動車のエンジンが停止した状態においては、密封対象領域の流体圧力は低く、無負荷の状態となっており、エンジンをかけると密封対象領域の流体圧力は高くなる。図6においては、左側に無負荷状態の様子を示し、右側に差圧が生じた状態(密封対象領域の流体圧力が高くなった状態)の様子を示している。
 そして、シールリング100は、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの樹脂材からなる。また、シールリング100の外周面の周長はハウジング300の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。従って、流体圧力が作用していない状態においては、シールリング100の外周面はハウジング300の内周面から離れた状態となり得る(図6中、左側の図参照)。
 このシールリング100には、周方向の1箇所に合口部110が設けられている。また、シールリング100の摺動面側には溝部120が設けられている。なお、本実施形態に係るシールリング100は、断面が矩形の環状部材に対して、上記の合口部110と複数の溝部120が形成された構成である。ただし、これは形状についての説明に過ぎず、必ずしも、断面が矩形の環状部材を素材として、これら合口部110及び複数の溝部120を形成する加工を施すことを意味するものではない。勿論、断面が矩形の環状部材を成形した後に、これらを切削加工により得ることもできる。ただし、例えば、予め合口部110を有したものを成形した後に、複数の溝部120を切削加工により得てもよいし、製法は特に限定されるものではない。
 本実施形態に係る合口部110の構成について、特に、図2~図5を参照して説明する。本実施形態に係る合口部110は、外周面側及び両側壁面側のいずれから見ても階段状に切断された特殊ステップカットを採用している。これにより、シールリング100においては、切断部を介して一方の側の外周面側には第1嵌合凸部111及び第1嵌合凹部114が設けられ、他方の側の外周面側には第1嵌合凸部111が嵌る第2嵌合凹部113と第1嵌合凹部114に嵌る第2嵌合凸部112が設けられている。なお、切断部を介して一方の側の内周面側の端面115と他方の側の内周側の端面116は互いに対向している。特殊ステップカットに関しては公知技術であるので、その詳細な説明は省略するが、熱膨張収縮によりシールリング100の周長が変化しても安定したシール性能を維持する特性を有する。なお、「切断部」については、切削加工により切断される場合だけでなく、成形により得られる場合も含まれる。また、ここでは合口部110の一例として、特殊ステップカットの場合を示したが、合口部110については、これに限らず、ストレートカットやバイアスカットやステップカットなども採用し得る。なお、シールリング100の材料として、低弾性の材料(PTFEなど)を採用した場合には、合口部110を設けずに、エンドレスとしてもよい。
 溝部120は、シールリング100における摺動面側の側面のうち合口部110付近を除く全周に亘って、等間隔に複数設けられている(図1参照)。これら複数の溝部120は、軸200に設けられた環状溝210における低圧側(L)の側壁面211に対してシールリング100が摺動した際に動圧を発生させるために設けられている。
 そして、溝部120は、周方向に伸びる第1溝と、第1溝における周方向の中央の位置から内周面に至るまで伸び、密封対象流体を第1溝内に導く第2溝とを有している。また、第1溝は、溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される動圧発生用溝と、溝底がこの動圧発生用溝の溝底よりも深く、異物を捕捉可能な異物捕捉用溝とを備えている。更に、第1溝は、シールリング100が低圧側(L)の側壁面211に対して摺動する摺動領域X内に収まる位置に設けられている。
 <シールリングの使用時のメカニズム>
 特に、図6を参照して、本実施形態に係るシールリング100の使用時のメカニズムについて説明する。エンジンがかかり、差圧が生じた状態においては、シールリング100は、環状溝210の低圧側(L)の側壁面211及びハウジング300の軸孔の内周面に対して密着した状態となる。
 これにより、相対的に回転する軸200とハウジング300との間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域(高圧側(H)の領域)の流体圧力を保持することが可能となる。そして、軸200とハウジング300が相対的に回転した場合には、環状溝210の低圧側(L)の側壁面211とシールリング100との間で摺動する。そして、シールリング100の摺動面側の側面に設けられた溝部120における動圧発生用溝から密封対象流体が摺動部分に流出する際に動圧が発生する。なお、シールリング100が環状溝210に対して、図1中時計回り方向に回転する場合には、動圧発生用溝における反時計回り方向側の端部から摺動部分に密封対象流体が流出する。また、シールリング100が環状溝210に対して、図1中反時計回り方向に回転する場合には、動圧発生用溝における時計回り方向側の端部から摺動部分に密封対象流体が流出する。
 <本実施形態に係るシールリングの優れた点>
 本実施形態に係るシールリング100によれば、溝部120内に密封対象流体が導かれるため、溝部120が設けられている範囲においては、高圧側(H)からシールリング100に対して作用する流体圧力と低圧側(L)からシールリング100に対して作用する流体圧力が相殺される。これにより、シールリング100に対する流体圧力(高圧側(H)から低圧側(L)への流体圧力)の受圧面積を減らすことができる。また、シールリング100が環状溝210における低圧側(L)の側壁面211に対して摺動する際に、動圧発生用溝から摺動部分に密封対象流体が流出することにより動圧が発生する。これにより、シールリング100に対して側壁面211から離れる方向の力が発生する。そして、動圧発生用溝の溝底は、周方向の中央に比べて周方向の端部の方が浅くなるように構成されているので、楔効果により、上記の動圧を効果的に発生させることができる。以上のように、受圧面積が減ることと、動圧によりシールリング100に対して側壁面211から離れる方向に力が発生することとが相俟って、回転トルクを効果的に低減させることが可能となる。このように、回転トルク(摺動トルク)の低減を実現できることにより、摺動による発熱を抑制することができ、高速高圧の環境条件下でも本実施形態に係るシールリング100を好適に用いることが可能となる。また、これに伴い、軸200の材料としてアルミニウムなどの軟質材を用いることもできる。
 また、異物捕捉用溝により異物が捕捉されるため、異物によって動圧発生用溝による動圧発生機能が損なわれてしまうことも抑制される。すなわち、異物が動圧発生用溝と側壁面211との間に噛み込まれてしまうことを抑制することができる。これにより、動圧効果が低減されてしまうことを抑制でき、かつ摩耗が促進されてしまうことを抑制することができる。更に、第1溝は、シールリング100が側壁面に対して摺動する摺動領域X内に収まる位置に設けられているので、密封対象流体の漏れを抑制することができる。
 以下、溝部120のより具体的な例(実施例1~実施例10)を説明する。
 (実施例1)
 図7~図9を参照して、実施例1に係る溝部120について説明する。図7は本発明の実施例1に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。図8は本発明の実施例1に係るシールリングの模式的断面図であり、図7中のAA断面図である。図9は本発明の実施例1に係るシールリングの模式的断面図であり、図7中のBB断面図である。
 上記実施形態で説明したように、シールリング100の摺動面側には溝部120が設けられている。本実施例に係る溝部120は、周方向に伸びる第1溝121と、第1溝121における周方向の中央の位置から内周面に至るまで伸び、密封対象流体を第1溝121内に導く第2溝122とから構成される。
 本実施例に係る第1溝121は、径方向の幅が一定となるように構成されている。この第1溝121は、上記実施形態で説明したように、シールリング100が環状溝210における低圧側(L)の側壁面211に対して摺動する摺動領域X内に収まる位置に設けられている。そして、第1溝121は、溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される動圧発生用溝121aと、溝底が動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な異物捕捉用溝121bとから構成される。
 動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例では、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、これら一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって径方向の幅が徐々に拡がるように構成されている。更に、これら一対の動圧発生用溝121aは、その平面形状が台形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの内周面側と外周面側の部分に備えられている。
 更に、本実施例においては、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においては、動圧発生用溝121aが、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられているので、軸200に対するシールリング100の回転方向に関係なく、動圧発生用溝121aによる動圧発生機能を発揮させることができる。また、動圧発生用溝121aは、周方向の端部に向かって径方向の幅が拡がるように設けられているので、動圧発生用溝121aから摺動部分に流出させる密封対象流体の径方向の幅を広くすることができる。更に、本実施例においては、第2溝121bの溝底が、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。従って、第2溝122においても、異物を捕捉する機能が発揮され、動圧発生用溝121aに異物が侵入してしまうことをより一層抑制することができる。
 (実施例2)
 図10には、本発明の実施例2が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図10は本発明の実施例2に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは径方向の幅が一定となるように構成されている。従って、これら一対の動圧発生用溝121aは、その平面形状が略四角形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの内周面側の部分に備えられている。
 更に、本実施例においても、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においても、動圧発生用溝121aが、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられているので、軸200に対するシールリング100の回転方向に関係なく、動圧発生用溝121aによる動圧発生機能を発揮させることができる。更に、本実施例においては、第2溝122の溝底が、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。従って、第2溝122においても、異物を捕捉する機能が発揮され、動圧発生用溝121aに異物が侵入してしまうことをより一層抑制することができる。
 (実施例3)
 図11には、本発明の実施例3が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図11は本発明の実施例3に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは径方向の幅が一定となるように構成されている。従って、これら一対の動圧発生用溝121aは、その平面形状が略四角形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの外周面側の部分に備えられている。
 更に、本実施例においても、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施例2の場合と同様の作用効果を得ることができる。
 (実施例4)
 図12には、本発明の実施例4が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図12は本発明の実施例4に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは径方向の幅が一定となるように構成されている。従って、これら一対の動圧発生用溝121aは、その平面形状が略四角形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの内周面側及び外周面側の部分に備えられている。
 更に、本実施例においても、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施例2,3の場合と同様の作用効果を得ることができる。
 (実施例5)
 図13には、本発明の実施例5が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図13は本発明の実施例5に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、これら一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって径方向の幅が徐々に拡がるように構成されている。なお、本実施例では、上記実施例1の場合とは異なり、動圧発生用溝121aは、第1溝121内において、外周面側に沿うように設けられている。これにより、これら一対の動圧発生用溝121aは、その平面形状が三角形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの内周面側の部分に備えられている。
 更に、本実施例においても、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施例1の場合と同様の作用効果を得ることができる。
 (実施例6)
 図14には、本発明の実施例6が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図14は本発明の実施例6に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、これら一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって径方向の幅が徐々に拡がるように構成されている。なお、本実施例では、上記実施例1の場合とは異なり、動圧発生用溝121aは、第1溝121内において、内周面側に沿うように設けられている。これにより、これら一対の動圧発生用溝121aは、その平面形状が三角形となるように構成されている。
 また、異物捕捉用溝121bは、第1溝121内において、周方向の全領域に亘って備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内における周方向の中央の部分と、一対の動圧発生用溝121aの外周面側の部分に備えられている。
 更に、本実施例においても、第2溝122の溝底は、動圧発生用溝121aの溝底よりも深く、異物を捕捉可能な深さに設定されている。より具体的には、第2溝122の溝底の深さと、異物捕捉用溝121bの溝底の深さが同一となるように設定されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施例1の場合と同様の作用効果を得ることができる。
 (実施例7)
 図15及び図16には、本発明の実施例7が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図15は本発明の実施例7に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。図16は本発明の実施例7に係るシールリングの模式的断面図であり、図16中のCC断面図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは径方向の幅が一定となるように構成されている。従って、これら一対の動圧発生用溝121aは、その平面形状が略四角形となるように構成されている。
 また、本実施例の場合には、実施例1~6の場合とは異なり、異物捕捉用溝121bは、第1溝121内において、周方向の中央のみに備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内において、第2溝122の延長線上にのみ設けられている。
 以上のように構成された本実施例に係る溝部120によって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においても、動圧発生用溝121aが、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられているので、軸200に対するシールリング100の回転方向に関係なく、動圧発生用溝121aによる動圧発生機能を発揮させることができる。
 (実施例8)
 図17及び図18には、本発明の実施例8が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図17は本発明の実施例8に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。図18は本発明の実施例8に係るシールリングの模式的断面図であり、図17中のDD断面図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは径方向の幅が一定となるように構成されている。従って、これら一対の動圧発生用溝121aは、その平面形状が略四角形となるように構成されている。
 また、本実施例の場合には、実施例1~6の場合とは異なり、異物捕捉用溝121bは、第1溝121内において、周方向の中央のみに備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内において、第2溝122の延長線上にのみ設けられている。そして、本実施例の場合には、上記実施例7の場合とは異なり、異物捕捉用溝121bの溝底は、第2溝122に向かって徐々に浅くなるように構成されている。
 以上のように構成された本実施例に係る溝部120によって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においても、動圧発生用溝121aが、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられているので、軸200に対するシールリング100の回転方向に関係なく、動圧発生用溝121aによる動圧発生機能を発揮させることができる。更に、本実施例の場合には、異物捕捉用溝121bの溝底が、第2溝122に向かって徐々に浅くなるように構成されているので、第2溝122から侵入してきた異物を効率的に異物捕捉用溝121bに導くことができる。これにより、動圧発生用溝121aに異物が侵入してしまうことをより一層抑制することができる。
 (実施例9)
 図19には、本発明の実施例9が示されている。本実施例は上記実施例1の変形例であり、動圧発生用溝121aと異物捕捉用溝121bの配置される領域が実施例1と異なっている。図19は本発明の実施例9に係るシールリングの側面図の一部拡大図であり、溝部120が設けられている付近を拡大した図である。
 本実施例においても、動圧発生用溝121aは、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられている。そして、一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって、徐々に浅くなるように構成されている。本実施例においても、特に図示はしないが、これら一対の動圧発生用溝121aの溝底は、平面状の傾斜面により構成されている。また、本実施例では、これら一対の動圧発生用溝121aは周方向の中心側から周方向の端部に向かって径方向の幅が徐々に拡がるように構成されている。更に、これら一対の動圧発生用溝121aは、その平面形状が台形となるように構成されている。
 また、本実施例の場合には、実施例1~6の場合とは異なり、異物捕捉用溝121bは、第1溝121内において、周方向の中央のみに備えられている。より具体的には、異物捕捉用溝121bは、第1溝121内において、第2溝122の延長線上にのみ設けられている。
 以上のように構成された本実施例に係る溝部120によって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においても、動圧発生用溝121aが、第1溝121内において、周方向の中心に対して両側にそれぞれ備えられているので、軸200に対するシールリング100の回転方向に関係なく、動圧発生用溝121aによる動圧発生機能を発揮させることができる。また、動圧発生用溝121aは、周方向の端部に向かって径方向の幅が拡がるように設けられているので、動圧発生用溝121aから摺動部分に流出させる密封対象流体の径方向の幅を広くすることができる。
 (実施例10)
 図20には、本発明の実施例10が示されている。本実施例は上記実施例9の変形例であり、異物捕捉用溝121bの平面形状のみが異なっている。すなわち、上記実施例9では、異物捕捉用溝121bの平面形状が矩形であるのに対して、本実施例の場合には、異物捕捉用溝121bの平面形状が、矩形形状に対して外周面側が円弧状となっている。本実施例においても、上記実施例9の場合と同様の作用効果を得ることができる。
 (その他)
 動圧発生用溝121aと異物捕捉用溝121bの配置される領域については、上記各実施例1~10に示したものに限られることはなく、様々な配置構成を採用し得る。また、上記各実施例1~10では、動圧発生用溝121aの溝底が、平面状の傾斜面により構成される場合を示したが、内周面側か外周面側に膨らむような湾曲面状の傾斜面により構成してもよい。更に、溝部120については、シールリング100の片面にのみ設けても良いし、両面に設けても良い。要は、溝部120が設けられている面が摺動面となるようにすればよい。
 (実施形態2)
 図21~図29を参照して、本発明の実施形態2に係るシールリングについて説明する。図21は本発明の実施形態2に係るシールリングの側面図である。図22は本発明の実施形態2に係るシールリングの側面図の一部拡大図であり、図21において丸で囲った部分の拡大図である。図23は本発明の実施形態2に係るシールリングの側面図の一部拡大図であり、図21において丸で囲った部分を反対側から見た拡大図である。図24は本発明の実施形態2に係るシールリングを外周面側から見た図の一部拡大図であり、図21において丸で囲った部分を外周面側から見た拡大図である。図25は本発明の実施形態2に係るシールリングを内周面側から見た図の一部拡大図であり、図21において丸で囲った部分を内周面側から見た拡大図である。図26は本発明の実施形態2に係るシールリングの側面図の一部拡大図であり、第1溝及び第2溝が設けられている付近を示す拡大図である。図27は本発明の実施形態2に係るシールリングの模式的断面図であり、図26中のAA断面図である。図28及び図29は本発明の実施形態2に係るシールリングの使用時の状態を示す模式的断面図である。なお、図28は無負荷の状態を示し、図29は差圧が生じた状態を示している。また、図28,29中のシールリングは、図26中のBB断面図に相当する。
 <シールリングの構成>
 本実施形態に係るシールリング100Xは、軸200の外周に設けられた環状溝210に装着され、相対的に回転する軸200とハウジング300(ハウジング300における軸200が挿通される軸孔の内周面)との間の環状隙間を封止する。これにより、シールリング100Xは、流体圧力(本実施形態では油圧)が変化するように構成された密封対象領域の流体圧力を保持する。ここで、本実施形態においては、図28,29中のシールリング100Xよりも右側の領域の流体圧力が変化するように構成されている。そして、シールリング100Xは、シールリング100Xを介して図中右側の密封対象領域の流体圧力を保持する役割を担っている。なお、自動車のエンジンが停止した状態においては、密封対象領域の流体圧力は低く、無負荷の状態となっており、エンジンをかけると密封対象領域の流体圧力は高くなる。また、図29においては、図中右側の流体圧力が左側の流体圧力よりも高くなった状態を示している。以下、図29中右側を高圧側(H)、左側を低圧側(L)と称する。
 そして、シールリング100Xは、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの樹脂材からなる。また、シールリング100Xの外周面の周長はハウジング300の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。従って、流体圧力が作用していない状態においては、シールリング100Xの外周面はハウジング300の軸孔の内周面から離れた状態となり得る(図28参照)。
 このシールリング100Xには、周方向の1箇所に合口部110Xが設けられている。また、シールリング100Xの摺動面側には、第1溝121Xと第2溝122Xとが設けられている。なお、本実施形態に係るシールリング100Xは、断面が矩形の環状部材に対して、上記の合口部110Xと複数の第1溝121Xと複数の第2溝122Xが形成された構成である。ただし、これは形状についての説明に過ぎず、必ずしも、断面が矩形の環状部材を素材として、これら合口部110Xと複数の第1溝121Xと複数の第2溝122Xとを形成する加工を施すことを意味するものではない。勿論、断面が矩形の環状部材を成形した後に、これらを切削加工により得ることもできる。ただし、例えば、予め合口部110Xを有したものを成形した後に、複数の第1溝121Xと複数の第2溝122Xを切削加工により得てもよいし、製法は特に限定されるものではない。
 本実施形態に係る合口部110Xの構成について、特に、図22~図25を参照して説明する。本実施形態に係る合口部110Xは、外周面側及び両側壁面側のいずれから見ても階段状に切断された特殊ステップカットを採用している。これにより、シールリング100Xにおいては、切断部を介して一方の側の外周面側には第1嵌合凸部111X及び第1嵌合凹部114Xが設けられ、他方の側の外周面側には第1嵌合凸部111Xが嵌る第2嵌合凹部113Xと第1嵌合凹部114Xに嵌る第2嵌合凸部112Xが設けられている。なお、切断部を介して一方の側の内周面側の端面115Xと他方の側の内周側の端面116Xは互いに対向している。特殊ステップカットに関しては公知技術であるので、その詳細な説明は省略するが、熱膨張収縮によりシールリング100Xの周長が変化しても安定したシール性能を維持する特性を有する。なお、「切断部」については、切削加工により切断される場合だけでなく、成形により得られる場合も含まれる。
 第1溝121X及び第2溝122Xは、シールリング100における摺動面側の側面のうち合口部110X付近を除く全周に亘って、等間隔に複数設けられている(図21参照)。複数の第1溝121Xは、軸200に設けられた環状溝210における低圧側(L)の側壁面211に対してシールリング100Xが摺動した際に動圧を発生させるために設けられている。
 第1溝121Xは、周方向に伸びるように構成されている。第2溝122Xは、シールリング100Xにおける内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びるように設けられている。この第2溝122Xは、密封対象流体を第1溝121X内に導くと共に、異物をシールリング100Xの内周面側に排出する役割を担っている。第1溝121Xには、第2溝122Xが進入した部位を挟んで周方向の両側に、それぞれ溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される一対の動圧発生用溝121Xaが設けられている(図26及び図27参照)。本実施形態では、この動圧発生用溝121Xaの溝底は、平面状の傾斜面によって構成されている。ただし、動圧発生用溝121Xaについては、図示の例に限らず、溝内から摺動部に密封対象流体が排出される際に動圧が発生する機能を有していれば、各種の公知技術を採用することができる。
 また、第1溝121Xは、シールリング100Xが低圧側(L)の側壁面211に対して摺動する摺動領域S内に収まる位置に設けられている(図29参照)。従って、第1溝121Xから低圧側(L)に密封対象流体が漏れてしまうことは抑制される。そして、第2溝122Xの溝底は、動圧発生用溝121Xaの溝底よりも深く構成されている。これにより、第2溝122は、密封対象流体を第1溝121内に導くと共に、摺動部に侵入した異物をシールリング100Xの内周面側に排出する機能が発揮される。
 <シールリングの使用時のメカニズム>
 特に、図28及び図29を参照して、本実施形態に係るシールリング100Xの使用時のメカニズムについて説明する。エンジンが停止した無負荷状態においては、図28に示すように、左右の領域の差圧がないため、シールリング100Xは、環状溝210における図中左側の側壁面及びハウジング300の軸孔の内周面から離れた状態となり得る。
 図29は、エンジンがかかり、シールリング100Xを介して、差圧が生じている状態(図中右側の圧力が左側の圧力に比べて高くなった状態)を示している。エンジンがかかり、差圧が生じた状態においては、シールリング100Xは、環状溝210の低圧側(L)の側壁面211及びハウジング300の軸孔の内周面に対して密着した状態となる。
 これにより、相対的に回転する軸200とハウジング300との間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域(高圧側(H)の領域)の流体圧力を保持することが可能となる。そして、軸200とハウジング300が相対的に回転した場合には、環状溝210の低圧側(L)の側壁面211とシールリング100Xとの間で摺動する。そして、シールリング100Xの摺動面側の側面に設けられた動圧発生用溝121aから密封対象流体が摺動部分に流出する際に動圧が発生する。なお、シールリング100Xが環状溝210に対して、図21中時計回り方向に回転する場合には、動圧発生用溝121Xaにおける反時計回り方向側の端部から摺動部分に密封対象流体が流出する。また、シールリング100Xが環状溝210に対して、図21中反時計回り方向に回転する場合には、動圧発生用溝121aにおける時計回り方向側の端部から摺動部分に密封対象流体が流出する。
 <本実施形態に係るシールリングの優れた点>
 本実施形態に係るシールリング100Xによれば、シールリング100Xにおける摺動面側に設けられた第1溝121X及び第2溝122X内に密封対象流体が導かれる。そのため、これらが設けられている範囲においては、高圧側(H)からシールリング100Xに対して作用する流体圧力と低圧側(L)からシールリング100Xに対して作用する流体圧力が相殺される。これにより、シールリング100Xに対する流体圧力(高圧側(H)から低圧側(L)への流体圧力)の受圧面積を減らすことができる。また、シールリング100Xが環状溝210における低圧側(L)の側壁面211に対して摺動する際に、動圧発生用溝121Xaから摺動部分に密封対象流体が流出することにより動圧が発生する。これにより、シールリング100Xに対して側壁面211から離れる方向の力が発生する。そして、動圧発生用溝121Xaの溝底は、周方向の中央に比べて周方向の端部の方が浅くなるように構成されているので、楔効果により、上記の動圧を効果的に発生させることができる。
 以上のように、受圧面積が減ることと、動圧によりシールリング100Xに対して側壁面211から離れる方向に力が発生することとが相俟って、回転トルクを効果的に低減させることが可能となる。このように、回転トルク(摺動トルク)の低減を実現できることにより、摺動による発熱を抑制することができ、高速高圧の環境条件下でも本実施形態に係るシールリング100Xを好適に用いることが可能となる。また、これに伴い、軸200の材料としてアルミニウムなどの軟質材を用いることもできる。また、動圧発生用溝は、第2溝122Xが進入した部位を挟んで周方向の両側にそれぞれ設けられているので、軸200に対するシールリング100Xの回転方向に関係なく、動圧発生機能を発揮させることができる。
 また、第1溝121Xは側壁面211に対して摺動する摺動領域S内に収まる位置に設けられているので、第1溝121Xからの密封対象流体の漏れ量を抑制することができる。更に、動圧発生用溝121Xaの溝底よりも底の深い第2溝122Xが設けられており、この第2溝122Xによって摺動部に侵入した異物を内周面側に排出させることができる。従って、異物によって動圧発生用溝121Xaによる動圧発生機能が損なわれてしまうことも抑制される。すなわち、異物が動圧発生用溝121Xaと側壁面211との間に噛み込まれてしまうことを抑制することができる。これにより、動圧効果が低減されてしまうことを抑制でき、かつ摩耗が促進されてしまうことを抑制することができる。
 以下、第1溝121X及び第2溝122Xのより具体的な例(実施例11~15)を説明する。
 (実施例11)
 図30~図33を参照して、本発明の実施例11に係る第1溝121X及び第2溝122Xについて説明する。図30は本発明の実施例11に係るシールリングの側面図の一部拡大図であり、第1溝121X及び第2溝122Xが設けられている付近を拡大した図である。図31は本発明の実施例11に係るシールリングの模式的断面図であり、図30中のCC断面図である。図32は本発明の実施例11に係るシールリングの模式的断面図であり、図30中のDD断面図である。図33は本発明の実施例11に係るシールリングの模式的断面図であり、図30中のEE断面図である。
 上記実施形態2で説明したように、シールリング100Xの摺動面側には、周方向に伸びる第1溝121Xと、シールリング100Xの内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びる第2溝122Xとが設けられている。本実施例においては、第1溝121Xにおける一対の動圧発生用溝121Xaは、径方向の幅が一定となるように構成されている。そして、これら一対の動圧発生用溝121Xaの間であって、第2溝122Xよりも径方向外側には、一方の動圧発生用溝121Xaから他方の動圧発生用溝121Xaへの密封対象流体の流れを妨げる障壁部123Xが設けられている。この障壁部123Xの表面は、シールリング100Xにおける側面(第1溝121X及び第2溝122Xが設けられている部分を除く)と同一面となっている。
 以上のように構成された本実施例に係る第1溝121X及び第2溝122Xによって、上記実施形態2で説明した作用効果を得ることができる。また、本実施例においては、一方の動圧発生用溝121Xaから他方の動圧発生用溝121Xaへの流れる流体は、障壁部123Xによって、第2溝122Xにおいて、径方向の内側に向かうように流れ易くなる。すなわち、シールリング100Xが環状溝210に対して、図30中反時計回り方向に回転する場合には、図中左側の動圧発生用溝121Xaから右側の動圧発生用溝121Xaに流れる流体が、障壁部123Xにより妨げられて、第2溝122Xにおいて、径方向の内側に向かうように流れ易くなる。そして、シールリング100Xが環状溝210Xに対して、図30中時計回り方向に回転する場合には、図中右側の動圧発生用溝121Xaから左側の動圧発生用溝121Xaに流れる流体が、障壁部123Xにより妨げられて、第2溝122Xにおいて、径方向の内側に向かうように流れ易くなる。これにより、摺動面に侵入した異物は積極的にシールリング100の内周面側に排出される。
 (実施例12)
 図34~図37を参照して、本発明の実施例12に係る第1溝121X及び第2溝122Xについて説明する。図34は本発明の実施例12に係るシールリングの側面図の一部拡大図であり、第1溝121X及び第2溝122Xが設けられている付近を拡大した図である。図35は本発明の実施例12に係るシールリングの模式的断面図であり、図34中のCC断面図である。図36は本発明の実施例12に係るシールリングの模式的断面図であり、図34中のDD断面図である。図37は本発明の実施例12に係るシールリングの模式的断面図であり、図34中のEE断面図である。
 本実施例においても、実施例11の場合と同様に、シールリング100Xの摺動面側には、周方向に伸びる第1溝121Xと、シールリング100Xの内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びる第2溝122Xとが設けられている。また、本実施例においても、第1溝121Xにおける一対の動圧発生用溝121Xaは、径方向の幅が一定となるように構成されている。そして、これら一対の動圧発生用溝121Xaの間であって、第2溝122Xよりも径方向外側には、一方の動圧発生用溝121Xaから他方の動圧発生用溝121Xaへの密封対象流体の流れを妨げる障壁部123Xa設けられている。本実施例における障壁部123Xaは、実施例11における障壁部123Xよりも高さが低くなるように構成されている。つまり、本実施例における障壁部123Xaの表面は、シールリング100Xにおける側面(第1溝121X及び第2溝122Xが設けられている部分を除く)よりも少し内側の位置となっている。
 以上のように構成された本実施例に係る第1溝121X及び第2溝122Xにおいても、上記実施例11の場合と同様の作用効果を得ることができる。
 (実施例13)
 図38を参照して、本発明の実施例13に係る第1溝121X及び第2溝122Xについて説明する。図38は本発明の実施例13に係るシールリングの側面図の一部拡大図であり、第1溝121X及び第2溝122Xが設けられている付近を拡大した図である。
 本実施例においても、実施例11の場合と同様に、シールリング100Xの摺動面側には、周方向に伸びる第1溝121Xと、シールリング100Xの内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びる第2溝122Xとが設けられている。また、本実施例においても、第1溝121Xにおける一対の動圧発生用溝121Xaは、径方向の幅が一定となるように構成されている。そして、これら一対の動圧発生用溝121Xaの間であって、第2溝122Xよりも径方向外側には、一方の動圧発生用溝121Xaから他方の動圧発生用溝121Xaへの密封対象流体の流れを妨げる障壁部123Xbが設けられている。本実施例における障壁部123Xbにおいては、障壁部123Xbの内周面側が湾曲面により構成されている。このように、障壁部123Xbの内周面側が湾曲面により構成されている点のみが、上記実施例11に示す構成と異なっている。
 以上のように構成された本実施例に係る第1溝121X及び第2溝122Xにおいても、上記実施例11の場合と同様の作用効果を得ることができる。なお、障壁部123Xbの内周面側が湾曲面により構成されているため、動圧発生用溝121Xaから第2溝122Xへの流体の流れをスムーズにさせることができる。
 (実施例14)
 図39~図42を参照して、本発明の実施例14に係る第1溝121X及び第2溝122Xについて説明する。図39は本発明の実施例14に係るシールリングの側面図の一部拡大図であり、第1溝121X及び第2溝122Xが設けられている付近を拡大した図である。図40は本発明の実施例14に係るシールリングの模式的断面図であり、図39中のCC断面図である。図41は本発明の実施例14に係るシールリングの模式的断面図であり、図39中のDD断面図である。図42は本発明の実施例14に係るシールリングの模式的断面図であり、図39中のEE断面図である。
 上記実施形態2で説明したように、シールリング100Xの摺動面側には、周方向に伸びる第1溝121Xと、シールリング100Xの内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びる第2溝122Xとが設けられている。本実施例においては、第1溝121Xにおける一対の動圧発生用溝121Xaは、径方向の幅が一定となるように構成されている。そして、本実施例に係る第2溝122Xの溝底は、径方向の外側から内側に向かって溝深さが深くなる階段状の段差面により構成されている。より具体的には、第2溝122Xの溝底は、径方向内側の溝底面122Xaと径方向外側の溝底面122Xbとからなる2段の段差面により構成されている。そして、径方向内側の溝底面122aの方が、径方向外側の溝底面122Xbよりも溝底が深くなるように構成されている。なお、本実施例では、第2溝122Xの溝底が、2段の段差面により構成される場合を示したが、3段以上の段差面により構成することも可能である。
 以上のように構成された本実施例に係る第1溝121X及び第2溝122Xによって、上記実施形態で説明した作用効果を得ることができる。また、本実施例においては、第2溝122Xの溝底は、径方向の外側から内側に向かって溝深さが深くなる階段状の段差面により構成されているので、第2溝122X内に進入した異物を積極的にシールリング100Xの内周面側に排出させることができる。
 (実施例15)
 図43~図46を参照して、本発明の実施例15に係る第1溝121X及び第2溝122Xについて説明する。図43は本発明の実施例15に係るシールリングの側面図の一部拡大図であり、第1溝121X及び第2溝122Xが設けられている付近を拡大した図である。図44は本発明の実施例15に係るシールリングの模式的断面図であり、図43中のCC断面図である。図45は本発明の実施例15に係るシールリングの模式的断面図であり、図43中のEE断面図である。図46は本発明の実施例15の変形例に係るシールリングの模式的断面図である。
 上記実施形態2で説明したように、シールリング100Xの摺動面側には、周方向に伸びる第1溝121Xと、シールリング100Xの内周面から第1溝121Xにおける周方向の中央の位置に進入する位置まで伸びる第2溝122Xとが設けられている。本実施例においては、第1溝121Xにおける一対の動圧発生用溝121Xaは、径方向の幅が一定となるように構成されている。そして、本実施例に係る第2溝122Xの溝底は、径方向の外側から内側に向かって溝深さが深くなる傾斜面122Xcにより構成されている。
 以上のように構成された本実施例に係る第1溝121X及び第2溝122Xによって、上記実施形態2で説明した作用効果を得ることができる。また、本実施例においては、第2溝122Xの溝底は、径方向の外側から内側に向かって溝深さが深くなる傾斜面122Xcにより構成されているので、第2溝122X内に進入した異物を積極的にシールリング100Xの内周面側に排出させることができる。
 なお、本実施例では、第2溝122Xの溝底全体が傾斜面で構成される場合を示したが、例えば、図46に示す変形例のように、第2溝122Xの溝底面のうち、径方向外側を平面で構成し、径方向内側を径方向の外側から内側に向かって溝深さが深くなる傾斜面122Xdにより構成することもできる。この場合でも、同様の効果を得ることができる。
 (その他)
 上記各実施例11~14では、動圧発生用溝121Xaの溝底が、平面状の傾斜面により構成される場合を示したが、内周面側か外周面側に膨らむような湾曲面状の傾斜面により構成してもよい。また、第1溝121X及び第2溝122Xについては、シールリング100Xの片面にのみ設けても良いし、両面に設けても良い。要は、これらの第1溝121X及び第2溝122Xが設けられている面が摺動面となるようにすればよい。
 100 シールリング
 110 合口部
 111 第1嵌合凸部
 112 第2嵌合凸部
 113 第2嵌合凹部
 114 第1嵌合凹部
 115 端面
 116 端面
 120 溝部
 121 第1溝
 121a 動圧発生用溝
 121b 異物捕捉用溝
 122 第2溝
 200 軸
 210 環状溝
 211 側壁面
 300 ハウジング
 X 摺動領域
 100X シールリング
 110X 合口部
 111X 第1嵌合凸部
 112X 第2嵌合凸部
 113X 第2嵌合凹部
 114X 第1嵌合凹部
 115X 端面
 116X 端面
 121X 第1溝
 121Xa 動圧発生用溝
 122X 第2溝
 122Xa 溝底面
 122Xb 溝底面
 122Xc 傾斜面
 122Xd 傾斜面
 123X,123Xa,123Xb 障壁部
 S 摺動領域

Claims (11)

  1.  軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域の流体圧力を保持するシールリングであって、
     前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
     前記側壁面に対して摺動する摺動面側には、周方向に伸びる第1溝と、第1溝における周方向の中央の位置から内周面に至るまで伸び、密封対象流体を第1溝内に導く第2溝とを有する溝部が設けられており、
     第1溝は、溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される動圧発生用溝と、溝底が該動圧発生用溝の溝底よりも深く、異物を捕捉可能な異物捕捉用溝とを備えると共に、
     第1溝は、前記側壁面に対して摺動する摺動領域内に収まる位置に設けられることを特徴とするシールリング。
  2.  前記動圧発生用溝は、第1溝内において、周方向の中心に対して両側にそれぞれ備えられていることを特徴とする請求項1に記載のシールリング。
  3.  前記異物捕捉用溝は、第1溝内において、周方向の全領域に亘って備えられていることを特徴とする請求項1または2に記載のシールリング。
  4.  前記異物捕捉用溝は、第1溝内において、周方向の中央にのみ備えられていることを特徴とする請求項1または2に記載のシールリング。
  5.  前記異物捕捉用溝の溝底は、第2溝に向かって徐々に浅くなるように構成されていることを特徴とする請求項4に記載のシールリング。
  6.  前記動圧発生用溝は、周方向の端部に向かって径方向の幅が拡がるように設けられていることを特徴とする請求項1~5のいずれか一つに記載のシールリング。
  7.  第2溝の溝底は、前記動圧発生用溝の溝底よりも深く、異物を捕捉可能な深さに設定されていることを特徴とする請求項1~6のいずれか一つに記載のシールリング。
  8.  軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成された密封対象領域の流体圧力を保持するシールリングであって、
     前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
     前記側壁面に対して摺動する摺動面側には、
     前記側壁面に対して摺動する摺動領域内に収まる位置に設けられ、かつ周方向に伸びる第1溝と、
     内周面から第1溝における周方向の中央の位置に進入する位置まで伸び、かつ密封対象流体を第1溝内に導くと共に、異物を内周面側に排出可能な第2溝と、
     が設けられると共に、
     第1溝には、第2溝が進入した部位を挟んで周方向の両側に、それぞれ溝底が周方向の中央に比べて周方向の端部の方が浅くなるように構成される一対の動圧発生用溝が設けられており、
     第2溝の溝底は、前記動圧発生用溝の溝底よりも深く構成されていることを特徴とするシールリング。
  9.  前記一対の動圧発生用溝の間であって、第2溝よりも径方向外側には、一方の動圧発生用溝から他方の動圧発生用溝への密封対象流体の流れを妨げる障壁部が設けられていることを特徴とする請求項8に記載のシールリング。
  10.  第2溝の溝底は、径方向の外側から内側に向かって溝深さが深くなる階段状の段差面により構成されていることを特徴とする請求項8または9に記載のシールリング。
  11.  第2溝の溝底には、径方向の外側から内側に向かって溝深さが深くなる傾斜面が設けられていることを特徴とする請求項8または9に記載のシールリング。
PCT/JP2016/057718 2015-03-16 2016-03-11 シールリング WO2016148048A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/557,955 US10408349B2 (en) 2015-03-16 2016-03-11 Seal ring
EP16764878.1A EP3273117B1 (en) 2015-03-16 2016-03-11 Sealing ring
CN201680014654.7A CN107407418B (zh) 2015-03-16 2016-03-11 密封圈
KR1020177025728A KR101972253B1 (ko) 2015-03-16 2016-03-11 실 링
JP2017506515A JP6245406B2 (ja) 2015-03-16 2016-03-11 シールリング

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-052587 2015-03-16
JP2015052676 2015-03-16
JP2015-052676 2015-03-16
JP2015052587 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016148048A1 true WO2016148048A1 (ja) 2016-09-22

Family

ID=56918919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057718 WO2016148048A1 (ja) 2015-03-16 2016-03-11 シールリング

Country Status (6)

Country Link
US (1) US10408349B2 (ja)
EP (1) EP3273117B1 (ja)
JP (1) JP6245406B2 (ja)
KR (1) KR101972253B1 (ja)
CN (1) CN107407418B (ja)
WO (1) WO2016148048A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059341A1 (ja) * 2017-09-21 2019-03-28 Nok株式会社 シールリング
JP2020106134A (ja) * 2018-12-28 2020-07-09 Ntn株式会社 シールリング
US11525512B2 (en) * 2018-05-17 2022-12-13 Eagle Industry Co., Ltd. Seal ring
JP7543401B2 (ja) 2020-05-11 2024-09-02 イーグル工業株式会社 摺動部品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546414A (zh) * 2018-03-20 2019-12-06 Nok株式会社 密封装置
WO2019221229A1 (ja) * 2018-05-17 2019-11-21 イーグル工業株式会社 シールリング
US11530749B2 (en) 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
WO2019221231A1 (ja) * 2018-05-17 2019-11-21 イーグル工業株式会社 シールリング
JP7305289B2 (ja) 2018-08-24 2023-07-10 イーグル工業株式会社 摺動部材
KR102589959B1 (ko) 2018-11-30 2023-10-17 이구루코교 가부시기가이샤 슬라이딩 부품
KR102541901B1 (ko) 2018-12-21 2023-06-13 이구루코교 가부시기가이샤 슬라이딩 부품
WO2020162025A1 (ja) 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JP7370681B2 (ja) 2019-02-14 2023-10-30 イーグル工業株式会社 摺動部品
JP7374573B2 (ja) 2019-02-21 2023-11-07 イーグル工業株式会社 摺動部品
EP4345342A3 (en) * 2019-07-26 2024-06-19 Eagle Industry Co., Ltd. Sliding component
CN115298462A (zh) * 2020-03-31 2022-11-04 伊格尔工业股份有限公司 滑动部件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121603A (ja) * 1994-10-25 1996-05-17 Nok Corp シ−ルリング
JP2002276815A (ja) * 2001-03-16 2002-09-25 Nok Corp シールリング
WO2011105513A1 (ja) * 2010-02-26 2011-09-01 Nok株式会社 シールリング
JP2015028382A (ja) * 2013-07-03 2015-02-12 Ntn株式会社 シールリング

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082296A (en) * 1976-05-26 1978-04-04 Stein Philip C Seal for sealing between a rotating member and a housing
US5169159A (en) * 1991-09-30 1992-12-08 General Electric Company Effective sealing device for engine flowpath
US5171027A (en) * 1992-01-31 1992-12-15 Parker-Hannifin Corporation High temperature and pressure fluid seal
US5328178A (en) * 1992-10-14 1994-07-12 General Motors Corporation Brake master cylinder seal
JPH09210211A (ja) * 1996-02-01 1997-08-12 Riken Corp シールリング
CN1087061C (zh) * 1998-08-13 2002-07-03 王玉明 可双向旋转的双列双叶螺旋槽端面密封
CN1167890C (zh) * 2001-01-18 2004-09-22 王玉明 可双向旋转的螺旋槽端面密封装置
JP2006009897A (ja) * 2004-06-24 2006-01-12 Nok Corp シールリング
JP2007078041A (ja) * 2005-09-13 2007-03-29 Ntn Corp 樹脂製シールリング
JP2011105513A (ja) * 2009-11-13 2011-06-02 Terabondo:Kk 重荷物昇降補助装置。
WO2011115073A1 (ja) * 2010-03-15 2011-09-22 イーグル工業株式会社 摺動部材
CN103415730A (zh) * 2011-12-23 2013-11-27 株式会社理研 密封环
CN102518809B (zh) * 2011-12-29 2015-04-22 江苏大学 一种防固体颗粒吸入型流体动压机械密封环
CN102619742B (zh) * 2012-03-07 2016-04-20 大连华阳密封股份有限公司 用于双向旋转内压式泵用干气密封装置
CN102588605B (zh) * 2012-03-22 2014-08-13 成都一通密封有限公司 双向干气密封摩擦副
JP2014055645A (ja) * 2012-09-13 2014-03-27 Nok Corp シールリング
CN103104707B (zh) * 2013-01-30 2015-10-28 浙江工业大学 似蘑菇型槽双向旋转流体动压型机械密封结构
CN105683633B (zh) * 2013-09-27 2019-01-29 株式会社理研 密封圈
CN103453147B (zh) * 2013-09-30 2016-04-13 四川日机密封件股份有限公司 具有双旋向流体动压槽的非接触式机械密封环
KR20160098451A (ko) 2014-01-24 2016-08-18 엔오케이 가부시키가이샤 실 링
US10190689B2 (en) * 2015-03-16 2019-01-29 Nok Corporation Seal ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121603A (ja) * 1994-10-25 1996-05-17 Nok Corp シ−ルリング
JP2002276815A (ja) * 2001-03-16 2002-09-25 Nok Corp シールリング
WO2011105513A1 (ja) * 2010-02-26 2011-09-01 Nok株式会社 シールリング
JP2015028382A (ja) * 2013-07-03 2015-02-12 Ntn株式会社 シールリング

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059341A1 (ja) * 2017-09-21 2019-03-28 Nok株式会社 シールリング
KR20200044940A (ko) * 2017-09-21 2020-04-29 엔오케이 가부시키가이샤 밀봉 링
CN111108312A (zh) * 2017-09-21 2020-05-05 Nok株式会社 密封环
JPWO2019059341A1 (ja) * 2017-09-21 2020-10-15 Nok株式会社 シールリング
KR102387229B1 (ko) 2017-09-21 2022-04-15 엔오케이 가부시키가이샤 밀봉 링
US11320051B2 (en) 2017-09-21 2022-05-03 Nok Corporation Seal ring
JP7164533B2 (ja) 2017-09-21 2022-11-01 Nok株式会社 シールリング
US11525512B2 (en) * 2018-05-17 2022-12-13 Eagle Industry Co., Ltd. Seal ring
JP2020106134A (ja) * 2018-12-28 2020-07-09 Ntn株式会社 シールリング
JP7166167B2 (ja) 2018-12-28 2022-11-07 Ntn株式会社 シールリング
JP7543401B2 (ja) 2020-05-11 2024-09-02 イーグル工業株式会社 摺動部品

Also Published As

Publication number Publication date
US20180058584A1 (en) 2018-03-01
KR20170117515A (ko) 2017-10-23
JP6245406B2 (ja) 2017-12-13
EP3273117B1 (en) 2019-10-23
EP3273117A4 (en) 2018-11-21
EP3273117A1 (en) 2018-01-24
JPWO2016148048A1 (ja) 2017-11-16
KR101972253B1 (ko) 2019-04-24
CN107407418B (zh) 2019-09-06
US10408349B2 (en) 2019-09-10
CN107407418A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6245406B2 (ja) シールリング
JP6491374B2 (ja) シールリング
JP6424949B2 (ja) シールリング
JP6615833B2 (ja) シールリング
JP6314689B2 (ja) 密封装置
KR102362482B1 (ko) 실 링
JP2015158215A (ja) シールリング
JP6597840B2 (ja) 軸及び密封構造
JP6170271B2 (ja) シールリング
WO2015020075A1 (ja) シールリング
KR102685516B1 (ko) 밀봉장치
JP2017101736A (ja) シールリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506515

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025728

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15557955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764878

Country of ref document: EP