WO2016147934A1 - ループアンテナ - Google Patents

ループアンテナ Download PDF

Info

Publication number
WO2016147934A1
WO2016147934A1 PCT/JP2016/057011 JP2016057011W WO2016147934A1 WO 2016147934 A1 WO2016147934 A1 WO 2016147934A1 JP 2016057011 W JP2016057011 W JP 2016057011W WO 2016147934 A1 WO2016147934 A1 WO 2016147934A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
amplification
main
main loop
signal source
Prior art date
Application number
PCT/JP2016/057011
Other languages
English (en)
French (fr)
Inventor
佐々木 愛一郎
勉 溝田
森村 浩季
加々見 修
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US15/542,338 priority Critical patent/US10680333B2/en
Priority to CN201680015874.1A priority patent/CN107431276B/zh
Priority to EP16764764.3A priority patent/EP3273539B1/en
Publication of WO2016147934A1 publication Critical patent/WO2016147934A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to a loop antenna that can contribute to expanding the area of a wireless system using a magnetic field.
  • a wireless system using a magnetic field Unlike a radio wave, a magnetic field has an extremely small interaction with a human body or a dielectric, which is advantageous in forming a clear wireless area that is not disturbed by a human body or an obstacle. Further, the distance attenuation characteristic of the radio wave is 20 dB / dec. However, the distance attenuation characteristic of the magnetic field is 60 dB / dec. The magnetic field is also suitable for clearly distinguishing the radio area boundary.
  • the distance attenuation characteristic (60 dB / dec.) Of the magnetic field that is steep compared to radio waves is a disadvantageous factor in expanding the wireless area.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a loop antenna that can contribute to area expansion of a wireless system using a magnetic field.
  • a loop antenna includes a main loop that is an open loop connected to a signal source or a reception circuit, and an amplification loop that is a closed loop having the same shape as the main loop.
  • the main loop and the amplification loop are arranged on the same surface of a flat substrate formed of an insulator.
  • a loop antenna includes a main loop that is an open loop connected to a signal source or a reception circuit, and an amplification loop that is a closed loop having the same shape as the main loop, and the main loop and the loop
  • the amplification loop is characterized in that it is arranged on different plane substrates in a structure in which different planes of a plane substrate formed of an insulator or a plurality of plane substrates are multilayered.
  • the loop antenna of the present invention when a signal source is used, a current sufficiently larger than the current flowing through the main loop can be accumulated in the amplification loop, and as a result, a large magnetic field can be generated. become.
  • the loop antenna when a receiving circuit is used, a large current is accumulated in the amplifying loop when receiving a magnetic field, compared with a case where the amplifying loop is not used. A large reception current can be received in the main loop.
  • FIG. 1 is a diagram illustrating an example of a loop antenna according to the first embodiment.
  • the loop antenna is a resonance type loop antenna and includes a main loop 1 and an amplification loop 2.
  • the main loop 1 is formed on a flat substrate (not shown) made of an insulator, has terminals T and T for connecting a signal source 5 or a receiving circuit (not shown), and is an open loop. ing. The number of turns is 1.
  • FIG. 1 is a diagram in which a signal source 5 is connected as an example.
  • a resistor R1 and a capacitor C1 are connected in series to the main loop 1.
  • an amplification loop 2 is formed on the same surface of the flat substrate on which the main loop 1 is formed, in close proximity to the main loop 1.
  • the amplification loop 2 is not provided with a terminal and is a closed loop. The number of turns is 1.
  • the amplification loop 2 is disposed inside the main loop 1.
  • the distance d between the main loop 1 and the amplification loop 2 is, for example, one tenth or less of the square root of the area surrounded by the main loop 1 or the amplification loop 2.
  • a resistor R2 and a capacitor C2 are connected in series to the amplification loop 2.
  • the alternating current I1 When the alternating current I1 is supplied from the signal source 5 to the main loop 1, the alternating current I2 flows through the amplification loop 2 due to the mutual inductance between the main loop 1 and the amplification loop 2.
  • I2 becomes larger than I1. Therefore, the area of the magnetic field generated by the loop antenna can be expanded.
  • I2 depends on a plurality of factors such as frequency, R1, R2, C1, C2, the internal resistance R0 of the signal source 5, and the loop shape. Therefore, it is preferable to adjust R1, R2, C1, and C2 to maximize I2.
  • FIG. 1 shows an example in which the signal source 5 is connected to a loop antenna and used as a transmission antenna. However, instead of the signal source 5, a reception circuit is connected and the loop antenna is used as a reception antenna. Also good.
  • the area of the wireless system using a magnetic field can be expanded.
  • the amplification loop 2 may be disposed outside the main loop 1. That is, it arrange
  • the amplification loop 2 has the same shape (geometric shape) as the main loop, as shown in FIG. Similar shapes include similar shapes. The same applies to the embodiments described later.
  • any one or a plurality of R1, R2, C1, and C2 may not be used. The same applies to the embodiments described later.
  • FIG. 2 is a diagram illustrating an example of a loop antenna according to the second embodiment.
  • the number of turns is 1 in both the main loop 1 and the amplification loop 2 of the first embodiment.
  • the number of turns is 3, and the other configurations are the same as those in the first embodiment. This is the same as the embodiment.
  • the amplification loop 2 is disposed inside the main loop 1.
  • the number of windings is arbitrary, and any number of windings is effective. Further, the number of turns of the main loop 1 and the amplification loop 2 may be different. However, when the number of turns is set to 2 or more, the number of turns of the main loop 1 and the number of turns of the amplification loop 2 can be made equal to each other. The inductance can be increased and the current amplification effect can be enhanced. Therefore, it is preferable to make the number of turns of the main loop 1 and the number of turns of the amplification loop 2 equal.
  • FIG. 3 is a diagram illustrating an example of a loop antenna according to the third embodiment.
  • the amplification loop 2 is arranged inside the main loop 1 or Arranged outside.
  • the main loop 1 is formed on the surface of the flat substrate, and the amplification loop 2 is formed on the back surface of the same flat substrate.
  • the other configuration is the same as that of the first embodiment.
  • the main loop 1 and the amplification loop 2 may be formed separately on different surfaces (front and back) of the planar substrate. Therefore, the main loop 1 may be formed on the back surface of the flat substrate, and the amplification loop 2 may be formed on the surface of the same flat substrate.
  • the main loop 1 and the amplification loop 2 are formed on the front and back of the same plane substrate, the main loop 1 and the amplification loop 2 can have the same shape and can be brought close to each other.
  • the main loop 1 and the amplification loop 2 can have the same shape and the same shape.
  • the distance between the main loop 1 and the amplification loop 2 substantially matches the thickness of the planar substrate. The distance is 1/10 or less of the square root of the area surrounded by the main loop 1 or the amplification loop 2.
  • the magnetic coupling coefficient between the main loop 1 and the amplification loop 2 can be made close to 1, and the mutual inductance can be increased. Therefore, when the signal source 5 is used, a larger I2 can be obtained with respect to the constant I1, and when the receiving circuit is used, a larger I1 can be obtained with respect to the constant I2. That is, the area of the magnetic field can be expanded.
  • the main loop 1 and the amplification loop 2 may be arranged on different planar substrates in a structure in which the planar substrates are multilayered.
  • the distance between the main loop 1 and the amplification loop 2 is substantially equal to one of integral multiples (1 times, 2 times,...) Of the thickness of the planar substrate. The distance is 1/10 or less of the square root of the area surrounded by the main loop 1 or the amplification loop 2.
  • FIG. 4 is a diagram illustrating an example of a loop antenna according to the fourth embodiment.
  • the number of turns is 3 in the loop antenna of the third embodiment.
  • the other configuration is the same as that of the third embodiment.
  • the main loop 1 and the amplification loop 2 are arranged on different surfaces of the same plane substrate, for example. Even if the number of turns of the main loop 1 and the amplification loop 2 is increased, The main loop 1 and the amplification loop 2 can be brought close to each other. The same applies to the case where the main loop 1 and the amplification loop 2 are arranged on different planar substrates in a structure in which the planar substrates are multilayered.
  • the mutual inductance between the main loop 1 and the amplification loop 2 does not decrease, the magnetic field area can be expanded, and the effect can be enhanced as the number of turns is increased.
  • the number of turns of the main loop 1 equal to the number of turns of the amplification loop 2, it is possible to further increase the mutual inductance and expand the magnetic field area.
  • the loop antenna according to the fifth embodiment has an optimized capacity connected to the main loop 1 and the amplifying loop 2, and is otherwise the same as in the first to fourth embodiments.
  • the frequency f of the signal generated from the signal source 5 is 10 MHz
  • the resistance R1 connected to the main loop 1 is 25 ⁇
  • the resistance R2 connected to the amplification loop 2 is 1 ⁇
  • the internal resistance R0 of the signal source 5 is 25 ⁇ . That is, the resistance R2 is made smaller than the sum of the resistance R1 and the internal resistance R0.
  • the self-inductance L of the main loop 1 and the amplification loop 2 is equally 1 ⁇ H.
  • the self-inductance of the loop depends on the geometric shape, it is easy to equalize the self-inductance by making the geometric shapes of the main loop 1 and the amplification loop 2 the same.
  • FIG. 5 is a diagram showing the relationship between the current I2 of the amplification loop 2 and the capacitances C1 and C2.
  • the current amplification effect is maximum at 10 MHz. That is, I1 (power consumption of the signal source 5) is 10 mA, whereas I2 is 70 mA or more, and a current that is seven times or more of I1 can flow through I2. Therefore, the amplitude of the magnetic field that can be generated can be amplified by 7 times or more. That is, since the current flowing through the loop antenna can be amplified without increasing the current supplied from the signal source 5, it is possible to generate a large magnetic field with low power consumption. As a result, the area of the wireless system using the magnetic field can be expanded.

Landscapes

  • Details Of Aerials (AREA)

Abstract

磁界を用いた無線システムのエリア拡大に寄与できるループアンテナを提供する。信号源5または受信回路に接続される開ループであるメインループ1と、前記メインループ1と同じ形状を有する閉ループである増幅用ループ2とを備え、前記メインループ1と前記増幅用ループ2は、絶縁体で形成された平面基板の同一面に配置され、前記メインループ1には、第1容量が接続され、前記増幅用ループには、第2容量が接続される、ループアンテナである。

Description

ループアンテナ
 本発明は、磁界を用いた無線システムのエリア拡大に寄与できるループアンテナに関する。
 従来において、磁界を利用した無線システムが提案されている。磁界は、電波と異なり、人体や誘電体との相互作用が極めて小さいので、人体や障害物に乱されない明確な無線エリアを形成する上で有利である。また、電波の距離減衰特性は20dB/dec.であるが、磁界の距離減衰特性は60dB/dec.であり、無線エリア境界を明確に区別する上でも磁界が適している。
特開2013-125991号公報 特開2014-135538号公報 特開2014-135539号公報
 しかし、電波に比べて急峻な磁界の距離減衰特性(60dB/dec.)は、無線エリアを拡大する上では不利な要因となる。従来、磁界を用いた無線システムにおいてエリアを拡大するには、送信機から供給する電流を増やす必要があった。
 本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、磁界を用いた無線システムのエリア拡大に寄与できるループアンテナを提供することにある。
 上記課題を解決するために、第1の本発明のループアンテナは、信号源または受信回路に接続される開ループであるメインループと、前記メインループと同じ形状を有する閉ループである増幅用ループとを備え、前記メインループと前記増幅用ループは、絶縁体で形成された平面基板の同一面に配置されることを特徴とする。
 第2の本発明のループアンテナは、信号源または受信回路に接続される開ループであるメインループと、前記メインループと同じ形状を有する閉ループである増幅用ループとを備え、前記メインループと前記増幅用ループは、絶縁体で形成された平面基板の異なる面または複数の平面基板を多層化した構造において異なる平面基板に配置されることを特徴とする。
 本発明に係るループアンテナによれば、信号源を用いる場合は、メインループを流れる電流よりも十分大きな電流を増幅用ループに蓄積することができるので、結果的に大きな磁界を生成することが可能になる。
 また、本発明に係るループアンテナによれば、受信回路を用いる場合には、磁界を受信する際に大きな電流が増幅用ループに蓄積される効果によって、増幅用ループを用いない場合に比べて、メインループにて大きな受信電流を受信することが可能になる。
 以上の結果、磁界を用いた無線システムのエリア拡大に寄与できる。
第1の実施の形態のループアンテナの一例を示す図である。 第2の実施の形態のループアンテナの一例を示す図である。 第3の実施の形態のループアンテナの一例を示す図である。 第4の実施の形態のループアンテナの一例を示す図である。 増幅用ループ2の電流I2と容量C1とC2の関係を示す図である。 C1=31.56[pF],C2=222.09[pF]の場合のI1、I2の周波数依存性(計算値)を示す図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態のループアンテナの一例を示す図である。
 ループアンテナは、共鳴型のループアンテナであり、メインループ1と増幅用ループ2を備える。
 メインループ1は、絶縁体で形成された平面基板(図示せず)に形成され、信号源5または受信回路(図示せず)を接続するための端子T、Tを有し、開ループとなっている。巻き数は1である。図1は、例として信号源5を接続した図になっている。メインループ1には抵抗R1と容量C1が直列に接続されている。
 また、メインループ1が形成された平面基板の同一面に、メインループ1に極めて近接して増幅用ループ2が形成されている。増幅用ループ2は、端子を備えず、閉ループとなっている。巻き数は1である。増幅用ループ2はメインループ1の内側に配置されている。
 メインループ1と増幅用ループ2の距離dは、例えば、メインループ1または増幅用ループ2により囲まれる領域の面積の平方根の10分の1以下である。増幅用ループ2には抵抗R2と容量C2が直列に接続されている。
 信号源5からメインループ1に交流電流I1が供給されると、メインループ1と増幅用ループ2の間の相互インダクタンスにより、増幅用ループ2に交流電流I2が流れる。一般に、R2をR1より小さくすると、I2はI1より大きくなる。よって、ループアンテナにより発生する磁界のエリアを拡大できる。
 I2は、周波数、R1、R2、C1、C2、信号源5の内部抵抗R0、ループ形状など複数の要素に依存する。そのため、R1、R2、C1、C2を調整し、I2を最大化するのが好ましい。
 なお、図1は、ループアンテナに信号源5を接続し、送信アンテナとして用いた場合の例を示しているが、信号源5の代わりに受信回路を接続し、ループアンテナを受信アンテナとして用いてもよい。
 この場合、外部から受信する磁界により、増幅用ループ2に大きな交流電流I2が蓄積されるが、相互インダクタンスがあるために、メインループ1を流れる交流電流I1も、増幅用ループ2が存在しない場合に比べて大きくなる。周波数、ループ形状などに応じて、R1、R2、C1、C2を設定することで、I1を最大化することができる。よって、相手側にとってみても、磁界のエリアを拡大できる。
 したがって、第1の実施の形態のループアンテナによれば、磁界を利用した無線システムのエリアを拡大できる。
 なお、増幅用ループ2はメインループ1の外側に配置してもよい。すなわち、一方のループが他方のループを内包するように配置する。後述の実施の形態でも同様である。また、増幅用ループ2は、図1に示すように、メインループと同じ形状(幾何学形状)である。同じ形状には、相似形を含む。後述の実施の形態でも同様である。
 また、所望の電流およびエリアが得られる場合、R1、R2、C1、C2のいずれか1つまたは複数を用いなくてもよい。後述の実施の形態でも同様である。
 [第2の実施の形態]
 図2は、第2の実施の形態に係るループアンテナの一例を示す図である。
 第1の実施の形態のメインループ1、増幅用ループ2共に、巻き数は1であったが、第2の実施の形態では巻き数は共に3であり、これ以外の構成は、第1の実施の形態と同様である。増幅用ループ2はメインループ1の内側に配置されている。
 本発明において巻き数は任意であり、いずれの巻き数でも有効である。また、メインループ1と増幅用ループ2の巻き数が異なってもよいが、巻き数を2以上とする場合、メインループ1の巻き数と増幅用ループ2の巻き数を等しくすることで、相互インダクタンスを大きくすることができ、電流の増幅効果を高めることができる。そのため、メインループ1の巻き数と増幅用ループ2の巻き数を等しくすることが好ましい。
 [第3の実施の形態]
 図3は、第3の実施の形態に係るループアンテナの一例を示す図である。
 第1の実施の形態および第2の実施の形態では、メインループ1と増幅用ループ2を平面基板の同一平面に設け、かつ、近接させるために、増幅用ループ2をメインループ1の内側または外側に配置した。
 第3の実施の形態では、メインループ1が平面基板の表面に形成され、増幅用ループ2が同じ平面基板の裏面に形成される。これ以外の構成は、第1の実施の形態と同様である。メインループ1と増幅用ループ2は、平面基板の異なる面(表と裏)に別々に形成されていればよい。したがって、メインループ1が平面基板の裏面に形成され、増幅用ループ2が同じ平面基板の表面に形成されてもよい。
 メインループ1と増幅用ループ2を同じ平面基板の表裏に形成したことで、メインループ1と増幅用ループ2を同一形状とし、かつ、互いを近接させることができる。この場合、メインループ1と増幅用ループ2とは、形状および大きさが同じである完全な同一形状とすることができる。この場合、メインループ1と増幅用ループ2の距離は、平面基板の厚さにほぼ一致する。距離は、メインループ1または増幅用ループ2により囲まれる領域の面積の平方根の10分の1以下である。
 メインループ1と増幅用ループ2が同一形状なので、メインループ1と増幅用ループ2の間の磁気結合係数を1に近づけることができ、相互インダクタンスを大きくすることができる。よって、信号源5を用いる場合は、一定のI1に対してより大きなI2を得ることができ、受信回路を用いる場合は、一定のI2に対してより大きなI1を得ることができる。つまり、磁界のエリアを拡大できる。
 なお、メインループ1と増幅用ループ2は、平面基板を多層化した構造において、異なる平面基板に配置されていてもよい。この場合、メインループ1と増幅用ループ2の距離は、平面基板の厚さの整数倍(1倍、2倍、…)のいずれかにほぼ一致する。距離は、メインループ1または増幅用ループ2により囲まれる領域の面積の平方根の10分の1以下である。
 [第4の実施の形態]
 図4は、第4の実施の形態に係るループアンテナの一例を示す図である。
 第4の実施の形態では、第3の実施の形態のループアンテナにおいて、巻き数を3にした構成である。これ以外の構成は、第3の実施の形態と同様である。
 図2に示すように、平面基板の同一面に巻き数の多いメインループ1と増幅用ループ2を形成すると、メインループ1に囲まれる領域の面積と、増幅用ループ2に囲まれる領域の面積の差が大きくなるという問題点がある。この差が大きすぎると、メインループ1と増幅用ループ2の間の相互インダクタンスが減少し、磁界のエリア拡大(I2を増幅すること)が困難になる。
 第4の実施の形態では、メインループ1と増幅用ループ2は、例えば、同一の平面基板の異なる面に配置されるので、メインループ1と増幅用ループ2の巻き数を多くしても、メインループ1と増幅用ループ2を近接させることができる。メインループ1と増幅用ループ2を、平面基板を多層化した構造において異なる平面基板に配置した場合でも同様である。
 よって、メインループ1と増幅用ループ2の間の相互インダクタンスが減少せず、磁界のエリアを拡大でき、巻き数を増やすほど、その効果を高めることができる。
 また、メインループ1の巻き数と増幅用ループ2の巻き数を等しくすることで、さらに相互インダクタンスを高め、磁界のエリアを拡大できる。
 [第5の実施の形態]
 第5の実施の形態のループアンテナは、メインループ1と増幅用ループ2に接続した容量を最適化したものであり、その他については、第1~第4の実施の形態と同様である。
 例えば、信号源5から発生する信号の周波数fを10MHz、メインループ1に接続する抵抗R1を25Ω、増幅用ループ2に接続する抵抗R2を1Ω、信号源5の内部抵抗R0を25Ωとする。すなわち、抵抗R2は、抵抗R1と内部抵抗R0との和より小さくする。
 また、メインループ1と増幅用ループ2の自己インダクタンスLは等しく1μHとする。
 ループの自己インダクタンスは幾何学形状に依存するので、メインループ1と増幅用ループ2の幾何学形状を同一にすることにより、それらの自己インダクタンスを等しくすることは容易である。
 図5は、増幅用ループ2の電流I2と容量C1とC2の関係を示す図である。
 上記の条件の下、容量C1とC2を変数としてI2をシミュレートすると、図5のようになる。I2が最大になるのは、C1が30pF付近かつC2が220pF付近の場合であることがわかる。
 一方、上記のパラメータを以下の式
Figure JPOXMLDOC01-appb-M000002
 に代入すると、C1=31.56[pF],C2=222.09[pF]が得られる。
 よって、この式により計算した値のC1、C2をメインループ1と増幅用ループ2に接続すれば、I2を最大にでき、最大の増幅効果が得られる。
 図6は、C1=31.56[pF],C2=222.09[pF]の場合のI1、I2の周波数依存性(計算値)を示す図である。
 図に示すように10MHzにおいて電流増幅効果が最大である。つまり、I1(信号源5の消費電力)が10mAであるのに対して、I2は70mA以上であり、I1の7倍以上の電流をI2に流すことできる。したがって、生成可能な磁界の振幅を7倍以上に増幅することができる。すなわち、信号源5から供給する電流を増やすことなく、ループアンテナに流れる電流を増幅することができるので、少ない消費電力で大きな磁界を生成することができる。その結果、磁界を利用した無線システムのエリアを拡大することができる。
1 メインループ
2 増幅用ループ
5 信号源
C1、C2 容量
I1、I2 電流
R0 内部抵抗
R1、R2 抵抗
T 端子

Claims (7)

  1.  信号源または受信回路に接続される開ループであるメインループと、
     前記メインループと同じ形状を有する閉ループである増幅用ループとを備え、
     前記メインループと前記増幅用ループは、絶縁体で形成された平面基板の同一面に配置され、
     前記メインループには、第1容量が接続され、
     前記増幅用ループには、第2容量が接続される
     ことを特徴とするループアンテナ。
  2.  信号源または受信回路に接続される開ループであるメインループと、
     前記メインループと同じ形状を有する閉ループである増幅用ループとを備え、
     前記メインループと前記増幅用ループは、絶縁体で形成された平面基板の異なる面または複数の平面基板を多層化した構造において異なる平面基板に配置され、
     前記メインループには、第1容量が接続され、
     前記増幅用ループには、第2容量が接続される
     ことを特徴とするループアンテナ。
  3.  前記メインループと前記増幅用ループの距離は、前記メインループまたは前記増幅用ループにより囲まれる領域の面積の平方根の10分の1以下である
     ことを特徴とする請求項1または2記載のループアンテナ。
  4.  前記メインループの巻き数と前記増幅用ループの巻き数が等しい
     ことを特徴とする請求項1ないし3のいずれかに記載のループアンテナ。
  5.  前記メインループには、前記第1容量と第1抵抗とが直列に接続され、
     前記増幅用ループには、前記第2容量と第2抵抗とが直列に接続されている
     ことを特徴とする請求項1ないし4のいずれかに記載のループアンテナ。
  6.  前記メインループは前記信号源に接続され、
     前記メインループの自己インダクタンスと前記増幅用ループの自己インダクタンスが等しい場合、
     前記メインループの前記第1容量C1、前記増幅用ループの前記第2容量C2が次の式の条件を満たす、
    Figure JPOXMLDOC01-appb-M000001
     ただし、Lは、前記メインループと前記増幅用ループの自己インダクタンス、
     ωは、前記メインループに印加する信号の角周波数、
     R0は、前記信号源の内部抵抗、
     R1は、前記第1抵抗、R2は、前記第2抵抗である
     ことを特徴とする請求項5に記載のループアンテナ。
  7.  前記メインループは前記信号源に接続され、
     前記信号源には、内部抵抗が接続され、
     前記第2抵抗は、前記第1抵抗と前記前記内部抵抗との和より小さい
     ことを特徴とする請求項5に記載のループアンテナ。
PCT/JP2016/057011 2015-03-18 2016-03-07 ループアンテナ WO2016147934A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/542,338 US10680333B2 (en) 2015-03-18 2016-03-07 Loop antenna
CN201680015874.1A CN107431276B (zh) 2015-03-18 2016-03-07 环路天线
EP16764764.3A EP3273539B1 (en) 2015-03-18 2016-03-07 Loop antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015054362A JP6077036B2 (ja) 2015-03-18 2015-03-18 ループアンテナ
JP2015-054362 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147934A1 true WO2016147934A1 (ja) 2016-09-22

Family

ID=56919950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057011 WO2016147934A1 (ja) 2015-03-18 2016-03-07 ループアンテナ

Country Status (5)

Country Link
US (1) US10680333B2 (ja)
EP (1) EP3273539B1 (ja)
JP (1) JP6077036B2 (ja)
CN (1) CN107431276B (ja)
WO (1) WO2016147934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429536A (zh) * 2017-06-19 2019-03-05 日本电信电话株式会社 天线电路
CN110537293A (zh) * 2017-06-20 2019-12-03 日本电信电话株式会社 环形天线以及环形天线的设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102101A (ja) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd ゲートアンテナ装置
JP2005275871A (ja) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd 挿入型記憶媒体装置および無線通信媒体付記憶装置
JP2011045045A (ja) * 2009-07-23 2011-03-03 Nippon Soken Inc 送受電用アンテナ及び送電器
JP2011086009A (ja) * 2009-10-13 2011-04-28 Tdk Corp Rfid及び無線通信機
JP2013534074A (ja) * 2010-05-14 2013-08-29 クアルコム,インコーポレイテッド 無線電力伝送器の電磁界分布の制御

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347058Y2 (ja) * 1980-03-03 1988-12-06
CN1185865A (zh) * 1995-05-30 1998-06-24 传感电子公司 用于改进询问场分布的eas系统天线结构
JP2001185939A (ja) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp アンテナコイル及び電磁誘導型非接触データキャリアシステム
US6603440B2 (en) * 2000-12-14 2003-08-05 Protura Wireless, Inc. Arrayed-segment loop antenna
US6567050B1 (en) * 2001-12-17 2003-05-20 Briggs James B Loop antenna compensator
US7055754B2 (en) * 2003-11-03 2006-06-06 Avery Dennison Corporation Self-compensating antennas for substrates having differing dielectric constant values
US8299652B2 (en) * 2008-08-20 2012-10-30 Intel Corporation Wireless power transfer apparatus and method thereof
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
JP2011015005A (ja) * 2009-06-30 2011-01-20 Panasonic Corp アンテナ装置及びそれを備えた携帯無線機
JP2011066759A (ja) * 2009-09-18 2011-03-31 Sony Chemical & Information Device Corp アンテナ装置、及び、通信装置
US8508342B2 (en) * 2009-11-19 2013-08-13 Panasonic Corporation Transmitting / receiving antenna and transmitter / receiver device using the same
JP4850975B1 (ja) * 2011-02-15 2012-01-11 パナソニック株式会社 送受信装置
JP5684695B2 (ja) 2011-12-13 2015-03-18 日本電信電話株式会社 無線通信システム
US8857983B2 (en) * 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US9466418B2 (en) * 2012-06-12 2016-10-11 Gerogia Tech Research Corporation Multi-band and broadband wireless power transfer through embedded geometric configurations
JP5813672B2 (ja) 2013-01-08 2015-11-17 日本電信電話株式会社 無線通信システム
JP5914368B2 (ja) 2013-01-08 2016-05-11 日本電信電話株式会社 携帯端末装置および無線通信システム
US9293825B2 (en) * 2013-03-15 2016-03-22 Verifone, Inc. Multi-loop antenna system for contactless applications
WO2015008704A1 (ja) * 2013-07-16 2015-01-22 株式会社村田製作所 アンテナ装置及び通信装置
US10205237B2 (en) * 2014-07-30 2019-02-12 Renesas Electronics Corporation Loop antenna and communication control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102101A (ja) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd ゲートアンテナ装置
JP2005275871A (ja) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd 挿入型記憶媒体装置および無線通信媒体付記憶装置
JP2011045045A (ja) * 2009-07-23 2011-03-03 Nippon Soken Inc 送受電用アンテナ及び送電器
JP2011086009A (ja) * 2009-10-13 2011-04-28 Tdk Corp Rfid及び無線通信機
JP2013534074A (ja) * 2010-05-14 2013-08-29 クアルコム,インコーポレイテッド 無線電力伝送器の電磁界分布の制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273539A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429536A (zh) * 2017-06-19 2019-03-05 日本电信电话株式会社 天线电路
US10498037B1 (en) 2017-06-19 2019-12-03 Nippon Telegraph And Telephone Corporation Antenna circuit
CN109429536B (zh) * 2017-06-19 2020-07-31 日本电信电话株式会社 天线电路
CN110537293A (zh) * 2017-06-20 2019-12-03 日本电信电话株式会社 环形天线以及环形天线的设计方法
CN110537293B (zh) * 2017-06-20 2020-10-23 日本电信电话株式会社 环形天线以及环形天线的设计方法

Also Published As

Publication number Publication date
US10680333B2 (en) 2020-06-09
EP3273539A4 (en) 2018-09-26
EP3273539B1 (en) 2020-10-14
US20180277953A1 (en) 2018-09-27
JP2016174327A (ja) 2016-09-29
JP6077036B2 (ja) 2017-02-08
CN107431276B (zh) 2020-02-28
EP3273539A1 (en) 2018-01-24
CN107431276A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US10700401B2 (en) Filter and communication device comprising dielectric resonators having frequency adjusting holes and negative coupling holes of greater depth
EP3646410B1 (en) Antenna loaded with electromechanical resonators
US20150365779A1 (en) Electromagnetic induction radio
JP2015509339A5 (ja)
US10498032B2 (en) Antenna component and electronic device
CN105099482A (zh) 躯体通信天线
US8164530B2 (en) Antenna formed of multiple resonant loops
CN105098380A (zh) 躯体通信天线
CN105098379A (zh) 躯体通信天线
US7432786B2 (en) High frequency filter
WO2015129908A4 (en) Element for generating or detecting electromagnetic waves which includes a resonance unit and a differential negative resistance
US9998094B2 (en) Bulk acoustic wave resonator having a frame spaced apart from an electrode
WO2016147934A1 (ja) ループアンテナ
US20090015355A1 (en) Compensated attenuator
CN107528108B (zh) 电介质滤波器
WO2017126151A1 (ja) ループアンテナ
US20150137907A1 (en) Directional coupler having high isolation
CN103378393A (zh) 一种基于印刷电路板的集成定向耦合器
CN108598644A (zh) 一种n层射频基板及设计方法
JP6240741B2 (ja) ループアンテナ
CN110537293B (zh) 环形天线以及环形天线的设计方法
JP2009004606A (ja) バラントランス及びその特性調整方法
CN208240849U (zh) 一种n层射频基板
US8508317B2 (en) Broadband coupling filter
JP2009302622A (ja) 可変減衰回路、及び高周波増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542338

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016764764

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE