WO2016147877A1 - 有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2016147877A1
WO2016147877A1 PCT/JP2016/056539 JP2016056539W WO2016147877A1 WO 2016147877 A1 WO2016147877 A1 WO 2016147877A1 JP 2016056539 W JP2016056539 W JP 2016056539W WO 2016147877 A1 WO2016147877 A1 WO 2016147877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
bis
thin film
Prior art date
Application number
PCT/JP2016/056539
Other languages
English (en)
French (fr)
Inventor
直樹 中家
安達 勲
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680015395.XA priority Critical patent/CN107408637B/zh
Priority to KR1020177027915A priority patent/KR102543967B1/ko
Priority to JP2017506196A priority patent/JP6665853B2/ja
Priority to EP16764707.2A priority patent/EP3270433A4/en
Publication of WO2016147877A1 publication Critical patent/WO2016147877A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene

Definitions

  • the present invention relates to a charge transporting thin film forming composition for organic electroluminescence elements, a charge transporting thin film for organic electroluminescence elements, and an organic electroluminescence element.
  • organic electroluminescence element In an organic electroluminescence (hereinafter referred to as organic EL) element, a charge transporting film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
  • the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently.
  • This invention is made
  • Patent Documents 5 to 8 disclose materials containing 2,4,6,7-tetracyano-1,4,5,8-tetraazanaphthalene as a dopant (electron acceptor). There are no descriptions in the literature teaching or suggesting materials for organic EL devices such as the composition according to the present invention.
  • the present invention A dopant substance comprising a nitrogen-containing heteroaromatic compound substituted with a cyano group represented by any one of formulas (D1) to (D5), a charge transporting substance, and an organic solvent, the dopant substance and the charge A charge transporting thin film forming composition for an organic electroluminescence device, wherein a transporting substance is dissolved in the organic solvent, 2.
  • the charge transporting thin film forming composition for an organic electroluminescence device according to 2 wherein the charge transporting compound is an aniline derivative or a thiophene derivative, 4).
  • a charge transporting thin film forming composition for an organic electroluminescence device according to any one of 1 to 4 further comprising an organosilane compound, 6).
  • the organic electroluminescent element which has a charge transportable thin film for 8 organic electroluminescent elements is provided.
  • composition according to the present invention By using the composition according to the present invention, a charge that has excellent flatness and excellent charge transportability, and can realize excellent luminance characteristics when used as a functional layer such as a hole injection layer of an organic electroluminescence element. A transportable thin film can be obtained.
  • a functional layer such as a hole injection layer of an organic electroluminescence element.
  • a transportable thin film can be obtained.
  • compounds having a structure in which a cyano group is bonded to a nitrogen-containing heteroaromatic ring, such as 2,4,6,7-tetracyano-1,4,5,8-tetraazanaphthalene, are not included.
  • composition according to the present invention containing such a compound as a dopant substance, not only the flatness and charge transportability are excellent, but also the hole-accepting ability from the anode and the hole-transporting layer and the light-emitting layer. As a result of obtaining a charge transporting thin film having excellent hole injection ability, it is presumed that an organic EL device having excellent luminance characteristics was obtained.
  • composition according to the present invention can produce a thin film excellent in charge transportability with good reproducibility even when using various wet processes capable of forming a film over a large area such as a spin coat method or a slit coat method, It is possible to sufficiently cope with the progress in the field of organic EL elements.
  • the charge transporting thin film forming composition for organic electroluminescence device of the present invention (hereinafter also simply referred to as the composition of the present invention) was substituted with a cyano group represented by any one of formulas (D1) to (D5)
  • the dopant substance which consists of a nitrogen-containing heteroaromatic compound is included.
  • Aromatic compounds are optimal.
  • composition of the present invention may contain other dopant substances such as a heteropolyacid compound, an arylsulfonic acid derivative, a tetracyanoquinodimethane derivative, and a benzoquinone derivative in addition to the nitrogen-containing heteroaromatic compound substituted with the cyano group.
  • a heteropolyacid compound such as an arylsulfonic acid derivative, a tetracyanoquinodimethane derivative, and a benzoquinone derivative in addition to the nitrogen-containing heteroaromatic compound substituted with the cyano group.
  • heteropolyacids are preferred.
  • the heteropolyacid is typically a Keggin type represented by the formula (D6) or a Dawson type chemical structure represented by the formula (D7), and has a structure in which a hetero atom is located at the center of the molecule.
  • V molybdenum
  • Mo molybdenum
  • W tungsten
  • other polyacids such as isopolyacids that are oxygen acids and oxygenates of different elements are condensed.
  • oxygen acid of such a different element mainly include silicon (Si), phosphorus (P), and arsenic (As) oxygen acids.
  • heteropolyacid examples include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, and lintongue molybdic acid. These may be used alone or in combination of two or more. Good.
  • the heteropolyacid used by this invention is available as a commercial item, and can also be synthesize
  • the one type of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and most preferably phosphotungstic acid.
  • heteropolyacids When two or more types of heteropolyacids are used, one of the two or more types of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • heteropolyacids are those obtained as commercially available products or known syntheses even when the number of elements is large or small from the structure represented by the general formula in quantitative analysis such as elemental analysis. As long as it is appropriately synthesized according to the method, it can be used in the present invention.
  • phosphotungstic acid is represented by the chemical formula H 3 (PW 12 O 40 ) ⁇ nH 2 O
  • phosphomolybdic acid is represented by the chemical formula H 3 (PMo 12 O 40 ) ⁇ nH 2 O, respectively.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product.
  • W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product.
  • it can be used in the present invention.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthesized product or commercially available product, but a commercially available form and a known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydration water and other impurities.
  • the content of the dopant substance in the composition of the present invention is appropriately set in consideration of the type and amount of the charge transporting substance, but is usually in a mass ratio with respect to the charge transporting substance 1. It is about 0.1 to 10.
  • charge transporting substance contained in the composition of the present invention those typically used in the field of organic EL can be used.
  • specific examples thereof include oligoamine derivatives, N, N′-diarylbenzidine derivatives, arylamine derivatives (aniline derivatives) such as N, N, N ′, N′-tetraarylbenzidine derivatives, oligothiophene derivatives, thienothiophene derivatives.
  • various charge transporting compounds such as thiophene derivatives such as thienobenzothiophene derivatives.
  • aniline derivatives and thiophene derivatives are preferable, and aniline derivatives are more preferable.
  • the molecular weight of the charge transporting compound is preferably about 200 to 9,500 from the viewpoint of preparing a uniform composition that gives a thin film with high flatness, but a thin film with better charge transporting properties is obtained.
  • the lower limit is more preferably 300, still more preferably 400, and from the viewpoint of preparing a uniform composition that gives a thin film with high flatness with good reproducibility, the upper limit is more preferably 8,000, even more preferably 7,000, even more preferably 6,000, and even more preferably 5,000.
  • the charge transporting compound has no molecular weight distribution (dispersity is 1) from the viewpoint of preventing the charge transporting material from being separated when the film is thinned (that is, having a single molecular weight). Is preferred).
  • aniline derivative examples include those represented by the following formula (1) or (2).
  • k represents an integer of 1 to 10, and is preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2, from the viewpoint of increasing the solubility of the compound in an organic solvent.
  • 1 is optimal.
  • l represents 1 or 2.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom,
  • An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms is represented.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic.
  • alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- Examples thereof include a 1-pentenyl group, an n-1-decenyl group, and an n-1-eicosenyl group.
  • alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl.
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, Oxygen-containing heteroaryl groups such as 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group; 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group A sulfur-containing heteroaryl group such as a group; 2-imidazolyl group, 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 3-pyrazyl group, 5-pyrazyl group, 6 -Pyrazyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyr
  • R 1 and R 2 are a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms that may be substituted with a halogen atom, or a carbon number that may be substituted with a halogen atom.
  • An aryl group of ⁇ 20 and a heteroaryl group of 2 to 20 carbon atoms which may be substituted with a halogen atom are preferred, and a carbon number of 1 to 10 which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom
  • a phenyl group which may be substituted with an alkyl group or a halogen atom is more preferred
  • a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group is even more preferred, and a hydrogen atom is most preferred.
  • Ph 1 represents a group represented by Formula (P1).
  • R 3 to R 6 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or 2 carbon atoms
  • Specific examples thereof include the above R 1 and R 2 The same thing as what was explained is mentioned.
  • a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a carbon atom having 6 to 6 carbon atoms which may be substituted with a halogen atom 20 aryl groups and heteroaryl groups having 2 to 20 carbon atoms which may be substituted with a halogen atom are preferred, and those having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom
  • An alkyl group and a phenyl group which may be substituted with a halogen atom are more preferable, a hydrogen atom, a fluorine atom, a methyl group and a trifluoromethyl group are more preferable, and a hydrogen atom is most preferable.
  • Ar 1 independently represents a group represented by any one of the formulas (B1) to (B11), and in particular, any one of the formulas (B1 ′) to (B11 ′) The group represented by these is preferable.
  • R 7 to R 27 , R 30 to R 51 and R 53 to R 154 may each independently be substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a halogen atom.
  • R 28 and R 29 each independently represent a C 6-20 aryl group or a C 2-20 heteroaryl group optionally substituted with Z 1
  • R 52 represents hydrogen atom may be substituted with Z 4, alkyl group having 1 to 20 carbon atoms, optionally substituted alkenyl or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, or Z 1, C6-C20 aryl group or charcoal
  • Z 1 is a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 2
  • Z 2 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 3 or a carbon number of 2
  • R 7 to R 27 , R 30 to R 51 and R 53 to R 154 are each substituted with a hydrogen atom, a fluorine atom, a cyano group, a diphenylamino group which may be substituted with a halogen atom, or a halogen atom.
  • Preferred are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with a halogen atom, and a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom.
  • a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, or a phenyl group which may be substituted with a halogen atom is more preferable.
  • a trifluoromethyl group is more preferable, and a hydrogen atom is most preferable.
  • the optional 2-naphthyl group is even more preferred.
  • a phenyl group may be substituted with Z 1 1- Naphthyl group may be substituted with Z 1 2-naphthyl group, may be substituted with Z 1 2-pyridyl group, may be substituted with Z 1 3- pyridyl is substituted with Z 1
  • An optionally substituted 4 -pyridyl group and a methyl group optionally substituted with Z 4 are more preferred.
  • Ar 4 independently represents a C 6-20 aryl group in which each aryl group may be substituted with a diarylamino group which is a C 6-20 aryl group.
  • aryl group having 6 to 20 carbon atoms include those described for R 1 and R 2.
  • diarylamino group include a diphenylamino group, 1-naphthylphenylamino, and the like. Group, di (1-naphthyl) amino group, 1-naphthyl-2-naphthylamino group, di (2-naphthyl) amino group and the like.
  • Ar 4 includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4- Phenanthryl group, 9-phenanthryl group, p- (diphenylamino) phenyl group, p- (1-naphthylphenylamino) phenyl group, p- (di (1-naphthyl) amino) phenyl group, p- (1-naphthyl- A 2-naphthylamino) phenyl group and a p- (di (2-naphthyl) amino) phenyl group are preferred, and a p- (diphenylamino) phenyl group is more preferred.
  • DPA represents a diphenylamino group
  • R 52 represents the same meaning as described above.
  • Ar 2 independently represents a group represented by any one of the formulas (A1) to (A18).
  • R 155 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 4 , or Z 1
  • halogen atoms alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and heteroaryl groups having 2 to 20 carbon atoms
  • alkyl groups having 1 to 20 carbon atoms alkenyl groups having 2 to 20 carbon atoms
  • alkynyl groups having 2 to 20 carbon atoms alkynyl groups having 2 to 20 carbon atoms
  • aryl groups having 6 to 20 carbon atoms aryl groups having 6 to 20 carbon atoms
  • heteroaryl groups having 2 to 20 carbon atoms Specific examples are the same as those described above for R 1 and R 2 .
  • an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted with a heteroaryl group which have 2-20 carbon atoms substituted with Z 1, with Z 4 alkyl group substituted-1 carbon atoms which may be 20, more preferably a hydrogen atom, Z 1 substituted by optionally 6 carbon atoms which may be ⁇ 14 aryl group, Z 1 carbon atoms which may be substituted with 2 A heteroaryl group having ⁇ 14, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 , more preferably a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , Z even more preferably an alkyl group having a nitrogen-containing heteroaryl group, Z 4 carbon atoms which may be substituted with 1 to 10 also 1-2 carbon atoms 14 substituted with 1, hydrogen atom is substituted with Z 1 which may be a phenyl group, optionally substituted with a phenyl group, optionally substituted
  • the optional 2-naphthyl group is even more preferred.
  • R 155 and DPA have the same meaning as described above.
  • the aniline derivative represented by the formula (1) is more preferably an aniline derivative represented by the following formula (1-1).
  • Ph 1 and k have the same meaning as described above, and Ar 5 represents a group represented by any one of the formulas (D1) to (D13). A group represented by any one of D1 ′) to (D13 ′) is preferable.
  • R 28 , R 29 , R 52 , Ar 4 and DPA have the same meaning as described above.
  • Specific examples of Ar 5 include the same groups as those described above as specific examples of groups suitable as Ar 1 .
  • the aniline derivative represented by formula (1) is preferably an aniline derivative represented by formula (1-2).
  • Ar 6 simultaneously represents a group represented by any one of formulas (E1) to (E14).
  • R 52 represents the same meaning as described above.
  • Ar 3 represents a group represented by any one of the formulas (C1) to (C8), and a group represented by any one of (C1 ′) to (C8 ′) is particularly preferable.
  • DPA represents the same meaning as described above.
  • Z 1 is a halogen atom, a nitro group, a cyano group, an alkyl group which 1 carbon atoms which may be ⁇ 10 substituted by Z 2, with Z 2
  • An optionally substituted alkenyl group having 2 to 10 carbon atoms and an alkynyl group having 2 to 10 carbon atoms which may be substituted with Z 2 are preferred, and substituted with a halogen atom, a nitro group, a cyano group or Z 2 alkyl group of 1-3 1 carbon atoms which may, more preferably an alkynyl group of Z 2 substituted by 2 carbon atoms which may be 1-3 alkenyl groups, Z 2 ⁇ 2 carbon atoms which may be substituted with 3 , a fluorine atom, Z 2 substituted by 1 carbon atoms which may be 1-3 alkyl group, an alkenyl group of Z 2 ⁇ 2 carbon atoms which may be substituted with 1-3
  • Z 4 is preferably a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 5.
  • An atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is more preferable, and a fluorine atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is Even more preferred are a fluorine atom and a phenyl group optionally substituted with Z 5 .
  • Z 2 is preferably a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 3.
  • Even more preferred are a fluorine atom and a phenyl group optionally substituted with Z 3 .
  • Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group which 1 carbon atoms which may be ⁇ 10 substituted by Z 3, with Z 3
  • Z 3 is preferably a halogen atom, more preferably a fluorine atom.
  • Z 1 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 3 carbon atoms which may be substituted with Z 2 , Z 2-substituted 2 carbon atoms which may be 1-3 alkenyl group, an alkynyl group having 2 to 3 carbon atoms are preferable optionally substituted by Z 2, a halogen atom, it may be substituted with Z 2
  • An alkyl group having 1 to 3 carbon atoms is more preferable, and a fluorine atom and a methyl group optionally substituted with Z 2 are even more preferable.
  • Z 4 represents a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms that may be substituted with Z 5.
  • a halogen atom more preferably an aryl group which may having 6 to 10 carbon atoms optionally substituted by Z 5, a fluorine atom, a phenyl group optionally substituted by Z 5 is more preferable.
  • Z 2 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms that may be substituted with Z 3. preferably, a halogen atom, more preferably an aryl group which may having 6 to 10 carbon atoms substituted with Z 3, fluorine atoms, the phenyl group which may be substituted with Z 3 more preferred.
  • Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 3 carbon atoms which may be substituted with Z 3 , Z 3-substituted 2 carbon atoms which may be 1-3 alkenyl group is preferably an alkynyl group which may having 2 or 3 carbon atoms optionally substituted by Z 3, halogen atom, optionally substituted by Z 3 An alkyl group having 1 to 3 carbon atoms is more preferable, and a fluorine atom and a methyl group which may be substituted with Z 3 are even more preferable.
  • Z 3 is preferably a halogen atom, more preferably a fluorine atom.
  • R 52 and R 155 include, but are not limited to, those shown below.
  • the alkyl group, alkenyl group, and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and still more preferably 4 or less.
  • carbon number of the said aryl group and heteroaryl group becomes like this.
  • it is 14 or less, More preferably, it is 10 or less, More preferably, it is 6 or less.
  • the aniline derivative represented by the formula (1) can be produced by reacting an amine compound represented by the formula (3) and an aryl compound represented by the formula (4) in the presence of a catalyst.
  • X represents a halogen atom or a pseudohalogen group
  • Ar 1 , Ar 2 , Ph 1 and k have the same meaning as described above.
  • the aniline derivative represented by the formula (1-1) can be produced by reacting an amine compound represented by the formula (7) and an aryl compound represented by the formula (8) in the presence of a catalyst.
  • the aniline derivative represented by the formula (1-2) can be produced by reacting bis (4-aminophenyl) amine and the aryl compound represented by the formula (9) in the presence of a catalyst.
  • the aniline derivative represented by the formula (2) can be produced by reacting the amine compound represented by the formula (5) and the aryl compound represented by the formula (6) in the presence of a catalyst.
  • halogen atom examples include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group Is mentioned.
  • the charge ratio with the compound is such that the aryl compound can be equal to or more than the equivalent of the substance amount of all NH groups of the amine compound or bis (4-aminophenyl) amine, but about 1 to 1.2 equivalent is preferred. is there.
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, copper iodide; tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ), bis (triphenylphosphine) dichloropalladium.
  • Such ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl ( Phenyl) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphine) And tertiary phosphines such as fino) butane and 1,1′-bis (diphenylphosphino) ferrocene, and tertiary phosphites such as trimethyl phosphite, triethyl phosphit
  • the amount of the catalyst used can be about 0.2 mol with respect to 1 mol of the aryl compound represented by the formula (4), (6), (8) or (9), but about 0.15 mol is preferable. is there.
  • the amount used can be 0.1 to 5 equivalents relative to the metal complex used, but 1 to 2 equivalents is preferred.
  • the above reactions are carried out in a solvent.
  • a solvent the kind will not be specifically limited if it does not have a bad influence on reaction.
  • Specific examples thereof include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), Aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene) , P-dichlorobenzen
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent to be used, and is particularly preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the target aniline derivative can be obtained by post-treatment according to a conventional method.
  • the amine compound represented by the formula (3 ′) that can be used as a raw material is the amine compound represented by the formula (10) and the formula (11).
  • the aryl compound represented can be efficiently produced by reacting in the presence of a catalyst.
  • the above production method of the amine compound represented by the formula (3 ′) is a reaction in which the amine compound represented by the formula (10) and the aryl compound represented by the formula (11) are coupled.
  • the preparation of the amine compound represented by (10) and the aryl compound represented by formula (11) is preferably about 2 to 2.4 aryl compounds with respect to amine compound 1 in terms of the amount of substances.
  • Ar 1 is a group represented by Formula (B4) or a group represented by Formula (B10) in which R 52 is a hydrogen atom, or Ar 2 is represented by Formula (A12).
  • R 52 is a hydrogen atom
  • Ar 2 is represented by Formula (A12).
  • the group represented by the formula or R 155 is a group represented by the formula (A16), which is a hydrogen atom
  • an aryl compound having a protecting group on the amino group can also be used.
  • an aryl compound Ar 2 is represented by formula (4) is a group represented by the formula (A12) (Formula (G1)), Ar 2 has the formula (A16) An aryl compound represented by formula (4) in which R 155 is a hydrogen atom (formula (G2)), and Ar 5 is a group represented by formula (D9).
  • An aryl compound (formula (G1)), Ar 5 is a group represented by formula (D11), and R 52 is a hydrogen atom (Formula (G2))
  • Ar 6 is a group represented by formula (E13), R 52 is a hydrogen atom, an aryl compound represented by formula (9) (formula (G3)), and Ar 6 is represented by formula (E14) a group, an aryl compound represented by the formula (9) R 52 is a hydrogen atom (formula (G4)), is a group Ar 1 is represented by the formula (B4)
  • Aryl compounds R 52 is represented by the formula (11) is a hydrogen atom (formula (G5))
  • aryl compounds Ar 1 is represented by the formula (11) is a group represented by the formula (B10) (Formula In place of (G6)), an aryl compound (formula (G1P) to (G6P)) in which the amino group of each of these aryl compounds is protected is used, and the protected aryl compound and the
  • P 1 to P 6 each independently represent an amino-protecting group.
  • a protecting group a conventional protecting group can be used.
  • a substituted or unsubstituted alkoxycarbonyl group for example, methoxycarbonyl group, ethoxycarbonyl group, t-butoxycarbonyl group, 2, 2,2-trichloroethoxycarbonyl group, allyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group
  • substituted or unsubstituted aralkyloxycarbonyl group for example, benzyloxycarbonyl group
  • Oxycarbonyl-type protecting group such as carbonyl group (for example, phenoxycarbonyl group); formyl group; substituted or unsubstituted alkanoyl group (for example, acetyl group, trifluoroacetyl group, t-butanoyl group), substituted or unsubstituted
  • Ar 51 to Ar 56 and Ar 61 to Ar 66 each represent a monovalent group represented by removing X (halogen atom or pseudohalogen group) of each aryl compound.
  • Ar 61 to Ar 66 each represent the following group.
  • Examples of the production method using an aryl compound having an amino-protecting group described above include, but are not limited to, the following.
  • the conditions regarding the raw material charge ratio, catalyst, ligand, solvent, reaction temperature, etc. in the production method using such an aryl compound having a protecting group are as follows: aniline derivative represented by formula (1) or formula (3) It is the same as the said conditions demonstrated about the amine compound represented by ').
  • deprotection is performed under acidic or basic conditions, treated under oxidizing or reducing conditions, etc., for example, referring to GREEN'S PROTECTIVE GROUPS in Organic Synthesis, 4th Edition, considering the nature of the protecting group, etc. Any known method may be used.
  • Ar 1 is a group represented by Formula (B4) or a group represented by Formula (B11) in which R 52 is not a hydrogen atom, or Ar 2 is represented by Formula (A13).
  • R 52 is a hydrogen atom or a group represented by the formula (B10)
  • Ar 2 is represented by the formula (A12).
  • the aniline derivative having the secondary amine moiety or the amine moiety in the amine compound reacts with a hydrocarbon compound.
  • Cb 155 and Cb 52 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 4 , or Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 1 , and examples of the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group include the above-mentioned The same thing is mentioned.
  • Z 1 and Z 4 represent the same meaning as described above.
  • Examples of the production method using the above aniline derivative or amine compound having a secondary amine moiety include, but are not limited to, the following.
  • aniline derivatives represented by formulas (1-3) to (1-8) and aryl compounds represented by formula (10) or hydrocarbon compounds represented by formulas (11) to (12) In the aniline derivative, the aryl compound or hydrocarbon compound can be used in an equivalent amount or more with respect to the amount of all NH groups in the aniline derivative, but about 1 to 1.2 equivalents are preferred.
  • the charging ratio of the amine compound represented by the formulas (3′-1) to (3′-2) and the aryl compound represented by the formula (10) or the hydrocarbon compound represented by the formula (12) Is represented by the aryl compound represented by the formula (10) or the formula (12) with respect to the amine compound 1 represented by the formulas (3′-1) to (3′-2) in a substance amount ratio.
  • a hydrocarbon compound of about 2 to 2.4 is preferred.
  • the aryl compound represented by the formula (1), Cb 155 may be substituted with Z 4 alkyl group having 1 to 20 carbon atoms, or may be substituted with Z 1 and having 6 to 20 carbon atoms.
  • a hydrocarbon compound represented by the formula (11) which is an aryl group or a heteroaryl group having 2 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms in which Cb 52 may be substituted with Z 4 or Z 1 By a substitution reaction using a hydrocarbon represented by the formula (12) which is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with 9) to (1-14) when producing an aniline derivative represented by formula (3′-3) to (3′-4) or an amine compound represented by formula (1′-3) An aniline derivative represented by (1-8) or formula (3′-1) to ( The amine compound represented by '-2) is reacted with a base, and the resulting product is converted to a hydrocarbon
  • Bases include lithium, sodium, potassium, lithium hydride, sodium hydride, potassium hydroxide, t-butoxy lithium, t-butoxy sodium, t-butoxy potassium, lithium hydroxide, sodium hydroxide, potassium hydroxide, carbonate Sodium, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and other alkali metal simple substance, alkali hydroxide metal, alkoxy alkali metal, alkali carbonate metal, hydrogen carbonate alkali metal; alkaline carbonate metal such as calcium carbonate; n-butyllithium And organic lithium such as s-butyllithium and t-butyllithium; amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like. It not particularly limited as long as it is. In particular, sodium hydride, sodium carbonate, and potassium carbonate are preferable because they are easy to handle.
  • the amount of the base used is about 1 to 1.2 equivalents of the formulas (3′-1) to (1-8) to (NH) of the aniline derivatives represented by the formulas (1-3) to (1-8). It is about 2 to 2.4 with respect to 1 mol of the amine compound represented by 3′-2).
  • the solvent include the solvents exemplified for the method for producing the aniline derivative represented by the formula (1).
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but it is about 20 to 150 ° C.
  • post-treatment is performed according to conventional methods such as liquid separation, column chromatography, reprecipitation, recrystallization and the like.
  • an amine compound represented by the two Ar 1 is a group both represented by formula (B1) wherein (3) Can also be synthesized according to the methods described in International Publication No. 2008/129947 and International Publication No. 2013/08466.
  • organic solvent contained in the composition of the present invention a good solvent capable of dissolving the charge transporting substance and the dopant substance satisfactorily can be used.
  • Examples of such a good solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylbutyramide, N, N-diethylbutyramide, N, N-methylethylbutyramide, N , N-dimethylisobutyramide, N, N-diethylisobutyramide, N-ethyl-N-methylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and the like, It is not limited to these. These solvents can be used singly or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used.
  • organic solvents may be included in addition to the above organic solvents for the purpose of improving wettability to the substrate, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, and the like.
  • Such other organic solvents preferably include glycols, triols, alkylene glycol monoalkyl ethers, alkylene glycol dialkyl ethers, dialkylene glycol monoalkyl ethers, dialkylene glycol dialkyl ethers, glycols , Alkylene glycol monoalkyl ethers, dialkylene glycol monoalkyl ethers and the like, but are not limited thereto.
  • These solvents can be used singly or in combination of two or more, and the amount used is determined by the amount of good solvent used together.
  • organic solvents other than good solvents include diethylene glycol, triethylene glycol, dipropylene glycol, 1,2-ethanediol, 1,2-propanediol, 1,2-butanediol, and 2,3-butanediol.
  • 1,3-butanediol, 1,4-butanediol ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol propyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, propylene glycol monomethyl Ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monoisopropyl ether, propylene Recall monobutyl ether, propylene glycol monoisobutyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol propyl ether, diethylene glycol isopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether,
  • Diethylene glycol triethylene glycol, dipropylene glycol, 1,2- Tandiol, 1,2-propanediol, 1,2-butanediol, 2,3-butanediol, 1,3-butanediol, 1,4-butanediol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether Dipropylene glycol monomethyl ether is more preferable.
  • a composition having desired liquid properties can be easily prepared by selecting a solvent to be used from among these solvents in consideration of the kind and amount of the charge transporting substance and the dopant substance.
  • the charge transport material and the dopant material dissolved in the organic solvent (when other components such as an organosilane compound are included, The component is also dissolved in the organic solvent).
  • the viscosity of the composition of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C., and its surface tension is usually 20 to 50 mN / m.
  • the composition of the present invention may contain an organosilane compound.
  • the hole injection layer is in contact with the hole injection layer on the side opposite to the anode, such as the hole transport layer and the light emitting layer.
  • the hole injecting ability to the laminated layer can be enhanced.
  • organosilane compound examples include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds, which may be used alone or in combination of two or more.
  • the organic silane compound preferably includes one selected from dialkoxysilane compounds and trialkoxysilane compounds, more preferably includes trialkoxysilane compounds, and includes fluorine atom-containing trialkoxysilane compounds. It is even more preferable.
  • alkoxysilane compounds include those represented by the formulas (S1) to (S3). Si (OR) 4 (S1) SiR ′ (OR) 3 (S2) Si (R ′) 2 (OR) 2 (S3)
  • R independently of one another, an alkyl group which have ⁇ 1 carbon atoms which may 20 substituted with Z 6, an alkenyl group is 2 carbon atoms which may be ⁇ 20 substituted with Z 6, with Z 6 substituted 1-2 carbon atoms which may be 20 alkynyl group, hetero Z 7-substituted-6 carbon atoms which may be 20 aryl group, or Z 2 carbon atoms which may be substituted with 7-20 It represents an aryl group, R 'independently of one another, Z 8 substituted by 1 carbon atoms which may be 1-20 alkyl group, an alkenyl group which 1-2 carbon atoms which may be 20 substituted with Z 8, alkynyl group which have 2-20 carbon atoms substituted with Z 8, an aryl group which may 6 carbon atoms also be ⁇ 20 substituted with Z 9, or Z 9 2 carbon atoms which may be substituted with ⁇ Represents 20 heteroaryl groups.
  • Z 6 represents a heteroaryl group halogen atom, Z 10-substituted carbon atoms and optionally 6-20 aryl group, or Z 10 is 1-2 carbon atoms which may be 20 substituted with
  • Z 7 is a halogen atom, an alkyl group which 1 carbon atoms which may be ⁇ 20 substituted by Z 10, which may be substituted with an alkenyl group, or Z 10 of which do 2-20 carbon atoms substituted with Z 10
  • An alkynyl group having 2 to 20 carbon atoms is represented.
  • Z 8 is a halogen atom, an aryl group which may 6 carbon atoms also be ⁇ 20 substituted by Z 10, heteroaryl group which optionally 2-20 carbon atoms substituted with Z 10, epoxycyclohexyl group, a glycidoxy group , Methacryloxy group, acryloxy group, ureido group (—NHCONH 2 ), thiol group, isocyanate group (—NCO), amino group, —NHY 1 group, or NY 2 Y 3 group, Z 9 is a halogen atom, Z 10 which do ⁇ 1 to 20 carbon atoms substituted with an alkyl group, an alkenyl group which have 2-20 carbon atoms substituted with Z 10, Z 10 which may be of 2 to 20 carbon atoms substituted with alkynyl group, an epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group (-NHCONH 2), thi
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and Examples of the heteroaryl group having 2 to 20 carbon atoms are the same as those described above.
  • the carbon number of the alkyl group, alkenyl group, and alkynyl group is preferably 10 or less, more preferably 6 or less, and even more preferably 4 or less.
  • the carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
  • R represents an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 6 , or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 7. are preferred, it may be substituted with Z 6, alkyl group or alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms, or more preferably a phenyl group which may be substituted with Z 7, with Z 6
  • An alkyl group having 1 to 4 carbon atoms which may be substituted or a phenyl group which may be substituted with Z 7 is more preferred, and a methyl group or an ethyl group which may be substituted with Z 6 is more preferred.
  • R ' preferably an aryl group which may having 6 to 20 carbon atoms substituted with an alkyl group or Z 9 of are 1 carbon atoms which may be ⁇ 20 substituted by Z 8, it is substituted with Z 8 More preferably an alkyl group having 1 to 10 carbon atoms which may be substituted or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 9 , and an alkyl having 1 to 6 carbon atoms which may be substituted with Z 8 group, or more preferably more aryl group which carbon atoms 6 also be ⁇ 10 substituted with Z 9, be substituted with an alkyl group or Z 9 of are 1 carbon atoms which may be 1-4 substituted with Z 8 More preferred is a phenyl group.
  • a plurality of R may be all the same or different, and a plurality of R ′ may all be the same or different.
  • Z 6 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 10 , more preferably a fluorine atom or a phenyl group which may be substituted with Z 10 , and not present ( That is, it is optimal to be unsubstituted.
  • halogen atom or Z is preferably an alkyl group which may having 6 to 20 carbon atoms optionally substituted with 10
  • alkyl group of fluorine atom or Z 10 is 1 carbon atoms which may be ⁇ 10 substituted by Is more preferred and not present (ie, unsubstituted).
  • the Z 8, a halogen atom, Z a phenyl group optionally substituted with 10 good furanyl group optionally substituted by Z 10, epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group, thiol group, isocyanate group, an amino group, an optionally substituted phenylamino group Z 10, or good diphenylamino group optionally substituted by Z 10, more preferably a halogen atom, no fluorine atom, or there (That is, unsubstituted) is even more preferred.
  • Z 10 is preferably a halogen atom, more preferably a fluorine atom or not (ie, unsubstituted).
  • dialkoxysilane compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, and phenylmethyl.
  • Dimethoxysilane vinylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3-methacryloxy Propylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, ⁇ -aminopropyl Chill diethoxy silane, N- (2- aminoethyl) aminopropyl methyl dimethoxy silane, 3,3,3-trifluoropropyl methyl dimethoxy silane, and the like.
  • trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy Silane, octadecyltrimethoxysilane, o
  • tetraalkoxysilane compound examples include tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane and the like.
  • the content thereof is usually about 0.1 to 50% by mass with respect to the total mass of the charge transporting substance and the dopant substance, but the charge of the obtained thin film Suppressing a decrease in transportability and enhancing the hole injection ability to a hole transport layer or the like laminated on the cathode side so as to be in contact with the hole injection layer made of a thin film obtained from the composition.
  • it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and still more preferably about 1 to 20% by mass.
  • the viscosity of the composition of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C., and its surface tension is usually 20 to 50 mN / m.
  • the solid content concentration of the composition of the present invention is appropriately set in consideration of the viscosity and surface tension of the composition, the thickness of the thin film to be produced, and the like. In consideration of improving the coating property of the composition, it is preferably about 0.5 to 10.0% by mass, more preferably about 1.0 to 5.0% by mass.
  • solid content here means the charge transportable substance and dopant substance which are contained in the composition of this invention.
  • the method for preparing the composition is not particularly limited. For example, a method in which a charge transporting substance is first dissolved in a solvent and a dopant substance is added thereto, or a mixture of a charge transporting substance and a dopant substance is added. A method of dissolving in a solvent can be mentioned. In addition, when there are a plurality of organic solvents, these may be first dissolved in a solvent that dissolves the charge transporting substance and the dopant substance, and other solvents may be added thereto. The charge transporting substance and the dopant substance may be dissolved sequentially or simultaneously.
  • the composition is dissolved in an organic solvent, and then filtered using a sub-micron order filter or the like. Is desirable.
  • the charge transporting thin film of the present invention can be formed on a substrate by applying the above-described composition for forming a charge transporting thin film of the present invention on a substrate and baking it.
  • the application method of the composition include, but are not limited to, a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method.
  • a spin coating method, an ink jet method, and a spray method are preferable.
  • the composition in order to obtain a thick charge transporting film having a uniform film formation surface and high charge transportability with good reproducibility, the composition is preferably fired in an air atmosphere.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, the type and boiling point of the solvent, and the like.
  • the obtained thin film is used as a hole injection layer of an organic EL device, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C.
  • the firing time varies depending on the firing temperature and cannot be defined unconditionally, but is usually 1 minute to 1 hour. In the firing, a temperature change of two or more steps may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate. What is necessary is just to perform using suitable apparatuses, such as oven.
  • the film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer of an organic EL device.
  • a method for changing the film thickness there are methods such as changing the solid content concentration in the composition or changing the amount of the solution on the substrate at the time of coating.
  • the charge transporting thin film of the present invention can be suitably used as a hole injection layer in an organic EL device, but can also be used as a charge transporting functional layer such as a hole injection transport layer.
  • the organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include (a) to (f) below, but are not limited thereto.
  • an electron blocking layer or the like can be provided between the light emitting layer and the anode
  • a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like
  • the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole. It may have a function as a block layer or the like.
  • A Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode
  • c anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • Hole injection layer “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transporting layer”, and a layer of the hole transporting material is provided between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”.
  • Electrode injection layer is layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer. It is.
  • electron injecting and transporting layer When only one layer of the electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and two layers of the electron transporting material are provided between the light emitting layer and the cathode.
  • the layer close to the cathode is an “electron injection layer”, and the other layers are “electron transport layers”.
  • the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • Examples of materials used and methods for producing an organic EL device using the composition of the present invention include the following, but are not limited thereto.
  • the electrode substrate to be used is preferably cleaned in advance by cleaning with a liquid such as a detergent, alcohol, or pure water.
  • a liquid such as a detergent, alcohol, or pure water.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the surface treatment may not be performed.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the composition of the present invention is a hole injection layer is as follows.
  • the composition of the present invention is applied onto the anode substrate and baked to produce a hole injection layer on the electrode.
  • a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
  • the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
  • metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-s
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, lithium acetylacetonate (Li (acac)), lithium acetate, lithium benzoate, etc. .
  • cathode material examples include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer are formed by sequentially forming the hole transport layer and the light-emitting layer instead of performing the vacuum deposition operation.
  • An organic EL element having a charge transporting thin film formed by the above can be produced.
  • the composition of the present invention is applied onto an anode substrate, a hole injection layer is prepared by the above-described method, a hole transport layer and a light emitting layer are sequentially formed thereon, and a cathode electrode is further deposited.
  • a cathode electrode is further deposited.
  • the same materials as described above can be used, and the same cleaning treatment and surface treatment can be performed.
  • a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant to these materials is dissolved or uniformly dispersed.
  • coating on a positive hole injection layer or a positive hole transport layer is mentioned.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). -PPV) and the like, polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz) and the like.
  • PDAF poly (9,9-dialkylfluorene)
  • MEH 2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene
  • PVT polythiophene derivatives
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the coating method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • the firing method a method of heating with an oven or a hot plate under an inert gas or in a vacuum can be mentioned.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the composition of the present invention is a hole injection transport layer is as follows.
  • a hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer. Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer are the same as described above.
  • Examples of the anode material, the light emitting layer, the luminescent dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
  • a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the layers as necessary.
  • a material for forming the electron blocking layer tris (phenylpyrazole) iridium and the like can be given.
  • the materials constituting the anode and the cathode and the layer formed between them differ depending on whether a device having a bottom mission structure or a top emission structure is manufactured, the material is appropriately selected in consideration of this point.
  • a transparent anode is used on the substrate side, and light is extracted from the substrate side
  • a reflective anode made of metal is used in the opposite direction to the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
  • the reaction mixture was cooled to room temperature, and the cooled reaction mixture, toluene, and ion-exchanged water were mixed to perform a liquid separation treatment.
  • the obtained organic layer was dried over sodium sulfate and concentrated.
  • the concentrated solution was filtered through silica gel, and 0.2 g of activated carbon was added to the obtained filtrate, followed by stirring at room temperature for 30 minutes. Thereafter, the activated carbon was removed by filtration, and the filtrate was concentrated.
  • the concentrated solution was added dropwise to a mixed solvent of methanol and ethyl acetate (500 mL / 500 mL), the resulting slurry was stirred overnight at room temperature, and then the slurry was filtered to collect the filtrate.
  • composition [Example 1-1] 0.112 g of aniline derivative 1 and 0.092 g of 2,4,6,7-tetracyano-1,4,5,8-tetraazanaphthalene (manufactured by Sanpo Chemical Laboratory, Inc., hereinafter referred to as “TCNA”) In a nitrogen atmosphere, it was dissolved in 5.0 g of 1,3-dimethyl-2-imidazolidinone (hereinafter referred to as “DMI”).
  • TCNA 2,4,6,7-tetracyano-1,4,5,8-tetraazanaphthalene
  • 2,3-butanediol hereinafter referred to as “2,3-BD”
  • DPM dipropylene glycol monomethyl ether
  • Example 1-2 Aniline derivative 1 0.171 g, TCNA 0.141 g, and phosphotungstic acid (manufactured by Nippon Shin Metal Co., Ltd., hereinafter referred to as “PTA”) 0.312 g were dissolved in DMI 7.5 g under a nitrogen atmosphere. . Thereto, 4.5 g of 2,3-BD and 3.0 g of DPM were added and stirred, and the resulting solution was filtered using a PTFE filter having a pore size of 0.2 ⁇ m to obtain a charge transporting thin film forming composition. .
  • PTA phosphotungstic acid
  • Example 1-3 Aniline derivative 1 (0.171 g), TCNA (0.141 g), and PTA (0.312 g) were dissolved in DMI (7.5 g) under a nitrogen atmosphere. Thereto, 4.5 g of 2,3-BD and 3.0 g of DPM were added and stirred, and 0.010 g of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and phenyltrimethoxy were further stirred.
  • silane manufactured by Shin-Etsu Chemical Co., Ltd.
  • a PTFE filter having a pore size of 0.2 ⁇ m to obtain a charge transporting thin film forming composition.
  • Example 2-1 Manufacture and characteristic evaluation of organic EL device
  • the charge transporting thin film forming composition obtained in Example 1-1 was applied to an ITO substrate using a spin coater, dried at 80 ° C. for 1 minute, and further fired at 150 ° C. for 10 minutes in an air atmosphere. Then, a uniform thin film of 30 nm was formed on the ITO substrate.
  • ITO indium tin oxide
  • the deposition rate was 0.2 nm / second for BAlq and aluminum, and 0.02 nm / second for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 120 nm, respectively.
  • the characteristic was evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of ⁇ 85 ° C.
  • the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together.
  • a water catching agent manufactured by Dynic Co., Ltd., HD-071010W-40 was placed in the sealing substrate together with the organic EL element.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • Example 2 was used except that the charge transporting thin film forming composition obtained in Examples 1-2 to 1-3 was used in place of the charge transporting thin film forming composition obtained in Example 1-1. A device was obtained in the same manner as in -1.
  • the driving voltage, the luminance and the luminous efficiency, and the luminance half-life were measured when the manufactured device was made to emit light at a driving current of 0.7 mA.
  • the results are shown in Table 19.
  • the area of the light emitting surface size of each element is 2 mm ⁇ 2 mm.
  • the organic EL device having the charge transporting thin film obtained from the charge transporting thin film forming composition of the present invention as a hole injection layer has excellent luminance characteristics. Moreover, it turns out that the said organic EL element is excellent also in durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 式(D1)~(D5)のいずれかで示されるシアノ基で置換された含窒素複素芳香族化合物からなるドーパント物質と、電荷輸送性物質と、有機溶媒とを含み、前記ドーパント物質及び前記電荷輸送性物質が前記有機溶媒に溶解していることを特徴とする、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物を提供する。

Description

有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1~4参照)。
 しかし、有機EL分野の進展に伴い、優れたEL特性を実現できる新たな塗布型有機EL用材料は常に求められている。
国際公開第2008/032616号 国際公開第2008/129947号 国際公開第2006/025342号 国際公開第2010/058777号 特開2009-079131号公報 特開2001-341239号公報 特開2004-189674号公報 特開平11-222263号公報
 本発明は、上記事情に鑑みてなされたものであって、有機EL素子に適用した場合に優れた輝度特性を実現できる電荷輸送性薄膜を形成するための組成物を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、所定のシアノ基で置換された含窒素複素芳香族化合物からなるドーパント物質と、電荷輸送性物質と、有機溶媒とを含む組成物から、有機エレクトロルミネッセンス素子の正孔注入層等の機能層として用いた場合に優れた輝度特性を実現できる電荷輸送性薄膜が得られることを見出し、本発明を完成させた。
 なお、特許文献5~8には、ドーパント(電子受容体)として2,4,6,7-テトラシアノ-1,4,5,8-テトラアザナフタレンを含む材料が開示されているが、これら各文献には、本発明に係る組成物の様な有機EL素子用材料を教示する記載も、それを示唆する記載もない。
 すなわち、本発明は、
1. 式(D1)~(D5)のいずれかで示されるシアノ基で置換された含窒素複素芳香族化合物からなるドーパント物質と、電荷輸送性物質と、有機溶媒とを含み、前記ドーパント物質及び前記電荷輸送性物質が前記有機溶媒に溶解していることを特徴とする、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
Figure JPOXMLDOC01-appb-C000002
2. 前記電荷輸送性物質が、分子量200~9,500の電荷輸送性化合物である1の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
3. 前記電荷輸送性化合物が、アニリン誘導体又はチオフェン誘導体である2の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
4. 前記電荷輸送性化合物が、アニリン誘導体である3の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
5. 更に有機シラン化合物を含む1~4のいずれかの有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
6. 更にヘテロポリ酸を含む1~5のいずれかの有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
7. 有機エレクトロルミネッセンス素子の正孔注入層、正孔輸送層又は正孔注入輸送層形成用組成物である1~6のいずれかの有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、
8. 1~7のいずれかの有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物を用いて製造される有機エレクトロルミネッセンス素子用の電荷輸送性薄膜、
9. 8の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子
を提供する。
 本発明に係る組成物を用いることで、優れた平坦性と優れた電荷輸送性を兼ね備え、有機エレクトロルミネッセンス素子の正孔注入層等の機能層として用いた場合に優れた輝度特性を実現できる電荷輸送性薄膜を得ることができる。
 この理由は定かではないが、2,4,6,7-テトラシアノ-1,4,5,8-テトラアザナフタレンのような、シアノ基が含窒素複素芳香環に結合した構造の化合物は、含窒素複素芳香環における電子欠損の影響だけでなく、それに結合するシアノ基の電子吸引の効果によって、ドーパントとして優れた機能を発揮することが期待されることから、電荷輸送性物質、特にアニリン誘導体とともに、このような化合物をドーパント物質として含む本発明に係る組成物を用いることで、平坦性及び電荷輸送性に優れるだけでなく、陽極からの正孔受容能及び正孔輸送層や発光層への正孔注入能にも優れる電荷輸送性薄膜が得られた結果、優れた輝度特性の有機EL素子が得られたものと推察される。
 また、本発明に係る組成物は、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
 以下、本発明を更に詳細に説明する。
 本発明の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物(以下、単に本発明の組成物ともいう)は、式(D1)~(D5)のいずれかで示されるシアノ基で置換された含窒素複素芳香族化合物からなるドーパント物質を含む。
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、得られる薄膜の電荷輸送性、当該化合物の入手容易性、当該化合物の有機溶媒への溶解性のバランスを考慮すると、式(D1)で示されるシアノ基で置換された含窒素複素芳香族化合物が最適である。
 本発明の組成物は、上記シアノ基で置換された含窒素複素芳香族化合物以外に、ヘテロポリ酸化合物、アリールスルホン酸誘導体、テトラシアノキノジメタン誘導体、ベンゾキノン誘導体といった他のドーパント物質を含んでもよく、中でも、ヘテロポリ酸が好ましい。
 ヘテロポリ酸とは、代表的に式(D6)で示されるKeggin型あるいは式(D7)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
 特に、1種類のヘテロポリ酸を用いる場合、その1種類のヘテロポリ酸は、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、2種類以上のヘテロポリ酸を用いる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの、又は少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
 すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)又はW(タングステン)もしくはMo(モリブデン)の数が多いもの、又は少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態及び公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
 本発明の組成物中のドーパント物質の含有量は、電荷輸送性物質の種類や量等を勘案して適宜設定されるものではあるが、通常、質量比で、電荷輸送性物質1に対して0.1~10程度である。
 本発明の組成物が含む電荷輸送性物質としては、典型的には、有機ELの分野等で用いられるものを用いることができる。
 その具体例としては、オリゴアニリン誘導体、N,N'-ジアリールベンジジン誘導体、N,N,N',N'-テトラアリールベンジジン誘導体等のアリールアミン誘導体(アニリン誘導体)、オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体等の各種電荷輸送性化合物が挙げられる。
 中でも、アニリン誘導体、チオフェン誘導体が好ましく、アニリン誘導体がより好ましい。
 本発明において、電荷輸送性化合物の分子量は、平坦性の高い薄膜を与える均一な組成物を調製する観点から、好ましくは200~9,500程度であるが、より電荷輸送性に優れる薄膜を得る観点から、その下限値は、より好ましくは300、より一層好ましくは400であり、平坦性の高い薄膜をより再現性よく与える均一な組成物を調製する観点から、その上限値は、より好ましくは8,000、より一層好ましくは7,000、さらに好ましくは6,000、さらに一層好ましくは5,000である。なお、薄膜化した場合に電荷輸送性物質が分離することを防ぐ観点から、電荷輸送性化合物は分子量分布のない(分散度が1である)ことが好ましい(すなわち、単一の分子量であることが好ましい)。
 アニリン誘導体の具体例としては、下記式(1)又は(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、kは、1~10の整数を表すが、化合物の有機溶媒への溶解性を高める観点から、1~5が好ましく、1~3がより好ましく、1又は2がより一層好ましく、1が最適である。式(2)中、lは、1又は2を表す。
 式(2)中、R1及びR2は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、フッ素原子が好ましい。
 炭素数1~20のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基等が挙げられる。
 炭素数2~20のアルケニル基の具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。
 炭素数2~20のアルキニル基の具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基等の含酸素ヘテロアリール基;2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基等の含硫黄ヘテロアリール基;2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、3-ピラジル基、5-ピラジル基、6-ピラジル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、6-ピリミジル基、3-ピリダジル基、4-ピリダジル基、5-ピリダジル基、6-ピリダジル基、1,2,3-トリアジン-4-イル基、1,2,3-トリアジン-5-イル基、1,2,4-トリアジン-3-イル基、1,2,4-トリアジン-5-イル基、1,2,4-トリアジン-6-イル基、1,3,5-トリアジン-2-イル基、1,2,4,5-テトラジン-3-イル基、1,2,3,4-テトラジン-5-イル基、2-キノリニル基、3-キノリニル基、4-キノリニル基、5-キノリニル基、6-キノリニル基、7-キノリニル基、8-キノリニル基、1-イソキノリニル基、3-イソキノリニル基、4-イソキノリニル基、5-イソキノリニル基、6-イソキノリニル基、7-イソキノリニル基、8-イソキノリニル基、2-キノキサニル基、5-キノキサニル基、6-キノキサニル基、2-キナゾリニル基、4-キナゾリニル基、5-キナゾリニル基、6-キナゾリニル基、7-キナゾリニル基、8-キナゾリニル基、3-シンノリニル基、4-シンノリニル基、5-シンノリニル基、6-シンノリニル基、7-シンノリニル基、8-シンノリニル基等の含窒素ヘテロアリール基等が挙げられる。
 これらの中でも、R1及びR2は、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子、メチル基、トリフルオロメチル基がより一層好ましく、水素原子が最適である。
 式(1)及び(2)中、Ph1は、式(P1)で表される基を表す。
Figure JPOXMLDOC01-appb-C000006
 式中、R3~R6は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、これらの具体例としては、上記R1及びR2で説明したものと同様のものが挙げられる。
 特に、R3~R6としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子、メチル基、トリフルオロメチル基がより一層好ましく、水素原子が最適である。
 以下、Ph1として好適な基の具体例を挙げるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Ar1は、互いに独立して、式(B1)~(B11)のいずれかで表される基を表すが、特に、式(B1')~(B11')のいずれかで表される基が好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式中、R7~R27、R30~R51及びR53~R154は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、ジフェニルアミノ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、R28及びR29は、互いに独立して、Z1で置換されていてもよい、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基を表し、R52は、水素原子、Z4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、又はZ2で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、Z3は、ハロゲン原子、ニトロ基又はシアノ基を表し、Z4は、ハロゲン原子、ニトロ基、シアノ基、又はZ5で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、Z5は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基を表し、これらハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基の具体例としては、上記R1及びR2で説明したものと同様のものが挙げられる。
 特に、R7~R27、R30~R51及びR53~R154としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよいジフェニルアミノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子、メチル基、トリフルオロメチル基がより一層好ましく、水素原子が最適である。
 R28及びR29としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
 R52としては、水素原子、Z1で置換されていてもよい炭素数6~20のアリール基、Z1で置換されていてもよい炭素数2~20のヘテロアリール基、Z4で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14の含窒素ヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより一層好ましく、水素原子、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基、Z1で置換されていてもよい2-ピリジル基、Z1で置換されていてもよい3-ピリジル基、Z1で置換されていてもよい4-ピリジル基、Z4で置換されていてもよいメチル基が更に好ましい。
 Ar4は、互いに独立して、各々のアリール基が炭素数6~20のアリール基であるジアリールアミノ基で置換されていてもよい炭素数6~20のアリール基を表す。炭素数6~20のアリール基の具体例としては、R1及びR2で説明したものと同様のものが挙げられ、上記ジアリールアミノ基の具体例としては、ジフェニルアミノ基、1-ナフチルフェニルアミノ基、ジ(1-ナフチル)アミノ基、1-ナフチル-2-ナフチルアミノ基、ジ(2-ナフチル)アミノ基等が挙げられる。
 Ar4としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、p-(ジフェニルアミノ)フェニル基、p-(1-ナフチルフェニルアミノ)フェニル基、p-(ジ(1-ナフチル)アミノ)フェニル基、p-(1-ナフチル-2-ナフチルアミノ)フェニル基、p-(ジ(2-ナフチル)アミノ)フェニル基が好ましく、p-(ジフェニルアミノ)フェニル基がより好ましい。
 以下、Ar1として好適な基の具体例を挙げるが、これらに限定されない。なお、下記式中、DPAは、ジフェニルアミノ基を表し、R52は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 式(1)中、Ar2は、互いに独立して、式(A1)~(A18)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000018
 式中、R155は、水素原子、Z4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、R156及びR157は、互いに独立して、Z1で置換されていてもよい、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基を表し、DPA、Ar4、Z1及びZ4は上記と同じ意味を表す。これらハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基の具体例としては、上記R1及びR2で説明したものと同様のものが挙げられる。
 特に、R155としては、水素原子、Z1で置換されていてもよい炭素数6~20のアリール基、Z1で置換されていてもよい炭素数2~20のヘテロアリール基、Z4で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14の含窒素ヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより一層好ましく、水素原子、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基、Z1で置換されていてもよい2-ピリジル基、Z1で置換されていてもよい3-ピリジル基、Z1で置換されていてもよい4-ピリジル基、Z4で置換されていてもよいメチル基が更に好ましい。
 R156及びR157としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
 以下、Ar2として好適な基の具体例を挙げるが、これらに限定されない。なお、下記式中、R155及びDPAは、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 式(1)においては、得られるアニリン誘導体の合成の容易性を考慮すると、Ar1が全て同一の基であり、Ar2が全て同一の基であることが好ましく、Ar1及びAr2が全て同一の基であることがより好ましい。すなわち、式(1)で表されるアニリン誘導体は、下記式(1-1)で表されるアニリン誘導体がより好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(1-1)中、Ph1及びkは上記と同じ意味を表し、Ar5は、同時に、式(D1)~(D13)のいずれかで表される基を表すが、特に、式(D1')~(D13')のいずれかで表される基であることが好ましい。なお、下記式中、R28、R29、R52、Ar4及びDPAは、上記と同じ意味を表す。Ar5の具体例としては、Ar1として好適な基の具体例として上述したものと同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 また、後述するように原料化合物として比較的安価なビス(4-アミノフェニル)アミンを用いて比較的簡便に合成できるとともに、得られるアニリン誘導体の有機溶媒に対する溶解性に優れていることから、式(1)で表されるアニリン誘導体は、式(1-2)で表されるアニリン誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000030
 式中、Ar6は、同時に、式(E1)~(E14)のいずれかで表される基を表す。なお、下記式中、R52は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000031
 式(2)中、Ar3は、式(C1)~(C8)のいずれかで表される基を表すが、特に(C1')~(C8')のいずれかで表される基が好ましい。なお、下記式中、DPAは、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 R28、R29、R52及びR155~R157において、Z1は、ハロゲン原子、ニトロ基、シアノ基、Z2で置換されていてもよい炭素数1~10のアルキル基、Z2で置換されていてもよい炭素数2~10のアルケニル基、Z2で置換されていてもよい炭素数2~10のアルキニル基が好ましく、ハロゲン原子、ニトロ基、シアノ基、Z2で置換されていてもよい炭素数1~3のアルキル基、Z2で置換されていてもよい炭素数2~3のアルケニル基、Z2で置換されていてもよい炭素数2~3のアルキニル基がより好ましく、フッ素原子、Z2で置換されていてもよい炭素数1~3のアルキル基、Z2で置換されていてもよい炭素数2~3のアルケニル基、Z2で置換されていてもよい炭素数2~3のアルキニル基がより一層好ましい。
 R28、R29、R52及びR155~R157において、Z4は、ハロゲン原子、ニトロ基、シアノ基、Z5で置換されていてもよい炭素数6~14のアリール基が好ましく、ハロゲン原子、ニトロ基、シアノ基、Z5で置換されていてもよい炭素数6~10のアリール基がより好ましく、フッ素原子、Z5で置換されていてもよい炭素数6~10のアリール基がより一層好ましく、フッ素原子、Z5で置換されていてもよいフェニル基が更に好ましい。
 R28、R29、R52及びR155~R157において、Z2は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~14のアリール基が好ましく、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~10のアリール基がより好ましく、フッ素原子、Z3で置換されていてもよい炭素数6~10のアリール基がより一層好ましく、フッ素原子、Z3で置換されていてもよいフェニル基が更に好ましい。
 R28、R29、R52及びR155~R157において、Z5は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~10のアルキル基、Z3で置換されていてもよい炭素数2~10のアルケニル基、Z3で置換されていてもよい炭素数2~10のアルキニル基が好ましく、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~3のアルキル基、Z3で置換されていてもよい炭素数2~3のアルケニル基、Z3で置換されていてもよい炭素数2~3のアルキニル基がより好ましく、フッ素原子、Z3で置換されていてもよい炭素数1~3のアルキル基、Z3で置換されていてもよい炭素数2~3のアルケニル基、Z3で置換されていてもよい炭素数2~3のアルキニル基がより一層好ましい。
 R28、R29、R52及びR155~R157において、Z3は、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 R7~R27、R30~R51及びR53~R154において、Z1は、ハロゲン原子、ニトロ基、シアノ基、Z2で置換されていてもよい炭素数1~3のアルキル基、Z2で置換されていてもよい炭素数2~3のアルケニル基、Z2で置換されていてもよい炭素数2~3のアルキニル基が好ましく、ハロゲン原子、Z2で置換されていてもよい炭素数1~3のアルキル基がより好ましく、フッ素原子、Z2で置換されていてもよいメチル基がより一層好ましい。
 R7~R27、R30~R51及びR53~R154において、Z4は、ハロゲン原子、ニトロ基、シアノ基、Z5で置換されていてもよい炭素数6~10のアリール基が好ましく、ハロゲン原子、Z5で置換されていてもよい炭素数6~10のアリール基がより好ましく、フッ素原子、Z5で置換されていてもよいフェニル基がより一層好ましい。
 R7~R27、R30~R51及びR53~R154において、Z2は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~10のアリール基が好ましく、ハロゲン原子、Z3で置換されていてもよい炭素数6~10のアリール基がより好ましく、フッ素原子、Z3で置換されていてもよいフェニル基がより一層好ましい。
 R7~R27、R30~R51及びR53~R154において、Z5は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~3のアルキル基、Z3で置換されていてもよい炭素数2~3のアルケニル基、Z3で置換されていてもよい炭素数2~3のアルキニル基が好ましく、ハロゲン原子、Z3で置換されていてもよい炭素数1~3のアルキル基がより好ましく、フッ素原子、Z3で置換されていてもよいメチル基がより一層好ましい。
 R7~R27、R30~R51及びR53~R154において、Z3は、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 本発明において、R52及びR155として好適な基の具体例としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 本発明において、上記アルキル基、アルケニル基及びアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。また、上記アリール基及びヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
 式(1)で表されるアニリン誘導体は、式(3)で表されるアミン化合物と式(4)で表されるアリール化合物とを、触媒存在下で反応させて製造できる。
Figure JPOXMLDOC01-appb-C000040
(式中、Xは、ハロゲン原子又は擬ハロゲン基を表し、Ar1、Ar2、Ph1及びkは、上記と同じ意味を表す。)
 特に、式(1-1)で表されるアニリン誘導体は、式(7)で表されるアミン化合物と式(8)で表されるアリール化合物とを、触媒存在下で反応させて製造できる。
Figure JPOXMLDOC01-appb-C000041
(式中、X、Ar5、Ph1及びkは、上記と同じ意味を表す。)
 また、式(1-2)で表されるアニリン誘導体は、ビス(4-アミノフェニル)アミンと式(9)で表されるアリール化合物とを、触媒存在下で反応させて製造できる。
Figure JPOXMLDOC01-appb-C000042
(式中、X及びAr6は、上記と同じ意味を表す。)
 一方、式(2)で表されるアニリン誘導体は、式(5)で表されるアミン化合物と式(6)で表されるアリール化合物とを、触媒存在下で反応させて製造できる。
Figure JPOXMLDOC01-appb-C000043
(式中、X、R1、R2、Ar3、Ph1及びlは、上記と同じ意味を表す。)
 ハロゲン原子としては、上記と同様のものが挙げられる。擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。
 式(3)、(5)若しくは(7)で表されるアミン化合物又はビス(4-アミノフェニル)アミンと、式(4)、(6)、(8)又は(9)で表されるアリール化合物との仕込み比は、アミン化合物又はビス(4-アミノフェニル)アミンの全NH基の物質量に対し、アリール化合物を当量以上とすることができるが、1~1.2当量程度が好適である。
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリ(t-ブチルホスフィン)パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(Pd(OAc)2)等のパラジウム触媒等が挙げられる。これらの触媒は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
 このような配位子としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-t-ブチルホスフィン、ジ-t-ブチル(フェニル)ホスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1'-ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級ホスファイト等が挙げられる。
 触媒の使用量は、式(4)、(6)、(8)又は(9)で表されるアリール化合物1molに対して0.2mol程度とすることができるが、0.15mol程度が好適である。また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
 原料化合物が全て固体である場合あるいは目的とするアニリン誘導体を効率よく得る観点から、上記各反応は溶媒中で行なう。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に限定されない。その具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタム及びラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)等が挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上混合して用いてもよい。
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。
 反応終了後は、常法にしたがって後処理をし、目的とするアニリン誘導体を得ることができる。
 上述の式(1)で表されるアニリン誘導体の製造方法において、原料として用い得る式(3')で表されるアミン化合物は、式(10)で表されるアミン化合物と式(11)で表されるアリール化合物とを、触媒存在下で反応させて効率よく製造することができる。
Figure JPOXMLDOC01-appb-C000044
(式中、X、Ar1、Ph1及びkは、上記と同じ意味を表す。ただし、2つのAr1が同時に式(B1)で表される基となることはない。)
 式(3')で表されるアミン化合物の上記製造方法は、式(10)で表されるアミン化合物と式(11)で表されるアリール化合物とをカップリング反応させるものであるが、式(10)で表されるアミン化合物と式(11)で表されるアリール化合物との仕込みは、物質量比で、アミン化合物1に対してアリール化合物2~2.4程度が好適である。
 上記カップリング反応における触媒、配位子、溶媒、反応温度等に関する諸条件は、式(1)で表されるアニリン誘導体の製造方法について説明した上記条件と同じである。
 式(1)において、Ar1が、R52が水素原子である式(B4)で表される基又は式(B10)で表される基であるか、あるいは、Ar2が、式(A12)で表される基又はR155(式(1-1)におけるR52を含む。)が水素原子である式(A16)で表される基である、本発明のアニリン誘導体を製造する場合、上述の反応においては、アミノ基上に保護基を有するアリール化合物を用いることもできる。
 具体的には、上述の反応において、Ar2が式(A12)で表される基である式(4)で表されるアリール化合物(式(G1))、Ar2が式(A16)で表される基であり、R155が水素原子である式(4)で表されるアリール化合物(式(G2))、Ar5が式(D9)で表される基である式(8)で表されるアリール化合物(式(G1))、Ar5が式(D11)で表される基であり、R52が水素原子である式(8)で表されるアリール化合物(式(G2))、Ar6が式(E13)で表される基であり、R52が水素原子である式(9)で表されるアリール化合物(式(G3))、Ar6が式(E14)で表される基であり、R52が水素原子である式(9)で表されるアリール化合物(式(G4))、Ar1が式(B4)で表される基であり、R52が水素原子である式(11)で表されるアリール化合物(式(G5))、Ar1が式(B10)で表される基である式(11)で表されるアリール化合物(式(G6))の代わりに、これら各アリール化合物のアミノ基が保護されたアリール化合物(式(G1P)~(G6P))をそれぞれ用い、これら保護されたアリール化合物と上述のアミン化合物とを、触媒存在下で反応させた後、適切なタイミングで脱保護を行う。
Figure JPOXMLDOC01-appb-C000045
(式中、X、R45~R51、R139~R146及びAr4は、上記と同じ意味を表す。)
 P1~P6は、互いに独立して、アミノ基の保護基を表す。このような保護基としては、慣用の保護基を用いることができ、具体的には、置換又は非置換のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基)、置換又は非置換のアラルキルオキシカルボニル基(例えば、ベンジルオキシカルボニル基)、置換又は非置換のアリールオキシカルボニル基(例えば、フェノキシカルボニル基)等のオキシカルボニル型保護基;ホルミル基;置換又は非置換のアルカノイル基(例えば、アセチル基、トリフルオロアセチル基、t-ブタノイル基)、置換又は非置換のアリールカルボニル基(例えば、ベンゾイル基)等のカルボニル型保護基;置換又は非置換のアルキル基(例えば、t-ブチル基)、置換又は非置換のアラルキル基(例えば、ベンジル基、ベンズヒドリル基、トリチル基)等のアルキル型保護基、置換又は非置換のスルホニル型保護基(例えば、ベンゼンスルホニル基、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基)等が挙げられるが、これらに限定されない。中でも、オキシカルボニル型保護基、カルボニル型保護基、アルキル型保護基が好ましい。
 なお、Ar51~Ar56及びAr61~Ar66は、それぞれ各アリール化合物のX(ハロゲン原子又は擬ハロゲン基)を取り除くことで表される1価の基を表す。例えば、Ar61~Ar66は、それぞれ下記の基を示す。
Figure JPOXMLDOC01-appb-C000046
(式中、P1~P6、R45~R51、R139~R146及びAr4は、上記と同じ意味を表す。)
 上述のアミノ基の保護基を有するアリール化合物を用いた製造方法について、より具体的な例として以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 このような保護基を有するアリール化合物を用いた製造方法における原料の仕込み比、触媒、配位子、溶媒、反応温度等に関する諸条件は、式(1)で表されるアニリン誘導体あるいは式(3')で表されるアミン化合物について説明した上記条件と同じである。また、脱保護は、酸性あるいは塩基性条件下で処理する、酸化あるいは還元条件下で処理する等、例えばGREEN'S PROTECTIVE GROUPS in Organic Synthesis, 4th Editionを参考に、保護基の性質等を考慮して適切な公知の方法で行えばよい。
 式(1)において、Ar1が、R52が水素原子でない式(B4)で表される基、又は式(B11)で表される基であるか、あるいは、Ar2が、式(A13)で表される基、又はR155(式(1-1)におけるR52を含む。)が水素原子でない式(A16)で表される基である、3級アミン部位を有する本発明のアニリン誘導体を製造する場合、Ar1が式(B4)で表される基であり、R52が水素原子若しくは式(B10)で表される基である、又はAr2が式(A12)で表される基若しくは式(A16)で表される基であり、R155(式(1-1)におけるR52を含む。)が水素原子である式(1)で表される、2級アミン部位を有する本発明のアニリン誘導体や、Ar1が、R52が水素原子である式(B4)で表される基又は式(B10)で表される基である式(3)で表される、2級アミン部位を有するアミン化合物を用いてもよい。
 具体的には、以下に示すとおり、当該2級アミン部位を有するアニリン誘導体又はアミン化合物中のアミン部位と、式(10)で表されるアリール化合物又は式(11)若しくは(12)で表される炭化水素化合物とを反応させる。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 式中、X、R139~R146、Ar4及びR45~R51は、上記と同じ意味を表す。Cb155及びCb52は、互いに独立して、Z4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、これらアルキル基、アルケニル基、アルキニル基、アリール基及びヘテロアリール基としては上記と同様のものが挙げられる。Z1及びZ4は、上記と同じ意味を表す。
 上記2級アミン部位を有するアニリン誘導体あるいはアミン化合物を用いた製造方法について、より具体的な例として以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 式(1-3)~(1-8)で表されるアニリン誘導体と、式(10)で表されるアリール化合物又は式(11)~(12)で表される炭化水素化合物との仕込み比は、アニリン誘導体の全NH基の物質量に対し、アリール化合物又は炭化水素化合物を当量以上とすることができるが、1~1.2当量程度が好適である。
 また、式(3'-1)~(3'-2)で表されるアミン化合物と、式(10)で表されるアリール化合物又は式(12)で表される炭化水素化合物との仕込み比は、物質量比で、式(3'-1)~(3'-2)で表されるアミン化合物1に対して、式(10)で表されるアリール化合物又は式(12)で表される炭化水素化合物2~2.4程度が好適である。
 その他、仕込み以外の諸条件は、以下のとおりとなる。
 銅、パラジウム等の上述の触媒を用いて、式(1-9)~(1-14)で表されるアニリン誘導体又は式(3'-3)~(3'-4)で表されるアミン化合物を製造する場合、触媒、配位子、溶媒、反応温度等に関する条件は、式(1)で表されるアニリン誘導体の製造方法について説明した上記条件を採用し得る。
 一方、式(1)で表されるアリール化合物、Cb155がZ4で置換されていてもよい炭素数1~20のアルキル基若しくはZ1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である式(11)で表される炭化水素化合物、又はCb52がZ4で置換されていてもよい炭素数1~20のアルキル基若しくはZ1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である式(12)で表される炭化水素物を用いた置換反応によって、式(1-9)~(1-14)で表されるアニリン誘導体又は式(3'-3)~(3'-4)で表されるアミン化合物を製造する場合、溶媒中で、式(1-3)~(1-8)で表されるアニリン誘導体又は式(3'-1)~(3'-2)で表されるアミン化合物を塩基と反応させ、得られた生成物と式(11)~(12)で表される炭化水素化合物又は式(10)で表されるアリール化合物とを反応させることとなる。
 塩基としては、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化カリウム、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類等が挙げられるが、この種の反応に用いられるものであれば特に限定されない。特に、取り扱いが容易であることから、水素化ナトリウム、炭酸ナトリウム、炭酸カリウムが好適である。
 塩基の使用量は、それぞれ、式(1-3)~(1-8)で表されるアニリン誘導体の全NH基に対して1~1.2当量程度、式(3'-1)~(3'-2)で表されるアミン化合物1molに対して2~2.4程度である。
 溶媒の具体例としては、式(1)で表されるアニリン誘導体の製造方法について例示した溶媒が挙げられる。反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、20~150℃程度である。
 反応終了後は、分液処理、カラムクロマトグラフィー、再沈殿、再結晶等、常法にしたがって後処理をする。
 なお、原料の構造や用いる溶媒の種類等によって影響を受けるため一概にはいえないが、Xがフッ素原子である場合は置換反応が、Xがフッ素原子以外の場合は、触媒を用いた反応が好ましい。
 また、上述の式(1)で表されるアニリン誘導体の製造方法において原料として用い得る、2つのAr1がともに式(B1)で表される基である式(3)で表されるアミン化合物は、国際公開第2008/129947号や国際公開第2013/08466号記載の方法にしたがって合成することもできる。
 以下、式(1)又は(2)で表されるアニリン誘導体の具体例を挙げるが、これらに限定されない。なお、式中、「Me」はメチル基を、「Et」はエチル基を、「Prn」はn-プロピル基を、「Pri」はi-プロピル基を、「Bun」はn-ブチル基を、「Bui」はi-ブチル基を、「Bus」はs-ブチル基を、「But」はt-ブチル基を、「DPA」はジフェニルアミノ基を、「SBF」は9,9'-スピロビ[9H-フルオレン]-2-イル基を、それぞれ表す。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
 本発明の組成物が含む有機溶媒としては、電荷輸送性物質及びドーパント物質を良好に溶解し得る良溶媒を用いることができる。
 このような良溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルブチルアミド、N,N-ジエチルブチルアミド、N,N-メチルエチルブチルアミド、N,N-ジメチルイソブチルアミド、N,N-ジエチルイソブチルアミド、N-エチル-N-メチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の有機溶媒が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、又は2種以上混合して用いることができ、その使用量は、使用する溶媒全体に対して5~100質量%とすることができる。
 また、本発明においては、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、上記有機溶媒の他に、その他の有機溶媒を含んでもよい。このようなその他の有機溶媒としては、グリコール類、トリオール類、アルキレングリコールモノアルキルエーテル類、アルキレングリコールジアルキルエーテル類、ジアルキレングリコールモノアルキルエーテル類、ジアルキレングリコールジアルキルエーテル類を含むことが好ましく、グリコール類、アルキレングリコールモノアルキルエーテル類、ジアルキレングリコールモノアルキルエーテル類などが挙げられるが、これらに限定されない。これらの溶媒は1種単独で、又は2種以上混合して用いることができ、その使用量は、共に用いる良溶媒の量によって定まる。
 中でも、良溶媒以外のその他の有機溶媒としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-エタンジオール、1,2-プロパンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールプロピルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノイソブチルエーテルジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールプロピルエーテル、ジエチレングリコールイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノイソプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノイソブチルエーテルが好ましく、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-エタンジオール、1,2-プロパンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテルがより好ましい。電荷輸送性物質やドーパント物質の種類や量を考慮しつつ、このような溶媒の中から用いる溶媒を選択することで、所望の液物性を有する組成物を容易に調製できる。
 本発明においては、平坦性に優れる電荷輸送性を得る観点から、上記電荷輸送性物質及び上記ドーパント物質、上記有機溶媒に溶解している(有機シラン化合物等のその他の成分が含まれるときは、その成分も上記有機溶媒に溶解している)。
 本発明の組成物の粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1~50mPa・sであり、その表面張力は、通常、20~50mN/mである。
 本発明の組成物は、有機シラン化合物を含んでいてもよい。有機シラン化合物が含まれることで、組成物から得られる薄膜を有機EL素子の正孔注入層として用いた場合において、正孔輸送層や発光層といった陽極とは反対側に正孔注入層に接するように積層される層への正孔注入能を高めることができる。
 この有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物又はテトラアルコキシシラン化合物が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本発明においては、有機シラン化合物は、ジアルコキシシラン化合物及びトリアルコキシシラン化合物から選ばれる1種を含むことが好ましく、トリアルコキシシラン化合物を含むことがより好ましく、フッ素原子含有トリアルコキシシラン化合物を含むことがより一層好ましい。
 これらのアルコキシシラン化合物としては、例えば、式(S1)~(S3)で示されるものが挙げられる。
   Si(OR)4     (S1)
   SiR′(OR)3    (S2)
   Si(R′)2(OR)2 (S3)
 式中、Rは、互いに独立して、Z6で置換されていてもよい炭素数1~20のアルキル基、Z6で置換されていてもよい炭素数2~20のアルケニル基、Z6で置換されていてもよい炭素数2~20のアルキニル基、Z7で置換されていてもよい炭素数6~20のアリール基、又はZ7で置換されていてもよい炭素数2~20のヘテロアリール基を表し、R′は、互いに独立して、Z8で置換されていてもよい炭素数1~20のアルキル基、Z8で置換されていてもよい炭素数2~20のアルケニル基、Z8で置換されていてもよい炭素数2~20のアルキニル基、Z9で置換されていてもよい炭素数6~20のアリール基、又はZ9で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 Z6は、ハロゲン原子、Z10で置換されていてもよい炭素数6~20のアリール基、又はZ10で置換されていてもよい炭素数2~20のヘテロアリール基を表し、Z7は、ハロゲン原子、Z10で置換されていてもよい炭素数1~20のアルキル基、Z10で置換されていてもよい炭素数2~20のアルケニル基、又はZ10で置換されていてもよい炭素数2~20のアルキニル基を表す。
 Z8は、ハロゲン原子、Z10で置換されていてもよい炭素数6~20のアリール基、Z10で置換されていてもよい炭素数2~20のヘテロアリール基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY1基、又はNY23基を表し、Z9は、ハロゲン原子、Z10で置換されていてもよい炭素数1~20のアルキル基、Z10で置換されていてもよい炭素数2~20のアルケニル基、Z10で置換されていてもよい炭素数2~20のアルキニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY1基、又はNY23基を表し、Y1~Y3は、互いに独立して、Z10で置換されていてもよい炭素数1~20のアルキル基、Z10で置換されていてもよい炭素数2~20のアルケニル基、Z10で置換されていてもよい炭素数2~20のアルキニル基、Z10で置換されていてもよい炭素数6~20のアリール基、又はZ10で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 Z10は、ハロゲン原子、アミノ基、ニトロ基、シアノ基又はチオール基を表す。
 式(S1)~(S3)における、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、及び炭素数2~20のヘテロアリール基としては、上記と同様のものが挙げられる。
 R及びR′において、アルキル基、アルケニル基及びアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
 また、アリール基及びヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
 Rとしては、Z6で置換されていてもよい、炭素数1~20のアルキル基もしくは炭素数2~20のアルケニル基、又はZ7で置換されていてもよい炭素数6~20のアリール基が好ましく、Z6で置換されていてもよい、炭素数1~6のアルキル基もしくは炭素数2~6のアルケニル基、又はZ7で置換されていてもよいフェニル基がより好ましく、Z6で置換されていてもよい炭素数1~4のアルキル基又はZ7で置換されていてもよいフェニル基がより一層好ましく、Z6で置換されていてもよい、メチル基又はエチル基がさらに好ましい。
 また、R′としては、Z8で置換されていてもよい炭素数1~20のアルキル基又はZ9で置換されていてもよい炭素数6~20のアリール基が好ましく、Z8で置換されていてもよい炭素数1~10のアルキル基又はZ9で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z8で置換されていてもよい炭素数1~6のアルキル基、又はZ9で置換されていてもよい炭素数6~10のアリール基がより一層好ましく、Z8で置換されていてもよい炭素数1~4のアルキル基又はZ9で置換されていてもよいフェニル基がさらに好ましい。
 なお、複数のRは、すべて同一でも異なっていてもよく、複数のR′も、すべて同一でも異なっていてもよい。
 Z6としては、ハロゲン原子又はZ10で置換されていてもよい炭素数6~20のアリール基が好ましく、フッ素原子又はZ10で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 また、Z7としては、ハロゲン原子又はZ10で置換されていてもよい炭素数6~20のアルキル基が好ましく、フッ素原子又はZ10で置換されていてもよい炭素数1~10のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 一方、Z8としては、ハロゲン原子、Z10で置換されていてもよいフェニル基、Z10で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z10で置換されていてもよいフェニルアミノ基、又はZ10で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、又は存在しないこと(すなわち、非置換であること)がより一層好ましい。
 また、Z9としては、ハロゲン原子、Z10で置換されていてもよい炭素数1~20のアルキル基、Z10で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z10で置換されていてもよいフェニルアミノ基、又はZ10で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、又は存在しないこと(すなわち、非置換であること)がより一層好ましい。
 そして、Z10としては、ハロゲン原子が好ましく、フッ素原子又は存在しないこと(すなわち、非置換であること)がより好ましい。
 以下、本発明で使用可能な有機シラン化合物の具体例を挙げるが、これらに限定されるものではない。
 ジアルコキシシラン化合物の具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシシラン、3-グリシドキシプロピルメチルジエトキシシシラン、3-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン等が挙げられる。
 トリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、ドデシルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フラン等が挙げられる。
 テトラアルコキシシラン化合物の具体例としては、テトラエトキシシラン、テトラメトキシシラン、テトラプロポキシシラン等が挙げられる。
 これらの中でも、3,3,3-トリフルオロプロピルメチルジメトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン又はペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシランが好ましい。
 本発明の組成物が有機シラン化合物を含む場合、その含有量は、電荷輸送性物質及びドーパント物質の総質量に対して、通常0.1~50質量%程度であるが、得られる薄膜の電荷輸送性の低下を抑制し、かつ、上述した陰極側に、当該組成物から得られる薄膜からなる正孔注入層に接するように積層される正孔輸送層等への正孔注入能を高めることを考慮すると、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%程度である。
 本発明の組成物の粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1~50mPa・sであり、その表面張力は、通常、20~50mN/mである。
 また、本発明の組成物の固形分濃度は、組成物の粘度及び表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~20.0質量%程度であり、組成物の塗布性を向上させることを考慮すると、好ましくは0.5~10.0質量%程度、より好ましくは1.0~5.0質量%程度である。なお、ここでいう固形分とは、本発明の組成物に含まれる電荷輸送性物質及びドーパント物質を意味する。
 組成物の調製法としては、特に限定されるものではないが、例えば、電荷輸送性物質を先に溶媒に溶解させ、そこへドーパント物質を加える手法や、電荷輸送性物質、ドーパント物質の混合物を溶媒に溶解させる手法が挙げられる。
 また、有機溶媒が複数ある場合は、電荷輸送性物質及びドーパント物質をよく溶解する溶媒に、まずこれらを溶解させ、そこへその他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、電荷輸送性物質及びドーパント物質を順次、あるいはこれらを同時に溶解させてもよい。
 本発明においては、組成物は、高平坦性薄膜を再現性よく得る観点から、電荷輸送性物質、ドーパント物質等を有機溶媒に溶解させた後、サブマイクロオーダーのフィルター等を用いて濾過することが望ましい。
 本発明の電荷輸送性薄膜は、上記説明した本発明の電荷輸送性薄膜形成組成物を基材上に塗布して焼成することで、基材上に形成させることができる。
 組成物の塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート等が挙げられるが、これらに限定されない。塗布方法は、再現性よく平坦性の高い電荷輸送薄膜を得ることを考慮すると、スピンコート法、インクジェット法、スプレー法が好ましい。なお、塗布方法に応じて、組成物の粘度及び表面張力を調節することが好ましい。
 本発明において、均一な成膜面及び高い電荷輸送性を有する厚膜の電荷輸送性膜を再現性よく得るためには、組成物を大気雰囲気下で焼成することが好ましい。
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜設定されるものではあるが、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましい。焼成時間は、焼成温度に応じて異なるため一概に規定できないが、通常1分間~1時間である。
 なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層として用いる場合、5~200nmが好ましい。膜厚を変化させる方法としては、組成物中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
 本発明の電荷輸送性薄膜は、有機EL素子において、正孔注入層として好適に用いることができるが、正孔注入輸送層等の電荷輸送性機能層としても使用可能である。
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、前述の本発明の電荷輸送性薄膜を有するものである。
 有機EL素子の代表的な構成としては、下記(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入層及び正孔注入輸送層は、陽極からの正孔受容性だけでなく、それぞれ正孔輸送層及び発光層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 本発明の組成物を用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄をあらかじめ行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし、陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
 本発明の組成物から得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。
 前述の方法により、陽極基板上に本発明の組成物を塗布して焼成し、電極上に正孔注入層を作製する。この正孔注入層の上に、正孔輸送層、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔輸送層、発光層、電子輸送層及び電子注入層は、用いる材料の特性等に応じて、蒸着法又は塗布法(ウェットプロセス)のいずれかで形成すればよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されない。
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-2,2'-ジメチルベンジジン、2,2',7,7'-テトラキス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、9,9-ビス[4-(N,N-ビス-ビフェニル-4-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N,N-ビス-ナフタレン-2-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N-ナフタレン-1-イル-N-フェニルアミノ)-フェニル]-9H-フルオレン、2,2',7,7'-テトラキス[N-ナフタレニル(フェニル)-アミノ]-9,9-スピロビフルオレン、N,N'-ビス(フェナントレン-9-イル)-N,N'-ビス(フェニル)-ベンジジン、2,2'-ビス[N,N-ビス(ビフェニル-4-イル)アミノ]-9,9-スピロビフルオレン、2,2'-ビス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、ジ-[4-(N,N-ジ(p-トリル)アミノ)-フェニル]シクロヘキサン、2,2',7,7'-テトラ(N,N-ジ(p-トリル)アミノ)-9,9-スピロビフルオレン、N,N,N',N'-テトラ-ナフタレン-2-イル-ベンジジン、N,N,N',N'-テトラ-(3-メチルフェニル)-3,3'-ジメチルベンジジン、N,N'-ジ(ナフタレニル)-N,N'-ジ(ナフタレン-2-イル)-ベンジジン、N,N,N',N'-テトラ(ナフタレニル)-ベンジジン、N,N'-ジ(ナフタレン-2-イル)-N,N'-ジフェニルベンジジン-1,4-ジアミン、N1,N4-ジフェニル-N1,N4-ジ(m-トリル)ベンゼン-1,4-ジアミン、N2,N2,N6,N6-テトラフェニルナフタレン-2,6-ジアミン、トリス(4-(キノリン-8-イル)フェニル)アミン、2,2'-ビス(3-(N,N-ジ(p-トリル)アミノ)フェニル)ビフェニル、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等の正孔輸送性低分子材料等が挙げられる。
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)-4-(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4'-ビス(2,2-ジフェニルビニル)ビフェニル、9,10-ジ(ナフタレン-2-イル)アントラセン、2-t-ブチル-9,10-ジ(ナフタレン-2-イル)アントラセン、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2,2'-ジピレニル-9,9-スピロビフルオレン、1,3,5-トリス(ピレン-1-イル)ベンゼン、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン、2,2'-ビ(9,10-ジフェニルアントラセン)、2,7-ジピレニル-9,9-スピロビフルオレン、1,4-ジ(ピレン-1-イル)ベンゼン、1,3-ジ(ピレン-1-イル)ベンゼン、6,13-ジ(ビフェニル-4-イル)ペンタセン、3,9-ジ(ナフタレン-2-イル)ペリレン、3,10-ジ(ナフタレン-2-イル)ペリレン、トリス[4-(ピレニル)-フェニル]アミン、10,10'-ジ(ビフェニル-4-イル)-9,9'-ビアントラセン、N,N'-ジ(ナフタレン-1-イル)-N,N'-ジフェニル-[1,1':4',1'':4'',1'''-クォーターフェニル]-4,4'''-ジアミン、4,4'-ジ[10-(ナフタレン-1-イル)アントラセン-9-イル]ビフェニル、ジベンゾ{[f,f']-4,4',7,7'-テトラフェニル}ジインデノ[1,2,3-cd:1',2',3'-lm]ペリレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジメチル-9H-フルオレン-2-イル)ピレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジヘキシル-9H-フルオレン-2-イル)ピレン、1,3-ビス(カルバゾール-9-イル)ベンゼン、1,3,5-トリス(カルバゾール-9-イル)ベンゼン、4,4',4''-トリス(カルバゾール-9-イル)トリフェニルアミン、4,4'-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4'-ビス(カルバゾール-9-イル)-2,2'-ジメチルビフェニル、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン、2,2',7,7'-テトラキス(カルバゾール-9-イル)-9,9-スピロビフルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-ジ(p-トリル)フルオレン、9,9-ビス[4-(カルバゾール-9-イル)-フェニル]フルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-スピロビフルオレン、1,4-ビス(トリフェニルシリル)ベンゼン、1,3-ビス(トリフェニルシリル)ベンゼン、ビス(4-N,N-ジエチルアミノ-2-メチルフェニル)-4-メチルフェニルメタン、2,7-ビス(カルバゾール-9-イル)-9,9-ジオクチルフルオレン、4,4''-ジ(トリフェニルシリル)-p-ターフェニル、4,4'-ジ(トリフェニルシリル)ビフェニル、9-(4-t-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール、2,6-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、トリフェニル(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン、9,9-ジメチル-N,N-ジフェニル-7-(4-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェニル)-9H-フルオレン-2-アミン、3,5-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、9,9-スピロビフルオレン-2-イル-ジフェニル-ホスフィンオキサイド、9,9'-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)、3-(2,7-ビス(ジフェニルホスホリル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール、4,4,8,8,12,12-ヘキサ(p-トリル)-4H-8H-12H-12C-アザジベンゾ[cd,mn]ピレン、4,7-ジ(9H-カルバゾール-9-イル)-1,10-フェナントロリン、2,2'-ビス(4-(カルバゾール-9-イル)フェニル)ビフェニル、2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]チオフェン、ビス(2-メチルフェニル)ジフェニルシラン、ビス[3,5-ジ(9H-カルバゾール-9-イル)フェニル]ジフェニルシラン、3,6-ビス(カルバゾール-9-イル)-9-(2-エチル-ヘキシル)-9H-カルバゾール、3-(ジフェニルホスホリル)-9-(4-(ジフェニルホスホリル)フェニル)-9H-カルバゾール、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニルカルバゾール等が挙げられ、発光性ドーパントと共蒸着することによって、発光層を形成してもよい。
 発光性ドーパントとしては、3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン、2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N'-ジメチル-キナクリドン、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10-ビス[N,N-ジ(p-トリル)アミノ]アントラセン、9,10-ビス[フェニル(m-トリル)アミノ]アントラセン、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10,N10-テトラ(p-トリル)-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10,N10,N10-テトラフェニル-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10-ジフェニル-N10,N10-ジナフタレニル-9,9'-ビアントラセン-10,10'-ジアミン、4,4'-ビス(9-エチル-3-カルバゾビニレン)-1,1'-ビフェニル、ペリレン、2,5,8,11-テトラ-t-ブチルペリレン、1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン、4,4'-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル、4-(ジ-p-トリルアミノ)-4'-[(ジ-p-トリルアミノ)スチリル]スチルベン、ビス[3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)]イリジウム(III)、4,4'-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4-ジフルオロフェニルピリジナト)テトラキス(1-ピラゾリル)ボレートイリジウム(III)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-トリス(9,9-ジメチルフルオレニレン)、2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン、N-(4-((E)-2-(6((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン、fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、2,7-ビス[4-(ジフェニルアミノ)スチリル]-9,9-スピロビフルオレン、6-メチル-2-(4-(9-(4-(6-メチルベンゾ[d]チアゾール-2-イル)フェニル)アントラセン-10-イル)フェニル)ベンゾ[d]チアゾール、1,4-ジ[4-(N,N-ジフェニル)アミノ]スチリルベンゼン、1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン、(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン、ビス(2,4-ジフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾール)((2,4-ジフルオロベンジル)ジフェニルホスフィネート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(ベンジルジフェニルホスフィネート)イリジウム(III)、ビス(1-(2,4-ジフルオロベンジル)-3-メチルベンズイミダゾリウム)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(4',6'-ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3,5-ビス(トリフルオロメチル)-2-(2'-ピリジル)ピロレート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、(Z)-6-メシチル-N-(6-メシチルキノリン-2(1H)-イリデン)キノリン-2-アミン-BF2、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン、4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン、4-(ジシアノメチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1-フェニルイソキノリン)イリジウム(III)、ビス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4'-ジ-t-ブチル-(2,2')-ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロホスフェート)、トリス(2-フェニルキノリン)イリジウム(III)、ビス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8-ジ-t-ブチル-5,11-ビス(4-t-ブチルフェニル)-6,12-ジフェニルテトラセン、ビス(2-フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20-テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジン)-ピラゾレート)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルホスフィン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2-フェニル-4-メチルキノリン]イリジウム(III)、ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)、ビス(2-(9,9-ジエチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)、ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジナト-N,C2)アセチルアセトネート、(E)-2-(2-t-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピローロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル、ビス(3-トリフルオロメチル-5-(1-イソキノリル)ピラゾレート)(メチルジフェニルホスフィン)ルテニウム、ビス[(4-n-ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2-メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4-n-ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
 電子輸送層を形成する材料としては、8-ヒドロキシキノリノレート-リチウム、2,2',2''-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾール)、2-(4-ビフェニル)5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム、1,3-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、6,6'-ビス[5-(ビフェニル-4-イル)-1,3,4-オキサジアゾ-2-イル]-2,2'-ビピリジン、3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール、4-(ナフタレン-1-イル)-3,5-ジフェニル-4H-1,2,4-トリアゾール、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、2,7-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン、1,3-ビス[2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、1-メチル-2-(4-(ナフタレン-2-イル)フェニル)-1H-イミダゾ[4,5f][1,10]フェナントロリン、2-(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、フェニル-ジピレニルホスフィンオキサイド、3,3',5,5'-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル、1,3,5-トリス[(3-ピリジル)-フェン-3-イル]ベンゼン、4,4'-ビス(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル、1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン、3,5-ジ(ピレン-1-イル)ピリジン等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al2O3)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、リチウムアセチルアセトネート(Li(acac))、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 また、本発明の組成物から得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法のその他の例は、以下のとおりである。
 前述したEL素子作製方法において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送層、発光層を順次形成することによって本発明の組成物によって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。具体的には、陽極基板上に本発明の組成物を塗布して前記の方法により正孔注入層を作製し、その上に正孔輸送層、発光層を順次形成し、更に陰極電極を蒸着して有機EL素子とする。
 使用する陰極及び陽極材料としては、前述のものと同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
 正孔輸送層及び発光層の形成方法としては、正孔輸送性高分子材料若しくは発光性高分子材料、又はこれらにドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、それぞれ正孔注入層又は正孔輸送層の上に塗布した後、焼成することで成膜する方法が挙げられる。
 正孔輸送性高分子材料としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
 溶媒としては、トルエン、キシレン、クロロホルム等が挙げられる。溶解又は均一分散法としては、攪拌、加熱攪拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されず、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
 焼成方法としては、不活性ガス下又は真空中、オーブン又はホットプレートで加熱する方法が挙げられる。
 本発明の組成物から得られる薄膜が正孔注入輸送層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。
 陽極基板上に正孔注入輸送層を形成し、この正孔注入輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層及び電子注入層の形成方法及び具体例は前述と同様のものが挙げられる。
 陽極材料、発光層、発光性ドーパント、電子輸送層及び電子ブロック層を形成する材料、陰極材料としては、前述したものと同じものが挙げられる。
 なお、電極及び前記各層の間の任意の間に、必要に応じてホールブロック層、電子ブロック層等を設けてもよい。例えば、電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
 陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料選択する。
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤などとともに、封止してもよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)1H-NMR:日本電子(株)製 JNM-ECP300 FT NMR SYSTEM
(2)MALDI-TOF-MS:ブルカー社製、autoflex III smartbeam
(3)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(4)組成物(ワニス)の塗布:ミカサ(株)製 スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(6)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)EL素子の輝度等の測定:(有)テック・ワールド製 I-V-L測定システム
(8)EL素子の寿命測定(半減期の測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
[1]化合物の合成
[合成例1]アニリン誘導体1の合成
Figure JPOXMLDOC01-appb-C000083
 フラスコ内に、N1-(4-アミノフェニル)ベンゼン-1,4-ジアミン1.00g、3-ブロモ-9-フェニル-9H-カルバゾール8.89g、酢酸パラジウム112mg、及びt-ブトキシナトリウム3.47gを入れた後、フラスコ内を窒素置換した。そこへ、トルエン30mL、及び予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液2.75mL(濃度81.0g/L)を入れ、90℃で6時間撹拌した。
 撹拌終了後、反応混合物を室温まで冷却し、冷却した反応混合物と、トルエンと、イオン交換水とを混合して分液処理をした。得られた有機層を硫酸ナトリウムで乾燥し、濃縮した。濃縮液をシリカゲルにてろ過を行い、得られたろ液に活性炭0.2gを加え、室温で30分撹拌した。
 その後、ろ過にて活性炭を取り除き、ろ液を濃縮した。濃縮液をメタノール及び酢酸エチルの混合溶媒(500mL/500mL)に滴下し、得られたスラリーを室温で一晩撹拌し、次いでスラリーをろ過してろ物回収した。得られたろ物を乾燥し、目的とするアニリン誘導体1)を得た(収量5.88g,収率83%)。
1H-NMR(300MHz,THF-d8)δ[ppm]:8.08(d,J=7.7Hz,2H),7.99(d,J=7.7Hz,8H),7.60-7.64(m,19H),7.42-7.47(m,6H),7.28-7.36(m,19H),7.09-7.21(m,6H),7.00(m,8H).
MALDI-TOF-MS m/Z found:1404.68([M]+calcd:1404.56).
[2]組成物の調製
[実施例1-1]
 アニリン誘導体1 0.112gと、2,4,6,7-テトラシアノ-1,4,5,8-テトラアザナフタレン((株)三宝化学研究所製、以下「TCNA」という) 0.092gとを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン(以下「DMI」という。)5.0gに溶解させた。そこへ2,3-ブタンジオール(以下「2,3-BD」という。)3.0g及びジプロピレングリコールモノメチルエーテル(以下「DPM」という。)2.0gを加えて撹拌し、得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、電荷輸送性薄膜形成組成物を得た。
[実施例1-2]
 アニリン誘導体1 0.171gと、TCNA 0.141gと、リンタングステン酸(日本新金属(株)製、以下「PTA」という) 0.312gとを、窒素雰囲気下でDMI 7.5gに溶解させた。そこへ2,3-BD 4.5g及びDPM 3.0gを加えて撹拌し、得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、電荷輸送性薄膜形成組成物を得た。
[実施例1-3]
 アニリン誘導体1 0.171gと、TCNA 0.141gと、PTA 0.312gとを、窒素雰囲気下でDMI 7.5gに溶解させた。そこへ2,3-BD 4.5g及びDPM 3.0gを加えて撹拌し、更に3,3,3-トリフルオロプロピルトリメトキシシラン(信越化学工業(株)製)0.010g及びフェニルトリメトキシシラン(信越化学工業(株)製)0.021gを加えて撹拌し、得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、電荷輸送性薄膜形成組成物を得た。
[3]有機EL素子の製造及び特性評価
[実施例2-1]
 実施例1-1で得られた電荷輸送性薄膜形成組成物を、スピンコーターを用いてITO基板に塗布した後、80℃で1分間乾燥し、さらに、大気雰囲気下、150℃で10分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、CBPとIr(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、BAlq、フッ化リチウム及びアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、BAlq及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び120nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材((株)MORESCO製、モレスコモイスチャーカット WB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
Figure JPOXMLDOC01-appb-C000084
[実施例2-2~2-3]
 実施例1-1で得られた電荷輸送性薄膜形成組成物の代わりに、それぞれ実施例1-2~1-3で得られた電荷輸送性薄膜形成組成物を用いた以外は、実施例2-1と同様の方法で素子を得た。
 作製した素子を駆動電流0.7mAで発光させた場合の駆動電圧、輝度及び発光効率、並びに輝度の半減期(初期輝度5000cd/m2)を測定した。結果を表19に示す。なお、各素子の発光面サイズの面積は、2mm×2mmである。
Figure JPOXMLDOC01-appb-T000085
 表19に示されるように、本発明の電荷輸送性薄膜形成組成物から得られた電荷輸送性薄膜を正孔注入層として有する有機EL素子は、輝度特性が優れていることがわかる。
 また、当該有機EL素子は、耐久性にも優れていることがわかる。

Claims (9)

  1.  式(D1)~(D5)のいずれかで示されるシアノ基で置換された含窒素複素芳香族化合物からなるドーパント物質と、電荷輸送性物質と、有機溶媒とを含み、前記ドーパント物質及び前記電荷輸送性物質が前記有機溶媒に溶解していることを特徴とする、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記電荷輸送性物質が、分子量200~9,500の電荷輸送性化合物である請求項1記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  3.  前記電荷輸送性化合物が、アニリン誘導体又はチオフェン誘導体である請求項2記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  4.  前記電荷輸送性化合物が、アニリン誘導体である請求項3記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  5.  更に有機シラン化合物を含む請求項1~4のいずれか1項記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  6.  更にヘテロポリ酸を含む請求項1~5のいずれか1項記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  7.  有機エレクトロルミネッセンス素子の正孔注入層、正孔輸送層又は正孔注入輸送層形成用組成物である請求項1~6のいずれか1項記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物。
  8.  請求項1~7のいずれか1項記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物を用いて製造される有機エレクトロルミネッセンス素子用の電荷輸送性薄膜。
  9.  請求項8記載の有機エレクトロルミネッセンス素子用の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
PCT/JP2016/056539 2015-03-13 2016-03-03 有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 WO2016147877A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680015395.XA CN107408637B (zh) 2015-03-13 2016-03-03 用于有机电致发光元件的电荷传输性薄膜形成组合物、用于有机电致发光元件的电荷传输性薄膜和有机电致发光元件
KR1020177027915A KR102543967B1 (ko) 2015-03-13 2016-03-03 유기 일렉트로루미네센스 소자용의 전하 수송성 박막 형성 조성물, 유기 일렉트로루미네센스 소자용의 전하 수송성 박막 및 유기 일렉트로루미네센스 소자
JP2017506196A JP6665853B2 (ja) 2015-03-13 2016-03-03 有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
EP16764707.2A EP3270433A4 (en) 2015-03-13 2016-03-03 COMPOSITION FOR FORMATION OF CHARGE TRANSPORT THIN FILM FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, CHARGE TRANSPORT THIN FILM FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, AND ORGANIC ELECTROLUMINESCENCE ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051161 2015-03-13
JP2015051161 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147877A1 true WO2016147877A1 (ja) 2016-09-22

Family

ID=56919924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056539 WO2016147877A1 (ja) 2015-03-13 2016-03-03 有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
EP (1) EP3270433A4 (ja)
JP (1) JP6665853B2 (ja)
KR (1) KR102543967B1 (ja)
CN (1) CN107408637B (ja)
TW (1) TWI690532B (ja)
WO (1) WO2016147877A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417736A (zh) * 2018-01-29 2018-08-17 天津大学 一种过渡金属氧化物作为空穴注入层的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287088A (ja) * 1991-11-19 1993-11-02 Nippon Soda Co Ltd 導電性高分子フィルムの製法
JP2010225375A (ja) * 2009-03-23 2010-10-07 Tohoku Univ 透明導電性フィルム及びタッチパネル、並びにフレキシブル表示体
JP2014131057A (ja) * 2008-11-19 2014-07-10 Nissan Chem Ind Ltd 電荷輸送性材料
JP2015153864A (ja) * 2014-02-13 2015-08-24 国立大学法人山形大学 有機膜及びこれを用いた有機電子デバイス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222263A (ja) 1998-02-04 1999-08-17 Nippon Soda Co Ltd 電子部品収納用ソフトトレー
JP2001341239A (ja) 2000-06-05 2001-12-11 Kyodo Giken Kagaku Kk 帯電防止フィルム及び該帯電防止フィルムを用いた粘着テープ又はシート用剥離フィルム並びに粘着テープ又はシート
JP4322005B2 (ja) 2002-12-11 2009-08-26 日本曹達株式会社 分子集合体
WO2005043962A1 (ja) * 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
EP1785413B1 (en) 2004-08-31 2014-01-22 Nissan Chemical Industries, Ltd. Arylsulfonic acid compound and use thereof as electron-acceptor material
US8906519B2 (en) 2006-09-13 2014-12-09 Nissan Chemical Industries, Ltd. Oligoaniline compounds
CN104789111B (zh) 2007-04-12 2018-05-01 日产化学工业株式会社 低聚苯胺化合物
JP5166809B2 (ja) 2007-09-26 2013-03-21 東海ゴム工業株式会社 半導電性組成物およびそれを用いた電子写真機器用導電性部材
JP5212032B2 (ja) * 2008-02-26 2013-06-19 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
JP5287088B2 (ja) 2008-09-25 2013-09-11 株式会社デンソー 電源制御回路
WO2014148415A1 (ja) * 2013-03-18 2014-09-25 日産化学工業株式会社 電荷輸送性ワニス
JP6128213B2 (ja) * 2013-06-18 2017-05-17 日産化学工業株式会社 チオフェン誘導体及びその利用並びにチオフェン誘導体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287088A (ja) * 1991-11-19 1993-11-02 Nippon Soda Co Ltd 導電性高分子フィルムの製法
JP2014131057A (ja) * 2008-11-19 2014-07-10 Nissan Chem Ind Ltd 電荷輸送性材料
JP2010225375A (ja) * 2009-03-23 2010-10-07 Tohoku Univ 透明導電性フィルム及びタッチパネル、並びにフレキシブル表示体
JP2015153864A (ja) * 2014-02-13 2015-08-24 国立大学法人山形大学 有機膜及びこれを用いた有機電子デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOA-LAN VO ET AL.: "Structure and Properties of Nitrogen-Rich 1,4-Dicyanotetrazine, C4N6: A Comparative Study with Related Tetracyano Electron Acceptors", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 79, 26 August 2014 (2014-08-26), pages 8189 - 8201, XP055311852 *
RICO E. DEL SESTO ET AL.: "Chemical Reduction of 2,4,6-Tricyano-1,3,5-triazine and 1,3,5- Tricyanobenzene. Formation of Novel 4,4'6,6'- Tetracyano-2,2'-bitriazine and Its Radical Anion", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 68, May 2003 (2003-05-01), pages 3367 - 3379, XP055311847 *
See also references of EP3270433A4 *

Also Published As

Publication number Publication date
KR20170128407A (ko) 2017-11-22
EP3270433A1 (en) 2018-01-17
EP3270433A4 (en) 2019-02-20
TW201708225A (zh) 2017-03-01
CN107408637B (zh) 2019-12-20
JP6665853B2 (ja) 2020-03-13
TWI690532B (zh) 2020-04-11
KR102543967B1 (ko) 2023-06-15
JPWO2016147877A1 (ja) 2017-12-21
CN107408637A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP5790901B1 (ja) アニリン誘導体およびその利用
KR102411286B1 (ko) 아닐린 유도체 및 그 이용
JP6593334B2 (ja) 電荷輸送性ワニス
JP6601390B2 (ja) アニリン誘導体およびその利用
JP2019206591A (ja) アニリン誘導体およびその製造方法
KR102255192B1 (ko) 아릴설폰산 화합물 및 그 이용
JP6061034B2 (ja) アニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
WO2015115515A1 (ja) アリールスルホン酸化合物及びその利用
KR102320598B1 (ko) 아닐린 유도체 및 그 이용
JP6665853B2 (ja) 有機エレクトロルミネッセンス素子用の電荷輸送性薄膜形成組成物、有機エレクトロルミネッセンス素子用の電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP2015092559A (ja) 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027915

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764707

Country of ref document: EP