WO2016147627A1 - 熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法 - Google Patents

熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法 Download PDF

Info

Publication number
WO2016147627A1
WO2016147627A1 PCT/JP2016/001358 JP2016001358W WO2016147627A1 WO 2016147627 A1 WO2016147627 A1 WO 2016147627A1 JP 2016001358 W JP2016001358 W JP 2016001358W WO 2016147627 A1 WO2016147627 A1 WO 2016147627A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
core material
annealing
aluminum alloy
cold rolling
Prior art date
Application number
PCT/JP2016/001358
Other languages
English (en)
French (fr)
Inventor
中川 渉
田中 哲
和子 寺山
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP16764459.0A priority Critical patent/EP3272891A4/en
Priority to CN201680012458.6A priority patent/CN107406920A/zh
Priority to BR112017015673-3A priority patent/BR112017015673A2/ja
Priority to US15/558,205 priority patent/US20180073118A1/en
Priority to JP2017506081A priority patent/JP6758281B2/ja
Publication of WO2016147627A1 publication Critical patent/WO2016147627A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a brazing sheet fin material made of an aluminum alloy for a heat exchanger having excellent strength after brazing heat addition and having good high temperature buckling resistance, brazing resistance and self-corrosion resistance, and a method for producing the same.
  • the brazing sheet fin material made of aluminum alloy according to the present invention is suitably used particularly as a fin material of a heat exchanger for automobiles.
  • Aluminum alloy is suitably used as a heat exchanger material because it is lightweight, excellent in strength, and further excellent in thermal conductivity.
  • aluminum heat exchangers such as condensers and evaporators are widely used for automobile heat exchangers.
  • aluminum alloy heat exchangers have started to become popular. These heat exchangers are composed of a member functioning as a working fluid passage and a fin material functioning as a heat transport medium, and are manufactured by brazing and joining both members. Brazing joining is carried out by a process in which a component containing a brazing material is heated to about 600 ° C. to supply molten brazing to the joint, and the joint is filled with brazing and then cooled.
  • a method of brazing and joining in a heating furnace in an inert gas atmosphere after assembling a member such as a tube or corrugated fin with a fluoride-based flux attached to a predetermined structure is generally used. It has been adopted.
  • General brazing sheets for heat exchangers have an Al-Si alloy brazing material such as JIS-A4343 or JIS-A4045 attached to one or both sides of an Al-Mn alloy core material such as JIS-A3003 or JIS-A3203. It is a clad material formed together.
  • the brazing sheet made of such a general alloy is inferior in strength after brazing addition heat, there is a problem that it is difficult to reduce the thickness.
  • Patent Document 1 proposes a brazing sheet fin material having excellent strength after brazing heat addition by adding Ni to the core material.
  • an intermetallic compound containing Ni has a large potential difference from the parent phase and easily becomes a starting point of corrosion, there is a problem in practical use because of low self-corrosion resistance.
  • Patent Document 3 proposes a brazing sheet fin material having excellent strength after brazing heat addition by forming subcrystalline grains in the core material after brazing heat treatment.
  • this plate fin material has a problem that brazing erosion to the core material occurs and the high temperature buckling resistance is low, and it cannot be applied to a corrugated fin material. was there.
  • the present invention has been made to solve the above-mentioned problems, and is an aluminum alloy brazing sheet for a heat exchanger that has excellent strength after brazing heat addition and has excellent high-temperature buckling resistance, brazing resistance and self-corrosion resistance. It aims at providing a fin material and its manufacturing method.
  • the present inventors have used an aluminum alloy material having a specific component, a specific ingot cooling condition, a combined material heating condition, a hot rolled condition for the combined material, and a cold rolling condition. And it discovered that the brazing sheet fin material made from an aluminum alloy which has a specific metal structure was producible by annealing conditions.
  • the molten aluminum alloy blended in this way is prepared by a semi-continuous casting method.
  • the average cooling rate of the solidified aluminum alloy is increased to a certain value or more to obtain a core material ingot.
  • the core ingot is not treated at a high temperature when it is subjected to a homogenization treatment.
  • the core ingot thus prepared includes Al-Mn intermetallic compounds, Al-Si-Mn intermetallic compounds, Al-Fe-Mn intermetallic compounds, Al-Si-Fe-Mn based metals.
  • intermetallic compounds Precipitation of intermetallic compounds (hereinafter, these intermetallic compounds are referred to as “Mn-based compounds”) can suppress the precipitation of an appropriate Mn solid solution. As a result, excellent strength can be obtained after brazing heat, and high temperature buckling resistance can be ensured.
  • the brazing material can be prepared by controlling the content of Si and Fe to an appropriate amount to ensure brazing fluidity in brazing heat, and to the core material of Si during brazing heat. Excellent strength is obtained by diffusion, and high temperature buckling resistance can be secured.
  • the laminated material of the core ingot and the brazing material is hot-rolled into a clad material
  • the laminated material is heated at a low temperature so that the temperature of the rolled plate during the hot-rolling rolling is also low. Hot roll with control. Thereby, precipitation of the Mn-type compound of a core material can be suppressed and the appropriate Mn solid solution amount can be ensured.
  • the clad material after hot rolling is cold-rolled, it is cold-rolled at a high rolling rate without being annealed.
  • An annealing temperature is performed at a low temperature of 400 ° C. or lower in the annealing step after cold rolling. Due to the cold rolling rate and annealing conditions, fine Mn-based compounds are densely deposited on the core material. Although the amount of Mn solid solution decreases in this annealing process, the appropriate amount of Mn solid solution is ensured at the end of hot rolling, so that the fine dispersion of Mn compounds and the amount of Mn solid solution are ensured at the end of annealing. Is realized in a well-balanced manner.
  • the clad material after the annealing is further cold-rolled (hereinafter, the cold rolling after annealing is referred to as final rolling), or whether the Mn-based compound of the clad material obtained up to the annealing step is used. Since a good balance between the distribution and the Mn solid solution amount is ensured, the brazing sheet fin material having the final thickness is a metal structure having a certain level of conductivity and an average interparticle distance of Mn-based compounds. It has become.
  • the brazing sheet fin material controlled with a small amount of heat input in the manufacturing process can secure an appropriate amount of Mn solid solution in the core material after the brazing addition heat, and the solid solution Mn of the core material diffuses from the brazing material.
  • the formed Si By combining with the formed Si to form a Mn-based compound and re-dissolving at around 600 ° C. which is the brazing addition heat temperature, an increase in the Mn-based compound of the material can be suppressed. Therefore, after brazing heat, a balanced effect of Mn solid solution strengthening and Mn compound dispersion strengthening can be obtained.
  • the recrystallization is performed or not, it is possible to prevent the core material from being recrystallized coarsely during brazing addition heat and to prevent the core material from being eroded by brazing, thereby ensuring self-corrosion resistance.
  • the core material is recrystallized in the annealing step may be selected in consideration of the moldability in the corrugating equipment.
  • the brazing material is composed of Si: 6.0 to 13.0 mass%, Fe: 0.05 to Containing 0.8% by mass, consisting of an Al—Si based alloy consisting of the balance Al and inevitable impurities,
  • the fin material Before brazing heat, the fin material has a single-sided average cladding ratio of 6 to 16%, a thickness of 40 to 120 ⁇ m, and a conductivity of 48 to 54% IACS, and the metal structure of the core material is equivalent to a circle.
  • the core material is made of an aluminum alloy further containing Zn: 0.3 to 3.0% by mass.
  • the core material is made of an aluminum alloy further containing 0.05 to 0.5 mass% of Cu.
  • the core material comprises Zr: 0.05 to 0.3 mass%, Ti: 0.05 to 0.3 mass%, Cr: It was made of an aluminum alloy further containing one or more selected from 0.05 to 0.3% by mass and V: 0.05 to 0.3% by mass.
  • the brazing material is made of an Al-Si based alloy further containing Zn: 0.3 to 3.0 mass%.
  • the brazing material is made of an Al—Si based alloy further containing Cu: 0.1 to 0.7 mass%.
  • the brazing material is at least one of Na: 0.003-0.05 mass% and Sr: 0.003-0.05 mass%. It was made of an Al—Si based alloy further containing one of them.
  • the tensile strength after brazing heat is 130 MPa or more.
  • the present invention is the method for producing a brazing sheet fin material made of aluminum alloy for a heat exchanger according to any one of claims 1 to 8, wherein the aluminum alloy for the core material and the brazing material is used.
  • a casting process in which casting is performed by a semi-continuous casting method, a hot rolling process in which a laminated material in which a brazing material rolled to a predetermined thickness is superposed on both sides of the core material is hot rolled, and a hot rolling process A primary cold rolling process in which the clad material is cold-rolled without being annealed, an annealing process in which the clad material is annealed after the primary cold-rolling process, and a final plate thickness without being annealed in the middle after the annealing process.
  • an average cooling rate for cooling the solidified core material ingot to 550 to 200 ° C. is 0.10 ° C./second or more, Without providing a homogenization treatment step of homogenizing the core material ingot at a temperature of 510 ° C.
  • the heating temperature of the laminated material is 420 to 500 ° C.
  • the temperature of the rolled sheet when the hot rolling rate reaches 10% is 370 to 450 ° C.
  • the cold rolling rate is 85.0 to 99.5%
  • the core material is recrystallized at an annealing temperature of 300 to 450 ° C.
  • the cold rolling rate is 10 to 85%. It was set as the manufacturing method of the brazing sheet fin material made from an alloy.
  • a brazing sheet fin material made of aluminum alloy for a heat exchanger according to any one of the first to eighth aspects, wherein the aluminum alloy for the core material and the brazing material is used.
  • a secondary cold rolling process for cold rolling In the core material casting step, an average cooling rate for cooling the solidified core material ingot to 550 to 200 ° C.
  • the heating temperature of the laminated material is 420 to 500 ° C., and the temperature of the rolled sheet when the hot rolling rate reaches 10% is 370 to 450 ° C.
  • the cold rolling rate is 85.0 to 99.5%
  • the annealing temperature is 150 ° C. or more and less than 300 ° C., without recrystallizing the core material
  • a cold rolling reduction rate is 3 to 40%, and the method for producing an aluminum alloy brazing sheet fin material for a heat exchanger is provided.
  • the present invention further includes an annealing step in which the rolled sheet is annealed at a temperature of 300 ° C. or less after the secondary cold rolling step.
  • a method for producing an aluminum alloy brazing sheet fin material for a heat exchanger according to any one of the first to eighth aspects, wherein the aluminum alloy for the core material and the brazing material is used.
  • a cold rolling process for cold rolling to the final thickness without annealing the clad material, and an annealing process for annealing the clad material after the cold rolling process In the core material casting step, an average cooling rate for cooling the solidified core material ingot to 550 to 200 ° C. is 0.10 ° C./second or more, Without providing a homogenization treatment step of homogenizing the core material ingot at a temperature of 510 ° C.
  • the heating temperature of the laminated material is 420 to 500 ° C., and the temperature of the rolled sheet when the hot rolling rate reaches 10% is 370 to 450 ° C.
  • the cold rolling rate is 85.0 to 99.5%
  • an annealing temperature is set to 150 ° C. or higher and lower than 300 ° C., and the core material is not recrystallized, and a method for producing an aluminum alloy brazing sheet fin material for a heat exchanger is provided.
  • the present invention according to claim 13 further comprises a homogenization treatment step of homogenizing the core material ingot at a temperature of less than 510 ° C. after the core material casting step. It was supposed to be.
  • the average cooling rate at the time of solidification of the molten metal is 0.5 ° C./second or more in the casting process of the core material.
  • the heating time for reaching the heating temperature when heating the laminated material is 15 hours or less.
  • the rolled plate temperature at the end of the hot rolling process is set to less than 370 ° C.
  • the present invention provides a thin aluminum alloy brazing sheet fin material having high strength after brazing heat and a method for producing the same.
  • This brazing sheet fin material has good high temperature buckling resistance, brazing resistance and self-corrosion resistance. Therefore, the brazing sheet fin material of the present invention is suitably used as a heat exchanger fin material.
  • the aluminum alloy brazing sheet fin material for heat exchange according to the present invention and the manufacturing method thereof will be described in detail below.
  • brazing sheet fin material made of aluminum alloy The brazing sheet fin material made of aluminum alloy for a heat exchanger according to the present invention has a core material and a brazing material having a predetermined aluminum alloy composition, and further, a predetermined thickness and cladding ratio, and It has a predetermined conductivity and metal structure before and after brazing heat.
  • the core material contains Si, Fe, and Mn as essential elements.
  • the core material Si contributes to improvement in strength and high-temperature buckling resistance.
  • the Si content is 0.05 to 0.8% by mass (hereinafter simply referred to as “%”).
  • % 0.05 to 0.8% by mass
  • the Si content is less than 0.05%, the Mn-based compound is not sufficiently formed, and sufficient strength cannot be obtained after the brazing heat.
  • the Si content exceeds 0.8%, an Mn-based compound is excessively formed and an appropriate Mn solid solution amount cannot be ensured before the brazing heat, and sufficient strength cannot be obtained after the brazing heat.
  • a preferable content of Si in the core material is 0.1 to 0.7%, and a more preferable content is 0.1 to 0.6%.
  • the core material Fe contributes to strength improvement and stabilization of the crystal structure.
  • the Fe content of the core material is 0.05 to 0.8%. If the Fe content is less than 0.05%, the Mn-based compound is not sufficiently formed, and sufficient strength cannot be obtained after the brazing heat. On the other hand, if the Fe content exceeds 0.8%, an Mn-based compound is excessively formed and an appropriate Mn solid solution amount cannot be ensured before the brazing heat, and sufficient strength cannot be obtained after the brazing heat. .
  • the intermetallic compound containing Fe has a large potential difference from the parent phase and is likely to be a starting point of corrosion, when the Fe content exceeds 0.8%, the intermetallic compound containing Fe is excessively formed and self- Corrosion resistance decreases.
  • a preferable content of Fe in the core material is 0.1 to 0.8%, and a more preferable content is 0.1 to 0.7%.
  • Mn of the core material contributes to improvement of strength and high temperature buckling resistance.
  • the Mn content of the core material is 0.8 to 2.0%. If the Mn content is less than 0.8% by mass, an appropriate amount of Mn solid solution in the core material of the brazing sheet fin material cannot be ensured, and the formation of the Mn-based compound becomes insufficient. Strength cannot be obtained. On the other hand, if the Mn content exceeds 2.0% by mass, a coarse crystallized product is formed during casting, which makes it difficult to produce.
  • a preferable content of Mn in the core material is 0.8 to 1.9%, and a more preferable content is 0.9 to 1.9%.
  • the Si, Fe, and Mn contents of the core material satisfy the condition of Si + Fe ⁇ Mn.
  • the total content of Si and Fe exceeds the Mn content, the contained Mn forms Si, Fe and Mn-based compounds, so that an appropriate Mn solid solution amount in the core material cannot be secured and sufficient after brazing.
  • the preferable conditions are Si + Fe ⁇ 0.9Mn.
  • Zn may be added to the core material as a first selective additive element.
  • Zn is an alloying element that lowers the potential of the fin material. By adding Zn, the potential is reduced and the sacrificial anticorrosion function is imparted to the fin material, and the corrosion resistance of the tube material is improved.
  • the Zn content may be appropriately selected in consideration of the potential of the tube material or other members, but is 0.3 to 3.0%. If the Zn content is less than 0.3%, a sufficient sacrificial anticorrosive effect cannot be obtained. On the other hand, if the Zn content exceeds 3.0%, the corrosion rate increases and the self-corrosion resistance of the fin material cannot be ensured.
  • a preferable content of Zn in the core material is 0.5 to 2.7%, and a more preferable content is 0.7 to 2.5%.
  • Cu may be further added to the core material as a second selective additive element.
  • Cu is an alloy element contributing to strength improvement.
  • the Cu content is 0.05 to 0.5%. When the Cu content is less than 0.05%, the effect of improving the strength is insufficient. On the other hand, if the Cu content exceeds 0.5%, the intergranular corrosion resistance decreases, and the self-corrosion resistance of the fin material cannot be ensured.
  • a preferable content of Cu in the core material is 0.05 to 0.3%, and a more preferable content is 0.05 to 0.25%.
  • one or more selected from Zr, Ti, Cr and V may be further added as a third selective additive element.
  • Zr, Ti, Cr, and V are all alloy elements that improve strength and high-temperature buckling resistance.
  • the content of one or more selected from Zr, Ti, Cr and V is 0.05 to 0.3%, respectively. If the content is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if the content exceeds 0.3%, a coarse crystallized product is formed during casting, which is inappropriate.
  • the preferred contents are each 0.05 to 0.2%, and the more preferred contents are 0.1 to 0.2%, respectively.
  • the brazing material contains Si and Fe as essential elements.
  • the brazing filler metal contributes to the melting point and the brazing flux.
  • Si in the brazing material diffuses into the core material during the brazing heat and forms a Mn-based compound with the core material or dissolves in the matrix of the core material.
  • the Si content of the brazing material is 6.0 to 13.0%. If the Si content is less than 6.0%, the amount of Si diffusing from the brazing material to the core material becomes insufficient, and sufficient strength cannot be obtained after the brazing heat. Moreover, the brazing fluidity becomes insufficient, and the brazing property cannot be secured.
  • Si content exceeds 13.0%
  • Mn-based compounds formed by Si diffusing from the brazing material during brazing heat and solid solution Mn of the core material are precipitated excessively and are suitable after brazing heat.
  • a sufficient amount of Mn solid solution cannot be ensured, and sufficient strength cannot be obtained after heat of brazing.
  • the amount of liquid phase of the brazing material during the brazing heat is excessive, and self-corrosion resistance cannot be ensured.
  • a preferable content of Si in the brazing material is 7.0 to 13.0%, and a more preferable content is 7.0 to 12.0%.
  • Brazing material Fe contributes to brazing fluidity and self-corrosion resistance.
  • the Fe content of the brazing material is 0.05 to 0.8 mass%. If the Fe content is less than 0.05%, brazing fluidity cannot be secured. On the other hand, if the Fe content exceeds 0.8%, the self-corrosion resistance cannot be ensured.
  • the preferable content of Fe in the brazing material is 0.05 to 0.7%, more preferably 0.1 to 0.6%.
  • Zn may be added to the brazing material as a first selective additive element.
  • Zn contributes to an improvement in the sacrificial anticorrosion effect of the fin material.
  • the Zn content of the brazing material may be appropriately selected in consideration of the Zn content of the core material, the potential of the tube material, and other members, but is 0.3 to 3.0%. When the Zn content is less than 0.3%, the sacrificial anticorrosive effect cannot be obtained sufficiently. On the other hand, if the Zn content exceeds 3.0%, the self-corrosion resistance of the fin material cannot be ensured.
  • a preferable content of Zn in the brazing material is 0.5 to 2.7%, and a more preferable content is 0.7 to 2.5%.
  • Cu may be further added to the brazing material as a second selective additive element.
  • Cu diffuses into the core material during brazing heat and contributes to improving the strength of the core material.
  • the Cu content is 0.1 to 0.7%. If the Cu content is less than 0.1%, a sufficient strength improvement effect cannot be obtained. On the other hand, if the Cu content exceeds 0.7%, the intergranular corrosion resistance decreases, and the self-corrosion resistance of the fin material cannot be ensured.
  • a preferable content of Cu in the brazing material is 0.1 to 0.6%, and a more preferable content is 0.2 to 0.5%.
  • At least one of Na and Sr may be further added as a third selective additive element.
  • Both Na and Sr are elements that contribute to brazing fluidity.
  • the content of at least one of Na and Sr is 0.003 to 0.05%. If the content is less than 0.003%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.05%, the above effect cannot be obtained.
  • a preferable content of Na and Sr in the brazing material is 0.005 to 0.02%, and a more preferable content is 0.007 to 0.02%.
  • Mg, Ca, and other inevitable impurity elements may be contained in the above-described core material and brazing material used in the present invention in a range that does not affect the properties, and each content is 0.05% or less, and If the total content thereof is 0.15% or less, it is allowed without affecting the effects of the present invention.
  • the brazing sheet fin material made of aluminum alloy according to the present invention has a thickness of 40 to 120 ⁇ m, preferably 40 to 100 ⁇ m. If the thickness is less than 40 ⁇ m, it becomes difficult to control the variation in cladding rate and thickness, and it becomes difficult to ensure quality as an industrial product. On the other hand, when the thickness exceeds 120 ⁇ m, the heat exchanger cannot be reduced in weight.
  • the clad rate of the brazing material contributes to the brazing flow rate.
  • the cladding rate of the brazing material contributes to the amount of Si diffused from the brazing material to the core material in addition to the contribution to the brazing flow amount during brazing addition heat.
  • the one-sided average clad rate of the brazing material is 6 to 16%.
  • the cladding ratio exceeds 16%, the amount of Si diffused from the brazing material to the core material during the brazing addition heat becomes excessive, and a Mn-based compound is formed in the core material, so that the Mn solid solution amount of the core material decreases. .
  • a sufficient strength improvement due to solid solution strengthening cannot be obtained after the brazing heat.
  • the amount of liquid phase of the brazing material during the brazing heat is excessive, and self-corrosion resistance cannot be ensured.
  • a preferable single-sided average cladding rate of the brazing material is 7 to 15%, and a more preferable single-sided average cladding rate is 8 to 14%.
  • the electrical conductivity of the brazing sheet fin material before brazing addition heat has a correlation with the solid solution amount of the element added to the core material.
  • the conductivity of an Al—Mn alloy such as a core material used in the present invention has a correlation with the amount of Mn solid solution.
  • the electrical conductivity of the brazing sheet fin material before the brazing heat is set to 48 to 54% IACS (International Annealed Copper Standard).
  • the electrical conductivity is less than 48% IACS, since the Mn solid solution amount of the core material is excessive and the formation of the Mn-based compound is insufficient, sufficient strength improvement by dispersion strengthening can be obtained after the heat of brazing. Absent.
  • the electrical conductivity exceeds 54% IACS, the Mn solid solution amount of the core material before brazing addition heat becomes insufficient, and sufficient strength improvement due to solid solution strengthening cannot be obtained after brazing addition heat.
  • the preferred conductivity before brazing heat is 49-54% IACS, and the more preferred conductivity is 49-53% IACS.
  • the conductivity of the brazing sheet fin material after brazing addition heat has a correlation with the Mn solid solution amount of the core material.
  • Mn dissolved in the core material binds to Si diffused from the brazing material and its amount decreases, but some remains until after brazing heat, thereby increasing the effect of solid solution strengthening. Is obtained. Therefore, the electrical conductivity of the brazing sheet fin material after the brazing heat is set within the range of 40 to 44% IACS.
  • the electrical conductivity is less than 40% IACS, the thermal conductivity is low, and the heat exchange performance as a heat exchanger cannot be ensured.
  • the electrical conductivity exceeds 44% IACS solid solution strengthening is insufficient, and sufficient strength cannot be obtained after brazing heat.
  • the preferable conductivity after brazing heat is 41 to 44% IACS, and the more preferable conductivity is 41 to 43% IACS.
  • the reason why the conductivity is lower after the brazing heat than before the brazing heat is that Si diffused from the brazing material during the brazing heat is dissolved in the core material.
  • Metal structure By making the core material an appropriate metal structure after brazing addition heat, the effect of dispersion strengthening of the brazing sheet fin material can be obtained.
  • the metal structure of the core material after the brazing heat is affected by the metal structure of the core material before the brazing heat. Therefore, in order to obtain an appropriate core metal structure after the brazing heat, it is necessary to define the core metal structure before the brazing heat.
  • the Mn-based compound formed in the manufacturing process is distributed in the core material before the brazing heat. Therefore, the distribution state of the Mn-based compound is defined as the metal structure.
  • the metal structure of the core material before the heat of brazing was added to an Mn-based compound having an equivalent circle diameter (equivalent circle diameter, the same applies hereinafter) of 0.05 to 0.50 ⁇ m to 0.05 to 0.35 ⁇ m. And having a distribution state existing at an average interparticle distance.
  • a part of the Mn-based compound having an equivalent circle diameter of 0.05 to 0.50 ⁇ m is re-dissolved in the heat of brazing addition, but most of the Mn-based compound remains after the brazing heat.
  • the effect of strengthening dispersion can be obtained in the fin material.
  • Most of the Mn-based compounds having an equivalent circle diameter of less than 0.05 ⁇ m are re-dissolved in the brazing heat.
  • those with an equivalent circle diameter exceeding 0.50 ⁇ m have a much lower density than those with an equivalent circle diameter of 0.05 to 0.50 ⁇ m, and hardly increase or decrease the average interparticle distance. Therefore, the Mn-based compounds that define the metal structure are targeted for those with an equivalent circle diameter of 0.05 to 0.50 ⁇ m, and those with an equivalent circle diameter of less than 0.05 ⁇ m and those with an equivalent diameter of more than 0.50 ⁇ m are excluded. .
  • the average interparticle distance of the Mn compound having an equivalent circle diameter of 0.05 to 0.50 ⁇ m distributed in the core material before brazing heat is less than 0.05 ⁇ m, the Mn compound present in the core material is It becomes an excessive state, and the Mn solid solution amount of the core material cannot be secured sufficiently. As a result, a sufficient strength improvement due to solid solution strengthening cannot be obtained after the brazing heat.
  • the average interparticle distance exceeds 0.35 ⁇ m the Mn-based compound distributed in the core material becomes insufficient, and sufficient strength improvement due to dispersion strengthening cannot be obtained after brazing addition heat.
  • a preferable average interparticle distance is 0.07 to 0.32 ⁇ m, and a more preferable average interparticle distance is 0.10 to 0.30 ⁇ m.
  • Mn-based compounds formed in the raw material manufacturing process and Mn-based compounds formed during brazing addition heat are distributed in the core material after brazing addition heat.
  • these Mn-based compounds those having an equivalent circle diameter of 0.50 ⁇ m or less can provide a dispersion strengthening effect in the fin material after brazing addition heat. Therefore, the distribution state of the Mn-based compound is defined as the metal structure of the core material after the brazing heat.
  • the metal structure of the core material after brazing addition heat has a distribution state in which Mn-based compounds having an equivalent circle diameter of 0.50 ⁇ m or less are present at an average interparticle distance of 0.45 ⁇ m or less.
  • Mn-based compounds those with an equivalent circle diameter of more than 0.50 ⁇ m were excluded from the target because the density was much smaller than that of 0.50 ⁇ m or less and the average interparticle distance was hardly increased or decreased.
  • the average interparticle distance exceeds 0.45 ⁇ m, the Mn-based compound distributed in the core material becomes insufficient, and sufficient strength due to dispersion strengthening cannot be obtained after brazing heat.
  • a preferable average interparticle distance after brazing heat is 0.40 ⁇ m or less, and a more preferable average interparticle distance is 0.35 ⁇ m or less.
  • the lower limit of the average interparticle distance is not particularly limited, but it depends on the aluminum alloy composition of the core material used in the present invention and the manufacturing method, but is about 0.10 ⁇ m in the present invention.
  • the aluminum alloy brazing sheet fin material having the above alloy composition and material properties is excellent in strength after brazing heat addition while being thin, and has good high temperature buckling resistance, brazing resistance and self-corrosion resistance. .
  • an Al metal and an Al mother alloy are melted in a melting furnace, and the components of the molten metal are adjusted so that a brazing alloy and a core alloy having a predetermined aluminum alloy composition can be obtained.
  • This molten metal is cast by a semi-continuous casting method to obtain an ingot of a brazing material and a core material.
  • the core ingot is not subjected to a homogenization process or is not subjected to a homogenization process at a high temperature.
  • the brazing material ingot and the core material ingot are chamfered.
  • the brazing material ingot is hot-rolled to produce a brazing material rolled plate having a thickness capable of achieving a predetermined cladding ratio.
  • This brazing material rolled plate is overlapped on both surfaces of the core ingot to obtain a laminated material.
  • the laminated material is heated at a predetermined temperature to start hot rolling.
  • the clad material is obtained by controlling the temperature of the rolled sheet so that the rolled sheet reaches a predetermined temperature when the predetermined hot rolling rate is reached.
  • the clad material is subjected to primary cold rolling at a high rolling rate without annealing in the middle, and the cold rolled material is annealed under predetermined heating conditions.
  • a brazing sheet fin material having a predetermined final thickness is obtained by secondary cold rolling.
  • the hot-rolled clad material is cold-rolled at a high rolling rate to the final sheet thickness without being annealed in the middle, and then the cold-rolled material is annealed under a predetermined heating condition, and a brazing sheet A fin material may be obtained.
  • the heat input to the material in the core casting process, the homogenization process, the hot rolling process, and the annealing process is controlled as follows. Although the heat input to the material during cold rolling is small, the metal structure is hardly affected, but the cold rolling rate is controlled because it affects the structure control in the subsequent annealing process.
  • the average cooling rate during the solidification of the molten metal is preferably 0.5 ° C./second or more.
  • the average cooling rate is less than 0.5 ° C./second, the Mn-based compound is excessively crystallized during the cooling process, and a sufficient amount of Mn solid solution cannot be secured.
  • Increasing the cooling rate during solidification of the melt is accomplished by one or more of lowering the melt temperature, increasing the amount of cooling water, and increasing the amount of lubricating oil.
  • the cooling rate of the core ingot after solidification that is, the average cooling rate when cooling the core ingot from 550 ° C. to 200 ° C. is 0.10 ° C./second or more.
  • an average cooling rate between 550 ° C. and 200 ° C. after solidification is extremely important.
  • atoms hardly diffuse in the aluminum alloy, and Mn-based compounds hardly precipitate.
  • the location of the ingot is about 600 ° C. when it is sent out of the mold, the temperature of the ingot can be measured at about 550 ° C. or less. Therefore, the temperature range was 550 ° C. to 200 ° C.
  • the cooling rate is less than 0.10 ° C./second, Mn-based compounds are excessively precipitated in the cooling process, and a sufficient amount of Mn solid solution cannot be secured.
  • Increasing the cooling rate after solidification is achieved by increasing the amount of cooling water and / or decreasing the casting rate.
  • the average cooling rate is preferably 0.13 ° C./more.
  • the upper limit of this average cooling rate is determined by the casting method and apparatus, in this invention, it is about 0.2 degree-C / sec.
  • the core ingot may or may not be homogenized.
  • the treatment at a high temperature of 510 ° C. or higher is not performed. That is, when performing a homogenization process, it is set as the process at the temperature below 510 degreeC.
  • the homogenization treatment is performed at 510 ° C. or higher, the Mn-based compound is excessively precipitated, and an appropriate Mn solid solution amount cannot be ensured in the core material ingot.
  • the homogenization of the core material ingot can be substantially achieved in the step of heating the laminated material before hot rolling, it is preferable not to perform the homogenization treatment on the core material ingot.
  • the processing time when the homogenization processing is performed at less than 510 ° C. is 0.5 to 12 hours. If it is less than 0.5 hour, homogenization becomes insufficient, and if it exceeds 12 hours, an appropriate amount of Mn solid solution cannot be secured.
  • Hot Rolling Process a laminated material obtained by superimposing a brazing material on both sides of a core ingot is heated to 420 to 500 ° C. and hot rolled.
  • the heating temperature is lower than 420 ° C., the deformation resistance of hot temper rolling increases, and the lap rolling becomes difficult.
  • the heating temperature exceeds 500 ° C., the temperature of the rolled material may exceed 510 ° C. due to processing heat generated during rolling.
  • a preferred heating temperature is 430 to 490 ° C.
  • the heating and holding time is preferably 0.5 to 12 hours.
  • the entire laminated material may not reach a uniform predetermined temperature depending on the ingot size and the heating furnace. As a result, not only the solid solution amount of Mn and the precipitation of the Mn-based compound become non-uniform in the core material, but also there is a risk of poor bonding between the brazing material and the core material. On the other hand, when the holding time exceeds 12 hours, the Mn-based compound is excessively precipitated in the core material, and an appropriate Mn solid solution amount in the core material cannot be ensured.
  • the temperature raising time to reach the heating temperature is 15 hours or less.
  • the crimping (cladding) between the core material and the brazing material is completed, If the temperature of the rolled sheet at this point is controlled to 450 ° C. or less, an appropriate amount of Mn solid solution in the core material can be secured. However, if this temperature is too low, poor crimping tends to occur. Therefore, the temperature of the rolled sheet when the hot rolling rate reaches 10% is set to 370 to 450 ° C. When the rolling plate temperature during the rolling is less than 370 ° C., the brazing material and the core material cannot be sufficiently bonded.
  • a preferable temperature of the rolled sheet when the hot rolling rate reaches 10% is 380 to 440 ° C.
  • the material being hot rolled is strained at a high temperature of 200 ° C. or higher. Under such high temperature and strain introduction, the Mn-based compound is likely to precipitate in the core material.
  • the rolled plate temperature at the end of hot rolling is preferably less than 370 ° C, more preferably 350 ° C or less, and the total time of the hot rolling process is preferably 60 minutes or less, and 40 minutes or less. More preferably.
  • the temperature control of the hot rolled sheet as described above is achieved by adjusting one or more of the temperature of the rolling roll, the number of injection holes of the lubricating cooling liquid, the injection amount of the lubricating cooling liquid, the reduction amount of one pass, and the sheet passing speed. be able to.
  • the rolled sheet After the hot rolling process, the rolled sheet is subjected to the primary cold rolling process without providing an annealing process. Under the introduction of strain, the Mn-based compound is likely to precipitate in the core material. Therefore, the rolling rate in the primary cold rolling process after the hot temper rolling process is set to 85.0 to 99.5%.
  • the primary cold rolling reduction is less than 85.0%, precipitation of the Mn compound in the core material becomes insufficient in the next annealing step, and a metal structure of the core material in which the Mn compound is densely dispersed is obtained. Absent.
  • a preferable primary cold rolling ratio is 91.0 to 99.0%.
  • the annealing temperature needs to be 300 to 450 ° C.
  • Annealing is performed at a low temperature of 450 ° C. or lower on the rolled material in which strain is introduced in the primary cold rolling process.
  • the annealing temperature is set to 450 ° C. or less, the Mn-based compound can be densely precipitated in the core material.
  • the annealing temperature is less than 300 ° C, the core material may not be recrystallized.
  • the annealing temperature exceeds 450 ° C., the Mn-based compound is excessively precipitated in the core material, and an appropriate Mn solid solution amount in the core material cannot be ensured.
  • a preferable annealing temperature is 310 to 440 ° C.
  • a more preferable annealing temperature is 310 to 430 ° C.
  • the annealing method either continuous annealing or batch annealing may be used.
  • the annealing temperature needs to be 150 ° C. or higher and lower than 300 ° C.
  • the annealing temperature is less than 150 ° C., the core material is not sufficiently recovered, so that the recrystallized grains in the brazing addition heat become fine and high temperature buckling resistance and self-corrosion resistance cannot be ensured.
  • the annealing temperature is 300 ° C. or higher, the core material may be recrystallized.
  • a preferable annealing temperature is 160 to 290 ° C., and a more preferable annealing temperature is 170 to 280 ° C.
  • the annealing method either continuous annealing or batch annealing may be used.
  • the heating and holding time in the annealing step is preferably 0.5 to 12 hours. If the heating and holding time is less than 0.5 hours, the cold rolled material may not reach the predetermined temperature uniformly, and the solid solution amount of Mn and the precipitation of the Mn-based compound become uneven in the core material, There may be variations in quality. On the other hand, when the heating and holding time exceeds 12 hours, the Mn-based compound may be excessively precipitated in the core material, and an appropriate Mn solid solution amount in the core material may not be ensured.
  • the rolled plate is subjected to a secondary cold rolling process after the annealing process.
  • the rolling rate in the secondary cold rolling process is 10 to 85%. If the cold rolling rate is less than 10%, the core material may not recrystallize during brazing heat, and high temperature buckling resistance and self corrosion resistance cannot be ensured.
  • the rolling rate in secondary cold rolling exceeds 85%, the core recrystallized grains during brazing addition heat become fine, and high temperature buckling resistance and self-corrosion resistance cannot be ensured.
  • a preferable secondary cold rolling rate is 15 to 65%, and a more preferable secondary cold rolling rate is 20 to 60%.
  • the rolled sheet is subjected to secondary cold rolling after the annealing process.
  • the secondary cold rolling rate is 3 to 40%.
  • this cold rolling rate is less than 3%, stable production is difficult.
  • the secondary cold rolling rate exceeds 40%, the core recrystallized grains during brazing addition heat become fine, and high temperature buckling resistance and self-corrosion resistance cannot be ensured.
  • the preferred secondary cold rolling rate is 6 to 35%, and the more preferred secondary cold rolling rate is 10 to 30%.
  • the mechanical properties of the material are reduced by annealing at a low temperature after secondary cold rolling in order to ensure fin formability. Can be adjusted.
  • the annealing temperature is less than 300 ° C.
  • the core material may be recrystallized.
  • a preferable annealing temperature at which the core material is not recrystallized is less than 290 ° C, and a more preferable annealing temperature is less than 280 ° C.
  • the lower limit of annealing temperature is not specifically limited, In order to ensure the moldability of a fin, it is necessary to set it as at least 100 degreeC.
  • a cold rolling process in which the clad material after the hot rolling process is cold-rolled to the final thickness without being annealed in the middle, and after the cold-rolling process
  • An annealing process for annealing the clad material may be provided.
  • the rolling ratio in the cold rolling process after the hot rolling process is 85.0 to 99.5%.
  • the cold rolling rate is less than 85.0%, precipitation of the Mn-based compound in the core material becomes insufficient in the next annealing step, and a metal structure of the core material in which the Mn-based compound is dispersed is obtained. Absent.
  • a preferable cold rolling ratio is 91.0 to 99.0%.
  • the annealing temperature after the cold rolling step needs to be 150 ° C. or higher and lower than 300 ° C.
  • the annealing temperature is less than 150 ° C.
  • the core material is not sufficiently recovered, so that the recrystallized grains in the brazing addition heat become fine and high temperature buckling resistance and self-corrosion resistance cannot be ensured.
  • the annealing temperature is 300 ° C. or higher
  • the core material may be recrystallized.
  • a preferable annealing temperature is 160 to 290 ° C.
  • a more preferable annealing temperature is 170 to 280 ° C.
  • the annealing method either continuous annealing or batch annealing may be used.
  • the heating and holding time in this annealing step is preferably 0.5 to 12 hours. If the heating and holding time is less than 0.5 hours, the cold rolled material may not reach the predetermined temperature uniformly, and the solid solution amount of Mn and the precipitation of the Mn-based compound become uneven in the core material, There may be variations in quality. On the other hand, when the heating and holding time exceeds 12 hours, the Mn-based compound may be excessively precipitated in the core material, and an appropriate Mn solid solution amount in the core material may not be ensured.
  • a core material alloy having the alloy composition shown in Table 1 and a brazing material alloy having the alloy composition shown in Table 2 were each cast by a semi-continuous casting method to obtain a core material ingot and a brazing material ingot.
  • the core material ingot was produced by homogenizing and omitting the homogenizing treatment.
  • the brazing material ingot is not homogenized.
  • each ingot was chamfered.
  • the brazing material ingot was heated to 500 ° C. to a plate thickness at which a predetermined cladding ratio was obtained, and then hot-rolled. Thereafter, hot-rolled brazing material rolled plates were bonded to both sides of the core ingot, and the laminated material was heated and then hot rolled to produce a clad material.
  • the first cold rolling was performed for annealing.
  • the clad material in which the core material was recrystallized and the clad material in which the core material was not recrystallized were further subjected to secondary cold rolling to the final plate thickness, and used as brazing sheet fin material samples.
  • a sample of a brazing sheet fin material (clad material that was not recrystallized) that was annealed by cold rolling to the final sheet thickness instead of primary cold rolling after hot roll rolling was also produced.
  • brazing addition heat was performed using the brazing sheet fin material produced as described above.
  • This brazing addition heat is heating equivalent to brazing.
  • the brazing sheet fin material is heated in a nitrogen gas atmosphere furnace and held at 600 ° C. for 3 minutes, and then a cooling rate of 100 ° C./min. At room temperature.
  • the manufacturability was evaluated as “x”.
  • the average cooling rate during solidification of the molten metal is 0.5 to 2.0 ° C./second, and when heating the laminated material, the temperature rise time to reach the heating temperature is 8 to 15 hours, and hot rolling is performed.
  • the rolled sheet temperature at the end of the process was 200 to 370 ° C.
  • Invention Examples 1, 4, 8, 9, 11, 12, 16, 18 to 20 and Comparative Examples 21 to 45 and 49 to 50 are the invention examples of Claim 8 and Comparative Examples 2, 5, 10, 13 to 15, 17 and Comparative Examples 46 and 47 are the inventive examples and comparative examples of Claim 9, and Inventive Examples 3, 6, 7 And the comparative example 48 is the invention example and the comparative example of claim 11.
  • Invention Examples 9 and 10 show the embodiment of Claim 10, and Invention Examples 3, 12, and 14 and Comparative Examples 30, 34, 36, 49, and 50 are Claims 12. This embodiment is shown.
  • the rolling rate in the cold rolling process is shown in the column of primary cold rolling, and the final annealing after the secondary cold rolling process is not performed.
  • the column of final annealing temperature after the rolling process is indicated by “ ⁇ ”.
  • Measurement of electrical conductivity and average interparticle distance before and after brazing heat measurement of tensile strength after brazing heat, high temperature buckling, brazing and self-corrosion resistance was evaluated.
  • the measurement method and evaluation method are as follows. In Table 4, samples with manufacturability of “x” could not be manufactured, and thus could not be evaluated.
  • the average interparticle distance defined in the present invention means that when connecting the center points of all particles in a TEM image with a half line, the particles are connected with a half line so that all the half lines do not intersect. Defined as the average distance between particle surfaces. Further, it was confirmed by elemental analysis using an energy dispersive X-ray spectrometer (EDS) that the black contrast particles in the TEM image are Mn-based compounds.
  • EDS energy dispersive X-ray spectrometer
  • FIGS. Schematic diagrams of high temperature buckling resistance evaluation using a sag test device are shown in FIGS.
  • a test piece 1 having a width of 16 mm and a length of 60 mm is cut out from each sample, and a 50 mm overhanging part is held in a cantilever manner on the test stand 2 by using a fixing jig 3. The amount was measured.
  • 1A is a schematic view from the front in a state before heating
  • FIG. 1B is a schematic view from a plane in the state of FIG. 1A
  • FIG. 1C is a suspended state after heating.
  • a schematic view from the front is shown.
  • FIG. 2 shows a schematic front view of a test piece used for brazing evaluation.
  • Each sample is corrugated to produce a fin material 4 and, as shown in FIG. 2, a mini-core test piece in which A3003 plates 5 having a thickness of 0.5 mm, a width of 16 mm, and a length of 60 mm are assembled on both sides of the fin material 4.
  • This mini-core test piece was dipped in a fluoride flux suspension having a concentration of 5% and dried, and then subjected to brazing heat.
  • the brazing property is passed ( ⁇ ), the fin joint ratio is less than 95%, and / or the fin The case where melting occurred in the sample was determined as being unacceptable (x).
  • the fin joint rate was defined as the sum of the joint lengths of the fin material 4 and the plate 5 divided by the corrugated fin width length ⁇ (the number of fin ridges).
  • the sum of the joining lengths of the fin material 4 and the plate 5 was obtained by peeling the plate 5 from the fin material 4 in the mini-core test piece after brazing addition heat, measuring the lengths of the respective joints, and adding them up.
  • the SWAAT (Sea Water Acid Acid Test) test according to ASTM G85 was performed for 30 hours on the single plate of each sample after brazing heat, and the corrosion state of each sample was investigated. When the corrosion did not penetrate the plate thickness, the self-corrosion resistance was judged as acceptable ( ⁇ ), and when the corrosion penetrated the thickness, the self-corrosion resistance was judged as unacceptable (x).
  • Tables 5 and 6 show the above test results and evaluation results.
  • the alloy compositions of the core material and the brazing material are within the range specified by the present invention, and the manufacturing conditions also satisfy the conditions specified by the present invention.
  • the manufacturability was also good, and the electrical conductivity and metal structure before and after the brazing addition heat also satisfied the conditions.
  • the tensile strength after brazing addition heat, high temperature buckling resistance, brazing resistance, and self-corrosion resistance were all acceptable.
  • the brazing sheet fin material made of aluminum alloy for heat exchanger according to the present invention is excellent in strength after brazing heat addition, has better high-temperature buckling resistance, brazing resistance and self-corrosion resistance, and further reduced in thickness. Since it can be reduced in weight as compared with the conventional one, it has a remarkable industrial applicability particularly for an automobile heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 本発明は、ろう付加熱後の強度が高く、更に良好な耐高温座屈性、ろう付性及び自己耐食性を有する熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法を提供する。 本発明のアルミニウム合金製ブレージングシートフィン材は、芯材の両面にろう材をクラッドしたフィン材であって、芯材及びろう材が所定のアルミニウム合金組成を有し、ろう付加熱前に、フィン材が6~16%の片面平均クラッド率、40~120μmの厚さ及び48~54%IACSの導電率を有し、芯材の金属組織が、円相当径0.05~0.50μmのMn系化合物が0.05~0.35μmの平均粒子間距離で存在する分布を有し、ろう付加熱後に、フィン材が40~44%IACSの導電率を有し、芯材の金属組織が、円相当径0.50μm以下のMn系化合物が0.45μm以下の平均粒子間距離で存在する分布を有するものである。

Description

熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法
 本発明はろう付加熱後の強度に優れ、更に良好な耐高温座屈性、ろう付性及び自己耐食性を有する熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法に関する。本発明に係るアルミニウム合金製ブレージングシートフィン材は、特に自動車用熱交換器のフィン材として好適に使用される。
 アルミニウム合金は軽量で強度に優れ、更には熱伝導率に優れることから熱交換器用材料として好適に用いられている。
 近年、あらゆる産業において省資源化や省エネルギー化が必須課題となっている。自動車産業においても、これら課題の達成に向けて自動車の軽量化が進められている。この流れの中で自動車用熱交換器も軽量化や小型化が進められており、構造材料の薄肉化が求められている。熱交換器の剛性を確保しつつ構造材料の薄肉化を達成するために、各部材のろう付加熱後の強度向上が期待されている。これに伴い、ブレージングシートフィン材は薄肉高強度化が望まれている。
 このようなことから、コンデンサやエバポレータ等の自動車用熱交換器には、アルミニウム合金製のものが広く使用されている。また、近年になってルームクーラー用熱交換器にもアルミニウム合金製のものが普及し始めている。これらの熱交換器は、作動流体の通路として機能する部材と熱輸送の媒体として機能するフィン材から構成されており、両部材をろう付接合して製造される。ろう付接合は、ろう材を内包した構成部材を約600℃に加熱して継ぎ手に溶融ろうを供給し、継ぎ手の隙間にろうを充填させたあと冷却するプロセスで実施される。特に自動車用熱交換器では、フッ化物系フラックスを付着させたチューブやコルゲートフィンなどの部材を所定の構造に組付けた後、不活性ガス雰囲気の加熱炉においてろう付接合する方法が一般的に採用されている。
 一般的な熱交換器用ブレージングシートは、JIS-A3003やJIS-A3203等のAl-Mn系合金芯材の片面又は両面に、JIS-A4343やJIS-A4045等のAl-Si系合金ろう材を貼り合わせてなるクラッド材である。しかしながら、このような一般的な合金からなるブレージングシートは、ろう付加熱後の強度に劣るため薄肉化が困難であるという問題があった。
 上記問題を解決するため、これまでにブレージングシートフィン材の薄肉高強度化に向けて、材料構成や製造工程について様々な検討がなされてきた。
 例えば、特許文献1には、芯材にNiを添加することにより優れたろう付加熱後強度を有するブレージングシートフィン材が提案されている。しかしながら、Niを含有する金属間化合物は母相との電位差が大きく腐食の起点となり易いため、自己耐食性が低く実用上の使用に問題があった。
 特許文献2には、皮材の板厚と皮材のSi含有量を規制することにより優れたろう付加熱後強度を有する3層クラッドフィン材が提案されている。しかしながら、このフィン材は明細書の段落番号0011に記載されているように、ろう材層を有する部材と組み合わせて用いられるため、自身がろう供給機能を有するブレージングシートフィン材として用いることができないという問題があった。
 特許文献3には、ろう付加熱後の芯材に亜結晶粒を形成させることにより優れたろう付加熱後強度を有するブレージングシートフィン材が提案されている。しかしながら、同文献の表4などに記載されているように、このプレートフィン材では、芯材へのろう侵食が発生して耐高温座屈性が低くなり、コルゲートフィン材には適用できないという問題があった。
 以上のように、ブレージングシートフィン材の薄肉化に向けて、ろう付加熱後の強度向上と諸特性の確保を両立することが問題として残った。
特許第3407965号公報 特開2007-146264号公報 特開2012-224923号公報
 本発明は上記問題点を解決すべくなされたもので、ろう付加熱後の強度に優れ、更に良好な耐高温座屈性、ろう付性及び自己耐食性を有する熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法を提供することを目的とする。
 本発明者等は上記状況に鑑み鋭意検討した結果、特定の成分を有するアルミニウム合金材を用いて、特定の鋳塊冷却条件や合わせ材加熱条件、合わせ材の熱間圧延条件、冷間圧延条件及び焼鈍条件によって、特定の金属組織を有するアルミニウム合金製ブレージングシートフィン材を製造可能なことを見出した。
 すなわち、芯材については、SiとFeの含有量を制限し、更にSiとFeの含有量の和に対しMnの含有量を多く制御する。このように配合したアルミニウム合金溶湯を、半連続鋳造法により調製する。ここで、鋳造工程において、凝固したアルミニウム合金の平均冷却速度を一定値以上に速めて芯材鋳塊を得る。なお、芯材鋳塊は、均質化処理を施す場合には、高温での処理とはしない。このようにして調製された芯材鋳塊は、Al―Mn系金属間化合物、Al-Si-Mn系金属間化合物、Al-Fe-Mn系金属間化合物、Al-Si-Fe-Mn系金属間化合物(以下、これらの金属間化合物を「Mn系化合物」という。)の析出を抑制して適切なMn固溶量を確保できる。その結果、ろう付加熱後において優れた強度が得られ、耐高温座屈性を確保できる。一方、ろう材については、SiとFeの含有量を適切な量に制御して調製することで、ろう付加熱におけるろう流動性を確保でき、また、ろう付加熱時のSiの芯材への拡散により優れた強度が得られ、耐高温座屈性を確保できる。
 芯材鋳塊とろう材との合わせ材を熱間合わせ圧延してクラッド材とする際には、合わせ材の加熱は低温で行い、熱間合わせ圧延途中の圧延板の温度も低温となるよう制御して熱間合わせ圧延を行う。これにより、芯材のMn系化合物の析出を抑制して適切なMn固溶量を確保できる。
 次に、熱間合わせ圧延後のクラッド材を冷間圧延する際には、途中で焼鈍することなく高圧延率で冷間圧延する。冷間圧延後の焼鈍工程において焼鈍温度を400℃以下の低温で行う。冷間圧延率と焼鈍条件により、芯材には微細なMn系化合物が密に析出する。この焼鈍工程でMn固溶量は減少するが、熱間合わせ圧延終了時点において適切なMn固溶量を確保しているため、焼鈍終了時点でMn系化合物の微細分散とMn固溶量の確保がバランスよく実現されている。この焼鈍後のクラッド材を更に冷間圧延する(以下、焼鈍後の冷間圧延を最終圧延とする。)、或いは、しないに拘わらず、焼鈍工程までに得られたクラッド材のMn系化合物の分布とMn固溶量との良好なバランスが確保されているため、最終板厚とされたブレージングシートフィン材は、ある一定水準の導電率とMn系化合物の平均粒子間距離を有する金属組織となっている。
 このように、製造工程における入熱量が少なく制御されたブレージングシートフィン材は、ろう付加熱後の芯材に適切なMn固溶量を確保できるとともに、芯材の固溶Mnがろう材から拡散されたSiと結合してMn系化合物を形成し、ろう付加熱温度である600℃付近で再固溶することにより、素材のMn系化合物の増大を抑制できる。そのため、ろう付加熱後において、Mnの固溶強化とMn化合物の分散強化のバランスの取れた効果を得ることができる。
 但し、ろう付加熱中の芯材へのろう侵食を抑制して自己耐食性を確保するため、最終板厚のブレージングシートフィン材への加工度は適切に制御する必要がある。焼鈍工程でクラッド材の芯材を再結晶させる場合には、焼鈍後の冷間圧延工程で高めの圧延率で冷間圧延を実施する。一方、焼鈍工程でクラッド材の芯材を再結晶させない場合には、焼鈍後の冷間圧延工程で低めの圧延率で冷間圧延を実施するか、或いは、冷間圧延を実施しない。このようにして、再結晶させる場合においてもさせない場合においても、ろう付加熱中に芯材が粗大に再結晶化して芯材へろう侵食するのを抑制し、自己耐食性を確保できる。焼鈍工程において芯材を再結晶させるか否かは、コルゲート成形設備での成形性を考慮して選択すればよい。
 以上のようにして、本発明者らは上記発明の課題を解決できることを見出し、本発明を完成するに至った。
 具体的には、本発明は請求項1において、アルミニウム合金の芯材と、当該芯材の両面にクラッドされたAl-Si系合金ろう材とを備えるアルミニウム合金製ブレージングシートフィン材であって、前記芯材が、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.8~2.0質量%を含有し、かつ、前記Si、Fe、Mnの含有量がSi+Fe≦Mnの条件を満たし、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記ろう材が、Si:6.0~13.0質量%、Fe:0.05~0.8質量%を含有し、残部Al及び不可避的不純物からなるAl-Si系合金からなり、
 ろう付加熱前において、当該フィン材が、6~16%の片面平均クラッド率、40~120μmの厚さ及び48~54%IACSの導電率を有し、前記芯材の金属組織が、円相当径0.05~0.50μmのMn系化合物が0.05~0.35μmの平均粒子間距離で存在する分布状態を有し、
 ろう付加熱後において、当該フィン材が40~44%IACSの導電率を有し、前記芯材の金属組織が、円相当径0.50μm以下のMn系化合物が0.45μm以下の平均粒子間距離で存在する分布状態を有することを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材とした。
 本発明は請求項2では請求項1において、前記芯材が、Zn:0.3~3.0質量%を更に含有するアルミニウム合金からなるものとした。
 本発明は請求項3では請求項1又は2において、前記芯材が、Cu:0.05~0.5質量%を更に含有するアルミニウム合金からなるものとした。
 本発明は請求項4では請求項1~3のいずれか一項において、前記芯材が、Zr:0.05~0.3質量%、Ti:0.05~0.3質量%、Cr:0.05~0.3質量%及びV:0.05~0.3質量%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。
 本発明は請求項5では請求項1~4のいずれか一項において、前記ろう材が、Zn:0.3~3.0質量%を更に含有するAl-Si系合金からなるものとした。
 本発明は請求項6では請求項1~5のいずれか一項において、前記ろう材が、Cu:0.1~0.7質量%を更に含有するAl-Si系合金からなるものとした。
 本発明は請求項7では請求項1~6のいずれか一項において、前記ろう材が、Na:0.003~0.05質量%及びSr:0.003~0.05質量%の少なくともいずれか一方を更に含有するAl-Si系合金からなるものとした。
 本発明は請求項8では請求項1~7のいずれか一項において、ろう付加熱後の引張強度が130MPa以上であるものとした。
 本発明は請求項9では請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく冷間圧延する一次冷間圧延工程と、一次冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程と、焼鈍工程後において途中で焼鈍することなく最終板厚まで冷間圧延する二次冷間圧延工程とを備え、
 前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
 前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
 前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
 前記一次冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
 前記焼鈍工程において、焼鈍温度を300~450℃として芯材を再結晶させ、前記二次冷間圧延工程において、冷間圧延率を10~85%とすることを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法とした。
 本発明は請求項10では請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく冷間圧延する一次冷間圧延工程と、一次冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程と、焼鈍工程後において途中で焼鈍することなく最終板厚まで冷間圧延する二次冷間圧延工程とを備え、
 前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
 前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
 前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
 前記一次冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
 前記焼鈍工程において、焼鈍温度を150℃以上300℃未満として芯材を再結晶させず、
 前記二次冷間圧延工程において、冷間圧延率を3~40%とすることを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法とした。
 本発明は請求項11では請求項9又は10において、前記二次冷間圧延工程後において、圧延板を300℃以下の温度で焼鈍する焼鈍工程を更に備えるものとした。
 本発明は請求項12では請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく最終板厚まで冷間圧延する冷間圧延工程と、冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程とを備え、
 前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
 前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
 前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
 前記冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
 前記焼鈍工程において、焼鈍温度を150℃以上300℃未満として芯材を再結晶させないことを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法とした。
 本発明は請求項13では請求項9~12のいずれか一項において、前記芯材の鋳造工程後において、芯材鋳塊を510℃未満の温度で均質化処理する均質化処理工程を更に備えるものとした。
 本発明は請求項14では請求項9~13のいずれか一項において、前記芯材の鋳造工程において、溶湯凝固時の平均冷却速度を0.5℃/秒以上とするものとした。
 本発明は請求項15では請求項9~14のいずれか一項において、前記合わせ材を加熱する際において、前記加熱温度に達するまでの昇温時間を15時間以下とするものとした。
 本発明は請求項16では請求項9~15のいずれか一項において、前記熱間合わせ圧延工程の終了時における圧延板温度を370℃未満とするものとした。
 本発明により、ろう付加熱後の強度が高く薄肉のアルミニウム合金製ブレージングシートフィン材及びその製造方法が提供される。また、このブレージングシートフィン材は、良好な耐高温座屈性、ろう付性及び自己耐食性を有する。従って、本発明のブレージングシートフィン材は、熱交換器用フィン材として好適に用いられる。
本発明における、サグ試験装置を用いた耐高温座屈性評価の模式図である。 本発明における、ろう付性と自己耐食性の評価に用いた試験片の模式的な正面図である。
 本発明に係る熱交換起用のアルミニウム合金製ブレージングシートフィン材及びその製造方法について、以下に詳細に説明する。
1.アルミニウム合金製ブレージングシートフィン材
 本発明に係る熱交換器用のアルミニウム合金製ブレージングシートフィン材は、芯材及びろう材が所定のアルミニウム合金組成を有し、更に、所定の厚さとクラッド率、ならびに、ろう付加熱前後において所定の導電率と金属組織を有する。
1-1.芯材
 芯材は、Si、Fe、Mnを必須元素とする。芯材のSiは、強度や耐高温座屈性の向上に寄与する。Si含有量は、0.05~0.8質量%(以下、単に「%」と記す)とする。Si含有量が0.05%未満では、Mn系化合物が十分に形成されず、ろう付加熱後に十分な強度が得られない。一方、Si含有量が0.8%を超えると、Mn系化合物が過剰に形成されてろう付加熱前に適切なMn固溶量を確保できず、ろう付加熱後に十分な強度が得られない。また、芯材の融点が低温化するため芯材へのろう侵食が発生し、自己耐食性が低下する。芯材のSiの好ましい含有量は0.1~0.7%であり、より好ましい含有量は0.1~0.6%である。
 芯材のFeは、強度向上や結晶組織の安定化に寄与する。芯材のFe含有量は、0.05~0.8%とする。Fe含有量が0.05%未満では、Mn系化合物が十分に形成されず、ろう付加熱後に十分な強度が得られない。一方、Fe含有量が0.8%を超えると、Mn系化合物が過剰に形成されてろう付加熱前に適切なMn固溶量を確保できず、ろう付加熱後に十分な強度が得られない。また、Feを含む金属間化合物は母相との電位差が大きく腐食の起点となり易いため、Fe含有量が0.8%を超える場合には、Feを含む金属間化合物が過剰に形成されて自己耐食性が低下する。更に、ろう付加熱後の芯材の結晶粒が微細になるため耐高温座屈性及び自己耐食性が確保できなくなる。芯材のFeの好ましい含有量は0.1~0.8%であり、より好ましい含有量は0.1~0.7%である。
 芯材のMnは、強度や耐高温座屈性の向上に寄与する。芯材のMn含有量は、0.8~2.0%とする。Mn含有量が0.8質量%未満では、ブレージングシートフィン材の芯材における適切なMn固溶量を確保できず、またMn系化合物の形成も不十分となるため、ろう付加熱後に十分な強度が得られない。一方、Mn含有量が2.0質量%を超えると、鋳造時に粗大な晶出物が形成されて製造困難となる。芯材のMnの好ましい含有量は0.8~1.9%であり、より好ましい含有量は0.9~1.9%である。
 更に、芯材のSi、Fe、Mn含有量は、Si+Fe≦Mnの条件を満たすこととする。SiとFeの総含有量がMn含有量を超えると、含有されたMnはSi、FeとMn系化合物を形成するため、芯材における適切なMn固溶量を確保できずろう付後に十分な強度が得られないだけでなく、ろう付加熱後の芯材再結晶粒が微細となり,耐高温座屈性及び自己耐食性を確保できない。好ましい上記条件は、Si+Fe≦0.9Mnである。
 芯材には、上記必須元素に加えてZnを第1選択的添加元素として添加してもよい。Znは、フィン材の電位を卑化する合金元素である。Znを添加することにより、電位が卑化してフィン材に犠牲防食機能が付与され、チューブ材の耐食性が向上する。Zn含有量は、チューブ材やその他の部材の電位を考慮して適宜選択すればよいが、0.3~3.0%とする。Zn含有量が0.3%未満では、十分な犠牲防食効果が得られない。一方、Zn含有量が3.0%を超えると、腐食速度が増加してフィン材の自己耐食性を確保できない。芯材のZnの好ましい含有量は0.5~2.7%であり、より好ましい含有量は0.7~2.5%である。
 芯材には、第2選択的添加元素としてCuを更に添加してもよい。Cuは、強度向上に寄与する合金元素である。Cu含有量は0.05~0.5%とする。Cu含有量が0.05%未満では、強度向上効果が不十分である。一方、Cu含有量が0.5%を超えると、耐粒界腐食感受性が低下し、フィン材の自己耐食性を確保できない。芯材のCuの好ましい含有量は0.05~0.3%であり、より好ましい含有量は0.05~0.25%である。
 芯材には、第3選択的添加元素としてZr、Ti、Cr及びVから選択される1種又は2種以上を更に添加してもよい。Zr、Ti、Cr、Vはいずれも、強度及び耐高温座屈性を向上させる合金元素である。Zr、Ti、Cr及びVから選択される1種又は2種以上の含有量はそれぞれ、0.05~0.3%である。この含有量が0.05%未満では上記効果が十分に得られず、一方、0.3%を超えると、鋳造時に粗大な晶出物が形成されるため不適当となる。好ましい上記含有量はそれぞれ0.05~0.2%であり、より好ましい上記含有量はそれぞれ0.1~0.2%である。
1-2.ろう材
 ろう材は、Si、Feを必須元素とする。ろう材のSiは、融点やろう流動量に寄与する。また、ブレージングシートフィン材の場合、ろう材のSiはろう付加熱中に芯材へ拡散し、芯材でMn系化合物を形成するか、或いは、芯材の母相に固溶する。ろう材のSi含有量は、6.0~13.0%とする。Si含有量が6.0%未満では、ろう材から芯材へ拡散するSi量が不十分となり、ろう付加熱後に十分な強度が得られない。また、ろう流動性が不十分となり、ろう付性を確保できない。一方、Si含有量が13.0%を超えと、ろう付加熱中にろう材から拡散するSiと芯材の固溶Mnとで形成されるMn系化合物が過剰に析出してろう付加熱後に適切なMn固溶量を確保できず、ろう付加熱後に十分な強度が得られない。また、ろう付加熱中のろう材の液相量が過剰となり、自己耐食性を確保できない。ろう材のSiの好ましい含有量は7.0~13.0%であり、より好ましい含有量は7.0~12.0%である。
 ろう材のFeは、ろう流動性や自己耐食性に寄与する。ろう材のFe含有量は、0.05~0.8質量%とする。Fe含有量が0.05%未満では、ろう流動性を確保できない。一方、Fe含有量が0.8%を超えると、自己耐食性を確保できない。ろう材のFeの好ましい含有量は0.05~0.7%であり、より好ましくは0.1~0.6%である。
 ろう材には、上記必須元素に加えてZnを第1選択的添加元素として添加してもよい。Znは、フィン材の犠牲防食効果向上に寄与する。ろう材のZn含有量は芯材のZn含有量やチューブ材、その他の部材の電位を考慮して適宜選択すればよいが、0.3~3.0%とする。Zn含有量が0.3%未満では、犠牲防食効果が十分に得られない。一方、Zn含有量が3.0%を超えると、フィン材の自己耐食性を確保できない。ろう材のZnの好ましい含有量は0.5~2.7%であり、より好ましい含有量は0.7~2.5%である。
 ろう材には、第2選択的添加元素としてCuを更に添加してもよい。Cuは、ろう付加熱中に芯材へ拡散して芯材の強度向上に寄与する。Cu含有量は、0.1~0.7%とする。Cu含有量が0.1%未満では、強度向上効果が十分に得られない。一方、Cu含有量が0.7%を超えると、耐粒界腐食感受性が低下し、フィン材の自己耐食性を確保できない。ろう材のCuの好ましい含有量は0.1~0.6%であり、より好ましい含有量は
0.2~0.5%である。
 ろう材には、第3選択的添加元素としてNa及びSrの少なくともいずれか一方を更に添加してもよい。Na、Srはいずれも、ろう流動性に寄与する元素である。Na及びSrの少なくともいずれか一方の含有量は、0.003~0.05%である。この含有量が0.003%未満では、上記効果が得られない。一方、上記含有量が0.05%を超えると、上記効果が得られない。ろう材のNa、Srの好ましい含有量は、0.005~0.02%であり、より好ましい含有量は0.007~0.02%である。
 なお、本発明に用いる上記の芯材やろう材にMg、Ca及びその他の不可避的不純物元素は特性に影響しない範囲で含有されても良く、それぞれの含有量が0.05%以下で、かつ、それらの総含有量が0.15%以下であれば本発明の効果に影響を与えずに許容される。
1-3.厚さ
 本発明に係るアルミニウム合金製ブレージングシートフィン材は、40~120μm、好ましくは40~100μmの厚さを有する。厚さが40μm未満では、クラッド率や厚さのバラツキを制御するのが困難となり、工業製品としての品質確保が困難となる。一方、厚さが120μmを超えると熱交換器の軽量化に寄与できない。
1-4.クラッド率
 次に、ろう材のクラッド率について説明する。ろう材のクラッド率は、ろう流動量に寄与する。ブレージングシートフィン材では、ろう材のクラッド率は、ろう付加熱中のろう流動量への寄与の他、ろう材から芯材へ拡散するSiの量にも寄与する。本発明では、ろう材の片面平均クラッド率を6~16%とする。このクラッド率が6%未満では、ろう付加熱中にろう材から芯材へ拡散するSiの量が不十分となり、ろう付加熱後において分散強化による十分な強度向上が得られない。また、ろう流動量が不十分となり、ろう付性を確保できない。一方、上記クラッド率が16%を超えると、ろう付加熱中にろう材から芯材へ拡散するSi量が過剰となり芯材中にMn系化合物を形成し、芯材のMn固溶量が減少する。その結果、ろう付加熱後において固溶強化による十分な強度向上が得られない。また、ろう付加熱中のろう材の液相量が過剰となり、自己耐食性を確保できない。ろう材の好ましい片面平均クラッド率は、7~15%であり、より好ましい片面平均クラッド率は8~14%である。
1-5.導電率
 ろう付加熱前のブレージングシートフィン材の導電率は、芯材に添加されている元素の固溶量と相関関係を有する。本発明で用いる芯材のようなAl-Mn系合金の導電率は、Mnの固溶量と相関関係を有する。上述したようにろう付加熱後に十分な強度を得るためには、ろう付加熱前の芯材において適切なMn固溶量を確保する必要がある。そこで、ろう付加熱前のブレージングシートフィン材の導電率を、48~54%IACS(International Annealed Copper Standard)とする。導電率が48%IACS未満の場合には、芯材のMn固溶量が過剰でありMn系化合物の形成が不十分なために、ろう付加熱後において分散強化による十分な強度向上が得られない。一方、導電率が54%IACSを超える場合には、ろう付加熱前の芯材のMn固溶量が不十分となり、ろう付加熱後において固溶強化による十分な強度向上が得られない。ろう付加熱前の好ましい導電率は49~54%IACSであり、より好ましい導電率は49~53%IACSである。
 また、ろう付加熱後のブレージングシートフィン材の導電率も、芯材のMn固溶量と相関関係を有する。ろう付加熱中において、芯材中に固溶しているMnはろう材から拡散するSiと結合しその量が減少するが、一部はろう付加熱後まで残存してそれにより固溶強化の効果が得られる。そこで、ろう付加熱後のブレージングシートフィン材の導電率を、40~44%IACSの範囲内とする。導電率が40%IACS未満の場合には、熱伝導性が低く、熱交換器としての熱交換性能を確保できない。一方、導電率が44%IACSを超える場合には固溶強化が不十分となり、ろう付加熱後に十分な強度が得られない。ろう付加熱後の好ましい導電率は41~44%IACSであり、より好ましい導電率は41~43%IACSである。なお、導電率がろう付加熱前よりろう付加熱後の方が低い理由は、ろう付加熱中においてろう材から拡散するSiが芯材に固溶するためである。
1-6.金属組織
 ろう付加熱後において芯材を適切な金属組織とすることにより、ブレージングシートフィン材の分散強化の効果が得られる。ろう付加熱後における芯材の金属組織は、ろう付加熱前における芯材の金属組織の影響を受ける。そこで、ろう付加熱後において適切な芯材金属組織を得るために、ろう付加熱前における芯材の金属組織を規定することが必要となる。ろう付加熱前の芯材には、製造工程で形成されたMn系化合物が分布する。そこで、金属組織としてMn系化合物の分布状態を規定することとした。具体的には、ろう付加熱前における芯材の金属組織を、円相当径(円相当直径であり、以下において同じ)0.05~0.50μmのMn系化合物が0.05~0.35μmの平均粒子間距離で存在する分布状態を有するものとする。円相当径0.05~0.50μmのMn系化合物は、一部はろう付加熱中に再固溶するが多くはろう付加熱後においても残存し、この残存するMn系化合物によってろう付加熱後のフィン材において分散強化の効果が得られる。Mn系化合物のうち円相当径0.05μm未満のものは、大部分がろう付加熱中に再固溶する。また、円相当径が0.50μmを超えるものは、0.05~0.50μmのものより密度が非常に小さく、平均粒子間距離をほとんど増減させない。従って、金属組織を規定するMn系化合物としては、円相当径0.05~0.50μmのものを対象とし、円相当径0.05μm未満のもの及び0.50μmを超えるものは対象外とした。
 ろう付加熱前において芯材中に分布する円相当径0.05~0.50μmのMn系化合物の平均粒子間距離が0.05μm未満の場合には、芯材中に存在するMn系化合物が過剰な状態となり、芯材のMn固溶量を十分に確保できない。その結果、ろう付加熱後において固溶強化による十分な強度向上が得られない。一方、上記平均粒子間距離が0.35μmを超える場合には、芯材中に分布するMn系化合物が不十分となり、ろう付加熱後において分散強化による十分な強度向上が得られない。好ましい上記平均粒子間距離は0.07~0.32μmであり、より好ましい上記平均粒子間距離は0.10~0.30μmである。
 ろう付加熱後の芯材中には、素材の製造工程で形成されたMn系化合物と、ろう付加熱中に形成されたMn系化合物が分布している。これらのMn系化合物のうち円相当径0.50μm以下のものにより、ろう付加熱後のフィン材において分散強化の効果が得られる。そこで、ろう付加熱後における芯材の金属組織として、Mn系化合物の分布状態を規定するものである。具体的には、ろう付加熱後における芯材の金属組織を、円相当径0.50μm以下のMn系化合物が0.45μm以下の平均粒子間距離で存在する分布状態を有するものとする。なお、Mn系化合物のうち円相当径が0.50μmを超えるものについては、0.50μm以下のものより密度が非常に小さく、平均粒子間距離をほとんど増減させないため対象外とした。上記平均粒子間距離が0.45μmを超える場合には、芯材中に分布するMn系化合物が不十分となり、ろう付加熱後において分散強化による十分な強度が得られない。ろう付加熱後の好ましい上記平均粒子間距離は0.40μm以下、より好ましい上記平均粒子間距離は0.35μm以下である。なお、平均粒子間距離の下限値は特に限定するものではないが、本発明で用いる芯材のアルミニウム合金組成と製造方法に依存するが、本発明では0.10μm程度となる。
 以上のような合金組成と材料特性を有するアルミニウム合金ブレージングシートフィン材は、薄肉でありながらろう付加熱後の強度に優れ、更に、良好な耐高温座屈性、ろう付性及び自己耐食性を有する。
2.アルミニウム合金製ブレージングシートフィン材の製造方法
 本発明に係る熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法について以下に説明する。
2-1.製造方法の特徴
 まず、Al地金やAl母合金を溶解炉で溶解し、所定のアルミニウム合金組成を有するろう材合金や芯材合金が得られるように溶湯の成分を調整する。この溶湯を半連続鋳造法により鋳造して、ろう材と芯材の鋳塊を得る。芯材鋳塊には、均質化処理を施さないか、或いは、施しても高温での均質化処理とはしない。次に、ろう材鋳塊と芯材鋳塊を面削する。芯材鋳塊の厚さを考慮してろう材鋳塊を熱間圧延し、所定のクラッド率を達成できる厚さのろう材圧延板を作製する。このろう材圧延板を芯材鋳塊の両面に重ね合わせて合わせ材を得る。合わせ材を所定の温度で加熱して熱間合わせ圧延を開始する。所定の熱間圧延率に達したときの圧延板が所定の温度となるよう圧延板の温度を制御してクラッド材を得る。このクラッド材を途中で焼鈍することなく高圧延率で一次冷間圧延し、この冷間圧延材を所定の加熱条件で焼鈍する。その後、二次冷間圧延して所定の最終板厚としたブレージングシートフィン材を得る。これに代わって、熱間合わせ圧延したクラッド材を、途中で焼鈍することなく最終板厚まで高圧延率で冷間圧延し、その後、冷間圧延材を所定の加熱条件で焼鈍してブレージングシートフィン材を得てもよい。
 本発明において規定する芯材の金属組織を制御するには、製造工程における材料への入熱を適切に制御する必要がある。そこで、芯材鋳造工程、均質化処理工程、熱間合わせ圧延工程、ならびに、焼鈍工程における材料への入熱を以下のように制御する。なお、冷間圧延中の材料への入熱は僅かであるため金属組織にほとんど影響を与えないが、冷間圧延率はその後の焼鈍工程における組織制御に影響するため制御する。
2-2.鋳造工程
 芯材用及びろう材用のアルミニウム合金は、半連続鋳造法によりそれぞれ鋳造される。芯材の鋳塊の金属組織は、鋳造工程における溶湯凝固時の冷却速度と凝固後の鋳塊の冷却速度によって変化する。いずれの冷却速度も速めることにより、芯材鋳塊における適切なMn固溶量を確保できるので、ろう付加熱前の芯材のMn固溶量を確保できる。
 溶湯凝固時の平均冷却速度は、0.5℃/秒以上であるのが好ましい。平均冷却速度が0.5℃/秒未満の場合には、冷却過程においてMn系化合物が過剰に晶出してMn固溶量を十分に確保できない。溶湯凝固時の冷却速度を速めるのは、溶湯温度を低くすること、冷却水量を増加すること、ならびに、潤滑油量を増加することの一つ以上により達成される。
 凝固後の芯材鋳塊の冷却速度、すなわち、芯材鋳塊を550℃から200℃まで冷却する際の平均冷却速度は0.10℃/秒以上とする。Mn系化合物の固溶と析出の挙動においては、凝固後の550℃から200℃までの間の平均冷却速度が極めて重要である。200℃未満の温度ではアルミニウム合金中において原子が殆ど拡散せず、Mn系化合物は殆ど析出しない。また、金型の外部に送り出された時点で、鋳塊のその場所は600℃程度であるため、550℃程度以下で鋳塊の温度測定が可能となる。従って、温度範囲を550℃から200℃までとした。上記冷却速度が0.10℃/秒未満の場合には、冷却過程においてMn系化合物が過剰に析出してMn固溶量を十分に確保できない。凝固後の冷却速度を速めるのは、冷却水量を増加すること、及び/又は、鋳造速度を遅くすることにより達成される。上記平均冷却速度は、好ましくは0.13℃/以上である。なお、この平均冷却速度の上限値は、鋳造方法や装置によって決まるが、本発明では0.2℃/秒程度である。
2-3.均質化処理工程
 芯材鋳塊には、均質化処理を施しても、或いは、施さなくてもよい。均質化処理を施す場合には、510℃以上の高温での処理を施さないこととする。すなわち、均質化処理を施す場合には、510℃未満の温度での処理とする。510℃以上で均質化処理すると、Mn系化合物が過剰に析出して芯材鋳塊において適切なMn固溶量を確保できない。熱間合わせ圧延前に合わせ材を加熱する工程で芯材鋳塊の均質化が実質的に達成できるため、芯材鋳塊には均質化処理を施さないのが好ましい。なお、510℃未満で均質化処理を行う場合の処理時間は、0.5~12時間とする。0.5時間未満では均質化が不十分となり、12時間を超えると適切なMn固溶量を確保できない。
2-4.熱間合わせ圧延工程
 熱間合わせ圧延工程において、芯材鋳塊の両面にろう材を重ね合わせてなる合わせ材は420~500℃に加熱し、これを熱間圧延する。加熱温度が420℃未満の場合には、熱間合わせ圧延の変形抵抗が大きくなり合わせ圧延が困難となる。一方、加熱温度が500℃を超える場合には、圧延時の加工発熱等により圧延材の温度が510℃を超えることがある。その結果、芯材中にMn系化合物が過剰に析出して芯材中における適切なMn固溶量を確保できない。好ましい加熱温度は、430~490℃である。また、加熱保持時間は0.5~12時間が好ましい。保持時間が0.5時間未満の場合には、鋳塊サイズや加熱炉によっては合わせ材全体が均一な所定温度に達しない虞がある。その結果、Mnの固溶量とMn系化合物の析出が芯材内で不均一となるだけでなく、ろう材と芯材の圧着不良が発生する虞がある。一方、保持時間が12時間を超える場合には、芯材中にMn系化合物が過剰に析出して芯材中における適切なMn固溶量を確保できない。
 また、合わせ材を加熱する際において、加熱温度に達するまでの昇温時間を短くすれば、芯材での過剰なMn系化合物の析出を抑制でき、芯材における適切なMn固溶量を確保できる。従って、加熱温度に達するまでの昇温時間は、15時間以下とするのが好ましい。
 熱間合わせ圧延を開始してから合わせ材の板厚が10%減少するまでに(熱間圧延率が10%に達したとき)、芯材とろう材との圧着(クラッド)が完了し、この時点での圧延板の温度を450℃以下に制御すれば芯材中の適切なMn固溶量を確保できる。しかしながら、この温度が低すぎると圧着不良が発生し易い。そこで、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とする。上記圧延途中の圧延板温度が370℃未満の場合には、ろう材と芯材を十分に圧着できない。一方、圧延途中の圧延板温度が450℃を超える場合には、芯材中のMn系化合物が過剰に析出して芯材の適切なMn固溶量を確保できない。熱間圧延率が10%に達したときの圧延板の好ましい温度は、380~440℃である。
 また、熱間圧延中の材料は、200℃以上の高温でありながら歪が導入されている。このような高温、かつ歪導入下では、芯材中にMn系化合物が析出し易い。熱間合わせ圧延終了時の温度を低くし、かつ、熱間合わせ圧延工程の総時間を短くするよう制御することにより、芯材中の適切なMn固溶量を確保できる。熱間圧延終了時の圧延板温度は370℃未満とするのが好ましく、350℃以下とするのがより好ましく、熱間圧延工程の総時間は60分以下とするのが好ましく、40分以下とするのがより好ましい。
 以上のような熱間圧延板の温度制御は、圧延ロールの温度、潤滑冷却液の噴射口数、潤滑冷却液の噴射量、1パスの圧下量及び通板速度の一つ以上の調整によって達成することができる。
 熱間合わせ圧延工程後に、途中で焼鈍工程を設けることなく圧延板は一次冷間圧延工程にかけられる。歪導入下では芯材中にMn系化合物が析出し易い。そこで、熱間合わせ圧延工程後の一次冷間圧延工程での圧延率を85.0~99.5%とする。一次冷間圧延率が85.0%未満の場合には、次の焼鈍工程において芯材におけるMn系化合物の析出が不十分となり、Mn系化合物が密に分散した芯材の金属組織が得られない。一方、一次冷間圧延率が99.5%を超える場合には、次の焼鈍工程において芯材中にMn系化合物が過剰に析出して芯材における適切なMn固溶量を確保できない。好ましい一次冷間圧延率は、91.0~99.0%である。
 焼鈍工程において芯材を再結晶させる場合には、焼鈍温度を300~450℃とする必要がある。一次冷間圧延工程で歪が導入された圧延材に、450℃以下の低温で焼鈍が施される。焼鈍温度を450℃以下とすることにより、芯材中にMn系化合物を密に析出させることができる。焼鈍温度が300℃未満の場合には、芯材が再結晶しない虞がある。一方、焼鈍温度が450℃を超える場合には、芯材中にMn系化合物が過剰に析出して芯材における適切なMn固溶量を確保できない。芯材を再結晶させる場合の好ましい焼鈍温度は310~440℃、より好ましい焼鈍温度は310~430℃である。また、焼鈍方法は、連続式焼鈍とバッチ式焼鈍のいずれを用いても良い。
 上記に代えて焼鈍工程において芯材を再結晶させない場合には、焼鈍温度を150℃以上300℃未満とする必要がある。焼鈍温度が150℃未満の場合には、芯材の回復が不十分なため、ろう付加熱中の再結晶粒が微細となり耐高温座屈性及び自己耐食性が確保できない。一方、焼鈍温度が300℃以上の場合には、芯材が再結晶する虞がある。芯材を再結晶させない場合の好ましい焼鈍温度は160~290℃、より好ましい焼鈍温度は170~280℃である。また、焼鈍方法は、連続式焼鈍とバッチ式焼鈍のいずれを用いても良い。
 また、焼鈍工程において芯材を再結晶させる場合においても、再結晶させない場合においても、焼鈍工程での加熱保持時間は0.5~12時間が好ましい。加熱保持時間が0.5時間未満の場合には、冷間圧延材が均一に所定温度に達しない虞があり、Mnの固溶量とMn系化合物の析出が芯材内で不均一となり、品質にバラツキが発生する虞がある。一方、加熱保持時間が12時間を超える場合には、芯材中にMn系化合物が過剰に析出して芯材における適切なMn固溶量を確保できない虞がある。
 焼鈍工程において芯材を再結晶させた場合には、焼鈍工程後に圧延板を二次冷間圧延工程にかける。これにより焼鈍時に生じた再結晶を加工組織とし、フィンの成形性を確保できる。二次冷間圧延工程での圧延率は、10~85%とする。この冷間圧延率が10%未満の場合には、ろう付加熱中に芯材が再結晶しない虞があり耐高温座屈性や自己耐食性を確保できない。一方、二次冷間圧延での圧延率が85%を超える場合には、ろう付加熱中の芯材再結晶粒が微細となり、耐高温座屈性や自己耐食性を確保できない。好ましい二次冷間圧延率は15~65%であり、より好ましい二次冷間圧延率は20~60%である。
 焼鈍工程において芯材を再結晶させない場合には、焼鈍工程後に圧延板を二次冷間圧延にかける。この場合の二次冷間圧延率は、3~40%とする。この冷間圧延率が3%未満の場合には、安定した製造が困難である。一方、この二次冷間圧延率が40%を超える場合には、ろう付加熱中の芯材再結晶粒が微細となり、耐高温座屈性や自己耐食性を確保できない。芯材を再結晶させない場合における好ましい二次冷間圧延率は6~35%であり、より好ましい二次冷間圧延率は10~30%である。
 また、焼鈍工程において芯材を再結晶させる場合においても、再結晶させない場合においても、フィンの成形性を確保するために、二次冷間圧延後に低温で焼鈍することにより素材の機械特性を微調整することができる。この場合の焼鈍温度は、300℃未満とする。この焼鈍温度が300℃以上の場合には、芯材が再結晶する虞がある。芯材を再結晶させない好ましい焼鈍温度は290℃未満、より好ましい焼鈍温度は280℃未満である。なお、焼鈍温度の下限値は特に限定されるものではないが、フィンの成形性を確保するには少なくとも100℃とする必要がある。
 なお、焼鈍工程において芯材を再結晶させない場合には、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく最終板厚まで冷間圧延する冷間圧延工程と、冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程とを設けるようにしてもよい。熱間合わせ圧延工程後の冷間圧延工程での圧延率は、85.0~99.5%とする。この冷間圧延率が85.0%未満の場合には、次の焼鈍工程において芯材におけるMn系化合物の析出が不十分となり、Mn系化合物が密に分散した芯材の金属組織が得られない。一方、上記冷間圧延率が99.5%を超える場合には、次の焼鈍工程において芯材中にMn系化合物が過剰に析出して芯材における適切なMn固溶量を確保できない。好ましい上記冷間圧延率は、91.0~99.0%である。
 上記冷間圧延工程後の焼鈍温度は、150℃以上300℃未満とする必要がある。焼鈍温度が150℃未満の場合には、芯材の回復が不十分なため、ろう付加熱中の再結晶粒が微細となり耐高温座屈性及び自己耐食性が確保できない。一方、焼鈍温度が300℃以上の場合には、芯材が再結晶する虞がある。芯材を再結晶させない場合の好ましい焼鈍温度は160~290℃、より好ましい焼鈍温度は170~280℃である。また、焼鈍方法は、連続式焼鈍とバッチ式焼鈍のいずれを用いても良い。
 また、この焼鈍工程での加熱保持時間は0.5~12時間が好ましい。加熱保持時間が0.5時間未満の場合には、冷間圧延材が均一に所定温度に達しない虞があり、Mnの固溶量とMn系化合物の析出が芯材内で不均一となり、品質にバラツキが発生する虞がある。一方、加熱保持時間が12時間を超える場合には、芯材中にMn系化合物が過剰に析出して芯材における適切なMn固溶量を確保できない虞がある。
 以下に、本発明の実施例を本発明例と比較例とともに示す。なお、以下の実施例は、本発明の効果を示すためのものであり、その実施例が本発明の技術的範囲を限定するものではない。
 表1に示す合金組成を有する芯材合金と、表2に示す合金組成を有するろう材合金を、それぞれ半連続鋳造法により鋳造し、芯材鋳塊とろう材鋳塊を得た。芯材鋳塊は、均質化処理したものと均質化処理を省いたものを作製した。ろう材鋳塊には、均質化処理を施していない。次に、それぞれの鋳塊を面削した。更に、所定のクラッド率が得られる板厚までろう材鋳塊を500℃に加熱してから熱間圧延した。その後、熱間圧延したろう材圧延板を芯材鋳塊の両面に貼り合わせ、この合わせ材を加熱してから熱間合わせ圧延を行いクラッド材を作製した。熱間合わせ圧延後に、一次冷間圧延を行なって焼鈍した。焼鈍後に、芯材を再結晶させたクラッド材と再結晶させなかったクラッド材は、それぞれ更に最終板厚まで二次冷間圧延を行ってブレージングシートフィン材の試料とした。また、熱間合わせ圧延後に、一次冷間圧延ではなく最終板厚まで冷間圧延して焼鈍したブレージングシートフィン材の試料(再結晶させなかったクラッド材)も作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、表1、表2の合金組成表において、「-」は、スパーク放電発光分光分析装置の検出限界以下の含有量であったことを意味し、「残部」は残部Alと不可避的不純物からなることを意味する。
 また、上記のようにして作製したブレージングシートフィン材を用いて、ろう付加熱を行った。このろう付加熱は、ろう付相当の加熱であり、具体的には、ブレージングシートフィン材を窒素ガス雰囲気炉内で加熱して600℃で3分間保持し、次いで、100℃/分の冷却速度で室温まで冷却するものである。
 上記製造工程における、芯材とろう材の組み合わせ、芯材鋳塊の平均冷却速度(550℃から200℃までの)、均質化処理温度、熱間合わせ圧延における合わせ材の加熱温度、熱間圧延率10%時点での圧延板の温度、一次冷間圧延率、焼鈍温度、焼鈍後の組織、片面平均クラッド率、二次冷間圧延率、最終焼鈍温度、最終板厚及び製造性を表3、4に示す。なお、以上の製造工程において問題が発生せず、最終板圧まで圧延できた場合は製造性を「○」とし、鋳造又は圧延時における割れ、芯材とろう材の圧着不良が生じて最終板厚まで製造できなかった場合は製造性を「×」とした。また、溶湯凝固時の平均冷却速度は0.5~2.0℃/秒とし、合わせ材を加熱する際において、加熱温度に達するまでの昇温時間は8~15時間とし、熱間合わせ圧延工程の終了時における圧延板温度は200~370℃とした。
 なお、表3、4において、本発明例1、4、8、9、11、12、16、18~20、ならびに、比較例21~45、49~50は、請求項8の本発明例及び比較例であり、本発明例2、5、10、13~15、17、ならびに、比較例46、47は、請求項9の本発明例及び比較例であり、本発明例3、6,7、ならびに、比較例48は、請求項11の本発明例及び比較例である。ここで、本発明例9、10は、請求項10の実施態様を示すものであり、本発明例3、12、14、ならびに、比較例30、34、36、49、50は、請求項12の実施態様を示すものである。また、請求項11の本発明例及び比較例では、冷間圧延工程における圧延率を一次冷間圧延の欄に示し、二次冷間圧延工程後の最終焼鈍は行なわないので、二次冷間圧延工程後の最終焼鈍温度の欄は「-」で示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上製造したブレージングシートフィン材の試料について、ろう付加熱前後における導電率と平均粒子間距離の測定、ろう付加熱後における引張強さの測定、ならびに、高温座屈性、ろう付性及び自己耐食性の評価を行った。測定方法及び評価方法は、下記の通りである。なお、表4において製造性が「×」のものは試料を製造できなかったため、これらの評価を行うことができなかった。
(導電率の測定)
 ろう付加熱前後の各試料について、20℃の恒温曹内で、JIS H0505に基づき電気抵抗を測定した。同一試料の3箇所で測定し、それらの算術平均値をもって導電率とした。
(平均粒子間距離の測定)
 ろう付加熱前後の各試料について、板厚中央のL-LT面を透過型電子顕微鏡(TEM)により5万倍の倍率で撮影し、ろう付加熱前の試料については円相当径0.05~0.50mmのMn系化合物の平均粒子間距離を、ろう付加熱後の試料については円相当径0.50mm以下の平均粒子間距離を、それぞれ画像解析ソフトで測定した。同一試料について、5視野で測定を行ってそれらの算術平均値をもって平均粒子間距離とした。
 なお、本発明において規定する平均粒子間距離とは、TEM画像における全粒子の中心点同士を半直線で結ぶ際において、全ての半直線が交差しないように粒子同士を半直線で結んだときの粒子表面間距離の平均値として定義される。また、TEM画像における黒いコントラストの粒子がMn系化合物であることは、エネルギー分散形X線分光器(EDS)を用いた元素分析により確認した。
(引張強さの測定)
 ろう付加熱後の各試料をJIS13号Bに準拠した形状とし、室温で引張試験を行って引張強さを測定した。ろう付加熱後の引張強度が130MPa以上の場合を合格(○)とし、130MPa未満の場合を不合格(×)と判定した。
(耐高温座屈性の評価)
 サグ試験装置を用いた耐高温座屈性評価の模式図を、図1(a)~(c)に示す。各試料から幅16mm、長さ60mmの試験片1を切り出し、試験台2上に固定治具3を用いて50mmの張り出し部を片持ちで保持してろう付加熱した後、試験片1の垂下量を測定した。図1(a)は加熱前の状態における正面からの模式図、図1(b)は図1(a)の状態における平面からの模式図、図1(c)は加熱後の垂下した状態における正面からの模式図を表す。ろう付加熱後の垂下量が30mm未満の場合を耐高温座屈性が合格(○)とし、垂下量が30mm以上の場合を耐高温座屈性が不合格(×)と判定した。
(ろう付性の評価)
 ろう付性評価に用いた試験片の模式的な正面図を、図2に示す。各試料をコルゲート加工してフィン材4を作製し、図2に示すように、フィン材4の両側に板厚0.5mm、幅16mm、長さ60mmのA3003板5を組付けたミニコア試験片を作製した。このミニコア試験片を、濃度5%のフッ化物系フラックス懸濁液に浸漬して乾燥させた後にろう付加熱した。このミニコア試験片におけるフィン接合率が95%以上であり、かつ、フィン試料に溶融が生じていない場合をろう付性が合格(○)とし、フィン接合率が95%未満、及び/又は、フィン試料に溶融が生じた場合をろう付性が不合格(×)と判定した。
 なお、フィン接合率とは、フィン材4と板5の接合長さの合計を、コルゲートフィンの幅の長さ)×(フィンの山の数)で除したものとして定義した。フィン材4と板5の接合長さの合計は、ろう付加熱後のミニコア試験片においてフィン材4から板5を剥がし、各接合部の長さを測定しこれらを合計した。
(自己耐食性の評価)
 ろう付加熱後の各試料の単板について、ASTM G85に準拠したSWAAT(Sea WaterAcetic Acid Test)試験を30時間行い、各試料の腐食状態を調査した。腐食が板厚を貫通していない場合を自己耐食性が合格(○)とし、腐食が板厚を貫通した場合を自己耐食性が不合格(×)とした。
 以上の試験結果と評価結果を表5、6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以下、表5、6を参照して結果について検討する。まず、本発明例1~18では芯材及びろう材の合金組成が本発明で規定する範囲にあり、また、その製造条件も本発明で規定する条件を満たすものである。これらの本発明例では、製造性も良好であり、ろう付加熱前後の導電率と金属組織も条件を満たしていた。そして、これらの本発明例では、ろう付加熱後の引張強さ、耐高温座屈性、ろう付性、自己耐食性のいずれも合格であった。
 次に、比較例について検討する。比較例19~26では、芯材の合金組成が本発明で規定する範囲外であり、以下のような結果となった。
 比較例21では、芯材のSi含有量が過少であったため、ろう付加熱後にMn系化合物の形成が不十分であった。その結果、ろう付加熱後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例22では、芯材のFe含有量が過少であったため、ろう付加熱後にMn系化合物の形成が不十分であった。その結果、ろう付加熱後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例23では、芯材のSi含有量が過多であったため、また、Si+Fe≦Mnの関係を満たさなかったため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例24では、芯材のFe含有量が過多であったため、ろう付加熱後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例25では、芯材のMn含有量が過少であったため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。また、ろう付加熱前後におけるMn系化合物の形成が不十分であったため、ろう付加熱後における粒子間距離が大きくなり、これまた、ろう付加熱後の強度が不合格となる原因となった。更に、芯材のZn含有量が過多であったため、自己耐食性も不合格となった。
 比較例26では、芯材のMn含有量が過多であったため冷間圧延中に割れが生じ、ブレージングシートフィン材を製造できなかった。
 比較例27では、芯材のZr、Ti、Cr、Vの含有量が過多であったため冷間圧延中に割れが生じ、ブレージングシートフィン材を製造できなかった。
 比較例28では、芯材のSiとFe含有量の総量がMn含有量を超えたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。また、ろう付加熱後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱後における粒子間距離が大きくなり、これまた、ろう付加熱後の強度が不合格となる原因となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例29~32では、ろう材の合金組成が本発明で規定する範囲外であり、以下のような結果となった。
 比較例29では、ろう材のZn含有量が過多であったため自己耐食性が不合格となった。
 比較例30では、ろう材のSi含有量が過少であったためろう付性が不合格となった。また、ろう材のCu含有量が過多であったため自己耐食性が不合格となった。
 比較例31では、ろう材のSi含有量が過多であったため、耐高温座屈性が不合格となった。また、ろう材のZn含有量が過少であったため、自己耐食性が不合格となった。
 比較例32では、ろう材のFe含有量が過多であったため、ろう付性及び自己耐食性が不合格となった。また、ろう材のCu含有量が過少であったため、ろう付加熱後の強度が不合格となった。
 比較例33~52では、製造条件が本発明で規定する条件から外れたものであり、以下のような結果となった。
 比較例33では、片面平均クラッド率が過小であったため,ろう付加熱後の強度及びろう付性が不合格となった。
 比較例34では、片面平均クラッド率が過大であったため,耐高温座屈性及び自己耐食性が不合格となった。
 比較例35では、芯材鋳塊の平均冷却速度が遅過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性も不合格となった。
 比較例36では、芯材鋳塊の均質化処理温度が高過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。また、ろう付加熱前におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前における粒子間距離が大きくなり、これまた、ろう付加熱後の強度が不合格となる原因となった。更に、耐高温座屈性も不合格となった。
 比較例37では、合わせ材の加熱温度が低過ぎたため芯材とろう材との圧着不良が発生し、ブレージングシートフィン材を製造できなかった。
 比較例38では、合わせ材の加熱温度が高過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性も不合格となった。
 比較例39では、熱間圧延率が10%に達したときの圧延板の温度が低過ぎたため、ろう付加熱前後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例40では、熱間圧延率が10%に達したときの圧延板の温度が高過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性も不合格となった。
 比較例41では、一次冷間圧延率が低過ぎたため、ろう付加熱前後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例42では、一次冷間圧延率が高過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。
 比較例43では、焼鈍温度が高過ぎたため、ろう付加熱前後の導電率が大きくなった。その結果、芯材の適切なMn固溶量を確保できず、ろう付加熱後の強度が不合格となった。
 比較例44では、焼鈍工程で再結晶させた後の二次冷間圧延率が低過ぎたため、ろう付加熱中に芯材へのろう侵食が発生し、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例45では、焼鈍工程で再結晶させた後の二次冷間圧延率が高過ぎたため、ろう付加熱中に芯材へのろう侵食が発生し、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例46では、焼鈍温度が低過ぎたため、ろう付加熱前後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例47では、焼鈍工程で再結晶させなかった後の二次冷間圧延率が高過ぎたため、ろう付加熱中に芯材へのろう侵食が発生し、ろう付加熱後の強度が不合格となった。更に、耐高温座屈性、ろう付性及び自己耐食性も不合格となった。
 比較例48では、焼鈍温度が低過ぎたため、ろう付加熱前後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 比較例49では、板厚が薄過ぎたため、自己耐食性が不合格となった。
 比較例50では、板厚が厚すぎたため、ろう付加熱前後におけるMn系化合物の形成が不十分であった。その結果、ろう付加熱前後における粒子間距離が大きくなり、ろう付加熱後の強度が不合格となった。
 本発明に係る熱交換器用のアルミニウム合金製ブレージングシートフィン材は、ろう付加熱後の強度に優れ、更に良好な耐高温座屈性、ろう付性及び自己耐食性を有し、更に、薄肉化により従来のものと比較して軽量化できることから、特に自動車の熱交換器用として産業上顕著な利用可能性を有する。
 1・・・試験片
 2・・・試験台
 3・・・固定治具
 4・・・フィン材
 5・・・板

Claims (16)

  1.  アルミニウム合金の芯材と、当該芯材の両面にクラッドされたAl-Si系合金ろう材とを備えるアルミニウム合金製ブレージングシートフィン材であって、前記芯材が、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.8~2.0質量%を含有し、かつ、前記Si、Fe、Mnの含有量がSi+Fe≦Mnの条件を満たし、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記ろう材が、Si:6.0~13.0質量%、Fe:0.05~0.8質量%を含有し、残部Al及び不可避的不純物からなるAl-Si系合金からなり、
     ろう付加熱前において、当該フィン材が、6~16%の片面平均クラッド率、40~120μmの厚さ及び48~54%IACSの導電率を有し、前記芯材の金属組織が、円相当径0.05~0.50μmのMn系化合物が0.05~0.35μmの平均粒子間距離で存在する分布状態を有し、
     ろう付加熱後において、当該フィン材が40~44%IACSの導電率を有し、前記芯材の金属組織が、円相当径0.50μm以下のMn系化合物が0.45μm以下の平均粒子間距離で存在する分布状態を有することを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  2.  前記芯材が、Zn:0.3~3.0質量%を更に含有するアルミニウム合金からなる、請求項1に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  3.  前記芯材が、Cu:0.05~0.5質量%を更に含有するアルミニウム合金からなる、請求項1又は2に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  4.  前記芯材が、Zr:0.05~0.3質量%、Ti:0.05~0.3質量%、Cr:0.05~0.3質量%及びV:0.05~0.3質量%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項1~3のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  5.  前記ろう材が、Zn:0.3~3.0質量%を更に含有するAl-Si系合金からなる、請求項1~4のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  6.  前記ろう材が、Cu:0.1~0.7質量%を更に含有するAl-Si系合金からなる、請求項1~5のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  7.  前記ろう材が、Na:0.003~0.05質量%及びSr:0.003~0.05質量%の少なくともいずれか一方を更に含有するAl-Si系合金からなる、請求項1~6のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  8.  ろう付加熱後の引張強度が130MPa以上である、請求項1~7のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材。
  9.  請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく冷間圧延する一次冷間圧延工程と、一次冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程と、焼鈍工程後において途中で焼鈍することなく最終板厚まで冷間圧延する二次冷間圧延工程とを備え、
     前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
     前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
     前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
     前記一次冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
     前記焼鈍工程において、焼鈍温度を300~450℃として芯材を再結晶させ、前記二次冷間圧延工程において、冷間圧延率を10~85%とすることを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  10.  請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく冷間圧延する一次冷間圧延工程と、一次冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程と、焼鈍工程後において途中で焼鈍することなく最終板厚まで冷間圧延する二次冷間圧延工程とを備え、
     前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
     前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
     前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
     前記一次冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
     前記焼鈍工程において、焼鈍温度を150℃以上300℃未満として芯材を再結晶させず、
     前記二次冷間圧延工程において、冷間圧延率を3~40%とすることを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  11.  前記二次冷間圧延工程後において、圧延板を300℃以下の温度で焼鈍する焼鈍工程を更に備える、請求項9又は10に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  12.  請求項1~8のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法であって、前記芯材用及びろう材用のアルミニウム合金を半連続鋳造法によりそれぞれ鋳造する鋳造工程と、芯材の両面に所定厚さに圧延したろう材を重ね合わせた合わせ材を熱間圧延する熱間合わせ圧延工程と、熱間合わせ圧延工程後のクラッド材を途中で焼鈍することなく最終板厚まで冷間圧延する冷間圧延工程と、冷間圧延工程後においてクラッド材を焼鈍する焼鈍工程とを備え、
     前記芯材の鋳造工程において、凝固後の芯材鋳塊を550~200℃まで冷却する平均冷却速度を0.10℃/秒以上とし、
     前記芯材鋳塊を510℃以上の温度で均質化処理する均質化処理工程を設けず、
     前記熱間合わせ圧延工程において、合わせ材の加熱温度を420~500℃とし、熱間圧延率が10%に達したときの圧延板の温度を370~450℃とし、
     前記冷間圧延工程において、冷間圧延率を85.0~99.5%とし、
     前記焼鈍工程において、焼鈍温度を150℃以上300℃未満として芯材を再結晶させないことを特徴とする熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  13.  前記芯材の鋳造工程後において、芯材鋳塊を510℃未満の温度で均質化処理する均質化処理工程を更に備える、請求項9~12のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  14.  前記芯材の鋳造工程において、溶湯凝固時の平均冷却速度を0.5℃/秒以上とする、請求項9~13のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  15.  前記合わせ材を加熱する際において、前記加熱温度に達するまでの昇温時間を15時間以下とする、請求項9~14のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
  16.  前記熱間合わせ圧延工程の終了時における圧延板温度を370℃未満とする、請求項9~15のいずれか一項に記載の熱交換器用のアルミニウム合金製ブレージングシートフィン材の製造方法。
PCT/JP2016/001358 2015-03-14 2016-03-10 熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法 WO2016147627A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16764459.0A EP3272891A4 (en) 2015-03-14 2016-03-10 Aluminum-alloy brazing sheet fin material for heat exchanger, and production process therefor
CN201680012458.6A CN107406920A (zh) 2015-03-14 2016-03-10 热交换器用的铝合金制钎焊片散热片材料及其制造方法
BR112017015673-3A BR112017015673A2 (ja) 2015-03-14 2016-03-10 Product brazing sheet fin material made from an aluminium alloy and a manufacturing method for the same for heat exchangers
US15/558,205 US20180073118A1 (en) 2015-03-14 2016-03-10 Aluminum-alloy brazing sheet fin material for heat exchanger, and production process therefor
JP2017506081A JP6758281B2 (ja) 2015-03-14 2016-03-10 熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051509 2015-03-14
JP2015051509 2015-03-14

Publications (1)

Publication Number Publication Date
WO2016147627A1 true WO2016147627A1 (ja) 2016-09-22

Family

ID=56918689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001358 WO2016147627A1 (ja) 2015-03-14 2016-03-10 熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法

Country Status (6)

Country Link
US (1) US20180073118A1 (ja)
EP (1) EP3272891A4 (ja)
JP (1) JP6758281B2 (ja)
CN (1) CN107406920A (ja)
BR (1) BR112017015673A2 (ja)
WO (1) WO2016147627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168566A1 (ja) * 2021-02-03 2022-08-11 株式会社Uacj アルミニウム合金フィン材及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505043B (zh) * 2020-06-08 2023-07-28 西南铝业(集团)有限责任公司 钎焊铝合金钎焊性能评价方法及实验支撑架
CN113957296A (zh) * 2021-10-21 2022-01-21 江苏鼎胜新能源材料股份有限公司 一种哈兹列特3003芯材生产的水箱主板材料及其制造方法
CN114214543A (zh) * 2021-12-06 2022-03-22 大力神铝业股份有限公司 一种提高复合板料焊后晶粒尺寸的材料及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281266A (ja) * 2005-03-31 2006-10-19 Furukawa Sky Kk アルミニウム合金クラッド材、その製造方法及びそのアルミニウム合金クラッド材を用いた熱交換器
JP2011099154A (ja) * 2009-11-09 2011-05-19 Mitsubishi Alum Co Ltd 熱交換器用アルミニウム合金ブレージングフィン材および該フィン材を用いた熱交換器
JP2012067385A (ja) * 2010-08-23 2012-04-05 Furukawa-Sky Aluminum Corp ブレージングシート及びその製造方法
WO2012169412A1 (ja) * 2011-06-07 2012-12-13 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
WO2015002315A1 (ja) * 2013-07-05 2015-01-08 株式会社Uacj 熱交換器用ブレージングシート及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153251A (ja) * 1986-12-15 1988-06-25 Furukawa Alum Co Ltd ブレ−ジング用アルミニウム薄板の製法
JP4181607B2 (ja) * 2007-03-29 2008-11-19 株式会社神戸製鋼所 アルミニウム合金製ブレージングシートおよびその製造方法
CN101289719A (zh) * 2007-04-19 2008-10-22 南通华特铝热传输材料有限公司 汽车散热器复合钎焊铝箔材料及其制造方法
CN102471836B (zh) * 2009-09-21 2014-06-18 古河Sky株式会社 高耐蚀性铝合金钎焊片材及其制造方法,以及使用其的高耐蚀性热交换器
JP2012026008A (ja) * 2010-07-26 2012-02-09 Mitsubishi Alum Co Ltd 熱交換器用アルミニウム合金フィン材およびその製造方法ならびに該フィン材を用いた熱交換器
JP5793336B2 (ja) * 2010-09-21 2015-10-14 株式会社Uacj 高強度アルミニウム合金ブレージングシート及びその製造方法
MY164145A (en) * 2012-01-27 2017-11-30 Uacj Corp Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the said aluminum alloy material
JP6047304B2 (ja) * 2012-05-11 2016-12-21 株式会社Uacj 高強度アルミニウム合金ブレージングシート及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281266A (ja) * 2005-03-31 2006-10-19 Furukawa Sky Kk アルミニウム合金クラッド材、その製造方法及びそのアルミニウム合金クラッド材を用いた熱交換器
JP2011099154A (ja) * 2009-11-09 2011-05-19 Mitsubishi Alum Co Ltd 熱交換器用アルミニウム合金ブレージングフィン材および該フィン材を用いた熱交換器
JP2012067385A (ja) * 2010-08-23 2012-04-05 Furukawa-Sky Aluminum Corp ブレージングシート及びその製造方法
WO2012169412A1 (ja) * 2011-06-07 2012-12-13 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
WO2015002315A1 (ja) * 2013-07-05 2015-01-08 株式会社Uacj 熱交換器用ブレージングシート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272891A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168566A1 (ja) * 2021-02-03 2022-08-11 株式会社Uacj アルミニウム合金フィン材及びその製造方法
DE112022000288T5 (de) 2021-02-03 2023-09-14 Uacj Corporation Aluminiumlegierung, lamellenmaterial und herstellungsverfahren davon

Also Published As

Publication number Publication date
US20180073118A1 (en) 2018-03-15
JPWO2016147627A1 (ja) 2017-12-21
JP6758281B2 (ja) 2020-09-23
EP3272891A1 (en) 2018-01-24
BR112017015673A2 (ja) 2018-03-13
EP3272891A4 (en) 2018-04-04
CN107406920A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3029169B1 (en) Aluminum-alloy clad member and method for producing the same
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2015104760A1 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
WO2017141921A1 (ja) アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器の製造方法
JP5188116B2 (ja) 高強度アルミニウム合金ブレージングシートおよびその製造方法
JP6418714B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP6839700B2 (ja) 熱交換器用アルミニウム合金製ブレージングシート及びその製造方法
WO2016147627A1 (ja) 熱交換器用のアルミニウム合金製ブレージングシートフィン材及びその製造方法
JP2012067385A (ja) ブレージングシート及びその製造方法
WO2017169633A1 (ja) アルミニウム合金製ブレージングシート
JP2012057183A (ja) アルミニウム合金製クラッド材およびそれを用いた熱交換器
JP6233916B2 (ja) アルミニウム合金ろう材およびアルミニウム合金複合材
JP2008111143A (ja) アルミニウム合金ブレージングシートおよびその製造方法
JP2018145447A (ja) 熱交換器用アルミニウム合金製フィン材
WO2020054325A1 (ja) アルミニウム合金ブレージングシート
JP2010270386A (ja) 熱交換器用アルミニウム合金フィン材
CN110139940B (zh) 换热器用的铝合金翅片材及其制造方法
JP2017057497A (ja) 熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、当該アルミニウム合金フィン材を用いた熱交換器
JP2022045525A (ja) 熱伝導性に優れたアルミニウム合金ベア材およびブレージングシート
JP5576662B2 (ja) アルミニウム合金ブレージングシート及びアルミニウム合金ブレージングシートの製造方法
CN114173984B (zh) 铝合金硬钎焊板及其制造方法
JP5306836B2 (ja) 強度及び耐食性に優れたアルミニウム合金ブレージングシート
WO2017047514A1 (ja) 熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、当該アルミニウム合金フィン材を用いた熱交換器及びその製造方法
JP2023045751A (ja) ブレージングシート及びその製造方法
JP2016148072A (ja) アルミニウム合金フィン材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506081

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764459

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015673

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15558205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017015673

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170721