WO2016147512A1 - 半導体発光素子及び半導体発光素子組立体 - Google Patents

半導体発光素子及び半導体発光素子組立体 Download PDF

Info

Publication number
WO2016147512A1
WO2016147512A1 PCT/JP2015/085329 JP2015085329W WO2016147512A1 WO 2016147512 A1 WO2016147512 A1 WO 2016147512A1 JP 2015085329 W JP2015085329 W JP 2015085329W WO 2016147512 A1 WO2016147512 A1 WO 2016147512A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
semiconductor light
compound semiconductor
active layer
Prior art date
Application number
PCT/JP2015/085329
Other languages
English (en)
French (fr)
Inventor
秀輝 渡邊
簗嶋 克典
倫太郎 幸田
もえ 竹尾
岡野 展賢
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017506033A priority Critical patent/JP6934129B2/ja
Priority to EP15885604.7A priority patent/EP3273551A4/en
Priority to US15/556,970 priority patent/US10686291B2/en
Publication of WO2016147512A1 publication Critical patent/WO2016147512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06253Pulse modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0657Mode locking, i.e. generation of pulses at a frequency corresponding to a roundtrip in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • H01S5/309Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer doping of barrier layers that confine charge carriers in the laser structure, e.g. the barriers in a quantum well structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to a semiconductor light emitting element and a semiconductor light emitting element assembly.
  • a semiconductor laser element is bonded to the surface of a flat submount via a first solder layer, and the submount to which the semiconductor laser element is bonded is formed on the surface of the heat sink.
  • a semiconductor laser device formed by bonding via a second solder layer is disclosed.
  • an object of the present disclosure is to provide a semiconductor light emitting device capable of increasing light output, and a semiconductor light emitting device assembly including the semiconductor light emitting device.
  • a semiconductor light emitting device assembly includes a stacked structure in which a first compound semiconductor layer, an active layer, and a second compound semiconductor layer are stacked.
  • the operating current range when the temperature of the active layer is T 1 is ⁇ I 1
  • T 2 When the operating current range when the temperature of T 2 is T 2 (where T 2 > T 1 ) is ⁇ I 2
  • T 2 > T 1 When the operating current range when the temperature of T 2 is T 2 (where T 2 > T 1 ) is ⁇ I 2
  • T 2 > T 1 the semiconductor light emitting element in the semiconductor light emitting element assembly according to the first aspect of the present disclosure and the semiconductor light emitting element according to the first aspect of the present disclosure are collectively referred to as “the first aspect of the present disclosure.
  • Such a semiconductor light-emitting element or the like may be called.
  • the maximum light output emitted when the temperature of the active layer is T 1 is P 1.
  • the semiconductor light emitting element in the semiconductor light emitting element assembly according to the second aspect of the present disclosure and the semiconductor light emitting element according to the second aspect of the present disclosure are collectively referred to as “the second aspect of the present disclosure.
  • Such a semiconductor light-emitting element or the like ” may be called.
  • the relationship of ⁇ I 2 > ⁇ I 1 is satisfied. Therefore, the higher the temperature of the active layer, the wider the operating current range. The output can be increased.
  • P 2 > P 1 is satisfied. Therefore, the higher the temperature of the active layer, the higher the maximum light output, thereby increasing the light output. be able to.
  • a 400 nm wavelength pulse laser having a high peak output can be realized by a single semiconductor light emitting device (for example, a mode-locked semiconductor laser device), an ultrashort pulse light source on the order of femtoseconds is to be widely used. In some cases, it is not necessary to cool the semiconductor light emitting element, so that power can be saved. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1A and 1B are conceptual diagrams of the semiconductor light emitting devices of Example 1 and Example 2, respectively.
  • FIG. 2 is a schematic end view along the direction in which the resonator of the semiconductor light emitting device (semiconductor laser device) in Example 1 extends.
  • FIG. 3 is a schematic cross-sectional view taken along a direction perpendicular to the direction in which the resonator of the semiconductor light emitting device (semiconductor laser device) in Example 1 extends.
  • FIG. 4 is a conceptual perspective view of the semiconductor light emitting device assembly of Example 1 when disassembled.
  • FIG. 5 is a graph showing the results of determining the relationship between the operating current I 1 and the light output in the semiconductor light emitting device of Example 1.
  • FIG. 6A shows the result of obtaining the relationship between the heat sink temperature T hs and the lower limit value (oscillation threshold current) I min of the operating current range based on the result shown in FIG. 5 and when the optical output is 12.5 milliwatts.
  • FIG. 6B is a graph showing a result of comparing the temperature dependence measurement result shown in FIG. 5 with the operating current range and the maximum light output in the same pulse state.
  • 7A and 7B are conceptual diagrams of modifications of the semiconductor light emitting device of Example 1.
  • FIG. 8A, FIG. 8B, and FIG. 8C are conceptual diagrams of another modification of the semiconductor light emitting device of Example 1.
  • FIG. 9 is a schematic end view along the direction in which the resonator of the modified example of the mode-locked semiconductor laser device of Example 1 extends.
  • FIG. 10 is a schematic end view along the direction in which the resonator of another modification of the mode-locked semiconductor laser device of Example 1 extends.
  • FIG. 11 is a schematic view of a ridge stripe structure as viewed from above in still another modified example of the mode-locked semiconductor laser device according to the first embodiment.
  • 12A and 12B are schematic partial cross-sectional views of a substrate and the like for explaining the method for manufacturing the mode-locked semiconductor laser device of Example 1.
  • FIG. 13A and 13B are schematic partial cross-sectional views of a substrate and the like for explaining the method of manufacturing the mode-locked semiconductor laser device of Example 1 following FIG. 12B.
  • FIG. 14 is a schematic partial end view of the substrate and the like for explaining the method of manufacturing the mode-locked semiconductor laser device of Example 1 following FIG. 13B.
  • FIG. 15 is a diagram for explaining a phenomenon in which the light output rapidly increases when the upper limit value of the operating current range is exceeded.
  • the operating current when the repetition frequency f of the optical pulse changes from the fundamental frequency determined by the distance of the optical system to a frequency twice the fundamental frequency is It can be set as the form which is the upper limit of an electric current range.
  • the round trip time determined by the length of the external resonator structure described below is proportional to the reciprocal of the repetition frequency f.
  • the upper limit value of the operating current range when the temperature of the active layer is T 1 is I max ⁇ 1
  • the temperature of the active layer When the upper limit of the operating current range when I is T 2 is I max-2
  • I max-2 > I max-1 Can be obtained.
  • the above-described optical system in the semiconductor light emitting element assembly according to the first aspect to the second aspect of the present disclosure can be composed of, for example, a semiconductor light emitting element and an optical member.
  • the two end faces of the semiconductor light emitting element are a first end face and a second end face
  • the first end face is a light reflecting face
  • the second end face is a light emitting face
  • the second end face of the semiconductor light emitting element is The emitted light collides with the optical member, a part of the light is returned to the semiconductor light emitting element, and the remaining light can be emitted to the outside.
  • the external resonator structure is constituted by the first end face of the semiconductor light emitting element and the optical member.
  • the distance of the optical system is the length of the external resonator structure.
  • the optical member include a diffraction grating in which a lattice-shaped uneven portion and a groove portion are formed, a semi-transmissive mirror, and a reflective mirror.
  • the diffraction grating can be configured to return the first-order diffracted light from the light emitted from the semiconductor light-emitting element to the semiconductor light-emitting element and emit the zero-order diffracted light to the outside.
  • the number of grating-like patterns in the diffraction grating include 1200 lines / mm to 3600 lines / mm, desirably 2400 lines / mm to 3600 lines / mm.
  • Collimating means for making the light from the semiconductor light emitting element a parallel light beam may be arranged between the semiconductor light emitting element and the optical member, or the light from the semiconductor light emitting element is optical. You may arrange
  • the semiconductor light emitting element assembly according to the first to second aspects of the present disclosure including the various preferred embodiments described above further includes a heat sink and a submount.
  • the heat sink, the submount, and the semiconductor The light emitting elements can be sequentially stacked.
  • examples of the material constituting the submount include AlN, Si, SiC, Cu, W, Mo, Al, diamond, or a composite material containing these materials such as Cu—W, Al—SiC, and the like.
  • As a material constituting the heat sink Cu, Fe, Al, Au, W, Mo, or a composite material containing these materials such as Cu—W, Cu—Mo, and the like can be given.
  • the heat sink and the submount are stacked via the first solder layer
  • the submount and the semiconductor light emitting element are stacked via the second solder layer
  • the area of the first solder layer relative to the area of the submount is not limited, but is 0.2 to 0.8, and / or the second solder layer formed in the submount relative to the area of the semiconductor light emitting device.
  • the area of is not limited, but may be 0.2 to 0.8.
  • the area of the first solder layer with respect to the area of the submount and / or the area of the second solder layer formed on the submount with respect to the area of the semiconductor light emitting element is set to 0.8 or less.
  • the temperature of the active layer can be maintained at a desired high temperature.
  • the contact area between the submount and the heat sink, or the contact area between the submount and the semiconductor light emitting element is made 0.8 or less, or The heat storage structure can also be obtained by inserting a low material having a thermal conductivity of 50 W / mK or less into the contact interface between the mount and the heat sink or the contact interface between the submount and the semiconductor light emitting element.
  • the temperature of the active layer can be controlled by a heat sink.
  • the temperature of the active layer can be controlled by heating the heat sink.
  • the stacked structure includes a light emitting region and a saturable absorbing region juxtaposed in the resonator direction.
  • the saturable absorption region may be arranged in the end region of the laminated structure in the resonator direction, and in these cases The current flowing through the light emitting region may be 1 ⁇ 10 2 amperes / cm 2 to 1 ⁇ 10 5 amperes / cm 2 per unit area of the light emitting region.
  • the stacked structure has a structure in which a plurality of functional regions are integrated.
  • at least one of the plurality of functional regions may be composed of a saturable absorption region.
  • Other functional areas include a gain area, a saturable absorption area, a phase control area, a distributed feedback area, a distributed black reflection area, and the like.
  • semiconductor light-emitting elements can be made of a semiconductor light emitting device having a light emitting region and a saturable absorption region, specifically, a mode-locked semiconductor laser device having a light emitting region and a saturable absorption region.
  • the temperature characteristic of the semiconductor saturable absorber SESAM is used to control the oscillation characteristics.
  • the oscillation characteristic can be controlled based on the reverse bias voltage V sa to the absorption region, the oscillation characteristic can be easily controlled.
  • the semiconductor light emitting element assembly according to the first to second aspects of the present disclosure including the preferred embodiments and configurations described above hereinafter collectively referred to as “semiconductor light emitting element assembly of the present disclosure”
  • SOA semiconductor optical amplifier
  • the light generated in the active layer is emitted to the outside from the second end face of the laminated structure. That is, the resonator is configured by optimizing the light reflectance of the first end face and the light reflectance of the second end face of the multilayer structure, and light is emitted from the second end face.
  • a semiconductor optical amplifier does not convert an optical signal into an electrical signal, but amplifies it in the state of direct light, has a laser structure that eliminates the resonator effect as much as possible, and is based on the optical gain of the semiconductor optical amplifier. Amplifies incident light.
  • the light reflectance of the first end face and the second end face in the stacked structure is set to a very low value, and the light incident from the first end face is amplified without forming a resonator.
  • the light is emitted from the two end faces.
  • a monolithic type in which a semiconductor light emitting element and a semiconductor optical amplifier are integrated can also be used.
  • the mode-locked semiconductor laser element or the semiconductor optical amplifier is: A first compound semiconductor layer comprising a GaN-based compound semiconductor and having a first conductivity type; A third compound semiconductor layer (active layer) made of a GaN-based compound semiconductor, and A second compound semiconductor layer comprising a GaN-based compound semiconductor and having a second conductivity type different from the first conductivity type; Are sequentially laminated on the substrate, A second electrode formed on the second compound semiconductor layer, and A first electrode electrically connected to the first compound semiconductor layer; It can be set as the structure provided with.
  • the first compound semiconductor layer is formed on a substrate or a substrate.
  • the mode-locked semiconductor laser element is composed of a bi-section type mode-locked semiconductor laser element in which a light emitting region and a saturable absorption region are juxtaposed in the cavity direction, and the second electrode emits light.
  • a first groove for making a forward bias state by passing a direct current through the first electrode through the region and a second portion for applying an electric field to the saturable absorption region are separated by a separation groove. It can be in the form.
  • the electrical resistance value between the first part and the second part of the second electrode is 1 ⁇ 10 times or more, preferably 1 ⁇ 10 2 times the electrical resistance value between the second electrode and the first electrode. As described above, it is desirable that the ratio is 1 ⁇ 10 3 times or more.
  • Such a mode-locked semiconductor laser element is referred to as a “mode-locked semiconductor laser element having a first configuration” for convenience.
  • the electric resistance value between the first portion and the second portion of the second electrode is 1 ⁇ 10 2 ⁇ or more, preferably 1 ⁇ 10 3 ⁇ or more, more preferably 1 ⁇ 10 4 ⁇ or more. It is desirable.
  • Such a mode-locked semiconductor laser element is referred to as a “mode-locked semiconductor laser element having a second configuration” for convenience.
  • a direct current is passed from the first portion of the second electrode to the first electrode via the light emitting region to be in a forward bias state.
  • V sa reverse bias voltage
  • the electric resistance value between the first portion and the second portion of the second electrode is determined by the second electrode and the first electrode.
  • the leakage current flow from the first part to the second part of the second electrode is surely suppressed by setting the electrical resistance value between the first electrode and the second part to 10 times or more, or 1 ⁇ 10 2 ⁇ or more.
  • the reverse bias voltage V sa applied to the saturable absorption region (carrier non-injection region) can be increased, a mode-locking operation having a laser beam with a shorter pulse time width can be realized.
  • such a high electrical resistance value between the first part and the second part of the second electrode can be achieved simply by separating the second electrode into the first part and the second part by the separation groove. it can.
  • the third compound semiconductor layer has a quantum well structure including a well layer and a barrier layer,
  • the thickness of the well layer is 1 nm or more and 10 nm or less, preferably 1 nm or more and 8 nm or less
  • the impurity doping concentration of the barrier layer is 2 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less, preferably 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less. can do.
  • Such a mode-locked semiconductor laser element may be referred to as a “mode-locked semiconductor laser element having a third configuration” for convenience.
  • the thickness of the well layer constituting the third compound semiconductor layer is defined as 1 nm or more and 10 nm or less, and the impurity doping concentration of the barrier layer constituting the third compound semiconductor layer is 2 ⁇ 10 18 cm. -3 or more and 1 ⁇ 10 20 cm -3 or less, that is, by reducing the thickness of the well layer and increasing the number of carriers in the third compound semiconductor layer, It is possible to obtain a laser light source that can generate a unimodal laser beam that can be reduced, has a short pulse time width, and has few sub-pulse components.
  • mode-synchronized driving can be achieved with a low reverse bias voltage V sa , and a pulse train of laser light synchronized with external signals (electrical signals and optical signals) can be generated.
  • the impurity doped in the barrier layer can be silicon (Si), but is not limited to this, and oxygen (O) can also be used.
  • the semiconductor light emitting device and the like of the present disclosure may be a semiconductor laser device having a ridge stripe type separated confinement heterostructure (SCH structure, separate-confinement heterostructure).
  • a semiconductor laser device having an oblique ridge stripe type separated confinement heterostructure can be employed. That is, the axis of the semiconductor light emitting element and the axis of the ridge stripe structure can be configured to intersect at a predetermined angle.
  • the predetermined angle ⁇ include 0.1 degrees ⁇ ⁇ ⁇ 10 degrees, preferably 0.1 degrees ⁇ ⁇ ⁇ 6 degrees.
  • the axis of the ridge stripe structure refers to a bisection point at both ends of the ridge stripe structure on the light emitting end face (second end face) and an end face (first face) of the laminated structure opposite to the light emitting end face (second end face).
  • End face is a straight line connecting bisectors at both ends of the ridge stripe structure.
  • the axis of the semiconductor light emitting element refers to an axis orthogonal to the first end surface and the second end surface.
  • the planar shape of the ridge stripe structure may be linear or curved.
  • W 2 can be in a form of 5 ⁇ m or more, and the upper limit value of W 2 is not limited, but can be exemplified by 4 ⁇ 10 2 ⁇ m, for example. Further, W 1 may be 1.4 ⁇ m to 2.0 ⁇ m.
  • Each end of the ridge stripe structure may be composed of one line segment, or may be composed of two or more line segments.
  • the width of the ridge stripe structure can be configured to be monotonously and gradually widened in a tapered shape (flared shape) from the first end surface to the second end surface.
  • the width of the ridge stripe structure is, for example, the same width from the first end face toward the second end face, and then monotonously and gently widened in a tapered shape, or alternatively, the ridge stripe structure.
  • the width of the structure may be, for example, first widened from the first end face toward the second end face, and then narrowed after exceeding the maximum width.
  • the light reflectance of the second end surface of the stacked structure from which the light beam (pulsed light) is emitted is preferably 0.5% or less.
  • a low reflection coating layer can be formed on the second end surface.
  • the low reflection coating layer has, for example, a laminated structure of at least two kinds of layers selected from the group consisting of a titanium oxide layer, a tantalum oxide layer, a zirconia oxide layer, a silicon oxide layer, and an aluminum oxide layer.
  • the value of this light reflectivity is based on the light reflectivity (usually 5% to 10%) of one end face of the laminated structure from which a laser light beam (pulsed laser light) is emitted in a conventional semiconductor laser element. Is also a much lower value.
  • the first end face preferably has a high light reflectance, for example, a reflectance of 85% or more, preferably a reflectance of 95% or more.
  • the value of the external resonator length (X ′, unit: mm) in the external resonator structure is 0 ⁇ X ' ⁇ 1500 Preferably, 30 ⁇ X ′ ⁇ 500 It is desirable that
  • the external resonator structure is as described above.
  • the stacked structure has a ridge stripe structure including at least a part of the second compound semiconductor layer in the thickness direction. It may be composed of only the second compound semiconductor layer, may be composed of the second compound semiconductor layer and the third compound semiconductor layer (active layer), or may be composed of the second compound semiconductor layer and the third compound semiconductor layer. (Active layer) and a part of the first compound semiconductor layer in the thickness direction may be included.
  • the compound semiconductor layer may be patterned by, for example, a dry etching method.
  • the width of the second electrode is 0.5 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less
  • the height of the ridge stripe structure is 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.2 ⁇ m or more and 1 ⁇ m or less
  • the width of the separation groove for separating the second electrode into the first part and the second part is 1 ⁇ m or more, 50% or less of the resonator length (hereinafter simply referred to as “resonator length”) in the mode-locked semiconductor laser element,
  • the thickness is preferably 10 ⁇ m or more and 10% or less of the resonator length.
  • the resonator length is 0.6 mm, but is not limited thereto.
  • the distance (D) from the top surface of the portion of the second compound semiconductor layer located outside the both side surfaces of the ridge stripe structure to the third compound semiconductor layer (active layer) is 1.0 ⁇ 10 ⁇ 7 m (0. 1 ⁇ m) or more is preferable.
  • the upper limit of the distance (D) may be determined based on an increase in threshold current, temperature characteristics, deterioration in current increase rate during long-term driving, and the like.
  • the resonator length direction is the X direction
  • the thickness direction of the laminated structure is the Z direction.
  • the second electrode is, for example, a palladium (Pd) single layer, a nickel (Ni) single layer, a platinum (Pt) single layer, or a palladium layer in contact with the second compound semiconductor layer. It can be made into the form which consists of a laminated structure of a palladium layer / platinum layer, or a laminated structure of a palladium layer / nickel layer in which the palladium layer is in contact with the second compound semiconductor layer.
  • the thickness of the upper metal layer is desirably 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more.
  • the second electrode is preferably composed of a single layer of palladium (Pd).
  • the thickness is preferably 20 nm or more, and preferably 50 nm or more.
  • the second electrode may be a palladium (Pd) single layer, a nickel (Ni) single layer, a platinum (Pt) single layer, or a lower metal layer and an upper metal layer in which the lower metal layer is in contact with the second compound semiconductor layer.
  • the lower metal layer is composed of one kind of metal selected from the group consisting of palladium, nickel and platinum, and the upper metal layer forms a separation groove in the second electrode in step (D) described later.
  • the etching rate is preferably made of a metal that is the same as or similar to the etching rate of the lower metal layer, or higher than the etching rate of the lower metal layer.
  • an etching solution for forming the separation groove in the second electrode in the step (D) described later is aqua regia, nitric acid, sulfuric acid, hydrochloric acid, or a mixture of at least two of these acids (specifically Are preferably a mixed solution of nitric acid and sulfuric acid, a mixed solution of sulfuric acid and hydrochloric acid).
  • the length of the saturable absorption region can be shorter than the length of the light emitting region.
  • the length of the second electrode (the total length of the first portion and the second portion) can be shorter than the length of the third compound semiconductor layer (active layer).
  • the arrangement state of the first part and the second part of the second electrode specifically, (1) A first portion of one second electrode and a second portion of one second electrode are provided, and the first portion of the second electrode and the second portion of the second electrode sandwich the separation groove.
  • the first part of one second electrode and the second part of two second electrodes are provided, and one end of the first part is sandwiched by one separation groove, Opposite to the second part, the other end of the first part is opposed to the other second part across the other separation groove.
  • the first part of the two second electrodes and one first part A second portion of the two electrodes, an end of the second portion sandwiching one separation groove and facing one first portion, and the other end of the second portion sandwiching the other separation groove In the state facing the other first part (that is, the second electrode has a structure in which the second part is sandwiched between the first parts) Can be mentioned.
  • a first portion of N second electrodes and a second portion of (N ⁇ 1) second electrodes are provided, and the first portion of the second electrode sandwiches the second portion of the second electrode.
  • second portions of the N second electrodes and (N-1) first portions of the second electrodes are provided, and the second portion of the second electrode is the second electrode.
  • positioned on both sides of the 1st part of this can be mentioned.
  • the states of (4) and (5) are: (4 ′) N light emitting regions [carrier injection region, gain region] and (N ⁇ 1) saturable absorption regions [carrier non-injection region] are provided, and the light emitting region sandwiches the saturable absorption region.
  • the mode-locked semiconductor laser element can be manufactured, for example, by the following method. That is, (A) a first compound semiconductor layer having a first conductivity type and made of a GaN-based compound semiconductor, a light-emitting region made of a GaN-based compound semiconductor, and a third compound semiconductor layer constituting a saturable absorption region on the substrate; A second compound semiconductor layer having a second conductivity type different from the first conductivity type, and a second compound semiconductor layer made of a GaN-based compound semiconductor is sequentially stacked to form a stacked structure, (B) forming a band-shaped second electrode on the second compound semiconductor layer; (C) Using the second electrode as an etching mask, etching at least a portion of the second compound semiconductor layer to form a ridge stripe structure; (D) forming a resist layer for forming the separation groove on the second electrode, and then forming the separation groove on the second electrode by a wet etching method using the resist layer as a mask for wet etching;
  • a manufacturing method that is, at least a part of the second compound semiconductor layer is etched using the strip-shaped second electrode as an etching mask to form a ridge stripe structure, that is, patterning is performed. Since the ridge stripe structure is formed by the self-alignment method using the formed second electrode as an etching mask, there is no misalignment between the second electrode and the ridge stripe structure. Further, a separation groove is formed in the second electrode by a wet etching method. As described above, unlike the dry etching method, by adopting the wet etching method, it is possible to suppress the deterioration of the optical and electrical characteristics in the second compound semiconductor layer. Therefore, it is possible to reliably prevent the light emission characteristics from being deteriorated.
  • the second compound semiconductor layer may be partially etched in the thickness direction, the second compound semiconductor layer may be etched in the thickness direction, or the second compound semiconductor layer may be etched.
  • the semiconductor layer and the third compound semiconductor layer may be etched in the thickness direction, or the second compound semiconductor layer and the third compound semiconductor layer, and further the first compound semiconductor layer may be partially etched in the thickness direction. Also good.
  • the etching rate of the second electrode ER when the etching rate of the laminated structure was ER 1, ER 0 / ER 1 It is desirable to satisfy ⁇ 1 ⁇ 10, preferably ER 0 / ER 1 ⁇ 1 ⁇ 10 2 .
  • ER 0 / ER 1 satisfies such a relationship, the second electrode can be reliably etched without etching the laminated structure (or even if it is etched slightly).
  • the stacked structure can be specifically configured from an AlInGaN-based compound semiconductor.
  • AlInGaN-based compound semiconductor examples include GaN, AlGaN, InGaN, and AlInGaN.
  • these compound semiconductors may contain boron (B) atoms, thallium (Tl) atoms, arsenic (As) atoms, phosphorus (P) atoms, and antimony (Sb) atoms as desired.
  • the third compound semiconductor layer (active layer) desirably has a quantum well structure. Specifically, it may have a single quantum well structure [SQW structure] or a multiple quantum well structure [MQW structure].
  • the third compound semiconductor layer (active layer) having a quantum well structure has a structure in which at least one well layer and a barrier layer are stacked, but the compound semiconductor constituting the well layer and the compound constituting the barrier layer As a combination of (semiconductor), (In y Ga (1-y) N, GaN), (In y Ga (1-y) N, In z Ga (1-z) N) [where y> z], ( In y Ga (1-y) N, AlGaN) can be exemplified.
  • the second compound semiconductor layer has a superlattice structure in which p-type GaN layers and p-type AlGaN layers are alternately stacked; It can be set as the structure which is 7 micrometers or less.
  • the lower limit of the thickness of the superlattice structure is not limited, for example, 0.3 ⁇ m can be exemplified, and the thickness of the p-type GaN layer constituting the superlattice structure is exemplified by 1 nm to 5 nm.
  • the thickness of the p-type AlGaN layer constituting the superlattice structure can be 1 nm to 5 nm, and the total number of p-type GaN layers and p-type AlGaN layers is 60 to 300 layers. Can be illustrated.
  • the distance from the third compound semiconductor layer to the second electrode may be 1 ⁇ m or less, preferably 0.6 ⁇ m or less.
  • the thickness of the p-type second compound semiconductor layer having high resistance is reduced, and the operating voltage of the semiconductor light emitting device is reduced. can do.
  • the second compound semiconductor layer is doped with Mg of 1 ⁇ 10 19 cm ⁇ 3 or more; the absorption coefficient of the second compound semiconductor layer with respect to light having a wavelength of 405 nm from the third compound semiconductor layer is at least It can be set as the structure which is 50 cm ⁇ -1 >.
  • the atomic concentration of Mg is derived from the material physical property of showing the maximum hole concentration at a value of 2 ⁇ 10 19 cm ⁇ 3 , and the maximum hole concentration, that is, the specific resistance of the second compound semiconductor layer This is a result designed to minimize.
  • the absorption coefficient of the second compound semiconductor layer is defined from the viewpoint of reducing the resistance of the semiconductor light emitting device as much as possible.
  • the light absorption coefficient of the third compound semiconductor layer is 50 cm ⁇ 1. It is common.
  • the Mg doping amount can be intentionally set to a concentration of 2 ⁇ 10 19 cm ⁇ 3 or more.
  • the upper limit Mg doping amount for obtaining a practical hole concentration is, for example, 8 ⁇ 10 19 cm ⁇ 3 .
  • the second compound semiconductor layer has a non-doped compound semiconductor layer and a p-type compound semiconductor layer from the third compound semiconductor layer side; the distance from the third compound semiconductor layer to the p-type compound semiconductor layer is 1.2 ⁇ 10 ⁇ 7 m or less.
  • a laminated insulating film having a SiO 2 / Si laminated structure is formed on both side surfaces of the ridge stripe structure; the difference between the effective refractive index of the ridge stripe structure and the effective refractive index of the laminated insulating film is 5 ⁇
  • the configuration may be 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 .
  • the second compound semiconductor layer includes, for example, a non-doped InGaN layer (p-side light guide layer), a Mg-doped AlGaN layer (electron barrier layer), a GaN layer (Mg-doped) / AlGaN layer from the third compound semiconductor layer side.
  • a superlattice structure (superlattice cladding layer) and a Mg-doped GaN layer (p-side contact layer) may be laminated.
  • the band gap of the compound semiconductor constituting the well layer in the third compound semiconductor layer is desirably 2.4 eV or more.
  • the wavelength of light emitted from the third compound semiconductor layer (active layer) is preferably 360 nm to 500 nm, and preferably 400 nm to 410 nm.
  • various GaN-based compound semiconductor layers constituting the semiconductor light emitting device are sequentially formed on a substrate and a substrate.
  • a substrate in addition to a sapphire substrate, GaAs substrate, GaN substrate, SiC substrate, alumina substrate, ZnS substrate, ZnO substrate, AlN substrate, LiMgO substrate, LiGaO 2 substrate, MgAl 2 O 4 substrate, InP substrate, Si substrate, on the surface (main surface) of these substrates
  • the thing in which the base layer and the buffer layer were formed can be mentioned.
  • the GaN substrate is preferred because of its low defect density, but the characteristics of the GaN substrate may change between polar / nonpolar / semipolar depending on the growth surface.
  • MOCVD method metal organic chemical vapor deposition
  • MOVPE method molecular beam epitaxy And the like
  • MBE method molecular beam epitaxy And the like
  • examples of the organic gallium source gas in the MOCVD method include trimethylgallium (TMG) gas and triethylgallium (TEG) gas, and examples of the nitrogen source gas include And ammonia gas and hydrazine gas.
  • TMG trimethylgallium
  • TMG triethylgallium
  • the nitrogen source gas include And ammonia gas and hydrazine gas.
  • silicon (Si) may be added as an n-type impurity (n-type dopant), or a GaN-based compound having a p-type conductivity.
  • magnesium (Mg) may be added as a p-type impurity (p-type dopant).
  • trimethylaluminum (TMA) gas may be used as the Al source, and trimethylindium (TMI) gas is used as the In source. Use it.
  • monosilane gas (SiH 4 gas) may be used as the Si source, and cyclopentadienyl magnesium gas, methylcyclopentadienyl magnesium, or biscyclopentadienyl magnesium (Cp 2 Mg) may be used as the Mg source. .
  • n-type impurities examples include Si, Ge, Se, Sn, C, Te, S, O, Pd, and Po, and p-type impurities (p-type dopants) other than Mg.
  • Zn, Cd, Be, Ca, Ba, C, Hg, and Sr can be exemplified.
  • the first electrode electrically connected to the first compound semiconductor layer having the n-type conductivity type is gold (Au), silver (Ag), palladium (Pd), A single element comprising at least one metal selected from the group consisting of Al (aluminum), Ti (titanium), tungsten (W), Cu (copper), Zn (zinc), tin (Sn), and indium (In). It is desirable to have a layer structure or a multilayer structure, and examples thereof include Ti / Au, Ti / Al, and Ti / Pt / Au.
  • the first electrode is electrically connected to the first compound semiconductor layer.
  • the first electrode is formed on the first compound semiconductor layer, and the first electrode includes a conductive material layer, a conductive substrate, and a base.
  • the form connected to the 1st compound semiconductor layer via is included.
  • the first electrode and the second electrode can be formed by various PVD methods such as a vacuum deposition method and a sputtering method, for example.
  • a pad electrode may be provided on the first electrode or the second electrode for electrical connection with an external electrode or circuit.
  • the pad electrode has a single-layer configuration or a multi-layer configuration including at least one metal selected from the group consisting of Ti (titanium), aluminum (Al), Pt (platinum), Au (gold), and Ni (nickel). It is desirable to have.
  • the pad electrode may have a multilayer configuration exemplified by a multilayer configuration of Ti / Pt / Au and a multilayer configuration of Ti / Au.
  • the configuration in which the reverse bias voltage V sa is applied between the first electrode and the second portion (that is, the first electrode is the positive electrode). It is desirable that the second portion be a negative electrode).
  • a pulse current or pulse voltage synchronized with the pulse current or pulse voltage applied to the first part of the second electrode may be applied to the second part of the second electrode, or a DC bias may be applied. Good.
  • a current can be passed from the second electrode to the first electrode via the light emitting region, and an external electric signal can be superimposed on the first electrode from the second electrode via the light emitting region.
  • synchronization between the laser beam and the external electric signal can be achieved.
  • a non-doped compound semiconductor layer (for example, a non-doped InGaN layer or a non-doped AlGaN layer) may be formed between the third compound semiconductor layer and the electron barrier layer. Further, a non-doped InGaN layer as a light guide layer may be formed between the third compound semiconductor layer and the non-doped compound semiconductor layer.
  • the uppermost layer of the second compound semiconductor layer may be structured to be occupied by the Mg-doped GaN layer (p-side contact layer).
  • the electron barrier layer, the non-doped compound semiconductor layer, the light guide layer, and the p-side contact layer constitute a second compound semiconductor layer.
  • the mode-locked semiconductor laser element is not limited to a bi-section type (two-electrode type) semiconductor laser element, but also includes a multi-section type (multi-electrode type) semiconductor laser element, a light emitting region and a saturable absorption region. It is also possible to employ a SAL (Saturable Absorber Layer) type in which is vertically disposed, or a WI (Weakly Index Guide) type semiconductor laser element in which a saturable absorption region is provided along a ridge stripe structure.
  • SAL Silicon Absorber Layer
  • WI Weakly Index Guide
  • the laminated structure can be composed of an AlInGaN-based compound semiconductor.
  • the configuration and structure of the semiconductor optical amplifier can be substantially the same as the configuration and structure of the semiconductor light emitting device except that the second electrode is not divided.
  • the semiconductor light emitting device assembly of the present disclosure can be applied to, for example, an optical disc system, a communication field, an optical information field, an optoelectronic integrated circuit, a field using a nonlinear optical phenomenon, an optical switch, a laser measurement field, various analysis fields, and an ultrafast spectroscopy field.
  • Multi-photon excitation spectroscopy field, mass spectrometry field, field of microspectroscopy using multi-photon absorption, quantum control of chemical reaction, nano 3D processing field, various processing fields applying multi-photon absorption, medical field, bioimaging It can be applied to fields such as the field, quantum information communication field, and quantum information processing field.
  • Example 1 relates to a semiconductor light emitting element according to the first aspect to the second aspect of the present disclosure, and a semiconductor light emitting element assembly according to the first aspect to the second aspect of the present disclosure.
  • a conceptual diagram of the semiconductor light emitting device of Example 1 is shown in FIG. 1A, and the extending direction of the resonator of the semiconductor light emitting device (specifically, a semiconductor laser device, which will be referred to as “semiconductor laser device 10” in the following description).
  • 2 is a schematic end view taken along the line II (ie, along the arrow II in FIG. 3), and is along the direction perpendicular to the direction in which the resonator of the semiconductor laser device 10 extends (ie, in FIG. 2).
  • a schematic cross-sectional view (along arrow II-II) is shown in FIG.
  • FIG. 4 shows a conceptual perspective view when the semiconductor light emitting element assembly of Example 1 is disassembled.
  • the semiconductor laser device 10 in Example 1 or Examples 2 to 3 described later has a stacked structure in which a first compound semiconductor layer 30, an active layer 40, and a second compound semiconductor layer 50 are stacked.
  • the semiconductor light emitting device assembly in Example 1 or Examples 2 to 3 described later includes a semiconductor having a stacked structure in which the first compound semiconductor layer 30, the active layer 40, and the second compound semiconductor layer 50 are stacked.
  • a light emitting element (specifically, a semiconductor laser element 10) is provided.
  • the laminated structure has a structure in which a light emitting region 41 and a saturable absorbing region 42 are juxtaposed in the resonator direction.
  • the saturable absorption region 42 is disposed in the end region of the laminated structure in the resonator direction.
  • the semiconductor laser device 10 in the first embodiment or in the second to third embodiments to be described later includes a mode-locked semiconductor laser device having a light emitting region 41 and a saturable absorption region 42.
  • the mode-locked semiconductor laser element is composed of a bisection type mode-locked semiconductor laser element having an emission wavelength of 405 nm band, A first compound semiconductor layer 30 made of a GaN-based compound semiconductor and having a first conductivity type (in the embodiment, an n-type conductivity type); A third compound semiconductor layer (active layer) 40 made of a GaN-based compound semiconductor, and A second compound semiconductor layer 50 made of a GaN-based compound semiconductor and having a second conductivity type (p-type conductivity type in the embodiment) different from the first conductivity type; Are sequentially laminated on the substrate, A second electrode 62 formed on the second compound semiconductor layer, and A first electrode 61 electrically connected to the first compound semiconductor layer; It has.
  • the first compound semiconductor layer 30 is formed on a base (specifically, the substrate 21). More specifically, in the mode-locked semiconductor laser elements in Example 1 or Examples 2 to 3 to be described later, the light density of the peak power is 1 ⁇ 10 10 watts / cm 2 or more, preferably 1.4. ⁇ is 10 10 watts / cm 2 or more, and passive mode locking mode-locked carrier density is a current injection type is 1 ⁇ 10 19 / cm 3 or more is a semiconductor laser device, the first configuration or the second This is a mode-locked semiconductor laser device having the configuration of 2.
  • the second electrode 62 applies an electric field to the first portion 62A for making a forward bias state by passing a direct current through the first electrode 61 via the light emitting region (gain region) 41 and the saturable absorption region 42.
  • the second groove 62C is separated from the second portion 62B (second portion 62B for applying the reverse bias voltage V sa to the saturable absorption region 42).
  • the electric resistance value (sometimes referred to as “separation resistance value”) between the first portion 62A and the second portion 62B of the second electrode 62 is between the second electrode 62 and the first electrode 61.
  • the electrical resistance value is 1 ⁇ 10 times or more, specifically 1.5 ⁇ 10 3 times.
  • the electrical resistance value (separation resistance value) between the first portion 62A and the second portion 62B of the second electrode 62 is 1 ⁇ 10 2 ⁇ or more, specifically, 1.5 ⁇ 10 4 ⁇ . is there.
  • the resonator length of the semiconductor laser element 10 is 600 ⁇ m, and the lengths of the first portion 62A, the second portion 62B, and the separation groove 62C of the second electrode 62 are 560 ⁇ m, 30 ⁇ m, and 10 ⁇ m, respectively.
  • the semiconductor laser element 10 in Example 1 or Examples 2 to 3 to be described later is a semiconductor laser element having a ridge stripe type separated confinement heterostructure (SCH structure). More specifically, the semiconductor laser element 10 is a GaN-based semiconductor laser element made of index-guided AlInGaN and has a ridge stripe structure 55. The width of the ridge stripe structure 55 was 1.4 ⁇ m. The ridge stripe structure 55 is curved toward the light emitting end face (second end face) in order to reduce end face reflection, but is not limited to such a shape. The ridge stripe structure 55 is orthogonal to the light reflection end face (first end face).
  • SCH structure ridge stripe type separated confinement heterostructure
  • the first compound semiconductor layer 30, the third compound semiconductor layer (active layer) 40, and the second compound semiconductor layer 50 are specifically made of an AlInGaN-based compound semiconductor. More specifically, the following Table 1 is used.
  • Table 1 The layer structure shown in FIG.
  • the compound semiconductor layer described below is a layer closer to the n-type GaN substrate 21.
  • the band gap of the compound semiconductor constituting the well layer in the third compound semiconductor layer 40 is 3.06 eV.
  • the semiconductor laser device 10 in Example 1 or Examples 2 to 3 described later is provided on the (0001) plane of the n-type GaN substrate 21, and the third compound semiconductor layer 40 has a quantum well structure.
  • the (0001) plane of the n-type GaN substrate 21 is also called a “C plane” and is a crystal plane having polarity.
  • Second compound semiconductor layer 50 p-type GaN contact layer (Mg doped) 54 p-type GaN (Mg doped) / AlGaN superlattice cladding layer 53 p-type AlGaN electron barrier layer (Mg doped) 52 Non-doped InGaN optical guide layer 51
  • Third compound semiconductor layer 40 InGaN quantum well active layer (well layer: In 0.08 Ga 0.92 N / barrier layer: In 0.02 Ga 0.98 N)
  • First compound semiconductor layer 30 n-type GaN cladding layer 32 n-type AlGaN cladding layer 31
  • the p-type GaN contact layer 54 and the p-type GaN / AlGaN superlattice cladding layer 53 are partially removed by the RIE method to form a ridge stripe structure 55.
  • a laminated insulating film 56 made of SiO 2 / Si is formed on both sides of the ridge stripe structure 55.
  • the SiO 2 layer is the lower layer and the Si layer is the upper layer.
  • the difference between the effective refractive index of the ridge stripe structure 55 and the effective refractive index of the laminated insulating film 56 is 5 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 , specifically 7 ⁇ 10 ⁇ 3 .
  • a second electrode (p-side ohmic electrode) 62 is formed on the p-type GaN contact layer 54 corresponding to the top surface of the ridge stripe structure 55.
  • a first electrode (n-side ohmic electrode) 61 made of Ti / Pt / Au is formed on the back surface of the n-type GaN substrate 21.
  • a non-reflective coating layer is formed on the light emitting end face (second end face) facing the collimating means 11.
  • a highly reflective coating layer (HR) is formed on the light reflecting end face (first end face) facing the light emitting end face (second end face) in the semiconductor laser element 10.
  • the saturable absorption region 42 is provided on the first end face side in the semiconductor laser element 10.
  • the antireflection coating layer include a laminated structure of at least two types of layers selected from the group consisting of a titanium oxide layer, a tantalum oxide layer, a zirconia oxide layer, a silicon oxide layer, and an aluminum oxide layer. it can.
  • the pulse repetition frequency of the semiconductor laser element 10 in Example 1 or Examples 2 to 3 described later was set to 1 GHz.
  • the semiconductor laser element 10 preferably has a laser beam repetition frequency of 1 GHz or less.
  • the repetition frequency f of the optical pulse is determined by the external resonator length X ′ (distance between the first end face and the optical member 12) and the length L of the resonator, and is expressed by the following equation.
  • c is the speed of light
  • n is the effective refractive index of the resonator.
  • f c / ⁇ 2 (X ′ + L (n ⁇ 1)) ⁇
  • the two electrodes 62 having a separation resistance value of 1 ⁇ 10 2 ⁇ or more on the second compound semiconductor layer 50 it is desirable to form the two electrodes 62 having a separation resistance value of 1 ⁇ 10 2 ⁇ or more on the second compound semiconductor layer 50.
  • a GaN-based semiconductor laser element unlike a conventional GaAs-based semiconductor laser element, the mobility of a compound semiconductor having a p-type conductivity is small, and therefore the second compound semiconductor layer 50 having a p-type conductivity is ion-implanted.
  • the second electrode 62 formed on the second electrode 62 is separated by the separation groove 62C without increasing the resistance by, for example, the electric resistance value between the first portion 62A and the second portion 62B of the second electrode 62.
  • Is 10 times or more of the electric resistance value between the second electrode 62 and the first electrode 61, or the electric resistance value between the first portion 62A and the second portion 62B of the second electrode 62 is 1 ⁇ . It becomes possible to set it to 10 2 ⁇ or more.
  • the characteristics required for the second electrode 62 are as follows. That is, (1) It has a function as an etching mask when the second compound semiconductor layer 50 is etched. (2) The second electrode 62 can be wet-etched without causing deterioration in the optical and electrical characteristics of the second compound semiconductor layer 50. (3) When a film is formed on the second compound semiconductor layer 50, the contact specific resistance value is 10 ⁇ 2 ⁇ ⁇ cm 2 or less. (4) In the case of a laminated structure, the material constituting the lower metal layer has a large work function, exhibits a low contact specific resistance value with respect to the second compound semiconductor layer 50, and can be wet etched. (5) In the case of a laminated structure, the material constituting the upper metal layer is resistant to etching (for example, Cl 2 gas used in the RIE method) when forming the ridge stripe structure, In addition, wet etching is possible.
  • etching for example, Cl 2 gas used in the RIE method
  • the second electrode 62 is composed of a Pd single layer having a thickness of 0.1 ⁇ m.
  • the semiconductor light-emitting element assembly in Example 1 or Examples 2 to 3 described later specifically includes a semiconductor laser element 10 and an optical member 12. Then, the light emitted from the second end face (light emitting surface) of the semiconductor laser element 10 collides with the optical member 12, a part of the light is returned to the semiconductor laser element 10, and the remaining light is reflected by the reflecting mirror 13. Then, the light passes through the optical isolator 14 and is emitted to the outside.
  • the optical isolator 14 is disposed in order to prevent return light from traveling toward the semiconductor laser element 10.
  • An external resonator structure is constituted by the first end face (light reflecting face) of the semiconductor laser element 10 and the optical member 12. The distance of the optical system is the length of the external resonator structure.
  • the optical member 12 is composed of a diffraction grating having a grating-like uneven portion and groove portion, has a Littrow arrangement (also called a Littman arrangement), and is the first-order diffracted light out of the light emitted from the semiconductor laser element 10 Is returned to the semiconductor laser element 10, and 0th-order diffracted light is emitted to the outside.
  • the number of grating-like patterns in the diffraction grating was 2400 / mm.
  • collimating means specifically, the lens 11 for converting the laser light from the semiconductor laser element 10 into a parallel light beam is disposed, and collimated external resonance.
  • the container structure is configured.
  • the semiconductor light emitting device assembly in Example 1 or Examples 2 to 3 described later further includes a heat sink 101 and a submount 104, and the heat sink 101, the submount 104, and the semiconductor laser element 10 are sequentially stacked.
  • the heat sink 101 is made of, for example, Cu, Fe, Au, etc., and the temperature is controlled by a Peltier element (not shown).
  • the submount 104 is made of, for example, AlN ceramic and has a thermal conductivity of 230 W / K ⁇ m.
  • the heat sink 101 and the submount 104 are stacked via the first solder layer 102, and the submount 104 and the semiconductor laser element 10 are stacked via the second solder layer 103.
  • the second solder layer 103 formed on the surface of the submount 104 on the semiconductor laser element 10 side is hatched to clearly show the second solder layer 103 formed on the surface of the submount 104 on the heat sink 101 side.
  • One solder layer 102 is indicated by a dotted line.
  • Reference numeral 22 is a pad electrode provided in the semiconductor laser element 10 and is hatched for clarity.
  • the area of the first solder layer 102 relative to the area of the submount 104 and the area of the second solder layer 103 relative to the area of the submount 104 are set to “1”, and the semiconductor laser device 10 is operated so as to obtain the maximum light output. (Ie, when the current passed through the light emitting region 41 is set to I 0 amperes / cm 2 per unit area of the light emitting region 41), and when no temperature control is performed by the heat sink 101, the room temperature is 25 ° C. The temperature of the heat sink 101 was 40 ° C. or lower.
  • the area of the first solder layer 102 with respect to the area of the submount 104 and the area of the second solder layer 103 with respect to the area of the submount 104 are as described above, and the current flowing through the light emitting region 41 is a unit of the light emitting region 41.
  • the temperature of the heat sink 101 was 55 ° C. at a room temperature of 25 ° C. without any temperature control by the heat sink 101. That is, with this configuration, the heat generated in the semiconductor laser element 10 and transmitted to the heat sink 101 can be reduced, and a so-called heat storage structure can be obtained.
  • the thermal resistance of the semiconductor laser element 10 is R th [K / W]
  • the input power is P in [W ]
  • T act T hs + R th ⁇ P in
  • P in is substantially equal at the same operating current value
  • the relationship between the temperature T act of the active layer (third compound semiconductor layer) 40 and the temperature T hs of the heat sink 101 can be obtained by performing various tests. In the following description, the temperature T hs of the heat sink 101 is used instead of the temperature T act of the active layer (third compound semiconductor layer) 40.
  • FIG. 5 shows the result obtained.
  • the value of the operating current at that time is called a lower limit value (oscillation threshold current) I min of the operating current range.
  • the optical output increases linearly, and when the upper limit value I max of the operating current range is exceeded, the optical output of the laser light emitted from the semiconductor laser element 10 rapidly increases.
  • the operating current when the repetition frequency f of the optical pulse changes from the fundamental frequency determined by the distance of the optical system (the length of the external resonator structure) to a frequency twice the fundamental frequency is within the operating current range.
  • the relationship between the temperature Ths of the heat sink 101 and the lower limit value (oscillation threshold current) I min of the operating current range is obtained in FIG. 6A (the black diamond of “A” in FIG. 6A). And the value of the operating current when the light output is 12.5 milliwatts (see the black square mark “B” in FIG. 6A).
  • the increase in the lower limit value (oscillation threshold current) Imin of the operating current range is a phenomenon that occurs as a result of the temperature of the active layer (third compound semiconductor layer 40) increasing due to the increase in the temperature Ths of the heat sink 101. A tendency similar to that of the semiconductor laser element is exhibited.
  • the operating current when the operating current is compared when the light output is 12.5 milliwatts, it is confirmed that the operating current increases as the temperature Ths of the heat sink 101 increases. In other words, it was confirmed that, at a certain same operating current, the light output decreases as the temperature Ths of the heat sink 101 increases.
  • the repetition frequency f of the optical pulse is determined by the time that the light circulates through the optical system, and the absorption (loss) in the saturable absorption region 42 is the gain in the gain region 41 within the circulatory time. (Gain) must be exceeded.
  • the gain recovery time becomes earlier than the basic circulation time, and gain can be obtained even for an optical pulse that has reached half of the basic circulation time. .
  • an optical pulse is generated not at the fundamental frequency determined by the fundamental circulation time but at a half time of the fundamental revolution time, that is, at a frequency twice the fundamental frequency.
  • FIG. 6B shows the measurement results of the temperature dependence shown in FIG. 5, the operating current range in the same pulse state (see “A” in FIG. 6B) and the maximum light output (“B” in FIG. 6B). The result of the comparison is shown in (see the black square mark).
  • the operating current range in which the light pulse is generated in the same pulse state is expanded, and the maximum light output tends to increase. That is, when the operating current range when the temperature of the active layer is T 1 is ⁇ I 1 and the operating current range when the temperature of the active layer is T 2 (where T 2 > T 1 ), ⁇ I 2 , ⁇ I 2 > ⁇ I 1 Satisfied.
  • the maximum light output emitted when the temperature of the active layer is T 1 is P 1
  • the maximum light output emitted when the temperature of the active layer is T 2 is P 2 P 2 > P 1 Satisfied.
  • the current flowing through the light emitting region is 1 ⁇ 10 2 amps / cm 2 to 1 ⁇ 10 5 amps / cm 2 (specifically, for example, 1 ⁇ 10 4 amps / cm 2 ) per unit area of the light emitting region. It is preferable to do.
  • the semiconductor light emitting device of Example 1 since the relationship of ⁇ I 2 > ⁇ I 1 is satisfied, the higher the temperature of the active layer, the wider the operating current range. Since P 2 > P 1 is satisfied, the maximum light output becomes higher as the temperature of the active layer is increased, and the light output can be increased. When the temperature of the active layer is 50 ° C. or higher and lower than 70 ° C., the light output can be increased.
  • the temperature of the heat sink 101 was 55 ° C. at a room temperature of 25 ° C. without any temperature control by the heat sink 101.
  • the temperature of the active layer is controlled by the heat sink 101. Specifically, It is preferable to control (heat) the temperature of the active layer (third compound semiconductor layer 40) by heating the heat sink 101.
  • FIG. 12A, FIG. 12B, FIG. 13A, FIG. 13B, and FIG. 14 are schematic partial cross-sectional views when the substrate or the like is cut along the YZ plane
  • FIG. 14 is when the substrate or the like is cut along the XZ plane. It is a typical partial end view of.
  • Step-100 First, on the base, specifically, on the (0001) plane of the n-type GaN substrate 21, based on the well-known MOCVD method, has the first conductivity type (n-type conductivity type) and is made of a GaN-based compound semiconductor.
  • a second compound semiconductor layer 50 having a conductivity type (p-type conductivity type) and made of a GaN-based compound semiconductor is sequentially stacked to form a stacked structure (see FIG. 12A).
  • a strip-shaped second electrode 62 is formed on the second compound semiconductor layer 50. Specifically, after forming a Pd layer 63 on the entire surface based on a vacuum deposition method (see FIG. 12B), a strip-shaped etching resist layer is formed on the Pd layer 63 based on a photolithography technique. Then, using aqua regia, the Pd layer 63 not covered with the etching resist layer is removed, and then the etching resist layer is removed. In this way, the structure shown in FIG. 13A can be obtained. Note that the strip-shaped second electrode 62 may be formed on the second compound semiconductor layer 50 based on a lift-off method.
  • Step-120 Next, using the second electrode 62 as an etching mask, at least a portion of the second compound semiconductor layer 50 is etched (specifically, a portion of the second compound semiconductor layer 50 is etched) to form a ridge stripe structure. To do. Specifically, based on the RIE method using Cl 2 gas, a part of the second compound semiconductor layer 50 is etched using the second electrode 62 as an etching mask. In this way, the structure shown in FIG. 13B can be obtained. As described above, since the ridge stripe structure is formed by the self-alignment method using the second electrode 62 patterned in a band shape as an etching mask, misalignment may occur between the second electrode 62 and the ridge stripe structure. Absent.
  • a resist layer 64 for forming the separation groove in the second electrode 62 is formed (see FIG. 14).
  • Reference numeral 65 is an opening provided in the resist layer 64 in order to form a separation groove.
  • a separation groove 62C is formed in the second electrode 62 by a wet etching method, whereby the second electrode 62 is separated into the first portion 62A and the second portion 62B. Separate by 62C.
  • a separation groove 62 ⁇ / b> C is formed in the second electrode 62 by using aqua regia as an etchant and immersing the whole in aqua regia for about 10 seconds.
  • the resist layer 64 is removed.
  • the structure shown in FIGS. 2 and 3 can be obtained.
  • the wet etching method is employed, so that the optical and electrical characteristics of the second compound semiconductor layer 50 are not deteriorated. Therefore, the light emission characteristics of the mode-locked semiconductor laser element do not deteriorate.
  • the internal loss ⁇ i of the second compound semiconductor layer 50 increases, which may increase the threshold voltage or decrease the light output.
  • the etching rate of the second electrode 62 is ER 0 and the etching rate of the laminated structure is ER 1 , ER 0 / ER 1 ⁇ 1 ⁇ 10 2 It is.
  • the stacked structure is not etched (or slightly etched).
  • the two electrodes 62 can be reliably etched. It should be noted that ER 0 / ER 1 ⁇ 1 ⁇ 10, preferably ER 0 / ER 1 ⁇ 1 ⁇ 10 2 is satisfied.
  • the second electrode may have a laminated structure of a lower metal layer made of palladium (Pd) having a thickness of 20 nm and an upper metal layer made of nickel (Ni) having a thickness of 200 nm.
  • Pd palladium
  • Ni nickel
  • the etching rate of nickel is about 1.25 times the etching rate of palladium.
  • Step-140 Thereafter, formation of the first electrode 61, cleavage of the substrate 21, etc. are performed, and further packaging is performed, whereby the semiconductor laser device 10 can be manufactured.
  • the electrical resistance value between the first portion 62A and the second portion 62B of the second electrode 62 is 10 times or more the electrical resistance value between the second electrode 62 and the first electrode 61, or 1 ⁇ 10 2 ⁇ or more. Accordingly, the leakage current flow from the first portion 62A to the second portion 62B of the second electrode 62 can be reliably suppressed. As a result, the light emitting region 41 is set in the forward bias state, and the saturable absorption region 42 is reliably secured. Therefore, it was possible to generate a single mode self-pulsation operation.
  • Example 2 is a modification of Example 1, and a group III-V nitride semiconductor layer that amplifies laser light emitted from the semiconductor laser element 10 as shown in a conceptual diagram of the semiconductor light emitting element in FIG. 1B
  • a semiconductor optical amplifier (SOA) 200 having a laminated structure is provided.
  • the semiconductor optical amplifier 200 amplifies the laser beam by a method called “Master Oscillator Power Amplifier, MOPA”.
  • MOPA Master Oscillator Power Amplifier
  • the semiconductor optical amplifier does not convert an optical signal into an electrical signal, but amplifies it in the state of direct light, has a laser structure that eliminates the resonator effect as much as possible, and increases the optical gain of the semiconductor optical amplifier. Based on this, the incident light is amplified.
  • the semiconductor optical amplifier is a known semiconductor optical amplifier.
  • laser light emitted from the semiconductor laser element (mode-locked semiconductor laser element) 10 is collimated (lens 11), optical member (diffraction grating) 12, reflecting mirror 13, optical isolator 14, and condensing means. (Lens) Passes through 15A and enters the semiconductor optical amplifier 200. The laser light output from the semiconductor optical amplifier 200 is output to the outside of the system via the condensing means (lens) 15B.
  • the semiconductor optical amplifier 200 is A first compound semiconductor layer 30 made of a GaN-based compound semiconductor and having a first conductivity type; A third compound semiconductor layer (active layer) 40 made of a GaN-based compound semiconductor, and A second compound semiconductor layer 50 made of a GaN-based compound semiconductor and having a second conductivity type different from the first conductivity type; Are sequentially laminated on the substrate, A second electrode 62 formed on the second compound semiconductor layer 50, and A first electrode 61 electrically connected to the first compound semiconductor layer 30; It has.
  • the first compound semiconductor layer 30 is formed on a substrate (specifically, the substrate 21). A forward bias voltage is applied from the second electrode 62 to the first electrode 61.
  • the laser light is basically guided only in one direction.
  • the laser light incident on the semiconductor optical amplifier 200 from the light incident end face is optically amplified inside the semiconductor optical amplifier 200, outputted from the opposite light emitting end face, and outputted outside through the lens 15B.
  • the configuration and structure of the semiconductor optical amplifier 200 is that the second electrode is not divided and the ridge stripe structure is not curved. Instead, the light emitting end face (first end face) to the light emitting end face (first end face)
  • the semiconductor laser device 10 has substantially the same configuration and structure as the semiconductor laser device 10 except that the width thereof becomes wider toward the second end face.
  • the semiconductor optical amplifier 200 is a tapered semiconductor optical amplifier having a device length of 3.0 mm and a flare width of 15 ⁇ m. Except for the above points, the configuration and structure of the semiconductor laser device in Example 1 can be substantially the same as those in Example 1. Therefore, detailed description thereof is omitted.
  • Example 3 is a modification of Examples 1 and 2, specifically, a modification of the mode-locked semiconductor laser element described in Example 1, and relates to a mode-locked semiconductor laser element having a third configuration.
  • the semiconductor laser device 10 was provided on the (0001) plane and the C plane of the n-type GaN substrate 21 which is a crystal plane having polarity.
  • the third compound semiconductor layer (active layer) 40 has saturable absorption electrically due to a QCSE effect (quantum confined Stark effect) due to an internal electric field caused by piezo polarization and spontaneous polarization. It may be difficult to control.
  • QCSE effect quantum confined Stark effect
  • the thickness of the well layer constituting the third compound semiconductor layer (active layer) 40 is optimized, and the impurity in the barrier layer constituting the third compound semiconductor layer 40 is determined. It has been found that it is preferable to optimize the doping concentration.
  • the thickness of the well layer constituting the InGaN quantum well active layer is 1 nm or more and 10.0 nm or less, preferably 1 nm or more and 8 nm or less.
  • the impurity doping concentration of the barrier layer is 2 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less, preferably 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less. It is desirable.
  • silicon (Si) or oxygen (O) can be given as the impurity.
  • Example 3 the configuration of the third compound semiconductor layer (active layer) 40 composed of an InGaN quantum well active layer composed of a barrier layer and a well layer in the layer configuration shown in Table 1 is as shown in Table 2 below. did.
  • the configuration of the third compound semiconductor layer 40 in the layer configuration shown in Table 1 was as shown in Table 2 below.
  • Example 3 Reference Example 3 Well layer 8nm 10.5nm Barrier layer 12nm 14nm Impurity doping concentration of well layer Non-doping Impurity doping concentration of non-doped barrier layer Si: 2 ⁇ 10 18 cm ⁇ 3 Non-doping
  • the thickness of the well layer is 8 nm, and the barrier layer is doped with 2 ⁇ 10 18 cm ⁇ 3 of Si, so that the QCSE effect in the active layer is relaxed.
  • the thickness of the well layer is 10.5 nm, and the barrier layer is not doped with impurities.
  • the mode synchronization is determined by the direct current applied to the light emitting region and the reverse bias voltage V sa applied to the saturable absorption region.
  • the reverse bias voltage dependence of the relationship between the injection current and optical output (LI characteristics) of Example 3 and Reference Example 3 was measured.
  • the reverse bias voltage V sa is increased, the threshold current at which laser oscillation starts gradually increases.
  • the reverse bias voltage V is lower. It was found that there was a change in sa . This suggests that in the active layer of Example 3, the saturable absorption effect is electrically controlled by the reverse bias voltage V sa .
  • the present disclosure has been described based on the preferred embodiments, the present disclosure is not limited to these embodiments.
  • the configurations and structures of the semiconductor light emitting device assembly, semiconductor laser device, mode-locked semiconductor laser device, and semiconductor optical amplifier described in the embodiments are examples, and can be changed as appropriate. In the embodiments, various values are shown, but these are also exemplifications. For example, if the specifications of the semiconductor laser device and the semiconductor optical amplifier to be used are changed, it is natural that they change.
  • the axis of the semiconductor laser element or semiconductor optical amplifier and the axis of the ridge stripe structure may intersect at a predetermined angle, or the planar shape of the ridge stripe structure may be tapered.
  • the optical member 12A includes a semi-transmissive mirror. It is composed of The laser light emitted from the semiconductor laser element 10 collides with the optical member (semi-transmissive mirror) 12A, and a part thereof is returned to the semiconductor laser element 10.
  • the remaining portion passes through the optical member (semi-transmissive mirror) 12A, and in some cases, passes through the light collecting means (lens) 16, passes through the optical isolator 14, and is emitted to the outside.
  • the semiconductor light emitting device assembly shown in FIG. 8A having the condensing type external resonator structure or the semiconductor light emitting device assembly shown in FIG. 8B having the collimated type external resonator structure The second end face and the optical member 12 ⁇ / b> B composed of an external mirror (reflecting mirror) constitute an external resonator structure, and a light beam is extracted from the semiconductor laser element 10.
  • a low reflection coating layer (AR) is formed on the second end face.
  • the semiconductor laser element can be a monolithic type.
  • the laminated structure may have a structure in which a plurality of functional regions are integrated, and in this case, at least one of the plurality of functional regions may be configured by a saturable absorption region.
  • the functional region include a gain region, a saturable absorption region, a phase control region, a distributed feedback region, and a distributed black reflection region.
  • the number of light emitting regions 41 and saturable absorption regions 42 is not limited to one.
  • a mode-locked semiconductor laser device (multi-section type (multi-electrode type) semiconductor laser device) provided with a first portion 62A of one second electrode and second portions 62B 1 and 62B 2 of two second electrodes
  • a schematic end view is shown in FIG.
  • one end of the first portion 62A is opposed to one second portion 62B 1 across one separation groove 62C 1 and the other end of the first portion 62A.
  • it faces the other second portion 62B 2 with the other separation groove 62C 2 in between.
  • One light emitting region 41 is sandwiched between two saturable absorption regions 42 1 and 42 2 .
  • FIG. 10 shows a schematic end view of a mode-locked semiconductor laser device in which the first portions 62A 1 and 62A 2 of two second electrodes and the second portion 62B of one second electrode are provided.
  • the end portion of the second portion 62B is opposed to one first portion 62A1 across one separation groove 62C1, and the other end of the second portion 62B is It faces the other first portion 62A 2 across the other separation groove 62C 2 .
  • One saturable absorption region 42 is sandwiched between two light emitting regions 41 1 and 41 2 .
  • the semiconductor laser element may be a semiconductor laser element having an oblique ridge stripe type separated confinement heterostructure having an oblique waveguide.
  • FIG. 11 shows a schematic view of the ridge stripe structure 55 ′ in such a semiconductor laser element as viewed from above.
  • This mode-locked semiconductor laser device has a structure in which two linear ridge stripe structures are combined, and the value of the angle ⁇ at which the two ridge stripe structures intersect is, for example, 0 ⁇ ⁇ 10 (degrees) Preferably, 0 ⁇ ⁇ 6 (degrees) Is desirable.
  • the reflectance of the second end surface coated with the non-reflective coating can be made closer to the ideal value of 0%, and as a result, the laser light that circulates in the semiconductor laser element Therefore, it is possible to obtain an advantage that generation of secondary laser light accompanying the main laser light can be suppressed.
  • the semiconductor laser element and the semiconductor optical amplifier are provided on the C plane and ⁇ 0001 ⁇ plane which are polar planes of the n-type GaN substrate.
  • a non-polar surface such as an A surface that is a ⁇ 11-20 ⁇ surface, an M surface that is a ⁇ 1-100 ⁇ surface, a ⁇ 1-102 ⁇ surface, or Semiconductor laser elements and semiconductor optical amplifiers are formed on semipolar planes such as ⁇ 11-24 ⁇ plane, ⁇ 11-2n ⁇ plane including ⁇ 11-22 ⁇ plane, ⁇ 10-11 ⁇ plane, and ⁇ 10-12 ⁇ plane. What is necessary is just to provide. As a result, even if piezo polarization and spontaneous polarization occur in the third compound semiconductor layer (active layer) of the semiconductor laser element or semiconductor optical amplifier, piezo polarization occurs in the thickness direction of the third compound semiconductor layer.
  • piezo polarization occurs in a direction substantially perpendicular to the thickness direction of the third compound semiconductor layer, so that adverse effects due to piezo polarization and spontaneous polarization can be eliminated.
  • the ⁇ 11-2n ⁇ plane means a nonpolar plane that forms approximately 40 degrees with respect to the C plane.
  • the semiconductor laser device 10 is provided on a nonpolar plane or a semipolar plane, the well layer thickness limitation (1 nm or more and 10 nm or less) and the impurity doping of the barrier layer as described in the third embodiment are performed. It is possible to eliminate the concentration limit (2 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less).
  • this indication can also take the following structures.
  • ⁇ Semiconductor Light Emitting Element Assembly First Aspect >> A semiconductor light emitting device having a stacked structure in which a first compound semiconductor layer, an active layer, and a second compound semiconductor layer are stacked; When the operating current range when the temperature of the active layer is T 1 is ⁇ I 1 and the operating current range when the temperature of the active layer is T 2 (where T 2 > T 1 ), ⁇ I 2 , ⁇ I 2 > ⁇ I 1 A semiconductor light emitting device assembly that satisfies the requirements. [A02] The operating current when the repetition frequency of the optical pulse changes from the fundamental frequency determined by the distance of the optical system to a frequency twice the fundamental frequency is the upper limit value of the operating current range.
  • a semiconductor light emitting device assembly that satisfies the requirements.
  • a heat sink and a submount are further provided.
  • A07 The semiconductor light-emitting element assembly according to [A05] or [A06], wherein the temperature of the active layer is controlled by a heat sink.
  • [A08] The semiconductor light-emitting element assembly according to [A07], wherein the temperature of the active layer is controlled by heating the heat sink.
  • [A09] The semiconductor light emitting element assembly according to any one of [A01] to [A08], wherein the stacked structure has a structure in which a light emitting region and a saturable absorption region are juxtaposed in a resonator direction.
  • [A10] The semiconductor light-emitting element assembly according to [A09], wherein the saturable absorption region is disposed in an end region of the stacked structure in the resonator direction.
  • [A11] The semiconductor light-emitting element assembly according to [A09] or [A10], in which a current passed through the light-emitting region is 1 ⁇ 10 2 amperes / cm 2 to 1 ⁇ 10 5 amperes / cm 2 per unit area of the light-emitting region. .
  • [A12] The semiconductor light emitting element assembly according to any one of [A01] to [A08], wherein the stacked structure has a structure in which a plurality of functional regions are integrated.
  • [A13] The semiconductor light-emitting element assembly according to [A12], wherein at least one of the plurality of functional regions includes a saturable absorption region.
  • SYMBOLS 10 Semiconductor light-emitting device (semiconductor laser device, mode synchronous semiconductor laser device), 11 ... Collimating means (lens), 12, 12A, 12B ... Optical member, 13 ... Reflector, 14 ... Optical isolator, 15A, 15B, 16, 17 ... Condensing means (lens), 21 ... substrate (substrate), 22 ... pad electrode, 30 ... first compound semiconductor layer, 31 ... N-type AlGaN cladding layer, 32... N-type GaN cladding layer, 40... Third compound semiconductor layer (active layer), 41, 41 1 , 41 2 ... Light emitting region, 42, 42 1 , 42 2 ...
  • Second electrode 62A, 62A 1 , 62A 2 ... First part of second electrode, 62B, 62B 1 , 62B 2 ... Second part of second electrode, 62C, 62C 1 , 62C 2. Separation groove, 63 ... Pd single layer, 64 ... resist layer, 65 ... opening provided in resist layer, 101 ... heat sink, 102,103 ... solder layer, 104 ... ⁇ Submount, 200 ... Semiconductor optical amplifier

Abstract

半導体発光素子は、第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有し、活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、ΔI2>ΔI1を満足するし、活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、P2>P1を満足する。

Description

半導体発光素子及び半導体発光素子組立体
 本開示は、半導体発光素子及び半導体発光素子組立体に関する。
 一般に、半導体レーザ素子では活性層の温度が上昇すると光出力の低下がみられる。この現象は、
(A)オーバーフローによる無効電流の増大
(B)キャリア密度の増大による非発光再結合やキャリアプラズマ吸収の増大
(C)ホットエレクトロン効果
等によって生じる。そこで、半導体レーザ素子を高出力化するために、従来、例えば、熱抵抗の低減によって活性層の温度を低下させたり、ヒートシンクを用いて活性層の温度を低下させるといった対策が取られている。
 例えば、特開2014-175565には、平板状のサブマウントの表面上に第1のハンダ層を介して半導体レーザ素子が接合され、半導体レーザ素子が接合されたサブマウントが、ヒートシンクの表面上に第2のハンダ層を介して接合されて成る半導体レーザ装置が開示されている。
特開2014-175565
 ところで、上記の特許公開公報によれば、半導体レーザ素子からの熱を十分に排熱することができるとされている。しかしながら、活性層の温度を高くすることで光出力の増加を図る技術は、本発明者らが調べた限りでは知られていない。
 従って、本開示の目的は、光出力の増加を図り得る半導体発光素子、及び、係る半導体発光素子を備えた半導体発光素子組立体を提供することにある。
 上記の目的を達成するための本開示の第1の態様~第2の態様に係る半導体発光素子組立体は、第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する半導体発光素子を備えている。また、上記の目的を達成するための本開示の第1の態様~第2の態様に係る半導体発光素子は、第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する。
 そして、本開示の第1の態様に係る半導体発光素子組立体あるいは本開示の第1の態様に係る半導体発光素子において、活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
ΔI2>ΔI1
を満足する。以下の説明において、本開示の第1の態様に係る半導体発光素子組立体における半導体発光素子及び本開示の第1の態様に係る半導体発光素子を総称して、『本開示の第1の態様に係る半導体発光素子等』と呼ぶ場合がある。
 また、本開示の第2の態様に係る半導体発光素子組立体あるいは本開示の第2の態様に係る半導体発光素子において、活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
2>P1
を満足する。以下の説明において、本開示の第2の態様に係る半導体発光素子組立体における半導体発光素子及び本開示の第2の態様に係る半導体発光素子を総称して、『本開示の第2の態様に係る半導体発光素子等』と呼ぶ場合がある。
 本開示の第1の態様に係る半導体発光素子等にあっては、ΔI2>ΔI1の関係を満足するので、活性層の温度を高くするほど、動作電流範囲が広くなり、その結果、光出力の増加を図ることができる。本開示の第2の態様に係る半導体発光素子等にあっては、P2>P1を満足するので、活性層の温度を高くするほど、最大光出力が高くなり、光出力の増加を図ることができる。しかも、高ピーク出力を有する400nm波長帯のパルスレーザを半導体発光素子(例えば、モード同期半導体レーザ素子)の単体で実現することができるが故に、フェムト秒オーダーの超短パルス光源の普及を図ることができるし、場合によっては、半導体発光素子を冷却する必要がないので省電力化を図ることができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1A及び図1Bは、それぞれ、実施例1及び実施例2の半導体発光素子の概念図である。 図2は、実施例1における半導体発光素子(半導体レーザ素子)の共振器の延びる方向に沿った模式的な端面図である。 図3は、実施例1における半導体発光素子(半導体レーザ素子)の共振器の延びる方向と直角方向に沿った模式的な断面図である。 図4は、実施例1の半導体発光素子組立体を分解したときの概念的な斜視図である。 図5は、実施例1の半導体発光素子において、動作電流I1と光出力の関係を求めた結果を示すグラフである。 図6Aは、図5に示す結果に基づき、ヒートシンクの温度Thsと動作電流範囲の下限値(発振閾値電流)Iminの関係を求めた結果、及び、光出力12.5ミリワットが得られるときの動作電流の値を示すグラフであり、図6Bは、図5に示す温度依存性の測定結果を、同じパルス状態での動作電流範囲と最大光出力で比較した結果を示すグラフである。 図7A及び図7Bは、実施例1の半導体発光素子の変形例の概念図である。 図8A、図8B及び図8Cは、実施例1の半導体発光素子の別の変形例の概念図である。 図9は、実施例1のモード同期半導体レーザ素子の変形例の共振器の延びる方向に沿った模式的な端面図である。 図10は、実施例1のモード同期半導体レーザ素子の別の変形例の共振器の延びる方向に沿った模式的な端面図である。 図11は、実施例1のモード同期半導体レーザ素子の更に別の変形例におけるリッジストライプ構造を上方から眺めた模式図である。 図12A及び図12Bは、実施例1のモード同期半導体レーザ素子の製造方法を説明するための基板等の模式的な一部断面図である。 図13A及び図13Bは、図12Bに引き続き、実施例1のモード同期半導体レーザ素子の製造方法を説明するための基板等の模式的な一部断面図である。 図14は、図13Bに引き続き、実施例1のモード同期半導体レーザ素子の製造方法を説明するための基板等の模式的な一部端面図である。 図15は、動作電流範囲の上限値を超えると光出力が急激に増加する現象を説明するための図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様~第2の態様に係る半導体発光素子組立体、及び、本開示の第1の態様~第2の態様に係る半導体発光素子、全般に関する説明
2.実施例1(本開示の第1の態様~第2の態様に係る半導体発光素子組立体、及び、本開示の第1の態様~第2の態様に係る半導体発光素子)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.その他
〈本開示の第1の態様~第2の態様に係る半導体発光素子組立体、及び、本開示の第1の態様~第2の態様に係る半導体発光素子、全般に関する説明〉
 本開示の第1の態様に係る半導体発光素子等において、光パルスの繰り返し周波数fが光学系の距離で決定される基本周波数から基本周波数の2倍の周波数に変化するときの動作電流が、動作電流範囲の上限値である形態とすることができる。尚、次に述べる外部共振器構造の長さによって決まるラウンド・トリップ・タイムは、繰り返し周波数fの逆数に比例する。また、このような好ましい形態を含む本開示の第1の態様に係る半導体発光素子等において、活性層の温度がT1のときの動作電流範囲の上限値をImax-1、活性層の温度がT2のときの動作電流範囲の上限値をImax-2としたとき、
max-2>Imax-1
を満足する形態とすることができる。
 ここで、本開示の第1の態様~第2の態様に係る半導体発光素子組立体における上述した光学系は、例えば、半導体発光素子及び光学部材から構成することができる。具体的には、半導体発光素子の有する2つの端面を第1端面及び第2端面とし、第1端面を光反射面、第2端面を光出射面としたとき、半導体発光素子の第2端面から出射した光は光学部材と衝突し、一部の光は半導体発光素子に戻され、残りの光は外部に出射される形態とすることができる。半導体発光素子の第1端面及び光学部材によって外部共振器構造が構成され、この場合、光学系の距離とは外部共振器構造の長さである。光学部材として、格子状の凹凸部や溝部が形成された回折格子、あるいは、半透過鏡や反射鏡を例示することができる。回折格子は、例えば、半導体発光素子から出射された光の内、1次の回折光を半導体発光素子に戻し、0次の回折光を外部に出射する構成とすることができる。回折格子における格子状のパターンの本数として、1200本/mm乃至3600本/mm、望ましくは2400本/mm乃至3600本/mmを例示することができる。半導体発光素子と光学部材との間に、半導体発光素子からの光を平行光束とするためのコリメート手段(具体的には、レンズ)を配してもよいし、半導体発光素子からの光を光学部材に集光するための集光手段(具体的には、レンズ)を配してもよい。即ち、外部共振器構造を有する場合、半導体発光素子は、集光型であってもよいし、コリメート型であってもよい。
 更には、上記の各種の好ましい形態を含む本開示の第1の態様~第2の態様に係る半導体発光素子組立体は、ヒートシンク、及び、サブマウントを更に備えており、ヒートシンク、サブマウント及び半導体発光素子が、順次、積層されている形態とすることができる。ここで、サブマウントを構成する材料として、AlN、Si、SiC、Cu、W、Mo、Al、ダイヤモンド、又は、これらの材料を含む複合材料であるCu-W、Al-SiC等を挙げることができるし、ヒートシンクを構成する材料として、Cu、Fe、Al、Au、W、Mo、又は、これらの材料を含む複合材料であるCu-W、Cu-Mo等を挙げることができる。尚、
 ヒートシンクとサブマウントとは、第1ハンダ層を介して積層されており、
 サブマウントと半導体発光素子とは、第2ハンダ層を介して積層されており、
 サブマウントの面積に対する第1ハンダ層の面積は、限定するものではないが、0.2乃至0.8であり、及び/又は、半導体発光素子の面積に対するサブマウントに形成された第2ハンダ層の面積は、限定するものではないが、0.2乃至0.8である形態とすることができる。このように、サブマウントの面積に対する第1ハンダ層の面積、及び/又は、半導体発光素子の面積に対するサブマウントに形成された第2ハンダ層の面積を、0.8以下とすることで、半導体発光素子において発生し、ヒートシンクに伝わる熱をより少なくすることができ、所謂蓄熱構造を得ることができるので、活性層の温度を所望の高い温度に保持することが可能となる。活性層の温度を高く保持するための蓄熱構造として、その他、サブマウントとヒートシンクの接触する面積、又は、サブマウントと半導体発光素子の接触面積を0.8以下にすることによって、あるいは又、サブマウントとヒートシンクとの接触界面、又は、サブマウントと半導体発光素子との接触界面に熱伝導率が50W/mK以下の低い材料を挿入することによっても、蓄熱構造を得ることができる。
 更には、上記の各種の好ましい形態を含む本開示の第1の態様~第2の態様に係る半導体発光素子組立体にあっては、ヒートシンクによって活性層の温度を制御する形態とすることができるし、この場合、ヒートシンクを加熱することによって活性層の温度を制御する形態とすることができる。
 更には、上記の各種の好ましい形態を含む本開示の第1の態様~第2の態様に係る半導体発光素子等において、積層構造体は、共振器方向に発光領域と可飽和吸収領域とが並置された構造を有する構成とすることができ、この場合、可飽和吸収領域は、共振器方向の積層構造体の端部領域に配置されている構成とすることができ、更には、これらの場合、発光領域に流す電流を、発光領域の単位面積当たり1×102アンペア/cm2乃至1×105アンペア/cm2とする構成とすることができる。
 あるいは又、上記の各種の好ましい形態を含む本開示の第1の態様~第2の態様に係る半導体発光素子等において、積層構造体は、複数の機能領域が集積された構造を有する構成とすることができ、この場合、複数の機能領域の内の少なくとも1つは可飽和吸収領域から成る構成とすることができる。機能領域として、その他、利得領域、可飽和吸収領域、位相制御領域、分布帰還領域、分布ブラック反射領域等を挙げることができる。
 上記の各種の好ましい形態を含む本開示の第1の態様~第2の態様に係る半導体発光素子等(以下、これらを総称して、『本開示の半導体発光素子等』と呼ぶ場合がある)は、上述したとおり、発光領域及び可飽和吸収領域を有する半導体発光素子、具体的には、発光領域及び可飽和吸収領域を有するモード同期半導体レーザ素子から成る形態とすることができる。尚、従来の光励起型のモード同期半導体レーザ素子では発振特性を制御するのに半導体可飽和吸収体(SESAM)の温度特性を利用するが、可飽和吸収領域を有する形態にあっては、可飽和吸収領域への逆バイアス電圧Vsaに基づき発振特性を制御することができるので、発振特性の制御が容易である。また、以上に説明した好ましい形態、構成を含む本開示の第1の態様~第2の態様に係る半導体発光素子組立体(以下、これらを総称して、『本開示の半導体発光素子組立体』と呼ぶ場合がある)において、半導体光増幅器(Semiconductor Optical Amplifier,SOA)が備えられている形態とすることができる。
 半導体レーザ素子(LD)にあっては、活性層において生成した光は、積層構造体の第2端面から外部に出射される。即ち、積層構造体の第1端面の光反射率、及び、第2端面の光反射率の最適化を図ることで、共振器が構成され、光は第2端面から出射される。半導体光増幅器(SOA)は、光信号を電気信号に変換せず、直接光の状態で増幅するものであり、共振器効果を極力排除したレーザ構造を有し、半導体光増幅器の光利得に基づき入射光を増幅する。半導体光増幅器にあっては、積層構造体における第1端面及び第2端面の光反射率を非常に低い値とし、共振器を構成することなく、第1端面から入射した光を増幅して第2端面から出射する。半導体発光素子と半導体光増幅器とが一体になったモノリシック型とすることもできる。
 モード同期半導体レーザ素子あるいは半導体光増幅器は、より具体的には、
 GaN系化合物半導体から成り、第1導電型を有する第1化合物半導体層、
 GaN系化合物半導体から成る第3化合物半導体層(活性層)、及び、
 GaN系化合物半導体から成り、第1導電型とは異なる第2導電型を有する第2化合物半導体層、
が、順次、基体上に積層されて成る積層構造体、
 第2化合物半導体層上に形成された第2電極、並びに、
 第1化合物半導体層に電気的に接続された第1電極、
を備えた構成とすることができる。尚、第1化合物半導体層が、基板や基体上に形成されている。
 具体的には、モード同期半導体レーザ素子は、共振器方向に発光領域と可飽和吸収領域とを並置したバイ・セクション(Bi Section)型のモード同期半導体レーザ素子から成り、第2電極は、発光領域を経由して第1電極に直流電流を流すことで順バイアス状態とするための第1部分と、可飽和吸収領域に電界を加えるための第2部分とに、分離溝によって分離されている形態とすることができる。そして、第2電極の第1部分と第2部分との間の電気抵抗値は、第2電極と第1電極との間の電気抵抗値の1×10倍以上、好ましくは1×102倍以上、より好ましくは1×103倍以上であることが望ましい。このようなモード同期半導体レーザ素子を、便宜上、『第1の構成のモード同期半導体レーザ素子』と呼ぶ。あるいは又、第2電極の第1部分と第2部分との間の電気抵抗値は、1×102Ω以上、好ましくは1×103Ω以上、より好ましくは1×104Ω以上であることが望ましい。このようなモード同期半導体レーザ素子を、便宜上、『第2の構成のモード同期半導体レーザ素子』と呼ぶ。第1の構成あるいは第2の構成のモード同期半導体レーザ素子にあっては、第2電極の第1部分から発光領域を経由して第1電極に直流電流を流して順バイアス状態とし、第1電極と第2電極の第2部分との間に電圧(逆バイアス電圧Vsa)を印加することによって可飽和吸収領域に電界を加えることで、モード同期動作させることができる。
 このような第1の構成あるいは第2の構成のモード同期半導体レーザ素子にあっては、第2電極の第1部分と第2部分との間の電気抵抗値を、第2電極と第1電極との間の電気抵抗値の10倍以上とし、あるいは又、1×102Ω以上とすることで、第2電極の第1部分から第2部分への漏れ電流の流れを確実に抑制することができる。即ち、可飽和吸収領域(キャリア非注入領域)へ印加する逆バイアス電圧Vsaを高くすることができるため、パルス時間幅のより短いレーザ光を有するモード同期動作を実現することができる。そして、第2電極の第1部分と第2部分との間のこのような高い電気抵抗値を、第2電極を第1部分と第2部分とに分離溝によって分離するだけで達成することができる。
 また、第1の構成及び第2の構成のモード同期半導体レーザ素子において、限定するものではないが、
 第3化合物半導体層(活性層)は、井戸層及び障壁層を備えた量子井戸構造を有し、
 井戸層の厚さは、1nm以上、10nm以下、好ましくは、1nm以上、8nm以下であり、
 障壁層の不純物ドーピング濃度は、2×1018cm-3以上、1×1020cm-3以下、好ましくは、1×1019cm-3以上、1×1020cm-3以下である形態とすることができる。このようなモード同期半導体レーザ素子を、便宜上、『第3の構成のモード同期半導体レーザ素子』と呼ぶ場合がある。活性層に量子井戸構造を採用することで、量子ドット構造を採用するよりも高い注入電流量を実現することができ、容易に高出力を得ることができる。
 このように、第3化合物半導体層を構成する井戸層の厚さを1nm以上、10nm以下と規定し、更には、第3化合物半導体層を構成する障壁層の不純物ドーピング濃度を2×1018cm-3以上、1×1020cm-3以下と規定することで、即ち、井戸層の厚さを薄くし、しかも、第3化合物半導体層のキャリアの増加を図ることで、ピエゾ分極の影響を低減させることができ、パルス時間幅が短く、サブパルス成分の少ない単峰化されたレーザ光を発生させ得るレーザ光源を得ることができる。また、低い逆バイアス電圧Vsaでモード同期駆動を達成することが可能となるし、外部信号(電気信号及び光信号)と同期が取れたレーザ光のパルス列を発生させることが可能となる。障壁層にドーピングされた不純物はシリコン(Si)である構成することができるが、これに限定するものではなく、その他、酸素(O)とすることもできる。
 本開示の半導体発光素子等は、リッジストライプ型の分離閉じ込めヘテロ構造(SCH構造、Separate Confinement Heterostructure)を有する半導体レーザ素子である形態とすることができる。あるいは又、斜めリッジストライプ型の分離閉じ込めヘテロ構造を有する半導体レーザ素子である形態とすることができる。即ち、半導体発光素子の軸線とリッジストライプ構造の軸線とは、所定の角度で交わっている構成とすることができる。ここで、所定の角度θとして、0.1度≦θ≦10度、好ましくは、0.1度≦θ≦6度を例示することができる。リッジストライプ構造の軸線とは、光出射端面(第2端面)におけるリッジストライプ構造の両端の二等分点と、光出射端面(第2端面)とは反対側の積層構造体の端面(第1端面)におけるリッジストライプ構造の両端の二等分点とを結ぶ直線である。また、半導体発光素子の軸線とは、第1端面及び第2端面に直交する軸線を指す。リッジストライプ構造の平面形状は、直線状であってもよいし、湾曲していてもよい。
 あるいは又、本開示の半導体発光素子等において、第2端面におけるリッジストライプ構造の幅をW2、第1端面におけるリッジストライプ構造の幅をW1としたとき、W1=W2であってもよいし、W2>W1としてもよい。W2は5μm以上である形態とすることができ、W2の上限値として、限定するものではないが、例えば、4×102μmを例示することができる。また、W1は1.4μm乃至2.0μmである形態とすることができる。リッジストライプ構造の各端部は、1本の線分から構成されていてもよいし、2本以上の線分から構成されていてもよい。前者の場合、リッジストライプ構造の幅は、例えば、第1端面から第2端面に向かって、単調に、テーパー状(フレア状)に緩やかに広げられる構成することができる。一方、後者の場合、リッジストライプ構造の幅は、例えば、第1端面から第2端面に向かって、先ず同じ幅であり、次いで、単調に、テーパー状に緩やかに広げられ、あるいは又、リッジストライプ構造の幅は、例えば、第1端面から第2端面に向かって、先ず広げられ、最大幅を超えた後、狭められる構成とすることができる。
 本開示の半導体発光素子等を半導体レーザ素子から構成する場合、光ビーム(パルス状の光)が出射される積層構造体の第2端面の光反射率は0.5%以下であることが好ましい。具体的には、第2端面には低反射コート層が形成されている構成とすることができる。ここで、低反射コート層は、例えば、酸化チタン層、酸化タンタル層、酸化ジルコニア層、酸化シリコン層及び酸化アルミニウム層から成る群から選択された少なくとも2種類の層の積層構造から成る。尚、この光反射率の値は、従来の半導体レーザ素子においてレーザ光ビーム(パルス状のレーザ光)が出射される積層構造体の一端面の光反射率(通常、5%乃至10%)よりも格段に低い値である。また、第1端面は、高い光反射率、例えば、反射率85%以上、好ましくは反射率95%以上の高い反射率を有することが好ましい。
 外部共振器構造における外部共振器長さ(X’,単位:mm)の値は、
0<X’<1500
好ましくは、
30≦X’≦500
であることが望ましい。ここで、外部共振器構造とは前述したとおりである。
 本開示の半導体発光素子等を半導体レーザ素子から構成する場合、積層構造体は、少なくとも第2化合物半導体層の厚さ方向の一部分から構成されたリッジストライプ構造を有するが、このリッジストライプ構造は、第2化合物半導体層のみから構成されていてもよいし、第2化合物半導体層及び第3化合物半導体層(活性層)から構成されていてもよいし、第2化合物半導体層、第3化合物半導体層(活性層)、及び、第1化合物半導体層の厚さ方向の一部分から構成されていてもよい。リッジストライプ構造の形成にあっては、化合物半導体層を、例えば、ドライエッチング法でパターニングすればよい。
 モード同期半導体レーザ素子において、限定するものではないが、
 第2電極の幅は、0.5μm以上、50μm以下、好ましくは1μm以上、5μm以下、
 リッジストライプ構造の高さは、0.1μm以上、10μm以下、好ましくは0.2μm以上、1μm以下、
 第2電極を第1部分と第2部分とに分離する分離溝の幅は、1μm以上、モード同期半導体レーザ素子における共振器長(以下、単に『共振器長』と呼ぶ)の50%以下、好ましくは10μm以上、共振器長の10%以下であることが望ましい。共振器長として、0.6mmを例示することができるが、これに限定するものではない。リッジストライプ構造の両側面よりも外側に位置する第2化合物半導体層の部分の頂面から第3化合物半導体層(活性層)までの距離(D)は1.0×10-7m(0.1μm)以上であることが好ましい。距離(D)をこのように規定することによって、第3化合物半導体層の両脇(Y方向)に可飽和吸収領域を確実に形成することができる。距離(D)の上限は、閾値電流の上昇、温度特性、長期駆動時の電流上昇率の劣化等に基づき決定すればよい。尚、以下の説明において、共振器長方向をX方向とし、積層構造体の厚さ方向をZ方向とする。
 更には、本開示の半導体発光素子等において、第2電極は、例えば、パラジウム(Pd)単層、ニッケル(Ni)単層、白金(Pt)単層、パラジウム層が第2化合物半導体層に接するパラジウム層/白金層の積層構造、又は、パラジウム層が第2化合物半導体層に接するパラジウム層/ニッケル層の積層構造から成る形態とすることができる。尚、下層金属層をパラジウムから構成し、上層金属層をニッケルから構成する場合、上層金属層の厚さを、0.1μm以上、好ましくは0.2μm以上とすることが望ましい。あるいは又、第2電極を、パラジウム(Pd)単層から成る構成とすることが好ましく、この場合、厚さを、20nm以上、好ましくは50nm以上とすることが望ましい。あるいは又、第2電極を、パラジウム(Pd)単層、ニッケル(Ni)単層、白金(Pt)単層、又は、下層金属層が第2化合物半導体層に接する下層金属層と上層金属層の積層構造(但し、下層金属層は、パラジウム、ニッケル及び白金から成る群から選択された1種類の金属から構成され、上層金属層は、後述する工程(D)において第2電極に分離溝を形成する際のエッチングレートが、下層金属層のエッチングレートと同じ、あるいは同程度、あるいは、下層金属層のエッチングレートよりも高い金属から構成されている)から成る構成とすることが好ましい。また、後述する工程(D)において第2電極に分離溝を形成する際のエッチング液を、王水、硝酸、硫酸、塩酸、又は、これらの酸の内の少なくとも2種類の混合液(具体的には、硝酸と硫酸の混合液、硫酸と塩酸の混合液)とすることが望ましい。
 以上に説明した好ましい形態、構成を含む第1の構成あるいは第2の構成のモード同期半導体レーザ素子において、可飽和吸収領域の長さは発光領域の長さよりも短い構成とすることができる。あるいは又、第2電極の長さ(第1部分と第2部分の総計の長さ)は第3化合物半導体層(活性層)の長さよりも短い構成とすることができる。第2電極の第1部分と第2部分の配置状態として、具体的には、
(1)1つの第2電極の第1部分と1つの第2電極の第2部分とが設けられ、第2電極の第1部分と、第2電極の第2部分とが、分離溝を挟んで配置されている状態
(2)1つの第2電極の第1部分と2つの第2電極の第2部分とが設けられ、第1部分の一端が、一方の分離溝を挟んで、一方の第2部分と対向し、第1部分の他端が、他方の分離溝を挟んで、他方の第2部分と対向している状態
(3)2つの第2電極の第1部分と1つの第2電極の第2部分とが設けられ、第2部分の端部が、一方の分離溝を挟んで、一方の第1部分と対向し、第2部分の他端が、他方の分離溝を挟んで、他方の第1部分と対向している状態(即ち、第2電極は、第2部分を第1部分で挟んだ構造)
を挙げることができる。また、広くは、
(4)N個の第2電極の第1部分と(N-1)個の第2電極の第2部分とが設けられ、第2電極の第1部分が第2電極の第2部分を挟んで配置されている状態
(5)N個の第2電極の第2部分と(N-1)個の第2電極の第1部分とが設けられ、第2電極の第2部分が第2電極の第1部分を挟んで配置されている状態
を挙げることができる。(4)及び(5)の状態は、云い換えれば、
(4’)N個の発光領域[キャリア注入領域、利得領域]と(N-1)個の可飽和吸収領域[キャリア非注入領域]とが設けられ、発光領域が可飽和吸収領域を挟んで配置されている状態
(5’)N個の可飽和吸収領域[キャリア非注入領域]と(N-1)個の発光領域[キャリア注入領域、利得領域]とが設けられ、可飽和吸収領域が発光領域を挟んで配置されている状態
である。(3)、(5)、(5’)の構造を採用することで、モード同期半導体レーザ素子の光出射端面における損傷が発生し難くなる。
 モード同期半導体レーザ素子は、例えば、以下の方法で製造することができる。即ち、
 (A)基体上に、第1導電型を有し、GaN系化合物半導体から成る第1化合物半導体層、GaN系化合物半導体から成る発光領域及び可飽和吸収領域を構成する第3化合物半導体層、並びに、第1導電型と異なる第2導電型を有し、GaN系化合物半導体から成る第2化合物半導体層が、順次、積層されて成る積層構造体を形成した後、
 (B)第2化合物半導体層上に帯状の第2電極を形成し、次いで、
 (C)第2電極をエッチング用マスクとして、少なくとも第2化合物半導体層の一部分をエッチングして、リッジストライプ構造を形成した後、
 (D)分離溝を第2電極に形成するためのレジスト層を形成し、次いで、レジスト層をウエットエッチング用マスクとして、第2電極に分離溝をウエットエッチング法にて形成し、以て、第2電極を第1部分と第2部分とに分離溝によって分離する、
各工程を具備した製造方法に基づき製造することができる。
 そして、このような製造方法を採用することで、即ち、帯状の第2電極をエッチング用マスクとして、少なくとも第2化合物半導体層の一部分をエッチングして、リッジストライプ構造を形成するので、即ち、パターニングされた第2電極をエッチング用マスクとして用いてセルフアライン方式にてリッジストライプ構造を形成するので、第2電極とリッジストライプ構造との間に合わせずれが生じることがない。また、第2電極に分離溝をウエットエッチング法にて形成する。このように、ドライエッチング法と異なり、ウエットエッチング法を採用することで、第2化合物半導体層に光学的、電気的特性の劣化が生じることを抑制することができる。それ故、発光特性に劣化が生じることを、確実に防止することができる。
 工程(C)にあっては、第2化合物半導体層を厚さ方向に一部分、エッチングしてもよいし、第2化合物半導体層を厚さ方向に全部、エッチングしてもよいし、第2化合物半導体層及び第3化合物半導体層を厚さ方向にエッチングしてもよいし、第2化合物半導体層及び第3化合物半導体層、更には、第1化合物半導体層を厚さ方向に一部分、エッチングしてもよい。
 更には、前記工程(D)において、第2電極に分離溝を形成する際の、第2電極のエッチングレートをER0、積層構造体のエッチングレートをER1としたとき、ER0/ER1≧1×10、好ましくは、ER0/ER1≧1×102を満足することが望ましい。ER0/ER1がこのような関係を満足することで、積層構造体をエッチングすること無く(あるいは、エッチングされても僅かである)、第2電極を確実にエッチングすることができる。
 本開示の半導体発光素子等において、積層構造体は、具体的には、AlInGaN系化合物半導体から成る構成とすることができる。ここで、AlInGaN系化合物半導体として、より具体的には、GaN、AlGaN、InGaN、AlInGaNを挙げることができる。更には、これらの化合物半導体に、所望に応じて、ホウ素(B)原子やタリウム(Tl)原子、ヒ素(As)原子、リン(P)原子、アンチモン(Sb)原子が含まれていてもよい。また、第3化合物半導体層(活性層)は、量子井戸構造を有することが望ましい。具体的には、単一量子井戸構造[SQW構造]を有していてもよいし、多重量子井戸構造[MQW構造]を有していてもよい。量子井戸構造を有する第3化合物半導体層(活性層)は、井戸層及び障壁層が、少なくとも1層、積層された構造を有するが、(井戸層を構成する化合物半導体,障壁層を構成する化合物半導体)の組合せとして、(InyGa(1-y)N,GaN)、(InyGa(1-y)N,InzGa(1-z)N)[但し、y>z]、(InyGa(1-y)N,AlGaN)を例示することができる。
 更には、本開示の半導体発光素子等において、第2化合物半導体層は、p型GaN層及びp型AlGaN層が交互に積層された超格子構造を有し;超格子構造の厚さは0.7μm以下である構造とすることができる。このような超格子構造の構造を採用することで、クラッド層として必要な屈折率を維持しながら、半導体発光素子の直列抵抗成分を下げることができ、半導体発光素子の低動作電圧化につながる。超格子構造の厚さの下限値として、限定するものではないが、例えば、0.3μmを挙げることができるし、超格子構造を構成するp型GaN層の厚さとして1nm乃至5nmを例示することができるし、超格子構造を構成するp型AlGaN層の厚さとして1nm乃至5nmを例示することができるし、p型GaN層及びp型AlGaN層の層数合計として、60層乃至300層を例示することができる。また、第3化合物半導体層から第2電極までの距離は1μm以下、好ましくは、0.6μm以下である構成とすることができる。このように第3化合物半導体層から第2電極までの距離を規定することで、抵抗の高いp型の第2化合物半導体層の厚さを薄くし、半導体発光素子の動作電圧の低減化を達成することができる。第3化合物半導体層から第2電極までの距離の下限値として、限定するものではないが、例えば、0.3μmを挙げることができる。また、第2化合物半導体層には、Mgが、1×1019cm-3以上、ドーピングされており;第3化合物半導体層からの波長405nmの光に対する第2化合物半導体層の吸収係数は、少なくとも50cm-1である構成とすることができる。このMgの原子濃度は、2×1019cm-3の値で最大の正孔濃度を示すという材料物性に由来しており、最大の正孔濃度、即ち、この第2化合物半導体層の比抵抗が最小になるように設計された結果である。第2化合物半導体層の吸収係数は、半導体発光素子の抵抗を出来るだけ下げるという観点で規定されているものであり、その結果、第3化合物半導体層の光の吸収係数が、50cm-1となるのが一般的である。しかし、この吸収係数を上げるために、Mgドープ量を故意に2×1019cm-3以上の濃度に設定することも可能である。この場合には、実用的な正孔濃度が得られる上での上限のMgドープ量は、例えば8×1019cm-3である。また、第2化合物半導体層は、第3化合物半導体層側から、ノンドープ化合物半導体層、及び、p型化合物半導体層を有しており;第3化合物半導体層からp型化合物半導体層までの距離は、1.2×10-7m以下である構成とすることができる。このように第3化合物半導体層からp型化合物半導体層までの距離を規定することで、内部量子効率が低下しない範囲で、内部損失を抑制することができ、これにより、発振が開始される閾値電流密度を低減させることができる。第3化合物半導体層からp型化合物半導体層までの距離の下限値として、限定するものではないが、例えば、5×10-8mを挙げることができる。また、リッジストライプ構造の両側面には、SiO2/Si積層構造から成る積層絶縁膜が形成されており;リッジストライプ構造の有効屈折率と積層絶縁膜の有効屈折率との差は、5×10-3乃至1×10-2である構成とすることができる。このような積層絶縁膜を用いることで、100ミリワットを超える高出力動作であっても、単一基本横モードを維持することができる。また、第2化合物半導体層は、第3化合物半導体層側から、例えば、ノンドープInGaN層(p側光ガイド層)、MgドープAlGaN層(電子障壁層)、GaN層(Mgドープ)/AlGaN層の超格子構造(超格子クラッド層)、及び、MgドープGaN層(p側コンタクト層)が積層されて成る構造とすることができる。第3化合物半導体層における井戸層を構成する化合物半導体のバンドギャップは、2.4eV以上であることが望ましい。また、第3化合物半導体層(活性層)から出射される光の波長は、360nm乃至500nm、好ましくは400nm乃至410nmであることが望ましい。ここで、以上に説明した各種の構成を、適宜、組み合わせることができることは云うまでもない。
 本開示の半導体発光素子等にあっては、半導体発光素子を構成する各種のGaN系化合物半導体層を基板や基体に順次形成するが、ここで、基板や基体として、サファイア基板の他にも、GaAs基板、GaN基板、SiC基板、アルミナ基板、ZnS基板、ZnO基板、AlN基板、LiMgO基板、LiGaO2基板、MgAl24基板、InP基板、Si基板、これらの基板の表面(主面)に下地層やバッファ層が形成されたものを挙げることができる。主に、GaN系化合物半導体層を基板や基体に形成する場合、GaN基板が欠陥密度の少なさから好まれるが、GaN基板は成長面によって、極性/無極性/半極性と特性が変わることが知られている。また、本開示の半導体発光素子等を構成する各種の化合物半導体層(例えば、GaN系化合物半導体層)の形成方法として、有機金属化学的気相成長法(MOCVD法,MOVPE法)や分子線エピタキシー法(MBE法)、ハロゲンが輸送あるいは反応に寄与するハイドライド気相成長法等を挙げることができる。
 ここで、化合物半導体層としてGaN系化合物半導体層を形成する場合、MOCVD法における有機ガリウム源ガスとして、トリメチルガリウム(TMG)ガスやトリエチルガリウム(TEG)ガスを挙げることができるし、窒素源ガスとして、アンモニアガスやヒドラジンガスを挙げることができる。また、n型の導電型を有するGaN系化合物半導体層の形成においては、例えば、n型不純物(n型ドーパント)としてケイ素(Si)を添加すればよいし、p型の導電型を有するGaN系化合物半導体層の形成においては、例えば、p型不純物(p型ドーパント)としてマグネシウム(Mg)を添加すればよい。また、GaN系化合物半導体層の構成原子としてアルミニウム(Al)あるいはインジウム(In)が含まれる場合、Al源としてトリメチルアルミニウム(TMA)ガスを用いればよいし、In源としてトリメチルインジウム(TMI)ガスを用いればよい。更には、Si源としてモノシランガス(SiH4ガス)を用いればよいし、Mg源としてシクロペンタジエニルマグネシウムガスやメチルシクロペンタジエニルマグネシウム、ビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いればよい。n型不純物(n型ドーパント)として、Si以外に、Ge、Se、Sn、C、Te、S、O、Pd、Poを挙げることができるし、p型不純物(p型ドーパント)として、Mg以外に、Zn、Cd、Be、Ca、Ba、C、Hg、Srを挙げることができる。
 第1導電型をn型とするとき、n型の導電型を有する第1化合物半導体層に電気的に接続された第1電極は、金(Au)、銀(Ag)、パラジウム(Pd)、Al(アルミニウム)、Ti(チタン)、タングステン(W)、Cu(銅)、Zn(亜鉛)、錫(Sn)及びインジウム(In)から成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが望ましく、例えば、Ti/Au、Ti/Al、Ti/Pt/Auを例示することができる。第1電極は第1化合物半導体層に電気的に接続されているが、第1電極が第1化合物半導体層上に形成された形態、第1電極が導電材料層や導電性の基板や基体を介して第1化合物半導体層に接続された形態が包含される。第1電極や第2電極は、例えば、真空蒸着法やスパッタリング法等の各種PVD法にて成膜することができる。
 第1電極や第2電極上に、外部の電極あるいは回路と電気的に接続するために、パッド電極を設けてもよい。パッド電極は、Ti(チタン)、アルミニウム(Al)、Pt(白金)、Au(金)、Ni(ニッケル)から成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが望ましい。あるいは又、パッド電極を、Ti/Pt/Auの多層構成、Ti/Auの多層構成に例示される多層構成とすることもできる。
 第1の構成あるいは第2の構成のモード同期半導体レーザ素子においては、前述したとおり、第1電極と第2部分との間に逆バイアス電圧Vsaを印加する構成(即ち、第1電極を正極、第2部分を負極とする構成)とすることが望ましい。尚、第2電極の第2部分には、第2電極の第1部分に印加するパルス電流あるいはパルス電圧と同期したパルス電流あるいはパルス電圧を印加してもよいし、直流バイアスを印加してもよい。また、第2電極から発光領域を経由して第1電極に電流を流し、且つ、第2電極から発光領域を経由して第1電極に外部電気信号を重畳させる形態とすることができる。そして、これによって、レーザ光と外部電気信号との間の同期を取ることができる。あるいは又、積層構造体の一端面から光信号を入射させる形態とすることができる。そして、これによっても、レーザ光と光信号との間の同期を取ることができる。また、第2化合物半導体層において、第3化合物半導体層と電子障壁層との間には、ノンドープ化合物半導体層(例えば、ノンドープInGaN層、あるいは、ノンドープAlGaN層)を形成してもよい。更には、第3化合物半導体層とノンドープ化合物半導体層との間に、光ガイド層としてのノンドープInGaN層を形成してもよい。第2化合物半導体層の最上層を、MgドープGaN層(p側コンタクト層)が占めている構造とすることもできる。電子障壁層、ノンドープ化合物半導体層、光ガイド層、p側コンタクト層は、第2化合物半導体層を構成する。
 モード同期半導体レーザ素子は、バイ・セクション型(2電極型)の半導体レーザ素子に限定するものではなく、その他、マルチセクション型(多電極型)の半導体レーザ素子、発光領域と可飽和吸収領域とを垂直方向に配置したSAL(Saturable Absorber Layer)型や、リッジストライプ構造に沿って可飽和吸収領域を設けたWI(Weakly Index guide)型の半導体レーザ素子を採用することもできる。
 半導体光増幅器において、積層構造体は、具体的には、AlInGaN系化合物半導体から成る構成とすることができる。半導体光増幅器の構成、構造は、第2電極が分割されていない点を除き、実質的に、半導体発光素子の構成、構造と同様とすることができる。
 本開示の半導体発光素子組立体を、例えば、光ディスクシステム、通信分野、光情報分野、光電子集積回路、非線形光学現象を応用した分野、光スイッチ、レーザ計測分野や種々の分析分野、超高速分光分野、多光子励起分光分野、質量分析分野、多光子吸収を利用した顕微分光の分野、化学反応の量子制御、ナノ3次元加工分野、多光子吸収を応用した種々の加工分野、医療分野、バイオイメージング分野、量子情報通信分野、量子情報処理分野といった分野に適用することができる。
 実施例1は、本開示の第1の態様~第2の態様に係る半導体発光素子、及び、本開示の第1の態様~第2の態様に係る半導体発光素子組立体に関する。実施例1の半導体発光素子の概念図を図1Aに示し、半導体発光素子(具体的には半導体レーザ素子であり、以下の説明においては『半導体レーザ素子10』と呼ぶ)の共振器の延びる方向に沿った(即ち、図3の矢印I-Iに沿った)模式的な端面図を図2に示し、半導体レーザ素子10の共振器の延びる方向と直角方向に沿った(即ち、図2の矢印II-IIに沿った)模式的な断面図を図3に示す。また、実施例1の半導体発光素子組立体を分解したときの概念的な斜視図を図4に示す。
 実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10は、第1化合物半導体層30、活性層40及び第2化合物半導体層50が積層された積層構造体を有する。また、実施例1あるいは後述する実施例2~実施例3における半導体発光素子組立体は、第1化合物半導体層30、活性層40及び第2化合物半導体層50が積層された積層構造体を有する半導体発光素子(具体的には、半導体レーザ素子10)を備えている。
 積層構造体は、共振器方向に発光領域41と可飽和吸収領域42とが並置された構造を有する。そして、可飽和吸収領域42は、共振器方向の積層構造体の端部領域に配置されている。より具体的には、実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10は、発光領域41及び可飽和吸収領域42を有するモード同期半導体レーザ素子から成る。モード同期半導体レーザ素子は、具体的には、発光波長405nm帯のバイ・セクション型のモード同期半導体レーザ素子から成り、
 GaN系化合物半導体から成り、第1導電型(実施例においては、n型導電型)を有する第1化合物半導体層30、
 GaN系化合物半導体から成る第3化合物半導体層(活性層)40、及び、
 GaN系化合物半導体から成り、第1導電型とは異なる第2導電型(実施例においては、p型導電型)を有する第2化合物半導体層50、
が、順次、基体上に積層されて成る積層構造体、
 第2化合物半導体層上に形成された第2電極62、並びに、
 第1化合物半導体層に電気的に接続された第1電極61、
を備えている。第1化合物半導体層30は、基体(具体的には、基板21)上に形成されている。そして、実施例1あるいは後述する実施例2~実施例3におけるモード同期半導体レーザ素子は、より具体的には、ピークパワーの光密度が1×1010ワット/cm2以上、好ましくは1.4×1010ワット/cm2以上であり、且つ、キャリア密度が1×1019/cm3以上である電流注入型であって受動モード同期のモード同期半導体レーザ素子であり、第1の構成あるいは第2の構成のモード同期半導体レーザ素子である。
 第2電極62は、発光領域(利得領域)41を経由して第1電極61に直流電流を流すことで順バイアス状態とするための第1部分62Aと、可飽和吸収領域42に電界を加えるための第2部分62B(可飽和吸収領域42に逆バイアス電圧Vsaを加えるための第2部分62B)とに、分離溝62Cによって分離されている。ここで、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値(『分離抵抗値』と呼ぶ場合がある)は、第2電極62と第1電極61との間の電気抵抗値の1×10倍以上、具体的には1.5×103倍である。また、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値(分離抵抗値)は、1×102Ω以上、具体的には、1.5×104Ωである。半導体レーザ素子10の共振器長を600μm、第2電極62の第1部分62A、第2部分62B、分離溝62Cのそれぞれの長さを、560μm、30μm、10μmとした。
 実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10は、具体的には、リッジストライプ型の分離閉じ込めヘテロ構造(SCH構造)を有する半導体レーザ素子である。より具体的には、この半導体レーザ素子10は、インデックスガイド型のAlInGaNから成るGaN系半導体レーザ素子であり、リッジストライプ構造55を有する。リッジストライプ構造55の幅を1.4μmとした。リッジストライプ構造55は、端面反射を軽減させるために光出射端面(第2端面)に向かって湾曲しているが、このような形状に限定するものではない。リッジストライプ構造55は、光反射端面(第1端面)には直交している。
 第1化合物半導体層30、第3化合物半導体層(活性層)40、及び、第2化合物半導体層50は、具体的には、AlInGaN系化合物半導体から成り、より具体的には、以下の表1に示す層構成を有する。ここで、表1において、下方に記載した化合物半導体層ほど、n型GaN基板21に近い層である。第3化合物半導体層40における井戸層を構成する化合物半導体のバンドギャップは3.06eVである。実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10は、n型GaN基板21の(0001)面上に設けられており、第3化合物半導体層40は量子井戸構造を有する。n型GaN基板21の(0001)面は、『C面』とも呼ばれ、極性を有する結晶面である。
[表1]
第2化合物半導体層50
  p型GaNコンタクト層(Mgドープ)54
  p型GaN(Mgドープ)/AlGaN超格子クラッド層53
  p型AlGaN電子障壁層(Mgドープ)52
  ノンドープInGaN光ガイド層51
第3化合物半導体層40
  InGaN量子井戸活性層
    (井戸層:In0.08Ga0.92N/障壁層:In0.02Ga0.98N)
第1化合物半導体層30
  n型GaNクラッド層32
  n型AlGaNクラッド層31
但し、
井戸層(2層)   8nm  ノン・ドープ
障壁層(3層)  14nm  Siドープ
 また、p型GaNコンタクト層54及びp型GaN/AlGaN超格子クラッド層53の一部は、RIE法にて除去されており、リッジストライプ構造55が形成されている。リッジストライプ構造55の両側にはSiO2/Siから成る積層絶縁膜56が形成されている。尚、SiO2層が下層であり、Si層が上層である。ここで、リッジストライプ構造55の有効屈折率と積層絶縁膜56の有効屈折率との差は、5×10-3乃至1×10-2、具体的には、7×10-3である。そして、リッジストライプ構造55の頂面に相当するp型GaNコンタクト層54上には、第2電極(p側オーミック電極)62が形成されている。一方、n型GaN基板21の裏面には、Ti/Pt/Auから成る第1電極(n側オーミック電極)61が形成されている。
 実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10において、コリメート手段11と対向する光出射端面(第2端面)には、無反射コート層(AR)が形成されている。一方、半導体レーザ素子10における光出射端面(第2端面)と対向する光反射端面(第1端面)には、高反射コート層(HR)が形成されている。可飽和吸収領域42は、半導体レーザ素子10における第1端面の側に設けられている。無反射コート層(低反射コート層)として、酸化チタン層、酸化タンタル層、酸化ジルコニア層、酸化シリコン層及び酸化アルミニウム層から成る群から選択された少なくとも2種類の層の積層構造を挙げることができる。
 実施例1あるいは後述する実施例2~実施例3における半導体レーザ素子10のパルス繰返し周波数を1GHzとした。半導体レーザ素子10は、レーザ光の繰返し周波数が1GHz以下であることが好ましい。尚、外部共振器長さX’(第1端面と光学部材12との間の距離)と共振器の長さLによって光パルス(光パルス列)の繰り返し周波数fが決定され、次式で表される。ここで、cは光速であり、nは共振器の実効的な屈折率である。
f=c/{2(X’+L(n-1))}
 ところで、上述したとおり、第2化合物半導体層50上に、1×102Ω以上の分離抵抗値を有する2電極62を形成することが望ましい。GaN系半導体レーザ素子の場合、従来のGaAs系半導体レーザ素子とは異なり、p型導電型を有する化合物半導体における移動度が小さいために、p型導電型を有する第2化合物半導体層50をイオン注入等によって高抵抗化することなく、その上に形成される第2電極62を分離溝62Cで分離することで、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値を第2電極62と第1電極61との間の電気抵抗値の10倍以上とし、あるいは又、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値を1×102Ω以上とすることが可能となる。
 ここで、第2電極62に要求される特性は、以下のとおりである。即ち、
(1)第2化合物半導体層50をエッチングするときのエッチング用マスクとしての機能を有すること。
(2)第2化合物半導体層50の光学的、電気的特性に劣化を生じさせることなく、第2電極62はウエットエッチング可能であること。
(3)第2化合物半導体層50上に成膜したとき、10-2Ω・cm2以下のコンタクト比抵抗値を示すこと。
(4)積層構造とする場合、下層金属層を構成する材料は、仕事関数が大きく、第2化合物半導体層50に対して低いコンタクト比抵抗値を示し、しかも、ウエットエッチング可能であること。
(5)積層構造とする場合、上層金属層を構成する材料は、リッジストライプ構造を形成する際のエッチングに対して(例えば、RIE法において使用されるCl2ガス)に対して耐性があり、しかも、ウエットエッチング可能であること。
 実施例1あるいは後述する実施例2~実施例3にあっては、第2電極62を厚さ0.1μmのPd単層から構成した。
 実施例1あるいは後述する実施例2~実施例3における半導体発光素子組立体は、具体的には、半導体レーザ素子10及び光学部材12から構成されている。そして、半導体レーザ素子10の第2端面(光出射面)から出射した光は光学部材12と衝突し、一部の光は半導体レーザ素子10に戻され、残りの光は、反射鏡13で反射され、光アイソレータ14を通過して外部に出射される。光アイソレータ14は、戻り光が半導体レーザ素子10に向かうことを防止するために配置されている。半導体レーザ素子10の第1端面(光反射面)及び光学部材12によって外部共振器構造が構成される。光学系の距離とは外部共振器構造の長さである。光学部材12は、格子状の凹凸部や溝部が形成された回折格子から成り、リトロー配置(リットマン配置とも呼ばれる)を有し、半導体レーザ素子10から出射された光の内、1次の回折光を半導体レーザ素子10に戻し、0次の回折光を外部に出射する。回折格子における格子状のパターンの本数を2400本/mmとした。半導体レーザ素子10と光学部材12との間に、半導体レーザ素子10からのレーザ光を平行光束とするためのコリメート手段(具体的には、レンズ11)が配されており、コリメート型の外部共振器構造を構成する。
 実施例1あるいは後述する実施例2~実施例3における半導体発光素子組立体は、ヒートシンク101及びサブマウント104を更に備えており、ヒートシンク101、サブマウント104及び半導体レーザ素子10が、順次、積層されている。ヒートシンク101は、例えば、Cu、Fe、Au等から成り、図示しないペルチェ素子によって温度が制御される。サブマウント104は、例えば、AlNセラミックから成り、熱伝導率は、230W/K・mである。ヒートシンク101とサブマウント104とは、第1ハンダ層102を介して積層されており、サブマウント104と半導体レーザ素子10とは、第2ハンダ層103を介して積層されている。尚、図4において、半導体レーザ素子10側のサブマウント104の面に形成された第2ハンダ層103を明示するために斜線を付し、ヒートシンク101側のサブマウント104の面に形成された第1ハンダ層102を点線で示した。参照番号22は、半導体レーザ素子10に設けられたパッド電極であり、明示のため斜線を付した。
 サブマウント104の面積に対する第1ハンダ層102の面積、及び、サブマウント104の面積に対する第2ハンダ層103の面積を「1」とし、最大光出力が得られるように半導体レーザ素子10を動作させたとき(即ち、発光領域41に流す電流を、発光領域41の単位面積当たりI0アンペア/cm2としたとき)であって、ヒートシンク101によって何らの温度制御を行わない場合、室温25゜Cにおいて、ヒートシンク101の温度は40゜Cあるいはそれ以下であった。一方、サブマウント104の面積に対する第1ハンダ層102の面積、及び、サブマウント104の面積に対する第2ハンダ層103の面積を上記のとおりとし、発光領域41に流す電流を、発光領域41の単位面積当たりI0アンペア/cm2としたとき、ヒートシンク101によって何らの温度制御を行わなくとも、室温25゜Cにおいて、ヒートシンク101の温度は55゜Cとなった。即ち、このような構成にすることで、半導体レーザ素子10において発生し、ヒートシンク101に伝わる熱をより少なくすることができ、所謂蓄熱構造を得ることができる。
 活性層(第3化合物半導体層)40の温度Tactとヒートシンク101の温度Thsとの間には、半導体レーザ素子10の熱抵抗をRth[K/W]、投入電力をPin[W]としたときに、以下のような関係がある。
act=Ths+Rth×Pin
ここで、同じ動作電流値ではPinがほぼ等しいので、活性層の温度Tactはヒートシンク101の温度Thsと同じように変化する。活性層(第3化合物半導体層)40の温度Tactとヒートシンク101の温度Thsとの関係は、種々の試験を行うことで求めることができる。以下の説明においては、活性層(第3化合物半導体層)40の温度Tactの代わりに、ヒートシンク101の温度Thsを用いる。
 実施例1の半導体発光素子組立体において、ペルチェ素子によってヒートシンク101の温度Thsを制御して、第2電極62の第1部分62Aと第1電極61との間に電流(動作電流)I1(単位:ミリアンペア)を流し、第2電極62の第2部分62Bと第1電極61との間に逆バイアス電圧Vsa(=7.5ボルト)を印加したときの光出力(単位:ミリワット)を求めた結果を図5に示す。尚、図5中、「A」はThs=20゜Cのときのデータであり、「B」はThs=30゜Cのときのデータであり、「C」はThs=40゜Cのときのデータであり、「D」はThs=50゜Cのときのデータであり、「E」はThs=60゜Cのときのデータである。動作電流I1を増加していくと、レーザ発振が生じる。そのときの動作電流の値を、動作電流範囲の下限値(発振閾値電流)Iminと呼ぶ。そして、動作電流I1を更に増加していくと、光出力は直線状に増加し、動作電流範囲の上限値Imaxを超えると、半導体レーザ素子10から出射されるレーザ光の光出力が急激に増加する。ここで、光パルスの繰り返し周波数fが光学系の距離(外部共振器構造の長さ)で決定される基本周波数から基本周波数の2倍の周波数に変化するときの動作電流が、動作電流範囲の上限値Imaxである。Ths=70゜Cのときには、動作電流を流し始めた直後から、上限値Imaxを超えたときに半導体レーザ素子10から出射されるレーザ光の光出力が急激に増加する現象が発生し、安定したレーザ発振ができなかった。
 また、図5に示す結果に基づき、図6Aに、ヒートシンク101の温度Thsと動作電流範囲の下限値(発振閾値電流)Iminの関係を求めた結果(図6Aの「A」の黒菱形の印を参照)、及び、光出力12.5ミリワットが得られるときの動作電流の値(図6Aの「B」の黒四角の印を参照)を示す。動作電流範囲の下限値(発振閾値電流)Iminの上昇は、ヒートシンク101の温度Thsの上昇によって活性層(第3化合物半導体層40)の温度が上昇した結果生じた現象であり、従来の半導体レーザ素子と同様の傾向を示す。同様の理由で、光出力が12.5ミリワットときの動作電流を比較すると、ヒートシンク101の温度Thsの上昇によってこの動作電流が増加することも確認された。云い換えれば、或る同じ動作電流では、ヒートシンク101の温度Thsの上昇によって光出力が低下することが確認された。
 尚、動作電流範囲の上限値Imaxを超えると光出力が急激に増加する現象は、以下のように説明することができる。即ち、図15に示すように、光パルスの繰り返し周波数fは、光学系を光が周回する時間で決まり、周回時間内では可飽和吸収領域42での吸収(ロス)が利得領域41での利得(ゲイン)を上回っている必要がある。そして、利得領域41への注入電流を増加していくと、利得の回復時間が基本周回時間よりも早くなり、基本周回時間の半分の周回時間で到達した光パルスも利得が得られるようになる。その結果、基本周回時間で決まる基本周波数ではなく、基本周回時間の半分の時間、つまり、基本周波数の2倍の周波数で光パルスが発生するようになる。
 図5に示した温度依存性の測定結果を、図6Bに、同じパルス状態での動作電流範囲(図6Bの「A」の黒菱形の印を参照)と最大光出力(図6Bの「B」の黒四角の印を参照)で比較した結果を示す。ヒートシンク101の温度Thsが高くなるほど、同じパルス状態で光パルスを発生する動作電流範囲が広がり、最大光出力が増加する傾向がみられた。即ち、活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
ΔI2>ΔI1
を満足する。動作電流範囲が増大した要因として、図15より、微分利得が減少して利得の回復時間が長くなったことや、可飽和吸収領域42の飽和レベルが上昇したことが考えられるが、発振直後の出力も向上していることから、ここでは可飽和吸収レベルの上昇が要因と推測される。また、活性層の温度がT1のときの動作電流範囲の上限値をImax-1、活性層の温度がT2のときの動作電流範囲の上限値をImax-2としたとき、
max-2>Imax-1
を満足する。更には、活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
2>P1
を満足する。また、発光領域に流す電流を、発光領域の単位面積当たり1×102アンペア/cm2乃至1×105アンペア/cm2(具体的には、例えば、1×104アンペア/cm2)とすることが好ましい。
 このように、実施例1の半導体発光素子にあっては、ΔI2>ΔI1の関係を満足するので、活性層の温度を高くするほど、動作電流範囲が広くなり、その結果、光出力の増加を図ることができるし、P2>P1を満足するので、活性層の温度を高くするほど、最大光出力が高くなり、光出力の増加を図ることができるし、動作時(光出射時)の活性層の温度を50゜C以上、70゜C未満とすることで、光出力の増加を図ることができる。
 前述したとおり、ヒートシンク101によって何らの温度制御を行わなくとも、室温25゜Cにおいて、ヒートシンク101の温度は55゜Cとなった。但し、図5に示すように、活性層の温度は55゜Cよりも高いことが望ましい場合があるので、このような場合には、ヒートシンク101によって活性層の温度を制御する、具体的には、ヒートシンク101を加熱することによって活性層(第3化合物半導体層40)の温度を制御(加熱)することが好ましい。
 以下、図12A、図12B、図13A、図13B、図14を参照して、実施例1あるいは後述する実施例2~実施例3におけるモード同期半導体レーザ素子の製造方法を説明する。尚、図12A、図12B、図13A、図13Bは、基板等をYZ平面にて切断したときの模式的な一部断面図であり、図14は、基板等をXZ平面にて切断したときの模式的な一部端面図である。
  [工程-100]
 先ず、基体上、具体的には、n型GaN基板21の(0001)面上に、周知のMOCVD法に基づき、第1導電型(n型導電型)を有し、GaN系化合物半導体から成る第1化合物半導体層30、GaN系化合物半導体から成る発光領域(利得領域)41及び可飽和吸収領域42を構成する第3化合物半導体層(活性層)40、並びに、第1導電型と異なる第2導電型(p型導電型)を有し、GaN系化合物半導体から成る第2化合物半導体層50が、順次、積層されて成る積層構造体を形成する(図12A参照)。
  [工程-110]
 その後、第2化合物半導体層50上に帯状の第2電極62を形成する。具体的には、真空蒸着法に基づきPd層63を全面に成膜した後(図12B参照)、Pd層63上に、フォトリソグラフィ技術に基づき帯状のエッチング用レジスト層を形成する。そして、王水を用いて、エッチング用レジスト層に覆われていないPd層63を除去した後、エッチング用レジスト層を除去する。こうして、図13Aに示す構造を得ることができる。尚、リフトオフ法に基づき、第2化合物半導体層50上に帯状の第2電極62を形成してもよい。
  [工程-120]
 次いで、第2電極62をエッチング用マスクとして、少なくとも第2化合物半導体層50の一部分をエッチングして(具体的には、第2化合物半導体層50の一部分をエッチングして)、リッジストライプ構造を形成する。具体的には、Cl2ガスを用いたRIE法に基づき、第2電極62をエッチング用マスクとして用いて、第2化合物半導体層50の一部分をエッチングする。こうして、図13Bに示す構造を得ることができる。このように、帯状にパターニングされた第2電極62をエッチング用マスクとして用いてセルフアライン方式にてリッジストライプ構造を形成するので、第2電極62とリッジストライプ構造との間に合わせずれが生じることがない。
  [工程-130]
 その後、分離溝を第2電極62に形成するためのレジスト層64を形成する(図14参照)。尚、参照番号65は、分離溝を形成するために、レジスト層64に設けられた開口部である。次いで、レジスト層64をウエットエッチング用マスクとして、第2電極62に分離溝62Cをウエットエッチング法にて形成し、以て、第2電極62を第1部分62Aと第2部分62Bとに分離溝62Cによって分離する。具体的には、王水をエッチング液として用い、王水に約10秒、全体を浸漬することで、第2電極62に分離溝62Cを形成する。そして、その後、レジスト層64を除去する。こうして、図2及び図3に示す構造を得ることができる。このように、ドライエッチング法と異なり、ウエットエッチング法を採用することで、第2化合物半導体層50の光学的、電気的特性に劣化が生じることがない。それ故、モード同期半導体レーザ素子の発光特性に劣化が生じることがない。尚、ドライエッチング法を採用した場合、第2化合物半導体層50の内部損失αiが増加し、閾値電圧が上昇したり、光出力の低下を招く虞がある。ここで、第2電極62のエッチングレートをER0、積層構造体のエッチングレートをER1としたとき、
ER0/ER1≒1×102
である。このように、第2電極62と第2化合物半導体層50との間に高いエッチング選択比が存在するが故に、積層構造体をエッチングすること無く(あるいは、エッチングされても僅かである)、第2電極62を確実にエッチングすることができる。尚、ER0/ER1≧1×10、好ましくは、ER0/ER1≧1×102を満足することが望ましい。
 第2電極を、厚さ20nmのパラジウム(Pd)から成る下層金属層と、厚さ200nmのニッケル(Ni)から成る上層金属層の積層構造としてもよい。ここで、王水によるウエットエッチングにあっては、ニッケルのエッチングレートは、パラジウムのエッチングレートの約1.25倍である。
  [工程-140]
 その後、第1電極61の形成、基板21の劈開等を行い、更に、パッケージ化を行うことで、半導体レーザ素子10を作製することができる。
 製作した半導体レーザ素子10の第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値を4端子法にて測定した結果、分離溝62Cの幅が20μmのとき、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値は15kΩであった。また、製作した半導体レーザ素子10において、第2電極62の第1部分62Aから発光領域41を経由して第1電極61に直流電流を流して順バイアス状態とし、第1電極61と第2電極62の第2部分62Bとの間に逆バイアス電圧Vsaを印加することによって可飽和吸収領域42に電界を加えることで、セルフ・パルセーション動作させることができた。即ち、第2電極62の第1部分62Aと第2部分62Bとの間の電気抵抗値は、第2電極62と第1電極61との間の電気抵抗値の10倍以上であり、あるいは又、1×102Ω以上である。従って、第2電極62の第1部分62Aから第2部分62Bへの漏れ電流の流れを確実に抑制することができる結果、発光領域41を順バイアス状態とし、しかも、可飽和吸収領域42を確実に逆バイアス状態とすることができ、確実にシングルモードのセルフ・パルセーション動作を生じさせることができた。
 実施例2は、実施例1の変形であり、図1Bに半導体発光素子の概念図を示すように、半導体レーザ素子10から出射されたレーザ光を増幅する、III-V族窒化物系半導体層の積層構造体から成る半導体光増幅器(SOA)200が備えられている。半導体光増幅器200は、「Master Oscillator Power Amplifier,MOPA」と呼ばれる方式によってレーザ光を増幅する。ここで、半導体光増幅器とは、光信号を電気信号に変換せず、直接光の状態で増幅するものであり、共振器効果を極力排除したレーザ構造を有し、半導体光増幅器の光利得に基づき入射光を増幅する。半導体光増幅器は周知の半導体光増幅器から成る。
 具体的には、半導体レーザ素子(モード同期半導体レーザ素子)10から出射されたレーザ光は、コリメート手段(レンズ11)、光学部材(回折格子)12、反射鏡13、光アイソレータ14、集光手段(レンズ)15Aを通過し、半導体光増幅器200に入射する。そして、半導体光増幅器200から出力されたレーザ光は、集光手段(レンズ)15Bを経由して系外に出力される。
 半導体光増幅器200は、
 GaN系化合物半導体から成り、第1導電型を有する第1化合物半導体層30、
 GaN系化合物半導体から成る第3化合物半導体層(活性層)40、及び、
 GaN系化合物半導体から成り、第1導電型と異なる第2導電型を有する第2化合物半導体層50、
が、順次、基体上に積層されて成る積層構造体、
 第2化合物半導体層50上に形成された第2電極62、並びに、
 第1化合物半導体層30に電気的に接続された第1電極61、
を備えている。尚、第1化合物半導体層30は、基板(具体的には、基板21)上に形成されている。第2電極62から第1電極61へと順バイアス電圧が印加される。半導体光増幅器200において、レーザ光は基本的に一方向にのみ導波される。光入射端面から半導体光増幅器200に入射したレーザ光は、半導体光増幅器200の内部で光増幅され、反対側の光出射端面から出力され、レンズ15Bを介して、外部に出力される。
 半導体光増幅器200の構成、構造は、第2電極が分割されていない点、及び、リッジストライプ構造は、湾曲しておらず、代わりに、光入射端面(第1端面)から光出射端面(第2端面)に向かって、その幅が広くなっている点を除き、実質的に、半導体レーザ素子10と同じ構成、構造を有する。具体的には、半導体光増幅器200は、デバイス長3.0mm、フレア幅15μmのテーパー型の半導体光増幅器である。以上の点を除き、実質的に、実施例1において半導体レーザ素子の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例3は、実施例1~実施例2の変形であり、具体的には、実施例1において説明したモード同期半導体レーザ素子の変形であり、第3の構成のモード同期半導体レーザ素子に関する。実施例1においては、半導体レーザ素子10を、極性を有する結晶面であるn型GaN基板21の(0001)面、C面上に設けた。ところで、このような基板を用いた場合、第3化合物半導体層(活性層)40にピエゾ分極及び自発分極に起因した内部電界によるQCSE効果(量子閉じ込めシュタルク効果)によって、電気的に可飽和吸収が制御し難くなる場合がある。即ち、場合によっては、セルフ・パルセーション動作及びモード同期動作を得るために第1電極に流す直流電流の値及び可飽和吸収領域に印加する逆バイアス電圧の値を高くする必要が生じたり、メインパルスに付随したサブパルス成分が発生したり、外部信号と光パルスとの間での同期が取り難くなることが判った。
 そして、このような現象の発生を防止するためには、第3化合物半導体層(活性層)40を構成する井戸層の厚さの最適化、第3化合物半導体層40を構成する障壁層における不純物ドーピング濃度の最適化を図ることが好ましいことが判明した。
 具体的には、InGaN量子井戸活性層を構成する井戸層の厚さを、1nm以上、10.0nm以下、好ましくは、1nm以上、8nm以下とすることが望ましい。このように井戸層の厚さを薄くすることによって、ピエゾ分極及び自発分極の影響を低減させることができる。また、障壁層の不純物ドーピング濃度を、2×1018cm-3以上、1×1020cm-3以下、好ましくは、1×1019cm-3以上、1×1020cm-3以下とすることが望ましい。ここで、不純物として、シリコン(Si)あるいは酸素(O)を挙げることができる。そして、障壁層の不純物ドーピング濃度をこのような濃度とすることで、活性層のキャリアの増加を図ることができる結果、ピエゾ分極及び自発分極の影響を低減させることができる。
 実施例3においては、表1に示した層構成における障壁層と井戸層から成るInGaN量子井戸活性層から構成された第3化合物半導体層(活性層)40の構成を以下の表2のとおりとした。また、参考例3のモード同期半導体レーザ素子においては、表1に示した層構成における第3化合物半導体層40の構成を以下の表2のとおりとした。
[表2]
                 実施例3          参考例3
井戸層               8nm          10.5nm
障壁層              12nm          14nm
井戸層の不純物ドーピング濃度   ノン・ドープ        ノン・ドープ
障壁層の不純物ドーピング濃度   Si:2×1018cm-3   ノン・ドープ
 実施例3においては井戸層の厚さが8nmであり、また、障壁層にはSiが2×1018cm-3、ドーピングされており、活性層内のQCSE効果が緩和されている。一方、参考例3においては井戸層の厚さが10.5nmであり、また、障壁層には不純物がドーピングされていない。
 モード同期は、実施例1と同様に、発光領域に印加する直流電流と可飽和吸収領域に印加する逆バイアス電圧Vsaとによって決定される。実施例3及び参考例3の注入電流と光出力の関係(L-I特性)の逆バイアス電圧依存性を測定した。その結果、参考例3にあっては、逆バイアス電圧Vsaを増加していくと、レーザ発振が開始する閾値電流が次第に上昇し、更には、実施例3に比べて、低い逆バイアス電圧Vsaで変化が生じていることが判った。これは、実施例3の活性層の方が、逆バイアス電圧Vsaにより可飽和吸収の効果が電気的に制御されていることを示唆している。但し、参考例3にあっても、可飽和吸収領域に逆バイアスを印加した状態でシングルモード(単一基本横モード)のセルフ・パルセーション動作及びモード同期(モードロック)動作が確認されており、参考例3も本開示に包含されることは云うまでもない。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した半導体発光素子組立体、半導体レーザ素子、モード同期半導体レーザ素子、半導体光増幅器の構成、構造の構成は例示であり、適宜、変更することができる。また、実施例においては、種々の値を示したが、これらも例示であり、例えば、使用する半導体レーザ素子、半導体光増幅器の仕様が変われば、変わることは当然である。例えば、半導体レーザ素子や半導体光増幅器の軸線とリッジストライプ構造の軸線とは、所定の角度で交わっている構成としてもよいし、リッジストライプ構造の平面形状をテーパー状としてもよい。
 実施例1における半導体発光素子組立体の変形例を図7A、図7B、図8A、図8B、図8Cに示す。集光型の外部共振器構造を有する図7Aに示す半導体発光素子組立体、あるいは、コリメート型の外部共振器構造を有する図7Bに示す半導体発光素子組立体において、光学部材12Aは、半透過鏡から構成されている。半導体レーザ素子10から出射されたレーザ光は、光学部材(半透過鏡)12Aに衝突し、一部は半導体レーザ素子10に戻される。一方、残部は、光学部材(半透過鏡)12Aを通過し、場合によっては、集光手段(レンズ)16を通過し、光アイソレータ14を通過して外部に出射される。集光型の外部共振器構造を有する図8Aに示す半導体発光素子組立体、あるいは、コリメート型の外部共振器構造を有する図8Bに示す半導体発光素子組立体にあっては、半導体レーザ素子10の第2端面と外部鏡(反射鏡)から成る光学部材12Bとで外部共振器構造が構成され、半導体レーザ素子10から光ビームを取り出す。第2端面には低反射コート層(AR)が形成されている。あるいは又、図8Cに示すように、半導体レーザ素子をモノリシック型とすることもできる。
 積層構造体は、複数の機能領域が集積された構造を有する構成とすることができ、この場合、複数の機能領域の内の少なくとも1つは可飽和吸収領域から成る構成とすることができる。機能領域として、可飽和吸収領域の他、例えば、利得領域、可飽和吸収領域、位相制御領域、分布帰還領域、分布ブラック反射領域等を挙げることができる。
 発光領域41や可飽和吸収領域42の数は1に限定されない。1つの第2電極の第1部分62Aと2つの第2電極の第2部分62B1,62B2とが設けられたモード同期半導体レーザ素子(マルチセクション型(多電極型)の半導体レーザ素子)の模式的な端面図を図9に示す。図9に示すモード同期半導体レーザ素子にあっては、第1部分62Aの一端が、一方の分離溝62C1を挟んで、一方の第2部分62B1と対向し、第1部分62Aの他端が、他方の分離溝62C2を挟んで、他方の第2部分62B2と対向している。そして、1つの発光領域41が、2つの可飽和吸収領域421,422によって挟まれている。あるいは又、2つの第2電極の第1部分62A1,62A2と1つの第2電極の第2部分62Bとが設けられたモード同期半導体レーザ素子の模式的な端面図を図10に示す。このモード同期半導体レーザ素子にあっては、第2部分62Bの端部が、一方の分離溝62C1を挟んで、一方の第1部分62A1と対向し、第2部分62Bの他端が、他方の分離溝62C2を挟んで、他方の第1部分62A2と対向している。そして、1つの可飽和吸収領域42が、2つの発光領域411,412によって挟まれている。
 半導体レーザ素子を、斜め導波路を有する斜めリッジストライプ型の分離閉じ込めヘテロ構造の半導体レーザ素子とすることもできる。このような半導体レーザ素子におけるリッジストライプ構造55’を上方から眺めた模式図を図11に示す。このモード同期半導体レーザ素子にあっては、直線状の2つのリッジストライプ構造が組み合わされた構造を有し、2つのリッジストライプ構造の交差する角度θの値は、例えば、
0<θ≦10(度)
好ましくは、
0<θ≦6(度)
とすることが望ましい。斜めリッジストライプ型を採用することで、無反射コートをされた第2端面の反射率を、より0%の理想値に近づけることができ、その結果、半導体レーザ素子内で周回してしまうレーザ光の発生を防ぐことができ、主たるレーザ光に付随する副次的なレーザ光の生成を抑制できるといった利点を得ることができる。
 実施例においては、半導体レーザ素子や半導体光増幅器を、n型GaN基板の極性面であるC面,{0001}面上に設けた。ところで、このような場合、第3化合物半導体層(活性層)にピエゾ分極及び自発分極に起因した内部電界によるQCSE効果(量子閉じ込めシュタルク効果)によって、電気的に可飽和吸収が制御し難くなる場合がある。即ち、場合によっては、セルフ・パルセーション動作及びモード同期動作を得るために第1電極に流す直流電流の値及び可飽和吸収領域に印加する逆バイアス電圧の値を高くする必要が生じたり、メインパルスに付随したサブパルス成分が発生したり、外部信号と光パルスとの間での同期が取り難くなることがある。このような現象の発生を抑制するためには、{11-20}面であるA面、{1-100}面であるM面、{1-102}面といった無極性面上、あるいは又、{11-24}面や{11-22}面を含む{11-2n}面、{10-11}面、{10-12}面といった半極性面上に、半導体レーザ素子や半導体光増幅器を設ければよい。これによって、半導体レーザ素子や半導体光増幅器の第3化合物半導体層(活性層)にたとえピエゾ分極及び自発分極が生じた場合であっても、第3化合物半導体層の厚さ方向にピエゾ分極が生じることは無く、第3化合物半導体層の厚さ方向とは略直角の方向にピエゾ分極が生じるので、ピエゾ分極及び自発分極に起因した悪影響を排除することができる。{11-2n}面とは、ほぼC面に対して40度を成す無極性面を意味する。また、無極性面上あるいは半極性面上に半導体レーザ素子10を設ける場合、実施例3にて説明したような、井戸層の厚さの制限(1nm以上、10nm以下)及び障壁層の不純物ドーピング濃度の制限(2×1018cm-3以上、1×1020cm-3以下)を無くすことが可能である。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《半導体発光素子組立体:第1の態様》
 第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する半導体発光素子を備えており、
 活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
ΔI2>ΔI1
を満足する半導体発光素子組立体。
[A02]光パルスの繰り返し周波数が光学系の距離で決定される基本周波数から基本周波数の2倍の周波数に変化するときの動作電流が、動作電流範囲の上限値である[A01]に記載の半導体発光素子組立体。
[A03]活性層の温度がT1のときの動作電流範囲の上限値をImax-1、活性層の温度がT2のときの動作電流範囲の上限値をImax-2としたとき、
max-2>Imax-1
を満足する[A01]又は[A02]に記載の半導体発光素子組立体。
[A04]《半導体発光素子組立体:第2の態様》
 第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する半導体発光素子を備えており、
 活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
2>P1
を満足する半導体発光素子組立体。
[A05]ヒートシンク、及び、サブマウントを更に備えており、
 ヒートシンク、サブマウント及び半導体発光素子が、順次、積層されている[A01]乃至[A04]のいずれか1項に記載の半導体発光素子組立体。
[A06]サブマウントは、AlN、Si、SiC、Cu、W、Mo、Al、ダイヤモンド、又は、これらの材料を含む複合材料から成る[A05]に記載の半導体発光素子組立体。
[A07]ヒートシンクによって活性層の温度を制御する[A05]又は[A06]に記載の半導体発光素子組立体。
[A08]ヒートシンクを加熱することによって活性層の温度を制御する[A07]に記載の半導体発光素子組立体。
[A09]積層構造体は、共振器方向に発光領域と可飽和吸収領域とが並置された構造を有する[A01]乃至[A08]のいずれか1項に記載の半導体発光素子組立体。
[A10]可飽和吸収領域は、共振器方向の積層構造体の端部領域に配置されている[A09]に記載の半導体発光素子組立体。
[A11]発光領域に流す電流を、発光領域の単位面積当たり1×102アンペア/cm2乃至1×105アンペア/cm2とする[A09]又は[A10]に記載の半導体発光素子組立体。
[A12]積層構造体は複数の機能領域が集積された構造を有する[A01]乃至[A08]のいずれか1項に記載の半導体発光素子組立体。
[A13]複数の機能領域の内の少なくとも1つは可飽和吸収領域から成る[A12]に記載の半導体発光素子組立体。
[B01]《半導体発光素子:第1の態様》
 第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有し、
 活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
ΔI2>ΔI1
を満足する半導体発光素子。
[B02]光パルスの繰り返し周波数が光学系の距離で決定される基本周波数から基本周波数の2倍の周波数に変化するときの動作電流が、動作電流範囲の上限値である[B01]に記載の半導体発光素子。
[B03]活性層の温度がT1のときの動作電流範囲の上限値をImax-1、活性層の温度がT2のときの動作電流範囲の上限値をImax-2としたとき、
max-2>Imax-1
を満足する[B01]又は[B02]に記載の半導体発光素子。
[B04]《半導体発光素子:第2の態様》
 第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有し、
 活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
2>P1
を満足する半導体発光素子。
[B05]積層構造体は、共振器方向に発光領域と可飽和吸収領域とが並置された構造を有する[B01]乃至[B04]のいずれか1項に記載の半導体発光素子。
[B06]可飽和吸収領域は、共振器方向の積層構造体の端部領域に配置されている[B05]に記載の半導体発光素子。
[B07]発光領域に流す電流を、発光領域の単位面積当たり1×102アンペア/cm2乃至1×105アンペア/cm2とする[B05]又は[B06]に記載の半導体発光素子。
[B08]積層構造体は複数の機能領域が集積された構造を有する[B01]乃至[B04]のいずれか1項に記載の半導体発光素子。
[B09]複数の機能領域の内の少なくとも1つは可飽和吸収領域から成る[B08]に記載の半導体発光素子。
10・・・半導体発光素子(半導体レーザ素子、モード同期半導体レーザ素子)、11・・・コリメート手段(レンズ)、12,12A,12B・・・光学部材、13・・・反射鏡、14・・・光アイソレータ、15A,15B,16,17・・・集光手段(レンズ)、21・・・基体(基板)、22・・・パッド電極、30・・・第1化合物半導体層、31・・・n型AlGaNクラッド層、32・・・n型GaNクラッド層、40・・・第3化合物半導体層(活性層)、41,411,412・・・発光領域、42,421,422・・・可飽和吸収領域、50・・・第2化合物半導体層、51・・・ノンドープInGaN光ガイド層、52・・・p型AlGaN電子障壁層(Mgドープ)、53・・・p型GaN(Mgドープ)/AlGaN超格子クラッド層、54・・・p型GaNコンタクト層(Mgドープ)、55,55’・・・リッジストライプ構造、56・・・積層絶縁膜、61・・・第1電極、62・・・第2電極、62A,62A1,62A2・・・第2電極の第1部分、62B,62B1,62B2・・・第2電極の第2部分、62C,62C1,62C2・・・分離溝、63・・・Pd単層、64・・・レジスト層、65・・・レジスト層に設けられた開口部、101・・・ヒートシンク、102,103・・・ハンダ層、104・・・サブマウント、200・・・半導体光増幅器

Claims (15)

  1.  第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する半導体発光素子を備えており、
     活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
    ΔI2>ΔI1
    を満足する半導体発光素子組立体。
  2.  光パルスの繰り返し周波数が光学系の距離で決定される基本周波数から基本周波数の2倍の周波数に変化するときの動作電流が、動作電流範囲の上限値である請求項1に記載の半導体発光素子組立体。
  3.  活性層の温度がT1のときの動作電流範囲の上限値をImax-1、活性層の温度がT2のときの動作電流範囲の上限値をImax-2としたとき、
    max-2>Imax-1
    を満足する請求項1に記載の半導体発光素子組立体。
  4.  第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有する半導体発光素子を備えており、
     活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
    2>P1
    を満足する半導体発光素子組立体。
  5.  ヒートシンク、及び、サブマウントを更に備えており、
     ヒートシンク、サブマウント及び半導体発光素子が、順次、積層されている請求項1又は請求項4に記載の半導体発光素子組立体。
  6.  サブマウントは、AlN、Si、SiC、Cu、W、Mo、Al、ダイヤモンド、又は、これらの材料を含む複合材料から成る請求項5に記載の半導体発光素子組立体。
  7.  ヒートシンクによって活性層の温度を制御する請求項5に記載の半導体発光素子組立体。
  8.  ヒートシンクを加熱することによって活性層の温度を制御する請求項7に記載の半導体発光素子組立体。
  9.  積層構造体は、共振器方向に発光領域と可飽和吸収領域とが並置された構造を有する請求項1又は請求項4に記載の半導体発光素子組立体。
  10.  可飽和吸収領域は、共振器方向の積層構造体の端部領域に配置されている請求項9に記載の半導体発光素子組立体。
  11.  発光領域に流す電流を、発光領域の単位面積当たり1×102アンペア/cm2乃至1×105アンペア/cm2とする請求項9に記載の半導体発光素子組立体。
  12.  積層構造体は複数の機能領域が集積された構造を有する請求項1又は請求項4に記載の半導体発光素子組立体。
  13.  複数の機能領域の内の少なくとも1つは可飽和吸収領域から成る請求項12に記載の半導体発光素子組立体。
  14.  第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有し、
     活性層の温度がT1のときの動作電流範囲をΔI1、活性層の温度がT2(但し、T2>T1)のときの動作電流範囲をΔI2としたとき、
    ΔI2>ΔI1
    を満足する半導体発光素子。
  15.  第1化合物半導体層、活性層及び第2化合物半導体層が積層された積層構造体を有し、
     活性層の温度がT1のときに出射される最大光出力をP1、活性層の温度がT2(但し、T2>T1)のときに出射される最大光出力をP2としたとき、
    2>P1
    を満足する半導体発光素子。
PCT/JP2015/085329 2015-03-19 2015-12-17 半導体発光素子及び半導体発光素子組立体 WO2016147512A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017506033A JP6934129B2 (ja) 2015-03-19 2015-12-17 半導体発光素子組立体の駆動方法
EP15885604.7A EP3273551A4 (en) 2015-03-19 2015-12-17 Semiconductor light emitting element and semiconductor light emitting element assembly
US15/556,970 US10686291B2 (en) 2015-03-19 2015-12-17 Semiconductor light emitting element and semiconductor light emitting element assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056280 2015-03-19
JP2015-056280 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147512A1 true WO2016147512A1 (ja) 2016-09-22

Family

ID=56919755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085329 WO2016147512A1 (ja) 2015-03-19 2015-12-17 半導体発光素子及び半導体発光素子組立体

Country Status (4)

Country Link
US (1) US10686291B2 (ja)
EP (1) EP3273551A4 (ja)
JP (1) JP6934129B2 (ja)
WO (1) WO2016147512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087524A1 (ja) * 2017-11-02 2019-05-09 ソニー株式会社 半導体レーザ駆動回路、半導体レーザ駆動回路の駆動方法、距離測定装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
JP2003324237A (ja) * 2002-04-26 2003-11-14 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュールおよびこれを用いた光ファイバ増幅器
WO2013153999A1 (ja) * 2012-04-09 2013-10-17 ソニー株式会社 半導体レーザ装置組立体
WO2014126164A1 (ja) * 2013-02-13 2014-08-21 古河電気工業株式会社 半導体光素子、半導体レーザ素子、及びその製造方法、並びに半導体レーザモジュール及び半導体素子の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190947A (ja) * 1992-01-10 1993-07-30 Fujitsu Ltd 半導体レーザの駆動方法
DE69404190T2 (de) * 1993-03-30 1998-02-19 Nec Corp Frequenzstabilisationsverfahren für Halbleiterlaser und frequenzstabilisierte Lichtquelle
JP4046778B2 (ja) * 1995-04-05 2008-02-13 ソニー株式会社 光学ディスク記録再生装置
JP3740291B2 (ja) * 1998-08-24 2006-02-01 日本オプネクスト株式会社 光送信器
EP1130710A3 (en) * 2000-01-20 2003-09-17 Cyoptics (Israel) Ltd. High repetition rate optical pulse generator
US7072372B2 (en) 2002-02-14 2006-07-04 The Furukawa Electric Co., Ltd. Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
JP2008187108A (ja) * 2007-01-31 2008-08-14 Seiko Epson Corp 光素子およびその製造方法
US8073031B2 (en) * 2008-03-03 2011-12-06 Sharp Kabushiki Kaisha Laser diode with improved heat dissipation
JP5394717B2 (ja) * 2008-12-15 2014-01-22 日本オクラロ株式会社 窒化物半導体光素子の製造方法
JP2010251712A (ja) * 2009-03-26 2010-11-04 Sony Corp バイ・セクション型半導体レーザ素子及びその製造方法、並びに、バイ・セクション型半導体レーザ素子の駆動方法
JP5412943B2 (ja) * 2009-05-11 2014-02-12 住友電気工業株式会社 窒化物半導体発光素子、及びエピタキシャル基板
JP2011018784A (ja) * 2009-07-09 2011-01-27 Sony Corp 半導体レーザ素子及びその駆動方法、並びに、半導体レーザ装置
JP2012015266A (ja) * 2010-06-30 2012-01-19 Sony Corp 半導体光増幅器
JP2012164737A (ja) * 2011-02-04 2012-08-30 Sony Corp サブマウント、サブマウント組立体及びサブマウント組立方法
JP2014175565A (ja) 2013-03-12 2014-09-22 Ushio Inc 半導体レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
JP2003324237A (ja) * 2002-04-26 2003-11-14 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュールおよびこれを用いた光ファイバ増幅器
WO2013153999A1 (ja) * 2012-04-09 2013-10-17 ソニー株式会社 半導体レーザ装置組立体
WO2014126164A1 (ja) * 2013-02-13 2014-08-21 古河電気工業株式会社 半導体光素子、半導体レーザ素子、及びその製造方法、並びに半導体レーザモジュール及び半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273551A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087524A1 (ja) * 2017-11-02 2019-05-09 ソニー株式会社 半導体レーザ駆動回路、半導体レーザ駆動回路の駆動方法、距離測定装置及び電子機器
JPWO2019087524A1 (ja) * 2017-11-02 2020-11-26 ソニー株式会社 半導体レーザ駆動回路、半導体レーザ駆動回路の駆動方法、距離測定装置及び電子機器
JP7160045B2 (ja) 2017-11-02 2022-10-25 ソニーグループ株式会社 半導体レーザ駆動回路、距離測定装置及び電子機器
US11594855B2 (en) 2017-11-02 2023-02-28 Sony Corporation Semiconductor laser drive circuit, method for driving semiconductor laser drive circuit, distance measuring apparatus, and electronic apparatus

Also Published As

Publication number Publication date
EP3273551A1 (en) 2018-01-24
EP3273551A4 (en) 2018-11-14
US20180054039A1 (en) 2018-02-22
JPWO2016147512A1 (ja) 2017-12-28
US10686291B2 (en) 2020-06-16
JP6934129B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5710935B2 (ja) 半導体光増幅器組立体
JP5623159B2 (ja) 半導体光増幅器の位置合わせ方法及び光出力装置
JP5138023B2 (ja) 半導体レーザ素子
EP2802045B1 (en) Semiconductor-laser-device assembly
JP5743624B2 (ja) 半導体レーザ素子組立体及びその駆動方法
JP2012015266A (ja) 半導体光増幅器
JP2010251712A (ja) バイ・セクション型半導体レーザ素子及びその製造方法、並びに、バイ・セクション型半導体レーザ素子の駆動方法
JP6391904B2 (ja) 半導体レーザ装置組立体
JP2011187579A (ja) モードロック半導体レーザ素子及びその駆動方法
JPWO2013153999A1 (ja) 半導体レーザ装置組立体
JP2011187580A (ja) 自励発振型半導体レーザ素子及びその駆動方法
JP2013074002A (ja) 発光素子及びその製造方法
US9025631B2 (en) Light-emitting device and method of manufacturing the same
WO2012098965A1 (ja) 半導体レーザ素子
JP5868480B2 (ja) 半導体レーザ装置組立体
JP6387968B2 (ja) 半導体レーザ素子
JP6934129B2 (ja) 半導体発光素子組立体の駆動方法
JP5536132B2 (ja) 半導体レーザ素子
JP6080798B2 (ja) 半導体光増幅器及び半導体レーザ装置組立体並びに半導体光増幅器の位置調整方法
WO2016063605A1 (ja) 光半導体素子及びレーザ装置組立体
JP6702350B2 (ja) 半導体レーザ装置組立体
WO2018207422A1 (ja) レーザ装置組立体
JP2014078753A (ja) モードロック半導体レーザ素子及び半導体レーザ装置組立体
JP2014007434A (ja) モードロック半導体レーザ素子及び半導体レーザ装置組立体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506033

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015885604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE