WO2016147450A1 - 量子カスケードレーザ - Google Patents

量子カスケードレーザ Download PDF

Info

Publication number
WO2016147450A1
WO2016147450A1 PCT/JP2015/076577 JP2015076577W WO2016147450A1 WO 2016147450 A1 WO2016147450 A1 WO 2016147450A1 JP 2015076577 W JP2015076577 W JP 2015076577W WO 2016147450 A1 WO2016147450 A1 WO 2016147450A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
quantum
cascade laser
lattice constant
Prior art date
Application number
PCT/JP2015/076577
Other languages
English (en)
French (fr)
Inventor
秀彦 薮原
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP15883654.4A priority Critical patent/EP3273552A1/en
Priority to JP2016556339A priority patent/JP6282756B2/ja
Priority to CN201580011072.9A priority patent/CN106165219B/zh
Priority to US15/125,812 priority patent/US10096974B2/en
Publication of WO2016147450A1 publication Critical patent/WO2016147450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34366Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3406Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation

Definitions

  • Embodiments of the present invention relate to a quantum cascade laser.
  • Quantum cascade laser Quantum Cascade Laser
  • a semiconductor is small, highly convenient, and enables high-precision measurement.
  • the quantum cascade laser has, for example, GaInAs and AlInAs stacked alternately and has an active layer including a quantum well layer. Then, both side surfaces of the active layer have a structure sandwiched between, for example, InP clad layers.
  • the cascade-connected quantum well layers can emit infrared laser light having a wavelength of 3 to 20 ⁇ m due to intersubband transition of carriers.
  • CO 2 gas contained in exhaled breath has a unique absorption spectrum due to infrared irradiation.
  • the gas concentration can be known by measuring the amount of infrared absorption.
  • the isotope ratio of 13 CO 2 and 12 CO 2 it is possible to diagnose the presence or absence of a human body abnormality.
  • the wavelength range of the laser light emitted from the quantum cascade laser is required to be controlled to a range of 3.5 to 4.5 ⁇ m.
  • a quantum cascade laser capable of high output in a wavelength band of 4.5 ⁇ m or less.
  • the active layer of the quantum cascade laser has a plurality of light emitting regions and a plurality of injection regions.
  • Each light emitting region has an injection barrier layer and a light emitting quantum well layer that has at least two well layers and emits infrared light by intersubband transition.
  • Each injection region includes an extraction barrier layer and a relaxation quantum well layer that forms an energy level that relaxes the energy of carriers from the light emitting region.
  • the well layer on the extraction barrier layer side is deeper than the second well layer on the injection barrier layer side.
  • the respective light emitting regions and the respective injection regions are alternately stacked.
  • FIG. 1A is a schematic perspective view in which the semiconductor laser device according to the first embodiment of the present invention is partially cut
  • FIG. 1B is a schematic cross-sectional view along the line AA.
  • 2A is an energy band diagram of the conduction band of a QCL quantum well structure having a lattice-matched luminescence quantum well layer
  • FIG. 2B is a conduction diagram of a QCL having a luminescence quantum well layer whose lattice is not matched. It is an energy band figure of a belt. It is an energy band figure (electric field is zero) of the conduction band of QCL concerning a 1st embodiment.
  • FIG. 4A is an energy band diagram of the QCL conduction band according to the second embodiment (when an electric field is applied), and FIG.
  • FIG. 4B is a graph of a gain spectrum.
  • FIG. 5A is an energy band diagram (when an electric field is applied) of the conduction band of the QCL according to the comparative example, and FIG. 5B is a graph of gain dependence with respect to wavelength.
  • FIG. 6A is an energy band diagram of the conduction band of the QCL according to the third embodiment (when an electric field is applied), and FIG. 6B is a graph of gain dependence with respect to wavelength.
  • FIG. 7A is an energy band diagram of the conduction band of the QCL according to the fourth embodiment (when an electric field is applied), and FIG. 7B is a graph of gain dependence with respect to wavelength.
  • FIG. 8A is an energy band diagram of the conduction band of the QCL according to the fifth embodiment (when an electric field is applied), and FIG.
  • FIG. 8B is a graph of gain dependence with respect to wavelength.
  • FIG. 9A is an energy band diagram of the conduction band of the QCL according to the sixth embodiment (when an electric field is applied), and FIG. 9B is a graph of gain dependence with respect to wavelength.
  • FIG. 10A is an energy band diagram of the conduction band of the QCL according to the seventh embodiment (when an electric field is applied), and FIG. 10B is a graph of gain dependence with respect to wavelength.
  • FIG. 11A is a graph showing the absorption coefficients of 13 CO 2 and 12 CO 2 at wave numbers 2275 to 2325 cm ⁇ 1
  • FIG. 11B is a graph showing the absorption coefficient of wave numbers 2295.7 to 2296.3 cm ⁇ 1 . .
  • FIG. 1A is a schematic perspective view in which the quantum cascade laser according to the first embodiment of the present invention is partially cut
  • FIG. 1B is a schematic cross-sectional view along the line AA.
  • the quantum cascade laser includes at least a substrate 10, a stacked body 20 provided on the substrate 10, and a dielectric layer 40.
  • the QCL may further include a first electrode 50, a second electrode 52, and an insulating film 42.
  • the stacked body 20 includes a first cladding layer 22, a first guide layer 23, an active layer 24, a second guide layer 25, and a second cladding layer 28.
  • the refractive index of the first cladding layer 22 and the refractive index of the second cladding layer 28 are respectively lower than the refractive indexes of the first guide layer 23, the active layer 24, and the second guide layer 25,
  • the infrared laser beam 60 is appropriately confined in the stacking direction of the active layer 24.
  • the stacked body 20 has a stripe shape and can be called a ridge waveguide RG.
  • the two end surfaces of the ridge waveguide RG are mirror surfaces, the stimulated emission light is emitted from the light exit surface as infrared laser light 62.
  • the optical axis 62 is defined as a line connecting the centers of the cross sections of the optical resonator having the mirror surface as the resonance surface. That is, the optical axis 62 coincides with the extending direction of the ridge waveguide RG.
  • the width WA in the direction parallel to the first surface 24a and the second surface 24b of the active layer 24 is too wide, a high-order mode is generated in the horizontal horizontal direction, It becomes difficult to obtain an output. If the width WA of the active layer 24 is set to 5 to 20 ⁇ m, for example, the control in the horizontal and transverse mode becomes easy. Assuming that the refractive index of the dielectric layer 40 is lower than the refractive index of any layer constituting the active layer 24, the dielectric layer 40 provided so as to sandwich the side surfaces 20a and 20b of the stacked body 20 causes the optical axis to be A ridge waveguide RG can be formed along the line 62.
  • FIG. 2A is an energy band diagram of a QCL quantum well structure having a lattice-matched light-emitting quantum well layer
  • FIG. 2B is an energy band diagram of a QCL having a light-emitting quantum well layer whose lattice is not matched.
  • QCL having a light emitting quantum well layer represented in FIG. 2 (a) has a MQW (Multi-Quatum Well) structure of three well layers, the depth D C of the potential (energy) of the well layer is the same Shall.
  • Both the well layer and the barrier layer constituting the light emitting quantum well layer are lattice-matched to InP (lattice constant a0: about 5.8687 angstrom) which is a substrate.
  • the well layer may be made of In 0.53 Ga 0.47 As and the barrier layer may be made of In 0.52 Al 0.48 As.
  • the QCL comprises a light emitting quantum well layer represented in FIG. 2 (b), the has a deep well layer depth D D than the depth D C of the well layer represented in FIG. 2 (a).
  • the lattice constant a1 is about 5.9242 angstroms.
  • the barrier layer is made of In 0.362 Al 0.638 As, the lattice constant a2 is about 5.8049 angstroms.
  • a compressive stress is applied to the well layer and a tensile stress is applied to the barrier layer with respect to InP serving as the substrate 10.
  • the depth of the well layer is equal to the energy discontinuity ⁇ E C of the conduction band E C.
  • the distortion compensation MQW represented in FIG. 2 (b) it can be larger than the depth D C of the well layers representing the depth D D of the well layer in FIG. 2 (a). Therefore, the interval between the subband levels of the well layer can be increased, and the wavelength ⁇ 1 of the infrared light due to the intersubband transition ST can be made shorter than the wavelength ⁇ 2 of the subband transition shown in FIG.
  • FIG. 3 is an energy band diagram (electric field is zero) of the conduction band of the QCL according to the first embodiment.
  • the first embodiment is QCL using electrons as carriers.
  • the light emitting quantum well layer 86 has a plurality of well layers.
  • the depth of the well layer from the injection barrier layer B1 side is represented by D1, D2, and D3.
  • the depth of the well layer on the extraction barrier layer BE side is deeper than the well layer on the injection barrier layer BI side. That is, D1 ⁇ D2 or D2 ⁇ D3. Further, as shown in the figure, D1 ⁇ D2 ⁇ D3 may be satisfied.
  • the wavelength of infrared light can be shortened.
  • the relaxation quantum well layer 88 may be lattice-matched to the substrate 10.
  • FIG. 4A is an energy band diagram of the QCL conduction band according to the second embodiment (when an electric field is applied), and FIG. 4B is a graph of a gain spectrum.
  • the active layer 24 has a cascade structure in which light emitting regions and injection regions are alternately stacked.
  • the electron wave function can be obtained by simulation.
  • the light emitting regions 82 and 92 include an injection barrier layer BI and light emitting quantum well layers 86 and 96 that have at least two well layers and emit infrared light by intersubband transition.
  • the injection regions 84 and 94 relax the energy of carriers from the extraction barrier layer BE and the light emitting regions 82 and 92, and inject energy into the next light emitting region (miniband levels Lm1, Lm2, etc.).
  • the well layer on the extraction barrier layer BE side among the at least two adjacent well layers is deeper than the well layer on the injection barrier layer BI side.
  • the depth of the well layer is D3 ⁇ D1 ⁇ D2.
  • the depth of the well layer may gradually increase (D1 ⁇ D2 ⁇ D3).
  • the energy levels become discrete and subbands (high level Lu, low level Ll) and the like are generated.
  • Carriers injected from the injection barrier layer BI are effectively confined in the well layer, the carriers transition from the high level Lu to the low level Ll, and light (h ⁇ ) corresponding to (Lu ⁇ Ll) is emitted. .
  • the energy L11 and L12 of the carriers injected into the injection region are relaxed to the miniband level Lm2 while passing through the relaxation quantum well layers 88 and 98.
  • Table 1 represents the configuration of the QCL unit laminate according to the third embodiment.
  • the numbers in the last column represent the thickness (angstrom) of each layer.
  • the well layers constituting the light emitting quantum well layers 86 and 96 are all made of In 0.53 Ga 0.47 As and lattice-matched with InP (lattice constant: a0) of the substrate 10.
  • the conduction band edges of the barrier layers constituting the light-emitting quantum well layers 86 and 96 are increased, and the barrier layers are increased (that is, the well layers are deepened).
  • the barrier layers are increased (that is, the well layers are deepened).
  • carriers are effectively confined in the well layers in the light emitting regions 82 and 92, and the light output can be increased.
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 can be lattice-matched to InP of the substrate 10. If it does in this way, crystallinity will be maintained favorable as a whole.
  • the conduction band E C In the energy band diagram when an electric field is applied, the conduction band E C is inclined. In the tilted energy band diagram, the energy E C at the conduction band edge of the barrier layer in the broken line region RB1 is locally changed by changing the composition ratio of the two barrier layers of the light emitting quantum well layers 86 and 96 to make lattice mismatch. Can be almost the same height.
  • the intersubband transition mainly occurs in the second well layer (depth D1) of the light emitting quantum well layers 86 and 96.
  • the vertical axis represents relative net mode gain
  • the horizontal axis represents wavelength ( ⁇ m).
  • the wavelength at which the net mode gain is maximized is in the vicinity of 3.7 ⁇ m and 4.3 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • FIG. 5A is an energy band diagram (when electric field is applied) of the conduction band of the QCL according to the comparative example, and FIG.
  • Table 2 all the quantum wells of the light emitting regions 182 and 192 and the injection regions 184 and 194 are lattice-matched to InP of the substrate 10.
  • the height of the barrier layer is constant, and carriers leaking to the extraction barrier layer BE beyond the barrier layers of the light emitting quantum well layers 186 and 196 increase.
  • the light confinement effect is lowered, and it is difficult to increase the transition between subbands. As a result, the light output is low.
  • the wavelength at which the gain is maximized is 4.4 ⁇ m or more, which is shorter than this. Is difficult.
  • FIG. 6A is an energy band diagram of the conduction band of the QCL according to the third embodiment (when an electric field is applied), and FIG. 6B is a graph of gain dependence with respect to wavelength.
  • Table 3 represents the configuration of the QCL unit laminate according to the third embodiment.
  • the well layers constituting the light emitting quantum well layers 86 and 96 are all made of In 0.53 Ga 0.47 As and lattice-matched with InP of the substrate 10.
  • lattice constants of two adjacent layers composed of In 0.48 Al 0.52 As and In 0.46 Al 0.54 As, respectively. a2 is smaller than the lattice constant a0 of InP of the substrate 10. For this reason, as indicated by the broken line region RB2, the conduction band edges of the light emitting quantum well layers 86 and 96 are further raised as compared with the second embodiment, and the barrier layer is further increased (that is, the well layer is deepened).
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 are lattice-matched to InP of Rob Plan 10. For this reason, the fall of crystallinity is suppressed as a whole.
  • the wavelength at which the gain is maximized is in the vicinity of 3.7 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • FIG. 7A is an energy band diagram of the conduction band of the QCL according to the fourth embodiment (when an electric field is applied), and FIG. 7B is a graph of gain dependence with respect to wavelength.
  • Table 4 represents the configuration of the QCL unit laminate according to the fourth embodiment.
  • the lattice constant a1 of the two layers having In 0.55 Ga 0.45 As and In 0.57 Ga 0.43 As is the substrate 10 It is larger than the lattice constant a0 of InP. For this reason, as represented by the broken line region RW1, the conduction band edges of the well layers of the light emitting quantum well layers 86 and 96 are lowered and the well layers are deepened.
  • the conduction band edges of the light emitting quantum well layers 86 and 96 are higher than those in the second embodiment, and the barrier layer is further increased (that is, the well layer is deepened).
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 are lattice-matched to InP of the substrate 10. For this reason, the fall of crystallinity is suppressed as a whole.
  • the wavelength at which the gain is maximized is in the vicinity of 3.6 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • FIG. 8A is an energy band diagram of the conduction band of the QCL according to the fifth embodiment (when an electric field is applied), and FIG. 8B is a graph of gain dependence with respect to wavelength. Moreover, (Table 5) represents the structure of the unit laminated body of QCL concerning 5th Embodiment.
  • the conduction band edges of the light emitting quantum well layers 86 and 96 are higher than those of the second embodiment, and the barrier layer is further increased (that is, the well layer is deepened).
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 are lattice-matched to InP of the substrate 10. For this reason, the fall of crystallinity is suppressed as a whole.
  • the wavelength at which the gain is maximized is in the vicinity of 3.6 ⁇ m and 4.3 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • FIG. 9A is a conduction band energy band diagram of QCL according to the sixth embodiment (when an electric field is applied), and FIG. 9B is a graph of gain dependence with respect to wavelength.
  • Table 6 shows the structure of the QCL unit laminate according to the seventh embodiment.
  • the lattice constant a2 of the two layers composed of In 0.48 Al 0.52 As and In 0.46 Al 0.54 As, respectively, is The lattice constant a0 of InP of the substrate 10 is smaller.
  • the conduction band edges of the light emitting quantum well layers 86 and 96 are higher than those of the second embodiment, and the barrier layer is further increased (that is, the well layer is deepened).
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 are lattice-matched to InP of the substrate 10. For this reason, the fall of crystallinity is suppressed as a whole.
  • the wavelength at which the gain is maximized is in the vicinity of 3.55 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • FIG. 10A is an energy band diagram (electric field applied state) of the conduction band of the QCL according to the seventh embodiment
  • FIG. 10B is a graph of gain dependence with respect to wavelength.
  • (Table 7) represents the structure of the unit laminated body of QCL concerning 7th Embodiment.
  • the barrier layers constituting the light emitting quantum well layers 86 and 96 In 0.48 Al 0.52 As, In 0.46 Al 0.54 As, and In 0.48 Al 0.52 As, respectively.
  • the lattice constant a2 of these three layers is smaller than the lattice constant a0 of InP of the substrate 10.
  • the conduction band edges of the light emitting quantum well layers 86 and 96 are higher than those of the second embodiment, and the barrier layer is further increased (that is, the well layer is deepened).
  • the injection barrier layer BI, the extraction barrier layer BE, and the relaxation quantum well layers 88 and 98 are lattice-matched to InP of the substrate 10. For this reason, the fall of crystallinity is suppressed as a whole.
  • the wavelength at which the gain is maximized is in the vicinity of 3.55 ⁇ m. Therefore, spectroscopic measurement of 13 CO 2 and 12 CO 2 is possible.
  • a quantum cascade laser capable of increasing the output in the wavelength band of 4.4 ⁇ m or less is provided.
  • FIG. 11A is a graph showing the absorption coefficients of 13 CO 2 and 12 CO 2 at wave numbers 2275 to 2325 cm ⁇ 1
  • FIG. 11B is a graph showing the absorption coefficient of wave numbers 2295.7 to 2296.3 cm ⁇ 1 .
  • the CO 2 concentration is 8%
  • the pressure is 0.5 atm
  • the temperature is 313K.
  • the isotopes of 13 CO 2 and 12 CO 2 can be used to detect H. pylori.
  • a human drinks a reagent containing 13 C-urea as a labeled compound. If there is H. pylori in the stomach, it reacts with the reagent and 13 CO 2 is discharged as nausea. On the other hand, without H. pylori, 13 CO 2 is not discharged. Therefore, by measuring the isotope ratio of 13 CO 2 and 12 CO 2 , the degree of Helicobacter pylori infection can be known, and the stomach can be diagnosed with high accuracy.
  • the test object is not limited to H. pylori. By measuring the concentration of CO 2 containing isotopes, the gastric emptying ability can be diagnosed in a wide range.
  • FIG. 11A shows a wave number of 2275 cm ⁇ 1 (wavelength: 4.396 ⁇ m) to a wave number of 2325 cm ⁇ 1 (wavelength: 4.301 ⁇ m) is preferable.
  • FIG. 11B shows a wave number range including one of the 12 CO 2 absorption lines and one of the 13 CO 2 absorption lines.
  • the maximum value of the gain occurs at a wavelength of 4.4 ⁇ m or more, and it is difficult to cover a preferable wave number range.
  • the maximum value of the gain can be controlled in the range of 3.55 to 4.5 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 量子カスケードレーザの活性層は、複数の発光領域と、複数の注入領域と、を有する。それぞれの発光領域は、注入障壁層と、少なくとも2つの井戸層を有しサブバンド間遷移により赤外光を放出する発光量子井戸層と、を有する。それぞれの注入領域は、抽出障壁層と、前記発光領域からのキャリアのエネルギーを緩和するエネルギー準位を形成する緩和量子井戸層と、を有する。それぞれの発光量子井戸層内で隣接する2つの井戸層において、前記抽出障壁層の側の井戸層は、前記注入障壁層の側の第2井戸層よりも深い。それぞれの発光領域とそれぞれの注入領域とは交互に積層される。

Description

量子カスケードレーザ
 本発明の実施形態は、量子カスケードレーザに関する。
 赤外光を放出するレーザ装置は、環境測定など広い分野に応用されている。このうち、半導体からなる量子カスケードレーザ(QCL:Quantum Cascade Laser)は、小型で利便性が高く、高精度の測定を可能とする。
 量子カスケードレーザは、例えばGaInAsとAlInAsとが交互に積層され、量子井戸層を含む活性層を有する。そして、活性層の両側面が、例えばInPクラッド層により挟まれた構造を有している。この場合、カスケード接続された量子井戸層は、キャリアのサブバンド間遷移により波長3~20μmの赤外線レーザ光を放出可能である。
 たとえば、呼気中に含まれるCOガスは、赤外線照射により固有の吸収スペクトルを有する。このため、赤外線吸収量を測定することにより、ガスの濃度を知ることができる。
 また、13CO12COの同位体比を測定すると、ヒトの身体の異常の有無を診断することが可能となる。この場合、量子カスケードレーザから放出されるレーザ光の波長範囲は、3.5~4.5μmの範囲などに制御することが要求される。
特開2010-278326号公報
 4.5μm以下の波長帯域で高出力化が可能な量子カスケードレーザを提供する。
 実施形態の量子カスケードレーザの活性層は、複数の発光領域と、複数の注入領域と、を有する。それぞれの発光領域は、注入障壁層と、少なくとも2つの井戸層を有しサブバンド間遷移により赤外光を放出する発光量子井戸層と、を有する。それぞれの注入領域は、抽出障壁層と、前記発光領域からのキャリアのエネルギーを緩和するエネルギー準位を形成する緩和量子井戸層と、を有する。それぞれの発光量子井戸層内で隣接する2つの井戸層において、前記抽出障壁層の側の井戸層は、前記注入障壁層の側の第2井戸層よりも深い。それぞれの発光領域とそれぞれの注入領域とは交互に積層される。
図1(a)は本発明の第1の実施形態にかかる半導体レーザ装置を部分切断した模式斜視図、図1(b)はA-A線に沿った模式断面図、である。 図2(a)は格子整合された発光量子井戸層を有するQCLの量子井戸構造の伝導帯のエネルギーバンド図、図2(b)は格子が整合されていない発光量子井戸層を有するQCLの伝導帯のエネルギーバンド図、である。 第1の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界はゼロ)である。 図4(a)は第2の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図4(b)は利得スペクトルのグラフ図、である。 図5(a)は比較例にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図5(b)は波長に対する利得依存性のグラフ図、である。 図6(a)は第3の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図6(b)は波長に対する利得依存性のグラフ図、である。 図7(a)は第4の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図7(b)は波長に対する利得依存性のグラフ図、である。 図8(a)は第5の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図8(b)は波長に対する利得依存性のグラフ図、である。 図9(a)は第6の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図9(b)は波長に対する利得依存性のグラフ図、である。 図10(a)は第7の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図10(b)は波長に対する利得依存性のグラフ図、である。 図11(a)は波数2275~2325cm-1における13COおよび12COの吸収係数、図11(b)は波数2295.7~2296.3cm-1の吸収係数、を表すグラフ図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。
 図1(a)は本発明の第1の実施形態にかかる量子カスケードレーザを部分切断した模式斜視図、図1(b)はA-A線に沿った模式断面図、である。
 量子カスケードレーザ(QCL:Quantum Cascade Laser)は、基板10と、基板10の上に設けられた積層体20と、誘電体層40と、を少なくとも有する。また、QCLは、第1電極50と、第2電極52と、絶縁膜42と、をさらに有してもよい。
 積層体20は、第1クラッド層22と、第1ガイド層23と、活性層24と、第2ガイド層25と、第2クラッド層28と、を有している。第1クラッド層22の屈折率と、第2クラッド層28の屈折率と、は、第1ガイド層23、活性層24、および第2ガイド層25、の屈折率のいずれよりもそれぞれ低くし、活性層24の積層方向に赤外線レーザ光60を適正に閉じ込めるようにする。
 また、積層体20は、ストライプの形状を有しており、リッジ導波路RGと呼ぶことができる。リッジ導波路RGの2つの端面をミラー面とすると、誘導放出された光は、赤外線レーザ光62として、光出射面から放出される。この場合、光軸62は、ミラー面を共振面とする光共振器の断面の中心を結ぶ線と定義する。すなわち、光軸62は、リッジ導波路RGの延在する方向と一致する。
 光軸62に対して垂直な断面において、活性層24の第1の面24a、第2の面24b、に平行な方向の幅WAが広すぎると、水平横方向に高次モードを生じ、高出力とすることが困難となる。活性層24の幅WAは、例えば5~20μmなどとすると、水平横方向モードの制御が容易となる。誘電体層40の屈折率が活性層24を構成するいずれの層の屈折率よりも低いものとすると、積層体20の側面20a、20bを挟むように設けられた誘電体層40により、光軸62に沿ってリッジ導波路RGを構成することができる。
 図2(a)は格子整合された発光量子井戸層を有するのQCLの量子井戸構造のエネルギーバンド図、図2(b)は格子が整合されていない発光量子井戸層を有するQCLのエネルギーバンド図、である。
 図2(a)に表す発光量子井戸層を有するQCLは、3つの井戸層のMQW(Multi-Quatum  Well)構造を有し、井戸層のポテンシャル(エネルギー)の深さDは、同一であるものとする。発光量子井戸層を構成する井戸層および障壁層は、ともに基板であるInP(格子定数a0:約5.8687オングストローム)に格子整合させる。たとえば、井戸層をIn0.53Ga0.47Asからなるものとし、障壁層をIn0.52Al0.48Asからなるものとすればよい。
 また、図2(b)に表す発光量子井戸層を有するQCLでは、図2(a)に表す井戸層の深さDよりも深い井戸層深さDを有する。たとえば、井戸層をIn0.669Ga0.331Asからなるものとすると、格子定数a1は約5.9242オングストロームとなる。また、障壁層をIn0.362Al0.638Asからなるものとすると、格子定数a2は約5.8049オングストロームとなる。この結果、基板10とするInPに対して、井戸層には圧縮応力が加わり、障壁層には引っ張り応力が加わる。なお、井戸層の深さは、伝導帯Eのエネルギ不連続ΔEに等しい。
 図2(b)に表す歪補償MQWでは、井戸層の深さDを図2(a)に表す井戸層の深さDよりも大きくできる。このため、井戸層のサブバンド準位の間隔を広げ、サブバンド間遷移STによる赤外光の波長λ1を、図2(a)に表すサブバンド遷移の波長λ2よりも短くできる。
 図3は、第1の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界はゼロ)である。
 なお、 第1の実施形態は、電子をキャリアとするQCLである。
 発光量子井戸層86は、複数の井戸層を有する。たとえば、注入障壁層B1側から井戸層の深さを、D1、D2、D3で表すものとする。3つの井戸層のうち、隣接する2つの井戸層において、抽出障壁層BEの側の井戸層の深さは、注入障壁層BIの側の井戸層よりも深い。すなわち、D1<D2、またはD2<D3とする。また、本図のように、D1<D2<D3としてもよい。第1の実施形態では、井戸層を深くするため、赤外光の波長を短くできる。
 また、キャリアを深い井戸層内に効率よく閉じ込め、サブバンド間遷移STを促進することができる。このため、高出力化が可能となる。なお、サブバンド準位は、井戸層の厚さや障壁層の厚さなどによって変化する。このため、発光波長は、井戸層の厚さや障壁層の厚さなどによって変化する。緩和量子井戸層88は、基板10に対して格子整合していてもよい。
 図4(a)は第2の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図4(b)は利得スペクトルのグラフ図、である。
 活性層24は、発光領域と、注入領域と、が交互に積層されたカスケード構造を有する。なお、電子の波動関数は、シミュレーションにより求めることができる。
 発光領域82、92は、注入障壁層BIと、少なくとも2つの井戸層を有しサブバンド間遷移により赤外光を放出する発光量子井戸層86、96と、を有する。注入領域84、94は、抽出障壁層BEと、発光領域82、92からのキャリアのエネルギーを緩和し、次の発光領域へとキャリアを注入するエネルギー準位(ミニバンド準位Lm1、Lm2など)を形成する緩和量子井戸層88、98と、を有する。それぞれの発光量子井戸層86、96において、隣接する少なくとも2つの井戸層のうち抽出障壁層BEの側の井戸層は、注入障壁層BIの側の井戸層よりも深くする。本図において、井戸層の深さは、D3<D1<D2とする。但し、井戸層の深さが、次第に深くなってよい(D1<D2<D3)。
 発光量子井戸層86、96を構成する井戸層の厚さを小さくしていくと、エネルギー準位が離散して、サブバンド(高準位Lu、低準位Ll)、などを生じる。注入障壁層BIから注入されたキャリアは井戸層に効果的に閉じ込められ、高準位Luから低準位Llへキャリアが遷移し、(Lu-Ll)に対応した光(hν)が放出される。なお、注入領域に注入されたキャリアのエネルギーLl1、Ll2は、緩和量子井戸層88、98を通過しつつミニバンド準位Lm2に緩和される。
 (表1)は、第3の実施形態にかかるQCLの単位積層体の構成を表す。最後の列の数字は、それぞれの層の厚さ(オングストローム)を表す。

Figure JPOXMLDOC01-appb-T000001
 発光量子井戸層86、96を構成する井戸層は、すべてIn0.53Ga0.47Asからなり、基板10のInP(格子定数:a0)に格子整合している。他方、発光量子井戸層86、96を構成する障壁層のうち、それぞれIn0.5Al0.5Asと、In0.48Al0.52Asと、からなり隣接する2つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、エネルギーバンド図の破線領域RB1に表すように、発光量子井戸層86、96を構成する障壁層の伝導帯端が上がり、障壁層が高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92内の井戸層に効果的に閉じ込められ光出力を高めることができる。
 注入障壁層BI、抽出障壁層BE、および緩和量子井戸層88、98は、基板10のInPに格子整合させることができる。このようにすると、全体として、結晶性が良好に保たれる。なお、電界印加時のエネルギーバンド図は、伝導帯Eが傾斜する。発光量子井戸層86、96の2つの障壁層の組成比を変化させ格子不整合とすることなどにより、傾斜したエネルギーバンド図において、破線領域RB1の障壁層の伝導帯端のエネルギーEを局所的にほぼ同じ高さにできる。
 なお、本図において、サブバンド間遷移は、主に、発光量子井戸層86、96の2番目の井戸層(深さD1)で生じている。
 図4(b)において、縦軸は、相対ネットモード利得、横軸は波長(μm)、を表す。ネットモード利得をG、光閉じ込め係数をΓ、媒質利得をg、内部損失をα、とするとき、ネットモード利得Gは次式で表される。

    G=Γ×g-α
 ネットモード利得が極大となる波長は、3.7μmおよび4.3μmの近傍である。このため、13CO12COの分光測定が可能である。
 図5(a)は比較例にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図5(b)は波長に対する利得依存性のグラフ図、である。
 比較例では、(表2)に表すように、発光領域182、192および注入領域184、194のすべての量子井戸は、基板10のInPに格子整合している。このため、破線領域RBCで表すように、障壁層の高さが一定であり、発光量子井戸層186、196の障壁層を越えて抽出障壁層BEに漏れ出るキャリアが増加する。このため、光閉じ込め効果が低下し、サブバンド間遷移を高めることが困難となる。この結果、光出力は低い。

Figure JPOXMLDOC01-appb-T000002
  図5(b)に表すように、発光量子井戸層186,196は基板10のInPに格子整合しているので利得が極大となる波長は4.4μm以上となり、これよりも短波長とすることが困難である。
 図6(a)は第3の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図6(b)は波長に対する利得依存性のグラフ図、である。
 また、(表3)は、第3の実施形態にかかるQCLの単位積層体の構成を表す。

Figure JPOXMLDOC01-appb-T000003
 発光量子井戸層86、96を構成する井戸層は、すべてIn0.53Ga0.47Asからなり、基板10のInPに格子整合している。他方、発光量子井戸層86、96を構成する障壁層のうち、それぞれIn0.48Al0.52Asと、In0.46Al0.54Asと、からなり隣接する2つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、破線領域RB2で表すように、発光量子井戸層86、96の伝導帯端が第2の実施形態よりもさらに上がり、障壁層がさらに高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92の井戸層内にさらに効果的に閉じ込められ光出力を高めることができる。注入障壁層BI、抽出障壁層BEおよび緩和量子井戸層88、98は、ロブ案10のInPに格子整合している。このため、全体として、結晶性の低下が抑制される。
 図6(b)に表すように、利得が極大となる波長は、3.7μmの近傍にある。このため、13CO12COの分光測定が可能である。
 図7(a)は第4の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図7(b)は波長に対する利得依存性のグラフ図、である。
 また、(表4)は、第4の実施形態にかかるQCLの単位積層体の構成を表す。

Figure JPOXMLDOC01-appb-T000004
 発光量子井戸層86、96を構成する井戸層のうち、In0.55Ga0.45Asと、In0.57Ga0.43Asと、を有する2つの層の格子定数a1は、基板10のInPの格子定数a0よりも大きい。このため、破線領域RW1で表すように、発光量子井戸層86、96の井戸層の伝導帯端が下がり、井戸層が深くなる。
 他方、発光量子井戸層86、96を構成する障壁層のうち、それぞれIn0.50Al0.50Asと、In0.48Al0.52Asからなる2つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、破線領域RB2で表すように、発光量子井戸層86、96の伝導帯端が第2の実施形態よりも上がり、障壁層がさらに高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92の井戸層内に効果的に閉じ込められ光出力を高めることができる。注入障壁層BI、抽出障壁層BE、および緩和量子井戸層88、98は、基板10のInPに格子整合している。このため、全体として、結晶性の低下が抑制される。
 図7(b)に表すように、利得が極大となる波長は、3.6μm近傍にある。このため、13CO12COの分光測定が可能である。
  図8(a)は第5の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加時)、図8(b)は波長に対する利得依存性のグラフ図、である。
 また、(表5)は、第5の実施形態にかかるQCLの単位積層体の構成を表す。

Figure JPOXMLDOC01-appb-T000005
 発光量子井戸層86、96を構成する井戸層のうち、In0.57Ga0.43Asと、In0.59Ga0.41Asと、を有する2つの層の格子定数a1は、基板10のInPの格子定数a0よりも大きい。このため、破線領域RW2で表すように、発光量子井戸層86、96の井戸層の伝導帯端が下がり、井戸層が深くなる。
 他方、発光量子井戸層86を構成する障壁層のうち、それぞれIn0.50Al0.50Asと、In0.48Al0.52Asと、からなる2つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、破線領域RB2に表すように、発光量子井戸層86、96の伝導帯端が第2の実施形態よりも上がり、障壁層がさらに高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92の井戸層内に効果的に閉じ込められ光出力を高めることができる。注入障壁層BI、抽出障壁層BE、緩和量子井戸層88、98は、基板10のInPに格子整合している。このため、全体として、結晶性の低下が抑制される。
 図8(b)に表すように、利得が極大となる波長は、3.6μmおよび4.3μmの近傍にある。このため、13CO12COの分光測定が可能である。
 図9(a)は第6の実施形態にかかるQCLの伝導帯エネルギーバンド図(電界印加時)、図9(b)は波長に対する利得依存性のグラフ図、である。
 また、(表6)は、第7の実施形態にかかるQCLの単位積層体の構成を表す。

Figure JPOXMLDOC01-appb-T000006
 発光量子井戸層86、96を構成する井戸層のうち、In0.57Ga0.43Asと、In0.59Ga0.41Asと、を有する2つの層の格子定数a1は、基板10のInPの格子定数a0よりも大きい。このため、発光量子井戸層86、96の井戸層の伝導帯端が下がり、井戸層が深くなる。
 他方、発光量子井戸層86、96を構成する障壁層のうち、それぞれIn0.48Al0.52Asと、In0.46Al0.54Asと、からなる2つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、発光量子井戸層86、96の伝導帯端が第2の実施形態よりも上がり、障壁層がさらに高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92の井戸層内に効果的に閉じ込められ光出力を高めることができる。注入障壁層BI、抽出障壁層BE、緩和量子井戸層88、98は、基板10のInPに格子整合している。このため、全体として、結晶性の低下が抑制される。
 図9(b)に表すように、利得が極大となる波長は、3.55μmの近傍にある。このため、13CO12COの分光測定が可能である。
 図10(a)は第7の実施形態にかかるQCLの伝導帯のエネルギーバンド図(電界印加状態)、図10(b)は波長に対する利得依存性のグラフ図、である。
 また、(表7)は、第7の実施形態にかかるQCLの単位積層体の構成を表す。

Figure JPOXMLDOC01-appb-T000007
 発光量子井戸層86、96を構成する井戸層のうち、In0.57Ga0.43Asと、In0.59Ga0.41Asと、を有する2つの層の格子定数a1は、基板10のInPの格子定数a0よりも大きい。このため、破線領域RW2に表すように、発光量子井戸層86、96の井戸層の伝導帯端が下がり、井戸層が深くなる。
 他方、発光量子井戸層86、96を構成する障壁層のうち、それぞれIn0.48Al0.52Asと、In0.46Al0.54Asと、In0.48Al0.52Asからなる3つの層の格子定数a2は、基板10のInPの格子定数a0よりも小さい。このため、破線領域RB3に表すように、発光量子井戸層86、96の伝導帯端が第2の実施形態よりも上がり、障壁層がさらに高くなる(すなわち、井戸層が深くなる)。この結果、キャリアは、発光領域82、92の井戸層内に効果的に閉じ込められ光出力を高めることができる。注入障壁層BI、抽出障壁層BE、および緩和量子井戸層88、98は、基板10のInPに格子整合している。このため、全体として、結晶性の低下が抑制される。
 図10(b)に表すように、利得が極大となる波長は、3.55μmの近傍にある。このため、13CO12COの分光測定が可能である。
 第1~7の実施形態によれば、4.4μm以下の波長帯域で高出力化が可能な量子カスケードレーザが提供される。
 図11(a)は波数2275~2325cm-1における13COおよび12COの吸収係数、図11(b)は波数2295.7~2296.3cm-1の吸収係数、を表すグラフ図である。
 なお、CO濃度は8%、圧力は0.5気圧、温度は313K、とする。
 たとえば、13COおよび12COの同位体を用いると、ピロリ菌を検出することができる。まず、ヒトが、13C―尿素を含む試薬を標識化合物として飲む。胃内にピロリ菌があると試薬と反応して13COを吐気として排出する。他方ピロリ菌がないと13COが排出されない。このため、13CO12COとの同位体比を測定することにより、ピロリ菌感染の程度を知ることができ、精度よく胃の診断ができる。なお、検査対象は、ピロリ菌に限定されない。同位体を含むCO濃度を測定することにより、胃の排出能を広い範囲で診断できる。
 この場合、13CO12COとの吸収係数が同じ程度になる波数範囲となる赤外光を用いると、高いガス濃度における飽和が抑制され測定精度を高めることができる。たとえば、図11(a)に表すように、波数2275cm-1(波長が4.396μm)~波数2325cm-1(波長が4.301μm)の範囲が好ましい。なお、図11(b)は、12COの吸収線の1つと、13COの吸収線の1つとを含む波数範囲を表す。
 比較例のQCLでは、利得の極大値は4.4μm以上の波長で生じ、好ましい波数範囲をカバーすることが困難である。これに対して、本実施形態では、利得の極大値を3.55~4.5μmの範囲に制御することができる。このため、本実施形態のQCLを光源とする呼気分析装置は、呼気に含まれる13CO12COとの同位体比を精度よく測定し、胃を含むヒトの診断に役立てることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (19)

  1.  注入障壁層と少なくとも2つの井戸層を有しサブバンド間遷移により赤外光を放出する発光量子井戸層とを含む複数の発光領域と、抽出障壁層と前記発光領域からのキャリアのエネルギーを緩和するエネルギー準位を形成する緩和量子井戸層とを含む複数の注入領域と、を有する活性層を備え、
     それぞれの発光量子井戸層内で隣接する2つの井戸層において、前記抽出障壁層の側の井戸層は、前記注入障壁層の側の第2井戸層よりも深く、
     それぞれの発光領域とそれぞれの注入領域とが交互に積層された、量子カスケードレーザ。
  2.  前記それぞれの発光量子井戸層において、前記抽出障壁層に向かうに従って井戸層が深くなる請求項1記載の量子カスケードレーザ。
  3.  前記発光領域と前記注入領域とが交互に積層される基板をさらに備えた請求項2記載の量子カスケードレーザ。
  4.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも小さい格子定数を有する障壁層を少なくとも1つ有する請求項3記載の量子カスケードレーザ。
  5.  電界が印加されて前記サブバンド間遷移を生じるとき、前記発光量子井戸層の障壁層のうち少なくとも2つの伝導帯端エネルギーは同一である請求項4記載の量子カスケードレーザ。 
  6.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項3記載の量子カスケードレーザ。
  7.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項4記載の量子カスケードレーザ。
  8.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項5記載の量子カスケードレーザ。
  9.  前記それぞれの緩和量子井戸層は、前記基板の格子定数に整合した障壁層および井戸層を有する請求項3記載の量子カスケードレーザ。
  10.  前記それぞれの緩和量子井戸層は、同一の深さを有する複数の井戸層を含む請求項9記載の量子カスケードレーザ。
  11.  前記発光領域と前記注入領域とが交互に積層される基板をさらに備えた請求項1記載の量子カスケードレーザ。
  12.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも小さい格子定数を有する障壁層を少なくとも1つ有する請求項11記載の量子カスケードレーザ。
  13.  電界が印加されて前記サブバンド間遷移を生じるとき、前記発光量子井戸層の障壁層のうち少なくとも2つの伝導帯端エネルギーは同一である請求項12記載の量子カスケードレーザ。 
  14.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項11記載の量子カスケードレーザ。
  15.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項12記載の量子カスケードレーザ。
  16.  前記それぞれの発光量子井戸層は、前記基板の格子定数よりも大きい格子定数を有する井戸層を少なくとも1つ有する請求項13記載の量子カスケードレーザ。
  17.  前記それぞれの緩和量子井戸層は、前記基板の格子定数に整合した障壁層および井戸層を有する請求項11記載の量子カスケードレーザ。 
  18.  前記それぞれの緩和量子井戸層は、同一の深さを有する複数の井戸層を含む請求項17記載の量子カスケードレーザ。
  19.  前記基板はInPを含み、
     前記複数の発光領域および前記複数の注入領域は、InGaAsを含む井戸層とInAlAsを含む障壁層とを含む多重量子井戸層をそれぞれ有する請求項1記載の量子カスケードレーザ。
PCT/JP2015/076577 2015-03-13 2015-09-17 量子カスケードレーザ WO2016147450A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15883654.4A EP3273552A1 (en) 2015-03-13 2015-09-17 Quantum cascade laser
JP2016556339A JP6282756B2 (ja) 2015-03-13 2015-09-17 量子カスケードレーザ
CN201580011072.9A CN106165219B (zh) 2015-03-13 2015-09-17 量子级联激光器
US15/125,812 US10096974B2 (en) 2015-03-13 2015-09-17 Quantum cascade laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050522 2015-03-13
JP2015050522 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147450A1 true WO2016147450A1 (ja) 2016-09-22

Family

ID=56918594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076577 WO2016147450A1 (ja) 2015-03-13 2015-09-17 量子カスケードレーザ

Country Status (5)

Country Link
US (1) US10096974B2 (ja)
EP (1) EP3273552A1 (ja)
JP (1) JP6282756B2 (ja)
CN (1) CN106165219B (ja)
WO (1) WO2016147450A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258233B2 (en) * 2017-12-27 2022-02-22 Kabushiki Kaisha Toshiba Quantum cascade laser
TWI667854B (zh) * 2017-12-28 2019-08-01 日商東芝股份有限公司 量子級聯雷射
KR20200049026A (ko) * 2018-10-31 2020-05-08 엘지이노텍 주식회사 표면발광 레이저소자 및 이를 포함하는 발광장치
CN117117624A (zh) * 2023-08-21 2023-11-24 重庆师范大学 一种分布式悬浮颗粒增益模块及激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036530A1 (en) * 2001-09-07 2005-02-17 Harald Schneider Unipolar quantum cascade laser
JP2010278326A (ja) 2009-05-29 2010-12-09 Hamamatsu Photonics Kk 量子カスケードレーザ
US20130107903A1 (en) * 2011-10-28 2013-05-02 Wisconsin Alumni Research Foundation Quantum cascade structures on metamorphic buffer layer structures
JP2013534369A (ja) * 2010-08-12 2013-09-02 ウイスコンシン アラムニ リサーチ ファンデーション 電子リークが低減された高出力・高効率量子カスケードレーザ
JP2014534648A (ja) * 2011-11-29 2014-12-18 コーニング インコーポレイテッド 階段状井戸活性領域を有する量子カスケードレーザ構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403552B2 (en) * 2006-03-10 2008-07-22 Wisconsin Alumni Research Foundation High efficiency intersubband semiconductor lasers
JP5248881B2 (ja) * 2008-02-28 2013-07-31 浜松ホトニクス株式会社 量子カスケードレーザ
JP5776229B2 (ja) * 2011-03-07 2015-09-09 住友電気工業株式会社 量子カスケードレーザ
US8971369B2 (en) * 2012-04-10 2015-03-03 Quantiox Gmbh Quantum cascade laser structure
JP2013254907A (ja) * 2012-06-08 2013-12-19 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036530A1 (en) * 2001-09-07 2005-02-17 Harald Schneider Unipolar quantum cascade laser
JP2010278326A (ja) 2009-05-29 2010-12-09 Hamamatsu Photonics Kk 量子カスケードレーザ
JP2013534369A (ja) * 2010-08-12 2013-09-02 ウイスコンシン アラムニ リサーチ ファンデーション 電子リークが低減された高出力・高効率量子カスケードレーザ
US20130107903A1 (en) * 2011-10-28 2013-05-02 Wisconsin Alumni Research Foundation Quantum cascade structures on metamorphic buffer layer structures
JP2014534648A (ja) * 2011-11-29 2014-12-18 コーニング インコーポレイテッド 階段状井戸活性領域を有する量子カスケードレーザ構造

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG XIE ET AL.: "Room Temperture CW Operation of Short Wavelength Quantum Cascade Lasers Made of Strain Balanced GaxIn1-xAs/AlyIn1-yAs Material on InP Substrates", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 17, no. 5, 16 May 2011 (2011-05-16), pages 1445 - 1452, XP011360901 *
J.D.KIRCH ET AL.: "Tapered active-region quantum cascade lasers (lambda=4.8mum) for virtual suppression of carrier-leakage currents", ELECTRONICS LETTERS, vol. 48, no. 4, 16 February 2012 (2012-02-16), pages 234 - 235, XP006040646 *
JEROME FAIST ET AL.: "Short wavelength (lambda- 3.4pm) quantum cascade laser based on strained compensated InGaAs/AlInAs", APPLIED PHYSICS LETTERS, vol. 72, no. 6, 9 February 1998 (1998-02-09), pages 680 - 682, XP012020679 *
L.J.MAWST ET AL.: "InGaAs/AlInAs strain- compensated Superlattices grown on metamorphic buffer layers for low-strain, 3.6pm-emitting quantum-cascade- laser active regions", JOURNAL OF CRYSTALGROWTH, vol. 370, 9 July 2012 (2012-07-09), pages 230 - 235, XP055312176 *

Also Published As

Publication number Publication date
JP6282756B2 (ja) 2018-02-21
EP3273552A1 (en) 2018-01-24
CN106165219B (zh) 2019-04-23
JPWO2016147450A1 (ja) 2017-04-27
US10096974B2 (en) 2018-10-09
US20180006434A1 (en) 2018-01-04
CN106165219A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6282756B2 (ja) 量子カスケードレーザ
JP5372349B2 (ja) 量子カスケードレーザ素子
JP5638483B2 (ja) 半導体レーザ装置
US8993999B2 (en) Semiconductor light emitting device and method for manufacturing same
Kim et al. Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers
TW201342753A (zh) 用於具有由串接級製成之活性核心之中紅外線多波長串級分佈反饋式雷射的波導結構
JP2013254765A (ja) 量子カスケードレーザ
US10014662B2 (en) Quantum cascade laser
Lv et al. Broadband external cavity tunable quantum dot lasers with low injection current density
JP6581024B2 (ja) 分布帰還型半導体レーザ
CN106062533A (zh) 呼气测量装置和呼气测量方法以及气室
US20130148678A1 (en) Quantum cascade laser source with ultrabroadband spectral coverage
EP2713138B1 (en) Light source and optical coherence tomography apparatus using the same
JP2013254764A (ja) 量子カスケードレーザ
JP6557649B2 (ja) 量子カスケードレーザ
WO2015019650A1 (ja) 呼気診断装置
WO2015136739A1 (ja) 半導体レーザ装置
Flores Mid-infrared quantum cascade lasers: theoretical and experimental studieson temperature-driven scattering
Bushell Development of novel infrared photonic materials and devices
TWI667854B (zh) 量子級聯雷射
CN110021878B (zh) 量子级联激光器
Hecht 1. Home Photonic Frontiers: Antimonide lasers fill hole in the mid-infrared spectrum Jan. 5, 2010 Development of III-V diode lasers based on GaSb and related compounds promises new mid-infrared sources at 2 to 4.2 µm for applications including gas sensing, medicine, and infrared countermeasures.
Demić et al. Analysis of dipole matrix element in quantum well and quantum cascade laser under the influence of external magnetic field
Sanchez Cristobal High Spectral Brightness, Broad Area Quantum Cascade Lasers
Khodr Effects of Temperature on Tunability of PbSe/PbSrSe Quantum Well Lasers in the Infrared Region

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016556339

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125812

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015883654

Country of ref document: EP