WO2015019650A1 - 呼気診断装置 - Google Patents
呼気診断装置 Download PDFInfo
- Publication number
- WO2015019650A1 WO2015019650A1 PCT/JP2014/056693 JP2014056693W WO2015019650A1 WO 2015019650 A1 WO2015019650 A1 WO 2015019650A1 JP 2014056693 W JP2014056693 W JP 2014056693W WO 2015019650 A1 WO2015019650 A1 WO 2015019650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emitted light
- diagnosis apparatus
- wavelength
- adjustment mechanism
- gas
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 37
- 230000000241 respiratory effect Effects 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 95
- 230000007246 mechanism Effects 0.000 claims abstract description 48
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910001868 water Inorganic materials 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 claims description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000011295 pitch Substances 0.000 claims description 2
- 238000013519 translation Methods 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 238000005259 measurement Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 238000005253 cladding Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241001125929 Trisopterus luscus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/082—Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
- G01N2021/396—Type of laser source
- G01N2021/399—Diode laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
Definitions
- Embodiments of the present invention relate to a breath diagnosis apparatus.
- Laser devices that emit infrared light are applied in a wide range of fields such as environmental measurement and gas concentration measurement.
- One example of this application is a breath diagnosis device. That is, human exhalation contains various gases, so if the gas concentration of exhalation can be measured, disease prevention and early detection are facilitated.
- an infrared light source is a large-sized device that consumes a large amount of power, such as a carbon dioxide laser device or a Raman laser device, and the breath diagnosis device is also enlarged.
- the breath diagnosis apparatus of the embodiment can measure the concentrations of a plurality of types of gases contained in the breath.
- the breath diagnosis apparatus includes: a semiconductor light emitting device that emits emitted light by relaxing energy of electrons between subbands of a plurality of quantum wells; and a wavelength of the emitted light that absorbs one kind of gas among the plurality of kinds of gases.
- a first adjustment mechanism that shifts into a spectrum a wavelength control unit that has a second adjustment mechanism that shifts the wavelength of the emitted light within the absorption spectrum of one kind of gas, an exhalation suction port, an exhalation discharge port, From a housing having a light emission light incident window, a light emission light emission window, a detection unit for detecting the intensity of the light emission light, and a measurement value of the intensity of the light emission emitted from the light emission window And a signal processing unit for calculating concentrations of the plurality of types of gases.
- FIG. 1A is a configuration diagram of the breath diagnosis apparatus according to the first embodiment
- FIG. 1B is a schematic diagram of absorption spectra of a plurality of gases
- FIG. 1C is a first adjustment mechanism for wavelength control
- FIG. It is a figure explaining a 2nd adjustment mechanism. It is a figure showing the relationship between a trace gas and the wavelength of infrared light required in order to detect this. It is a graph showing the dependence of the degree of absorption on the wave number (reciprocal of wavelength) of ammonia, carbon dioxide, and water. It is a flowchart of the expiration measurement. It is a graph showing an example of the absorption spectrum of measured gas. It is a flowchart concerning the 1st modification of expiration measurement.
- FIG. 8A shows a first modification of the first adjustment mechanism
- FIG. 8B shows a second modification thereof
- FIG. 8C shows a third modification thereof.
- FIG. 9A is a configuration diagram of the breath diagnosis apparatus according to the second embodiment
- FIG. 9B is a block diagram of the breath diagnosis apparatus according to the third embodiment.
- FIG. 10A is a schematic perspective view in which the quantum cascade laser is partially cut
- FIG. 10B is a schematic cross-sectional view along the line AA.
- FIG. 11A is a configuration diagram of the breath diagnosis apparatus according to the fourth embodiment
- FIG. 11B is a schematic diagram in the vicinity of the external resonator
- FIGS. 12A and 12B are schematic plan views of a diffraction grating used in the breath diagnosis apparatus according to the fourth embodiment. It is a band figure explaining the effect
- FIG. 1A is a configuration diagram of the breath diagnosis apparatus according to the first embodiment
- FIG. 1B is a schematic diagram of absorption spectra of a plurality of gases
- FIG. 1C is a first adjustment mechanism of a wavelength controller. It is a figure explaining a 2nd adjustment mechanism.
- the breath diagnosis apparatus includes a semiconductor light emitting element including a quantum cascade laser 70, a wavelength control unit, a gas cell (corresponding to “casing”) 80, a detection unit 87, and a signal processing unit 88.
- the semiconductor light emitting element and the wavelength control unit can be referred to as a light source unit 91.
- the wavelength control unit includes a first adjustment mechanism that shifts the wavelength of emitted light including infrared laser light and the like into an absorption spectrum of one type of gas included in exhaled gas such as a human, and one type And a second adjustment mechanism that shifts in the absorption spectrum of the gas.
- the first adjustment mechanism includes a diffraction grating 71.
- the diffraction grating 71 is provided so as to intersect the optical axis 62 of the quantum cascade laser 70 and constitutes an external resonator.
- the incident angle of the infrared laser beam is changed to ⁇ 1 to ⁇ 4 or the like according to the absorption spectrum of each gas, and the wavelength of the infrared laser beam is changed.
- the diffraction grating 71 is rotationally controlled around an axis that intersects the optical axis 62 by a stepping motor 99 and a controller 98 that controls the diffraction grating 71.
- a non-reflective coating film AR on the end face of the quantum cascade laser 70 on the diffraction grating 71 side.
- a partial reflection coating film PR is provided on the side opposite to the non-reflective coating film AR, an external resonator can be formed with the diffraction grating 71.
- the second adjustment mechanism keeps the diffraction grating 71 constant without rotating it.
- the wavelength adjustment is performed by changing the operating current value I LD or duty of the quantum cascade laser 70, changing the operating temperature of the quantum cascade laser 70 using the Peltier element 90, or changing the external resonator length by a piezo element or the like. It can be realized by, for example.
- the second adjustment mechanism may change the operating temperature of the quantum cascade laser 70 by any one or a combination of a chiller, a heater, and a refrigerant.
- the refrigerant can be, for example, liquid nitrogen, water, ethanol water, or liquid helium.
- the gas concentrations of acetone (absorption peak on the vertical axis is near 7.37 ⁇ m) and methane (absorption peak is near 7.7 ⁇ m) are measured.
- the absorption spectra of different gases are largely separated from each other, for example, approximately 0.3 ⁇ m. For this reason, in order to measure a plurality of gases in a short time (for example, 1 minute), it is preferable to quickly increase the wavelength of the infrared laser light and increase the shift width by the first adjustment mechanism.
- the shift width when wavelength adjustment is performed within the absorption spectrum of one gas, the shift width may be narrower than the wavelength range in the first adjustment mechanism.
- it is required to increase the adjustment accuracy. That is, it is not easy to realize the first adjustment mechanism that is mainly coarse adjustment and the second adjustment mechanism that is mainly fine adjustment with the same wavelength control mechanism.
- the gas cell 80 includes an exhalation suction port 81, an exhalation discharge port 82, an infrared laser light incident window 83, and an infrared laser light emission window 84.
- the laser beam from the quantum cascade laser 70 has a divergence angle. For this reason, the collimating optical system 72 is provided between the quantum cascade laser 70 and the incident window 83.
- a condensing optical system 86 may be provided between the exit window 84 and the detector 87.
- the detector 87 detects the intensity of the infrared laser beam.
- the incident light intensity of the infrared laser light incident on the incident window 83 of the gas cell 80 is I 0 and the transmission intensity of the laser light emitted from the emission window 84 is I
- the absorbance A is expressed by Expression (1). be able to.
- the incident light intensity Io can be measured by replacing the inside of the gas cell 80 with the atmosphere and irradiating with infrared laser light.
- the signal processing unit 88 calculates the partial pressure Pa (that is, the gas concentration) of the gas from the equation (1).
- Human breath BR includes nitrogen, oxygen, carbon dioxide, water, etc. as main components. At the same time, 1000 or more kinds of different molecules are contained in a very small amount, and a change in a very small amount of gas becomes an indicator of a disease. For this reason, if the trace gas G1 contained in the exhalation is measured, it becomes possible to detect and prevent the disease early. By using the breath diagnosis apparatus in this way, it is possible to make a diagnosis in a short time and more easily than performing a blood test or the like.
- acetone can be detected as the trace gas G1
- diabetes can be found.
- a detection sensitivity of about ppm using infrared rays having a wavelength of 7 to 8 ⁇ m is required.
- hepatitis can be discovered if ammonia can be detected as a trace gas.
- detection sensitivity of about ppb is required using infrared rays having a wavelength of 10.3 ⁇ m. If ethanol or acetaldehyde can be detected as a trace gas, the amount of drinking can be measured.
- FIG. 2 is a diagram showing the relationship between the wavelength of infrared light necessary to detect a trace gas and the amount of absorbed infrared light.
- the wavelength of the quantum cascade laser is 4 to 11 ⁇ m, most of the light absorption spectrum of the trace gas can be detected.
- FIG. 3 is a graph showing the dependence of the absorbance on the wave number (reciprocal of wavelength) of ammonia, carbon dioxide, and water.
- the vertical axis represents Absorption (absorption amount) ⁇ 10 ⁇ 3 (%), and the horizontal axis represents the wave number (reciprocal of wavelength) (cm ⁇ 1 ).
- the light absorption of only ammonia is obtained by fine tuning the light source to the absorption wavelength of ammonia in the narrow spectrum of the quantum cascade laser. It is possible.
- FIG. 4 is a flowchart of the exhalation measurement.
- the breath diagnosis apparatus is turned on.
- the quantum cascade laser 70 can also be turned on.
- the gas cell 80 is evacuated and replaced with, for example, the atmosphere (S100).
- the wavelength of the quantum cascade laser 70 is roughly adjusted within the absorption spectrum of the first gas by the first adjustment mechanism (S102).
- the wavelength of the quantum cascade laser 70 is finely adjusted to the vicinity of the absorption peak value of the absorption spectrum of the first gas by the second adjustment mechanism.
- the detector 87 measures the transmission intensity of the infrared laser beam that has passed through the atmosphere (equal to the incident light intensity Io incident on the incident window 83) and sets it as a reference signal value (S104).
- step S106 it is determined whether there is a gas to be measured next. If YES, the process returns to step S102 and the reference signal value of the second gas is measured. If NO, the measurement of the reference signal value is terminated (S106).
- the wavelength of the quantum cascade laser 70 is roughly adjusted in the measured gas absorption spectrum by the first adjustment mechanism (S110).
- the wavelength of the quantum cascade laser 70 is finely adjusted to the vicinity of the absorption peak value of the absorption spectrum of the first gas by the second adjustment mechanism.
- the detector 87 measures the transmission intensity I of the infrared laser beam that has passed through the breath in the gas cell 80 and sets it as the measured gas signal value (S112).
- FIG. 5 is a graph showing an example of the absorption spectrum of the gas to be measured.
- the vertical axis represents the relative absorption amount, and the horizontal axis represents the wavelength ( ⁇ m).
- the first gas is acetone
- the second gas is methane.
- the absorption peak of acetone is near 7.35 ⁇ m in wavelength.
- the absorption peak of methane has a wavelength in the vicinity of 7.63 ⁇ m. Therefore, when acetone and methane are contained as in exhalation, an absorption spectrum in which both are added is obtained.
- the acetone gas absorbance A can be calculated by the equation (1) using the acetone gas signal value and the acetone reference signal value measured by fine adjustment to around 7.35 ⁇ m by the second adjustment mechanism (S116).
- the methane gas absorbance A can be calculated by the formula (1) using the methane gas signal value and the methane gas reference signal value measured by fine adjustment to around 7.63 ⁇ m by the second adjustment mechanism (S116).
- the gas concentration is calculated using the fact that the absorbance A and the gas partial pressure P (that is, the gas concentration) are in a proportional relationship.
- the atmosphere in the gas cell 80 is replaced with air (S118), and the expiration measurement is terminated.
- the wavelength can be quickly shifted by the first adjustment mechanism, and the next measurement can be performed. For this reason, a plurality of gases to be measured can be measured in a short time. Further, since the wavelength can be finely adjusted in the vicinity of the absorption peak value by the second adjustment mechanism, the measurement accuracy can be increased.
- FIG. 6 is a flowchart according to a first modified example of breath measurement.
- the measurement order is changed from the flow chart of FIG. 4, exhalation is first blown into the gas cell 80 (S200), the gas signal value is measured (S204), and then replaced with the atmosphere (S208). The signal value may be measured (S212).
- FIG. 7 is a flowchart according to the second modified example of the expiration measurement.
- the breath diagnosis apparatus is turned on.
- the gas cell 80 is evacuated and replaced with, for example, the atmosphere (S300).
- the wavelength of the quantum cascade laser 70 is roughly adjusted within the absorption spectrum of the first gas by the first adjustment mechanism (S302).
- the wavelength of the quantum cascade laser 70 is finely adjusted in the vicinity of the absorption peak value of the absorption spectrum of the first gas by the second adjustment mechanism, and then fixed.
- the detector 87 measures the transmission intensity (equal to the incident light intensity Io) of the infrared laser beam that has passed through the atmosphere, and sets it as the reference signal value (S304).
- the wavelength of the quantum cascade laser 70 is roughly adjusted within the absorption spectrum of the second gas by the first adjustment mechanism (S310).
- the second adjustment mechanism scans the wavelength of the quantum cascade laser 70 within a range including the absorption peak value of the absorption spectrum of the second gas.
- the signal value of the second gas is measured in the peak region, and the reference signal value is measured in the base region (S312).
- the second modification is effective when the first gas is acetone or the like and the second gas is methane or the like having a narrower width than the absorption spectrum of acetone. That is, for methane having a narrow absorption spectrum, the reference signal value and the gas signal value can be measured in step S312 by scanning the wavelength range including the absorption peak, and the measurement flow can be simplified.
- FIG. 8A shows a first modification of the first adjustment mechanism
- FIG. 8B shows a second modification thereof
- FIG. 8C shows a third modification thereof.
- the first adjustment mechanism is provided between the reflection mirror 92, the reflection mirror 92, and the quantum cascade laser 70, and changes the transmittance of the infrared laser light by rotation. It has an etalon 93 that changes the wavelength of the infrared laser light in accordance with the absorption spectrum of each gas.
- the first adjustment mechanism is provided between the reflection mirror 92 and the reflection mirror 92 and the quantum cascade laser 70, and changes the incident angle of the infrared laser light by rotation or translation, It has the prism 94 which changes the wavelength of infrared laser light according to the absorption spectrum of each gas of several gas.
- a piezo element and a stepping motor for changing the distance between the reflection mirror 92 and the quantum cascade laser 70 may be further included.
- the first adjustment mechanism may include a plurality of bandpass filters 95 provided between the reflection mirror 92 and the quantum cascade laser 70 and having different bands.
- the band-pass filter 95 rotates around the optical axis 62 and one of the plurality of band-pass filters 65 can be selected.
- FIG. 9A is a configuration diagram of the breath diagnosis apparatus according to the second embodiment
- FIG. 9B is a block diagram of the breath diagnosis apparatus according to the third embodiment.
- the gas cell can be a hollow fiber 96.
- an exhaust pump 97 can be provided in the gas cell.
- FIG. 9B if a mirror 85 that multi-reflects infrared laser light is provided inside the gas cell 80, multipath is achieved and sensitivity can be increased.
- FIG. 10A is a schematic perspective view in which the quantum cascade laser is partially cut
- FIG. 10B is a schematic cross-sectional view along the line AA.
- the quantum cascade laser includes at least a substrate 10, a stacked body 20 provided on the substrate 10, and a dielectric layer 40.
- the first electrode 50, the second electrode 52, and the insulating film 42 are further provided.
- the stacked body 20 includes a first cladding layer 22, a first guide layer 23, an active layer 24, a second guide layer 25, and a second cladding layer 28.
- the refractive index of the first cladding layer 22 and the refractive index of the second cladding layer 28 are respectively lower than the refractive indexes of the first guide layer 23, the active layer 24, and the second guide layer 25,
- the infrared laser beam 60 is appropriately confined in the stacking direction of the active layer 24.
- the first guide layer 23 and the first cladding layer 22 can be collectively referred to as a cladding layer.
- the second guide layer 25 and the second cladding layer 28 can be collectively referred to as a cladding layer.
- the stacked body 20 has a stripe shape and can be called a ridge waveguide RG. If the two end surfaces of the ridge waveguide RG are mirror surfaces, the stimulated emission light is emitted from the light exit surface as infrared laser light 60.
- the optical axis 62 is defined as a line connecting the centers of the cross sections of the optical resonator having the mirror surface as the resonance surface. That is, the optical axis 62 coincides with the extending direction of the ridge waveguide RG.
- the width WA in the direction parallel to the first surface 24a and the second surface 24b of the active layer 24 is too wide, a high-order mode is generated in the horizontal horizontal direction, It becomes difficult to obtain an output. If the width WA of the active layer 24 is set to 5 to 20 ⁇ m, for example, the control in the horizontal and transverse mode becomes easy. Assuming that the refractive index of the dielectric layer 40 is lower than the refractive index of any layer constituting the active layer 24, the dielectric layer 40 provided so as to sandwich the side surfaces 20a and 20b of the stacked body 20 causes the optical axis to be A ridge waveguide RG can be formed along the line 62.
- FIG. 11A is a configuration diagram of the breath diagnosis apparatus according to the fourth embodiment
- FIG. 11B is a schematic diagram in the vicinity of the external resonator
- FIG. 11C is a relative output with respect to the reflectance of the partial reflection coating film. It is a graph explaining the dependence of electric power.
- the first adjustment mechanism is a diffraction grating 71a that intersects the optical axis 62 at a predetermined incident angle ⁇ and can be translated in one or two dimensions in the XY plane.
- the diffraction grating 71a can be translated by a stepping motor 99 and a controller 98 that controls the stepping motor 99.
- the diffraction grating 71a and the partially reflective coating film PR (reflectance: R2) of the quantum cascade laser 70 constitute an external resonator (EC).
- Infrared laser light emitted from the partially reflective coating film PR enters the gas cell 80 along the optical axis 62.
- FIG. 12A and 12B are schematic plan views of a diffraction grating.
- the diffraction grating 71a has a plurality of regions having different pitches along the X direction.
- the resonance wavelength is region B> region A> region C, and the wavelength can be roughly adjusted by moving in the X direction.
- the resonance wavelength is region E> region F> region H> region D.
- the wavelength can be roughly adjusted by moving along the broken line direction SD.
- the cross-sectional shape of the diffraction grating 71a may be asymmetric.
- the light output Pout becomes maximum at the reflectance Rp between the reflectance R2 of zero and 100%, and the reflectance R2 increases when Rp ⁇ R ⁇ 100%. Decreases with. That is, it is more preferable that the reflectance R2 is, for example, not less than Rp and not more than the reflectance R ⁇ 3 dB where the light output is reduced by 3 dB because the light output can be maintained while keeping the line width stable.
- FIG. 13 is a band diagram for explaining the operation of the quantum cascade laser.
- the active layer 24 has a cascade structure in which the first regions 25 and the second regions 26 are alternately stacked.
- the first region 25 can emit infrared laser light 60 having a wavelength of, for example, 3 ⁇ m or more and 18 ⁇ m or less by the intersubband optical transition of the quantum well layer 72.
- the second region 26 can relax the energy of carriers (for example, electrons) E injected from the first region 25.
- the quantum well layer 72 when the well width WT is reduced to, for example, several nanometers or less, the energy levels become discrete, and the subband 72a (high level Lu) and the subband 72b (low level Ll). , Etc.
- the electrons E injected from the injection barrier layer 73 can be effectively confined in the quantum well layer 72.
- light (hn) corresponding to the energy difference (Lu ⁇ Ll) is emitted (optical transition).
- the quantum well layer 72 may have a plurality of wells with overlapping wave functions, and may have common levels Lu and Ll.
- the intersubband transition occurs in either the conduction band or the valence band. That is, recombination of holes and electrons by a pn junction is not necessary, and light is emitted by optical transition of only one of the carriers.
- the stacked body 20 injects electrons E into the quantum well layer 72 through the injection barrier layer 73 by the voltage applied between the first electrode 50 and the second electrode 52, Interband transition occurs.
- the second region 26 has a plurality of subbands (also referred to as minibands).
- the energy difference in the subband is preferably small and close to the continuous energy band.
- the energy of electrons is relaxed, so that the second region 26 does not generate infrared laser light having a wavelength of 3 to 18 ⁇ m.
- the electrons of the low level Ll in the first region 25 pass through the extraction barrier layer 74, are injected into the second region 26, are relaxed, and are injected into the first region 25 of the next stage cascaded (electrons).
- E) The next optical transition occurs. That is, in the cascade structure, since the electrons E perform optical transitions in the unit structure 27, it is easy to extract a high light output from the entire active layer 24.
- the quantum well layer 72 may include GaAs, and the barrier layer may include Al x Ga 1-x As (0 ⁇ x ⁇ 1). In this case, when the substrate 10 is made of GaAs, the lattice matching with the quantum well layer and the barrier layer can be improved.
- the first cladding layer 22 and the second cladding layer 28 have an n-type impurity concentration of, for example, 6 ⁇ 10 18 cm ⁇ 3 by Si doping, and can have a thickness of, for example, 1 ⁇ m. Further, the first guide layer 23 and the second guide layer 25 have an n-type impurity concentration of, for example, 4 ⁇ 10 16 cm ⁇ 3 and can have a thickness of 3.5 ⁇ m by Si doping.
- the width WA of the active layer 24 can be 14 ⁇ m, and the length L of the ridge waveguide RG can be 3 mm.
- the quantum cascade laser can operate, for example, at an operating voltage of 10 V or less, and the current consumption is lower than that of a carbon dioxide laser device or the like, so that the power consumption can be reduced.
- the concentration of a plurality of gases contained in exhaled air using infrared laser light having a wavelength range of 3 to 12 ⁇ m it is possible to measure the concentration of a plurality of gases contained in exhaled air using infrared laser light having a wavelength range of 3 to 12 ⁇ m.
- breath diagnosis devices such as human breath BR
- the wavelength of the infrared laser can be accurately adjusted to the absorption peak of the molecule to be measured.
- the concentration of the plurality of gases can be calculated quickly and accurately by coarsely adjusting the wavelength of the quantum cascade laser with the first adjusting mechanism and then finely adjusting the wavelength with the second adjusting mechanism.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
呼気診断装置は、複数の量子井戸のサブバンド間におけるエネルギー緩和により発光光を放射する半導体発光素子と、前記発光光の波長を、前記複数種類のガスのうちの一種類のガスの吸収スペクトル内にシフトする第1調整機構、前記発光光の波長を、一種類のガスの吸収スペクトル内においてシフトする第2調整機構を有する波長制御部と、呼気吸い込み口と、呼気排出口と、前記発光光の入射窓と、前記発光光の出射窓と、を有する筐体と、前記発光光の強度を検出する検出部と、前記出射窓から放出された前記発光光の前記強度の測定値から、前記複数種類のガスの濃度を算出する信号処理部と、を有する。
Description
本発明の実施形態は、呼気診断装置に関する。
赤外光を放出するレーザ装置は、環境測定やガス濃度測定など広い分野に応用されている。
多くのガスは、固有の吸収スペクトルにしたがって赤外線を吸収する。吸光度はガス濃度に依存するが、赤外光の入射強度に対する透過強度を測定することにより求めることができる。このため、濃度を知りたいガスにおいて、赤外光の透過強度を測定することにより、あらかじめ求めた吸光度からガスの濃度を知ることができる。
この応用の1つに、呼気診断装置を考えることができる。すなわち、人間の呼気は種々のガスを含んでいるので、呼気のガス濃度を測定できれば、病気の予防や早期発見が容易になる。
しかしながら、一般に赤外光の光源は、炭酸ガスレーザ装置やラーマンレーザ装置などのように、消費電力が大きくかつ大型装置であり、呼気診断装置も大型化する。
小型化かつ低消費電力化が容易な呼気診断装置を提供する。
実施形態の呼気診断装置は、呼気に含まれる複数種類のガスの濃度を測定可能である。呼気診断装置は、複数の量子井戸のサブバンド間における電子のエネルギー緩和により発光光を放射する半導体発光素子と、前記発光光の波長を、前記複数種類のガスのうちの一種類のガスの吸収スペクトル内にシフトする第1調整機構、前記発光光の波長を、一種類のガスの吸収スペクトル内においてシフトする第2調整機構を有する波長制御部と、呼気吸い込み口と、呼気排出口と、前記発光光の入射窓と、前記発光光の出射窓と、を有する筐体と、前記発光光の強度を検出する検出部と、前記出射窓から放出された前記発光光の前記強度の測定値から、前記複数種類のガスの濃度を算出する信号処理部と、を有する。
以下、図面を参照しつつ、本発明の実施の形態について説明する。
図1(a)は第1の実施形態にかかる呼気診断装置の構成図、図1(b)は複数のガスの吸収スペクトルの模式図、図1(c)は波長制御部の第1調整機構および第2調整機構を説明する図、である。
呼気診断装置は、量子カスケードレーザ70などを含む半導体発光素子と、波長制御部と、ガスセル(「筐体」に対応)80と、検出部87と、信号処理部88と、を有する。半導体発光素子と、波長制御部と、は、光源部91と呼ぶことができる。
図1(a)は第1の実施形態にかかる呼気診断装置の構成図、図1(b)は複数のガスの吸収スペクトルの模式図、図1(c)は波長制御部の第1調整機構および第2調整機構を説明する図、である。
呼気診断装置は、量子カスケードレーザ70などを含む半導体発光素子と、波長制御部と、ガスセル(「筐体」に対応)80と、検出部87と、信号処理部88と、を有する。半導体発光素子と、波長制御部と、は、光源部91と呼ぶことができる。
波長制御部は、赤外線レーザ光などを含む発光光の波長を、ヒトなどの呼気に含まれる複数種類のガスのうちの一種類のガスの吸収スペクトル内にシフトする第1調整機構と、一種類のガスの吸収スペクトル内においてシフトする第2調整機構と、を有する。
第1の実施形態において、第1調整機構は回折格子71を含む。回折格子71は、量子カスケードレーザ70の光軸62と交差するように設けられ、外部共振器を構成する。図1(c)に表すように、複数のガスを含む呼気BRにおいて、それぞれのガスの吸収スペクトルに応じて赤外線レーザ光の入射角をβ1~β4などに変化させ、赤外線レーザ光の波長を変化させる(粗調整)。この回折格子71は、ステッピングモータ99、およびそれを制御するコントローラ98により、光軸62と交差する軸を中心に回転制御される。なお、量子カスケードレーザ70の回折格子71の側の端面には、無反射コート膜ARを設けることが好ましい。さらに、無反射コート膜ARとは反対の側に、部分反射(Partial Reflection)コート膜PR を設けると、回折格子71との間で外部共振器を構成することができる。
分子の吸収スペクトルは離散的で測定精度を向上するには、吸収ピークに波長を精度よく合わせる必要がある。また、呼気中の主成分である二酸化炭素や水の吸収をさけ、測定対象分子の吸収を測定するには、吸収ピークに波長を精度よく合わせる必要がある。しかし、分子の吸収ピークや光源の波長は測定環境に影響を受けシフトすることがある。そのため、第2調整機構による微調することが好ましい。また、図1(c)に表すように、第2調整機構は、回折格子71を回転させずに一定とする。波長調整は、量子カスケードレーザ70の動作電流値ILDまたはデューティを変化するか、量子カスケードレーザ70の動作温度をペルチェ素子90などを用いて変化させるか、外部共振器長をピエゾ素子などにより変化させるか、などにより実現できる。または、第2調整機構は、チラー、ヒーター および冷媒のうちのいずれかまたは併用により、量子カスケードレーザ70の動作温度を変化させてもよい。冷媒は、たとえば、液体窒素、水、エタノール水、液体ヘリウムのいずれかとすることができる。
図1(b)に表すように、たとえば、アセトン(縦軸に表す吸収量のピークが7.37μm近傍)とメタン(吸収量のピークが7.7μm近傍)とのガス濃度を測定するものとする。異なるガスの吸収スペクトルは、たとえば、略0.3μmなどと大きく離間している。このため、短時間(たとえば、1分など)で複数のガスを測定するには、第1調整機構により、赤外線レーザ光の波長を素早く、かつシフト幅を大きくすることが好ましい。
他方、第2調整機構において、1つのガスの吸収スペクトル内で波長調整をする場合、シフトする幅は第1調整機構における波長範囲よりも狭くてもよい。但し、調整精度を高めることが要求される。すなわち、主として粗調整である第1調整機構と、主として微調整である第2調整機構とを、同一の波長制御機構で実現することは容易ではない。
ガスセル80は、呼気吸い込み口81と、呼気排出口82と、赤外線レーザ光の入射窓83と、赤外線レーザ光の出射窓84と、を有する。なお、量子カスケードレーザ70からのレーザ光は広がり角を有する。このため、量子カスケードレーザ70と、入射窓83と、の間に、コリメートする光学系72を設けるとい。また、出射窓84と、検出器87と、の間に、集光光学系86を設けるとよい。
検出部87は、赤外線レーザ光の強度を検出する。なお、ガスセル80の入射窓83に入射する赤外線レーザ光の入射光強度をI0とし、出射窓84から出射するレーザ光の透過強度をIとするとき、吸光度Aは、式(1)で表すことができる。なお、入射光強度Ioは、ガスセル80内を大気で置換し、赤外線レーザ光を照射して測定することができる。
透過強度Iを検出器87で測定することにより、信号処理部88が式(1)からガスの分圧Pa(すなわちガス濃度)を算出する。
人間の呼気BRには、主成分として、窒素、酸素、二酸化炭素、水などが含まれる。また、同時に、1000種類以上の異なる分子がごく微量に含まれ、微量ガスの変化が疾患の指標となる。このため、呼気に含まれる微量ガスG1を測定すると、病気の早期発見や予防が可能となる。このように呼気診断装置を用いると、血液検査などを行うよりも、短時間で、かつ容易に診断ができる。
たとえば、アセトンを微量ガスG1として検出できると、糖尿病などが発見できる。この場合、7~8μmの波長の赤外線を用いてppm程度の検出感度が必要である。また、アンモニアを微量ガスとして検出できると、肝炎が発見できる。この場合、10.3μmの波長の赤外線を用いて、ppb程度の検出感度が必要である。また、エタノールやアセトアルデヒドを微量ガスとして検出できると、飲酒量が測定できる。
図2は、微量ガスを検出するのに必要な赤外線光の波長と、赤外線光の吸収量との関係を表す図である。
量子カスケードレーザの波長を4~11μmとすると、微量ガスの光吸収スペクトルの多くを検出可能である。
量子カスケードレーザの波長を4~11μmとすると、微量ガスの光吸収スペクトルの多くを検出可能である。
図3は、アンモニア、二酸化炭素、および水の波数(波長の逆数)に対する吸収度の依存性を表すグラフ図である。
縦軸は、Absorption(吸収量)×10-3(%)、横軸は波数(波長の逆数)(cm-1)である。たとえば、10ppbのNH3、5%のCO2、5%のH2O混合ガスなどは、量子カスケードレーザの狭いスペクトルでアンモニアの吸収波長に光源を微調することで、アンモニアのみの光吸収を求めることが可能である。
縦軸は、Absorption(吸収量)×10-3(%)、横軸は波数(波長の逆数)(cm-1)である。たとえば、10ppbのNH3、5%のCO2、5%のH2O混合ガスなどは、量子カスケードレーザの狭いスペクトルでアンモニアの吸収波長に光源を微調することで、アンモニアのみの光吸収を求めることが可能である。
図4は、呼気測定のフロー図である。
まず、呼気診断装置のスイッチをオンする。このとき、量子カスケードレーザ70もオンとすることができる。次に、ガスセル80内を排気し、たとえば、大気で置換する(S100)。
まず、呼気診断装置のスイッチをオンする。このとき、量子カスケードレーザ70もオンとすることができる。次に、ガスセル80内を排気し、たとえば、大気で置換する(S100)。
続いて、第1調整機構により、量子カスケードレーザ70の波長を、第1のガスの吸収スペクトル内に粗調整する(S102)。
続いて、第2調整機構により、量子カスケードレーザ70の波長を、第1のガスの吸収スペクトルの吸収ピーク値近傍に微調整する。検出器87は、大気を透過した赤外線レーザ光の透過強度(入射窓83に入射する入射光強度Ioに等しい)を測定し、基準信号値とする(S104)。
続いて、次に測定するガスがあるかを判別する。もしYESであれば、ステップS102に戻り第2のガスの基準信号値を測定する。NOであれば、基準信号値の測定を終了する(S106)。
続いて、呼気を吹き込む(S108)。
続いて、第1調整機構により、量子カスケードレーザ70の波長を、被測定ガス吸収スペクトル内に粗調整する(S110)。
続いて、第2調整機構により、量子カスケードレーザ70の波長を、第1のガスの吸収スペクトルの吸収ピーク値近傍に微調整する。検出器87は、ガスセル80内の呼気を透過した赤外線レーザ光の透過強度Iを測定し、被測定ガス信号値とする(S112)。
続いて、次に測定するガスがあるかを判別する、もしYESであれば、ステップ110に戻る。NOであれば、被測定ガス信号値の測定を終了する(S114)。
図5は、被測定ガスの吸収スペクトルの一例を表すグラフ図である。
縦軸は相対吸収量、横軸は波長(μm)、である。第1のガスはアセトン、第2のガスはメタン、とする。アセトンの吸収ピークは、波長が7.35μm近傍にある。また、メタンの吸収ピークは、波長が7.63μm近傍にある。したがって、呼気のようにアセトンとメタンが含まれる場合、両方が加算された吸収スペクトルとなる。
縦軸は相対吸収量、横軸は波長(μm)、である。第1のガスはアセトン、第2のガスはメタン、とする。アセトンの吸収ピークは、波長が7.35μm近傍にある。また、メタンの吸収ピークは、波長が7.63μm近傍にある。したがって、呼気のようにアセトンとメタンが含まれる場合、両方が加算された吸収スペクトルとなる。
たとえば、第2調整機構により7.35μm近傍に微調整して測定したアセトンガス信号値とアセトン基準信号値とを用いて、式(1)によりアセトンガス吸光度Aを算出できる(S116))。また、第2調整機構により、7.63μm近傍に微調整して測定したメタンガス信号値とメタンガス基準信号値とを用いて、式(1)によりメタンガス吸光度Aを算出できる(S116)。吸光度Aとガス分圧P(すなわちガス濃度)とが比例関係にあることを用いて、ガス濃度を算出する。最後に、ガスセル80内の大気で置換し(S118)、呼気測定を終了する。
アセトンとメタンのように、吸収ピーク波長が0.28μmと離間していても、第1調整機構により素早く波長をシフトし次の測定を行うことができる。このため、複数の被測定ガスを短時間で測定できる。また、第2調整機構により吸収ピーク値近傍で波長の微調整ができるので、測定精度を高めることができる。
図6は、呼気測定の第1変形例にかかるフロー図である。
変形例では、図4のフロー図とは測定順序を変えて、最初にガスセル80内に呼気を吹き込み(S200)、ガス信号値を測定した(S204)のち、大気で置換し(S208)、基準信号値を測定しても(S212)よい。
変形例では、図4のフロー図とは測定順序を変えて、最初にガスセル80内に呼気を吹き込み(S200)、ガス信号値を測定した(S204)のち、大気で置換し(S208)、基準信号値を測定しても(S212)よい。
図7は、呼気測定の第2変形例にかかるフロー図である。
まず、呼気診断装置のスイッチをオンする。次に、ガスセル80内を排気し、たとえば、大気で置換する(S300)。
まず、呼気診断装置のスイッチをオンする。次に、ガスセル80内を排気し、たとえば、大気で置換する(S300)。
続いて、第1調整機構により、量子カスケードレーザ70の波長を、第1のガスの吸収スペクトル内に粗調整する(S302)。
続いて、第2調整機構により、量子カスケードレーザ70の波長を、第1のガスの吸収スペクトルの吸収ピーク値近傍に微調整したのち固定する。検出器87は、大気を透過した赤外線レーザ光の透過強度(入射光強度Ioに等しい)を測定し、基準信号値とする(S304)。
続いて、呼気を吹き込み(S306)、第1のガスの信号値を測定する(S308)。
続いて、第1調整機構により、量子カスケードレーザ70の波長を、第2のガスの吸収スペクトル内に粗調整する(S310)。
続いて、第2調整機構により、量子カスケードレーザ70の波長を、第2のガスの吸収スペクトルの吸収ピーク値を含む範囲でスキャンする。ピーク領域で第2のガスの信号値を測定し、ベース領域で基準信号値を測定する(S312)。
第2変形例は、第1のガスをアセトンなどとし、第2のガスがアセトンの吸収スペクトルよりも幅が狭いメタンなどとする場合に有効である。すなわち、吸収スペクトルが狭いメタンなどでは、吸収ピークを含む波長範囲をスキャンすることにより、基準信号値とガス信号値とをステップS312内で測定でき、測定フローを簡素化できる。
図8(a)は第1調整機構の第1変形例、図8(b)はその第2変形例、図8(c)はその第3変形例である。
図8(a)において、第1調整機構は、反射ミラー92と、反射ミラー92と量子カスケードレーザ70との間に設けられ、回転により赤外線レーザ光の透過率を変化し、複数のガスのうちのそれぞれのガスの吸収スペクトルに応じて赤外線レーザ光の波長を変化するエタロン93を有している。
図8(a)において、第1調整機構は、反射ミラー92と、反射ミラー92と量子カスケードレーザ70との間に設けられ、回転により赤外線レーザ光の透過率を変化し、複数のガスのうちのそれぞれのガスの吸収スペクトルに応じて赤外線レーザ光の波長を変化するエタロン93を有している。
また、図8(b)において、第1調整機構は、反射ミラー92と、反射ミラー92と量子カスケードレーザ70との間に設けられ、回転または並進移動により赤外線レーザ光の入射角を変化し、複数のガスのうちのそれぞれのガスの吸収スペクトルに応じて赤外線レーザ光の波長を変化するプリズム94を有している。また、図8(a)、(b)において、反射ミラー92と、量子カスケードレーザ70との距離を変化するための、ピエゾ素子やステッピングモータをさらに有していてもよい。
さらに、図8(c)に表すように、第1調整機構は、反射ミラー92と量子カスケードレーザ70との間に設けられ、帯域の異なる複数のバンドパスフィルタ95を有してもよい。B-B線に沿って、バンドパスフィルタ95をみたとき、バンドパスフィルタ95は光軸62の周りを回転し、複数のバンドパスフィルタ65のうちから1つを選択することができる。
図9(a)は第2の実施形態にかかる呼気診断装置の構成図、図9(b)は第3の実施形態にかかる呼気診断装置の構成図、である。
図9(a)に表すように、ガスセルは中空ファイバ96とすることができる。また、ガスセルに排気用のポンプ97を設けることができる。また、図9(b)に表すように、ガスセル80の内部に、赤外線レーザ光を多重反射するミラー85を設けると、マルチパスとなり感度を高めることができる。
図9(a)に表すように、ガスセルは中空ファイバ96とすることができる。また、ガスセルに排気用のポンプ97を設けることができる。また、図9(b)に表すように、ガスセル80の内部に、赤外線レーザ光を多重反射するミラー85を設けると、マルチパスとなり感度を高めることができる。
図10(a)は量子カスケードレーザを部分切断した模式斜視図、図10(b)はA-A線に沿った模式断面図、である。
量子カスケードレーザは、基板10と、基板10の上に設けられた積層体20と、誘電体層40と、を少なくとも有する。図1(a)では、第1電極50と、第2電極52と、絶縁膜42と、をさらに有している。
量子カスケードレーザは、基板10と、基板10の上に設けられた積層体20と、誘電体層40と、を少なくとも有する。図1(a)では、第1電極50と、第2電極52と、絶縁膜42と、をさらに有している。
積層体20は、第1クラッド層22と、第1ガイド層23と、活性層24と、第2ガイド層25と、第2クラッド層28と、を有している。第1クラッド層22の屈折率と、第2クラッド層28の屈折率と、は、第1ガイド層23、活性層24、および第2ガイド層25、の屈折率のいずれよりもそれぞれ低くし、活性層24の積層方向に赤外線レーザ光60を適正に閉じ込めるようにする。なお、第1ガイド層23と第1クラッド層22とを合わせて、クラッド層と呼ぶことができる。また、第2ガイド層25と第2クラッド層28とを合わせて、クラッド層と呼ぶことができる。
また、積層体20は、ストライプの形状を有しており、リッジ導波路RGと呼ぶことができる。リッジ導波路RGの2つの端面をミラー面とすると、誘導放出された光は、赤外線レーザ光60として、光出射面から放出される。この場合、光軸62は、ミラー面を共振面とする光共振器の断面の中心を結ぶ線と定義する。すなわち、光軸62は、リッジ導波路RGの延在する方向と一致する。
光軸62に対して垂直な断面において、活性層24の第1の面24a、第2の面24b、に平行な方向の幅WAが広すぎると、水平横方向に高次モードを生じ、高出力とすることが困難となる。活性層24の幅WAは、例えば5~20μmなどとすると、水平横方向モードの制御が容易となる。誘電体層40の屈折率が活性層24を構成するいずれの層の屈折率よりも低いものとすると、積層体20の側面20a、20bを挟むように設けられた誘電体層40により、光軸62に沿ってリッジ導波路RGを構成することができる。
図11(a)は第4の実施形態にかかる呼気診断装置の構成図、図11(b)は外部共振器近傍の模式図、図11(c)は部分反射コート膜の反射率に対する相対出力電力の依存性を説明するグラフ図、である。
第1調整機構は、光軸62に対して所定の入射角γで交差し、XY面内で1次元または2次元的に並進移動可能な回折格子71aとする。回折格子71aは、ステッピングモータ99、およびそれを制御するコントローラ98により、並進運動が可能である。回折格子71aと、量子カスケードレーザ70の部分反射コート膜PR(反射率:R2)と、は、外部共振器(EC)を構成する。部分反射コート膜PRから放出された赤外線レーザ光は、光軸62に沿ってガスセル80に入射する。
第1調整機構は、光軸62に対して所定の入射角γで交差し、XY面内で1次元または2次元的に並進移動可能な回折格子71aとする。回折格子71aは、ステッピングモータ99、およびそれを制御するコントローラ98により、並進運動が可能である。回折格子71aと、量子カスケードレーザ70の部分反射コート膜PR(反射率:R2)と、は、外部共振器(EC)を構成する。部分反射コート膜PRから放出された赤外線レーザ光は、光軸62に沿ってガスセル80に入射する。
図12(a)および(b)は、回折格子の模式平面図、である。
図12(a)において、回折格子71aは、X方向に沿って異なるピッチを有する複数の領域を有する。共振波長は、領域B>領域A>領域Cであり、X方向に移動することにより、波長を粗調整できる。また、図12(b)において、共振波長は、領域E>領域F>領域H>領域Dであり、たとえば、破線の方向SDに沿って移動することにより、波長を粗調整できる。なお、回折格子71aの断面形状は、非対称であってもよい。
図12(a)において、回折格子71aは、X方向に沿って異なるピッチを有する複数の領域を有する。共振波長は、領域B>領域A>領域Cであり、X方向に移動することにより、波長を粗調整できる。また、図12(b)において、共振波長は、領域E>領域F>領域H>領域Dであり、たとえば、破線の方向SDに沿って移動することにより、波長を粗調整できる。なお、回折格子71aの断面形状は、非対称であってもよい。
部分反射コート膜PRの反射率R2が高いほど、共振器内の光の往復回数が増えるため、波長制御性が高まりかつ安定する。
他方、図11(c)に表すように、光出力Poutは、反射率R2がゼロと100%との間の反射率Rpで最大となり、Rp≦R<100%の間で反射率R2の増加とともに低下する。すなわち、反射率R2を、たとえば、Rp以上、かつ光出力が3dB低下する反射率R-3dB以下などとすると、線幅を安定に保ちつつ光出力を維持できるのでより好ましい。
図13は、量子カスケードレーザの作用を説明するバンド図である。
活性層24は、第1領域25と、第2領域26と、が交互に積層されたカスケード構造を有する。第1領域25は、量子井戸層72のサブバンド間光学遷移により、例えば3μm以上、18μm以下の波長の赤外線レーザ光60を放出可能である。また、第2領域26は、第1領域25から注入されたキャリア(例えば電子)Eのエネルギーを緩和可能である。
活性層24は、第1領域25と、第2領域26と、が交互に積層されたカスケード構造を有する。第1領域25は、量子井戸層72のサブバンド間光学遷移により、例えば3μm以上、18μm以下の波長の赤外線レーザ光60を放出可能である。また、第2領域26は、第1領域25から注入されたキャリア(例えば電子)Eのエネルギーを緩和可能である。
量子井戸層72において、井戸幅WTを、例えば数nm以下のように狭くしていくとエネルギー準位が離散して、サブバンド72a(高準位Lu)、サブバンド72b(低準位Ll)、などを生じる。注入障壁層73から注入された電子Eは、量子井戸層72に効果的に閉じ込めることができる。高準位Luから低準位Llへキャリアが遷移する場合、エネルギー差(Lu-Ll)に対応した光(hn)を放出する(光学遷移)。なお、量子井戸層72は、波動関数が重なり合う複数の井戸を有し、共通の準位LuおよびLlを有していてもよい。
サブバンド間遷移は、伝導帯および価電子帯のいずれかにおいて生じる。すなわち、pn接合によるホールと電子との再結合が必要ではなく、いずれかのキャリアのみの光学遷移により発光する。本図の場合、積層体20は、第1電極50と、第2電極52と、の間に印加された電圧により、注入障壁層73を介して電子Eを量子井戸層72へ注入し、サブバンド間遷移を生じる。
第2領域26は、複数のサブバンド(ミニバンドともいう)を有している。サブバンドにおけるエネルギー差は小さく連続エネルギーバンドに近いことが好ましい。この結果、電子のエネルギーが緩和されるので、第2領域26では、3~18μmの波長の赤外線レーザ光を生じない。第1領域25の低準位Llの電子は、抽出障壁層74を通過して、第2領域26へ注入され、緩和されて、カスケード接続された次段の第1領域25へ注入され(電子E)次の光学遷移を生じる。すなわち、カスケード構造では、電子Eが単位構造27内で光学遷移をそれぞれ行うので、活性層24の全体において高い光出力を取り出すことが容易となる。
量子井戸層72はGaAsを含み、障壁層はAlxGa1-xAs(0<x<1)を含むものとすることができる。この場合、基板10をGaAsとすると、量子井戸層および障壁層との格子整合が良好にできる。第1クラッド層22および第2クラッド層28は、Siドープにより、例えば6×1018cm-3のn形不純物濃度を有し、例えば1μmの厚さとすることができる。また、第1ガイド層23および第2ガイド層25は、Siドープにより、例えば4×1016cm-3のn形不純物濃度を有し、3.5μmの厚さとすることができる。また、活性層24の幅WAは14μm、リッジ導波路RGの長さLは、3mmなどとすることができる。量子カスケードレーザは、たとえば、10V以下の動作電圧で動作可能であり、消費電流も炭酸ガスレーザ装置などに比べて低く、低消費電力とできる。
第1~第4の実施形態によれば、3~12μmの波長範囲を有する赤外線レーザ光を用いて呼気に含まれる複数のガスの濃度を測定できる。これらの呼気診断装置は、人間の呼気BRのような、主成分として、窒素、酸素、二酸化炭素、水などが含まれ、温度変化等、分子の吸収ピークや光源の波長のシフトの生じうる測定雰囲気である場合であっても、測定対象分子の吸収ピークに赤外線レーザの波長を精度よく合わせることができる。また、炭酸ガスレーザ装置やラマンレーザ装置などを赤外線レーザ光の光源とする装置よりも小型化でき、かつ低消費電力にできる。また、量子カスケードレーザの波長を、第1調整機構で粗調整し、その後第2調整機構で微調整することにより、複数のガスの濃度を、迅速かつ精度よく算出することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (14)
- 呼気に含まれる複数種類のガスの濃度を測定可能な呼気診断装置であって、
複数の量子井戸のサブバンドにおける電子のエネルギー緩和により発光光を放射する半導体発光素子と、
前記発光光の波長を前記複数種類のガスのうちの一種類のガスの吸収スペクトル内にシフトする第1調整機構、および前記発光光の波長を一種類のガスの吸収スペクトル内においてシフトする第2調整機構を有する波長制御部と、
呼気吸い込み口と、呼気排出口と、前記発光光の入射窓と、前記発光光の出射窓と、を有する筐体と、
前記発光光の強度を検出する検出部と、
前記出射窓から放出された前記発光光の前記強度の測定値から、前記複数種類のガスの濃度を算出する信号処理部と、
を備えた呼気診断装置。 - 前記前記第1調整機構は、反射ミラーと、前記半導体発光素子と前記反射ミラーとの間に設けられ、回転により前記発光光の透過率を変化させそれぞれのガスの種類に特有の吸収スペクトルに応じて前記発光光の波長を変化させるエタロンならびに回転または並進移動により前記発光光の入射角を変化しそれぞれのガスの種類に特有の吸収スペクトルに応じて前記発光光の波長を変化させるプリズムもしくは回折格子のうちのいずれかと、を有する請求項1記載の呼気診断装置。
- 前記反射ミラーと前記半導体発光素子との距離が変化する請求項2記載の呼気診断装置。
- ピエゾ素子を有する請求項3記載の呼気診断装置。
- ステッピングモータを有する請求項3記載の呼気診断装置。
- ステッピングモータを有する請求項4記載の呼気診断装置。
- 前記第1調整機構は、反射ミラーと、前記半導体発光素子と前記反射ミラーとの間に設けられ、帯域の異なる複数のバンドパスフィルタと、を有する請求項1記載の呼気診断装置。
- 前記第1調整機構は、回折格子を含み、
前記回折格子は、ピッチの異なる複数の領域を有し、前記発光光の光軸と所定の入射角を保ちつつ前記複数の領域を移動可能な請求項1記載の呼気診断装置。 - 前記回折格子は、一次元または2次元的に移動可能な請求項8記載の呼気診断装置。
- 前記第2調整機構は、半導体発光素子の動作電流値またはデューティを変化させる請求項1記載の呼気診断装置。
- 前記第2調整機構は、前記半導体発光素子の動作温度を変化させるペルチェ素子を有する請求項1記載の呼気診断装置。
- 前記第2調整機構は、チラー、ヒーター、および冷媒のいずれかまたは併用により前記半導体発光素子の動作温度を変化させる請求項1記載の呼気診断装置。
- 前記冷媒は、液体窒素、水、エタノール水、液体ヘリウムのうちのいずれかである請求項12記載の呼気診断装置。
- 前記筐体は、前記入射窓に入射した前記発光光を多重反射したのち前記出射窓から放出する多重反射ミラーをさらに有する請求項1記載の呼気診断装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-163687 | 2013-08-06 | ||
JP2013163687 | 2013-08-06 | ||
JP2014-043227 | 2014-03-05 | ||
JP2014043227A JP5848791B2 (ja) | 2013-08-06 | 2014-03-05 | 呼気診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015019650A1 true WO2015019650A1 (ja) | 2015-02-12 |
Family
ID=52460999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056693 WO2015019650A1 (ja) | 2013-08-06 | 2014-03-13 | 呼気診断装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5848791B2 (ja) |
WO (1) | WO2015019650A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016147451A1 (ja) * | 2015-03-18 | 2016-09-22 | 株式会社 東芝 | 呼気分析装置 |
JP2017135314A (ja) * | 2016-01-29 | 2017-08-03 | 浜松ホトニクス株式会社 | 波長可変光源及びその駆動方法 |
US10184890B2 (en) | 2017-03-10 | 2019-01-22 | Sharp Kabushiki Kaisha | Gas analyzer with low optical noise |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020128940A (ja) * | 2019-02-08 | 2020-08-27 | アズビル株式会社 | 測定装置、測定システムおよび測定方法 |
JP7555530B1 (ja) | 2023-03-01 | 2024-09-24 | 三菱電機株式会社 | レーザー光源装置及びレーザー光源装置適用機器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02250384A (ja) * | 1989-03-24 | 1990-10-08 | Nippon Telegr & Teleph Corp <Ntt> | 波長可変半導体レーザ光源装置 |
JPH03195076A (ja) * | 1989-12-25 | 1991-08-26 | Anritsu Corp | 外部共振器型波長可変半導体レーザ |
JPH04142090A (ja) * | 1990-10-03 | 1992-05-15 | Nippon Telegr & Teleph Corp <Ntt> | 波長可変レーザ光源装置 |
JPH08178839A (ja) * | 1994-07-15 | 1996-07-12 | Vixel Corp | 分子種分析センサー |
JP2004505455A (ja) * | 2000-07-26 | 2004-02-19 | サウスウエスト サイエンシーズ インコーポレーテッド | 波長鋭敏外部キャビティ・ダイオードレーザ |
JP2012178436A (ja) * | 2011-02-25 | 2012-09-13 | Hamamatsu Photonics Kk | 波長可変光源 |
JP2013179266A (ja) * | 2012-01-30 | 2013-09-09 | Agilent Technologies Inc | 位相連続波長可変レーザ |
-
2014
- 2014-03-05 JP JP2014043227A patent/JP5848791B2/ja active Active
- 2014-03-13 WO PCT/JP2014/056693 patent/WO2015019650A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02250384A (ja) * | 1989-03-24 | 1990-10-08 | Nippon Telegr & Teleph Corp <Ntt> | 波長可変半導体レーザ光源装置 |
JPH03195076A (ja) * | 1989-12-25 | 1991-08-26 | Anritsu Corp | 外部共振器型波長可変半導体レーザ |
JPH04142090A (ja) * | 1990-10-03 | 1992-05-15 | Nippon Telegr & Teleph Corp <Ntt> | 波長可変レーザ光源装置 |
JPH08178839A (ja) * | 1994-07-15 | 1996-07-12 | Vixel Corp | 分子種分析センサー |
JP2004505455A (ja) * | 2000-07-26 | 2004-02-19 | サウスウエスト サイエンシーズ インコーポレーテッド | 波長鋭敏外部キャビティ・ダイオードレーザ |
JP2012178436A (ja) * | 2011-02-25 | 2012-09-13 | Hamamatsu Photonics Kk | 波長可変光源 |
JP2013179266A (ja) * | 2012-01-30 | 2013-09-09 | Agilent Technologies Inc | 位相連続波長可変レーザ |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016147451A1 (ja) * | 2015-03-18 | 2016-09-22 | 株式会社 東芝 | 呼気分析装置 |
JPWO2016147451A1 (ja) * | 2015-03-18 | 2017-04-27 | 株式会社東芝 | 呼気分析装置 |
US9835550B2 (en) | 2015-03-18 | 2017-12-05 | Kabushiki Kaisha Toshiba | Breath analyzer |
JP2017135314A (ja) * | 2016-01-29 | 2017-08-03 | 浜松ホトニクス株式会社 | 波長可変光源及びその駆動方法 |
US10184890B2 (en) | 2017-03-10 | 2019-01-22 | Sharp Kabushiki Kaisha | Gas analyzer with low optical noise |
Also Published As
Publication number | Publication date |
---|---|
JP5848791B2 (ja) | 2016-01-27 |
JP2015052586A (ja) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12092571B2 (en) | Solid-state spectrometer | |
JP5848791B2 (ja) | 呼気診断装置 | |
WO2016147451A1 (ja) | 呼気分析装置 | |
US20160377533A1 (en) | Gas measuring apparatus, gas measuring method and gas cell | |
US11740217B2 (en) | Method of determining nitrogen dioxide concentration with a tunable blue laser diode | |
JP6240339B2 (ja) | ガス分析装置及びガス処理装置 | |
US9377358B2 (en) | Spectroscopy system using waveguide and employing a laser medium as its own emissions detector | |
JP2011119541A (ja) | 光ファイバー結合外部共振器型半導体レーザーを用いたガス検出センサー | |
JP6271707B2 (ja) | 半導体レーザ装置 | |
US10096974B2 (en) | Quantum cascade laser | |
US9929292B2 (en) | Quantum cascade detector | |
JP6283291B2 (ja) | ガス分析装置及びガスセル | |
WO2015136744A1 (ja) | 呼気診断装置 | |
Sorokin et al. | Widely tunable Cr2+: ZnSe laser source for trace-gas sensing | |
CN114199809B (zh) | 单片集成红外激光气体检测装置 | |
OHGOH et al. | Broadband Semiconductor Light Source for Optical Sensing | |
Ongstad et al. | AFRL/DELS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14834832 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14834832 Country of ref document: EP Kind code of ref document: A1 |