WO2016147317A1 - 高圧ガス容器及び高圧ガス容器の製造方法 - Google Patents

高圧ガス容器及び高圧ガス容器の製造方法 Download PDF

Info

Publication number
WO2016147317A1
WO2016147317A1 PCT/JP2015/057906 JP2015057906W WO2016147317A1 WO 2016147317 A1 WO2016147317 A1 WO 2016147317A1 JP 2015057906 W JP2015057906 W JP 2015057906W WO 2016147317 A1 WO2016147317 A1 WO 2016147317A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure gas
heat conductor
container
gas container
boss
Prior art date
Application number
PCT/JP2015/057906
Other languages
English (en)
French (fr)
Inventor
真一郎 竹本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/057906 priority Critical patent/WO2016147317A1/ja
Priority to KR1020197002279A priority patent/KR20190010744A/ko
Priority to KR1020177026207A priority patent/KR101981419B1/ko
Priority to US15/558,868 priority patent/US10429009B2/en
Priority to JP2017505924A priority patent/JP6432673B2/ja
Priority to CN201580077894.7A priority patent/CN107407460B/zh
Priority to EP15885413.3A priority patent/EP3273138B1/en
Priority to CA2979963A priority patent/CA2979963C/en
Publication of WO2016147317A1 publication Critical patent/WO2016147317A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/20Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor of articles having inserts or reinforcements ; Handling of inserts or reinforcements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0311Closure means
    • F17C2205/0317Closure means fusing or melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0391Arrangement of valves, regulators, filters inside the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/023Avoiding overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a high-pressure gas container equipped with a fusing valve and a method for manufacturing the high-pressure gas container.
  • a technique for attaching a plug valve to a container is known in order to reduce the pressure in the container when the high pressure gas container is exposed to a high temperature environment.
  • the plug valve is a valve that is integrated with the boss portion of the container that serves as the high-pressure gas outflow inlet, and that includes a housing having a flow path that penetrates the inside and outside of the container, and a substantially cylindrical plug that closes the flow path. is there.
  • the plug is made of a metal having a low melting point, and the plug melts when exposed to high temperatures.
  • JP2005-315294A extends a heat conductor from the fusing valve provided in the high-pressure gas container along the side surface of the container body outside the container, and transfers heat to the safety valve.
  • a high pressure gas container is disclosed.
  • JP2005-315294A it is conceivable that the thermal conductor is damaged by receiving an impact from another member existing outside the container.
  • a high-pressure gas container is assumed as a tank for storing hydrogen fuel, a large number of components may be arranged around the high-pressure gas container. It is also assumed that the thermal conductor interferes with other constituent members due to vibrations in the middle and the like, and an unintended impact is given.
  • the present invention provides a high-pressure gas container and a high-pressure gas capable of preventing the heat conductor from being damaged while ensuring the function of transferring heat to the melting valve by the heat conductor. It aims at providing the manufacturing method of a container.
  • a high-pressure gas container including a container body provided with a fusing valve and a boss portion arranged at a position different from the fusing valve.
  • each of the plug valve and the boss has a higher thermal conductivity than that of the container main body, the plug valve and the boss are connected by a heat conductor, and the heat conductor is in the container main body. Is housed in.
  • FIG. 1 is a schematic configuration diagram of a high-pressure gas container according to a first embodiment of the present invention.
  • FIG. 2A is a schematic configuration diagram of a high-pressure gas container according to a second embodiment of the present invention.
  • FIG. 2B is a schematic configuration diagram of a high-pressure gas container according to a second embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of a high-pressure gas container according to a third embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method for manufacturing a high-pressure gas container according to the fourth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram illustrating a high-pressure gas container according to a first embodiment of the present invention.
  • the high-pressure gas container 100 of the present embodiment includes a substantially cylindrical container body 10, boss portions 13-1 and 13-2 disposed at both longitudinal ends of the container body 10, and one boss of the container body 10.
  • the fusing valve 15 disposed in the portion 13-1 and a heat conductor 17 that connects one boss portion 13-1 and the other boss portion 13-2 inside the high-pressure gas container 100 are provided.
  • the gas is stored in the high pressure gas container 100 in a high pressure state of 35 Mpa or 70 Mpa.
  • gas in the present embodiment, hydrogen gas is particularly assumed, and the high-pressure gas container 100 for storing the hydrogen gas is mounted on, for example, a fuel cell vehicle.
  • the container body 10 includes an inner layer body 11 formed of a material having gas barrier properties such as polyethylene resin or polypropylene resin, and a carbon fiber reinforced plastic wound around the outer periphery of the inner layer body 11 from the viewpoint of weight reduction. And a reinforcing layer 20 as an outer layer portion formed of (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the reinforcing layer 20 is a layered body having low thermal conductivity formed by winding a strip-shaped carbon fiber reinforced plastic around the outer periphery of the inner layer body 11 by using, for example, a filament winding method.
  • the shape of the reinforcing layer 20 is determined according to the performance required for the high-pressure gas container 100.
  • the material of the boss portions 13-1 and 13-2 is, for example, a material such as stainless steel or aluminum.
  • the boss portions 13-1 and 13-2 are not limited to stainless steel and aluminum as long as they are configured to have higher thermal conductivity than the container body 10, and other metal materials or non-metal materials may be used. You can also.
  • the fusing valve 15 is a main flow path for gas filling that penetrates the inside and outside of the container main body 10 and a discharge flow path that releases high-pressure gas inside when the container main body 10 is exposed to a high temperature.
  • the basic structure is a housing provided with The housing is provided with a substantially cylindrical plug that closes the discharge flow path.
  • the plug is made of a metal with a low melting point and melts when exposed to high temperatures. When the melting plug is thus melted, the inside and the outside of the container body 10 communicate with each other through the discharge flow path penetrating the inside and outside of the container body 10 described above.
  • the housing of the fusing valve 15 is configured integrally with one boss portion 13-1. That is, the housing of the fusing valve 15 and the boss 13-1 are made of the same material.
  • the high-pressure gas container 100 is exposed to a high temperature environment, the high-pressure gas in the high-pressure gas container 100 is released to the outside, and the inside of the high-pressure gas container 100 exceeds the normal use range. High pressure can be suppressed.
  • the metal used as the melting plug include lead and tin.
  • any material other than a metal material may be used as long as it has a melting point lower than that of the housing.
  • the material of the housing of the plug valve 15 is a metal material such as aluminum, stainless steel, or copper alloy, which has a higher melting point than the plug and in particular has a higher thermal conductivity than the container body 10.
  • the other boss portion 13-2 is provided at the other end portion of the container main body 10 at a position different from the above-described plug valve 15, and is closed by a lid member or the like.
  • the heat conductor 17 is a member that connects one boss portion 13-1 and the other boss portion 13-2 inside the container 100, and the one boss portion 13-1 to the other boss portion 13-2. Heat is transferred to the fusing valve 15 via. That is, the heat conductor 17 is in a state of being indirectly connected to the plug valve 15 via the boss portion 13-1.
  • the heat conductor 17 is made of a material having a higher thermal conductivity than the container body 10.
  • the heat conductor 17 is formed of, for example, a metal material such as stainless steel or aluminum.
  • the heat conductor 17 is always exposed to the hydrogen gas in the high-pressure gas container 100, and therefore stainless steel such as SUS316L (JIS standard). It is desirable to be formed of a material resistant to hydrogen embrittlement such as steel or aluminum such as A6061 (JIS standard).
  • the heat conductor 17 of the present embodiment is composed of an aluminum braided electric wire.
  • the braided electric wire is obtained by bundling a plurality of electric wires, and the bundled electric wires have a diameter of about 12 mm as a whole, for example.
  • doughnut-shaped metal terminals with holes for attaching to the bosses 13-1 and 13-2 at both ends of the container body 10 are provided at both ends of the heat conductor 17, respectively. Is provided.
  • bolt holes for attaching the heat conductor 17 are also formed in the boss portions 13-1 and 13-2.
  • the heat conductor 17 has the donut-shaped metal terminal connected to the bolt hole. Are fastened to the boss portions 13-1 and 13-2. Note that the manner of attaching the boss portions 13-1 and 13-2 and the heat conductor 17 is not limited to this, and the boss portions 13-1 and 13-2 can be connected by various methods such as connectors, hooks, and welding.
  • the thermal conductor 17 is formed to have a length that is longer than the distance between the boss portions 13-1 and 13-2 at both ends, that is, the boss portions 13-1 and 13-. 2 is in a state of sagging between the boss portions 13-1 and 13-2. In this way, by allowing the heat conductor 17 to sag between the boss portions 13-1 and 13-2, it is possible to absorb deformation such as expansion and contraction due to heat by providing a sufficient length.
  • the high-pressure gas container 100 of the present embodiment includes a container body 10 provided with a plug valve 15 and a boss portion 13-2 arranged at a position different from the plug valve 15.
  • the fusing valve 15 and the boss 13-2 each have a higher thermal conductivity than the container body 10. Further, the plug valve 15 and the boss 13-2 are connected by a heat conductor 17, and the heat conductor 17 is accommodated in the container body 10.
  • the plug valve 15 and the boss portion 13-2 are connected by the heat conductor 17
  • the plug valve 15 and the boss portion 13-2 are directly connected to the heat conductor 17.
  • the heat conductor 17 also includes an indirect connection such as connecting the plug valve 15 and the boss portion 13-2 via the boss portion 13-1.
  • the heat conductor 17 that connects the fusing valve 15 and the boss portion 13-2 is accommodated in the container body 10, so that the heat conductor 17 is placed around the high-pressure gas container 100.
  • the other members to be arranged are prevented from receiving interference such as a collision, and as a result, their breakage is prevented.
  • the heat conductor 17 is connected to one boss portion 13-1 and the other boss portion 13-2 which are integrated with the plug valve 15.
  • the plug valve 15 and the boss portion 13-2 integrated with the boss portion 13-1 have higher thermal conductivity than the inner layer body 11 and the reinforcing layer 20, so that the plug in the high-pressure gas container 100 is used.
  • the plug valve from the portion of the boss portion 13-2 having a high thermal conductivity via the heat conductor 17 is provided. Heat is quickly transmitted to 15.
  • the heat conductor 17 is heated more effectively than the other end (the side different from the plug valve 15) is an open end that is not connected to the boss portion 13-2.
  • the heat transfer function of the conductor 17 will be exhibited.
  • the heat conductor 17 has a higher thermal conductivity than the container body 10. Therefore, the function of the heat conductor 17 for quickly transferring heat to the fusing valve 15 can be more reliably exhibited.
  • the container main body 10 in the high-pressure gas container 100 of the present embodiment is formed by winding the low thermal conductivity reinforcing layer 20 around the inner layer body 11 that is a resin liner. For this reason, compared with a tank in which the entire container is made of a metal material, even when a part of the high-pressure gas container 100 is exposed to a high temperature, heat tends to be difficult to transfer to the container body 10.
  • the boss portions 13-1 and 13-2 at both ends are connected by the heat conductor 17 having a higher thermal conductivity than the container main body 10, so The heat generated in part can be transferred from the boss portion 13-2 to the plug valve 15 via the heat conductor 17 without depending on the heat transfer on the inner layer body 11 or the reinforcing layer 20.
  • the heat conductor 17 of the present embodiment is configured as a braided electric wire having a diameter of 12 mm formed of an aluminum material.
  • the thickness of the reinforcing layer 20 made of carbon fiber reinforced plastic is 20 mm
  • the boss portion 13-2 at a position away from the plug valve 15 becomes hot, and then the heat conductor is transferred from the boss portion 13-2.
  • the time until the plug valve 15 is melted by the heat transmitted through the heat 17 is about 5 as compared with the case where the heat conductor 17 is not provided, that is, when the heat of the boss 13-2 is conducted through the reinforcing layer 20. It is shortened by a factor.
  • the heat transfer rate of the heat conductor 17 is reinforced although the cross-sectional area is approximately 178 times the cross-sectional area of the heat conductor 17 having a diameter of 12 mm.
  • the transmission speed of the layer 20 is about 5 times faster.
  • the heat conductor 17 is configured such that its heat transfer rate is faster than the heat transfer rate of the reinforcing layer 20, so that the boss portion 13-2 at a position away from the fusing valve 15 has a high temperature. Then, the time until the plug valve 15 is melted by the heat transmitted from the boss portion 13-2 to the heat conductor 17 is shortened as compared with the case where the heat conductor 17 is not provided.
  • the heat conductor 17 of this embodiment is assembled in a state where it is slackened between the plug valve 15 and the boss portion 13-2.
  • the inner layer body 11 undergoes thermal deformation such as expansion or contraction due to a difference in temperature or the like, the influence of tension or compression can be suppressed by sagging.
  • the thermal deformation of the heat conductor 17 itself due to the temperature change inside the inner layer body 11 is also absorbed by the sagging, so that the heat conductor 17 is more reliably prevented from being damaged.
  • the heat conductor 17 is slackened so as not to contact the inner peripheral surface of the inner layer body 11. Accordingly, even when the high-pressure gas container 100 is mounted on a vehicle, it is possible to prevent a situation in which the heat conductor 17 comes into contact with the inner layer body 11 and an unnecessary sound is generated, thereby preventing the driver from feeling uncomfortable. Is done. Further, when the heat conductor 17 and the inner layer body 11 come into contact, heat to be transmitted to the plug valve 15 escapes to the inner layer body 11 side through the contact portion, and the durability of the inner layer body 11 is caused by this heat. May fall. Such a situation is also prevented in the heat conductor 17 according to the present embodiment.
  • a general braided electric wire is used as the heat conductor 17.
  • the braided electric wire which is a mass-sales product can be used as the heat conductor 17, and the cost for comprising the heat conductor 17 can be reduced.
  • the heat conductor 17 not only a braided electric wire but also various other types of members such as a metal rod can be used.
  • FIGS. 2A and 2B are schematic configuration diagrams of the high-pressure gas container 100 according to the second embodiment of the present invention.
  • the boss portions 13-1 and 13-2 at both ends are connected by a heat conductor 17 configured as a rod-shaped metal shaft.
  • a metal bellows portion 17a as a displacement absorbing portion is formed at a substantially central portion in the axial direction of the heat conductor 17.
  • the bellows portion 17 a may be formed in almost the entire axial direction of the heat conductor 17. Since the heat conductor 17 configured in this manner has a structure that can be expanded and contracted in its entirety in the axial direction, the effect of absorbing displacement in the axial direction is further enhanced, and the boss portion is caused by thermal deformation or the like. It is possible to more reliably prevent the load from concentrating on specific portions of the 13-1 (fusing valve 15), the boss portion 13-2, and the heat conductor 17.
  • the heat conductor 17 has a bellows portion 17a as a displacement absorbing portion capable of absorbing a relative displacement generated between the plug valve 15 and the boss portion 13-2.
  • the bellows portion 17a may be partially formed in the substantially central portion in the axial direction of the thermal conductor 17 as shown in FIG. 2A, or the entire axial direction of the thermal conductor 17 as shown in FIG. 2B. You may be comprised so that it may extend.
  • the manufacturing process is simplified by relatively reducing the amount of processing for forming the bellows portion 17a. be able to.
  • the length of the heat conductor 17 is substantially equal to the length between the boss portion 13-2 and the plug valve 15.
  • the heat conductor 17 since the displacement absorbing function by the bellows portion 17a is ensured, no extra length is generated. Therefore, the heat conductor 17 has the inner peripheral surface of the inner layer body 11 and the boss portions 13-1, 13-. It is possible to more reliably prevent contact with the inner peripheral surface of No. 2, and to prevent unintentional heat transfer from the heat conductor 17 to the inner layer body 11 and the like.
  • the aspect of the displacement absorption part of the heat conductor 17 is not restricted to the bellows part 17a in this embodiment.
  • the displacement absorbing portion may be configured by forming a part or the entire region of the heat conductor 17 in the axial direction with a material having a certain flexibility.
  • FIG. 3 is a schematic configuration diagram of the high-pressure gas container 100 according to the third embodiment of the present invention.
  • a filling passage 30 for filling hydrogen gas is provided in a boss portion 13-1 integrated with the fusing valve 15.
  • the filling channel 30 is a channel through which hydrogen gas supplied from an external filling device passes, and is opened and closed by a main stop valve (not shown).
  • the heat conductor 17 is disposed so as to intersect the extension line C inward of the inner layer body 11 of the filling flow path 30. Specifically, as clearly shown in the figure, one end 17b of the heat conductor 17 is fixed to the upper part of the inner peripheral surface of the boss portion 13-1, and the other end 17c of the heat conductor 17 is connected to the boss.
  • the part 13-1 is fixed to the lower part of the inner peripheral surface in the figure.
  • the flow of hydrogen gas injected into the inner layer body 11 through the filling flow path 30 is disturbed by interference with the heat conductor 17 when filling with hydrogen gas.
  • the Accordingly, diffusion of hydrogen gas released into the inner layer body 11 is promoted.
  • the hydrogen gas whose temperature has changed is made uniform in the high-pressure gas container 100.
  • the uniformity of the temperature part distribution in the high-pressure gas container 100 is maintained. That is, when hydrogen gas is filled in the high-pressure gas container 100, an event in which the temperature distribution in the high-pressure gas container 100 is disturbed by the Joule-Thompson effect can be prevented.
  • the reversal temperature in the Joule-Thompson effect is relatively low at about 201 K, and the temperature of hydrogen gas during filling is usually higher than the reversal temperature. Will be. For this reason, the inside of the high-pressure gas container 100 locally becomes hot, and the durability of the high-pressure gas container 100 may be reduced.
  • the hydrogen gas is diffused while interfering (collision) with the heat conductor 17 at the time of filling. It will be distributed and distributed. Therefore, the temperature distribution in the high-pressure gas container 100 can be made uniform quickly.
  • the heat conductor 17 is made of a heat-resistant material so that it can endure even if it is exposed to hydrogen gas that has flowed from the filling flow path 30 and is heated. .
  • FIG. 4 is a diagram for explaining a method of manufacturing the high-pressure gas container 100 according to the present embodiment.
  • one boss portion 13-1 is attached with one end 17b of the heat conductor 17, and the other boss portion 13-2 is attached with the other end 17c of the heat conductor 17 with these boss portions 13-1.
  • the parts 13-1 and 13-2 are set in the mold 40 and blow molding is performed.
  • one end 17b of the heat conductor 17 is attached to the inner peripheral surface of one boss portion 13-1, and the other end 17c of the heat conductor 17 is connected to the inner periphery of the other boss portion 13-2. Attaching to the surface (thermal conductor attachment process).
  • the long heat conductor 17 can be handled as an integral member in a state where both the boss portions 13-1 and 13-2 are mounted. Work is easy.
  • -1 and 13-2 are formed with bolt holes for mounting the heat conductor 17, and the donut-shaped metal terminals of the heat conductor 17 are fastened together with the bolt holes.
  • boss portions 13-1 and 13-2 to which the heat conductor 17 is connected are set on the mold 40 (mold setting step). More specifically, the boss portions 13-1 and 13-2 are sandwiched between the molds 40 and 40 from both side surfaces.
  • heat conductor 17 is mounted before the molds 40 and 40 are set.
  • blow pipe 32 having a plurality of outlets 32a is formed so as to pass through both the hole 13a-1 of one boss 13-1 and the hole 13a-2 of the other boss 13-2. Install (blow tube installation process).
  • the blow pipe 32 is formed to have a length capable of bridging between the hole portions 13a-1 and 13a-2 of the boss portions 13-1 and 13-2 set in the molds 40 and 40. .
  • the blow tube 32 is temporarily fixed to the hole 13a-1 of the boss 13-1 and the hole 13a-2 of the boss 13-2, etc. It is preferable to fix to.
  • the blow pipe 32 has a hollow interior, and a plurality of air outlets 32a are arranged along the entire length in the longitudinal direction of the side surface so that the air supplied to the inside by a blower (not shown) can be discharged from the side surface. Is formed. Note that the order of the mold setting step and the blow tube installation step may be interchanged.
  • the resin material introduced in the present embodiment is a material such as a polyethylene resin or a polypropylene resin constituting the inner layer body 11.
  • the introduced resin material is blown from the inside of the resin through the blow outlet 32a of the blow pipe 32 to mold the inner layer body 11 with the boss portions 13-1 and 13-2 (container body molding step).
  • the hollow inner layer body 11 is formed by injecting air from a plurality of outlets 32a onto a resin material before expansion (indicated by a two-dot chain line in the figure) and expanding the resin material.
  • blow tube 42 is removed from the inner layer body 11 with the boss portions 13-1 and 13-2 (blow tube removal step). Further, the inner layer body 11 with the boss portions 13-1 and 13-2 formed by detaching the molds 40 and 40 is recovered (inner layer body recovery step). In addition, you may replace the order of this blow pipe removal process and an inner-layer body collection
  • a reinforcing layer 20 is formed by winding a strip-shaped member made of carbon fiber reinforced plastic around the outer periphery of the inner layer body 11 with the recovered boss portions 13-1 and 13-2 (reinforcing layer forming step). Thereby, the container main body 10 with the boss portions 13-1 and 13-2 is obtained. Then, the high pressure gas container 100 is obtained by providing the plug valve 15 on the boss portion 13-1 by a method such as welding. After that, the hole 13a-2 of the boss 13-2 is appropriately closed.
  • the container body 10 is formed with boss portions 13-1 and 13-2 at both ends, and the boss portions 13-1 and 13-2 are heat conductors inside the container body 10.
  • the high-pressure gas container 100 connected by 17 is manufactured.
  • one end 17b of the heat conductor 17 is attached to one boss 13-1, and the other boss 17c of the heat conductor 17 is attached to the other boss 13-2.
  • -2 is set on the mold 40, 40 and blow molding is performed.
  • the plug valve 15 is provided on the boss portion 13-1.
  • the high pressure gas container 100 is obtained by performing the above-described heat conductor attaching step to reinforcing layer applying step using the boss portion 13-1 in which the plug valve 15 is integrated in advance.
  • coating process can be skipped.
  • the boss portion 13-1 side is closed by the plug valve 15 in the blow tube installation step, it is necessary to insert the blow tube 42 from the hole portion 13a-2 of the boss portion 13-2. . Accordingly, in this case, the hole 13a-2 of the boss portion 13-2 is closed after the blow tube installation step is executed.
  • the shape, number, material, and the like of each component can be appropriately changed without departing from the gist of the present invention.
  • the heat conductor 17 of the present invention may be configured as an integral shaft instead of the above-described aspect in which a plurality of wires are knitted or a bellows portion. Even in this case, heat can be transmitted to the plug valve 15 via the heat conductor 17, and the structure in the high-pressure gas container 100 can be simplified.
  • the heat conductor 17 is close to the ideal rigid body property. Therefore, when the high-pressure gas container 100 is manufactured by the manufacturing method described in the fourth embodiment, both In a state where the heat conductor 17 is mounted on the boss portions 13-1 and 13-2, these can be handled as one rigid body, and the mold 40 is set on the boss portions 13-1 and 13-2. It becomes easy.
  • the heat conductor 17 can take various shapes as long as the shape can connect the bosses at both ends, such as a chain or a plate-like member.
  • the heat conductor 17 may be made of an elastic material so that the heat conductor 17 itself expands and contracts.
  • the heat conductor 17 may be installed so as to run over the inner wall of the inner layer body 11 in the container body 10. In this case, it is preferable to fix the heat conductor 17 to the inner wall.
  • the heat conductor 17 is shaken and the inner wall of the inner layer body 11 is shaken. It is possible to reliably prevent the situation of collision.
  • the example of the high-pressure gas container 100 including the boss portions 13-1 and 13-2 at both ends of the substantially cylindrical container body 10 is shown.
  • the shape is not limited to this, and can take various shapes.
  • the number of the plug valves 15 attached to the high-pressure gas container 100 is not limited to one.
  • hub part on the container 100 and the attachment location of the plug valve 15 can also be changed suitably.
  • the plug valve 15 is not limited to the one in which the plug plugs the gas escape passage of the housing of the plug valve 15 described above, and various types of plug valves can be used.
  • an indirect structure may be provided in which a member that is moved by a spring or the like is provided while the plug is melted, and the gas escape passage is opened by the movement of the member. That is, as long as the gas in the high-pressure gas container 100 escapes in response to exposure to a high temperature, other various forms of plug valves can be employed.
  • the manufacturing method of the high-pressure gas container 100 is not limited to the method shown in the fourth embodiment.
  • the container main body 10 the boss portions 13-1 and 13-2 and the plug valve 15
  • Various other manufacturing methods can be selected according to selection results such as the material to be used and the location and number of attachments of the fusing valve 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 溶栓弁と該溶栓弁とは異なる位置に配置されたボス部とが設けられた容器本体を備えた高圧ガス容器であって、溶栓弁及びボス部は、それぞれ、容器本体よりも高い熱伝導率を有し、溶栓弁とボス部とが熱伝導体で接続され、熱伝導体は容器本体内に収容される高圧ガス容器。

Description

高圧ガス容器及び高圧ガス容器の製造方法
 本発明は、溶栓弁を備えた高圧ガス容器及び高圧ガス容器の製造方法に関する。
 高圧ガス容器が高温環境下に晒された場合に、容器内の圧力を下げるため、容器に溶栓弁を取り付ける技術が知られている。溶栓弁は、高圧ガスの流出入口となる容器のボス部と一体化され、容器内外を貫通する流路を備えたとハウジングと、流路を閉塞する略円柱形の溶栓とからなる弁である。溶栓は融点の低い金属で構成されており、高温に晒されることで溶栓が融解する。これにより、容器が高温環境下に晒された場合であっても、高圧ガス容器内の高圧ガスが流路を通じて外部へと放出され、容器内部が通常の使用範囲を超えて高圧になることを抑制できる。
 高圧ガス容器の本体の材料としては、金属材料や炭素繊維強化プラスチックが用いられる。昨今では、強度や軽量化の観点から炭素繊維強化プラスチック材料が補強材として広く用いられている。一方で、高圧ガス容器本体の材料として炭素繊維強化プラスチック製のような熱伝導性が低い材料が用いられる場合、熱が容器本体を伝達しにくくなる。そのため、溶栓弁に対して反対側の容器端部等の離れた位置で容器の一部が加熱されたような場合、この熱が溶栓弁へ伝わるまでに時間がかかる可能性がある。その場合、容器の一部の温度が上昇しているにもかかわらず上述のような溶栓弁の融解が起こらず、内圧が上昇して容器の耐久性が低下するおそれがある。
 この問題に対してJP2005-315294Aには、高圧ガス容器に備えられる溶栓弁から、容器の外部において容器本体の側面に沿うように熱伝導体を延出させ、安全弁に熱を伝達するようにした高圧ガス容器が開示されている。
 JP2005-315294Aの場合、容器外部に存在する他の部材から衝撃を受けて熱伝導体が破損することが考えられる。特に、燃料電池(FC)を搭載した自動車において、水素燃料を貯蔵するタンクとしての高圧ガス容器を想定した場合、当該高圧ガス容器周辺に多数の構成部材が配置されることが考えられ、例えば走行中の振動等により上記熱伝導体が他の構成部材と干渉して意図しない衝撃が与えられることも想定される。
 このような従来の課題を解決する為に、本発明は、熱伝導体による溶融弁への熱の伝達機能を確保しつつ、熱伝導体の破損を防止することができる高圧ガス容器及び高圧ガス容器の製造方法の提供を目的とする。
 本発明のある態様によれば、溶栓弁と該溶栓弁とは異なる位置に配置されたボス部とが設けられた容器本体を備えた高圧ガス容器が提供される。この高圧ガス容器では、溶栓弁及びボス部は、それぞれ、容器本体よりも高い熱伝導率を有し、溶栓弁とボス部とが熱伝導体で接続され、熱伝導体は容器本体内に収容される。
図1は、本発明の第1実施形態にかかる高圧ガス容器の概略構成図である。 図2Aは、本発明の第2実施形態にかかる高圧ガス容器の概略構成図である。 図2Bは、本発明の第2実施形態にかかる高圧ガス容器の概略構成図である。 図3は、本発明の第3実施形態にかかる高圧ガス容器の概略構成図である。 図4は、本発明の第4実施形態にかかる高圧ガス容器の製造方法を説明する図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる高圧ガス容器を説明する概略構成図である。
 本実施形態の高圧ガス容器100は、略円柱形の容器本体10と、容器本体10の長手方向の両端に配設されたボス部13-1、13-2と、容器本体10の一方のボス部13-1に配設された溶栓弁15と、一方のボス部13-1と他方のボス部13-2とを高圧ガス容器100の内部で接続する熱伝導体17とを備える。
 高圧ガス容器100には、内部に35Mpa又は70Mpaの高圧状態でガスが貯蔵される。当該ガスについては種々の種類のものを想定することができるが、本実施形態では、特に水素ガスが想定され、この水素ガスを貯蔵する高圧ガス容器100は、例えば燃料電池車両に搭載される。
 また、容器本体10は、軽量化の観点から、ポリエチレン樹脂、又はポリプロピレン樹脂等のガスバリア性を有する材料で形成された内層体11と、この内層体11の外周に巻回される炭素繊維強化プラスチック(CFRP)で形成された外層部としての補強層20と、を有している。
 補強層20は、例えばフィラメントワインディング法を利用して、帯状の炭素繊維強化プラスチックを内層体11の外周に巻き付けることで形成される低熱伝導性の層状体である。補強層20の形状は、高圧ガス容器100に要求される性能に応じて決定される。
 ボス部13-1、13-2の材料は、例えばステンレス鋼や、アルミニウムなどの材料が用いられる。なお、ボス部13-1、13-2は、容器本体10より高い熱伝導率を有するように構成される限り、これらステンレス鋼やアルミニウムに限られず、他の金属材料又は非金属材料を用いることもできる。
 溶栓弁15は、詳細には図示しないが、容器本体10の内外を貫通するガス充填用の主流路と、容器本体10が高温に晒された場合に内部の高圧ガスを放出させる放出流路を備えたハウジングを基本構成とする。そして、このハウジングには、上記放出流路を塞ぐ略円柱形の溶栓が設けられている。溶栓は融点の低い金属から形成されており、高温に晒されると融解する。このように溶栓が融解すると、上述の容器本体10の内外を貫通する放出流路を介して容器本体10の内部と外部が連通する状態となる。また、本実施形態では、溶栓弁15のハウジングは一方のボス部13-1と一体として構成される。すなわち、溶栓弁15のハウジングとボス部13-1は同一の材料で構成される。
 これにより、高圧ガス容器100が高温環境下に晒された場合であっても、高圧ガス容器100内の高圧ガスが外部へと放出され、高圧ガス容器100の内部が通常の使用範囲を超えて高圧になることを抑制できる。上記溶栓として用いられる金属としては、鉛やスズなどが挙げられる。なお、溶栓の材料としてはハウジングよりも低い融点をもつ材料であれば、金属材料以外であっても良い。一方、溶栓弁15のハウジングの材料は、アルミニウム、ステンレス鋼、銅合金など、溶栓より融点が高く、特に容器本体10よりも熱伝導率の高い金属材料が用いられる。
 さらに、他方のボス部13-2は、上述の溶栓弁15とは異なる位置である容器本体10の他方端部に設けられており、蓋部材等によって閉塞されている。
 熱伝導体17は、一方のボス部13-1と、他方のボス部13-2とを容器100の内部で接続する部材であり、一方のボス部13-1から他方のボス部13-2を介して溶栓弁15へと熱を伝える。すなわち、熱伝導体17はボス部13-1を介して間接的に溶栓弁15に接続される状態となる。本実施形態において熱伝導体17は、容器本体10よりも熱伝導率の高い材料で構成される。具体的に、熱伝導体17は、例えば、ステンレス鋼やアルミニウム等の金属材料などで形成される。特に、水素ガスを貯蔵する本実施形態の高圧ガス容器100の場合には、熱伝導体17は高圧ガス容器100内において常に水素ガスに晒されることとなるので、SUS316L(JIS規格)等のステンレス鋼や、A6061(JIS規格)等のアルミニウムといった、水素脆化に対して耐性のある材料で形成されることが望ましい。
 特に本実施形態の熱伝導体17は、アルミニウム製の編み込み電線で構成される。編み込み電線は、複数の電線を束ねて編み込んだものであり、束ねたられた電線は例えば全体で12mm程の直径を有する。ここで、図示を省略するが、熱伝導体17の両端には、それぞれ容器本体10の両端のボス部13-1、13-2への取り付けを行うための穴の開いたドーナツ状金属製端子が設けられている。そして、本実施形態では、ボス部13-1、13-2にも、熱伝導体17の取り付け用のボルト穴が形成されており、熱伝導体17は、上記ドーナツ状金属端子が当該ボルト穴に対して共締めされることで、ボス部13-1、13-2に対して固定されることとなる。なお、ボス部13-1、13-2と熱伝導体17の取り付け態様はこれに限らず、コネクタ、フック、溶接等の様々な方法により接続することができる。
 さらに、本実施形態では、熱伝導体17は、その全長が両端のボス部13-1、13-2の距離よりも長い長さに形成されており、すなわち、ボス部13-1、13-2に取り付けられた状態で、当該ボス部13-1、13-2間においてたるんだ状態となっている。このように熱伝導体17がボス部13-1、13-2間においてたるむように、その長さに余裕を持たせておくことで、熱による膨張や収縮等の変形を吸収することができる。
 上述した熱伝導体17を有する本実施形態に係る高圧ガス容器100によれば、以下の効果を得ることができる。
 本実施形態の高圧ガス容器100は、溶栓弁15と、該溶栓弁15と異なる位置に配置されたボス部13-2と、が設けられた容器本体10を備えている。そして、溶栓弁15及びボス部13-2は、それぞれ、容器本体10よりも高い熱伝導率を有している。さらに、溶栓弁15とボス部13-2とが熱伝導体17で接続され、熱伝導体17は容器本体10内に収容される。
 ここで、本実施形態において「溶栓弁15とボス部13-2とが熱伝導体17で接続され」とは、溶栓弁15とボス部13-2とが直接的に熱伝導体17に接続されるだけでなく、熱伝導体17により溶栓弁15とボス部13-2とがボス部13-1を介して接続される等の間接的な接続をも含む意味である。
 本実施形態の高圧ガス容器100では、溶栓弁15とボス部13-2を接続する熱伝導体17が容器本体10内に収容されるので、熱伝導体17が高圧ガス容器100の周辺に配置される他部材により衝突等の干渉を受けることが防止され、結果としてその破損が防止されることとなる。
 また、本実施形態においては熱伝導体17が、溶栓弁15と一体化されている一方のボス部13-1と他方のボス部13-2に接続している。そして、ボス部13-1と一体化した溶栓弁15及びボス部13-2は、内層体11及び補強層20よりも高い熱伝導率を有しているので、高圧ガス容器100における溶栓弁15とは反対側の端部(すなわち他方のボス部13-2の部分)が高温状態になると、熱伝導率の高いボス部13-2の部分から熱伝導体17を介して溶栓弁15に速やかに熱が伝わることとなる。
 これにより、ボス部13-2付近で発生した熱を適切に溶栓弁15に伝達して、溶栓弁15の溶融がより確実になされることなる。すなわち、本実施形態によれば、熱伝導体17の他端(溶栓弁15とは異なる側)がボス部13-2に接続されない開放端である場合と比較して、より効果的に熱伝導体17の熱伝達機能が発揮されることとなる。
 特に、本実施形態では、熱伝導体17が、容器本体10よりも高い熱伝導率を有している。したがって、上記溶栓弁15に速やかに熱を伝達させるという熱伝導体17の機能をより確実に発揮させることができる。
 すなわち、本実施形態の高圧ガス容器100における容器本体10は、樹脂ライナである内層体11に、低熱伝導性の補強層20が巻回されることで形成されている。このため、容器全体が金属材料で構成されたタンクと比較して、高圧ガス容器100の一部が高温に晒された場合であっても、熱が容器本体10を伝達し難い傾向にある。
 しかしながら、本実施形態の高圧ガス容器100では、両端のボス部13-1、13-2が容器本体10よりも熱伝導率の高い熱伝導体17で接続されているため、高圧ガス容器100の一部で生じる熱を内層体11又は補強層20上における熱の伝達に頼ることなく、ボス部13-2から熱伝導体17を介して溶栓弁15に熱を伝えることができる。
 特に、本実施形態の熱伝導体17は、アルミニウム材料で形成された直径12mmの編み込み電線として構成されている。この場合、炭素繊維強化プラスチック製の補強層20の厚みを20mmと仮定すると、溶栓弁15から離れた位置のボス部13-2が高温になってから、ボス部13-2から熱伝導体17を伝達する熱により溶栓弁15が融解するまでの時間が、熱伝導体17を具備しない場合、すなわちボス部13-2の熱が補強層20を伝導する場合と比較して、約5分の1に短縮される。
 すなわち、補強層20の厚みが20mmである場合においてはその断面積は直径12mmの熱伝導体17の断面積の約178倍となるにもかかわらず、熱伝導体17の熱の伝達速度が補強層20の伝達速度に対して5倍程度早くなる。このように、熱伝導体17は、その熱伝達速度が補強層20の熱伝達速度よりも速くなるように構成されるので、溶栓弁15から離れた位置のボス部13-2が高温になってから該ボス部13-2から熱伝導体17を伝達する熱により溶栓弁15が融解するまでの時間が、熱伝導体17を具備しない場合と比べて短縮される。
 さらに、本実施形態の熱伝導体17は、溶栓弁15とボス部13-2の間でたるませた状態で組み付けられている。これにより、寒暖の差などにより内層体11が膨張や収縮等の熱変形を起こしても、たるみによって、引っ張りや圧縮の影響を抑制できる。また、内層体11内部の温度変化による熱伝導体17自身の熱変形も、上記たるみによって吸収されるので、熱伝導体17の破損がより確実に防止されることとなる。
 この場合に特に、熱伝導体17を内層体11の内周面に接触しない程度にたるませておくことが好ましい。これにより、高圧ガス容器100を車両に搭載した場合であっても、熱伝導体17が内層体11に接触して不要な音が発生するような事態を防ぎ、ドライバに違和感を与えることが防止される。さらに、熱伝導体17と内層体11が接触すると当該接触部分を介して、溶栓弁15に伝達されるべき熱が内層体11側に逃げてしまい、この熱により内層体11の耐久性が低下する恐れがある。本実施形態に係る熱伝導体17ではこのような事態も防止される。
 また、本実施形態の高圧ガス容器100では、一般的な編み込み電線が熱伝導体17として使用される。このため、熱伝導体17として量販品である編み込み電線を使用でき、熱伝導体17を構成するためのコストを削減できる。しかしながら、熱伝導体17としては編み込み電線だけでなく、例えば金属性棒体などの他の種々のタイプの部材を用いることもできる。
 (第2実施形態)
 以下では、第2実施形態について説明する。なお、以下の各実施形態において、先の実施形態と同様の構成部位は、同一符号を付して詳細な説明を省略する。
 図2A、図2Bは、本発明の第2実施形態における高圧ガス容器100の概略構成図である。
 図2Aに示すように、本実施形態では、両端のボス部13-1、13-2が棒状の金属製のシャフトとして構成された熱伝導体17により接続される。さらに、この熱伝導体17の軸方向略中央部には、変位吸収部としての金属製の蛇腹部17aが構成されている。これにより、容器100が膨張などの変形を起こした際にも、蛇腹部17aの変位を吸収するため、熱変形などに起因して容器100のボス部13-1(溶栓弁15)、ボス部13-2、及び熱伝導体17の特定箇所に負荷が集中することを抑制できる。
 さらに、図2Bに示すように、蛇腹部17aは、熱伝導体17の軸方向ほぼ全域に形成されていても良い。このように構成された熱伝導体17は、その軸方向における全体が伸縮可能な構造を有することとなるので、軸方向における変位を吸収する効果がさらに高まり、熱変形などに起因してボス部13-1(溶栓弁15)、ボス部13-2、及び熱伝導体17の特定箇所に負荷が集中することをより確実に防止することができる。
 上述した熱伝導体17を有する本実施形態に係る高圧ガス容器100によれば、以下の効果を得ることができる。
 本実施形態に係る高圧ガス容器100では、熱伝導体17は、溶栓弁15とボス部13-2との間に生じる相対変位を吸収可能な変位吸収部としての蛇腹部17aを有する。特に、蛇腹部17aは、図2Aに示すように熱伝導体17の軸方向略中央部などに部分的に形成されていても良いし、図2Bに示すように熱伝導体17の軸方向全域亘るように構成されていても良い。
 これによれば、熱による膨張や収縮等の変形によって、ボス部13-2と溶栓弁15との間に変位が生じても、蛇腹部17aにより当該変位を吸収することができるので、ボス部13-2、溶栓弁15、及び熱伝導体17の特定箇所による負荷の集中が抑制され、結果として熱伝導体17の破損を防ぐことができる。
 特に、図2Aに示すように、熱伝導体17に蛇腹部17aが部分的に形成される場合には、蛇腹部17aを形成するための加工量を比較的少なくして製造プロセスを簡素化することができる。
 一方で、図2Bに示すように、熱伝導体17の軸方向略全域に亘って蛇腹部17aが形成される場合には、熱伝導体17の軸方向位置における任意の箇所で変位が生じた場合であっても、当該変位を確実に吸収することが可能である。したがって、ボス部13-1(溶栓弁15)、ボス部13-2、及び熱伝導体17の特定箇所における負荷の集中がより効果的に防止されることとなるので、熱伝導体17の破損を防ぐ効果がより一層効果的に発揮される。
 なお、本実施形態では、熱伝導体17の長さはボス部13-2と溶栓弁15との間の長さと略等しくすることが好ましい。これにより、熱伝導体17においては、蛇腹部17aによる変位吸収機能が確保されつつも余長が生じないので、熱伝導体17が内層体11の内周面やボス部13-1、13-2の内周面に接触することをより確実に防止し、熱伝導体17から内層体11等への意図しない熱の伝達を防ぐことができる。
 なお、熱伝導体17の変位吸収部の態様は、本実施形態における蛇腹部17aに限られるものではない。例えば熱伝導体17の軸方向の一部又は全域を一定の柔軟性を有する材料で形成するなどして、変位吸収部を構成するようにしても良い。
 (第3実施形態)
 以下では、第3実施形態について説明する。
 図3は、本発明の第3実施形態における高圧ガス容器100の概略構成図である。図3の高圧ガス容器100は、溶栓弁15と一体化されたボス部13-1に、水素ガスを充填するための充填流路30が設けられている。
 充填流路30は、外部の充填装置から供給された水素ガスが通過する流路であり、図示しない主止弁によって開閉が操作される。そして、本実施形態では、充填流路30の内層体11内方への延長線Cと交差するように、熱伝導体17が配置される。具体的には、図に明示されているように、熱伝導体17の一端17bが、ボス部13-1における図上内周面上部に固定され、熱伝導体17の他端17cが、ボス部13-1における図上内周面下部に固定される。
 上記構成により、本実施形態の高圧ガス容器100においては、水素ガス充填時に、充填流路30を通して内層体11内に注入される水素ガスの流れが、熱伝導体17と干渉することにより乱される。したがって、内層体11の内部に放出される水素ガスの拡散が促進される。
 したがって、水素ガスを充填する際にジュール=トムソン効果により水素ガスの温度変化が生じたとしても、当該温度変化した水素ガスが高圧ガス容器100内において均一化するような作用が働くこととなるので、高圧ガス容器100における温度部分布の均一性が保たれる。すなわち、水素ガスが高圧ガス容器100内に充填される際において、上記ジュール=トムソン効果により高圧ガス容器100内の温度分布が乱される事象を防止することができる。
 特に、水素ガスの場合にあっては、ジュール=トムソン効果における逆転温度が201K程度と比較的低く、通常、充填時の水素ガスの温度は逆転温度よりも高いため、充填時に水素ガスが温度上昇することとなる。そのため、高圧ガス容器100内部が局所的に高温になり、高圧ガス容器100の耐久性が低下するおそれがある。
 これに対して、本実施形態の高圧ガス容器100においては、充填時に水素ガスが熱伝導体17と干渉(衝突)しつつ拡散されるため、充填時に温度上昇した水素ガスは容器本体10内において拡散して分布することとなる。したがって、高圧ガス容器100内における温度分布をすみやかに均一化させることができる。
 これにより、高圧ガス容器100が高温に晒されてその耐久性が低下することが抑制されると共に、高圧ガス容器100内部に温度センサなどの温度測定手段を設ける場合は、より正確な温度測定を行うことができるようになる。なお、本実施形態においては、特に、熱伝導体17を耐熱性材料で構成し、充填流路30から流入されて昇温した状態の水素ガスに晒されても耐えうるようにしておくと好ましい。
 (第4実施形態)
 以下では、第4実施形態について説明する。なお、本実施形態では、特に上述の第3実施形態において説明したタイプの高圧ガス容器100を製造する場合を想定して、その製造方法を説明する。
 図4は、本実施形態にかかる高圧ガス容器100を製造する方法を説明する図である。本実施形態の製造方法では、一方のボス部13-1に熱伝導体17の一端17bを装着し、他方のボス部13-2に熱伝導体17の他端17cを装着した状態でこれらボス部13-1、13-2を金型40にセットしてブロー成型を行う。
 具体的には、先ず、熱伝導体17の一端17bを一方のボス部13-1の内周面に装着し、該熱伝導体17の他端17cを他方のボス部13-2の内周面に装着する(熱伝導体装着工程)。
 ここで、図からも明らかなように、長尺の熱伝導体17が両方のボス部13-1、13-2に装着された状態で、これらを一体の部材として扱うことができるので、成型作業が容易である。
 なお、図示はしないが、熱伝導体17の一端17b及び他端17cをそれぞれボス部13-1、13-2に装着する際には、例えば第1実施形態で説明したように、ボス部13-1、13-2に熱伝導体17の取り付け用のボルト穴を形成し、熱伝導体17のドーナツ状金属端子を当該ボルト穴に対して共締して固定する。
 次に、熱伝導体17が接続されているボス部13-1、13-2を金型40にセットする(金型セット工程)。より詳細には、ボス部13-1、13-2を両側面側から金型40,40で挟み込む。
 なお、上述の金型セット工程の後に熱伝導体装着工程を行うようにしても良いが、金型40,40がセットされていない状態である方が熱伝導体17の装着作業が容易であるので、熱伝導体17は金型40,40をセットする前に装着されることが最も好ましい。
 次に、一方のボス部13-1の孔部13a-1と他方のボス部13-2の孔部13a-2の双方を通るように、複数の吹出口32aが形成されたブロー管32を設置する(ブロー管設置工程)。
 このブロー管32は、金型40,40にセットされた状態のボス部13-1、13-2の孔部13a-1、13a-2間を架け渡すことができる長さに形成されている。なお、ブロー管32は、ボス部13-1の孔部13a-1やボス部13-2の孔部13a-2に対して仮止めする等してボス部13-1やボス部13-2に対して固定することが好ましい。
 また、ブロー管32は、内部が中空に構成され、図示しない送風手段により内部に供給された風を側面から放出させることができるように当該側面の長手方向に全域に沿って複数の吹出口32aが形成されている。なお、金型セット工程とブロー管設置工程の順序は入れ替えても良い。
 そして、セットされた金型40により形成される成型空間P内に樹脂材料を導入する(樹脂材料導入工程)。本実施形態において導入される樹脂材料は、内層体11を構成するポリエチレン樹脂、又はポリプロピレン樹脂等の材料である。
 さらに、導入された樹脂材料をブロー管32の吹出口32aにより当該樹脂の内側からブローしてボス部13-1、13-2付きの内層体11を成型する(容器本体成型工程)。具体的には、複数の吹出口32aから空気を膨張前の樹脂材料(図において2点鎖線で示す)に噴射し、樹脂材料を膨張させることで中空の内層体11が形成される。
 次に、ボス部13-1、13-2付きの内層体11からブロー管42を取り外す(ブロー管除去工程)。さらに、金型40,40を脱離して成型されたボス部13-1、13-2付きの内層体11を回収する(内層体回収工程)。なお、このブロー管除去工程と内層体回収工程の順序は入れ替えても良い。
 その後、回収されたボス部13-1、13-2付きの内層体11の外周に対して炭素繊維強化プラスチック製の帯状部材を巻き回して補強層20を形成する(補強層形成工程)。これにより、ボス部13-1、13-2付きの容器本体10が得られる。そして、そのボス部13-1に溶栓弁15を溶接等の方法により設けることにより、高圧ガス容器100が得られることとなる。なお、その後、適宜、ボス部13-2の孔部13a-2を閉塞する。
 上述した高圧ガス容器100の製造方法によれば、以下の効果を得ることができる。
 本実施形態では、両端部にそれぞれボス部13-1、13-2が形成される容器本体10を有し、それぞれのボス部13-1、13-2が容器本体10の内部で熱伝導体17により接続される高圧ガス容器100が製造される。特に、一方のボス部13-1に熱伝導体17の一端17bを装着し、他方のボス部13-2に熱伝導体17の他端17cを装着した状態でこれらボス部13-1、13-2を金型40,40にセットしてブロー成型を行う。
 これにより、内部に熱伝導体17を収容した態様の高圧ガス容器100を容易且つコストに製造することができる。
 なお、本実施形態に係る製造方法では、ボス部13-1、13-2付きの容器本体10を得た後に、溶栓弁15をボス部13-1に設けるようにしている。しかしながら、これに代えて、予め溶栓弁15を一体化させたボス部13-1を用いて、上述した熱伝導体装着工程~補強層施与工程を行うことで高圧ガス容器100を得るようにしても良い。これにより、補強層施与工程の後にボス部13-1に溶栓弁15を溶接等により設ける作業を省略することができる。この場合、ブロー管設置工程において、ボス部13-1側が溶栓弁15により塞がれた状態であるので、ブロー管42をボス部13-2の孔部13a-2から挿通する必要がある。したがって、この場合、ブロー管設置工程を実行した後に、ボス部13-2の孔部13a-2を閉塞する。
 以上、本発明の第1実施形態~第4実施形態について説明したが、上記各実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、本実施形態の高圧ガス容器100では、各構成部材の形状、個数、および材質等を本発明の要旨を逸脱しない範囲において適宜変更することが可能である。
 具体的に、本発明の熱伝導体17を、上述のような複数の線を編み込んだ態様や蛇腹部を有するものではなく、一体構成のシャフトとして構成してもよい。この場合でも、熱伝導体17を介して溶栓弁15に熱を伝えることができると共に、高圧ガス容器100内の構造を簡素化できる。
 特に、一体構成のシャフトの場合には、熱伝導体17が理想的な剛体の性質に近くなるので、上記第4実施形態で説明した製造方法にて高圧ガス容器100を製造する場合に、両ボス部13-1、13-2に熱伝導体17を装着した状態においてこれらを一つの剛体として扱うことができるようになり、当該ボス部13-1、13-2に対する金型40のセットを容易になる。
 さらに、熱伝導体17は、チェーンや板状の部材など、両端のボス部を接続できる形状であれば、様々な形状を取ることが可能である。特に、熱伝導体17はそれ自体が伸縮するように弾性を有する材料で構成するようにしても良い。
 一方で、熱伝導体17を、容器本体10における内層体11の内壁に這わせるように設置してもよく、この場合、熱伝導体17を当該内壁に固定することが好ましい。これにより、例えば高圧ガス容器100が車載されている場合であって、走行時の振動等により容器本体10内が揺れるような場合であっても、熱伝導体17が揺れ動いて内層体11の内壁に衝突するという事態を確実に防止することができる。
 さらに、上記の各実施形態1-4では略円筒形の容器本体10の両端にボス部13-1、13-2を備えた高圧ガス容器100の例を示したが、勿論、高圧ガス容器100の形状はそれに限定されず、様々な形状を取りうる。
 また、高圧ガス容器100に取り付けられる溶栓弁15の数は一つに限られるものではない。例えば、容器100の大きさに合わせて溶栓弁15の数を増やし、それと共に熱伝導体17やボス部13-1、13-2の数を増やすことも可能であり、同等の作用効果を奏する。また、容器100上のボス部の配置箇所や、溶栓弁15の取り付け箇所も、適宜変更可能である。
 また、溶栓弁15は、上述した溶栓弁15のハウジングのガス逃がし流路を溶栓が閉塞するものに限らず、種々のタイプのものを用いることが可能である。例えば、溶栓が融解するとともに、スプリングなどにより移動される部材を備え、その部材の移動によりガス逃がし流路が開通されるような間接的な構造としても良い。すなわち、高温にさらされることに反応して、高圧ガス容器100内のガスが逃がされるものであれば、他の種々の形態の溶栓弁を採用することができる。
 さらに、高圧ガス容器100の製造方法についても、上記第4実施形態に示した方法に限定されるものではなく、例えば容器本体10、ボス部13-1、13-2、及び溶栓弁15として用いるべき材料や溶栓弁15の取り付け箇所や数などの選定結果に応じて、他の種々の製造方法を選択することが可能である。

Claims (6)

  1.  溶栓弁と該溶栓弁とは異なる位置に配置されたボス部とが設けられた容器本体を備えた高圧ガス容器であって、
     前記溶栓弁及び前記ボス部は、それぞれ、前記容器本体よりも高い熱伝導率を有し、
     前記溶栓弁と前記ボス部とが熱伝導体で接続され、前記熱伝導体は前記容器本体内に収容される高圧ガス容器。
  2.  請求項1に記載の高圧ガス容器であって、
     前記熱伝導体は、前記容器本体よりも高い熱伝導率を有する高圧ガス容器。
  3.  請求項1又は請求項2に記載の高圧ガス容器であって、
     前記熱伝導体は、前記溶栓弁と前記ボス部の間でたるませた状態で組み付けられる高圧ガス容器。
  4.  請求項1~請求項3のいずれか1項に記載の高圧ガス容器であって、
     前記熱伝導体は、前記溶栓弁と前記ボス部との間に生じる相対変位を吸収可能な変位吸収部を有する高圧ガス容器。
  5.  請求項1~請求項4のいずれか1項に記載の高圧ガス容器であって、
     前記容器本体における前記溶栓弁の部分には、高圧ガスを容器本体内に充填する充填流路が設けられ、
     前記熱伝導体は、前記充填流路の容器本体内方への延長線に交差するように接続される高圧ガス容器。
  6.  両端部にそれぞれボス部が形成される容器本体を有し、前記それぞれのボス部が前記容器本体の内部で熱伝導体により接続される高圧ガス容器の製造方法であって、
     一方のボス部に前記熱伝導体の一端を装着し、他方のボス部に前記熱伝導体の他端を装着した状態でこれらボス部を金型にセットしてブロー成型を行う高圧ガス容器の製造方法。
PCT/JP2015/057906 2015-03-17 2015-03-17 高圧ガス容器及び高圧ガス容器の製造方法 WO2016147317A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2015/057906 WO2016147317A1 (ja) 2015-03-17 2015-03-17 高圧ガス容器及び高圧ガス容器の製造方法
KR1020197002279A KR20190010744A (ko) 2015-03-17 2015-03-17 고압 가스 용기 및 고압 가스 용기의 제조 방법
KR1020177026207A KR101981419B1 (ko) 2015-03-17 2015-03-17 고압 가스 용기 및 고압 가스 용기의 제조 방법
US15/558,868 US10429009B2 (en) 2015-03-17 2015-03-17 High pressure gas container and method for manufacturing high pressure gas container
JP2017505924A JP6432673B2 (ja) 2015-03-17 2015-03-17 高圧ガス容器及び高圧ガス容器の製造方法
CN201580077894.7A CN107407460B (zh) 2015-03-17 2015-03-17 高压气体容器和高压气体容器的制造方法
EP15885413.3A EP3273138B1 (en) 2015-03-17 2015-03-17 High pressure gas container and high pressure gas container manufacturing method
CA2979963A CA2979963C (en) 2015-03-17 2015-03-17 High pressure gas container and method for manufacturing high pressure gas container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057906 WO2016147317A1 (ja) 2015-03-17 2015-03-17 高圧ガス容器及び高圧ガス容器の製造方法

Publications (1)

Publication Number Publication Date
WO2016147317A1 true WO2016147317A1 (ja) 2016-09-22

Family

ID=56919953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057906 WO2016147317A1 (ja) 2015-03-17 2015-03-17 高圧ガス容器及び高圧ガス容器の製造方法

Country Status (7)

Country Link
US (1) US10429009B2 (ja)
EP (1) EP3273138B1 (ja)
JP (1) JP6432673B2 (ja)
KR (2) KR20190010744A (ja)
CN (1) CN107407460B (ja)
CA (1) CA2979963C (ja)
WO (1) WO2016147317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023441A (ko) * 2017-07-06 2020-03-04 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 개선된 압력 베셀

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227392B (zh) * 2019-05-14 2021-09-03 武汉市能智达科技有限公司 有电启动及无电启动储氢材料固气反应产氢装置
KR102363384B1 (ko) * 2019-11-19 2022-02-15 롯데케미칼 주식회사 고압탱크용 노브캡
KR102630143B1 (ko) * 2022-01-20 2024-01-30 한국브렌슨 주식회사 고압탱크라이너의 가압용접용 지지대
KR102630142B1 (ko) * 2022-01-20 2024-01-30 한국브렌슨 주식회사 블로우성형을 이용한 고압탱크라이너의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996399A (ja) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd 圧力容器
JP2002181295A (ja) * 2000-12-14 2002-06-26 Honda Motor Co Ltd 高圧ガス貯蔵容器
JP2006316934A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 高圧ガス貯蔵容器
DE102006052382A1 (de) * 2006-11-07 2008-05-15 GM Global Technology Operations, Inc., Detroit Nichtmetallischer Druckgasbehälter
US20090308874A1 (en) * 2008-06-13 2009-12-17 Markus Lindner Activation of a pressure relief device
JP2011149545A (ja) * 2010-01-25 2011-08-04 Honda Motor Co Ltd ガスタンク
US20110226782A1 (en) * 2010-03-17 2011-09-22 Gm Global Technology Operations, Inc. Gas temperature moderation within compressed gas vessel through heat exchanger
JP2012189106A (ja) * 2011-03-09 2012-10-04 Yachiyo Industry Co Ltd 圧力容器の口金構造及び圧力容器の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848604A (en) * 1997-10-29 1998-12-15 Technical Products Group, Inc. Thermally responsive pressure relief system
US6382232B1 (en) * 2001-03-09 2002-05-07 Dynetek Industries Ltd. Remote triggering system and retrofit kit for thermal-pressure relief devices
JP2005315294A (ja) 2004-04-27 2005-11-10 Toyota Motor Corp 高圧タンク
JP2007333175A (ja) 2006-06-19 2007-12-27 Toyota Motor Corp 圧力容器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996399A (ja) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd 圧力容器
JP2002181295A (ja) * 2000-12-14 2002-06-26 Honda Motor Co Ltd 高圧ガス貯蔵容器
JP2006316934A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 高圧ガス貯蔵容器
DE102006052382A1 (de) * 2006-11-07 2008-05-15 GM Global Technology Operations, Inc., Detroit Nichtmetallischer Druckgasbehälter
US20090308874A1 (en) * 2008-06-13 2009-12-17 Markus Lindner Activation of a pressure relief device
JP2011149545A (ja) * 2010-01-25 2011-08-04 Honda Motor Co Ltd ガスタンク
US20110226782A1 (en) * 2010-03-17 2011-09-22 Gm Global Technology Operations, Inc. Gas temperature moderation within compressed gas vessel through heat exchanger
JP2012189106A (ja) * 2011-03-09 2012-10-04 Yachiyo Industry Co Ltd 圧力容器の口金構造及び圧力容器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023441A (ko) * 2017-07-06 2020-03-04 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 개선된 압력 베셀
KR102511650B1 (ko) 2017-07-06 2023-03-20 플라스틱 옴니엄 뉴 에너지스 프랑스 개선된 압력 베셀

Also Published As

Publication number Publication date
JP6432673B2 (ja) 2018-12-05
US20180073683A1 (en) 2018-03-15
CN107407460B (zh) 2019-11-05
EP3273138A4 (en) 2018-05-30
CA2979963A1 (en) 2016-09-22
US10429009B2 (en) 2019-10-01
KR20190010744A (ko) 2019-01-30
EP3273138A1 (en) 2018-01-24
KR101981419B1 (ko) 2019-05-22
CA2979963C (en) 2018-02-13
EP3273138B1 (en) 2019-08-14
CN107407460A (zh) 2017-11-28
KR20170113673A (ko) 2017-10-12
JPWO2016147317A1 (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2016147317A1 (ja) 高圧ガス容器及び高圧ガス容器の製造方法
RU2413119C2 (ru) Способ изготовления трубопровода
JP5999039B2 (ja) 高圧タンクおよび高圧タンクの製造方法
JP5036319B2 (ja) マフラ組立体
JP2014088172A (ja) 自己調節式結合器
JP5909331B2 (ja) 高圧ガス容器及びその製造方法
US10982810B2 (en) High-pressure tank
CN101512204A (zh) 软管和管道组件及安装系统和方法
US9808981B2 (en) Fuel tank manufacturing method and fuel tank
JP2010276059A (ja) 高圧ガスタンクとこれを搭載した車両
EP3825032B1 (en) Multicore and method of manufacturing hollow product using multicore
JP2016176599A (ja) 高圧タンクおよび高圧タンクの製造方法
CN113614438A (zh) 压力容器和用于制造压力容器的方法
US20120060961A1 (en) Tubes for High Temperature Industrial Application and Methods for Producing Same
JP5650206B2 (ja) 成形品の製造方法及びこのように製造された成形品
EP3123005A1 (en) Flexible conduit tube and a connecting device for use in exhaust systems
JP6274795B2 (ja) 自動車用燃料タンク
KR101947459B1 (ko) 보강사가 와인딩된 보강재 및 이를 이용한 배기시스템 행거
JP5419567B2 (ja) ガス発生器ハウジング用の筒状部材
KR101031248B1 (ko) 엔진의 조정 연결관
WO2015067492A1 (en) Fuel tank and method of manufacturing a fuel tank
JP2005214249A (ja) 分岐接続管およびその製造方法
JP2009298057A (ja) 合成樹脂発泡成形品の成形金型
JP2005155786A (ja) 防振装置及びその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505924

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2979963

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15558868

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177026207

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015885413

Country of ref document: EP