WO2016145946A1 - 一种实景交互式操控系统 - Google Patents

一种实景交互式操控系统 Download PDF

Info

Publication number
WO2016145946A1
WO2016145946A1 PCT/CN2016/072090 CN2016072090W WO2016145946A1 WO 2016145946 A1 WO2016145946 A1 WO 2016145946A1 CN 2016072090 W CN2016072090 W CN 2016072090W WO 2016145946 A1 WO2016145946 A1 WO 2016145946A1
Authority
WO
WIPO (PCT)
Prior art keywords
workstation
base station
real
unit
image
Prior art date
Application number
PCT/CN2016/072090
Other languages
English (en)
French (fr)
Inventor
刘建平
Original Assignee
刘建平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘建平 filed Critical 刘建平
Publication of WO2016145946A1 publication Critical patent/WO2016145946A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the present invention relates to remote interactive interoperability systems, and more particularly to techniques for remotely interoperable, displaying, interacting, and the like.
  • the remote control mode is as follows: The drone is controlled by the ground control personnel using a mouse, a keyboard, etc. to command the flight mode, and the related equipment carried on the drone will be video images, measurement data, etc. Returned to the ground. This makes the drone's slow response, which directly leads to its inability to fly low. Because it must be flexible in flying at low altitudes, it is very easy to hit the ground, such as trees and houses.
  • the training cabin can control the flight attitude of the aircraft according to the operation of the driver, and the posture can be integrated with the display scene to reach the pilot. Training.
  • the underwater robot is currently controlled by the operator according to the image, data, etc. transmitted by the underwater robot, and the motion of the robot is controlled by the wireless command.
  • the object of the present invention is to design a real-time interactive control between a base station and a workstation in response to the above-mentioned deficiencies of the prior art, to achieve a remote control of the base station to the workstation, and to return the posture or motion of the workstation to control the posture of the base station. So that the base station controller feels the real scene of the workstation and corrects the workstation Operation instructions.
  • the object of the present invention can be achieved by the following method, a real-time interactive control system, which is composed of a base station base station and a workstation, wherein
  • the base station includes: a workstation data receiving unit that can receive the live image and data of the workstation, a base station control signal transmitting unit that can transmit the base station control signal, and a base station image display unit that can accept and display the workstation environment image, and is acceptable. And a base station audio unit that plays the sound of the workstation environment and a one-dimensional or more workstation motion simulation system controlled by the actual posture of the workstation;
  • the workstation includes: a base station data receiving unit that can receive a base station control signal, a workstation attitude signal transmitting unit that can pick up and send a station attitude signal, and a workstation image picking and sending unit that can pick up and send a workstation environment image, and can pick up and A workstation sound pickup transmitting unit that transmits workstation environment sounds and a workstation automatic driving system controlled by base station control signals.
  • the real-life interactive control system is controlled by a one-dimensional workstation motion simulation system of a workstation with a solid posture as a three-dimensional workstation motion simulation system.
  • the real-time interactive control system is controlled by a multi-station workstation motion simulation system of a workstation, including a base station working cabin, a base station working cabin more than one-dimensional motion structure, and a base station work cabin power system.
  • a real-time interactive control system which can accept and display a base station image display unit of a workstation environment image, is a helmet-type base station image display unit or an eye-based base station image display unit or a ring-shaped display screen or a spherical display screen.
  • the real-time interactive control system, the base station work space is also provided with an image according to the workstation environment
  • the real-time interactive control system of the workstation, the workstation posture signal transmitting unit of the workstation posture signal transmitting unit capable of picking up and transmitting the workstation attitude signal includes, but is not limited to, a gyroscope, an accelerometer, and an electronic compass.
  • the real-life interactive control system is characterized in that the workstation is provided with a warning indicating that the base station control signal exceeds the safety value set by the height, speed and distance of the workstation, and the warning limiting unit that enters the automatic protection state.
  • the real-life interactive control system the workstation is provided in an anti-environment environment, and is used to be externally a light receiving unit that emits laser or infrared light and an attacked signal transmitting unit that can transmit the information received by the unit; the base station is provided when the workstation data receiving unit receives the attack signal, and can be issued at the corresponding position of the workstation.
  • the attack signal generating unit that hits the signal.
  • a real-life interactive control system the workstation of which is a drone or a robot or a vehicle or a ship or a ground device or an underwater device.
  • the base station is a wearable device
  • the workstation is a robot
  • the operator wears the wearable device
  • the robot picks up and sends the posture signal, and corrects the base station control signal sent to the workstation.
  • the present invention is used in the drone industry, and the controller can fully feel the actual condition of the drone, just like driving in person; for training pilots, it is more immersive.
  • the controller can fully feel the actual condition of the drone, just like driving in person; for training pilots, it is more immersive.
  • robot control if you are in the field, you can correct the operation instructions for the workstation.
  • Embodiment 1 of the present invention is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of three-dimensional coordinates of a structure of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of the present invention.
  • the real-time interactive control system is composed of the base station base station 1 and the workstation 2, and can be one-dimensional or two-dimensional or three-dimensional motion posture.
  • a real-time interactive control system of the present invention is composed of a base station base station 1 and a workstation 2.
  • the base station 1 includes: a workstation data receiving unit 10 that can receive the live image and data of the workstation 2
  • a base station control signal transmitting unit 11 that can transmit a base station 1 control signal, which can accept and display the workstation 2 ring
  • the workstation data receiving unit 10
  • the image receiving module, the image processing module, the image storage module, the audio signal receiving module, the audio signal processing module, the data receiving module, the data storage module, and the data processing module may be included.
  • the base station control signal transmitting unit 11 includes a radio control signal that can transmit the base station 1 to the workstation 2, and includes a control signal power amplifying module and a control signal transmitting module.
  • the base station image display unit 12 includes an image image processing module and an image display screen.
  • the base station audio unit 13 includes an audio signal processing module and a speaker.
  • the three-dimensional workstation motion simulation system 14 controlled by the workstation 2's actual attitude includes a base station bay that allows the operator to operate, and a three-dimensional motion mechanism that enables the base station cabin to be controlled by the workstation 2's actual attitude control. Powerplant.
  • the workstation 2 includes: a base station data receiving unit 20 that can receive a base station control signal, a workstation attitude signal transmitting unit 21 that can pick up and transmit a station attitude signal, and a workstation image picking and transmitting unit 22 that can pick up and transmit a workstation environment image.
  • a workstation sound pickup transmitting unit 23 that can pick up and transmit the workstation ambient sound and a workstation automatic driving system 24 controlled by the base station control signal.
  • the base station data receiving unit 20 includes a base station control signal receiving module, a base station control signal processing module, and a base station control signal storage module.
  • the workstation attitude signal transmitting unit 21 includes a workstation attitude signal pickup module, an attitude signal processing module, an attitude signal storage module, and an attitude signal transmission module.
  • the workstation image picking and transmitting unit 22 includes a working environment image picking module, a working environment image processing module, and a working environment image transmitting module.
  • the workstation sound pickup sending unit 23 includes a workstation environment sound pickup module, a workstation environment sound processing module, a workstation environment sound storage module, and a workstation environment sound sending module.
  • the workstation autopilot system 24 includes a workstation station body, an electronic, mechanical system, and workstation power module that can perform base station operation commands.
  • Embodiment 1 is a three-dimensional workstation motion simulation system, which is a stereoscopic diagram of a base station of a pilot real-time interactive control system, which can realize real-time interactive manipulation of a base station and a drone (workstation).
  • the pilot feels almost the same as the actual aircraft, which allows the pilot to experience the real flight at the lowest cost and at the maximum.
  • the base station 1 is a pilot trainer
  • the workstation 2 is a drone.
  • the base station 1 includes a workstation data receiving unit 10 that can receive the live image and data of the workstation 2, and can transmit Base station control signal transmitting unit 11 of base station 1 control signal, base station image display unit 12 capable of accepting and displaying environment image of workstation 2, base station audio unit 13 capable of accepting and playing the ambient sound of workstation 2, and controlled by workstation 2 3D workstation motion simulation system 14.
  • the base station image display unit 12 of the system is disposed in a base station compartment that allows an operator to operate.
  • the image display unit is a panoramic spherical display screen, and the base station cabin simulates an aircraft cockpit structure to maximize the pilot's feeling and actual frame. The same machine.
  • the three-dimensional workstation motion simulation system 14 of the base station controlled by the workstation 2 in an actual posture includes a base station cabin 140 that can be operated by an operator, and a three-dimensional motion that can control the base station cabin to be controlled by the workstation 2
  • the three-dimensional motion mechanism 141 includes a base station base 1410, a Y-axis motion slide rail 1411, an Z-axis motion slide rail 1412, and an X-axis motion slide rail 1413.
  • the Y-axis motion slide rail 1411 sits on the base station base 1410, and the base station
  • the cabin 143 is movably coupled to the X-axis moving rail 1413 by a connector.
  • the power devices 142 are respectively disposed at the joints of the respective slide rails, which are a horizontal X-axis motion motor 1414, a Y-axis motion motor 1415 and a Z-axis motion motor 1416, respectively.
  • the power unit 142 can be moved in the same three-dimensional posture as the workstation under the control of the received control signal from the workstation data receiving unit 10.
  • Embodiment 2 is a three-dimensional workstation motion simulation system, which is a schematic diagram of a base station of an underwater robot real-time interactive control system.
  • the base station 1 is an underwater robot controller
  • the workstation 2 is underwater machine heat.
  • the base station 1 comprises: a workstation data receiving unit 10 that can receive the live image and data of the workstation 2, a base station control signal transmitting unit 11 that can transmit the base station 1 control signal, and a base station image display unit 12 that can accept and display the environment image of the workstation 2.
  • the base station audio unit 13 that accepts and plays the ambient sound of the workstation 2 and the three-dimensional workstation motion simulation system 14 controlled by the actual posture of the workstation 2.
  • the base station image display unit 12 of the system is disposed in an image display unit in the base station compartment in which the operator can operate as a panoramic spherical display screen.
  • the three-dimensional workstation motion simulation system 14 of the base station controlled by the workstation 2 in an actual posture includes a base station cabin 140 that can be operated by an operator, and a three-dimensional motion that can control the base station cabin to be controlled by the workstation 2
  • the three-dimensional motion mechanism 141 includes a base station base 1410, a Y-axis motion slide rail 1411, an Z-axis motion slide rail 1412, and an X-axis motion turntable 1413.
  • the X-axis motion turntable 1413 is disposed in the base station cabin 140 and the base station cabin 1417. between. Base station bay 1417 is connected
  • the piece is movably coupled to the Z-axis motion rail 1412.
  • the power devices 142 are respectively disposed at the joints of the respective slide rails, which are an X-axis motion turntable 1413, a Y-axis motion motor 1415 and a Z-axis motion motor 1416, respectively.
  • the power unit 142 can be moved in the same three-dimensional posture as the workstation under the control of the received control signal from the workstation data receiving unit 10.

Abstract

一种实景交互式操控系统,由基站(1)及工作站(2)组成,基站(1)包括:工作站数据接收单元(10),基站控制信号发射单元(11),基站图像显示单元(12),基站音响单元(13)及多维工作站运动模拟系统(14)。工作站(2)包括:基站数据接收单元(20),工作站姿态信号发射单元(21),工作站图像拾取发送单元(22),工作站声音拾取发送单元(23)及工作站自动驾驶系统(24)。可实现基站(1)与工作站(2)之间的实景交互式操控,达到基站(1)对工作站(2)实现遥控,工作站(2)的姿态或动作返回来控制基站(1)的姿态,以使基站(1)控制者感受工作站(2)的真实场景。

Description

一种实景交互式操控系统 技术领域
[0001] 本发明涉及远程交互式相互操控系统, 特别涉及远程可相互操控、 显示、 互动 等技术。
背景技术
[0002] 现有技术中, 远程操控, 种类很多, 主要有无人机、 机器人, 机械云台, 车辆 船舶, 地面及水下设备, 场景游乐设施等很多。 随著科技的进步及人们各行各 业不同需要的提高, 其应用场合、 应用要求等越来越高。 目前就无人机来说, 其远程操控的方式为: 无人机受地面控制人员利用鼠标、 键盘等发出指令对其 飞行模式进行控制, 无人机上携带的相关设备将视频图像、 测量等数据传回地 面。 这样就使得无人机反应迟缓, 直接导致其不敢低飞的结果。 因为在低空飞 行必须反应灵活, 否则极易撞树、 房屋等地面凸起物 (打个比方, 如果要我们 用鼠标、 键盘去驾驶汽车, 那谁也不敢幵快! ) , 可高飞的结果就是视线模糊 , 这就是美国无人机在阿富汗常常错将迎亲嫁娶的车队错当成攻击目标的一个 重要因素之一!
[0003] 又如, 以飞行员训练舱来说, 舱内设有事先录入的吋空场景, 训练舱可根据驾 驶人员的操作, 来控制飞机的飞行姿态, 该姿态可与显示场景融合, 达到飞行 员的训练。
[0004] 再如, 水下机器人, 目前是操控人员根据水下机器人实吋传回的图像、 数据等 , 通过无线指令来控制机器人的动作。
技术问题
问题的解决方案
技术解决方案
[0005] 本发明目的是, 针对以上现有技术的不足, 设计一种可实现基站与工作站之间 的实景交互式操控, 达到基站对工作站实现遥控, 工作站的姿态或动作返回来 控制基站的姿态, 以使基站控制者感受工作站的真实场景, 并修正对工作站的 操作指令。
[0006] 本发明的目的可以通过以下方法实现, 一种实景交互式操控系统, 由基站基站 及工作站组成, 其中
[0007] 所述基站包括: 可实吋接收工作站实况图像及数据的工作站数据接收单元, 可 发送基站控制信号的基站控制信号发射单元, 可接受并显示工作站环境图像的 基站图像显示单元, 可接受并播放工作站环境声音的基站音响单元及受控于工 作站实吋姿态的一维以上工作站运动模拟系统;
[0008] 所述工作站包括: 可接受基站控制信号的基站数据接收单元, 可拾取并发送工 作站姿态信号的工作站姿态信号发射单元, 可拾取并发送工作站环境图像的工 作站图像拾取发送单元, 可拾取并发送工作站环境声音的工作站声音拾取发送 单元及受控于基站控制信号的工作站自动驾驶系统。
[0009] 所述的一种实景交互式操控系统, 其受控于工作站实吋姿态的一维以上工作站 运动模拟系统为三维工作站运动模拟系统。
[0010] 所述的一种实景交互式操控系统, 其受控于工作站实吋姿态的多维工作站运动 模拟系统包括基站工作舱、 基站工作舱一维以上运动结构及基站工作舱动力系 统。
[0011] 所述的一种实景交互式操控系统, 其可接受并显示工作站环境图像的基站图像 显示单元为头盔式基站图像显示单元或眼睛式基站图像显示单元或环形显示屏 幕或球形显示屏幕。
[0012] 所述的一种实景交互式操控系统, 其基站工作舱还设有可根据工作站环境图像
、 声音控制的气味、 湿度、 风力、 雨淋、 温度及振动的控制发生装置。
[0013] 所述的一种实景交互式操控系统, 其可拾取并发送工作站姿态信号的工作站姿 态信号发射单元的工作站姿态信号拾取包括但不限于陀螺仪、 加速度计、 电子 罗盘。
[0014] 所述的一种实景交互式操控系统, 其工作站设有当基站控制信号超过工作站设 定的高度、 速度、 距离的安全值吋的提示及进入自动保护状态的警示限制单元
[0015] 所述的一种实景交互式操控系统, 其工作站设有在对抗环境吋, 用于在受到外 来激光或红外光照射吋的光接受单元及可将该单元接受到的信息发射的受攻击 信号发射单元; 基站设有当工作站数据接收单元接受到受攻击信号吋, 可在工 作站相应位置发出被击中信号的攻击信号产生单元。
[0016] 所述的一种实景交互式操控系统, 其工作站为无人机或机器人或车辆或船舶或 地面设备或水下设备。
[0017] 所述的一种实景交互式操控系统, 其基站为穿戴设备, 工作站为机器人, 操作 者穿戴穿戴设备, 感受机器人所拾取并发送起姿态信号, 修正向工作站发出的 基站控制信号。
发明的有益效果
有益效果
[0018] 本发明与现有技术相比, 用于无人机行业, 操控者可完全感受无人机的实际状 况, 就如同亲自驾驶一样; 对于培训飞行员来说, 其更如身临其境; 用于机器 人操控, 如亲临现场一般, 可随吋修正对工作站的操作指令。
对附图的简要说明
附图说明
[0019] 图 1为本发明的原理示意图;
[0020] 图 2为本发明的实施例一结构示意图;
[0021] 图 3为本发明的实施例一结构的三维坐标示意图;
[0022] 图 4为本发明的实施例二结构示意图。
本发明的实施方式
[0023] 实景交互式操控系统, 由基站基站 1及工作站 2组成, 即可为一维, 也可为二维 或三维运动姿态。
[0024] 如图 1所示, 本发明的一种实景交互式操控系统, 由基站基站 1及工作站 2组成
, 其中最基本的系统中:
[0025] 所述基站 1包括: 可实吋接收工作站 2实况图像及数据的工作站数据接收单元 10
, 可发送基站 1控制信号的基站控制信号发射单元 11, 可接受并显示工作站 2环 境图像的基站图像显示单元 12, 可接受并播放工作站 2环境声音的基站音响单元 13及受控于工作站 2实吋姿态的三维工作站运动模拟系统 14。 其中工作站数据接 收单元 10
[0026] 可包括图像接收模块、 图像处理模块、 图像存储模块、 音频信号接收模块、 音 频信号处理模块、 数据接收模块、 数据存储模块、 数据处理模块。 其中基站控 制信号发射单元 11包括可发射基站 1对工作站 2的无线控制信号, 包括控制信号 功率放大模块及控制信号发射模块。 其中基站图像显示单元 12包括图像图像处 理模块及图像显示屏。 其中基站音响单元 13包括音频信号处理模块、 喇叭。 其 中受控于工作站 2实吋姿态的三维工作站运动模拟系统 14包括可使操作者进行操 作的基站舱、 可使基站舱受控于工作站 2实吋姿态控制的三维运动机械装置及为 其提供动力的动力装置。
[0027] 所述工作站 2包括: 可接受基站控制信号的基站数据接收单元 20, 可拾取并发 送工作站姿态信号的工作站姿态信号发射单元 21, 可拾取并发送工作站环境图 像的工作站图像拾取发送单元 22, 可拾取并发送工作站环境声音的工作站声音 拾取发送单元 23及受控于基站控制信号的工作站自动驾驶系统 24。 其中基站数 据接收单元 20包括基站控制信号接收模块、 基站控制信号处理模块、 基站控制 信号存储模块。 其中工作站姿态信号发射单元 21包括工作站姿态信号拾取模块 、 姿态信号处理模块、 姿态信号存储模块及姿态信号发射模块。 其中工作站图 像拾取发送单元 22包括工作环境图像拾取模块、 工作环境图像处理模块、 工作 环境图像发送模块。 其中工作站声音拾取发送单元 23包括工作站环境声音拾取 模块、 工作站环境声音处理模块、 工作站环境声音存储模块及工作站环境声音 发送模块。 其中工作站自动驾驶系统 24包括工作站站体, 可完成基站操作指令 的电子、 机械系统及工作站动力模块。
[0028] 实施例一, 如图 2、 图 3所示, 是三维工作站运动模拟系统, 为飞行员实景交互 式操控系统的基站立体示意图, 可实现基站与无人机 (工作站) 的实景交互式 操控演练, 其飞行员感受与实际架机近乎相同, 可最低成本、 最大限度的使飞 行员体验真实飞行。 本实施例基站 1为飞行员训练器, 工作站 2为无人机。 该基 站 1包括可实吋接收工作站 2实况图像及数据的工作站数据接收单元 10, 可发送 基站 1控制信号的基站控制信号发射单元 11, 可接受并显示工作站 2环境图像的 基站图像显示单元 12, 可接受并播放工作站 2环境声音的基站音响单元 13及受控 于工作站 2实吋姿态的三维工作站运动模拟系统 14。 该系统的基站图像显示单元 12设置在可使操作者进行操作的基站舱内, 该图像显示单元为全景球形显示屏 幕, 基站舱模拟飞机驾驶舱结构, 以最大限度的保证飞行员的感受与实际架机 一样。
[0029] 该实施例基站受控于工作站 2实吋姿态的三维工作站运动模拟系统 14包括可使 操作者进行操作的基站舱 140、 可使基站舱受控于工作站 2实吋姿态控制的三维 运动机械装置 141及为其提供动力的动力装置 142。 三维运动机械装置 141包括基 站座 1410、 Y轴向运动滑轨 1411、 Z轴向运动滑轨 1412及 X轴向运动滑轨 1413; Y 轴向运动滑轨 1411落坐在基站座 1410上, 基站舱 143通过连接件与 X轴向运动滑 轨 1413动连接。 为实现三维运动, 其动力装置 142分别设在各滑轨连接处, 分别 为水平 X轴向运动电机 1414、 Y轴向运动电机 1415及 Z轴向运动电机 1416。 动力装 置 142可在工作站数据接收单元 10, 接受的控制信号的控制下, 以与工作站相同 的三维姿态运动。
[0030] 实施例二, 如图 4所示, 是三维工作站运动模拟系统, 为水下机器人实景交互 式操控系统的基站立体示意图。 本实施例基站 1为水下机器人操控器, 工作站 2 为水下机器热。 该基站 1包括: 可实吋接收工作站 2实况图像及数据的工作站数 据接收单元 10, 可发送基站 1控制信号的基站控制信号发射单元 11, 可接受并显 示工作站 2环境图像的基站图像显示单元 12, 可接受并播放工作站 2环境声音的 基站音响单元 13及受控于工作站 2实吋姿态的三维工作站运动模拟系统 14。 该系 统的基站图像显示单元 12设置在可使操作者进行操作的基站舱内的图像显示单 元为全景球形显示屏幕。
[0031] 该实施例基站受控于工作站 2实吋姿态的三维工作站运动模拟系统 14包括可使 操作者进行操作的基站舱 140、 可使基站舱受控于工作站 2实吋姿态控制的三维 运动机械装置 141及为其提供动力的动力装置 142。 三维运动机械装置 141包括基 站座 1410、 Y轴向运动滑轨 1411、 Z轴向运动滑轨 1412及 X轴向运动转盘 1413; X 轴向运动转盘 1413设于基站舱 140及基站舱座 1417之间。 基站舱座 1417通过连接 件与 Z轴向运动滑轨 1412动连接。 为实现三维运动, 其动力装置 142分别设在各 滑轨连接处, 分别为 X轴向运动转盘 1413、 Y轴向运动电机 1415及 Z轴向运动电 机 1416。 动力装置 142可在工作站数据接收单元 10, 接受的控制信号的控制下, 以与工作站相同的三维姿态运动。

Claims

权利要求书
一种实景交互式操控系统, 由基站及工作站组成, 其特征在于: 所述基站包括: 可实吋接收工作站实况图像及数据的工作站数据接收 单元, 可发送基站控制信号的基站控制信号发射单元, 可接受并显示 工作站环境图像的基站图像显示单元, 可接受并播放工作站环境声音 的基站音响单元及受控于工作站实吋姿态的一维以上工作站运动模拟 系统;
所述工作站包括: 可接受基站控制信号的基站数据接收单元, 可拾取 并发送工作站姿态信号的工作站姿态信号发射单元, 可拾取并发送工 作站环境图像的工作站图像拾取发送单元, 可拾取并发送工作站环境 声音的工作站声音拾取发送单元及受控于基站控制信号的工作站自动 驾驶系统。
根据权利要求 1所述的一种实景交互式操控系统, 其特征在于, 所述 受控于工作站实吋姿态的一维以上工作站运动模拟系统为三维工作站 运动模拟系统。
根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 所 述受控于工作站实吋姿态的多维工作站运动模拟系统包括基站工作舱 、 基站工作舱一维以上运动结构及基站工作仓动力系统。
根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于: 可 接受并显示工作站环境图像的基站图像显示单元为头盔式基站图像显 示单元或眼睛式基站图像显示单元或环形显示屏幕或球形显示屏幕。 根据权利要求 3所述的一种实景交互式操控系统, 其特征在于, 所述 基站工作舱还设有可根据工作站环境图像、 声音控制的气味、 湿度、 风力、 雨淋、 温度及振动的控制发生装置。
根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 可 拾取并发送工作站姿态信号的工作站姿态信号发射单元的工作站姿态 信号拾取包括但不限于陀螺仪、 加速度计、 电子罗盘。
根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 工 作站设有当基站控制信号超过工作站设定的高度、 速度、 距离的安全 值吋的提示及进入自动保护状态的警示限制单元。
[权利要求 8] 根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 工 作站设有在对抗环境吋, 用于在受到外来激光或红外光照射吋的光接 受单元及可将该单元接受到的信息发射的受攻击信号发射单元; 基站 设有当工作站数据接收单元接受到受攻击信号吋, 可在工作站相应位 置发出被击中信号的攻击信号产生单元。
[权利要求 9] 根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 工 作站为无人机或机器人或车辆或船舶或地面设备或水下设备。
[权利要求 10] 根据权利要求 1或 2所述的一种实景交互式操控系统, 其特征在于, 基 站为穿戴设备, 工作站为机器人, 操作者穿戴穿戴设备, 感受机器人 所拾取并发送起姿态信号, 修正向工作站发出的基站控制信号。
PCT/CN2016/072090 2015-03-18 2016-01-26 一种实景交互式操控系统 WO2016145946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510118013.3A CN104700683A (zh) 2015-03-18 2015-03-18 实景双向互动式驾驶平台
CN201510118013.3 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016145946A1 true WO2016145946A1 (zh) 2016-09-22

Family

ID=53347752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072090 WO2016145946A1 (zh) 2015-03-18 2016-01-26 一种实景交互式操控系统

Country Status (2)

Country Link
CN (3) CN104700683A (zh)
WO (1) WO2016145946A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700683A (zh) * 2015-03-18 2015-06-10 刘建平 实景双向互动式驾驶平台
CN106742011A (zh) * 2016-11-08 2017-05-31 上海禾赛光电科技有限公司 用于无人机地面控制平台保持铅垂的装置
CN108873898A (zh) * 2018-06-26 2018-11-23 武汉理工大学 一种基于实时数据交互的沉浸式远程驾驶控制系统及方法
CN111538313A (zh) * 2020-04-23 2020-08-14 东风汽车集团有限公司 基于六自由度动感驾驶台架的远程驾驶装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356675A (zh) * 2001-12-21 2002-07-03 北京航空航天大学 一种用于无人驾驶直升机操纵者进行模拟飞行训练的装置
WO2007033033A2 (en) * 2005-09-12 2007-03-22 Honeywell International Inc. Apparatus and method for providing pointing capability for a fixed camera
CN102043410A (zh) * 2010-09-30 2011-05-04 清华大学 操纵人员头部运动指示无人机云台伺服系统
CN102774505A (zh) * 2012-07-16 2012-11-14 北京航空航天大学 一种通用化可配置无人机地面站
CN202754148U (zh) * 2012-07-16 2013-02-27 北京航空航天大学 一种通用化可配置无人机地面站
CN103365295A (zh) * 2013-06-29 2013-10-23 天津大学 基于dsp的四旋翼无人飞行器自主悬停控制系统及方法
CN203278900U (zh) * 2013-06-18 2013-11-06 西安博宇信息科技有限公司 空天地一体化北斗应急指挥系统
CN203350715U (zh) * 2013-06-21 2013-12-18 西安博宇信息科技有限公司 空天地多机型无人机北斗指挥系统
CN104700683A (zh) * 2015-03-18 2015-06-10 刘建平 实景双向互动式驾驶平台
CN104802986A (zh) * 2015-05-06 2015-07-29 山东师范大学 一种基于3g/4g网络的医疗急救无人机系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035814B3 (de) * 2010-08-30 2011-12-29 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zum Betrieb eines Flugsimulators mit besonderer Realitäts-Anmutung
CN202632581U (zh) * 2012-05-28 2012-12-26 戴震宇 基于真实空中环境下的飞行模拟操控及体验装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356675A (zh) * 2001-12-21 2002-07-03 北京航空航天大学 一种用于无人驾驶直升机操纵者进行模拟飞行训练的装置
WO2007033033A2 (en) * 2005-09-12 2007-03-22 Honeywell International Inc. Apparatus and method for providing pointing capability for a fixed camera
CN102043410A (zh) * 2010-09-30 2011-05-04 清华大学 操纵人员头部运动指示无人机云台伺服系统
CN102774505A (zh) * 2012-07-16 2012-11-14 北京航空航天大学 一种通用化可配置无人机地面站
CN202754148U (zh) * 2012-07-16 2013-02-27 北京航空航天大学 一种通用化可配置无人机地面站
CN203278900U (zh) * 2013-06-18 2013-11-06 西安博宇信息科技有限公司 空天地一体化北斗应急指挥系统
CN203350715U (zh) * 2013-06-21 2013-12-18 西安博宇信息科技有限公司 空天地多机型无人机北斗指挥系统
CN103365295A (zh) * 2013-06-29 2013-10-23 天津大学 基于dsp的四旋翼无人飞行器自主悬停控制系统及方法
CN104700683A (zh) * 2015-03-18 2015-06-10 刘建平 实景双向互动式驾驶平台
CN104802986A (zh) * 2015-05-06 2015-07-29 山东师范大学 一种基于3g/4g网络的医疗急救无人机系统

Also Published As

Publication number Publication date
CN104700683A (zh) 2015-06-10
CN205563276U (zh) 2016-09-07
CN105549618A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
US8634969B2 (en) Teleoperation method and human robot interface for remote control of a machine by a human operator
Chen et al. Human performance issues and user interface design for teleoperated robots
KR102236339B1 (ko) 이미징 기기로 캡처한 이미지를 제어하기 위한 시스템 및 방법
CN106716272B (zh) 用于飞行模拟的系统和方法
CA2891377C (en) Method and device for the combined simulation and control of remote-controlled vehicles using a user-friendly projection system
US9245428B2 (en) Systems and methods for haptic remote control gaming
CN105759833A (zh) 一种沉浸式无人机驾驶飞行系统
WO2016145946A1 (zh) 一种实景交互式操控系统
Higuchi et al. Flying head: A head-synchronization mechanism for flying telepresence
JP5949133B2 (ja) 移動体訓練支援システム
KR101505411B1 (ko) 무선 조종 비행체를 이용한 배틀 게임 중계 시스템
CN203899120U (zh) 真实感的遥控体验游戏系统
Wilde et al. Effects of multivantage point systems on the teleoperation of spacecraft docking
KR20170090888A (ko) Hmd를 이용한 무인기 조종 장치
JP2016506528A (ja) 遠隔操作されたビークルの組み合わされたシミュレーション及び制御のための方法及び装置
JP2019101765A (ja) 移動体の追従画像提示システム
Ai et al. Real-time unmanned aerial vehicle 3D environment exploration in a mixed reality environment
US20220083055A1 (en) System and method for robot interactions in mixed reality applications
WO2020209167A1 (ja) 情報処理装置、情報処理方法、及びプログラム
Asiimwe et al. Automation of the Maritime UAV command, control, navigation operations, simulated in real-time using Kinect sensor: A feasibility study
KR101483106B1 (ko) 표시영상화면의 시점변경기능이 구비된 비행시뮬레이터장치 및 그 제어방법
Ortiz et al. Description and tests of a multisensorial driving interface for vehicle teleoperation
CN116736984A (zh) 一种基于无人机的虚拟现实体验系统
CN207473541U (zh) 一种园林观察辅助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764127

Country of ref document: EP

Kind code of ref document: A1