WO2016143079A1 - 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ - Google Patents

霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ Download PDF

Info

Publication number
WO2016143079A1
WO2016143079A1 PCT/JP2015/057062 JP2015057062W WO2016143079A1 WO 2016143079 A1 WO2016143079 A1 WO 2016143079A1 JP 2015057062 W JP2015057062 W JP 2015057062W WO 2016143079 A1 WO2016143079 A1 WO 2016143079A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
resistance heating
resistance value
resistance
power output
Prior art date
Application number
PCT/JP2015/057062
Other languages
English (en)
French (fr)
Inventor
松本 光史
晶彦 鈴木
拓磨 中野
山田 学
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56878832&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016143079(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020177022669A priority Critical patent/KR101993072B1/ko
Priority to EP15884571.9A priority patent/EP3260000B1/en
Priority to MYPI2017703063A priority patent/MY193180A/en
Priority to CN201580076972.1A priority patent/CN107249365B/zh
Priority to EP22206391.9A priority patent/EP4151109A1/en
Priority to EA201791994A priority patent/EA034186B1/ru
Priority to AU2015386187A priority patent/AU2015386187B2/en
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN201910840818.7A priority patent/CN110522090B/zh
Priority to JP2017504492A priority patent/JP6457624B2/ja
Priority to PCT/JP2015/057062 priority patent/WO2016143079A1/ja
Priority to TW104143534A priority patent/TWI600382B/zh
Publication of WO2016143079A1 publication Critical patent/WO2016143079A1/ja
Priority to US15/683,256 priority patent/US10993474B2/en
Priority to HK18103975.3A priority patent/HK1244408A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to a method for producing an atomization unit having a resistance heating element that atomizes an aerosol source without combustion, a non-combustion flavor inhaler, an atomization unit, and an atomization unit package.
  • a non-combustion type flavor inhaler for sucking a flavor without burning is known.
  • a non-combustion type flavor inhaler has an atomization part that atomizes an aerosol source without combustion, and a flavor source provided on the suction side of the atomization part (for example, Patent Document 1).
  • the atomization unit includes, for example, a wick that sucks up an aerosol source and a resistance heating element wound around the wick.
  • a wick that sucks up an aerosol source
  • a resistance heating element wound around the wick In order to suppress the temperature variation of the resistance heating element wound around the wick, the temperature of the resistance heating element when power is supplied to the resistance heating element is measured by thermography, and resistance heating is performed based on the measured temperature.
  • a technique for adjusting the power output to the body has been proposed (for example, Patent Document 2).
  • the first feature is a method for manufacturing an atomization unit, which includes a process A for measuring a resistance value of a resistance heating element for atomizing an aerosol source by resistance electric heating, a resistance value measured in the process A, and the resistance.
  • a regulated power output determined according to the resistance value as a power output to the heating element, or a step B of recording identification information associated with the resistance value or the regulated power output in an information source.
  • a second feature is that, in the first feature, after the step A, the resistance heating element is brought into contact with an aerosol suction part that sucks up the aerosol source, and an electrode for connecting a power source is connected to the resistance heating element.
  • the gist is that it is a step of measuring the resistance value.
  • the gist of the third feature is that, in the first feature or the second feature, the step A is a step of measuring the resistance value after assembling the atomizing unit including the resistance heating element. .
  • the fourth feature is summarized as any one of the first feature to the third feature, wherein the information source is provided in an atomization unit including the resistance heating element.
  • a fifth feature is any one of the first feature to the fourth feature, wherein the method for manufacturing the atomizing unit is an external storage medium accessible by a non-combustion flavor inhaler having the atomizing unit.
  • the method includes a step C of storing the resistance value or the adjusted power output, and the step B is a step of recording the identification information in the information source.
  • a sixth feature is any one of the first feature to the fifth feature, wherein the step A is a step of measuring the resistance value at a temperature lower than a use temperature of the non-burning type flavor inhaler. Is the gist.
  • the seventh feature is summarized as any one of the first to sixth features, wherein the step A is a step of measuring the resistance value at room temperature.
  • the eighth feature is summarized in that, in the sixth feature or the seventh feature, the temperature coefficient ⁇ of the resistance value is 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less.
  • the ninth feature is summarized in that, in the sixth feature or the seventh feature, the temperature coefficient ⁇ of the resistance value is 0.4 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less.
  • a tenth feature is a non-combustion type flavor inhaler, a resistance heating element for atomizing an aerosol source with resistance electric heat, an information source having specific information for specifying a power output for the resistance heating element, A control unit that controls a power output to the resistance heating element based on the specific information of the information source, and the specific information includes a resistance value of the resistance heating element and a power output to the resistance heating element as the resistance output.
  • the gist of the present invention is the adjusted power output determined according to the value, or the identification information associated with the resistance value or the adjusted power output.
  • An eleventh feature is summarized in that, in the tenth feature, an atomization unit having the resistance heating element and the information source and a control unit having the control unit are provided.
  • the non-burning type flavor inhaler has an external access unit for accessing the external storage medium in which the control unit stores the resistance value or the adjusted power output.
  • the information source has the identification information as the specific information, and the control unit is configured to generate the resistance heating element based on information acquired from the external storage medium by the external access unit using the identification information.
  • the gist is to control the power supply output for.
  • the information source stores the resistance value as the specific information, and the control unit considers a change in the resistance value of the resistance heating element accompanying a temperature change. Instead, the power output to the resistance heating element is controlled using information read from the information source.
  • a fourteenth feature is characterized in that, in any one of the eleventh to thirteenth features, the temperature coefficient ⁇ of the resistance value of the resistance heating element is 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less.
  • a fifteenth feature is that, in any one of the eleventh feature to the thirteenth feature, the temperature coefficient ⁇ of the resistance value of the resistance heating element is 0.4 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less.
  • a sixteenth feature is an atomization unit, comprising: a resistance heating element that atomizes an aerosol source with resistance electric heat; and an information source having specific information for specifying a power output for the resistance heating element,
  • the specific information is a resistance value of the resistance heating element, an adjusted power output determined according to the resistance value as a power output to the resistance heating element, or an identification associated with the resistance value or the adjusted power output
  • the summary is information.
  • a seventeenth feature is an atomization unit package, which includes an atomization unit having a resistance heating element for atomizing an aerosol source by resistance electric heating, and information having specific information for specifying a power output for the resistance heating element.
  • the specific information includes a resistance value of the resistance heating element, an adjusted power output determined according to the resistance value as a power output to the resistance heating element, or the resistance value or the adjusted power output
  • the gist is that the identification information is associated with.
  • FIG. 1 is a view showing a non-burning type flavor inhaler 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating the atomization unit 111 according to the first embodiment.
  • FIG. 3 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the first embodiment.
  • FIG. 4 is a diagram for explaining the characteristic of the resistance value of the atomizing section 111R (resistance heating element) according to the first embodiment.
  • FIG. 5 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the first modification.
  • FIG. 6 is a diagram showing an atomization unit package 400 according to the second modification.
  • FIG. 7 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the second modification.
  • FIG. 8 is a flowchart showing a method for manufacturing the atomization unit 111 according to the second embodiment.
  • Patent Document 2 The purpose of Patent Document 2 described above is to control the temperature of the resistance heating element so as not to exceed the upper limit temperature allowed for the resistance heating element. Therefore, in Cited Document 2, it is necessary to use thermography in order to measure the temperature of the resistance heating element when power is supplied to the resistance heating element, but thermography is generally expensive. In order to achieve the above-mentioned object, the wick in the state where the aerosol source is sucked up is brought into contact with the resistance heating element, and the temperature of the resistance heating element is set to the operating temperature (when using the non-combustion flavor inhaler In order to increase the temperature up to the temperature of the resistance heating element, there is a restriction that it is necessary to energize the resistance heating element for several seconds.
  • the manufacturing method of the atomization unit which concerns on embodiment is the process A which measures the resistance value of the resistance heating element which atomizes an aerosol source by resistance electric heating, the resistance value measured by the said process A, and the said resistance A step B of recording an adjusted power output determined according to the resistance value as a power output to the heating element, or identification information associated with the resistance value or the adjusted power output in an information source.
  • the resistance value of the resistance heating element or the adjusted power output determined according to the resistance value of the resistance heating element is used. That is, since thermography is not used, it is possible to optimize the control of the power supply output to the resistance heating element without worrying about the restrictions on using thermography.
  • the non-burning type flavor inhaler includes a resistance heating element that atomizes an aerosol source with resistance electric heat, an information source having specific information for specifying a power output for the resistance heating element, A control unit that controls a power output to the resistance heating element based on the specific information of the information source, and the specific information includes a resistance value of the resistance heating element and a power output to the resistance heating element as the resistance output. It is an adjusted power output determined according to a value, or identification information associated with the resistance value or the adjusted power output.
  • thermography As specific information for specifying the power output for the resistance heating element, the resistance value of the resistance heating element, the adjusted power output determined according to the resistance value of the resistance heating element, or the resistance value of the resistance heating element Alternatively, identification information associated with the adjusted power output is used. That is, since thermography is not used, it is possible to optimize the control of the power supply output to the resistance heating element without worrying about the restrictions on using thermography.
  • FIG. 1 is a view showing a non-burning type flavor inhaler 100 according to the first embodiment.
  • the non-combustion type flavor inhaler 100 is an instrument for sucking flavor components without combustion, and has a shape extending along a predetermined direction A that is a direction from the non-suction end toward the suction end.
  • FIG. 2 is a diagram illustrating the atomization unit 111 according to the first embodiment.
  • the non-burning type flavor inhaler 100 is simply referred to as the flavor inhaler 100.
  • the flavor suction device 100 includes a suction device main body 110 and a cartridge 130.
  • the suction unit main body 110 constitutes the main body of the flavor suction unit 100 and has a shape to which the cartridge 130 can be connected. Specifically, the aspirator body 110 has a cylindrical body 110X, and the cartridge 130 is connected to the suction end of the cylindrical body 110X.
  • the aspirator body 110 includes an atomization unit 111 that atomizes an aerosol source without combustion and an electrical unit 112.
  • the atomization unit 111 has a cylinder 111X that constitutes a part of the cylinder 110X.
  • the atomization unit 111 includes a reservoir 111P, a wick 111Q, and an atomization unit 111R.
  • the reservoir 111P, the wick 111Q, and the atomizing portion 111R are accommodated in the cylindrical body 111X.
  • the reservoir 111P holds an aerosol source.
  • the reservoir 111P is a porous body made of a material such as a resin web.
  • the wick 111Q is an example of an aerosol suction unit that sucks up an aerosol source held in the reservoir 111P.
  • the wick 111Q is made of glass fiber.
  • the atomization unit 111R atomizes the aerosol source sucked up by the wick 111Q.
  • the atomizing unit 111R is configured by, for example, a resistance heating element (for example, a heating wire) wound around the wick 111Q at a predetermined pitch.
  • the atomization unit 111R is an example of a resistance heating element that atomizes an aerosol source with resistance electric heat.
  • R (T) is a resistance value at temperature T
  • R 0 is a resistance value at temperature T 0
  • is a temperature coefficient.
  • the temperature coefficient ⁇ varies depending on the temperature T, it can be approximated to a constant under the manufacturing and use conditions of the flavor inhaler 100 according to the first embodiment.
  • the temperature coefficient ⁇ of the resistance value of the resistance heating element is a value within which a change in resistance value between the measurement temperature and the use temperature falls within a predetermined range.
  • the measurement temperature is the temperature of the resistance heating element when measuring the resistance of the resistance heating element in the manufacture of the flavor inhaler 100.
  • the measurement temperature is preferably lower than the operating temperature of the resistance heating element.
  • the measurement temperature is preferably room temperature (range of 20 ° C. ⁇ 15 ° C.).
  • the operating temperature is the temperature of the resistance heating element when the non-burning type flavor inhaler 100 is used, and is in the range of 100 ° C. to 400 ° C. When the predetermined range is set to 20% under the conditions where the measurement temperature is 20 ° C.
  • the temperature coefficient ⁇ is, for example, 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less. Is preferred.
  • the temperature coefficient ⁇ is, for example, 0.4 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less. Is preferred.
  • the aerosol source is a liquid such as glycerin or propylene glycol.
  • the aerosol source is held by a porous body made of a material such as a resin web.
  • the porous body may be made of a non-tobacco material or may be made of a tobacco material.
  • the aerosol source may include a flavor source containing a nicotine component or the like.
  • the aerosol source may not include a flavor source containing a nicotine component or the like.
  • the aerosol source may include a flavor source containing components other than the nicotine component.
  • the aerosol source may not include a flavor source that includes components other than the nicotine component.
  • the electrical unit 112 has a cylinder 112X that constitutes a part of the cylinder 110X.
  • the power supply which drives the flavor suction device 100 and the control circuit which controls the flavor suction device 100 are provided.
  • the power source and the control circuit are accommodated in the cylindrical body 112X.
  • the power source is, for example, a lithium ion battery.
  • the control circuit is constituted by, for example, a CPU and a memory. Details of the control circuit will be described later (see FIG. 3).
  • the electrical unit 112 has a vent 112A. As shown in FIG. 2, the air introduced from the vent 112 ⁇ / b> A is guided to the atomization unit 111 (the atomization unit 111 ⁇ / b> R).
  • the cartridge 130 is configured to be connectable to the aspirator body 110 constituting the flavor inhaler 100.
  • the cartridge 130 is provided on the suction side of the atomization unit 111 on the flow path of gas (hereinafter, air) sucked from the suction port.
  • air gas
  • the cartridge 130 does not necessarily have to be physically provided on the suction side of the atomization unit 111 in terms of physical space, and the atomization unit 111 on the aerosol flow path that guides the aerosol generated from the atomization unit 111 to the suction side. What is necessary is just to be provided in the inlet side rather than. That is, in the first embodiment, the “suction side” may be considered as synonymous with “downstream” of the aerosol flow, and the “non-suction side” is synonymous with “upstream” of the aerosol flow. You may think.
  • the cartridge 130 includes a cartridge main body 131, a flavor source 132, a mesh 133A, and a filter 133B.
  • the cartridge body 131 has a cylindrical shape extending along the predetermined direction A.
  • the cartridge body 131 accommodates the flavor source 132.
  • the flavor source 132 is provided on the suction side of the atomization unit 111 on the flow path of the air sucked from the suction port.
  • the flavor source 132 imparts a flavor component to the aerosol generated from the aerosol source. In other words, the flavor imparted to the aerosol by the flavor source 132 is carried to the mouthpiece.
  • the flavor source 132 is constituted by a raw material piece that imparts a flavor component to the aerosol generated from the atomization unit 111.
  • the size of the raw material piece is preferably 0.2 mm or more and 1.2 mm or less. Furthermore, the size of the raw material pieces is preferably 0.2 mm or more and 0.7 mm or less. Since the specific surface area increases as the size of the raw material piece constituting the flavor source 132 is smaller, the flavor component is easily released from the raw material piece constituting the flavor source 132. Therefore, the amount of the raw material pieces can be suppressed when applying the desired amount of flavor component to the aerosol.
  • molded the cut tobacco and the tobacco raw material in the granule can be used as a raw material piece which comprises the flavor source 132.
  • the flavor source 132 may be a molded body obtained by molding a tobacco material into a sheet shape.
  • the raw material piece which comprises the flavor source 132 may be comprised by plants (for example, mint, an herb, etc.) other than tobacco.
  • the flavor source 132 may be provided with a fragrance such as menthol.
  • the raw material piece constituting the flavor source 132 is obtained, for example, by sieving in accordance with JIS Z 8815 using a stainless steel sieve in accordance with JIS Z 8801.
  • a stainless steel sieve having an opening of 0.71 mm the raw material pieces are screened for 20 minutes by a dry and mechanical shaking method, and then passed through a stainless steel sieve having an opening of 0.71 mm. Get raw material pieces.
  • a stainless steel sieve having an opening of 0.212 mm the raw material pieces are sieved for 20 minutes by a dry and mechanical shaking method, and then passed through a stainless steel sieve having an opening of 0.212 mm. Remove raw material pieces.
  • the flavor source 132 is a tobacco source having an alkaline pH.
  • the pH of the tobacco source is preferably greater than 7, more preferably 8 or more.
  • the flavor component generated from the tobacco source can be efficiently taken out by the aerosol.
  • the pH of the tobacco source is preferably 14 or less, and more preferably 10 or less. Thereby, damage (corrosion etc.) to the flavor suction device 100 (for example, the cartridge 130 or the suction device main body 110) can be suppressed.
  • flavor component generated from the flavor source 132 is conveyed by aerosol, and it is not necessary to heat the flavor source 132 itself.
  • the mesh 133A is provided so as to close the opening of the cartridge main body 131 on the non-suction side with respect to the flavor source 132, and the filter 133B closes the opening of the cartridge main body 131 on the suction side with respect to the flavor source 132.
  • the mesh 133A has such a roughness that the raw material pieces constituting the flavor source 132 do not pass therethrough.
  • the roughness of the mesh 133A has, for example, a mesh opening of 0.077 mm or more and 0.198 mm or less.
  • the filter 133B is made of a material having air permeability.
  • the filter 133B is preferably an acetate filter, for example.
  • the filter 133B has such a roughness that the raw material pieces constituting the flavor source 132 do not pass through.
  • FIG. 3 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the first embodiment.
  • the above-described atomization unit 111 includes a memory 111M in addition to the atomization unit 111R (resistance heating element).
  • the control circuit 50 provided in the electrical unit 112 described above includes a control unit 51.
  • the control circuit 50 is an example of a control unit having a control unit that controls power supply output to the resistance heating element.
  • the memory 111M is an example of an information source having specific information for specifying a power output for the atomization unit 111R (resistance heating element).
  • the specific information is a resistance value of the resistance heating element or an adjusted power supply output determined according to the resistance value of the resistance heating element as a power supply output to the atomization unit 111R (resistance heating element).
  • the resistance value of the resistance heating element may be an actually measured value of the resistance value or an estimated value of the resistance value.
  • the measured value can be used as the resistance value of the resistance heating element.
  • the resistance heating element is connected by connecting the terminal of the measuring device to the electrode connected to the resistance heating element in a state where the electrode for connecting to the power source provided in the flavor suction device 100 is connected to the resistance heating element.
  • the resistance heating element it is necessary to consider the resistance value of parts other than the resistance heating element (electrode etc.). In such a case, it is preferable to use an estimated value in consideration of the resistance value of a portion (such as an electrode) other than the resistance heating element as the resistance value of the resistance heating element.
  • the magnitude of the power supply output to the resistance heating element is the value of the voltage applied to the resistance heating element and the supply of the power supply output in the case where the voltage is continuously applied to the resistance heating element. Defined by the time to do.
  • the magnitude of the power output is the value of the voltage applied to the resistance heating element, the duty ratio (that is, Pulse width and pulse interval) and the duration of power supply output.
  • the control part 51 controls the power supply output with respect to a resistance heating element based on the specific information which the memory 111M has.
  • the vertical axis indicates the resistance value ( ⁇ ), and the horizontal axis indicates the temperature (° C.).
  • the room temperature is in the range of 20 ° C. ⁇ 15 ° C.
  • the operating temperature is the temperature of the resistance heating element when the non-burning type flavor inhaler 100 is used, and is in the range of 100 ° C. to 400 ° C.
  • the operating temperature is appropriately determined according to the composition of the aerosol source.
  • the slope of the resistance value is the amount of change in the resistance value of the resistance heating element with respect to the temperature of the resistance heating element (that is, the temperature coefficient ⁇ ).
  • the resistance value of sample A is higher than the resistance value of the reference sample (resistance heating element) if the temperature is the same.
  • the resistance value of sample B is lower than that of the reference sample (resistance heating element) if the temperature is the same.
  • the resistance value of the atomizing portion 111R varies depending on the length of the resistance heating element, the thickness of the resistance heating element, and the like, and thus varies for each atomization portion 111R (resistance heating element). Should.
  • the control unit 51 when the power output to the reference sample (resistance heating element) is the reference output in order to obtain a desired temperature, the control unit 51 outputs the power output to the sample A so as to be larger than the reference output. To control. On the other hand, the control unit 51 controls the power supply output for the sample B so as to be smaller than the reference output. As a result, a desired temperature can be obtained while suppressing variations in resistance value for each atomizing portion 111R (resistance heating element).
  • the specific information included in the memory 111M is, as described above, if the resistance value of the resistance heating element or the adjusted power supply output determined according to the resistance value of the resistance heating element. Good.
  • the control unit 51 reads from the memory 111M if the correspondence relationship between the power output and the resistance value for the resistance heating element is known in advance. Based on the resistance value thus obtained, the power output to the resistance heating element can be appropriately controlled.
  • the control unit 51 applies the resistance heating element to the resistance heating element based on the adjusted power output read from the memory 111M. The power output can be appropriately controlled.
  • control unit 51 can control the power supply output to the resistance heating element using the resistance value read from the memory 111M without considering the change in the resistance value of the resistance heating element accompanying the temperature change. preferable.
  • control unit 51 controls the power supply output to the resistance heating element using the adjusted power supply output read from the memory 111M without considering the change in the resistance value of the resistance heating element accompanying the temperature change. Is preferred.
  • the resistance value of the resistance heating element is preferably measured at a temperature lower than the operating temperature of the resistance heating element, and more preferably measured at room temperature. Thereby, it is not necessary to energize the resistance heating element until the temperature of the resistance heating element reaches the operating temperature, and the manufacturing process of the atomization unit 111 can be simplified.
  • the temperature coefficient ⁇ of the resistance value of the resistance heating element is 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less (preferably 0.4 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less). Preferably there is.
  • the value measured at a temperature lower than the operating temperature of the resistance heating element (for example, room temperature) was used as the resistance value of the resistance heating element without considering the change in the resistance value of the resistance heating element accompanying the temperature change. Even so, the difference in resistance value with respect to the resistance value of the resistance heating element at the operating temperature is small. Therefore, the temperature variation of the resistance heating element due to the resistance value variation of the resistance heating element can be appropriately suppressed.
  • the adjusted power source determined according to the resistance value of the resistance heating element or the resistance value of the resistance heating element Use output. That is, since thermography is not used, it is possible to optimize the control of the power supply output to the resistance heating element without worrying about the restrictions on using thermography.
  • an information source (memory 111M) having specific information is provided in the atomization unit 111. Therefore, even in the case where the atomizing unit 111 is replaceable, by reading the specific information from the memory 111M provided in the atomizing unit 111, the temperature of the resistance heating element accompanying the variation in the resistance value of the resistance heating element can be reduced. Variation can be suppressed appropriately.
  • the specific information included in the memory 111M is the resistance value of the resistance heating element or the adjusted power output determined according to the resistance value of the resistance heating element as described above.
  • the specific information included in the memory 111M is identification information associated with the resistance value of the resistance heating element or the adjusted power supply output.
  • FIG. 5 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the first modification.
  • FIG. 5 it should be noted that the same components as those in FIG. 5, it should be noted that the same components as those in FIG. 5, it should be noted that the same components as those in FIG.
  • the communication terminal 200 is a terminal having a function of communicating with the server 300.
  • the communication terminal 200 is a personal computer, a smartphone, a tablet, or the like, for example.
  • the server 300 is an example of an external storage medium that stores the resistance value of the resistance heating element or the adjusted power output determined according to the resistance value of the resistance heating element.
  • the memory 111M includes identification information associated with the resistance value of the resistance heating element or the adjusted power output as the specific information.
  • the control circuit 50 has an external access unit 52.
  • the external access unit 52 has a function of accessing the server 300 directly or indirectly.
  • FIG. 5 illustrates a function in which the external access unit 52 accesses the server 300 via the communication terminal 200.
  • the external access unit 52 may be, for example, a module (for example, a USB port) for connecting to the communication terminal 200 with a wire, or a module (for example, wirelessly connecting to the communication terminal 200) , Bluetooth module).
  • the external access unit 52 may have a function of directly communicating with the server 300.
  • the external access unit 52 may be a wireless LAN module.
  • the external access unit 52 reads the identification information from the memory 111M and uses the read identification information to obtain information associated with the identification information (that is, the resistance value of the resistance heating element or the adjusted power output) as a server. Get from 300.
  • the control unit 51 controls the power output to the resistance heating element based on the information (that is, the resistance value of the resistance heating element or the adjusted power output) acquired from the server 300 by the external access unit 52 using the identification information.
  • the method for controlling the power supply output for the resistance heating element is the same as in the first embodiment.
  • the identification information associated with the resistance value of the resistance heating element or the adjusted power output is used as the identification information for identifying the power output for the atomizing unit 111R (resistance heating element). Therefore, similarly to the first embodiment, it is possible to optimize the control of the power supply output for the resistance heating element without worrying about the restriction of using the thermography.
  • the information source having the specific information for specifying the power output for the resistance heating element is the memory 111M provided in the atomization unit 111.
  • the information source is a medium provided separately from the atomization unit 111.
  • the atomization unit 111 and the medium constitute an atomization unit package.
  • the medium has identification information associated with the resistance value of the resistance heating element or the adjusted power output as the specific information, as in the first modification.
  • the medium is, for example, a paper medium on which the identification information is represented (a label attached to the outer surface of the atomizing unit 111, a manual bundled with the atomizing unit 111, a box containing the atomizing unit 111, etc. Etc.).
  • the atomization unit package 400 includes an atomization unit 111 and a label 111Y attached to the outer surface of the atomization unit 111, as shown in FIG.
  • the label 111Y is an example of an information source having identification information associated with the resistance value of the resistance heating element or the adjusted power output as specific information.
  • FIG. 7 is a diagram illustrating a block configuration of the non-burning type flavor inhaler 100 according to the second modification.
  • FIG. 7 it should be noted that the same components as those in FIG. 7, it should be noted that the same components as those in FIG. 7, it should be noted that the same components as those in FIG. 7, it should be noted that the same components as those in FIG. 7, it should be noted that the same components as those in FIG. 7, it should be noted that the same components as those in FIG.
  • the communication terminal 200 acquires the identification information included in the label 111Y by inputting the identification information or reading the identification information.
  • the communication terminal 200 acquires information associated with the acquired identification information (that is, the resistance value of the resistance heating element or the adjusted power output) from the server 300.
  • the external access unit 52 acquires information acquired by the communication terminal 200 from the server 300 (that is, the resistance value of the resistance heating element or the adjusted power output) from the communication terminal 200.
  • the control unit 51 controls the power output to the resistance heating element based on the information (that is, the resistance value of the resistance heating element or the adjusted power output) acquired from the server 300 by the external access unit 52 using the identification information.
  • the method of controlling the power output for the resistance heating element is the same as in the first embodiment and the first modification.
  • the control circuit 50 may acquire the identification information from the label 111Y.
  • a medium provided separately from the atomization unit 111 is used as an information source having specific information for specifying the power output for the resistance heating element. Therefore, even if the memory 111M is not installed in the atomization unit 111, the control of the power output to the resistance heating element can be optimized without worrying about the restriction of using the thermography as in the first embodiment.
  • FIG. 8 is a flowchart showing a method for manufacturing the atomization unit 111 according to the second embodiment.
  • step S10 a resistance heating element (atomization part 111R) that atomizes the aerosol source with resistance electric heat is manufactured.
  • step S20 the resistance value of the resistance heating element is measured after step S10 (step A).
  • the resistance value of the resistance heating element may be measured after bringing the resistance heating element into contact with an aerosol suction unit (for example, wick 111Q) and connecting the electrode for connecting to the power source to the resistance heating element.
  • the resistance value of the resistance heating element may be measured after assembling the atomization unit 111 including the resistance heating element.
  • the assembly of the atomizing unit 111 is a process of assembling the atomizing unit 111 by housing the reservoir 111P, the wick 111Q, the atomizing portion 111R, and the like in the housing.
  • the resistance value of the resistance heating element is preferably measured before injecting the aerosol source into the reservoir 111P. Accordingly, when the resistance value is not within the allowable range and it is determined that the assembly of the atomizing unit 111 is a defective product, members other than the resistance heating element can be reused.
  • the resistance value of the resistance heating element is preferably measured at a temperature lower than the use temperature of the resistance heating element, and more preferably measured at room temperature. There is no need to energize the resistance heating element until the temperature of the resistance heating element reaches the operating temperature, and the manufacturing process of the atomization unit 111 can be simplified.
  • the temperature coefficient ⁇ of the resistance value of the resistance heating element is 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less (preferably 0.4 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ] or less). Preferably there is.
  • the value measured at a temperature lower than the operating temperature of the resistance heating element (for example, room temperature) was used as the resistance value of the resistance heating element without considering the change in the resistance value of the resistance heating element accompanying the temperature change. Even so, the difference in resistance value with respect to the resistance value of the resistance heating element at the operating temperature is small. Therefore, the temperature variation of the resistance heating element due to the resistance value variation of the resistance heating element can be appropriately suppressed.
  • the temperature coefficient ⁇ of the resistance value of the resistance heating element is larger than 0.8 ⁇ 10 ⁇ 3 [° C. ⁇ 1 ], the resistance at a temperature lower than the use temperature of the resistance heating element (for example, room temperature). Since the difference between the value and the resistance value at the use temperature is large, the resistance value of the resistance heating element is preferably measured at the use temperature. As a result, it is possible to appropriately optimize the control of the power supply output for the resistance heating element.
  • step S30 the resistance value measured in step S20, the adjusted power output determined according to the resistance value measured in step S20, or the identification information associated with the resistance value or the adjusted power output is used as the information source. (Step B).
  • step S30 the resistance value measured in step S20 or measured in step S20 is measured on the information source (memory 111M) provided in the atomization unit 111. Recording the adjusted power output determined according to the resistance value.
  • step S30 identification information associated with the resistance value of the resistance heating element or the adjusted power output is stored in the information source (memory 111M) provided in the atomization unit 111. Is a step of recording.
  • the manufacturing method of the atomization unit 111 is such that the resistance value of the resistance heating element or The method further includes a step (step C) of storing the adjusted power output determined according to the resistance value of the resistance heating element.
  • step S30 records the identification information matched with the resistance value or the adjusted power output in the information source (label 111Y) included in the atomization unit package 400. It is a process to do.
  • the manufacturing method of the atomization unit 111 is such that the resistance value of the resistance heating element or The method further includes a step (step C) of storing the adjusted power output determined according to the resistance value of the resistance heating element.
  • the adjusted power source determined according to the resistance value of the resistance heating element or the resistance value of the resistance heating element Use output. That is, since thermography is not used, it is possible to optimize the control of the power supply output to the resistance heating element without worrying about the restrictions on using thermography.
  • the resistance value of the resistance heating element is measured after bringing the resistance heating element into contact with the aerosol suction part (for example, wick 111Q) and connecting the electrode for connecting the power source to the resistance heating element. Therefore, since the resistance value is measured in a state close to the product configuration at the time of shipment, it is possible to improve the accuracy of optimization of the control of the power supply output for the resistance heating element.
  • the resistance value of the resistance heating element is measured after assembling the atomization unit 111 including the resistance heating element. Therefore, since the resistance value of the resistance heating element can be measured after stocking the atomized unit 111 after assembly, the manufacturing process of the atomizing unit 111 can be simplified.
  • the resistance value of the resistance heating element is greater than the operating temperature of the resistance heating element after assembling the atomization unit 111 including the resistance heating element and before injecting the aerosol source into the reservoir 111P. Measured at low temperature. Thereby, damage to each member (for example, wick 111Q etc.) accompanying heating of the resistance heating element can be suppressed.
  • the cartridge 130 does not include the atomization unit 111, but the embodiment is not limited thereto.
  • the cartridge 130 may constitute one unit together with the atomization unit 111.
  • the atomization unit 111 may be configured to be connectable to the aspirator body 110.
  • control unit 51 may control the power output to the atomization unit 111R (resistance heating element) by pulse control.
  • the control unit 51 reduces the amount of power stored in the power source (for example, lithium battery) provided in the electrical unit 112 and the resistance value of the resistance heating element so that the amount of aerosol atomized by the atomization unit 111R falls within a desired range.
  • the power output to the resistance heating element for example, the duty ratio of the voltage applied to the resistance heating element
  • the adjusted power supply output is determined according to the power supply output (for example, the duty ratio of the voltage applied to the resistance heating element) and the resistance value of the resistance heating element, which increase as the power storage amount of the power supply decreases. May be.
  • the desired range is, for example, a range of 0.1 mg / 1 puff operation or more and 4.0 mg / 1 puff operation or less.
  • an atomizing unit manufacturing method and a non-combustion type flavor that can optimize the control of the power output to the resistance heating element without worrying about the limitation of using the thermography by not using the thermography
  • An aspirator, an atomization unit, and a method for manufacturing the atomization unit can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Control Of Resistance Heating (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

 霧化ユニットの製造方法は、エアロゾル源を抵抗電熱で霧化する抵抗発熱体の抵抗値を測定する工程Aと、前記工程Aで測定された抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報を情報源に記録する工程Bとを備える。

Description

霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
 本発明は、燃焼を伴わずにエアロゾル源を霧化する抵抗発熱体を有する霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージに関する。
 従来、燃焼を伴わずに香味を吸引するための非燃焼型香味吸引器が知られている。非燃焼型香味吸引器は、燃焼を伴わずにエアロゾル源を霧化する霧化部と、霧化部よりも吸口側に設けられる香味源とを有する(例えば、特許文献1)。
 ここで、霧化部は、例えば、エアロゾル源を吸い上げるウィックと、ウィックに巻き回される抵抗発熱体とを有する。ウィックに巻き回される抵抗発熱体の温度のバラツキを抑制するために、抵抗発熱体に電力を供給したときの抵抗発熱体の温度をサーモグラフィによって測定するととともに、測定された温度に基づいて抵抗発熱体に対する電源出力を調整する技術が提案されている(例えば、特許文献2)。
特表2010-506594号公報 国際公開第2014/115143号パンフレット
 第1の特徴は、霧化ユニットの製造方法であって、エアロゾル源を抵抗電熱で霧化する抵抗発熱体の抵抗値を測定する工程Aと、前記工程Aで測定された抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報を情報源に記録する工程Bとを備えることを要旨とする。
 第2の特徴は、第1の特徴において、前記工程Aは、前記エアロゾル源を吸い上げるエアロゾル吸引部に前記抵抗発熱体を接触させ、電源を接続するための電極を前記抵抗発熱体に接続した後に、前記抵抗値を測定する工程であることを要旨とする。
 第3の特徴は、第1の特徴又は第2の特徴において、前記工程Aは、前記抵抗発熱体を含む霧化ユニットをアッセンブリした後に、前記抵抗値を測定する工程であることを要旨とする。
 第4の特徴は、第1の特徴乃至第3の特徴のいずれかにおいて、前記情報源は、前記抵抗発熱体を含む霧化ユニットに設けられることを要旨とする。
 第5の特徴は、第1の特徴乃至第4の特徴のいずれかにおいて、前記霧化ユニットの製造方法は、前記霧化ユニットを有する非燃焼型香味吸引器がアクセス可能な外部記憶媒体に、前記抵抗値又は前記調整済み電源出力を格納する工程Cを備え、前記工程Bは、前記識別情報を前記情報源に記録する工程であることを要旨とする。
 第6の特徴は、第1の特徴乃至第5の特徴のいずれかにおいて、前記工程Aは、前記非燃焼型香味吸引器の使用温度よりも低い温度で前記抵抗値を測定する工程であることを要旨とする。
 第7の特徴は、第1の特徴乃至第6の特徴のいずれかにおいて、前記工程Aは、前記抵抗値を常温で測定する工程であることを要旨とする。
 第8の特徴は、第6の特徴又は第7の特徴において、前記抵抗値の温度係数αが0.8×10-3[℃-1]以下であることを要旨とする。
 第9の特徴は、第6の特徴又は第7の特徴において、前記抵抗値の温度係数αが0.4×10-3[℃-1]以下であることを要旨とする。
 第10の特徴は、非燃焼型香味吸引器であって、エアロゾル源を抵抗電熱で霧化する抵抗発熱体と、前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源と、前記情報源が有する特定情報に基づいて、前記抵抗発熱体に対する電源出力を制御する制御部とを備え、前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを要旨とする。
 第11の特徴は、第10の特徴において、前記抵抗発熱体及び前記情報源を有する霧化ユニットと、前記制御部を有する制御ユニットとを備えることを要旨とする。
 第12の特徴は、第11の特徴において、非燃焼型香味吸引器は、前記制御ユニットは、前記抵抗値又は前記調整済み電源出力を格納する外部記憶媒体にアクセスする外部アクセス部を有し、前記情報源は、前記識別情報を前記特定情報として有しており、前記制御部は、前記外部アクセス部が前記識別情報を用いて前記外部記憶媒体から取得する情報に基づいて、前記抵抗発熱体に対する電源出力を制御することを要旨とする。
 第13の特徴は、第11の特徴において、前記情報源は、前記抵抗値を前記特定情報として記憶しており、前記制御部は、温度変化に伴う前記抵抗発熱体の抵抗値の変化を考慮せずに、前記情報源から読み出された情報を用いて、前記抵抗発熱体に対する電源出力を制御することを要旨とする。
 第14の特徴は、第11の特徴乃至第13の特徴のいずれかにおいて、前記抵抗発熱体の抵抗値の温度係数αが0.8×10-3[℃-1]以下であることを要旨とする。
 第15の特徴は、第11の特徴乃至第13の特徴のいずれかにおいて、前記抵抗発熱体の抵抗値の温度係数αが0.4×10-3[℃-1]以下であることを要旨とする。
 第16の特徴は、霧化ユニットであって、エアロゾル源を抵抗電熱で霧化する抵抗発熱体と、前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源とを備え、前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを要旨とする。
 第17の特徴は、霧化ユニットパッケージであって、エアロゾル源を抵抗電熱で霧化する抵抗発熱体を有する霧化ユニットと、前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源とを備え、前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを要旨とする。
図1は、第1実施形態に係る非燃焼型香味吸引器100を示す図である。 図2は、第1実施形態に係る霧化ユニット111を示す図である。 図3は、第1実施形態に係る非燃焼型香味吸引器100のブロック構成を示す図である。 図4は、第1実施形態に係る霧化部111R(抵抗発熱体)の抵抗値の特性を説明するための図である。 図5は、変更例1に係る非燃焼型香味吸引器100のブロック構成を示す図である。 図6は、変更例2に係る霧化ユニットパッケージ400を示す図である。 図7は、変更例2に係る非燃焼型香味吸引器100のブロック構成を示す図である。 図8は、第2実施形態に係る霧化ユニット111の製造方法を示すフロー図である。
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
 従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 上述した特許文献2の目的は、抵抗発熱体に許容された上限温度を超えないように抵抗発熱体の温度を制御することである。従って、引用文献2では、抵抗発熱体に電力を供給したときの抵抗発熱体の温度を測定するためにサーモグラフィを用いる必要があるが、一般的にサーモグラフィは高価である。また、上述した目的を達成するためには、エアロゾル源を吸い上げた状態のウィックを抵抗発熱体と接触させ、かつ、抵抗発熱体の温度を使用温度(非燃焼型香味吸引器を使用するときの抵抗発熱体の温度)まで昇温するために抵抗発熱体への通電を数秒間に亘って行う必要があるといった制約がある。
 第1に、実施形態に係る霧化ユニットの製造方法は、エアロゾル源を抵抗電熱で霧化する抵抗発熱体の抵抗値を測定する工程Aと、前記工程Aで測定された抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報を情報源に記録する工程Bとを備える。
 実施形態では、抵抗発熱体に対する電源出力を特定するための特定情報として、抵抗発熱体の抵抗値、又は、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を用いる。すなわち、サーモグラフィを用いないため、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 第2に、実施形態に係る非燃焼型香味吸引器は、エアロゾル源を抵抗電熱で霧化する抵抗発熱体と、前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源と、前記情報源が有する特定情報に基づいて、前記抵抗発熱体に対する電源出力を制御する制御部とを備え、前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報である。
 実施形態では、抵抗発熱体に対する電源出力を特定するための特定情報として、抵抗発熱体の抵抗値、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力、又は、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を用いる。すなわち、サーモグラフィを用いないため、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 [第1実施形態]
 (非燃焼型香味吸引器)
 以下において、第1実施形態に係る非燃焼型香味吸引器について説明する。図1は、第1実施形態に係る非燃焼型香味吸引器100を示す図である。非燃焼型香味吸引器100は、燃焼を伴わずに香喫味成分を吸引するための器具であり、非吸口端から吸口端に向かう方向である所定方向Aに沿って延びる形状を有する。図2は、第1実施形態に係る霧化ユニット111を示す図である。なお、以下においては、非燃焼型香味吸引器100を単に香味吸引器100と称することに留意すべきである。
 図1に示すように、香味吸引器100は、吸引器本体110と、カートリッジ130とを有する。
 吸引器本体110は、香味吸引器100の本体を構成しており、カートリッジ130を接続可能な形状を有する。具体的には、吸引器本体110は、筒体110Xを有しており、カートリッジ130は、筒体110Xの吸口端に接続される。吸引器本体110は、燃焼を伴わずにエアロゾル源を霧化する霧化ユニット111と、電装ユニット112とを有する。
 第1実施形態では、霧化ユニット111は、筒体110Xの一部を構成する筒体111Xを有する。霧化ユニット111は、図2に示すように、リザーバ111Pと、ウィック111Qと、霧化部111Rとを有する。リザーバ111P、ウィック111Q及び霧化部111Rは、筒体111Xに収容される。リザーバ111Pは、エアロゾル源を保持する。例えば、リザーバ111Pは、樹脂ウェブ等材料によって構成される孔質体である。ウィック111Qは、リザーバ111Pに保持されるエアロゾル源を吸い上げるエアロゾル吸引部の一例である。例えば、ウィック111Qは、ガラス繊維によって構成される。霧化部111Rは、ウィック111Qによって吸い上げられたエアロゾル源を霧化する。霧化部111Rは、例えば、ウィック111Qに所定ピッチで巻き回される抵抗発熱体(例えば、電熱線)によって構成される。
 第1実施形態において、霧化部111Rは、エアロゾル源を抵抗電熱で霧化する抵抗発熱体の一例である。抵抗発熱体の温度に対する抵抗発熱体の抵抗値の変化量は、R(T)=R[1+α(T-T)]で表される。但し、R(T)は、温度Tにおける抵抗値、Rは、温度Tにおける抵抗値、αは、温度係数である。温度係数αは、温度Tによって変化するが、第1実施形態に係る香味吸引器100の製造・使用条件下においては、定数に近似することができる。このようなケースにおいて、抵抗発熱体の抵抗値の温度係数αは、測定温度と使用温度との間における抵抗値の変化が所定範囲に収まる値であることが好ましい。測定温度は、香味吸引器100の製造において、抵抗発熱体の抵抗を測定するときの抵抗発熱体の温度である。測定温度は、抵抗発熱体の使用温度よりも低いことが好ましい。さらには、測定温度は、常温(20℃±15℃の範囲)であることが好ましい。使用温度は、非燃焼型香味吸引器100を使用するときの抵抗発熱体の温度であり、100℃~400℃の範囲である。測定温度が20℃で使用温度が250℃である条件において所定範囲を20%に設定する場合には、温度係数αは、例えば、0.8×10-3[℃-1]以下であることが好ましい。測定温度が20℃で使用温度が250℃である条件において所定範囲を10%に設定する場合には、温度係数αは、例えば、0.4×10-3[℃-1]以下であることが好ましい。
 エアロゾル源は、グリセリン又はプロピレングリコールなどの液体である。エアロゾル源は、例えば、上述したように、樹脂ウェブ等の材料によって構成される孔質体によって保持される。孔質体は、非たばこ材料によって構成されていてもよく、たばこ材料によって構成されていてもよい。なお、エアロゾル源は、ニコチン成分等を含有する香味源を含んでいてもよい。或いは、エアロゾル源は、ニコチン成分等を含有する香味源を含まなくてもよい。エアロゾル源は、ニコチン成分以外の成分を含む香味源を含んでいてもよい。或いは、エアロゾル源は、ニコチン成分以外の成分を含む香味源を含まなくてもよい。
 電装ユニット112は、筒体110Xの一部を構成する筒体112Xを有する。香味吸引器100を駆動する電源、香味吸引器100を制御する制御回路を有する。電源や制御回路は、筒体112Xに収容される。電源は、例えば、リチウムイオン電池である。制御回路は、例えば、CPU及びメモリによって構成される。制御回路の詳細については後述する(図3を参照)。
 第1実施形態において、電装ユニット112は、通気孔112Aを有する。通気孔112Aから導入される空気は、図2に示すように、霧化ユニット111(霧化部111R)に導かれる。
 カートリッジ130は、香味吸引器100を構成する吸引器本体110に接続可能に構成される。カートリッジ130は、吸口から吸い込まれる気体(以下、空気)の流路上において霧化ユニット111よりも吸口側に設けられる。言い換えると、カートリッジ130は、必ずしも物理空間的に霧化ユニット111よりも吸口側に設けられている必要はなく、霧化ユニット111から発生するエアロゾルを吸口側に導くエアロゾル流路上において霧化ユニット111よりも吸口側に設けられていればよい。すなわち、第1実施形態において、「吸口側」は、エアロゾルの流れの「下流」と同義であると考えてもよく、「非吸口側」は、エアロゾルの流れの「上流」と同義であると考えてもよい。
 具体的には、カートリッジ130は、カートリッジ本体131と、香味源132と、網目133Aと、フィルタ133Bとを有する。
 カートリッジ本体131は、所定方向Aに沿って延びる筒状形状を有する。カートリッジ本体131は、香味源132を収容する。
 香味源132は、吸口から吸い込まれる空気の流路上において霧化ユニット111よりも吸口側に設けられる。香味源132は、エアロゾル源から発生するエアロゾルに香喫味成分を付与する。言い換えると、香味源132によってエアロゾルに付与される香味は、吸口に運ばれる。
 第1実施形態において、香味源132は、霧化ユニット111から発生するエアロゾルに香喫味成分を付与する原料片によって構成される。原料片のサイズは、0.2mm以上1.2mm以下であることが好ましい。さらには、原料片のサイズは、0.2mm以上0.7mm以下であることが好ましい。香味源132を構成する原料片のサイズが小さいほど、比表面積が増大するため、香味源132を構成する原料片から香喫味成分がリリースされやすい。従って、所望量の香喫味成分をエアロゾルに付与するにあたって、原料片の量を抑制できる。香味源132を構成する原料片としては、刻みたばこ、たばこ原料を粒状に成形した成形体を用いることができる。但し、香味源132は、たばこ原料をシート状に成形した成形体であってもよい。また、香味源132を構成する原料片は、たばこ以外の植物(例えば、ミント、ハーブ等)によって構成されてもよい。香味源132には、メントールなどの香料が付与されていてもよい。
 ここで、香味源132を構成する原料片は、例えば、JIS Z 8801に準拠したステンレス篩を用いて、JIS Z 8815に準拠する篩分けによって得られる。例えば、0.71mmの目開きを有するステンレス篩を用いて、乾燥式かつ機械式振とう法によって20分間に亘って原料片を篩分けによって、0.71mmの目開きを有するステンレス篩を通過する原料片を得る。続いて、0.212mmの目開きを有するステンレス篩を用いて、乾燥式かつ機械式振とう法によって20分間に亘って原料片を篩分けによって、0.212mmの目開きを有するステンレス篩を通過する原料片を取り除く。すなわち、香味源132を構成する原料片は、上限を規定するステンレス篩(目開き=0.71mm)を通過し、下限を規定するステンレス篩(目開き=0.212mm)を通過しない原料片である。従って、実施形態では、香味源132を構成する原料片のサイズの下限は、下限を規定するステンレス篩の目開きによって定義される。なお、香味源132を構成する原料片のサイズの上限は、上限を規定するステンレス篩の目開きによって定義される。
 第1実施形態において、香味源132は、アルカリ性のpHを有するたばこ源である。たばこ源のpHは、7よりも大きいことが好ましく、8以上であることがより好ましい。これによって、たばこ源から発生する香喫味成分をエアロゾルによって効率的に取り出すことができる。これにより、所望量の香喫味成分をエアロゾルに付与するにあたって、たばこ源の量を抑制できる。一方、たばこ源のpHは、14以下であることが好ましく、10以下であることがより好ましい。これによって、香味吸引器100(例えば、カートリッジ130又は吸引器本体110)に対するダメージ(腐食等)を抑制することができる。
 なお、香味源132から発生する香喫味成分はエアロゾルによって搬送されており、香味源132自体を加熱する必要はないことに留意すべきである。
 網目133Aは、香味源132に対して非吸口側においてカートリッジ本体131の開口を塞ぐように設けられており、フィルタ133Bは、香味源132に対して吸口側においてカートリッジ本体131の開口を塞ぐように設けられている。網目133Aは、香味源132を構成する原料片が通過しない程度の粗さを有する。網目133Aの粗さは、例えば、0.077mm以上0.198mm以下の目開きを有する。フィルタ133Bは、通気性を有する物質によって構成される。フィルタ133Bは、例えば、アセテートフィルタであることが好ましい。フィルタ133Bは、香味源132を構成する原料片が通過しない程度の粗さを有する。
 (ブロック構成)
 以下において、第1実施形態に係る非燃焼型香味吸引器のブロック構成について説明する。図3は、第1実施形態に係る非燃焼型香味吸引器100のブロック構成を示す図である。
 図3に示すように、上述した霧化ユニット111は、霧化部111R(抵抗発熱体)に加えて、メモリ111Mを有する。上述した電装ユニット112に設けられる制御回路50は、制御部51を有する。制御回路50は、抵抗発熱体に対する電源出力を制御する制御部を有する制御ユニットの一例である。
 メモリ111Mは、霧化部111R(抵抗発熱体)に対する電源出力を特定するための特定情報を有する情報源の一例である。第1実施形態では、特定情報は、抵抗発熱体の抵抗値、又は、霧化部111R(抵抗発熱体)に対する電源出力として抵抗発熱体の抵抗値に応じて定められる調整済み電源出力である。
 ここで、抵抗発熱体の抵抗値は、抵抗値の実測値であってもよく、抵抗値の推定値であってもよい。具体的には、抵抗発熱体の両端に測定装置の端子を接続することによって、抵抗発熱体の抵抗値を測定する場合には、抵抗発熱体の抵抗値として実測値を用いることができる。或いは、香味吸引器100に設けられる電源と接続するための電極が抵抗発熱体に接続されている状態で、抵抗発熱体に接続された電極に測定装置の端子を接続することによって、抵抗発熱体の抵抗値を測定する場合には、抵抗発熱体以外の部分(電極など)の抵抗値を考慮する必要がある。このようなケースにおいては、抵抗発熱体以外の部分(電極など)の抵抗値を考慮した推定値を抵抗発熱体の抵抗値として用いることが好ましい。
 また、抵抗発熱体に対する電源出力の大きさは、抵抗発熱体に対して連続的に電圧が印加されるケースにおいては、抵抗発熱体に対して印加される電圧の値及び電源出力の供給を継続する時間で定義される。一方で、電源出力の大きさは、抵抗発熱体に対して断続的に電圧が印加されるケース(パルス制御)においては、抵抗発熱体に対して印加される電圧の値、デューティ比(すなわち、パルス幅及びパルス間隔)及び電源出力の供給を継続する時間によって定義される。
 制御部51は、メモリ111Mが有する特定情報に基づいて、抵抗発熱体に対する電源出力を制御する。
 例えば、抵抗発熱体の抵抗値が図4に示す特性を有するケースを例に挙げて説明する。図4では、縦軸が抵抗値(Ω)を示しており、横軸が温度(℃)を示している。常温は、20℃±15℃の範囲である。使用温度は、非燃焼型香味吸引器100を使用するときの抵抗発熱体の温度であり、100℃~400℃の範囲である。使用温度は、エアロゾル源の組成に応じて適宜定められる。抵抗値の傾きは、抵抗発熱体の温度に対する抵抗発熱体の抵抗値の変化量(すなわち、温度係数α)である。
 図4に示すように、サンプルA(抵抗発熱体)の抵抗値は、温度が同じであれば、基準サンプル(抵抗発熱体)の抵抗値よりも高い。サンプルB(抵抗発熱体)の抵抗値は、温度が同じであれば、基準サンプルの(抵抗発熱体)の抵抗値よりも低い。霧化部111R(抵抗発熱体)の抵抗値は、抵抗発熱体の長さ、抵抗発熱体の太さ等に依存するため、霧化部111R(抵抗発熱体)毎にバラツキを有することに留意すべきである。
 このような前提下において、所望の温度を得るために基準サンプル(抵抗発熱体)対する電源出力が基準出力である場合に、制御部51は、基準出力よりも大きくするようにサンプルAに対する電源出力を制御する。一方で、制御部51は、基準出力よりも小さくするようにサンプルBに対する電源出力を制御する。これによって、霧化部111R(抵抗発熱体)毎の抵抗値のバラツキを抑制しながら、所望の温度を得ることができる。
 このような制御を実現するために、メモリ111Mが有する特定情報は、上述したように、抵抗発熱体の抵抗値、又は、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力であればよい。
 詳細には、特定情報が抵抗発熱体の抵抗値である場合には、制御部51は、抵抗発熱体に対する電源出力と抵抗値との対応関係を予め把握していれば、メモリ111Mから読み出された抵抗値に基づいて、抵抗発熱体に対する電源出力を適切に制御することができる。また、特定情報が抵抗発熱体の抵抗値に応じて定められる調整済み電源出力である場合には、制御部51は、メモリ111Mから読み出された調整済み電源出力に基づいて、抵抗発熱体に対する電源出力を適切に制御することができる。
 ここで、制御部51は、温度変化に伴う抵抗発熱体の抵抗値の変化を考慮せずに、メモリ111Mから読み出された抵抗値を用いて、抵抗発熱体に対する電源出力を制御することが好ましい。或いは、制御部51は、温度変化に伴う抵抗発熱体の抵抗値の変化を考慮せずに、メモリ111Mから読み出された調整済み電源出力を用いて、抵抗発熱体に対する電源出力を制御することが好ましい。
 なお、抵抗発熱体の抵抗値は、抵抗発熱体の使用温度よりも低い温度で測定されることが好ましく、さらには、常温で測定されることが好ましい。これによって、抵抗発熱体の温度が使用温度となるまで抵抗発熱体に対する通電を行う必要がなく、霧化ユニット111の製造工程を簡略化することができる。このようなケースにおいては、抵抗発熱体の抵抗値の温度係数αが0.8×10-3[℃-1]以下(好ましくは、0.4×10-3[℃-1]以下)であることが好ましい。これによって、抵抗発熱体の抵抗値として抵抗発熱体の使用温度よりも低い温度(例えば、常温)で測定された値を温度変化に伴う抵抗発熱体の抵抗値の変化を考慮せずに用いたとしても、使用温度における抵抗発熱体の抵抗値に対する抵抗値の差異が小さい。従って、抵抗発熱体の抵抗値のバラツキに伴う抵抗発熱体の温度のバラツキを適切に抑制することができる。
 (作用及び効果)
 第1実施形態では、抵抗発熱体(霧化部111R)に対する電源出力を特定するための特定情報として、抵抗発熱体の抵抗値、又は、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を用いる。すなわち、サーモグラフィを用いないため、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 第1実施形態では、特定情報を有する情報源(メモリ111M)が霧化ユニット111に設けられる。従って、霧化ユニット111が交換可能であるケースであっても、霧化ユニット111に設けられるメモリ111Mから特定情報を読み出すことによって、抵抗発熱体の抵抗値のバラツキに伴う抵抗発熱体の温度のバラツキを適切に抑制することができる。
 [変更例1]
 以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する相違点について説明する。
 具体的には、第1実施形態では、メモリ111Mが有する特定情報は、上述したように、抵抗発熱体の抵抗値、又は、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力である。これに対して、変更例1では、メモリ111Mが有する特定情報は、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報である。
 (ブロック構成)
 以下において、変更例1に係る非燃焼型香味吸引器のブロック構成について説明する。図5は、変更例1に係る非燃焼型香味吸引器100のブロック構成を示す図である。なお、図5では、図3と同様の構成について同様の符号を付していることに留意すべきである。
 ここで、図5において、通信端末200は、サーバ300と通信を行う機能を有する端末である。通信端末200は、例えば、パーソナルコンピュータ、スマートフォン、タブレットなどである。サーバ300は、抵抗発熱体の抵抗値又は抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を格納する外部記憶媒体の一例である。また、メモリ111Mは、上述したように、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を特定情報として有する。
 図5に示すように、制御回路50は、外部アクセス部52を有する。外部アクセス部52は、直接的又は間接的にサーバ300にアクセスする機能を有する。図5では、外部アクセス部52が通信端末200を介してサーバ300にアクセスする機能を例示している。このようなケースにおいて、外部アクセス部52は、例えば、通信端末200と有線で接続するためのモジュール(例えば、USBポート)であってもよく、通信端末200と無線で接続するためのモジュール(例えば、Bluetoothモジュール)であってもよい。
 但し、外部アクセス部52は、サーバ300と直接的に通信を行う機能を有していてもよい。このようなケースにおいて、外部アクセス部52は、無線LANモジュールであってもよい。
 外部アクセス部52は、メモリ111Mから識別情報を読み出すとともに、読み出された識別情報を用いて、識別情報と対応付けられた情報(すなわち、抵抗発熱体の抵抗値又は調整済み電源出力)をサーバ300から取得する。
 制御部51は、外部アクセス部52が識別情報を用いてサーバ300から取得する情報(すなわち、抵抗発熱体の抵抗値又は調整済み電源出力)に基づいて、抵抗発熱体に対する電源出力を制御する。抵抗発熱体に対する電源出力の制御方法は、第1実施形態と同様である。
 (作用及び効果)
 変更例1では、霧化部111R(抵抗発熱体)に対する電源出力を特定するための特定情報として、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を用いる。従って、第1実施形態と同様に、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 [変更例2]
 以下において、第1実施形態の変更例2について説明する。以下においては、変更例1に対する相違点について説明する。
 具体的には、変更例1では、抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源が霧化ユニット111に設けられるメモリ111Mである。これに対して、変更例2では、情報源は、霧化ユニット111とは別に設けられる媒体などである。霧化ユニット111及び媒体は、霧化ユニットパッケージを構成する。なお、媒体は、変更例1と同様に、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を特定情報として有する。媒体は、例えば、識別情報が表された紙媒体(霧化ユニット111の外側面に貼付されるラベル、霧化ユニット111と同梱される説明書、霧化ユニット111を収容する箱などの入れ物など)である。
 変更例2では、霧化ユニットパッケージ400は、図6に示すように、霧化ユニット111と、霧化ユニット111の外側面に貼付されるラベル111Yとを有する。ラベル111Yは、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を特定情報として有する情報源の一例である。
 (ブロック構成)
 以下において、変更例2に係る非燃焼型香味吸引器のブロック構成について説明する。図7は、変更例2に係る非燃焼型香味吸引器100のブロック構成を示す図である。なお、図7では、図5と同様の構成について同様の符号を付していることに留意すべきである。
 図7に示すように、通信端末200は、識別情報の入力又は識別情報の読み取りによって、ラベル111Yが有する識別情報を取得する。通信端末200は、取得された識別情報と対応付けられた情報(すなわち、抵抗発熱体の抵抗値又は調整済み電源出力)をサーバ300から取得する。
 外部アクセス部52は、通信端末200がサーバ300から取得する情報(すなわち、抵抗発熱体の抵抗値又は調整済み電源出力)を通信端末200から取得する。
 制御部51は、外部アクセス部52が識別情報を用いてサーバ300から取得する情報(すなわち、抵抗発熱体の抵抗値又は調整済み電源出力)に基づいて、抵抗発熱体に対する電源出力を制御する。抵抗発熱体に対する電源出力の制御方法は、第1実施形態及び変更例1と同様である。
 なお、変更例2では、通信端末200がラベル111Yから識別情報を取得するケースについて説明した。しかしながら、実施形態は、これに限定されるものではない。識別情報の入力又は識別情報の読み取りを行う機能を制御回路50が有している場合には、制御回路50がラベル111Yから識別情報を取得してもよい。
 (作用及び効果)
 変更例2では、抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源として、霧化ユニット111とは別に設けられる媒体を用いる。従って、霧化ユニット111にメモリ111Mを搭載しなくても、第1実施形態と同様に、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 [第2実施形態]
 以下において、第2実施形態について説明する。第2実施形態では、霧化ユニット111の製造方法について図8を用いて説明する。図8は、第2実施形態に係る霧化ユニット111の製造方法を示すフロー図である。
 図8に示すように、ステップS10において、エアロゾル源を抵抗電熱で霧化する抵抗発熱体(霧化部111R)を製造する。
 ステップS20において、ステップS10の後に抵抗発熱体の抵抗値を測定する(工程A)。抵抗発熱体の抵抗値は、エアロゾル吸引部(例えば、ウィック111Q)に抵抗発熱体を接触させ、電源と接続するための電極を抵抗発熱体に接続した後に測定されてもよい。或いは、抵抗発熱体の抵抗値は、抵抗発熱体を含む霧化ユニット111をアッセンブリした後に測定されてもよい。霧化ユニット111のアッセンブリとは、リザーバ111P、ウィック111Q及び霧化部111Rなどをハウジング内に収容して、霧化ユニット111を組み立てる工程である。このようなケースにおいて、抵抗発熱体の抵抗値は、エアロゾル源をリザーバ111Pに注入する前に測定されることが好ましい。これによって、抵抗値が許容範囲に収まっておらず、霧化ユニット111のアッセンブリが不良品であると判定された場合において、抵抗発熱体以外の部材を再利用することができる。
 ここで、抵抗発熱体の抵抗値は、抵抗発熱体の使用温度よりも低い温度で測定されることが好ましく、さらには、常温で測定されることが好ましい。抵抗発熱体の温度が使用温度となるまで抵抗発熱体に対する通電を行う必要がなく、霧化ユニット111の製造工程を簡略化することができる。このようなケースにおいては、抵抗発熱体の抵抗値の温度係数αが0.8×10-3[℃-1]以下(好ましくは、0.4×10-3[℃-1]以下)であることが好ましい。これによって、抵抗発熱体の抵抗値として抵抗発熱体の使用温度よりも低い温度(例えば、常温)で測定された値を温度変化に伴う抵抗発熱体の抵抗値の変化を考慮せずに用いたとしても、使用温度における抵抗発熱体の抵抗値に対する抵抗値の差異が小さい。従って、抵抗発熱体の抵抗値のバラツキに伴う抵抗発熱体の温度のバラツキを適切に抑制することができる。
 一方で、抵抗発熱体の抵抗値の温度係数αが0.8×10-3[℃-1]よりも大きい場合には、抵抗発熱体の使用温度よりも低い温度(例えば、常温)における抵抗値と使用温度における抵抗値との差異が大きいため、抵抗発熱体の抵抗値は使用温度で測定されることが好ましい。これによって、抵抗発熱体に対する電源出力の制御の最適化を適切に行うことができる。
 ステップS30において、ステップS20で測定された抵抗値、ステップS20で測定された抵抗値に応じて定められる調整済み電源出力、又は、抵抗値又は調整済み電源出力と対応付けられた識別情報を情報源に記録する(工程B)。
 ここで、第1実施形態に示す霧化ユニット111では、ステップS30は、霧化ユニット111に設けられる情報源(メモリ111M)に、ステップS20で測定された抵抗値、又は、ステップS20で測定された抵抗値に応じて定められる調整済み電源出力を記録する工程である。
 或いは、変更例1に示す霧化ユニット111では、ステップS30は、霧化ユニット111に設けられる情報源(メモリ111M)に、抵抗発熱体の抵抗値又は調整済み電源出力と対応付けられた識別情報を記録する工程である。このようなケースにおいて、霧化ユニット111の製造方法は、非燃焼型香味吸引器100(外部アクセス部52)がアクセス可能な外部記憶媒体(例えば、サーバ300)に、抵抗発熱体の抵抗値又は抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を格納する工程(工程C)をさらに含む。
 或いは、変更例2に示す霧化ユニットパッケージ400では、ステップS30は、霧化ユニットパッケージ400に含まれる情報源(ラベル111Y)に、抵抗値又は調整済み電源出力と対応付けられた識別情報を記録する工程である。このようなケースにおいて、霧化ユニット111の製造方法は、非燃焼型香味吸引器100(外部アクセス部52)がアクセス可能な外部記憶媒体(例えば、サーバ300)に、抵抗発熱体の抵抗値又は抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を格納する工程(工程C)をさらに含む。
 (作用及び効果)
 第2実施形態では、抵抗発熱体(霧化部111R)に対する電源出力を特定するための特定情報として、抵抗発熱体の抵抗値、又は、抵抗発熱体の抵抗値に応じて定められる調整済み電源出力を用いる。すなわち、サーモグラフィを用いないため、サーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することができる。
 第2実施形態では、抵抗発熱体の抵抗値は、エアロゾル吸引部(例えば、ウィック111Q)に抵抗発熱体を接触させ、電源を接続するための電極を抵抗発熱体に接続した後に測定される。従って、出荷時の製品構成に近い状態で抵抗値が測定されるため、抵抗発熱体に対する電源出力の制御の最適化の精度を高めることができる。
 第2実施形態では、抵抗発熱体の抵抗値は、抵抗発熱体を含む霧化ユニット111をアッセンブリした後に測定される。従って、アッセンブリ後の霧化ユニット111をストックした上で、抵抗発熱体の抵抗値を測定することが可能であるため、霧化ユニット111の製造工程を簡略化することができる。
 第2実施形態では、抵抗発熱体の抵抗値は、抵抗発熱体を含む霧化ユニット111をアッセンブリした後であって、エアロゾル源をリザーバ111Pに注入する前に、抵抗発熱体の使用温度よりも低い温度で測定される。これによって、抵抗発熱体の加熱に伴う各部材(例えば、ウィック111Qなど)へのダメージを抑制することができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、カートリッジ130は霧化ユニット111を含まないが、実施形態はこれに限定されるものではない。例えば、カートリッジ130は、霧化ユニット111とともに1つのユニットを構成してもよい。
 実施形態では特に触れていないが、霧化ユニット111は、吸引器本体110に対して接続可能に構成されていてもよい。
 実施形態では特に触れていないが、制御部51は、霧化部111R(抵抗発熱体)対する電源出力をパルス制御によって制御していてもよい。制御部51は、霧化部111Rによって霧化されるエアロゾルの量が所望範囲に収まるように、電装ユニット112に設けられる電源(例えば、リチウム電池)の蓄電量の減少及び抵抗発熱体の抵抗値に基づいて、1回のパフ動作において抵抗発熱体に対する電源出力(例えば、抵抗発熱体に印加する電圧のデューティ比)を増大してもよい。このようなケースにおいて、調整済み電源出力は、電源の蓄電量の減少に伴って増大する電源出力(例えば、抵抗発熱体に印加する電圧のデューティ比)及び抵抗発熱体の抵抗値に応じて定められてもよい。所望範囲は、例えば、0.1mg/1パフ動作以上、かつ、4.0mg/1パフ動作以下の範囲である。
 実施形態によれば、サーモグラフィを用いないことによってサーモグラフィを用いる制約を気にせずに、抵抗発熱体に対する電源出力の制御を最適化することを可能とする霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットの製造方法を提供することができる。

Claims (17)

  1.  エアロゾル源を抵抗電熱で霧化する抵抗発熱体の抵抗値を測定する工程Aと、
     前記工程Aで測定された抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報を情報源に記録する工程Bとを備えることを特徴とする霧化ユニットの製造方法。
  2.  前記工程Aは、前記エアロゾル源を吸い上げるエアロゾル吸引部に前記抵抗発熱体を接触させ、電源を接続するための電極を前記抵抗発熱体に接続した後に、前記抵抗値を測定する工程であることを特徴とする請求項1に記載の霧化ユニットの製造方法。
  3.  前記工程Aは、前記抵抗発熱体を含む霧化ユニットをアッセンブリした後に、前記抵抗値を測定する工程であることを特徴とする請求項1又は請求項2に記載の霧化ユニットの製造方法。
  4.  前記情報源は、前記抵抗発熱体を含む霧化ユニットに設けられることを特徴とする請求項1乃至請求項3のいずれかに記載の霧化ユニットの製造方法。
  5.  前記霧化ユニットを有する非燃焼型香味吸引器がアクセス可能な外部記憶媒体に、前記抵抗値又は前記調整済み電源出力を格納する工程Cを備え、
     前記工程Bは、前記識別情報を前記情報源に記録する工程であることを特徴とする請求項1乃至請求項4のいずれかに記載の霧化ユニットの製造方法。
  6.  前記工程Aは、前記非燃焼型香味吸引器の使用温度よりも低い温度で前記抵抗値を測定する工程であることを特徴とする請求項1乃至請求項5のいずれかに記載の霧化ユニットの製造方法。
  7.  前記工程Aは、前記抵抗値を常温で測定する工程であることを特徴とする請求項1乃至請求項6のいずれかに記載の霧化ユニットの製造方法。
  8.  前記抵抗値の温度係数αが0.8×10-3[℃-1]以下であることを特徴とする請求項6又は請求項7に記載の霧化ユニットの製造方法。
  9.  前記抵抗値の温度係数αが0.4×10-3[℃-1]以下であることを特徴とする請求項6又は請求項7に記載の霧化ユニットの製造方法。
  10.  エアロゾル源を抵抗電熱で霧化する抵抗発熱体と、
     前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源と、
     前記情報源が有する特定情報に基づいて、前記抵抗発熱体に対する電源出力を制御する制御部とを備え、
     前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを特徴とする非燃焼型香味吸引器。
  11.  前記抵抗発熱体及び前記情報源を有する霧化ユニットと、
     前記制御部を有する制御ユニットとを備えることを特徴とする請求項10に記載の非燃焼型香味吸引器。
  12.  前記制御ユニットは、前記抵抗値又は前記調整済み電源出力を格納する外部記憶媒体にアクセスする外部アクセス部を有し、
     前記情報源は、前記識別情報を前記特定情報として有しており、
     前記制御部は、前記外部アクセス部が前記識別情報を用いて前記外部記憶媒体から取得する情報に基づいて、前記抵抗発熱体に対する電源出力を制御することを特徴とする請求項11に記載の非燃焼型香味吸引器。
  13.  前記情報源は、前記抵抗値を前記特定情報として記憶しており、
     前記制御部は、温度変化に伴う前記抵抗発熱体の抵抗値の変化を考慮せずに、前記情報源から読み出された情報を用いて、前記抵抗発熱体に対する電源出力を制御することを特徴とする請求項11に記載の非燃焼型香味吸引器。
  14.  前記抵抗発熱体の抵抗値の温度係数αが0.8×10-3[℃-1]以下であることを特徴とする請求項11乃至請求項13のいずれかに記載の非燃焼型香味吸引器。
  15.  前記抵抗発熱体の抵抗値の温度係数αが0.4×10-3[℃-1]以下であることを特徴とする請求項11乃至請求項13のいずれかに記載の非燃焼型香味吸引器。
  16.  エアロゾル源を抵抗電熱で霧化する抵抗発熱体と、
     前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源とを備え、
     前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを特徴とする霧化ユニット。
  17.  エアロゾル源を抵抗電熱で霧化する抵抗発熱体を有する霧化ユニットと、
     前記抵抗発熱体に対する電源出力を特定するための特定情報を有する情報源とを備え、
     前記特定情報は、前記抵抗発熱体の抵抗値、前記抵抗発熱体に対する電源出力として前記抵抗値に応じて定められる調整済み電源出力、又は、前記抵抗値又は前記調整済み電源出力と対応付けられた識別情報であることを特徴とする霧化ユニットパッケージ。
PCT/JP2015/057062 2015-03-10 2015-03-10 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ WO2016143079A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PCT/JP2015/057062 WO2016143079A1 (ja) 2015-03-10 2015-03-10 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
AU2015386187A AU2015386187B2 (en) 2015-03-10 2015-03-10 Method of manufacturing atomizing unit, non-combustion type flavor inhaler, atomizing unit and atomizing unit package
MYPI2017703063A MY193180A (en) 2015-03-10 2015-03-10 Method of manufacturing atomizing unit, non-combustion type flavor inhaler, atomizing unit and atomizing unit package
CN201580076972.1A CN107249365B (zh) 2015-03-10 2015-03-10 非燃烧式香味吸引器、雾化单元及其制造方法、雾化单元组件
EP22206391.9A EP4151109A1 (en) 2015-03-10 2015-03-10 Method of manufacturing atomizing unit, non-combustion type flavor inhaler, atomizing unit and atomizing unit package
EA201791994A EA034186B1 (ru) 2015-03-10 2015-03-10 Способ производства блока распыления, ингалятор ароматического вещества невоспламеняющегося типа, блок распыления и комплект блока распыления
CN201910840818.7A CN110522090B (zh) 2015-03-10 2015-03-10 电阻发热体的电源输出控制的最佳化方法
KR1020177022669A KR101993072B1 (ko) 2015-03-10 2015-03-10 무화 유닛의 제조 방법, 비연소형 향미 흡인기, 무화 유닛 및 무화 유닛 패키지
EP15884571.9A EP3260000B1 (en) 2015-03-10 2015-03-10 Method of manufacturing atomizing unit
JP2017504492A JP6457624B2 (ja) 2015-03-10 2015-03-10 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
TW104143534A TWI600382B (zh) 2015-03-10 2015-12-24 霧化單元之製造方法,非燃燒型香味吸嚐器,霧化單元及霧化單元包裝
US15/683,256 US10993474B2 (en) 2015-03-10 2017-08-22 Method of manufacturing atomizing unit, non-combustion type flavor inhaler, atomizing unit and atomizing unit package
HK18103975.3A HK1244408A1 (zh) 2015-03-10 2018-03-22 霧化單元的製造方法、非燃燒式香味吸引器、霧化單元及霧化單元組件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057062 WO2016143079A1 (ja) 2015-03-10 2015-03-10 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/683,256 Continuation US10993474B2 (en) 2015-03-10 2017-08-22 Method of manufacturing atomizing unit, non-combustion type flavor inhaler, atomizing unit and atomizing unit package

Publications (1)

Publication Number Publication Date
WO2016143079A1 true WO2016143079A1 (ja) 2016-09-15

Family

ID=56878832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057062 WO2016143079A1 (ja) 2015-03-10 2015-03-10 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ

Country Status (11)

Country Link
US (1) US10993474B2 (ja)
EP (2) EP3260000B1 (ja)
JP (1) JP6457624B2 (ja)
KR (1) KR101993072B1 (ja)
CN (2) CN107249365B (ja)
AU (1) AU2015386187B2 (ja)
EA (1) EA034186B1 (ja)
HK (1) HK1244408A1 (ja)
MY (1) MY193180A (ja)
TW (1) TWI600382B (ja)
WO (1) WO2016143079A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087719A1 (en) * 2016-11-11 2018-05-17 Rai Strategic Holdings, Inc. Real-time temperature control for an aerosol delivery device
WO2018087738A1 (en) * 2016-11-14 2018-05-17 Rai Strategic Holdings, Inc. An aerosol delivery device with integrated wireless connectivity for temperature monitoring
WO2019146063A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
WO2019146062A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置及びエアロゾル生成装置の製造方法
WO2019146061A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
KR20190104612A (ko) * 2017-03-13 2019-09-10 니뽄 다바코 산교 가부시키가이샤 흡연 시스템, 급전 제어 방법, 프로그램, 일차 장치, 및 이차 장치
KR20190138856A (ko) * 2017-05-02 2019-12-16 필립모리스 프로덕츠 에스.에이. 에어로졸 발생 장치용 히터 조립체
KR20200052271A (ko) * 2017-09-08 2020-05-14 필립모리스 프로덕츠 에스.에이. 소모품 식별
KR20200121364A (ko) * 2018-03-29 2020-10-23 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템을 위한 제어 디바이스
JP2021531760A (ja) * 2018-07-24 2021-11-25 ジェイティー インターナショナル エス.エイ.JT International S.A. 個人用気化装置のための温度調整
JP2022510596A (ja) * 2018-12-20 2022-01-27 ニコベンチャーズ トレーディング リミテッド エアロゾル供給システム
JP2022523943A (ja) * 2019-10-29 2022-04-27 昆山聯滔電子有限公司 電子タバコの真偽識別システム、方法、喫煙具、電子タバコ及び記録媒体
KR102714952B1 (ko) * 2018-03-29 2024-10-07 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템을 위한 제어 디바이스

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA033136B1 (ru) * 2014-11-10 2019-08-30 Джапан Тобакко Инк. Ингалятор ароматизирующего вещества без горения
CA3030101C (en) * 2016-07-27 2021-05-25 Japan Tobacco Inc. Flavor inhaler, cartridge, and flavor unit
TWI627911B (zh) * 2016-12-30 2018-07-01 日本煙草產業股份有限公司 加熱型香味吸嚐器
TWI689261B (zh) * 2016-12-30 2020-04-01 日本煙草產業股份有限公司 加熱型香味吸嚐器
EA201992105A1 (ru) * 2017-03-06 2020-02-03 Джапан Тобакко Инк. Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа
WO2018163261A1 (ja) 2017-03-06 2018-09-13 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム
EA201992106A1 (ru) 2017-03-06 2020-02-03 Джапан Тобакко Инк. Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа
CN210203316U (zh) * 2019-05-07 2020-03-31 深圳市合元科技有限公司 烟弹及电子烟
KR20220043548A (ko) 2020-09-29 2022-04-05 한국전력공사 부분 방전 발생 탐지 방법 및 그 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048293A1 (fr) * 1996-06-17 1997-12-24 Japan Tobacco Inc. Parfumeur d'ambiance
WO2011160788A1 (en) * 2010-06-23 2011-12-29 Philip Morris Products S.A. An improved aerosol generator and liquid storage portion for use with the aerosol generator
WO2013098396A2 (en) * 2011-12-30 2013-07-04 Philip Morris Products S.A. Detection of aerosol-forming substrate in an aerosol generating device
WO2013145988A1 (ja) * 2012-03-29 2013-10-03 日本碍子株式会社 情報表示付き通電加熱式ヒーター及びその情報の使用方法
JP2014512207A (ja) * 2011-04-22 2014-05-22 チョン・コーポレーション 薬剤送達システム
WO2014115143A1 (en) * 2013-01-22 2014-07-31 Sis Resources Ltd. Imaging for quality control in an electronic cigarette
JP2014530632A (ja) * 2011-10-27 2014-11-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル生成が改善されたエアロゾル発生システム
JP2015503916A (ja) * 2011-12-30 2015-02-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 空気流検出を備えるエアロゾル発生装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408574A (en) 1989-12-01 1995-04-18 Philip Morris Incorporated Flat ceramic heater having discrete heating zones
US5322075A (en) 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
JP2002215246A (ja) * 2001-01-19 2002-07-31 Auto Network Gijutsu Kenkyusho:Kk ヒータの温度制御方法及び温度制御装置
US7367334B2 (en) * 2003-08-27 2008-05-06 Philip Morris Usa Inc. Fluid vaporizing device having controlled temperature profile heater/capillary tube
US7193187B2 (en) * 2004-02-09 2007-03-20 Advanced Technology Materials, Inc. Feedback control system and method for maintaining constant resistance operation of electrically heated elements
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
JP2009063966A (ja) * 2007-09-10 2009-03-26 Ricoh Co Ltd 画像形成装置、画像形成装置の制御方法、画像形成装置の制御プログラム及び記録媒体
CN101883596B (zh) * 2007-11-29 2012-12-12 日本烟草产业株式会社 气溶胶吸引系统
EP2110033A1 (en) 2008-03-25 2009-10-21 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
EP2316286A1 (en) 2009-10-29 2011-05-04 Philip Morris Products S.A. An electrically heated smoking system with improved heater
EP2460423A1 (en) * 2010-12-03 2012-06-06 Philip Morris Products S.A. An electrically heated aerosol generating system having improved heater control
EP2468117A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system having means for determining depletion of a liquid substrate
EP2468116A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system having means for handling consumption of a liquid substrate
US20120174914A1 (en) * 2011-01-08 2012-07-12 Nasser Pirshafiey Electronic vapor inhaling device
US9399110B2 (en) 2011-03-09 2016-07-26 Chong Corporation Medicant delivery system
KR101113018B1 (ko) * 2011-05-31 2012-02-27 최병수 전열기, 온도 제어 모듈, 및 전열기의 온도 제어 방법
JP5717218B2 (ja) * 2011-08-19 2015-05-13 日本たばこ産業株式会社 エアロゾル吸引器
TWI546023B (zh) * 2011-10-27 2016-08-21 菲利浦莫里斯製品股份有限公司 具有氣溶膠生產控制之電操作氣溶膠產生系統
US8820330B2 (en) * 2011-10-28 2014-09-02 Evolv, Llc Electronic vaporizer that simulates smoking with power control
WO2013098398A2 (en) 2011-12-30 2013-07-04 Philip Morris Products S.A. Aerosol generating system with consumption monitoring and feedback
KR200464889Y1 (ko) * 2012-08-09 2013-02-06 주식회사 엔브라이트 무화 제어 유닛 및 이를 갖는 휴대용 무화 장치
CN104114049A (zh) * 2012-03-26 2014-10-22 韩国极光科技有限公司 雾化控制单元及包括该雾化控制单元的便携式雾化装置
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
JP5490207B1 (ja) * 2012-11-15 2014-05-14 三菱電機株式会社 電子制御装置,及びその制御特性調整方法
JP2014115143A (ja) 2012-12-07 2014-06-26 Toshiba Corp 熱中性子吸収材料及びそのコーティング方法
JP2014174404A (ja) * 2013-03-11 2014-09-22 Tdk Taiwan Corp レンズ保持装置
KR102305865B1 (ko) 2013-03-15 2021-09-27 레이 스트라티직 홀딩스, 인크. 재료 시트로 형성된 가열 요소, 애토마이저의 제조를 위한 인풋 및 방법, 에어로졸 송달 장치용 카트리지 및 흡연 물품용 카트리지를 조립하는 방법
US20140338685A1 (en) * 2013-05-20 2014-11-20 Sis Resources, Ltd. Burning prediction and communications for an electronic cigarette
FI125544B (en) * 2013-08-14 2015-11-30 Pixan Oy Apparatus and method for controlling an electric vaporizer
FR3017954B1 (fr) 2014-02-21 2016-12-02 Smokio Cigarette electronique
CN104116138B (zh) * 2014-06-24 2017-10-10 深圳麦克韦尔股份有限公司 电子烟及其控制方法
CN104323428B (zh) * 2014-10-24 2017-10-17 林光榕 温控电子烟及其温度控制方法
CN104305527B (zh) * 2014-10-24 2018-04-06 林光榕 红外感应温控电子烟及其温度控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048293A1 (fr) * 1996-06-17 1997-12-24 Japan Tobacco Inc. Parfumeur d'ambiance
WO2011160788A1 (en) * 2010-06-23 2011-12-29 Philip Morris Products S.A. An improved aerosol generator and liquid storage portion for use with the aerosol generator
JP2014512207A (ja) * 2011-04-22 2014-05-22 チョン・コーポレーション 薬剤送達システム
JP2014530632A (ja) * 2011-10-27 2014-11-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル生成が改善されたエアロゾル発生システム
WO2013098396A2 (en) * 2011-12-30 2013-07-04 Philip Morris Products S.A. Detection of aerosol-forming substrate in an aerosol generating device
JP2015503916A (ja) * 2011-12-30 2015-02-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 空気流検出を備えるエアロゾル発生装置
WO2013145988A1 (ja) * 2012-03-29 2013-10-03 日本碍子株式会社 情報表示付き通電加熱式ヒーター及びその情報の使用方法
WO2014115143A1 (en) * 2013-01-22 2014-07-31 Sis Resources Ltd. Imaging for quality control in an electronic cigarette

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952037A (zh) * 2016-11-11 2019-06-28 莱战略控股公司 用于气溶胶递送装置的实时温度控制
WO2018087719A1 (en) * 2016-11-11 2018-05-17 Rai Strategic Holdings, Inc. Real-time temperature control for an aerosol delivery device
WO2018087738A1 (en) * 2016-11-14 2018-05-17 Rai Strategic Holdings, Inc. An aerosol delivery device with integrated wireless connectivity for temperature monitoring
CN109952036A (zh) * 2016-11-14 2019-06-28 莱战略控股公司 具有用于温度监测的集成式无线连接的气溶胶递送设备
JP2020504599A (ja) * 2016-11-14 2020-02-13 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド 温度監視のための統合された無線接続性を有するエアロゾル送達装置
KR102329512B1 (ko) * 2017-03-13 2021-11-19 니뽄 다바코 산교 가부시키가이샤 흡연 시스템, 급전 제어 방법, 프로그램, 일차 장치, 및 이차 장치
KR20190104612A (ko) * 2017-03-13 2019-09-10 니뽄 다바코 산교 가부시키가이샤 흡연 시스템, 급전 제어 방법, 프로그램, 일차 장치, 및 이차 장치
JP2020520233A (ja) * 2017-05-02 2020-07-09 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生装置のためのヒーター組立品
KR102661610B1 (ko) 2017-05-02 2024-04-29 필립모리스 프로덕츠 에스.에이. 에어로졸 발생 장치용 히터 조립체
JP7227923B2 (ja) 2017-05-02 2023-02-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生装置のためのヒーター組立品
KR20190138856A (ko) * 2017-05-02 2019-12-16 필립모리스 프로덕츠 에스.에이. 에어로졸 발생 장치용 히터 조립체
KR20200052271A (ko) * 2017-09-08 2020-05-14 필립모리스 프로덕츠 에스.에이. 소모품 식별
KR102670644B1 (ko) 2017-09-08 2024-05-31 필립모리스 프로덕츠 에스.에이. 소모품 식별
JP7360383B2 (ja) 2017-09-08 2023-10-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消耗品の識別
JP2020532973A (ja) * 2017-09-08 2020-11-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消耗品の識別
KR20200106533A (ko) 2018-01-26 2020-09-14 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치 및 에어로졸 생성 장치의 제조방법
KR20200106534A (ko) 2018-01-26 2020-09-14 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치 및 이것을 동작시키는 방법 및 프로그램
WO2019146061A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
US12089652B2 (en) 2018-01-26 2024-09-17 Japan Tobacco Inc. Aerosol generation device, and method and program for operating same
US12035755B2 (en) 2018-01-26 2024-07-16 Japan Tobacco Inc. Aerosol generation device, and method and program for operating same
US11998059B2 (en) 2018-01-26 2024-06-04 Japan Tobacco Inc. Aerosol generation device and production method for aerosol generation device
KR20200098679A (ko) 2018-01-26 2020-08-20 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치 및 이것을 동작시키는 방법 및 프로그램
EP4070678A1 (en) 2018-01-26 2022-10-12 Japan Tobacco Inc. Aerosol generation device
US11986020B2 (en) 2018-01-26 2024-05-21 Japan Tobacco Inc. Aerosol generation device and production method for aerosol generation device
WO2019146062A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置及びエアロゾル生成装置の製造方法
WO2019146063A1 (ja) 2018-01-26 2019-08-01 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP2022120174A (ja) * 2018-03-29 2022-08-17 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
JP7392769B2 (ja) 2018-03-29 2023-12-06 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
KR102636854B1 (ko) * 2018-03-29 2024-02-14 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템을 위한 제어 디바이스
KR102714952B1 (ko) * 2018-03-29 2024-10-07 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템을 위한 제어 디바이스
US12036360B2 (en) 2018-03-29 2024-07-16 Nicoventures Trading Limited Control device for an electronic aerosol provision system
KR20200121364A (ko) * 2018-03-29 2020-10-23 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템을 위한 제어 디바이스
US12004568B2 (en) 2018-07-24 2024-06-11 Jt International S.A. Temperature regulation for personal vaporizing device
JP2021531760A (ja) * 2018-07-24 2021-11-25 ジェイティー インターナショナル エス.エイ.JT International S.A. 個人用気化装置のための温度調整
JP7239091B2 (ja) 2018-12-20 2023-03-14 ニコベンチャーズ トレーディング リミテッド エアロゾル供給システム
JP2022510596A (ja) * 2018-12-20 2022-01-27 ニコベンチャーズ トレーディング リミテッド エアロゾル供給システム
JP2023002777A (ja) * 2018-12-20 2023-01-10 ニコベンチャーズ トレーディング リミテッド エアロゾル供給システム
JP7477082B2 (ja) 2018-12-20 2024-05-01 ニコベンチャーズ トレーディング リミテッド エアロゾル供給システム
JP2022523943A (ja) * 2019-10-29 2022-04-27 昆山聯滔電子有限公司 電子タバコの真偽識別システム、方法、喫煙具、電子タバコ及び記録媒体
JP7372984B2 (ja) 2019-10-29 2023-11-01 昆山聯滔電子有限公司 電子タバコの真偽識別システム、方法、喫煙具、電子タバコ及び記録媒体

Also Published As

Publication number Publication date
TW201635929A (zh) 2016-10-16
JPWO2016143079A1 (ja) 2017-06-15
CN110522090A (zh) 2019-12-03
JP6457624B2 (ja) 2019-01-23
KR101993072B1 (ko) 2019-06-25
KR20170102552A (ko) 2017-09-11
EA034186B1 (ru) 2020-01-15
AU2015386187A1 (en) 2017-09-28
EP4151109A1 (en) 2023-03-22
CN110522090B (zh) 2022-11-29
EA201791994A1 (ru) 2017-12-29
EP3260000A4 (en) 2018-11-21
TWI600382B (zh) 2017-10-01
US10993474B2 (en) 2021-05-04
EP3260000B1 (en) 2023-01-04
HK1244408A1 (zh) 2018-08-10
EP3260000A1 (en) 2017-12-27
US20170347717A1 (en) 2017-12-07
CN107249365A (zh) 2017-10-13
AU2015386187B2 (en) 2019-04-18
MY193180A (en) 2022-09-26
CN107249365B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
JP6457624B2 (ja) 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
JP6450854B2 (ja) 非燃焼型香味吸引器及び霧化ユニット
JP6854321B2 (ja) 霧化ユニットの製造方法、霧化ユニット及び非燃焼型香味吸引器
US11044945B2 (en) Flavor inhaler, cartridge, and flavor unit
JP2019068828A (ja) 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
US20240057680A1 (en) Auto-lock of an aerosol provision device
JP6522225B2 (ja) 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ
JP2023552540A (ja) タバコ加熱装置及びそのエアロゾル生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022669

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015884571

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015386187

Country of ref document: AU

Date of ref document: 20150310

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201791994

Country of ref document: EA