WO2016140356A1 - Rayon yarn for wet-laid nonwoven fabric and method for producing same, wet-laid nonwoven fabric and method for producing same, and hydrolyzable paper - Google Patents

Rayon yarn for wet-laid nonwoven fabric and method for producing same, wet-laid nonwoven fabric and method for producing same, and hydrolyzable paper Download PDF

Info

Publication number
WO2016140356A1
WO2016140356A1 PCT/JP2016/056877 JP2016056877W WO2016140356A1 WO 2016140356 A1 WO2016140356 A1 WO 2016140356A1 JP 2016056877 W JP2016056877 W JP 2016056877W WO 2016140356 A1 WO2016140356 A1 WO 2016140356A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
wet
fiber
wet nonwoven
mass
Prior art date
Application number
PCT/JP2016/056877
Other languages
French (fr)
Japanese (ja)
Inventor
川見愛奈
林誠
Original Assignee
ダイワボウホールディングス株式会社
ダイワボウレーヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウホールディングス株式会社, ダイワボウレーヨン株式会社 filed Critical ダイワボウホールディングス株式会社
Priority to JP2017503738A priority Critical patent/JP6678642B2/en
Publication of WO2016140356A1 publication Critical patent/WO2016140356A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers

Definitions

  • the present invention relates to a rayon fiber for wet nonwoven fabric and a method for producing the same, a wet nonwoven fabric and a method for producing the same, and hydrolytic paper.
  • Patent Literature 1 describes a water-decomposable nonwoven fabric composed of rayon fibers and pulp fibers having a fiber length of 7 mm or less that can be used as a cleaning article.
  • Patent Document 2 discloses that a substrate having no ionicity such as viscose rayon, a resin having an anionic group, and a cationic property, which are used when forming a wet-responsive nonwoven fabric used for hygiene products.
  • Wet responsive fibers having monofilaments formed from a resin composition comprising a resin are described.
  • the present invention has a predetermined crimp and has good water dispersibility even in a dry state, and has a entanglement property at the time of forming a nonwoven fabric and a method for producing the same.
  • a wet nonwoven fabric, a method for producing the same, and hydrolytic paper are provided.
  • the present invention relates to a rayon fiber for wet nonwoven fabric, wherein the average crimp rate is 16% or more and 45% or less.
  • the rayon fiber for wet nonwoven fabric preferably contains more than 5% of fibers having a crimp space portion height of 0.70 mm or more. Moreover, it is preferable that the value of ratio L / D of fiber length L and fiber width D is 350-1200 in the said rayon fiber for wet nonwoven fabrics. Moreover, it is preferable that the said average number of crimps of the rayon fiber for wet nonwoven fabrics is 3 piece / inch or more and 25 piece / inch or less. Moreover, it is preferable that the said rayon fiber for wet nonwoven fabrics contains 0.03 mass% or more and 0.2 mass% or less of an oil agent with respect to the whole mass of a fiber.
  • the oil agent is preferably a polyoxyethylene ester nonionic surfactant.
  • the present invention also provides a rayon fiber by discharging viscose from a spinning nozzle into a spinning bath, solidifying and regenerating the viscose to form a yarn, drawing the yarn, drawing and scouring.
  • the above-mentioned stretching is made into two-stage stretching, the stretching ratio in the first-stage stretching is 30% or less, and the stretching ratio in the second-stage stretching is 3.0% or less, so that the average crimping ratio is
  • the present invention relates to a method for producing a rayon fiber for wet nonwoven fabric, which is characterized by obtaining a rayon fiber of 16% to 45%.
  • the drawn yarn is cut into a predetermined fiber length before scouring.
  • the present invention also relates to a wet nonwoven fabric characterized by comprising the above-described rayon fiber for wet nonwoven fabric.
  • the wet nonwoven fabric may contain 5 to 95 mass% of the rayon fiber for wet nonwoven fabric and 5 to 95 mass% of the pulp with respect to 100 mass% of the wet nonwoven fabric.
  • the wet nonwoven fabric is preferably a wet hydroentangled nonwoven fabric.
  • the present invention also includes a step of producing a wet papermaking web with a wet papermaking machine using a mixture containing the above-described wet nonwoven fabric rayon fiber and pulp, and jetting a waterflow onto at least one surface of the wet papermaking web.
  • the present invention relates to a method for producing a wet nonwoven fabric including a step of entanglement.
  • the present invention also relates to a hydrolytic paper characterized by including the wet nonwoven fabric described above.
  • the present invention relates to a rayon fiber for wet nonwoven fabric having a predetermined crimp and having good water dispersibility even in a dry state and having entanglement properties at the time of forming the nonwoven fabric, a method for producing the same, and a wet nonwoven fabric using the same.
  • the wet nonwoven fabric of the present invention can be suitably used as hydrolytic paper.
  • FIG. 1A is a side view photograph (25 times) of the rayon fiber for wet nonwoven fabric of Example 1
  • FIG. 1B is a side view photograph (50 times) of the rayon fiber for wet nonwoven fabric.
  • 2A is a side view photograph (25 times) of the rayon fiber of Comparative Example 1
  • FIG. 2B is a side view photograph (50 times) of the rayon fiber.
  • 2C is a side view photograph (25 times) of the rayon fiber of Comparative Example 3
  • FIG. 2D is a side view photograph (50 times) of the rayon fiber.
  • 2E is a side view photograph (25 times) of the rayon fiber of Comparative Example 5
  • FIG. 2F is a side view photograph (50 times) of the rayon fiber.
  • FIG. 3 is an explanatory diagram of a method for measuring the crimp rate of the fiber.
  • FIG. 4 is an explanatory diagram of a method for measuring the height of the crimped space portion of the fiber.
  • 5A is a surface photograph (100 times) of the nonwoven fabric after papermaking in Example 2
  • FIG. 5B is a cross-sectional photograph (100 times) of the nonwoven fabric after papermaking.
  • FIG. 5C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Example 2
  • FIG. 5D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • 6A is a surface photograph (100 times) of the nonwoven fabric after papermaking in Comparative Example 6, and FIG.
  • FIG. 6B is a cross-sectional photograph (100 times) of the nonwoven fabric after papermaking.
  • 6C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example 6
  • FIG. 6D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • FIG. 7A is a surface photograph (100 times) of the nonwoven fabric after paper making in Comparative Example 7, and
  • FIG. 7B is a cross-sectional photograph (100 times) of the nonwoven fabric after paper making.
  • FIG. 7C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example 7, and
  • FIG. 7D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • FIG. 8 is a cross-sectional photograph (40 ⁇ ) of the wet hydroentangled nonwoven fabric of Example C9 taken with an electron microscope.
  • the wet crimped rayon fiber (wet laid rayon fiber) has an average crimp rate of 16% to 45%.
  • the average crimp rate is preferably 18% or more, and more preferably 20% or more.
  • the above-mentioned rayon fiber for wet nonwoven fabric preferably has an average crimp rate of 40% or less, more preferably 35% or less, and further preferably 30% or less. .
  • the crimp is a natural crimp and preferably has a three-dimensional shape. Natural crimp is different from mechanical crimp imparted by a machine such as a stuffer box crimper, and is a crimp that naturally develops during the manufacturing stage such as fiber spinning or scouring stage.
  • the rayon fiber for wet nonwoven fabric preferably has a predetermined weak natural crimp from the viewpoint that the fibers are easily entangled with each other when the nonwoven fabric is produced.
  • the above-mentioned rayon fibers for wet nonwoven fabrics preferably have an average number of crimps of 3 / inch to 25 / inch from the viewpoint of improvement in water dispersibility and entanglement at the time of nonwoven fabric formation. More preferably, the average number of crimps is 5 pieces / inch or more and 20 pieces / inch or less, and further preferably 8 pieces / inch or more and 15 pieces / inch or less.
  • the “crimp number” is based on the total number X (number) of crimp peaks and valleys in a predetermined fiber and the fiber length Y (mm) after the fiber is stretched until there is no crimp.
  • the rayon fiber for wet nonwoven fabric preferably contains more than 5% of fibers having a height of crimp space of 0.70 mm or more from the viewpoint of improvement in water dispersibility and entanglement at the time of nonwoven fabric formation. More preferably, it is 10% or more, More preferably, it is 15% or more.
  • the height of the crimped space portion refers to the length of a perpendicular drawn from the apex of the crimped portion toward the straight line drawn from the crimped portion to the bottom of the crimped portion.
  • the height of the largest crimp space portion is set as the height of the crimp space portion of the fiber.
  • the wet nonwoven fabric rayon fiber preferably has a ratio L / D of the fiber length L to the fiber width D of 350 or more and 1200 or less, and more preferably 500 or more and 1000 or less. More preferably, it is 550 or more and 850 or less.
  • the fiber width D is obtained by converting the fiber cross section into a perfect circle and calculating the value from the cross sectional area.
  • 0.03% by mass or more and 0.20% by mass or less of the oil agent is attached to the above-described wet nonwoven fabric rayon fiber with respect to the total mass of the fiber. It is more preferable that it adheres, and it is further more preferable that it adheres 0.04 mass% or more and 0.15 mass% or less. Water adhesion can be improved, without impairing the hydrophilic property of rayon fiber as the adhesion rate of an oil agent exists in said range.
  • the rayon fiber for wet nonwoven fabric is not particularly limited, the fiber length is preferably 4 to 20 mm, more preferably 6 to 16 mm, and still more preferably 8 to 12 mm from the viewpoint of water dispersibility.
  • the wet nonwoven fabric rayon fiber is not particularly limited, but from the viewpoint of water dispersibility, the fineness is preferably 0.4 to 3.5 dtex, more preferably 1.0 to 3.0 dtex, and still more preferably. Is 1.6 to 2.5 dtex.
  • the rayon fiber for wet nonwoven fabric is formed by discharging viscose from a spinning nozzle into a spinning bath, solidifying and regenerating the viscose to form a yarn, drawing the yarn, stretching, and scouring. It can be obtained by stretching under specific stretching conditions.
  • the viscose may be of a general composition and is not particularly limited. For example, it is preferable to use viscose containing 7 to 10% by mass of cellulose, 5 to 8% by mass of sodium hydroxide, and 2 to 4% by mass of carbon disulfide with respect to 100% by mass of viscose.
  • the above-mentioned viscose is kneaded with additives such as various organic substances (oils and fats, compounds having functional groups, functional materials such as proteins) and inorganic substances (pigments and minerals such as titanium oxide) to impart functionality. can do.
  • additives such as various organic substances (oils and fats, compounds having functional groups, functional materials such as proteins) and inorganic substances (pigments and minerals such as titanium oxide) to impart functionality. can do.
  • the spinning bath may be a general acidic spinning bath and is not particularly limited.
  • an aqueous solution containing 95 to 130 g / L of sulfuric acid, 10 to 17 g / L of zinc sulfate, and 290 to 370 g / L of mirabilite can be used.
  • the sulfuric acid concentration is preferably 100 to 120 g / L. When the sulfuric acid concentration of the spinning bath is within the above range, the spinning processability is improved.
  • the spinning nozzle is not particularly limited, and a round nozzle, a flat nozzle, a modified nozzle such as a Y-type nozzle, or the like can be used. When a circular nozzle is used, fineness adjustment is easy.
  • the selection of the spinning nozzle depends on the target production volume, but preferably has a circular nozzle having a diameter of 0.03 to 0.10 mm and 1000 to 20000 holes.
  • the yarn formed by extruding and spinning the viscose into a spinning bath and solidifying and regenerating is drawn.
  • the stretching is a two-stage stretching, the first stretching ratio in the first stage stretching is 30% or less, and the second stretching ratio in the second stage stretching is 3.0% or less.
  • the first stretching ratio is preferably 3 to 25%, more preferably 5 to 20%.
  • the second stretching ratio is preferably 0.3 to 2.5%, more preferably 0.5 to 2.0%.
  • the stretching is preferably performed with a godet roller.
  • the “stretch rate” indicates how many percent the length of the yarn after stretching is to be extended when the length of the yarn before stretching is 100%.
  • the spinning speed after stretching is, for example, preferably in the range of 25 to 70 m / min, and more preferably in the range of 30 to 65 m / min.
  • the drawn yarn obtained above is cut to a predetermined length, it is subjected to heat treatment, ie, scouring treatment, in a heated liquid.
  • heat treatment ie, scouring treatment
  • the fiber contracts, and a fiber having a predetermined crimp can be obtained.
  • the contracted fiber is regenerated by removing carbon disulfide contained in the fiber in the heated liquid and fixing the crimped state, whereby a fiber having a predetermined crimp can be obtained.
  • the scouring may be carried out in the order of heat treatment (hot water treatment), hydrosulfurization treatment, bleaching, pickling and oiling in a heated solution by a normal method.
  • the temperature of the heated liquid (such as water) is preferably 70 to 90 ° C. More preferably, it is 75 to 85 ° C. Since the cut length shrinks in the scouring process and the drying process, it is preferably set to 3 to 10% longer than the product fiber length.
  • the oil agent is preferably applied using an oil agent such as a polyoxyethylene (POE) ester nonionic surfactant.
  • the adhesion rate of the oil agent is preferably 0.03% by mass or more and 0.2% by mass or less, more preferably 0.03% by mass or more and 0.18% by mass or less, with respect to 100% by mass of the fiber. Preferably they are 0.04 mass% or more and 0.15 mass% or less.
  • drying treatment is preferably performed at a temperature of 50 to 120 ° C. for 0.05 to 15 hours. More preferably, the temperature is 70 to 110 ° C. and the treatment time is 0.1 to 8 hours.
  • the rayon fiber for wet nonwoven fabric is excellent in water dispersibility.
  • water dispersibility means that 90 L of water is stirred with a stirrer at a rotational speed of 2000 rpm, and fibers (raw cotton) corresponding to an absolutely dry mass of 4.5 g are added thereto, followed by stirring one minute after the addition. Can be determined by measuring the number of fiber clumps immediately after stopping stirring.
  • the wet nonwoven fabric rayon fiber preferably has less than 20 fibers, more preferably 18 or less, and more preferably 16 or less. More preferably it is.
  • an absolutely dry fiber can be obtained by drying at 105 ° C. for 2 hours.
  • the wet nonwoven fabric of the present invention includes the rayon fiber for wet nonwoven fabric.
  • the wet nonwoven fabric preferably contains 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass of the rayon fiber for wet nonwoven fabric with respect to 100% by mass of the nonwoven fabric.
  • the wet nonwoven fabric may contain other fibers in addition to the wet nonwoven fabric rayon fiber.
  • other fibers include natural fibers such as pulp, cotton (linter), hemp, and bamboo, and synthetic fibers such as polyester, polyamide, and polyolefin.
  • pulp when used for hydrolytic paper, it is preferable to include pulp.
  • hydrolyzed paper is prepared by mixing the above-mentioned wet nonwoven fabric rayon fiber with pulp, improvement in flashability (water decomposability) and practical strength is expected.
  • other fiber materials for example, binder fibers
  • paper strength enhancers may be added as long as the performance is not impaired.
  • the wet nonwoven fabric is not particularly limited, but in terms of processability, the basis weight is preferably 15 to 150 g / m 2 , more preferably 20 to 100 g / m 2 , and 30 to 80 g / m 2 . More preferably it is.
  • the wet nonwoven fabric is not particularly limited, and is a wet hydroentangled nonwoven fabric (also referred to as a wet spunlace nonwoven fabric), a wet heat fusion nonwoven fabric, a wet wet heat fusion nonwoven fabric, a wet obtained by combining with a beaten pulp. Any of a nonwoven fabric etc. may be sufficient. From the viewpoint of 100% cellulose environmentally friendly products, wet hydroentangled nonwoven fabrics are preferred. Papermaking and hydroentanglement can be performed by a general method.
  • the wet nonwoven fabric may be used as a single layer of wet nonwoven fabric, or may be used in wet papermaking or lamination of a wet nonwoven fabric with another nonwoven fabric.
  • the wet nonwoven fabric When used as hydrolytic paper, the wet nonwoven fabric may contain 5% by mass to 95% by mass of rayon fiber for wet nonwoven fabric of the present invention and 5% by mass to 95% by mass of pulp with respect to 100% by mass of the wet nonwoven fabric. Good.
  • the wet nonwoven fabric preferably contains 80% by mass or less, more preferably 60% by mass or less, and even more preferably 40% of the wet nonwoven fabric rayon fiber of the present invention with respect to 100% by mass of the wet nonwoven fabric. Including mass% or less.
  • the rayon fiber for wet nonwoven fabrics of this invention with respect to 100 mass% of wet nonwoven fabrics, It is further more preferable to contain 15 mass% or more, More preferably, it contains 20 mass% or more, Even more preferably, it contains 30% by mass or more.
  • the wet nonwoven fabric preferably contains 90% by mass or less of pulp, more preferably 85% by mass or less, and still more preferably 80% by mass or less, relative to 100% by mass of the wet nonwoven fabric. It is even more preferable that the content is not more than mass%.
  • the said wet nonwoven fabric contains 20 mass% or more of pulp with respect to 100 mass% of wet nonwoven fabrics, It is more preferable that 40 mass% or more is included, It is further more preferable that 60 mass% or more is included.
  • a wet nonwoven fabric having excellent water decomposability and excellent tensile strength and tensile elongation can be obtained.
  • the pulp content is low (for example, less than 15% by mass), the web strength is too weak, and hydroentanglement cannot be performed, or
  • the content of regenerated cellulose fiber is large (for example, more than 55% by mass), the pulp is sufficiently beaten to increase the binding strength, and sufficient fiber entanglement cannot be obtained unless large energy is given by hydroentanglement treatment. It was broken.
  • the pulp content is too high (for example, more than 60% by mass)
  • the entanglement of the cellulose fibers is too small and the web strength is weakened, and the hydrogen bonds of the pulp are increased, resulting in poor hydrolyzability, or regenerated cellulose.
  • the amount of fibers is small (for example, less than 15% by mass)
  • sufficient wet strength and excellent water disintegrability cannot be imparted.
  • the rayon fiber for wet nonwoven fabric (wet laid) of the present invention as the regenerated cellulose fiber, it is for hydrolytic paper having sufficient wet strength and water disintegration even if the mixing ratio of rayon fiber is small compared with pulp. A wet nonwoven fabric is obtained.
  • a wet nonwoven fabric for hydrolytic paper having moderate strength and hydrolytic properties as hydrolytic paper can be obtained.
  • the wet nonwoven fabric When used as water disintegrating paper, the wet nonwoven fabric preferably has a basis weight of 30 to 90 g / m 2 and more preferably 30 to 80 g / m 2 from the viewpoint of excellent water disintegrating property. Further, from the viewpoint of excellent water decomposability, the wet nonwoven fabric preferably has a thickness of 0.2 to 2.0 mm, and more preferably 0.3 to 1.5 mm. From the viewpoint of excellent water disintegrability, the wet nonwoven fabric preferably has a specific volume of 3.0 to 25.0 cm 3 / g, more preferably 5.0 to 20.0 cm 3 / g. The basis weight, thickness and specific volume are measured and calculated as described later.
  • the wet nonwoven fabric preferably has a wet tensile strength of 0.2 to 8.0 N / 25 mm in the longitudinal direction, preferably 0.3 to 8.0 N / 25 mm in the transverse direction, and has a geometric mean wetness.
  • the tensile strength is preferably 0.3 to 10.0 N / 25 mm.
  • the wet tensile elongation is preferably 7 to 45% / 25 mm in the longitudinal direction, and preferably 10 to 45% / 25 mm in the transverse direction, and the geometric average wet tensile elongation is 14 to 61%. / 25 mm is preferable.
  • the handleability is good while having good water disintegration.
  • the wet nonwoven fabric preferably has a dry tensile strength of 4.0 to 21.0 N / 25 mm in the longitudinal direction, preferably 4.0 to 23.0 N / 25 mm in the transverse direction, and has a geometric average dryness.
  • the tensile strength is preferably 5 to 30 N / 25 mm.
  • the dry tensile elongation is preferably 5 to 40% / 25 mm in the longitudinal direction, and preferably 15 to 40% / 25 mm in the transverse direction, and the geometric average dry tensile elongation is 15 to 47%. / 25 mm is preferable.
  • the handleability is improved while having good water disintegrability.
  • the tensile strength and the tensile elongation are measured according to JIS P 8135. Specifically, the measurement is performed as described below. The geometric average tensile strength and tensile elongation are calculated as described below.
  • the wet hydroentangled non-woven fabric is a mixture of the wet non-woven fabric rayon fiber and pulp made into a wet paper web by a paper machine, and then sprayed with a high-pressure water stream at a predetermined water pressure on at least one surface of the wet paper web. It can be produced by hydroentanglement.
  • the water pressure of the high-pressure water stream is preferably 1.5 MPa or more and 5.5 MPa or less from the viewpoint of obtaining a nonwoven fabric having good entanglement properties.
  • the wet nonwoven fabric can be used in either a dry state or a wet state. For example, it can be used for care products, sanitary products, diapers, cleaning articles, cleaning sheets, and the like. Since the wet nonwoven fabric contains rayon fibers for wet nonwoven fabric, the wet nonwoven fabric can be used as it is for water-disintegrating paper that flows to a flush toilet or the like.
  • the hydrolytic paper containing the wet nonwoven fabric of the present invention can be used in either a dry state or a wet state.
  • the above-mentioned water disintegrating paper is a drug or liquid appropriately set according to the application (for example, a moisturizing component, a cleansing (cleaning) component, an antiperspirant component, a scent component, a whitening component, a blood circulation promoting component, an ultraviolet ray preventing component, A slimming component or the like) may be attached or impregnated in a predetermined amount and stored in a storage body to be used as a sheet product.
  • Example 1 As the viscose, one containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used.
  • As the spinning bath a Mueller bath containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used.
  • As the spinning nozzle for discharging viscose one having 4000 nozzle holes having a hole diameter of 0.06 mm was used.
  • the first stretch ratio in the first stage stretching was 10%
  • the second stretch ratio in the second stage stretching was 0.7%.
  • the drawn yarn was drawn at a take-up speed (spinning speed) of 35 m / min with a stretcher roller.
  • heat treatment was performed in hot water at 82 ° C., followed by scouring in the order of hydrosulfurization treatment, bleaching, pickling and oiling.
  • the oil agent application was performed using an oil agent circulating liquid containing 0.25% by mass of a POE ester nonionic surfactant. The temperature of the oil circulating liquid was 40 ° C.
  • the adhesion amount of the oil agent was 0.08% by mass with respect to 100% by mass of the fiber.
  • the fiber after scouring was dried at 80 ° C. for 60 minutes to obtain a rayon fiber for wet nonwoven fabric having a fineness of 2.2 dtex and a fiber length of 10 mm.
  • Example 2 Spinning, scouring, and drying were performed under the same conditions as in Example 1 except that the take-up speed at the stretcher roller was 40 m / min, and the taken-up yarn was cut into the length shown in Table 2 below. A rayon fiber for wet non-woven fabric having 1.7 dtex was obtained.
  • Example 3 Except that the taken yarn was cut to the length shown in Table 2 below, spinning, scouring and drying were performed under the same conditions as in Example 1 to obtain a wet nonwoven fabric rayon fiber having a fineness of 2.2 dtex. .
  • Example 4 Spinning, scouring, and drying were performed under the same conditions as in Example 1 except that the take-up speed at the stretcher roller was 40 m / min, and the taken-up yarn was cut into the length shown in Table 2 below. A rayon fiber for wet non-woven fabric of 2.2 dtex was obtained.
  • Stretching was one-stage stretching, and the stretching rate was 40%. Thereafter, in the same manner as in Example 1, the take-up speed with the stretcher roller was 70 m / min, and the yarn was taken up. The taken yarn is scoured in the order of hot water treatment, hydrosulfurization treatment, bleaching, pickling and oiling at 80 ° C., then cut to 10 mm, the fineness is 1.7 dtex, and the fiber length is A rayon fiber of 10 mm was obtained.
  • the first stretch ratio in the first stage stretching was 42%, and the second stretch ratio in the second stage stretching was 0.7%.
  • the yarn was taken up at a take-up speed of 60 m / min.
  • the taken yarn is heat-treated in hot water at 82 ° C., then scoured in the order of hydrosulfurization, bleaching, pickling and oiling, then cut to 10 mm, and the fineness is 2.2 dtex.
  • a rayon fiber having a fiber length of 10 mm was obtained.
  • Comparative Example 7 Except for using a spinning nozzle having 4000 nozzle holes with a 0.06 mm diameter, taking up the speed at the stretcher roller to 70 m / min, and cutting the yarn after scouring to the length shown in Table 2 below Spinning, scouring and drying under the same conditions as in Comparative Example 2 gave a rayon fiber having a fineness of 1.7 dtex and a fiber length of 10 mm.
  • the average crimp rate, average crimp number, crimp space height, L / D, and oil adhesion rate of the fibers of Examples and Comparative Examples were measured and calculated as follows. It is shown in Table 2. Tables 1 and 2 also show the fiber length, fineness, crimp type and shape. Further, the water dispersibility of the fibers of Examples and Comparative Examples was measured and evaluated as follows, and the results are shown in Table 3 below.
  • 1 is a side view photograph of Example 1 observed with a digital microscope (manufactured by KEYENCE, model number “VHX-500F”)
  • FIG. 2 is a side view photograph of fibers of Comparative Examples 1, 3, and 5. Indicated.
  • the rayon fibers having a predetermined average crimp rate of Examples 1 to 4 have good water dispersibility even if they do not contain a large amount of water.
  • it is environmentally friendly because it has a small share of water during transportation, simplifies packaging materials, and can transport more products at one time.
  • problems such as mold can be reduced, and long-term storage can be achieved.
  • Example B1 A wet hydroentangled nonwoven fabric was prepared using the fibers of Example 1.
  • a wet papermaking web having a basis weight of about 40 g / m 2 was produced using 100% of the fiber of Example 1 as a raw material by a paper machine.
  • a water stream is jetted from a nozzle having a nozzle hole diameter of 0.13 mm arranged at intervals of 1 mm at a water pressure of 2.5 MPa from the web surface, and then dried at 60 ° C. for about 5 minutes by a drier, and wet hydroentangled nonwoven fabric Was made.
  • the fiber of Example B1 had good entanglement at the time of forming the nonwoven fabric.
  • Example B1 and Comparative Examples B1 and B2 the surface and cross section of the papermaking web after papermaking and the surface and cross section of the nonwoven fabric after hydroentanglement were observed using a digital microscope (manufactured by KEYENCE, model number “VHX-500F”). did.
  • FIG. 5A shows a surface photograph (100 times) of the papermaking web after papermaking in Example B1
  • FIG. 5B shows a cross-sectional photograph (100 times) of the papermaking web after the papermaking.
  • FIG. 5C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Example B1
  • FIG. 5D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • FIG. 6A shows a surface photograph (100 times) of the papermaking web after papermaking in Comparative Example B1
  • FIG. 6B shows a cross-sectional photograph (100 times) of the papermaking web after papermaking.
  • FIG. 6C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example B1
  • FIG. 6D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • FIG. 7A shows a surface photograph (100 times) of the papermaking web after papermaking in Comparative Example B2
  • FIG. 7B shows a cross-sectional photograph (100 times) of the papermaking web after the papermaking.
  • FIG. 7C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example B2
  • FIG. 7D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
  • Examples C1 to C11 The regenerated cellulose fibers of Examples 2 to 4 and pulp for hydrolytic paper (average fiber length of 2.8 mm) were put into water in a mixer so as to have the mixing ratio shown in Table 4 below, and stirred with the mixer. The obtained slurry was put into a paper machine filled with water to prepare a wet paper making web having a basis weight shown in Table 4 below.
  • the obtained web was passed through a hydroentanglement machine, and after jetting a high-pressure water stream having a water pressure shown in Table 4 below from one surface of the web by a nozzle in which orifices having a nozzle hole diameter of 0.13 mm were arranged at intervals of 1 mm,
  • the wet entangled nonwoven fabric was produced by drying at 60 ° C. for about 5 minutes with a dryer.
  • the basis weight and thickness of wet hydroentangled nonwoven fabrics of Examples C1 to C11 were measured and calculated as follows, and the results are shown in Table 4 below.
  • the specific volume was calculated based on the basis weight and thickness of the wet hydroentangled nonwoven fabric, and the results are shown in Table 4 below.
  • the wet tensile strength, the dry tensile strength, the wet tensile elongation, and the dry tensile elongation in the machine direction and the transverse direction of the wet hydroentangled nonwoven fabrics of Examples C1 to C11 were measured and calculated as follows, and the results were as follows: Table 5 shows.
  • the water decomposability of the wet hydroentangled nonwoven fabrics of Examples C1 to C11 was evaluated as follows, and the results are shown in Table 5 below.
  • Thickness It measured as follows based on JISL1086. (1) Using a thickness meter (manufactured by Mitutoyo Corporation), the thickness of the nonwoven fabric after 10 seconds was measured under a pressure of 1.96 kPa. (2) (1) The operation was performed at five locations, and the average of the measured values at the five locations was determined as the thickness.
  • geometric mean strength and geometric mean elongation Based on the dry tensile strength, dry tensile elongation, wet tensile strength, and wet tensile elongation measured and calculated above, the geometric average strength and geometric average elongation were determined by the following formulas.
  • the cross section of the hydroentangled nonwoven fabric of Example C9 was observed with an electron microscope (manufactured by Hitachi, Ltd., model number “S-3500N”), and a cross-sectional photograph (40 ⁇ ) is shown in FIG.
  • the fiber directions in the nonwoven fabric were different in both the MD direction and the CD direction, and had three-dimensional confounding properties.
  • the wet nonwoven fabrics of Examples C1 to C9 had high wet tensile strength and dry tensile strength, and the nonwoven fabric was strong. Further, the wet tensile elongation and the dry tensile elongation are high, the texture is soft, and the touch is good.
  • the wet hydroentangled nonwoven fabrics of Examples C1 to C13 are impregnated with a chemical solution containing a moisturizing component and a cleaning component so as to be about 300% by mass with respect to 100% by mass of the nonwoven fabric, and are stored in a container, and then hydrolyzed. A sheet product was obtained. All the nonwoven fabrics had sufficient wet strength and water disintegration performance to be used as water disintegration paper.
  • the rayon fiber for wet nonwoven fabric of the present invention and the wet nonwoven fabric including the same can be used for nursing care products, sanitary products, diapers, cleaning articles, cleaning sheets, and the like.

Abstract

The present invention pertains to a rayon yarn for use in a wet-laid nonwoven fabric and having an average crimp rate of 16-45%, inclusive. This rayon yarn for use in a wet-laid nonwoven fabric is produced by using a method for producing a rayon yarn by discharging viscose from a spinning nozzle into a spinning bath, forming a line of yarn by solidifying and regenerating the viscose, and withdrawing, extending, and scouring the line of yarn, wherein the extension is separated into two stages of extension, the rate of extension in the first extension stage is 30% or less, and the rate of extension in the second extension stage is 3.0% or less. The present invention further pertains to a wet-laid nonwoven fabric containing the abovementioned rayon yarn for use in a wet-laid nonwoven fabric, and a hydrolyzable paper containing the abovementioned wet-laid nonwoven fabric. The present invention provides: a rayon yarn for use in a wet-laid nonwoven fabric and exhibiting prescribed crimping, favorable water dispersion properties when dry, and interlacing properties when forming a nonwoven fabric; a method for producing the same; a wet-laid nonwoven fabric; a method for producing the same; and a hydrolyzable paper.

Description

湿式不織布用レーヨン繊維とその製造方法、湿式不織布とその製造方法、及び水解紙Rayon fiber for wet nonwoven fabric and method for producing the same, wet nonwoven fabric and method for producing the same, and hydrolytic paper
 本発明は、湿式不織布用レーヨン繊維とその製造方法、湿式不織布とその製造方法、及び水解紙に関する。 The present invention relates to a rayon fiber for wet nonwoven fabric and a method for producing the same, a wet nonwoven fabric and a method for producing the same, and hydrolytic paper.
 近年、介護用品、生理用品、おむつ、清浄用物品、クリーニングシートなどには布に代わって不織布が使用されることが増えてきた。これらの不織布には、レーヨン繊維を用いることが行われていた。例えば、特許文献1には、清浄用物品として用いることができる繊維長が7mm以下のレーヨン繊維とパルプ繊維とからなる水解性不織布が記載されている。また、特許文献2には、衛生用品に用いる湿潤応答性不織布を形成する際に用いられる、ビスコースレーヨンなどのイオン性を有しない基材と、アニオン性基を有する樹脂と、カチオン性を有する樹脂とからなる樹脂組成物から形成されたモノフィラメントを有する湿潤応答性繊維が記載されている。 In recent years, non-woven fabrics have been increasingly used in place of cloth for care products, sanitary products, diapers, cleaning articles, cleaning sheets, and the like. For these nonwoven fabrics, rayon fibers have been used. For example, Patent Literature 1 describes a water-decomposable nonwoven fabric composed of rayon fibers and pulp fibers having a fiber length of 7 mm or less that can be used as a cleaning article. Patent Document 2 discloses that a substrate having no ionicity such as viscose rayon, a resin having an anionic group, and a cationic property, which are used when forming a wet-responsive nonwoven fabric used for hygiene products. Wet responsive fibers having monofilaments formed from a resin composition comprising a resin are described.
特開平11-279915号公報Japanese Patent Laid-Open No. 11-279915 特開2000-248422号公報JP 2000-248422 A
 しかしながら、従来の湿式不織布用レーヨン繊維は、水分散性を考慮して、水分を含んだ湿潤状態で、かつ捲縮を有しない所謂ストレート型繊維を用いるのが主であった。そのため、湿式不織布形成時においてレーヨン繊維単独での繊維同士の交絡性が悪いこと、あるいは得られた湿式抄紙に水流交絡処理を行った時の交絡性が良くないという問題があることを見出した。 However, in consideration of water dispersibility, conventional rayon fibers for wet non-woven fabrics are mainly made of so-called straight fibers that are in a wet state containing moisture and have no crimps. For this reason, it has been found that there is a problem that, when forming a wet nonwoven fabric, the entanglement between the fibers of the rayon fiber alone is poor, or the entanglement is not good when the obtained wet papermaking is subjected to hydroentanglement treatment.
 本発明は、上記問題を解決するため、所定の捲縮を有し、かつ乾燥状態でも良好な水分散性を有するとともに、不織布形成時の交絡性を有する湿式不織布用レーヨン繊維とその製造方法、湿式不織布とその製造方法、及び水解紙を提供する。 In order to solve the above problems, the present invention has a predetermined crimp and has good water dispersibility even in a dry state, and has a entanglement property at the time of forming a nonwoven fabric and a method for producing the same. A wet nonwoven fabric, a method for producing the same, and hydrolytic paper are provided.
 本発明は、平均捲縮率が16%以上45%以下であることを特徴とする湿式不織布用レーヨン繊維に関する。 The present invention relates to a rayon fiber for wet nonwoven fabric, wherein the average crimp rate is 16% or more and 45% or less.
 上記湿式不織布用レーヨン繊維は、捲縮空間部の高さが0.70mm以上の繊維が5%を超えて含まれることが好ましい。また、上記湿式不織布用レーヨン繊維は、繊維長Lと繊維幅Dの比L/Dの値が350以上1200以下であることが好ましい。また、上記湿式不織布用レーヨン繊維は、平均捲縮数が3個/インチ以上25個/インチ以下であることが好ましい。また、上記湿式不織布用レーヨン繊維は、繊維の全体質量に対して油剤を0.03質量%以上0.2質量%以下含むことが好ましい。上記油剤は、ポリオキシエチレンエステル系ノニオン界面活性剤であることが好ましい。 The rayon fiber for wet nonwoven fabric preferably contains more than 5% of fibers having a crimp space portion height of 0.70 mm or more. Moreover, it is preferable that the value of ratio L / D of fiber length L and fiber width D is 350-1200 in the said rayon fiber for wet nonwoven fabrics. Moreover, it is preferable that the said average number of crimps of the rayon fiber for wet nonwoven fabrics is 3 piece / inch or more and 25 piece / inch or less. Moreover, it is preferable that the said rayon fiber for wet nonwoven fabrics contains 0.03 mass% or more and 0.2 mass% or less of an oil agent with respect to the whole mass of a fiber. The oil agent is preferably a polyoxyethylene ester nonionic surfactant.
 本発明は、また、ビスコースを紡糸ノズルから紡糸浴中に吐出して、上記ビスコースを凝固再生することにより糸条を形成し、上記糸条を引き取り、延伸、精練してレーヨン繊維を製造する方法において、上記延伸を二段階延伸にするとともに、第1段階延伸における延伸率を30%以下にし、第2段階延伸における延伸率を3.0%以下にすることで、平均捲縮率が16%以上45%以下であるレーヨン繊維を得ることを特徴とする湿式不織布用レーヨン繊維の製造方法に関する。 The present invention also provides a rayon fiber by discharging viscose from a spinning nozzle into a spinning bath, solidifying and regenerating the viscose to form a yarn, drawing the yarn, drawing and scouring. In this method, the above-mentioned stretching is made into two-stage stretching, the stretching ratio in the first-stage stretching is 30% or less, and the stretching ratio in the second-stage stretching is 3.0% or less, so that the average crimping ratio is The present invention relates to a method for producing a rayon fiber for wet nonwoven fabric, which is characterized by obtaining a rayon fiber of 16% to 45%.
 上記延伸後の糸条は、精練される前に所定の繊維長にカットされることが好ましい。 It is preferable that the drawn yarn is cut into a predetermined fiber length before scouring.
 本発明は、また、上記の湿式不織布用レーヨン繊維を含むことを特徴とする湿式不織布に関する。 The present invention also relates to a wet nonwoven fabric characterized by comprising the above-described rayon fiber for wet nonwoven fabric.
 上記湿式不織布は、湿式不織布100質量%に対して、上記湿式不織布用レーヨン繊維5~95質量%と、パルプ5~95質量%を含んでもよい。上記湿式不織布は、湿式水流交絡不織布であることが好ましい。 The wet nonwoven fabric may contain 5 to 95 mass% of the rayon fiber for wet nonwoven fabric and 5 to 95 mass% of the pulp with respect to 100 mass% of the wet nonwoven fabric. The wet nonwoven fabric is preferably a wet hydroentangled nonwoven fabric.
 本発明は、また、上記の湿式不織布用レーヨン繊維と、パルプを含む混合物を湿式抄紙機にて湿式抄紙ウェブを作製する工程と、上記湿式抄紙ウェブの少なくとも一方の表面に水流を噴射して水流交絡を施す工程を含む湿式不織布の製造方法に関する。 The present invention also includes a step of producing a wet papermaking web with a wet papermaking machine using a mixture containing the above-described wet nonwoven fabric rayon fiber and pulp, and jetting a waterflow onto at least one surface of the wet papermaking web. The present invention relates to a method for producing a wet nonwoven fabric including a step of entanglement.
 本発明は、また、上記の湿式不織布を含むことを特徴とする水解紙に関する。 The present invention also relates to a hydrolytic paper characterized by including the wet nonwoven fabric described above.
 本発明は、所定の捲縮を有し、かつ乾燥状態でも良好な水分散性を有するとともに、不織布形成時の交絡性を有する湿式不織布用レーヨン繊維、その製造方法及びそれを用いた湿式不織布を提供する。本発明の湿式不織布は、水解紙として好適に用いることができる。 The present invention relates to a rayon fiber for wet nonwoven fabric having a predetermined crimp and having good water dispersibility even in a dry state and having entanglement properties at the time of forming the nonwoven fabric, a method for producing the same, and a wet nonwoven fabric using the same. provide. The wet nonwoven fabric of the present invention can be suitably used as hydrolytic paper.
図1Aは、実施例1の湿式不織布用レーヨン繊維の側面写真(25倍)であり、図1Bは、同湿式不織布用レーヨン繊維の側面写真(50倍)である。FIG. 1A is a side view photograph (25 times) of the rayon fiber for wet nonwoven fabric of Example 1, and FIG. 1B is a side view photograph (50 times) of the rayon fiber for wet nonwoven fabric. 図2Aは、比較例1のレーヨン繊維の側面写真(25倍)であり、図2Bは、同レーヨン繊維の側面写真(50倍)である。図2Cは、比較例3のレーヨン繊維の側面写真(25倍)であり、図2Dは、同レーヨン繊維の側面写真(50倍)である。図2Eは、比較例5のレーヨン繊維の側面写真(25倍)であり、図2Fは、同レーヨン繊維の側面写真(50倍)である。2A is a side view photograph (25 times) of the rayon fiber of Comparative Example 1, and FIG. 2B is a side view photograph (50 times) of the rayon fiber. 2C is a side view photograph (25 times) of the rayon fiber of Comparative Example 3, and FIG. 2D is a side view photograph (50 times) of the rayon fiber. 2E is a side view photograph (25 times) of the rayon fiber of Comparative Example 5, and FIG. 2F is a side view photograph (50 times) of the rayon fiber. 図3は、繊維の捲縮率を測定する方法の説明図である。FIG. 3 is an explanatory diagram of a method for measuring the crimp rate of the fiber. 図4は、繊維の捲縮空間部の高さを測定する方法の説明図である。FIG. 4 is an explanatory diagram of a method for measuring the height of the crimped space portion of the fiber. 図5Aは、実施例2における抄紙後の不織布の表面写真(100倍)であり、図5Bは同抄紙後の不織布の断面写真(100倍)である。図5Cは、実施例2における水流交絡後の不織布の表面写真(100倍)であり、図5Dは同水流交絡後の不織布の断面写真(175倍)である。5A is a surface photograph (100 times) of the nonwoven fabric after papermaking in Example 2, and FIG. 5B is a cross-sectional photograph (100 times) of the nonwoven fabric after papermaking. FIG. 5C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Example 2, and FIG. 5D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement. 図6Aは、比較例6における抄紙後の不織布の表面写真(100倍)であり、図6Bは同抄紙後の不織布の断面写真(100倍)である。図6Cは、比較例6における水流交絡後の不織布の表面写真(100倍)であり、図6Dは同水流交絡後の不織布の断面写真(175倍)である。6A is a surface photograph (100 times) of the nonwoven fabric after papermaking in Comparative Example 6, and FIG. 6B is a cross-sectional photograph (100 times) of the nonwoven fabric after papermaking. 6C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example 6, and FIG. 6D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement. 図7Aは、比較例7における抄紙後の不織布の表面写真(100倍)であり、図7Bは同抄紙後の不織布の断面写真(100倍)である。図7Cは、比較例7における水流交絡後の不織布の表面写真(100倍)であり、図7Dは同水流交絡後の不織布の断面写真(175倍)である。FIG. 7A is a surface photograph (100 times) of the nonwoven fabric after paper making in Comparative Example 7, and FIG. 7B is a cross-sectional photograph (100 times) of the nonwoven fabric after paper making. FIG. 7C is a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example 7, and FIG. 7D is a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement. 図8は、実施例C9の湿式水流交絡不織布の電子顕微鏡による断面写真(40倍)である。FIG. 8 is a cross-sectional photograph (40 ×) of the wet hydroentangled nonwoven fabric of Example C9 taken with an electron microscope.
 上記湿式不織布用レーヨン繊維(ウエットレイド用レーヨン繊維)は、平均捲縮率が16%以上45%以下である。平均捲縮率が45%以下であると、湿式抄紙前のスラリー形成時の水分散性に優れる。また、平均捲縮率が16%以上であると、水分散性に優れるとともに不織布を作製する際に繊維が互いに絡みやすくなる。平均捲縮率は、18%以上であることが好ましく、20%以上であることがより好ましい。また、水分散性が向上する観点から、上記湿式不織布用レーヨン繊維は、平均捲縮率が40%以下であることが好ましく、より好ましくは35%以下であり、さらに好ましくは30%以下である。 The wet crimped rayon fiber (wet laid rayon fiber) has an average crimp rate of 16% to 45%. When the average crimping rate is 45% or less, the water dispersibility during slurry formation before wet papermaking is excellent. Further, when the average crimp rate is 16% or more, the water dispersibility is excellent and the fibers are easily entangled with each other when producing the nonwoven fabric. The average crimp rate is preferably 18% or more, and more preferably 20% or more. Moreover, from the viewpoint of improving water dispersibility, the above-mentioned rayon fiber for wet nonwoven fabric preferably has an average crimp rate of 40% or less, more preferably 35% or less, and further preferably 30% or less. .
 本発明において、「捲縮率」は、繊維の両端点を結んだ直線の長さをa(mm)とし、繊維長をL(mm)とした場合、下記式で算出するものであり、「平均捲縮率」は、任意に選択した20本の繊維の捲縮率の平均値をいう。
 捲縮率(%)=(L-a)/L×100
In the present invention, the “crimp rate” is calculated by the following formula when the length of a straight line connecting both end points of the fiber is a (mm) and the fiber length is L (mm). “Average crimp ratio” refers to an average value of crimp ratios of 20 fibers arbitrarily selected.
Crimp rate (%) = (La) / L × 100
 上記湿式不織布用レーヨン繊維において、捲縮は自然捲縮であり、3次元の立体形状であることが好ましい。自然捲縮は、スタッファーボックス捲縮機などの機械によって付与された機械捲縮とは異なり、繊維の紡糸や精練段階などの製造段階中に自然に発現する捲縮のことである。上記湿式不織布用レーヨン繊維は、不織布を作製する際に繊維が互いに絡みやすい観点から、所定の弱い自然捲縮があることが好ましい。 In the rayon fiber for wet nonwoven fabric, the crimp is a natural crimp and preferably has a three-dimensional shape. Natural crimp is different from mechanical crimp imparted by a machine such as a stuffer box crimper, and is a crimp that naturally develops during the manufacturing stage such as fiber spinning or scouring stage. The rayon fiber for wet nonwoven fabric preferably has a predetermined weak natural crimp from the viewpoint that the fibers are easily entangled with each other when the nonwoven fabric is produced.
 上記湿式不織布用レーヨン繊維は、水分散性の向上及び不織布形成時の交絡性の観点から、平均捲縮数が3個/インチ以上25個/インチ以下であることが好ましい。より好ましくは平均捲縮数が5個/インチ以上20個/インチ以下であり、さらに好ましくは8個/インチ以上15個/インチ以下である。 The above-mentioned rayon fibers for wet nonwoven fabrics preferably have an average number of crimps of 3 / inch to 25 / inch from the viewpoint of improvement in water dispersibility and entanglement at the time of nonwoven fabric formation. More preferably, the average number of crimps is 5 pieces / inch or more and 20 pieces / inch or less, and further preferably 8 pieces / inch or more and 15 pieces / inch or less.
 本発明において、「捲縮数」は、所定の繊維における捲縮の山と谷の総数X(個)と、該繊維を捲縮がなくなるまで引き延ばした後の繊維長Y(mm)に基づいて、下記式で算出するものであり、「平均捲縮率」は、任意に選択した20本の繊維の捲縮数の平均値をいう。
 捲縮数(個/インチ)=(X/2)×(25.4/Y)
In the present invention, the “crimp number” is based on the total number X (number) of crimp peaks and valleys in a predetermined fiber and the fiber length Y (mm) after the fiber is stretched until there is no crimp. The “average crimp rate” is an average value of the number of crimps of 20 fibers selected arbitrarily.
Number of crimps (pieces / inch) = (X / 2) × (25.4 / Y)
 上記湿式不織布用レーヨン繊維は、水分散性の向上及び不織布形成時の交絡性の観点から、捲縮空間部の高さが0.70mm以上の繊維が5%を超えて含まれることが好ましい。より好ましくは10%以上、さらに好ましくは15%以上である。 The rayon fiber for wet nonwoven fabric preferably contains more than 5% of fibers having a height of crimp space of 0.70 mm or more from the viewpoint of improvement in water dispersibility and entanglement at the time of nonwoven fabric formation. More preferably, it is 10% or more, More preferably, it is 15% or more.
 本発明において、「捲縮空間部の高さ」は、繊維において、捲縮部の頂点から捲縮部の底辺に引いた直線に向かって引いた垂線の長さをいう。なお、1本の繊維が複数の捲縮部の有する場合は、一番大きい捲縮空間部の高さをその繊維の捲縮空間部の高さとする。 In the present invention, “the height of the crimped space portion” refers to the length of a perpendicular drawn from the apex of the crimped portion toward the straight line drawn from the crimped portion to the bottom of the crimped portion. In addition, when one fiber has a plurality of crimp portions, the height of the largest crimp space portion is set as the height of the crimp space portion of the fiber.
 上記湿式不織布用レーヨン繊維は、水分解性が向上する観点から、繊維長Lと繊維幅Dの比L/Dが350以上1200以下であることが好ましく、500以上1000以下であることがより好ましく、550以上850以下であることがさらに好ましい。 From the viewpoint of improving water decomposability, the wet nonwoven fabric rayon fiber preferably has a ratio L / D of the fiber length L to the fiber width D of 350 or more and 1200 or less, and more preferably 500 or more and 1000 or less. More preferably, it is 550 or more and 850 or less.
 本発明において、繊維幅Dは、繊維断面を真円換算し、その断面積から値を算出する。 In the present invention, the fiber width D is obtained by converting the fiber cross section into a perfect circle and calculating the value from the cross sectional area.
 上記湿式不織布用レーヨン繊維には、繊維の全体質量に対して油剤が0.03質量%以上0.20質量%以下付着していることが好ましく、0.03質量%以上0.18質量%以下付着していることがより好ましく、0.04質量%以上0.15質量%以下付着していることがさらに好ましい。油剤の付着率が上記の範囲内であると、レーヨン繊維の親水性を損なうことなく、水分散性を向上させることができる。 It is preferable that 0.03% by mass or more and 0.20% by mass or less of the oil agent is attached to the above-described wet nonwoven fabric rayon fiber with respect to the total mass of the fiber. It is more preferable that it adheres, and it is further more preferable that it adheres 0.04 mass% or more and 0.15 mass% or less. Water adhesion can be improved, without impairing the hydrophilic property of rayon fiber as the adhesion rate of an oil agent exists in said range.
 上記湿式不織布用レーヨン繊維は、特に限定されないが、水分散性の観点から、繊維長が4~20mmであることが好ましく、より好ましくは6~16mmであり、さらに好ましくは8~12mmである。 Although the rayon fiber for wet nonwoven fabric is not particularly limited, the fiber length is preferably 4 to 20 mm, more preferably 6 to 16 mm, and still more preferably 8 to 12 mm from the viewpoint of water dispersibility.
 上記湿式不織布用レーヨン繊維は、特に限定されないが、水分散性の観点から、繊度が0.4~3.5dtexであることが好ましく、より好ましくは1.0~3.0dtexであり、さらに好ましくは1.6~2.5dtexである。 The wet nonwoven fabric rayon fiber is not particularly limited, but from the viewpoint of water dispersibility, the fineness is preferably 0.4 to 3.5 dtex, more preferably 1.0 to 3.0 dtex, and still more preferably. Is 1.6 to 2.5 dtex.
 上記湿式不織布用レーヨン繊維は、ビスコースを紡糸ノズルから紡糸浴中に吐出して、上記ビスコースを凝固再生することにより糸条を形成し、上記糸条を引き取り、延伸、精練する際に、特定の延伸条件で延伸することで得ることができる。 The rayon fiber for wet nonwoven fabric is formed by discharging viscose from a spinning nozzle into a spinning bath, solidifying and regenerating the viscose to form a yarn, drawing the yarn, stretching, and scouring. It can be obtained by stretching under specific stretching conditions.
 上記ビスコースは、一般的な組成のものを使用すればよく、特に限定されない。例えば、ビスコース100質量%対して、セルロースを7~10質量%、水酸化ナトリウムを5~8質量%、二硫化炭素を2~4質量%を含むビスコースを用いることが好ましい。 The viscose may be of a general composition and is not particularly limited. For example, it is preferable to use viscose containing 7 to 10% by mass of cellulose, 5 to 8% by mass of sodium hydroxide, and 2 to 4% by mass of carbon disulfide with respect to 100% by mass of viscose.
 さらには上記ビスコースには、各種有機物(油脂、官能基を有する化合物、タンパク質等の機能性材料等)や無機物(酸化チタンなどの顔料や鉱物等)の添加物を練り込み、機能性を付与することができる。 Furthermore, the above-mentioned viscose is kneaded with additives such as various organic substances (oils and fats, compounds having functional groups, functional materials such as proteins) and inorganic substances (pigments and minerals such as titanium oxide) to impart functionality. can do.
 紡糸浴(ミューラー浴)としては、一般的な酸性紡糸浴を使用すればよく、特に限定されない。例えば、硫酸を95~130g/L、硫酸亜鉛を10~17g/L、芒硝を290~370g/Lを含む水溶液を用いることができる。上記紡糸浴において、硫酸濃度は100~120g/Lであることが好ましい。紡糸浴の硫酸濃度が上記範囲内であると、紡糸の工程性が良好になる。 The spinning bath (Mueller bath) may be a general acidic spinning bath and is not particularly limited. For example, an aqueous solution containing 95 to 130 g / L of sulfuric acid, 10 to 17 g / L of zinc sulfate, and 290 to 370 g / L of mirabilite can be used. In the spinning bath, the sulfuric acid concentration is preferably 100 to 120 g / L. When the sulfuric acid concentration of the spinning bath is within the above range, the spinning processability is improved.
 紡糸ノズルとしては、特に限定されず、円形ノズルや、扁平ノズル、Y型ノズルなどの異形ノズルを用いることができる。円形ノズルを用いると、繊度の調整が容易である。紡糸ノズルの選定は、目的とする生産量にもよるが、直径0.03~0.10mmの円形ノズルを1000~20000ホール有するものが好ましい。 The spinning nozzle is not particularly limited, and a round nozzle, a flat nozzle, a modified nozzle such as a Y-type nozzle, or the like can be used. When a circular nozzle is used, fineness adjustment is easy. The selection of the spinning nozzle depends on the target production volume, but preferably has a circular nozzle having a diameter of 0.03 to 0.10 mm and 1000 to 20000 holes.
 ビスコースを紡糸浴中に押し出し紡糸し、凝固再生して形成した糸条は、延伸される。延伸は、二段階延伸であり、第1段階延伸における第1延伸率は、30%以下であり、第2段階延伸における第2延伸率は3.0%以下である。第1延伸率及び第2延伸率を上記範囲内にすることで、平均捲縮率が16%以上45%以下のレーヨン繊維を得ることができる。上記第1延伸率は、好ましくは3~25%であり、より好ましくは5~20%である。上記第2延伸率は、好ましくは0.3~2.5%であり、より好ましくは0.5~2.0%である。延伸は、ゴデットローラで行うことが好ましい。本発明において、「延伸率」とは、延伸前の糸条の長さを100%としたとき、延伸後の糸条の長さを何%伸ばすかを示すものである。 The yarn formed by extruding and spinning the viscose into a spinning bath and solidifying and regenerating is drawn. The stretching is a two-stage stretching, the first stretching ratio in the first stage stretching is 30% or less, and the second stretching ratio in the second stage stretching is 3.0% or less. By setting the first draw ratio and the second draw ratio within the above ranges, rayon fibers having an average crimp ratio of 16% to 45% can be obtained. The first stretching ratio is preferably 3 to 25%, more preferably 5 to 20%. The second stretching ratio is preferably 0.3 to 2.5%, more preferably 0.5 to 2.0%. The stretching is preferably performed with a godet roller. In the present invention, the “stretch rate” indicates how many percent the length of the yarn after stretching is to be extended when the length of the yarn before stretching is 100%.
 延伸後の紡糸速度は、例えば、25~70m/分の範囲が好ましく、より好ましくは30~65m/分である。 The spinning speed after stretching is, for example, preferably in the range of 25 to 70 m / min, and more preferably in the range of 30 to 65 m / min.
 上記で得られた延伸後の糸条は、所定の長さにカットした後に、加熱された液中で熱処理、すなわち精練処理を行う。所定の倍率で延伸した糸条をカットすることで、ストレス緩和が発現して繊維が収縮し、所定の捲縮を持つ繊維を得ることができる。引き続き、収縮した繊維は加熱された液中で繊維中の含まれる二硫化炭素を飛ばされて再生され、捲縮状態を定着させることで、所定の捲縮を持つ繊維を得ることができる。精練は、通常の方法で、加熱された液中で熱処理(熱水処理)、水硫化処理、漂白、酸洗い及び油剤付与の順で行うとよい。加熱された液(水など)の温度は、70~90℃であることが好ましい。より好ましくは75~85℃である。カット長は、精練処理及び乾燥処理で収縮するため、製品繊維長より3~10%長く設定することが好ましい。 After the drawn yarn obtained above is cut to a predetermined length, it is subjected to heat treatment, ie, scouring treatment, in a heated liquid. By cutting the yarn that has been stretched at a predetermined magnification, stress relaxation occurs, the fiber contracts, and a fiber having a predetermined crimp can be obtained. Subsequently, the contracted fiber is regenerated by removing carbon disulfide contained in the fiber in the heated liquid and fixing the crimped state, whereby a fiber having a predetermined crimp can be obtained. The scouring may be carried out in the order of heat treatment (hot water treatment), hydrosulfurization treatment, bleaching, pickling and oiling in a heated solution by a normal method. The temperature of the heated liquid (such as water) is preferably 70 to 90 ° C. More preferably, it is 75 to 85 ° C. Since the cut length shrinks in the scouring process and the drying process, it is preferably set to 3 to 10% longer than the product fiber length.
 油剤付与は、ポリオキシエチレン(POE)エステル系ノニオン界面活性剤などの油剤を用いて行うことが好ましい。油剤の付着率は、繊維100質量%に対して0.03質量%以上0.2質量%以下であることが好ましく、より好ましくは0.03質量%以上0.18質量%以下であり、さらに好ましくは0.04質量%以上0.15質量%以下である。 The oil agent is preferably applied using an oil agent such as a polyoxyethylene (POE) ester nonionic surfactant. The adhesion rate of the oil agent is preferably 0.03% by mass or more and 0.2% by mass or less, more preferably 0.03% by mass or more and 0.18% by mass or less, with respect to 100% by mass of the fiber. Preferably they are 0.04 mass% or more and 0.15 mass% or less.
 精練後、必要に応じて圧縮ローラや真空吸引等の方法で余分な油剤、水分を繊維から除去した後、乾燥処理を施すことができる。乾燥処理は、温度50~120℃にて、0.05~15時間で行うことが好ましい。より好ましくは、温度が70~110℃であり、処理時間が0.1~8時間である。 After scouring, if necessary, excess oil agent and moisture can be removed from the fiber by a method such as a compression roller or vacuum suction, followed by drying treatment. The drying treatment is preferably performed at a temperature of 50 to 120 ° C. for 0.05 to 15 hours. More preferably, the temperature is 70 to 110 ° C. and the treatment time is 0.1 to 8 hours.
 上記湿式不織布用レーヨン繊維は、水分散性に優れる。本発明において、「水分散性」は、90Lの水を攪拌機にて回転数2000rpmで撹拌しつつ、そこへ絶乾質量4.5g相当の繊維(原綿)を投入し、投入から1分後に撹拌を停止し、撹拌停止直後の繊維の塊の数を測定することで判断することができる。水分散性に優れる観点から、上記湿式不織布用レーヨン繊維は、水分散性の評価において、繊維の塊が20個未満であることが好ましく、18個以下であることがより好ましく、16個以下であることがさらに好ましい。本発明において、例えば、105℃で2時間乾燥することで絶乾状態の繊維を得ることができる。 The rayon fiber for wet nonwoven fabric is excellent in water dispersibility. In the present invention, “water dispersibility” means that 90 L of water is stirred with a stirrer at a rotational speed of 2000 rpm, and fibers (raw cotton) corresponding to an absolutely dry mass of 4.5 g are added thereto, followed by stirring one minute after the addition. Can be determined by measuring the number of fiber clumps immediately after stopping stirring. From the viewpoint of excellent water dispersibility, in the evaluation of water dispersibility, the wet nonwoven fabric rayon fiber preferably has less than 20 fibers, more preferably 18 or less, and more preferably 16 or less. More preferably it is. In the present invention, for example, an absolutely dry fiber can be obtained by drying at 105 ° C. for 2 hours.
 本発明の湿式不織布は、上記湿式不織布用レーヨン繊維を含む。上記湿式不織布は、不織布100質量%に対して、上記湿式不織布用レーヨン繊維を5質量%以上含むことが好ましく、10質量%以上含むことがより好ましく、15質量%含むことがさらに好ましい。 The wet nonwoven fabric of the present invention includes the rayon fiber for wet nonwoven fabric. The wet nonwoven fabric preferably contains 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass of the rayon fiber for wet nonwoven fabric with respect to 100% by mass of the nonwoven fabric.
 上記湿式不織布には、上記湿式不織布用レーヨン繊維に加えて、他の繊維を含んでもよい。他の繊維としては、例えば、パルプ、コットン(リンター)、麻、竹などの天然繊維、ポリエステル、ポリアミド、ポリオレフィンなどの合成繊維が挙げられる。例えば、水解紙に用いる場合、パルプを含むとよい。上記湿式不織布用レーヨン繊維をパルプと混合して水解紙を作製した場合、フラッシャビリティ(水解性)及び実用強度の向上が見込まれる。また、性能を損なわない範囲で他の繊維素材(例えばバインダー繊維等)や紙力増強剤を入れても良い。 The wet nonwoven fabric may contain other fibers in addition to the wet nonwoven fabric rayon fiber. Examples of other fibers include natural fibers such as pulp, cotton (linter), hemp, and bamboo, and synthetic fibers such as polyester, polyamide, and polyolefin. For example, when used for hydrolytic paper, it is preferable to include pulp. When hydrolyzed paper is prepared by mixing the above-mentioned wet nonwoven fabric rayon fiber with pulp, improvement in flashability (water decomposability) and practical strength is expected. In addition, other fiber materials (for example, binder fibers) and paper strength enhancers may be added as long as the performance is not impaired.
 上記湿式不織布は、特に限定されないが、工程性の観点から、目付が15~150g/m2であることが好ましく、20~100g/m2であることがより好ましく、30~80g/m2であることがさらに好ましい。 The wet nonwoven fabric is not particularly limited, but in terms of processability, the basis weight is preferably 15 to 150 g / m 2 , more preferably 20 to 100 g / m 2 , and 30 to 80 g / m 2 . More preferably it is.
 上記湿式不織布は、特に限定されず、湿式水流交絡不織布(湿式スパンレース不織布とも称される。)、湿式熱融着不織布、湿式湿熱融着不織布、叩解したパルプと抄き合わせることによって得られる湿式不織布などのいずれであってもよい。セルロース100%の環境配慮型商品の観点から、湿式水流交絡不織布であることが好ましい。抄紙及び水流交絡は、一般的な方法で行うことができる。 The wet nonwoven fabric is not particularly limited, and is a wet hydroentangled nonwoven fabric (also referred to as a wet spunlace nonwoven fabric), a wet heat fusion nonwoven fabric, a wet wet heat fusion nonwoven fabric, a wet obtained by combining with a beaten pulp. Any of a nonwoven fabric etc. may be sufficient. From the viewpoint of 100% cellulose environmentally friendly products, wet hydroentangled nonwoven fabrics are preferred. Papermaking and hydroentanglement can be performed by a general method.
 上記湿式不織布は、湿式不織布の単層で用いてもよく、あるいは湿式抄紙の漉き合わせや、湿式不織布と他の不織布との積層で用いても良い。 The wet nonwoven fabric may be used as a single layer of wet nonwoven fabric, or may be used in wet papermaking or lamination of a wet nonwoven fabric with another nonwoven fabric.
 水解紙として用いる場合、上記湿式不織布は、湿式不織布100質量%に対して、本発明の湿式不織布用レーヨン繊維5質量%以上95質量%以下と、パルプ5質量%以上95質量%以下を含んでもよい。また、上記湿式不織布は、湿式不織布100質量%に対して、本発明の湿式不織布用レーヨン繊維を80質量%以下含むことがより好ましく、60質量%以下含むことがさらに好ましく、さらにより好ましくは40質量%以下含む。また、湿式不織布100質量%に対して、本発明の湿式不織布用レーヨン繊維を10質量%以上含むことがより好ましく、15質量%以上含むことがさらに好ましく、さらにより好ましくは20質量%以上含み、さらにより好ましくは30質量%以上含む。また、上記湿式不織布は、湿式不織布100質量%に対して、パルプを90質量%以下含むことがより好ましく、85質量%以下含むことがさらに好ましく、80質量%以下含むことがさらにより好ましく、70質量%以下含むことがさらにより好ましい。また、上記湿式不織布は、湿式不織布100質量%に対して、パルプを20質量%以上含むことが好ましく、40質量%以上含むことがより好ましく、60質量%以上含むことがさらに好ましい。水解性に優れるとともに、引張強度及び引張伸度に優れる湿式不織布が得られる。従来、水解紙として再生セルロース繊維とパルプを含む湿式水流交絡不織布を用いる場合、パルプの含有量が少ない(例えば、15質量%未満)と、ウェブ強度が弱すぎ、水流交絡処理ができない、或いは、再生セルロース繊維の含有量が多い(例えば、55質量%を超える)と、パルプを十分叩解させて結合強度を高め、水流交絡処理で大きいエネルギーを与えないと十分な繊維交絡が得られないと言われていた。また、パルプの含有量が多すぎる(例えば、60質量%を超える)と、セルロース繊維の交絡が少なすぎてウェブ強度が弱まるうえ、パルプの水素結合が多くなり水解性が劣る、或いは、再生セルロース繊維が少ない(例えば15質量%未満)であると、十分な湿潤強度と優れた水解性を付与することができないと言われていた。これに対し、再生セルロース繊維として本願発明の湿式不織布(ウエットレイド)用レーヨン繊維を用いることにより、パルプと比してレーヨン繊維の混率が少なくても十分な湿潤強度及び水解性を有する水解紙用湿式不織布が得られる。また、パルプと比してレーヨン繊維の混率が多くても、水解紙として適度な強度と水解性を有する水解紙用湿式不織布が得られる。 When used as hydrolytic paper, the wet nonwoven fabric may contain 5% by mass to 95% by mass of rayon fiber for wet nonwoven fabric of the present invention and 5% by mass to 95% by mass of pulp with respect to 100% by mass of the wet nonwoven fabric. Good. The wet nonwoven fabric preferably contains 80% by mass or less, more preferably 60% by mass or less, and even more preferably 40% of the wet nonwoven fabric rayon fiber of the present invention with respect to 100% by mass of the wet nonwoven fabric. Including mass% or less. Moreover, it is more preferable to contain 10 mass% or more of the rayon fiber for wet nonwoven fabrics of this invention with respect to 100 mass% of wet nonwoven fabrics, It is further more preferable to contain 15 mass% or more, More preferably, it contains 20 mass% or more, Even more preferably, it contains 30% by mass or more. The wet nonwoven fabric preferably contains 90% by mass or less of pulp, more preferably 85% by mass or less, and still more preferably 80% by mass or less, relative to 100% by mass of the wet nonwoven fabric. It is even more preferable that the content is not more than mass%. Moreover, it is preferable that the said wet nonwoven fabric contains 20 mass% or more of pulp with respect to 100 mass% of wet nonwoven fabrics, It is more preferable that 40 mass% or more is included, It is further more preferable that 60 mass% or more is included. A wet nonwoven fabric having excellent water decomposability and excellent tensile strength and tensile elongation can be obtained. Conventionally, when a wet hydroentangled nonwoven fabric containing recycled cellulose fibers and pulp is used as the hydrolytic paper, the pulp content is low (for example, less than 15% by mass), the web strength is too weak, and hydroentanglement cannot be performed, or When the content of regenerated cellulose fiber is large (for example, more than 55% by mass), the pulp is sufficiently beaten to increase the binding strength, and sufficient fiber entanglement cannot be obtained unless large energy is given by hydroentanglement treatment. It was broken. On the other hand, if the pulp content is too high (for example, more than 60% by mass), the entanglement of the cellulose fibers is too small and the web strength is weakened, and the hydrogen bonds of the pulp are increased, resulting in poor hydrolyzability, or regenerated cellulose. It has been said that if the amount of fibers is small (for example, less than 15% by mass), sufficient wet strength and excellent water disintegrability cannot be imparted. On the other hand, by using the rayon fiber for wet nonwoven fabric (wet laid) of the present invention as the regenerated cellulose fiber, it is for hydrolytic paper having sufficient wet strength and water disintegration even if the mixing ratio of rayon fiber is small compared with pulp. A wet nonwoven fabric is obtained. Moreover, even if the mixing ratio of rayon fibers is larger than that of pulp, a wet nonwoven fabric for hydrolytic paper having moderate strength and hydrolytic properties as hydrolytic paper can be obtained.
 水解紙として用いる場合、水解性に優れる観点から、上記湿式不織布は、目付が30~90g/m2であることが好ましく、30~80g/m2であることがより好ましい。また、水解性に優れる観点から、上記湿式不織布は、厚みが0.2~2.0mmであることが好ましく、0.3~1.5mmであることがより好ましい。水解性に優れる観点から、上記湿式不織布は、比容積は、3.0~25.0cm3/gであることが好ましく、5.0~20.0cm3/gであることがより好ましい。目付、厚み及び比容積は、後述の通りに測定算出する。 When used as water disintegrating paper, the wet nonwoven fabric preferably has a basis weight of 30 to 90 g / m 2 and more preferably 30 to 80 g / m 2 from the viewpoint of excellent water disintegrating property. Further, from the viewpoint of excellent water decomposability, the wet nonwoven fabric preferably has a thickness of 0.2 to 2.0 mm, and more preferably 0.3 to 1.5 mm. From the viewpoint of excellent water disintegrability, the wet nonwoven fabric preferably has a specific volume of 3.0 to 25.0 cm 3 / g, more preferably 5.0 to 20.0 cm 3 / g. The basis weight, thickness and specific volume are measured and calculated as described later.
 上記湿式不織布は、湿潤引張強度が、縦方向において0.2~8.0N/25mmであることが好ましく、横方向において0.3~8.0N/25mmであることが好ましく、幾何学平均湿潤引張強度が0.3~10.0N/25mmであることが好ましい。また、湿潤引張伸度が、縦方向において7~45%/25mmであることが好ましく、横方向において10~45%/25mmであることが好ましく、幾何学平均湿潤引張伸度が14~61%/25mmであることが好ましい。湿潤引張強度と湿潤引張伸度が上述した範囲内であることにより、良好な水解性を有しつつ、取扱い性が良好になる。 The wet nonwoven fabric preferably has a wet tensile strength of 0.2 to 8.0 N / 25 mm in the longitudinal direction, preferably 0.3 to 8.0 N / 25 mm in the transverse direction, and has a geometric mean wetness. The tensile strength is preferably 0.3 to 10.0 N / 25 mm. The wet tensile elongation is preferably 7 to 45% / 25 mm in the longitudinal direction, and preferably 10 to 45% / 25 mm in the transverse direction, and the geometric average wet tensile elongation is 14 to 61%. / 25 mm is preferable. When the wet tensile strength and wet tensile elongation are within the above-described ranges, the handleability is good while having good water disintegration.
 上記湿式不織布は、乾燥引張強度が、縦方向において4.0~21.0N/25mmであることが好ましく、横方向において4.0~23.0N/25mmであることが好ましく、幾何学平均乾燥引張強度が5~30N/25mmであることが好ましい。また、乾燥引張伸度が、縦方向において5~40%/25mmであることが好ましく、横方向において15~40%/25mmであることが好ましく、幾何学平均乾燥引張伸度が15~47%/25mmであることが好ましい。乾燥引張強度と乾燥引張伸度が上述した範囲内であることにより、良好な水解性を有しつつ、取扱い性が良好になる。 The wet nonwoven fabric preferably has a dry tensile strength of 4.0 to 21.0 N / 25 mm in the longitudinal direction, preferably 4.0 to 23.0 N / 25 mm in the transverse direction, and has a geometric average dryness. The tensile strength is preferably 5 to 30 N / 25 mm. Further, the dry tensile elongation is preferably 5 to 40% / 25 mm in the longitudinal direction, and preferably 15 to 40% / 25 mm in the transverse direction, and the geometric average dry tensile elongation is 15 to 47%. / 25 mm is preferable. When the dry tensile strength and the dry tensile elongation are within the above-described ranges, the handleability is improved while having good water disintegrability.
 本発明において、引張強度、引張伸度は、JIS P 8135に準拠して測定するものである。具体的には、後述のとおりに測定する。また、幾何学平均引張強度及び引張伸度は、後述のとおりに算出する。 In the present invention, the tensile strength and the tensile elongation are measured according to JIS P 8135. Specifically, the measurement is performed as described below. The geometric average tensile strength and tensile elongation are calculated as described below.
 上記湿式水流交絡不織布は、前記湿式不織布用レーヨン繊維とパルプを含む混合物を抄紙機にて湿式抄紙ウェブにした後、上記湿式抄紙ウェブの少なくとも一方の表面に所定の水圧の高圧水流を噴射して水流交絡を施すことで作製することができる。上記高圧水流の水圧は、良好な交絡性を有する不織布を得る観点から、1.5MPa以上5.5MPa以下であることが好ましい。 The wet hydroentangled non-woven fabric is a mixture of the wet non-woven fabric rayon fiber and pulp made into a wet paper web by a paper machine, and then sprayed with a high-pressure water stream at a predetermined water pressure on at least one surface of the wet paper web. It can be produced by hydroentanglement. The water pressure of the high-pressure water stream is preferably 1.5 MPa or more and 5.5 MPa or less from the viewpoint of obtaining a nonwoven fabric having good entanglement properties.
 上記湿式不織布は、乾燥状態又は湿潤状態のいずれの形態でも使用することができる。例えば、介護用品、生理用品、おむつ、清浄用物品、クリーニングシートなどに用いることができる。上記湿式不織布は、湿式不織布用レーヨン繊維を含むため、そのまま水洗トイレなどに流す水解紙にも用いることができる。 The wet nonwoven fabric can be used in either a dry state or a wet state. For example, it can be used for care products, sanitary products, diapers, cleaning articles, cleaning sheets, and the like. Since the wet nonwoven fabric contains rayon fibers for wet nonwoven fabric, the wet nonwoven fabric can be used as it is for water-disintegrating paper that flows to a flush toilet or the like.
 本発明の上記湿式不織布を含む水解紙は、乾燥状態又は湿潤状態のいずれの形態でも使用することができる。上記水解紙は、用途に応じて適宜設定される薬剤または液体(有効成分として、例えば、保湿成分、クレンジング(洗浄)成分、制汗成分、香り成分、美白成分、血行促進成分、紫外線防止成分、痩身成分等)が所定量付着又は含浸されて収納体に収容してシート製品として用いるとよい。 The hydrolytic paper containing the wet nonwoven fabric of the present invention can be used in either a dry state or a wet state. The above-mentioned water disintegrating paper is a drug or liquid appropriately set according to the application (for example, a moisturizing component, a cleansing (cleaning) component, an antiperspirant component, a scent component, a whitening component, a blood circulation promoting component, an ultraviolet ray preventing component, A slimming component or the like) may be attached or impregnated in a predetermined amount and stored in a storage body to be used as a sheet product.
 以下実施例により本発明を更に具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
 (実施例1)
 ビスコースとしては、セルロースを8.5質量%、水酸化ナトリウムを5.7質量%、二硫化炭素を2.8質量%含むものを用いた。紡糸浴は、硫酸を100g/L、硫酸亜鉛を15g/L、硫酸ナトリウムを350g/L含むミューラー浴を用いた。ビスコースを吐出する紡糸ノズルとして0.06mmの孔径を有するノズル孔が4000個設けられたものを用いた。
(Example 1)
As the viscose, one containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used. As the spinning bath, a Mueller bath containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. As the spinning nozzle for discharging viscose, one having 4000 nozzle holes having a hole diameter of 0.06 mm was used.
 ビスコースを紡糸浴に押出した後、2段階延伸を行った。第1段階延伸における第1延伸率を10%とし、第2段階延伸における第2延伸率を0.7%とした。延伸後の糸条を伸長機ローラでの引取速度(紡糸速度)を35m/分とし引取った。引取った糸条を10.5mmにカットした後、82℃の熱水中で熱処理を行い、続いて水硫化処理、漂白、酸洗い及び油剤付与の順で精練を行った。油剤付与は、POEエステル系ノニオン界面活性剤を0.25質量%含む油剤循環液を用いて行った。油剤循環液の温度は40℃であった。油剤の付着量は、繊維100質量%に対して、0.08質量%であった。精練後の繊維を80℃で60分間乾燥して、繊度が2.2dtexであり、繊維長が10mmである湿式不織布用レーヨン繊維を得た。 After extruding the viscose into a spinning bath, two-stage stretching was performed. The first stretch ratio in the first stage stretching was 10%, and the second stretch ratio in the second stage stretching was 0.7%. The drawn yarn was drawn at a take-up speed (spinning speed) of 35 m / min with a stretcher roller. After the cut yarn was cut to 10.5 mm, heat treatment was performed in hot water at 82 ° C., followed by scouring in the order of hydrosulfurization treatment, bleaching, pickling and oiling. The oil agent application was performed using an oil agent circulating liquid containing 0.25% by mass of a POE ester nonionic surfactant. The temperature of the oil circulating liquid was 40 ° C. The adhesion amount of the oil agent was 0.08% by mass with respect to 100% by mass of the fiber. The fiber after scouring was dried at 80 ° C. for 60 minutes to obtain a rayon fiber for wet nonwoven fabric having a fineness of 2.2 dtex and a fiber length of 10 mm.
 (実施例2)
 伸長機ローラでの引取速度を40m/分とし、引取った糸条を下記表2に示す長さにカットした以外は、実施例1と同様の条件で紡糸、精練及び乾燥を行い、繊度が1.7dtexである湿式不織布用レーヨン繊維を得た。
(Example 2)
Spinning, scouring, and drying were performed under the same conditions as in Example 1 except that the take-up speed at the stretcher roller was 40 m / min, and the taken-up yarn was cut into the length shown in Table 2 below. A rayon fiber for wet non-woven fabric having 1.7 dtex was obtained.
 (実施例3)
 引取った糸条を下記表2に示す長さにカットした以外は、実施例1と同様の条件で紡糸、精練及び乾燥を行い、繊度が2.2dtexである湿式不織布用レーヨン繊維を得た。
(Example 3)
Except that the taken yarn was cut to the length shown in Table 2 below, spinning, scouring and drying were performed under the same conditions as in Example 1 to obtain a wet nonwoven fabric rayon fiber having a fineness of 2.2 dtex. .
 (実施例4)
 伸長機ローラでの引取速度を40m/分とし、引取った糸条を下記表2に示す長さにカットした以外は、実施例1と同様の条件で紡糸、精練及び乾燥を行い、繊度が2.2dtexである湿式不織布用レーヨン繊維を得た。
Example 4
Spinning, scouring, and drying were performed under the same conditions as in Example 1 except that the take-up speed at the stretcher roller was 40 m / min, and the taken-up yarn was cut into the length shown in Table 2 below. A rayon fiber for wet non-woven fabric of 2.2 dtex was obtained.
 (比較例1)
 ビスコースとしては、セルロースを8.5質量%、水酸化ナトリウムを5.7質量%、二硫化炭素を2.8質量%含むものを用いた。紡糸浴は、硫酸を100g/L、硫酸亜鉛を15g/L、硫酸ナトリウムを350g/L含むミューラー浴を用いた。ビスコースを吐出する紡糸ノズルとして0.06mmの孔径を有するノズル孔が4000個設けられたものを用いた。
(Comparative Example 1)
As the viscose, one containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used. As the spinning bath, a Mueller bath containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. As the spinning nozzle for discharging viscose, one having 4000 nozzle holes having a hole diameter of 0.06 mm was used.
 延伸は一段階延伸とし、延伸率は40%とした。その後、実施例1と同様に、伸長機ローラでの引取速度を70m/分とし糸条を引取った。引取った糸条を、80℃で熱水処理、水硫化処理、漂白、酸洗い及び油剤付与の順で精練を行った後、10mmにカットし、繊度が1.7dtexであり、繊維長が10mmであるレーヨン繊維を得た。 Stretching was one-stage stretching, and the stretching rate was 40%. Thereafter, in the same manner as in Example 1, the take-up speed with the stretcher roller was 70 m / min, and the yarn was taken up. The taken yarn is scoured in the order of hot water treatment, hydrosulfurization treatment, bleaching, pickling and oiling at 80 ° C., then cut to 10 mm, the fineness is 1.7 dtex, and the fiber length is A rayon fiber of 10 mm was obtained.
 (比較例2)
 10mmにカットした後、105℃で30分間乾燥させた以外は、比較例1と同様にして、繊度1.7dtexであり、繊維長が10mmであるレーヨン繊維を得た。
(Comparative Example 2)
After cutting to 10 mm, rayon fibers having a fineness of 1.7 dtex and a fiber length of 10 mm were obtained in the same manner as in Comparative Example 1 except that drying was performed at 105 ° C. for 30 minutes.
 (比較例3)
 ビスコースとしては、セルロースを8.5質量%、水酸化ナトリウムを5.7質量%、二硫化炭素を2.8質量%含むものを用いた。このビスコース溶液に二酸化チタン(15%スラリー)をセルロースに対して0.7%添加し、混合した。紡糸浴は、硫酸を100g/L、硫酸亜鉛を15g/L、硫酸ナトリウムを350g/L含むミューラー浴を用いた。紡糸浴の温度は50℃に設定した。上記混合液を吐出する紡糸ノズルとして0.06mmの孔径を有するノズル孔が4000個設けられたものを用いた。
(Comparative Example 3)
As the viscose, one containing 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide was used. To this viscose solution, 0.7% of titanium dioxide (15% slurry) was added to cellulose and mixed. As the spinning bath, a Mueller bath containing 100 g / L of sulfuric acid, 15 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. The temperature of the spinning bath was set to 50 ° C. As the spinning nozzle for discharging the mixed liquid, a nozzle provided with 4000 nozzle holes having a hole diameter of 0.06 mm was used.
 第1段階延伸における第1延伸率を42%とし、第2段階延伸における第2延伸率を0.7%とした。その後、実施例1と同様に、伸長機ローラでの引取速度を60m/分として糸条を引取った。引取った糸条を、82℃の熱水中で熱処理を行い、続いて水硫化処理、漂白、酸洗い及び油剤付与の順で精練を行った後、10mmにカットし、繊度が2.2dtexであり、繊維長が10mmであるレーヨン繊維を得た。 The first stretch ratio in the first stage stretching was 42%, and the second stretch ratio in the second stage stretching was 0.7%. Thereafter, in the same manner as in Example 1, the yarn was taken up at a take-up speed of 60 m / min. The taken yarn is heat-treated in hot water at 82 ° C., then scoured in the order of hydrosulfurization, bleaching, pickling and oiling, then cut to 10 mm, and the fineness is 2.2 dtex. A rayon fiber having a fiber length of 10 mm was obtained.
 (比較例4)
 10mmにカットした後、105℃で30分間乾燥させた以外は、比較例3と同様にして、繊度2.2dtexであり、繊維長が10mmであるレーヨン繊維を得た。
(Comparative Example 4)
After cutting to 10 mm, rayon fibers having a fineness of 2.2 dtex and a fiber length of 10 mm were obtained in the same manner as in Comparative Example 3 except that drying was performed at 105 ° C. for 30 minutes.
 (比較例5)
 水解紙用繊維(リヨセル、レンツィング社製、繊度1.4dtex、繊維長10mm)を用いた。
(Comparative Example 5)
A fiber for hydrolytic paper (Lyocell, manufactured by Renzing Co., Ltd., fineness 1.4 dtex, fiber length 10 mm) was used.
 (比較例6)
 0.05mmの孔径を有するノズル孔が4000個設けられた紡糸ノズルを用い、伸長機ローラでの引取速度を60m/分とし、精練後の糸条を下記表2に示す長さにカットした以外は、比較例2と同様の条件で紡糸、精練及び乾燥を行い、繊度が1.1dtexであり、繊維長が7mmであるレーヨン繊維を得た。
(Comparative Example 6)
Other than using a spinning nozzle with 4000 nozzle holes having a hole diameter of 0.05 mm, the take-up speed with an extender roller was 60 m / min, and the yarn after scouring was cut to the length shown in Table 2 below Spinning, scouring and drying under the same conditions as in Comparative Example 2 gave a rayon fiber having a fineness of 1.1 dtex and a fiber length of 7 mm.
 (比較例7)
 0.06mmの孔径を有するノズル孔が4000個設けられた紡糸ノズルを用い、伸長機ローラでの引取速度を70m/分とし、精練後の糸条を下記表2に示す長さにカットした以外は、比較例2と同様の条件で紡糸、精練及び乾燥を行い、繊度が1.7dtexであり、繊維長が10mmであるレーヨン繊維を得た。
(Comparative Example 7)
Except for using a spinning nozzle having 4000 nozzle holes with a 0.06 mm diameter, taking up the speed at the stretcher roller to 70 m / min, and cutting the yarn after scouring to the length shown in Table 2 below Spinning, scouring and drying under the same conditions as in Comparative Example 2 gave a rayon fiber having a fineness of 1.7 dtex and a fiber length of 10 mm.
 (比較例8)
 水解紙用繊維(リヨセル、レンツィング社製、繊度2.2dtex、繊維長10mm)を用いた。
(Comparative Example 8)
Hydrolytic paper fibers (Lyocell, manufactured by Renzing, fineness 2.2 dtex, fiber length 10 mm) were used.
 実施例と比較例の繊維の平均捲縮率、平均捲縮数、捲縮空間部の高さ、L/D及び油剤の付着率を下記のように測定算出し、その結果を下記表1及び表2に示した。表1及び表2には、繊維長、繊度、捲縮の種類及び形状も併せて示した。また、実施例と比較例の繊維の水分散性を下記のように測定評価して、その結果を下記表3に示した。また、図1には、デジタルマイクロスコープ(KEYENCE社製、型番「VHX-500F」)にて観察した実施例1の側面写真、図2には比較例1、3、5の繊維の側面写真を示した。 The average crimp rate, average crimp number, crimp space height, L / D, and oil adhesion rate of the fibers of Examples and Comparative Examples were measured and calculated as follows. It is shown in Table 2. Tables 1 and 2 also show the fiber length, fineness, crimp type and shape. Further, the water dispersibility of the fibers of Examples and Comparative Examples was measured and evaluated as follows, and the results are shown in Table 3 below. 1 is a side view photograph of Example 1 observed with a digital microscope (manufactured by KEYENCE, model number “VHX-500F”), and FIG. 2 is a side view photograph of fibers of Comparative Examples 1, 3, and 5. Indicated.
 (平均捲縮率)
(1)原綿の中から任意で20本の繊維を抜き取り、図3に示しているように、各々の繊維10をそれぞれ黒いアクリル板の上に置いた。
(2)図3に示しているように、繊維に何も被せていない状態で、各々の繊維10において、繊維10の端点から端点までの長さa(mm)を測定した。
(3)繊維長をL(mm)とし、下記式に基づいて、各々の繊維10の捲縮率を求めた。
 捲縮率(%)=(L-a)/L×100
(4)20本の繊維の捲縮率の平均値を算出して平均捲縮率とした。
(Average crimp rate)
(1) 20 fibers were arbitrarily extracted from the raw cotton, and each fiber 10 was placed on a black acrylic plate as shown in FIG.
(2) As shown in FIG. 3, the length a (mm) from the end point of the fiber 10 to the end point was measured in each fiber 10 in a state where nothing was covered with the fiber.
(3) The fiber length was L (mm), and the crimp rate of each fiber 10 was determined based on the following formula.
Crimp rate (%) = (La) / L × 100
(4) The average crimp rate of the 20 fibers was calculated and used as the average crimp rate.
 (捲縮空間部の高さ)
(1)原綿の中から任意で20本の繊維を抜き取り、図4に示しているように、各々の繊維10をそれぞれ黒いアクリル板の上に置いた。
(2)図4に示しているように、繊維に何も被せていない状態で、各々の繊維10において、各々の捲縮部の底片に直線cを引いた。
(3)図4に示しているように、各捲縮部の頂点から直線cに向かって垂線dを引き、垂線dの長さhを該捲縮空間部の高さとした。各繊維において、全ての捲縮空間部の高さの中、最も大きい捲縮空間部の高さを、その繊維の捲縮空間部の高さHとした。
(4)繊維20本中の捲縮空間部の高さが0.70mm以上を超える繊維の割合を算出した。
(Height of crimp space)
(1) 20 fibers were arbitrarily extracted from the raw cotton, and each fiber 10 was placed on a black acrylic plate, as shown in FIG.
(2) As shown in FIG. 4, a straight line c was drawn on the bottom piece of each crimped portion of each fiber 10 in a state where nothing was covered with the fiber.
(3) As shown in FIG. 4, a perpendicular line d is drawn from the apex of each crimped portion toward the straight line c, and the length h of the perpendicular line d is the height of the crimped space portion. In each fiber, among the heights of all the crimp spaces, the height of the largest crimp space was defined as the height H of the crimp space of the fiber.
(4) The proportion of fibers in which the height of the crimped space in 20 fibers exceeds 0.70 mm or more was calculated.
 (平均捲縮数)
(1)原綿の中から任意で20本繊維を抜き取り、黒いアクリル板の上に置いた。
(2)各々の繊維一本中に含まれる捲縮の山と谷の総数X(個)を数えた。
(3)捲縮の山と谷の総数の測定が終了した各々の繊維をアクリル板の上で捲縮がなくなるまで引き延ばし、引き伸ばした後の繊維長Y(mm)を計測した。
(4)下記式に基づいて、各々の繊維の捲縮数を求めた、
捲縮数(個/インチ)=(X/2)×(25.4/Y)
(5)繊維20本の捲縮数の平均を求め、平均捲縮数とした。
(Average number of crimps)
(1) 20 fibers were arbitrarily extracted from the raw cotton and placed on a black acrylic plate.
(2) The total number X (crests) of crimp peaks and valleys contained in each fiber was counted.
(3) Each fiber for which the measurement of the total number of crimp peaks and valleys was completed was stretched on the acrylic plate until there was no crimp, and the fiber length Y (mm) after stretching was measured.
(4) Based on the following formula, the number of crimps of each fiber was determined.
Number of crimps (pieces / inch) = (X / 2) × (25.4 / Y)
(5) The average of the number of crimps of 20 fibers was obtained and used as the average number of crimps.
 (L/D)
 繊維の繊維断面を真円換算し、その断面積から繊維幅Dを算出してL/Dを割り出した。
(L / D)
The fiber cross section of the fiber was converted into a perfect circle, the fiber width D was calculated from the cross-sectional area, and L / D was determined.
 (油剤の付着率)
 試料綿を105℃の送風低温乾燥機で2時間乾燥させ、絶乾状態とし精評(試料綿の絶乾質量:W1)した。次に絶乾状態にした試料綿をメタノールに含浸させてプレス式抽出機にて油脂分を抽出した。抽出した液体からメタノールを揮発させ、残ったものを抽出物として精評(油剤抽出物の質量:W2)した。得られた測定値を使用して下記式で油剤の付着率を算出した。
 油剤の付着率(%)=W2/W1×100
(Oil agent adhesion rate)
The sample cotton was dried for 2 hours with an air-cooling low-temperature dryer at 105 ° C., and was made into an absolutely dry state (exact dry mass of sample cotton: W1). Next, the sample cotton that had been completely dried was impregnated with methanol, and oil and fat were extracted with a press-type extractor. Methanol was volatilized from the extracted liquid, and the remaining one was evaluated as an extract (mass of oil extract: W2). Using the obtained measured value, the adhesion rate of the oil was calculated by the following formula.
Oil adhesion rate (%) = W2 / W1 × 100
 (水分散性)
(1)水槽(幅100cm、奥行20cm、高さ60cm)中に攪拌機(ヤマト科学株式会社製「Lab-stirrerLT400」)を取り付けた。
(2)水槽に水を90L入れた後、攪拌機を回転数2000rpmにて回転させながら、水槽の上部から絶乾質量4.5g相当の原綿を投入した。
(3)原綿を投入してから1分後に攪拌機を停止し、撹拌停止直後の繊維の塊の個数を測定し、以下の3段階の基準で水分散性を評価した。
良好:繊維の塊が20個未満であり、水分散性が良好である。
やや不良:繊維の塊が20個以上25個未満であり、水分散性がやや不良である。
不良:繊維の塊が25個以上であり、水分散性が不良である。
(Water dispersibility)
(1) A stirrer (“Lab-stirlerLT400” manufactured by Yamato Scientific Co., Ltd.) was attached to a water tank (width 100 cm, depth 20 cm, height 60 cm).
(2) After 90 L of water was put in the water tank, raw cotton corresponding to an absolutely dry mass of 4.5 g was introduced from the upper part of the water tank while rotating the stirrer at a rotation speed of 2000 rpm.
(3) The stirrer was stopped 1 minute after the raw cotton was added, the number of fiber lumps immediately after the stirring was stopped was measured, and water dispersibility was evaluated according to the following three-stage criteria.
Good: The fiber lump is less than 20 and water dispersibility is good.
Slightly poor: The fiber mass is 20 or more and less than 25, and the water dispersibility is slightly poor.
Poor: There are 25 or more fiber clumps and water dispersibility is poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から分かるように、実施例1~4の所定の平均捲縮率を有するレーヨン繊維は、乾燥状態でも、水分散性が良好であった。一方、捲縮のかかっていない湿潤状態のレーヨン繊維である比較例1、3は、水分散性が良好であるが、乾燥状態の比較例2及び4、6及び7のレーヨン繊維は、水分散性がやや悪かった。また、比較例5及び8のリヨセルは水分散性が悪かった。 As can be seen from the results in Table 3, the rayon fibers having the predetermined average crimp rate of Examples 1 to 4 had good water dispersibility even in the dry state. On the other hand, Comparative Examples 1 and 3, which are wet rayon fibers without crimping, have good water dispersibility, while the dry rayon fibers of Comparative Examples 2 and 4, 6 and 7 are water-dispersed. Sex was a little bad. Moreover, the lyocell of Comparative Examples 5 and 8 had poor water dispersibility.
 実施例1~4の所定の平均捲縮率を有するレーヨン繊維は、多量の水分を含有していなくても水分散性が良好である。さらに、運搬時の水の持分が少なく、梱包資材も簡素化でき、一度により多くの製品を運搬できるため、環境面にも配慮された製品である。また、保管面において、多量の水を含有していないためカビ等の問題が軽減でき、長期保管することができる。 The rayon fibers having a predetermined average crimp rate of Examples 1 to 4 have good water dispersibility even if they do not contain a large amount of water. In addition, it is environmentally friendly because it has a small share of water during transportation, simplifies packaging materials, and can transport more products at one time. In addition, since it does not contain a large amount of water in terms of storage, problems such as mold can be reduced, and long-term storage can be achieved.
 (実施例B1)
 実施例1の繊維を用いて湿式水流交絡不織布を作製した。実施例1の繊維100%を原料として、抄紙機により目付約40g/m2の湿式抄紙ウェブを作製した。次いで、ノズル孔径0.13mmのオリフィスが1mm間隔で配列されたノズルから、ウェブ表面から2.5MPaの水圧で水流を噴射した後、乾燥機で60℃、約5分乾燥させ、湿式水流交絡不織布を作製した。実施例B1の繊維は、不織布形成時の交絡性が良好であった。
(Example B1)
A wet hydroentangled nonwoven fabric was prepared using the fibers of Example 1. A wet papermaking web having a basis weight of about 40 g / m 2 was produced using 100% of the fiber of Example 1 as a raw material by a paper machine. Next, a water stream is jetted from a nozzle having a nozzle hole diameter of 0.13 mm arranged at intervals of 1 mm at a water pressure of 2.5 MPa from the web surface, and then dried at 60 ° C. for about 5 minutes by a drier, and wet hydroentangled nonwoven fabric Was made. The fiber of Example B1 had good entanglement at the time of forming the nonwoven fabric.
 (比較例B1)
 比較例1の繊維を用いた以外は、実施例B1と同様にして比較例1の繊維100質量%からなる湿式水流交絡不織布を作製した。
(Comparative Example B1)
Except for using the fiber of Comparative Example 1, a wet hydroentangled nonwoven fabric made of 100% by mass of the fiber of Comparative Example 1 was produced in the same manner as in Example B1.
 (比較例B2)
 比較例3の繊維を用いた以外は、実施例B1と同様にして比較例3の繊維100質量%からなる湿式水流交絡不織布を作製した。
(Comparative Example B2)
Except for using the fiber of Comparative Example 3, a wet hydroentangled nonwoven fabric composed of 100% by mass of the fiber of Comparative Example 3 was produced in the same manner as in Example B1.
 実施例B1、比較例B1、B2において、デジタルマイクロスコープ(KEYENCE社製、型番「VHX-500F」)を用いて抄紙後の抄紙ウェブの表面及び断面、水流交絡後の不織布の表面及び断面を観察した。図5Aに、実施例B1における抄紙後の抄紙ウェブの表面写真(100倍)を示し、図5Bに同抄紙後の抄紙ウェブの断面写真(100倍)を示した。図5Cに、実施例B1における水流交絡後の不織布の表面写真(100倍)を示し、図5Dに、同水流交絡後の不織布の断面写真(175倍)を示した。図6Aに、比較例B1における抄紙後の抄紙ウェブの表面写真(100倍)を示し、図6Bに、同抄紙後の抄紙ウェブの断面写真(100倍)を示した。図6Cに、比較例B1における水流交絡後の不織布の表面写真(100倍)を示し、図6Dに、同水流交絡後の不織布の断面写真(175倍)を示した。図7Aに、比較例B2における抄紙後の抄紙ウェブの表面写真(100倍)を示し、図7Bに、同抄紙後の抄紙ウェブの断面写真(100倍)を示した。図7Cに、比較例B2における水流交絡後の不織布の表面写真(100倍)を示し、図7Dに、同水流交絡後の不織布の断面写真(175倍)を示した。 In Example B1 and Comparative Examples B1 and B2, the surface and cross section of the papermaking web after papermaking and the surface and cross section of the nonwoven fabric after hydroentanglement were observed using a digital microscope (manufactured by KEYENCE, model number “VHX-500F”). did. FIG. 5A shows a surface photograph (100 times) of the papermaking web after papermaking in Example B1, and FIG. 5B shows a cross-sectional photograph (100 times) of the papermaking web after the papermaking. FIG. 5C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Example B1, and FIG. 5D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement. FIG. 6A shows a surface photograph (100 times) of the papermaking web after papermaking in Comparative Example B1, and FIG. 6B shows a cross-sectional photograph (100 times) of the papermaking web after papermaking. FIG. 6C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example B1, and FIG. 6D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement. FIG. 7A shows a surface photograph (100 times) of the papermaking web after papermaking in Comparative Example B2, and FIG. 7B shows a cross-sectional photograph (100 times) of the papermaking web after the papermaking. FIG. 7C shows a surface photograph (100 times) of the nonwoven fabric after hydroentanglement in Comparative Example B2, and FIG. 7D shows a cross-sectional photograph (175 times) of the nonwoven fabric after hydroentanglement.
 図5~図7から分かるように、湿式抄紙段階で繊維の自然捲縮は引き伸ばされるが、比較例B1~B2と比較して、実施例B1において、繊維の捲縮の残存が大きかった。そして、水流交絡処理すると、屈曲した繊維が厚み方向に配向することが分かった。 As can be seen from FIG. 5 to FIG. 7, although the natural crimp of the fiber is stretched at the wet papermaking stage, the residual crimp of the fiber was larger in Example B1 than in Comparative Examples B1 and B2. And it was found that when the hydroentanglement treatment was performed, the bent fibers were oriented in the thickness direction.
 (実施例C1~C11)
 実施例2~4の再生セルロース繊維と水解紙用パルプ(平均繊維長2.8mm)を下記表4に示す混率になるようにミキサー中の水に投入し、ミキサーで撹拌した。水を張った抄紙機に得られたスラリーを投入し、下記表4に示す目付の湿式抄紙ウェブを作製した。次いで、得られたウェブを水流交絡機に通し、ノズル孔径0.13mmのオリフィスが1mm間隔で配列されたノズルにより、ウェブの一方の表面から下記表4に示す水圧の高圧水流を噴射した後、乾燥機で60℃、約5分乾燥させ、湿式水流交絡不織布を作製した。
(Examples C1 to C11)
The regenerated cellulose fibers of Examples 2 to 4 and pulp for hydrolytic paper (average fiber length of 2.8 mm) were put into water in a mixer so as to have the mixing ratio shown in Table 4 below, and stirred with the mixer. The obtained slurry was put into a paper machine filled with water to prepare a wet paper making web having a basis weight shown in Table 4 below. Subsequently, the obtained web was passed through a hydroentanglement machine, and after jetting a high-pressure water stream having a water pressure shown in Table 4 below from one surface of the web by a nozzle in which orifices having a nozzle hole diameter of 0.13 mm were arranged at intervals of 1 mm, The wet entangled nonwoven fabric was produced by drying at 60 ° C. for about 5 minutes with a dryer.
 実施例C1~C11の湿式水流交絡不織布の目付及び厚みを下記のように測定算出し、その結果を下記表4に示した。また、湿式水流交絡不織布の目付及び厚みに基づいて比容積を算出してその結果を下記表4に示した。また、実施例C1~C11の湿式水流交絡不織布の縦方向及び横方向の湿潤引張強度、乾燥引張強度、湿潤引張伸度、乾燥引張伸度、を下記のように測定算出してその結果を下記表5に示した。また、実施例C1~C11の湿式水流交絡不織布の水解性を下記のように評価し、その結果を下記表5に示した。 The basis weight and thickness of wet hydroentangled nonwoven fabrics of Examples C1 to C11 were measured and calculated as follows, and the results are shown in Table 4 below. The specific volume was calculated based on the basis weight and thickness of the wet hydroentangled nonwoven fabric, and the results are shown in Table 4 below. Further, the wet tensile strength, the dry tensile strength, the wet tensile elongation, and the dry tensile elongation in the machine direction and the transverse direction of the wet hydroentangled nonwoven fabrics of Examples C1 to C11 were measured and calculated as follows, and the results were as follows: Table 5 shows. Further, the water decomposability of the wet hydroentangled nonwoven fabrics of Examples C1 to C11 was evaluated as follows, and the results are shown in Table 5 below.
 (目付)
 JIS L 1913に基づいて下記のように測定算出した。
 湿式水流交絡不織布のサイズ(幅、長さ)と質量を計り、それに基づいて目付を算出した。
(Weight)
Based on JIS L 1913, the measurement was calculated as follows.
The size (width, length) and mass of the wet hydroentangled nonwoven fabric were measured, and the basis weight was calculated based thereon.
 (厚み)
 JIS L 1086に準拠して下記のように測定した。
(1)厚み計(株式会社ミツトヨ製)を用い、圧力1.96kPa下で10秒後の不織布の厚みを計測した。
(2)(1)操作を5箇所について行い、5箇所の測定値の平均を求め、厚みとした。
(Thickness)
It measured as follows based on JISL1086.
(1) Using a thickness meter (manufactured by Mitutoyo Corporation), the thickness of the nonwoven fabric after 10 seconds was measured under a pressure of 1.96 kPa.
(2) (1) The operation was performed at five locations, and the average of the measured values at the five locations was determined as the thickness.
 (比容積)
 上記で測定算出した目付及び厚みに基づいて下記式で比容積を求めた。
比容積(cm3/g)=[目付(g/m2)/厚み(mm)]×1000
(Specific volume)
Based on the basis weight and thickness measured and calculated above, the specific volume was determined by the following formula.
Specific volume (cm 3 / g) = [weight per unit area (g / m 2 ) / thickness (mm)] × 1000
 (引張強度及び引張伸度)
 JIS P 8135に準拠して下記のように測定した。
1.測定条件
試験片幅:25mm
つかみ間隔:100mm
試験速度:300mm/min
測定数:n=2
2.測定方法
(1)湿潤引張強度及び湿潤引張伸度
(a)浅い容器に純水をはり、試験片(25mm幅)を入れて一時間浸漬させた。
(b)一時間後、試験片を容器から取り出してウェスで挟み、上から軽く押さえて余分な水分を取り除いた。
(c)(b)で得られた湿潤サンプルをテンシロン型引張試験機にセットし、上記の測定条件で縦方向(MD)及び横方向(CD)の引張強度及び引張伸度を測定した。測定を2回行い、その平均値を不織布の湿潤引張強度及び湿潤引張伸度とした。
(2)乾燥引張強度及び乾燥引張伸度
 試験片(25mm幅)をテンシロン型引張試験機にセットし、上記の測定条件で縦方向(MD)及び横方向(CD)の引張強度及び引張伸度を測定した。測定を2回行い、その平均値を不織布の乾燥引張強度及び乾燥引張伸度とした。
(Tensile strength and tensile elongation)
The measurement was performed as follows in accordance with JIS P 8135.
1. Measurement condition test piece width: 25 mm
Grasp interval: 100mm
Test speed: 300mm / min
Number of measurements: n = 2
2. Measurement Method (1) Wet Tensile Strength and Wet Tensile Elongation (a) Pure water was poured into a shallow container, and a test piece (25 mm width) was placed and immersed for 1 hour.
(B) After one hour, the test piece was taken out of the container and sandwiched with waste cloth, and lightly pressed from above to remove excess water.
(C) The wet sample obtained in (b) was set in a Tensilon-type tensile tester, and the tensile strength and tensile elongation in the machine direction (MD) and transverse direction (CD) were measured under the above measurement conditions. The measurement was performed twice, and the average values were taken as the wet tensile strength and wet tensile elongation of the nonwoven fabric.
(2) Dry tensile strength and dry tensile elongation A test piece (25 mm width) is set in a Tensilon type tensile tester, and the tensile strength and tensile elongation in the machine direction (MD) and transverse direction (CD) are measured under the above measurement conditions. Was measured. The measurement was performed twice, and the average values were taken as the dry tensile strength and dry tensile elongation of the nonwoven fabric.
 (幾何学平均強度および幾何学平均伸度)
 上記で測定算出した乾燥引張強度、乾燥引張伸度、湿潤引張強度、湿潤引張伸度に基づいて、下記式で幾何学平均強度及び幾何学平均伸度を求めた。
Figure JPOXMLDOC01-appb-M000004
(Geometric mean strength and geometric mean elongation)
Based on the dry tensile strength, dry tensile elongation, wet tensile strength, and wet tensile elongation measured and calculated above, the geometric average strength and geometric average elongation were determined by the following formulas.
Figure JPOXMLDOC01-appb-M000004
 (水解性)
 振盪機による水解性評価を行った。
(1)不織布を10cm角にカットして試料を得た。
(2)500mL分液ロートに水道水200mL及びカットした試料を入れる。
(3)分液ロートを振盪機(ヤマト科学株式会社製、型番「SA300型」)にセットし、300rpmで水平振盪をスタートした。
(4)10分後の試料状態を目視で観察し、下記の4段階基準で評価した。
A:試料がほぼすべて繊維状に崩壊している。
B:試料は崩壊し、試料片と繊維が混在している。
C:試料の一部が崩壊しているが、試料形態を維持している。
D:試料が崩壊していない。
(Water disintegration)
Water disintegration was evaluated using a shaker.
(1) A nonwoven fabric was cut into 10 cm square to obtain a sample.
(2) Put 200 mL of tap water and a cut sample into a 500 mL separatory funnel.
(3) The separating funnel was set in a shaker (manufactured by Yamato Scientific Co., Ltd., model number “SA300 type”), and horizontal shaking was started at 300 rpm.
(4) The sample state after 10 minutes was visually observed and evaluated according to the following four-step criteria.
A: Almost all of the sample is disintegrated into fibers.
B: The sample is disintegrated and sample pieces and fibers are mixed.
C: A part of the sample is broken, but the sample form is maintained.
D: The sample has not collapsed.
 実施例C9の水流交絡不織布の断面を電子顕微鏡(株式会社日立製作所製、型番「S-3500N」)で観察し、断面写真(40倍)を図8に示した。図8から分かるように、MD方向及びCD方向のどちらにおいても不織布中の繊維方向がバラバラで三次元的な交絡性を持っていた。 The cross section of the hydroentangled nonwoven fabric of Example C9 was observed with an electron microscope (manufactured by Hitachi, Ltd., model number “S-3500N”), and a cross-sectional photograph (40 ×) is shown in FIG. As can be seen from FIG. 8, the fiber directions in the nonwoven fabric were different in both the MD direction and the CD direction, and had three-dimensional confounding properties.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例C1~C9の湿式不織布は、湿潤引張強度及び乾燥引張強度が高く、不織布の強度が強かった。また、湿潤引張伸度及び乾燥引張伸度が高く、風合いが柔らかく、肌触りが良好になる。 The wet nonwoven fabrics of Examples C1 to C9 had high wet tensile strength and dry tensile strength, and the nonwoven fabric was strong. Further, the wet tensile elongation and the dry tensile elongation are high, the texture is soft, and the touch is good.
 実施例C1~C13の湿式水流交絡不織布に、保湿成分及び洗浄成分を含む薬液を、不織布の質量100質量%に対して約300質量%となるように含浸させて収納体に収容して、水解シート製品とした。いずれの不織布も水解紙として用いるのに十分な湿潤強度と水解性能を有していた。 The wet hydroentangled nonwoven fabrics of Examples C1 to C13 are impregnated with a chemical solution containing a moisturizing component and a cleaning component so as to be about 300% by mass with respect to 100% by mass of the nonwoven fabric, and are stored in a container, and then hydrolyzed. A sheet product was obtained. All the nonwoven fabrics had sufficient wet strength and water disintegration performance to be used as water disintegration paper.
 本発明の湿式不織布用レーヨン繊維及びそれを含む湿式不織布は、介護用品、生理用品、おむつ、清浄用物品、クリーニングシートなどに用いることができる。 The rayon fiber for wet nonwoven fabric of the present invention and the wet nonwoven fabric including the same can be used for nursing care products, sanitary products, diapers, cleaning articles, cleaning sheets, and the like.

Claims (13)

  1.  平均捲縮率が16%以上45%以下であることを特徴とする湿式不織布用レーヨン繊維。 A rayon fiber for wet nonwoven fabric, wherein the average crimp rate is 16% or more and 45% or less.
  2.  捲縮空間部の高さが0.70mm以上の繊維が5%を超えて含む請求項1に記載の湿式不織布用レーヨン繊維。 The rayon fiber for wet nonwoven fabric according to claim 1, wherein the crimped space portion contains more than 5% of fibers having a height of 0.70 mm or more.
  3.  平均捲縮数が3個/インチ以上25個/インチ以下である請求項1又は2に記載の湿式不織布用レーヨン繊維。 3. The rayon fiber for wet nonwoven fabric according to claim 1 or 2, wherein the average number of crimps is 3 / inch or more and 25 / inch or less.
  4.  繊維長Lと繊維幅Dの比L/Dの値が350以上1200以下である請求項1~3のいずれか1項に記載の湿式不織布用レーヨン繊維。 The rayon fiber for wet nonwoven fabric according to any one of claims 1 to 3, wherein the ratio L / D of the fiber length L to the fiber width D is 350 or more and 1200 or less.
  5.  湿式不織布用レーヨン繊維には、繊維の全体質量に対して油剤が0.03質量%以上0.2質量%以下付着されている請求項1~4のいずれか1項に記載の湿式不織布用レーヨン繊維。 The rayon for wet nonwoven fabric according to any one of claims 1 to 4, wherein the oil agent is attached to the rayon fiber for wet nonwoven fabric in an amount of 0.03% by mass to 0.2% by mass with respect to the total mass of the fiber. fiber.
  6.  前記油剤は、ポリオキシエチレンエステル系ノニオン界面活性剤である請求項5に記載の湿式不織布用レーヨン繊維。 The rayon fiber for wet nonwoven fabric according to claim 5, wherein the oil agent is a polyoxyethylene ester nonionic surfactant.
  7.  ビスコースを紡糸ノズルから紡糸浴中に吐出して、前記ビスコースを凝固再生することにより糸条を形成し、前記糸条を引き取り、延伸、精練して湿式不織布用レーヨン繊維を製造する方法において、
     前記延伸を二段階延伸にするとともに、第1段階延伸における延伸率を30%以下にし、第2段階延伸における延伸率を3.0%以下にすることで、平均捲縮率が16%以上45%以下である湿式不織布用レーヨン繊維を得ることを特徴とする湿式不織布用レーヨン繊維の製造方法。
    In a method of producing a rayon fiber for wet nonwoven fabric by discharging viscose into a spinning bath from a spinning nozzle, forming a yarn by coagulating and regenerating the viscose, drawing the yarn, drawing and scouring ,
    The stretching is a two-stage stretching, the stretching ratio in the first stage stretching is 30% or less, and the stretching ratio in the second stage stretching is 3.0% or less, so that the average crimp ratio is 16% or more and 45 A method for producing a rayon fiber for wet nonwoven fabric, wherein the rayon fiber for wet nonwoven fabric is at most%.
  8.  前記延伸後の糸条は、精練される前に所定の繊維長にカットされる請求項7に記載の湿式不織布用レーヨン繊維の製造方法。 The method for producing a rayon fiber for wet nonwoven fabric according to claim 7, wherein the stretched yarn is cut into a predetermined fiber length before scouring.
  9.  請求項1~6のいずれか1項に記載の湿式不織布用レーヨン繊維を含むことを特徴とする湿式不織布。 A wet nonwoven fabric comprising the rayon fiber for wet nonwoven fabric according to any one of claims 1 to 6.
  10.  前記湿式不織布は、湿式不織布100質量%に対して、前記湿式不織布用レーヨン繊維5~95質量%と、パルプ5~95質量%を含む請求項9に記載の湿式不織布。 The wet nonwoven fabric according to claim 9, wherein the wet nonwoven fabric contains 5 to 95 mass% of rayon fiber for wet nonwoven fabric and 5 to 95 mass% of pulp with respect to 100 mass% of wet nonwoven fabric.
  11.  前記湿式不織布は、湿式水流交絡不織布である請求項9又は10に記載の湿式不織布。 The wet nonwoven fabric according to claim 9 or 10, wherein the wet nonwoven fabric is a wet hydroentangled nonwoven fabric.
  12.  請求項1~6のいずれかに記載の湿式不織布用レーヨン繊維と、パルプを含む混合物を湿式抄紙機にて湿式抄紙ウェブを作製する工程と、
     前記湿式抄紙ウェブの少なくとも一方の表面に水流を噴射して水流交絡を施す工程を含む湿式不織布の製造方法。
    A step of producing a wet papermaking web with a wet papermaking machine, wherein the mixture comprising the rayon fiber for wet nonwoven fabric according to any one of claims 1 to 6 and pulp;
    The manufacturing method of the wet nonwoven fabric including the process of spraying a water flow on the surface of at least one of the said wet papermaking web, and performing a hydroentanglement.
  13.  請求項9~11のいずれか1項に記載の湿式不織布を含むことを特徴とする水解紙。 A hydrolytic paper comprising the wet nonwoven fabric according to any one of claims 9 to 11.
PCT/JP2016/056877 2015-03-04 2016-03-04 Rayon yarn for wet-laid nonwoven fabric and method for producing same, wet-laid nonwoven fabric and method for producing same, and hydrolyzable paper WO2016140356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503738A JP6678642B2 (en) 2015-03-04 2016-03-04 Rayon fiber for wet nonwoven fabric and method for producing the same, wet nonwoven fabric and method for producing the same, and hydrolytic paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-042971 2015-03-04
JP2015042971 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140356A1 true WO2016140356A1 (en) 2016-09-09

Family

ID=56848545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056877 WO2016140356A1 (en) 2015-03-04 2016-03-04 Rayon yarn for wet-laid nonwoven fabric and method for producing same, wet-laid nonwoven fabric and method for producing same, and hydrolyzable paper

Country Status (2)

Country Link
JP (1) JP6678642B2 (en)
WO (1) WO2016140356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001517A (en) * 2017-06-16 2019-01-10 王子ホールディングス株式会社 Packing sheet having thermal insulation property
JP2019025798A (en) * 2017-07-31 2019-02-21 王子ホールディングス株式会社 Adiabatic sheet

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497087A (en) * 1972-01-28 1974-01-22
JPS497086A (en) * 1972-03-27 1974-01-22
JPS4910282B1 (en) * 1968-09-10 1974-03-09
JPS5123604B1 (en) * 1970-07-07 1976-07-17
JPS6155299A (en) * 1984-08-24 1986-03-19 旭化成株式会社 Thin paper extremely reduced in number of fiber bundles
JPS6155298A (en) * 1984-08-24 1986-03-19 旭化成株式会社 Thin paper extremely reduced in number of fiber bundles
JPH1193055A (en) * 1997-09-12 1999-04-06 Oji Paper Co Ltd Water-disintegrable nonwoven fabric and its production
JP2002096878A (en) * 2000-09-22 2002-04-02 Chisso Corp Antibacterial water-absorbing mat
JP2006307384A (en) * 2005-04-28 2006-11-09 Kao Corp Method for producing water-disintegrable paper
JP2011214217A (en) * 2011-08-01 2011-10-27 Daiwabo Holdings Co Ltd Method for producing bulky nonwoven fabric
JP2013122094A (en) * 2011-12-09 2013-06-20 Toray Ind Inc Polyester fiber for papermaking and method for producing the same
JP2013174028A (en) * 2012-02-24 2013-09-05 Toray Ind Inc Undrawn polyester binder fiber for papermaking

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497086B1 (en) * 1970-07-21 1974-02-18
JPS497087B1 (en) * 1970-09-09 1974-02-18

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910282B1 (en) * 1968-09-10 1974-03-09
JPS5123604B1 (en) * 1970-07-07 1976-07-17
JPS497087A (en) * 1972-01-28 1974-01-22
JPS497086A (en) * 1972-03-27 1974-01-22
JPS6155299A (en) * 1984-08-24 1986-03-19 旭化成株式会社 Thin paper extremely reduced in number of fiber bundles
JPS6155298A (en) * 1984-08-24 1986-03-19 旭化成株式会社 Thin paper extremely reduced in number of fiber bundles
JPH1193055A (en) * 1997-09-12 1999-04-06 Oji Paper Co Ltd Water-disintegrable nonwoven fabric and its production
JP2002096878A (en) * 2000-09-22 2002-04-02 Chisso Corp Antibacterial water-absorbing mat
JP2006307384A (en) * 2005-04-28 2006-11-09 Kao Corp Method for producing water-disintegrable paper
JP2011214217A (en) * 2011-08-01 2011-10-27 Daiwabo Holdings Co Ltd Method for producing bulky nonwoven fabric
JP2013122094A (en) * 2011-12-09 2013-06-20 Toray Ind Inc Polyester fiber for papermaking and method for producing the same
JP2013174028A (en) * 2012-02-24 2013-09-05 Toray Ind Inc Undrawn polyester binder fiber for papermaking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001517A (en) * 2017-06-16 2019-01-10 王子ホールディングス株式会社 Packing sheet having thermal insulation property
JP2019025798A (en) * 2017-07-31 2019-02-21 王子ホールディングス株式会社 Adiabatic sheet

Also Published As

Publication number Publication date
JPWO2016140356A1 (en) 2017-12-21
JP6678642B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP7377107B2 (en) Cellulose acetate fibers in nonwoven fabrics
TWI534318B (en) Hydrolytic fiber flakes
TWI358484B (en) Nanofiber blending solution, emulsion, gel and the
JP5346221B2 (en) Water-degradable nonwoven fabric
RU2326191C2 (en) Method of water absorbed non-woven fabric production, method of water absorbed non-woven fabric production with x-ray detected elements and water absorbed non-woven fabric production with x-ray detected elements
JP2012211412A (en) Water-disintegrable nonwoven fabric and wet sheet product
WO2015156713A1 (en) Flushable hydroentangled moist wipe or hygiene tissue
TWI526589B (en) Preparation method of hydrolyzable fiber sheet
WO2016140356A1 (en) Rayon yarn for wet-laid nonwoven fabric and method for producing same, wet-laid nonwoven fabric and method for producing same, and hydrolyzable paper
JP5885961B2 (en) Flat rayon fiber, method for producing the same, and fiber assembly using the same
CN108149369B (en) Woven or knitted fabric containing rayon for sheet-type mask
JP6206040B2 (en) Polyphenylene sulfide fiber for nonwoven fabric
WO2015154110A1 (en) Colored blends of fibers and their use
JP3741886B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP6979580B2 (en) Rayon fiber for air-laid non-woven fabric and its manufacturing method, air-laid non-woven fabric and its manufacturing method, and water-melting paper
JP2006348438A (en) Nonwoven fabric
JP6678643B2 (en) Rayon fiber for air-laid non-woven fabric and its manufacturing method, air-laid non-woven fabric and its manufacturing method, and hydrolyzed paper
CN110983534A (en) Antibacterial composite fiber and preparation method thereof
JP3725716B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
KR20110076154A (en) Polyolefine staple, nonwoven fabric for hygiene article and manufacturing method thereof
JP5033716B2 (en) Fiber structure
JP7395101B2 (en) Splitable composite fiber, short fiber nonwoven fabric using the same, and method for producing the same
JP5449453B2 (en) Split type composite fiber
JP2006207069A (en) Silk nonwoven fabric
JP4728160B2 (en) Split composite fiber, fiber assembly and non-woven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759048

Country of ref document: EP

Kind code of ref document: A1