WO2016140225A1 - 極低温環境用転がり軸受 - Google Patents

極低温環境用転がり軸受 Download PDF

Info

Publication number
WO2016140225A1
WO2016140225A1 PCT/JP2016/056274 JP2016056274W WO2016140225A1 WO 2016140225 A1 WO2016140225 A1 WO 2016140225A1 JP 2016056274 W JP2016056274 W JP 2016056274W WO 2016140225 A1 WO2016140225 A1 WO 2016140225A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
hardness
carbon
hard
cryogenic environment
Prior art date
Application number
PCT/JP2016/056274
Other languages
English (en)
French (fr)
Inventor
伸寛 田中
石田 昌幸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to JP2017503664A priority Critical patent/JPWO2016140225A1/ja
Publication of WO2016140225A1 publication Critical patent/WO2016140225A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances

Definitions

  • the present invention relates to a rolling bearing for a cryogenic environment used at a cryogenic temperature, such as a bearing used in a submerged pump for transferring a liquefied gas in a cryogenic state such as liquefied natural gas.
  • a rolling bearing used in a normal temperature environment requires a rolling element to be rotatably held between an inner ring and an outer ring and requires liquid lubrication with a lubricating oil or the like.
  • liquid lubrication with a normal lubricating oil or the like cannot be expected.
  • rolling bearings for cryogenic environments are liable to deteriorate in strength and durability due to shrinkage and deformation of parts, and are required to withstand such severe use conditions.
  • liquefied natural gas which is a typical example of cryogenic liquefied gas, has methane as its main component and has physical properties that do not liquefy unless it is below -161.5 ° C (about -162 ° C) under normal pressure. is there.
  • examples of liquefied gas used in a liquefied state such as a refrigerant, a heat medium, and a filling gas include nitrogen and helium.
  • a dedicated pump When transporting or storing such a liquefied gas while maintaining a liquid state at a cryogenic temperature, it is necessary to use a dedicated pump at a cryogenic temperature.
  • a submerged pump As a type of such a pump, a submerged pump is used. Are known. Since this type of pump is used by immersing the entire pump device including the motor in liquefied gas, it does not require a mechanical seal to seal the main body from the outside air, and is excellent in that there is little loss due to dissipation of the vaporized gas. It is a thing.
  • the environmental temperature is not limited to the above-described environment where liquefied gas exists, but also in a high altitude space beyond the stratosphere far from the surface of the earth, and in a far away space, Since the temperature is about 50 to ⁇ 270 ° C., similar characteristics are required for rolling bearings for cryogenic environments used in such artificial satellites and spacecraft.
  • an outer ring and an inner ring are made of martensitic stainless steel, a rolling element is made of ceramic, and a cage is made of a fluororesin. (Patent Document 1 below).
  • DLC diamond-like carbon
  • a rolling bearing is known in which the inner and outer rings, the rolling elements and the cage are formed of an iron-based base material or cemented carbide material, and the DLC film is formed on the raceway surface of the inner ring or the outer ring to improve wear resistance.
  • Patent Document 3 below, FIG. 1.
  • the inner and outer rings and the rolling elements in the rolling bearing can withstand long-term use and are resistant to wear. It is not easy for rolling bearings for cryogenic environments to stably exhibit the durability that wear and lubricity do not deteriorate, and further improve the durability of bearings at high temperatures and the high stability of bearing performance. The problem which should be left was left.
  • the object of the present invention is to solve the above-mentioned problems, to stabilize the raceway surface of the inner and outer rings of the rolling bearing with very little friction and a low friction coefficient, and particularly to be lubricated and cooled by a liquefied gas such as LNG.
  • Rolling for cryogenic environments with high performance and durability by keeping inner and outer rings and rolling elements in a state of good wear resistance and lubricity even under extremely low temperatures. It is to make a bearing.
  • the present invention provides a rolling bearing provided with a cage that rotatably holds a plurality of rolling elements between an inner ring and an outer ring made of steel, and on the raceway surfaces of the inner ring and the outer ring.
  • This is a rolling bearing for a cryogenic environment provided with a hard coating mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 1500.
  • the rolling bearing for the cryogenic environment of the present invention configured as described above is a hard film mainly composed of diamond-like carbon provided on the raceway surfaces of the inner ring and the outer ring, and its hardness is specified within a predetermined range. Therefore, within this predetermined range, it is clear from the test results described later that the hard coating is maintained in a state of low friction coefficient and excellent wear resistance in a cryogenic environment. It is.
  • the film having a high hardness exceeding the predetermined range of Vickers hardness (Hv) 1000 to 1500 has the characteristics that the wear resistance of the film is kept low and the friction coefficient is low, but when it exceeds Hv 1500 Since the friction coefficient tends to increase rapidly, it is considered that a hard coating having an Hv value exceeding the predetermined range may impair the rotational stability of the rolling elements with respect to the raceway surfaces of the inner and outer rings of the bearing.
  • the film hardness is lower than the above-mentioned predetermined range, it is considered that the wear resistance during long-term use of the hard film cannot be obtained as expected, and is not sufficient in terms of durability.
  • the DLC film has a sufficiently low coefficient of friction, the effect of reducing the coefficient of friction due to the transfer of the graphitic carbon-based material to the friction partner material by the thermal energy of the rolling friction surface or the softening of the DLC film is stable.
  • the thermal energy required to reduce the friction coefficient is small, but the DLC film wears quickly and the sustainability of the effect is impaired. It is.
  • the excellent low friction coefficient and wear resistance of the graphitic carbon-based material are compatible and stable when the Vickers hardness (Hv) in the predetermined range is 1000 to 1500. As a result, excellent bearing performance is achieved.
  • the hard coating is provided integrally with the intermediate layer so that the hard coating is maintained in a state in which the hard coating is strongly adhered to the inner ring or outer ring base material and is not easily peeled off. It is preferable that the hardness is increased stepwise or continuously. This is because, when the hard coating and the inner ring or outer ring base material are in direct contact with each other, if there is a large difference in hardness between the contact surfaces, distortion tends to accumulate on the contact surfaces, and the hard coating tends to peel off.
  • the hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 1500 is mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 2000 to 3000. It is possible to employ a configuration in which the second hard film is provided so as to overlap the first hard film.
  • the present invention provides a rolling bearing provided with a cage that rotatably holds a plurality of rolling elements between an inner ring and an outer ring made of steel.
  • the first hard coating provided on the raceways of the inner and outer rings is mainly diamond-like carbon having a Vickers hardness (Hv) of 2000 to 3000, and this hard coating is slightly harder than the second hard coating described above.
  • the friction coefficient is slightly higher, but the wear resistance is superior to the second hard coating. Therefore, by using the hard first hard film as a base and integrating the slightly hard second hard film by overlapping them, the low friction coefficient characteristics of the second hard film can be exerted. A function with high wear resistance can be exhibited, and a more excellent function can be exhibited as a composite hard film.
  • the first hard coating is provided integrally with the intermediate layer so that the first hard coating is maintained in a state in which it is strongly adhered to the inner ring or outer ring base material and is not easily peeled off.
  • the intermediate layer preferably has increased hardness stepwise or continuously toward the surface. This is because when the first hard film and the base material of the inner ring or the outer ring are in direct contact with each other, if there is a large difference in hardness between the contact surfaces, distortion tends to accumulate on the contact surfaces, and the first hard film tends to peel off. .
  • the steel material that forms the inner ring and outer ring is made of martensitic stainless steel or high-speed tool steel, which increases the hardness of the inner ring and outer ring and improves the integrity of the hard film to prevent the hard film from peeling off. It is preferable for improving the wear resistance of the inner ring and the outer ring base material itself.
  • the rolling bearing for the cryogenic environment a use that is a rolling bearing of a liquefied gas pump is applied. If a submerged pump for liquefied natural gas is employed as such a liquefied gas pump, the practical utility value of the present invention can be enhanced.
  • a hard coating mainly composed of diamond-like carbon having a predetermined range of Vickers hardness is provided on the raceway surfaces of the inner ring and the outer ring of the rolling bearing, so that the wear of the raceway surface is extremely small and the friction coefficient is low and stable.
  • the inner and outer rings and rolling elements can withstand long-term use and maintain good wear resistance and lubricity.
  • a first hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 2000 to 3000 is provided on the raceway surfaces of the inner ring and the outer ring of the rolling bearing, and the Vickers hardness (Hv is overlaid on the first hard film).
  • the wear resistance is particularly excellent in addition to the above advantages.
  • Sectional drawing of the principal part of the rolling bearing for cryogenic environments which shows 1st Embodiment
  • the expanded sectional view which shows the principal part of 1st Embodiment and demonstrates the layer structure of a hard film
  • Outline mechanism diagram of ball-on-disk friction and wear tester A chart showing the results of the friction and wear test, showing the relationship between the hardness of the hard coating, the coefficient of friction, and the amount of wear
  • Sectional drawing of the principal part of the rolling bearing which shows 3rd Embodiment
  • Sectional drawing of the principal part of a rolling bearing which shows 4th Embodiment
  • the perspective view of the wave washer used for 4th Embodiment Schematic configuration diagram of a submerged pump for liquefied natural gas, explaining the usage state of the first to fourth embodiments
  • the first embodiment includes a cage 4 that rotatably holds a rolling element (ball) 3 between an inner ring 1 and an outer ring 2 made of a predetermined base material of the rolling bearing A,
  • the cage 4 is made of a resin material having solid lubricity, and a hard film 5 mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 1500 is formed on the surface of the inner ring 1 and outer ring 2.
  • Hv Vickers hardness
  • the base material 6 of the inner ring 1 and the outer ring 2 described above is martensitic stainless steel or high-speed tool steel, and these are steel materials that are hard and have excellent wear resistance.
  • martensitic stainless steel include SUS403, SUS420, and SUS440C.
  • high-speed tool steel include American Steel Association AISI standard high-speed steel M50, Japanese Industrial Standard SKH4, and the like.
  • the hard coating 5 mainly composed of diamond-like carbon (DLC) having a Vickers hardness (Hv) of 1000 to 1500 provided on the surface side of the substrate 6, at least on the raceway surface (or also called the rolling surface),
  • the adhesiveness with the base material 6 is improved by providing it through the intermediate layer 7.
  • DLC has an intermediate structure in which diamond and graphite are mixed, and can be formed to have a hardness equivalent to that of diamond.
  • a known film forming method such as a physical vapor deposition method such as sputtering or ion plating, a chemical vapor deposition method, or an unbalanced magnetron sputtering (UBMS) method can be employed.
  • UBMS unbalanced magnetron sputtering
  • the intermediate layer 7 has increased hardness stepwise or continuously toward the surface, and can be formed by, for example, an “intermediate layer forming method” described later.
  • the surface of the base material may be roughened to exert the anchor effect.
  • the roughening can be performed by a known Ar ion bombardment treatment or the like so that the surface roughness Ra is 0.5 ⁇ m or less, preferably Ra is 0.05 ⁇ m or less.
  • the intermediate layer 7 first forms a first intermediate layer 7 a mainly composed of a metal-based material on the substrate 6 in order to increase adhesion with the substrate 6. It is preferable that the second intermediate layer 7b having a composition gradient in which the composition ratio of carbon is increased as it approaches the surface side by being superimposed on the surface.
  • the metal material of the first intermediate layer 7a is selected from Cr, Al, W, Ta, Mo, Nb, Si, and Ti, which are compatible with the iron-based material in order to increase the adhesion with the base material 6. It is preferable that the material contains one or more kinds of metals. More preferred are Cr and W. For example, it is preferable to form the first intermediate layer 7a mainly composed of Cr on the surface of the substrate 6, and to form the second intermediate layer 7b having a W-carbon composition gradient thereon.
  • the intermediate layer 7 may be composed of one layer or three or more layers as necessary.
  • the composition gradient of the second intermediate layer 7b can be formed by tilting the metal-carbon composition by adjusting the sputtering power applied to the target metal used for sputtering and graphite.
  • nitriding treatment it is preferable to perform nitriding treatment on the surface of the substrate 6 before the intermediate layer forming step.
  • nitriding treatment it is preferable to perform a plasma nitriding treatment in which an oxide layer that prevents adhesion is unlikely to be formed on the surface of the base material 6. Is preferable because it improves the adhesion to the intermediate layer 7.
  • the hard film 5 is a hard film mainly composed of diamond-like carbon (DLC) which is amorphous carbon.
  • DLC diamond-like carbon
  • UBMS unbalanced magnetron sputtering
  • the UBMS method can adopt sputtering in which the plasma irradiation to the substrate is enhanced by intentionally making the magnetic field of the sputtering cathode non-equilibrium, and can form a tight hard film by the ion assist effect. .
  • the UBMS method will be specifically described.
  • the degree of vacuum in the UBMS apparatus (Kobe Steel Works: UBMS202 / AIP combined apparatus) (inside the chamber) is 0.2 to 0.9 Pa, and the bias voltage applied to the substrate is It is preferable to form a hard film mainly composed of DLC by depositing carbon atoms generated from a target serving as a carbon supply source on the intermediate layer 7 under a condition of 50 to 400V.
  • the degree of vacuum in the UBMS device or the bias voltage applied to the substrate is outside the above range, the above-mentioned physical properties cannot be obtained with certainty on the hard coating, so the bias voltage applied to the substrate as described above.
  • V is 50 to 400 V
  • the degree of vacuum in the UBMS device is more preferably 0.25 to 0.82 Pa.
  • the hard coating 5 is a layer mainly composed of DLC, a graphite target is used as a carbon supply source during film formation. Moreover, the adhesiveness with respect to an intermediate
  • the carbon-hydrogen gas methane gas, acetylene gas, benzene and the like are not particularly specified, but methane gas is preferable from the viewpoint of cost and handleability.
  • the ratio of the introduction amount of the hydrocarbon gas is 100 with respect to the introduction amount 100 of argon gas into the UBMS apparatus (in the film formation chamber). It is preferably 1 or more and 5 or less. Within this range, the hardness of the hard coating can be maintained while improving the adhesion, and the specific wear amount can be reduced.
  • the amount of Ar gas introduced as the sputtering gas is preferably 50 to 200 ml / min, for example.
  • the hard coating 5 gradually increases in hardness stepwise or continuously from the second intermediate layer 7b side to the outermost layer side so that the adhesion with the second intermediate layer 7b is improved. It is preferable to eliminate an abrupt hardness difference between the intermediate layer 7b and the hard coating 5 on the surface.
  • the DLC gradient layer is obtained by forming the hard coating 5 while increasing the bias voltage with respect to the substrate 6 continuously or stepwise using a graphite target in the UBMS method.
  • the hardness of the DLC gradient layer increases continuously or stepwise because the composition ratio of the graphite structure (sp2) and the diamond structure (sp3) in the DLC structure is biased toward the latter as the bias voltage increases. It is.
  • Such a hard coating 5 is formed with a hardness adjusted to a Vickers hardness (Hv) of 1000 to 1500.
  • the hardness can be adjusted by increasing the HV value within the above numerical range by increasing the bias voltage.
  • the rolling elements used in the present invention are made of martensitic stainless steel, high-speed tool steel, or ceramics, and the two types of steel materials are the same as the above-described inner ring or outer ring steel materials.
  • the material of the ceramic is not particularly limited, but silicon nitride, zirconia, silicon carbide, and alumina ceramics can be prepared.
  • rolling elements made of silicon nitride ceramics are preferable because they are particularly hard and excellent in wear resistance.
  • the cage 4 used in the present invention employs a resin material mainly composed of polytetrafluoroethylene (PTFE) or a fiber reinforced resin (FRP) composition containing a solid lubricant. It is preferable to adopt.
  • PTFE polytetrafluoroethylene
  • FRP fiber reinforced resin
  • PTFE polytetrafluoroethylene
  • examples include BEAREE FL manufactured by NTN Precision Resin Co., Ltd.
  • the type of resin of the resin composition constituting the cage is not particularly limited, but the embrittlement temperature is preferably lower than the liquefied gas used, for example, the embrittlement temperature of less than ⁇ 100 ° C. And polycarbonate, fluororesin, polyphenylene oxide (PPO) and the like.
  • the embrittlement temperature is adjusted using a fiber reinforcing material, and a polyamide resin, a polyimide resin, a polyphenylene sulfide resin (PPS), a polyether ether ketone resin (PEEK), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer ( PFA), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), chlorotrifluorethylene- An ethylene copolymer (ECTFE) can also be used.
  • a polyamide resin a polyimide resin, a polyphenylene sulfide resin (PPS), a polyether ether ketone resin (PEEK), a tetrafluoroethylene-perfluoroalkyl vinyl ether copo
  • fibrous reinforcement what is necessary for the required strength may be selectively employed.
  • the solid lubricant may be selectively employed to improve the durability of the rolling bearing.
  • graphite, hexagonal boron nitride, fluorine mica, melamine cyanurate, graphite fluoride, molybdenum disulfide examples thereof include tungsten sulfide.
  • the type of the cage 4 is not particularly limited and may be a known type, for example, a crown type, or an annular type in which pocket holes are formed at equal intervals in a cylindrical circumferential direction. Further, any of the types that can be divided into two in the annular axial direction and can be integrated by crimping with a pin may be used.
  • a cage 4 that rotatably holds a rolling element (ball) 3 is provided between an inner ring 1 and an outer ring 2 made of a predetermined base material of a rolling bearing A.
  • the cage 4 is made of a resin material having solid lubricity, and a first hard film 5a mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 2000 to 3000 is provided on the base material surfaces of the inner ring 1 and the outer ring 2.
  • the second hard film 5b mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 1500 is provided on the first hard film, and the first hard film 5a is formed on the base 6 On the other hand, it is a rolling bearing for a cryogenic environment provided through an intermediate layer 7 whose hardness is increased stepwise or continuously toward the surface.
  • the hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 1500 in the first embodiment is a hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 2000 to 3000.
  • the configuration is the same as that of the first embodiment except that it is provided integrally with the first embodiment.
  • the first hard film mainly composed of DLC having a Vickers hardness (Hv) of 2000 to 3000 is provided, and then, the DLC having a softer Vickers hardness (Hv) of 1000 to 1500 is superimposed on the first hard film.
  • the bias voltage applied to the substrate side is set higher than that at the time of forming the first hard film. It is possible to form a composite film by lowering at the time of forming the film, further increasing the film forming pressure, and adjusting the CH 4 gas flow rate ratio high.
  • the hardness of the first hard film is gradually or continuously increased from the second intermediate layer 7b side to the outermost layer side so as to improve the adhesion with the second intermediate layer 7b. It is preferable to eliminate the abrupt hardness difference between the second intermediate layer 7b and the first hard coating 5a.
  • the first hard coating is used as a base, and a softer second hard coating is layered and integrated, so that the second hard coating exhibits the low friction coefficient characteristics and is more resistant to damage. A highly wearable function can be exhibited.
  • the structure of the cage in the above embodiment may be changed so as to be divided in the annular axial direction. That is, the third embodiment shown in FIGS. 6 to 8 is a pocket for rotatably holding the rolling elements 3 composed of a plurality of spheres in the annular space between the inner ring 1 and the outer ring 2 with an interval in the annular circumferential direction.
  • a holder 25 having holes 24 formed at equal intervals is provided, and the holder 25 is a rolling for a cryogenic environment in which a pair of annular divided bodies 25a and 25b that can be divided in the annular axial direction are integrally coupled on a dividing surface 25c. Bearings are used.
  • a plurality of contact surfaces in a state where the pair of annular divided bodies 25a and 25b are abutted with each other are formed with through holes 26 penetrating in the axial direction of the annular divided bodies 25a and 25b, respectively.
  • the pair of annular divided bodies 25a and 25b are integrally fastened by the fastening pin 27 that has been made.
  • the fastening pin 27 is formed of a material having a lower coefficient of thermal expansion than the cage 25, and at least one of the head portion 27a at the base end portion and the crimped head portion 27b at the distal end portion is provided with a spring washer 28 that is an elastic washer.
  • the pair of annular divided bodies 25a and 25b are integrated by the elastic force of the spring washer 28 to form the cage 25 by being pressed against the end faces of the annular divided bodies 25a and 25b.
  • the above-described cage 25 is a well-known cylinder (ring) shape such as a cylindrical body having a size that fits in the annular space between the inner ring 1 and the outer ring 2, and a pair of rings divided into two in the annular axial direction.
  • the division surfaces 25c are abutted and combined so that the division bodies 25a and 25b are in a state before division.
  • the split surfaces 25c of the pair of annular divided bodies 25a and 25b are formed by projecting the inner peripheral side of one end face of the annular divided bodies 25a and 25b to be abutted, and by recessing the other inner peripheral side.
  • the joint form is adopted.
  • a through hole 26 penetrating in the axial direction of the cage 25 is provided so as to penetrate such a dividing surface 25c, and a fastening pin 27 is inserted and fastened to the through hole 26 so as to integrate the pair of annular divided bodies 25a and 25b. ing.
  • the formation position of the dividing surface 25c is in the middle of the cylindrical shape of the retainer 25, and forming the pocket hole 24 in a half position facilitates the workability of incorporating the rolling element 3 into the pocket hole 24. It is preferable for reasons such as good
  • annular divided bodies 25a and 25b constituting the cage 25 those made of a resin material having polytetrafluoroethylene resin (PTFE) as a main component are adopted as in the first embodiment.
  • PTFE polytetrafluoroethylene resin
  • the resin as an additive component other than PTFE include polyamide resins (for example, polyamide 46, polyamide 66, polyamide 9T, etc.), polycarbonate, polyether ketone resin, polyphenylene oxide (PPO), polyphenylene sulfide resin, and the like.
  • the through-hole 26 provided by penetrating the dividing surface is provided with a diameter and a shape through which the fastening pin 27 can be inserted, and is not particularly limited to a circular hole shape, but is a polygonal hole or other well-known hole. There may be.
  • the fastening pin 27 preferably has a head portion 27a having a diameter larger than the diameter of the through hole 26 at one end before the use, and the shape of the head portion 27a is a disc shape, a polygonal disc shape, or a hemispherical shape.
  • the shape is a frustum shape and is not limited to the illustrated shape.
  • the fastening pin 27 has an axial length that protrudes from the other end when inserted from one end of the through hole 26, and the portion protruding from the other end has a normal temperature or heating condition. By causing plastic deformation by pressurization, the head portion 21b crimped to the same large diameter as the above-described head portion 27a is formed.
  • the fastening pin 27 is made of a material such as stainless steel that can be plastically deformed by pressurization, other steel alloys, or a synthetic resin such as a thermoplastic resin so that a crimped head 27b can be formed.
  • a material having a thermal expansion coefficient lower than that of the cage 25 is employed.
  • the thermal expansion coefficient (linear expansion coefficient or volume expansion coefficient) of the fastening pin 27 is The one having a low thermal expansion coefficient equal to or lower than that of the cage 25 is employed.
  • the fastening pin 27 is used.
  • a synthetic resin is used as the material of the cage 25 and a synthetic resin is also used as the material of the fastening pin 27, the coefficient of thermal expansion corresponding to the type of the synthetic resin is taken into account. It is preferable to selectively employ a brittle temperature at a low temperature of less than ⁇ 100 ° C. as shown in FIG.
  • PTFE is a material that can withstand low temperatures up to -267 ° C.
  • the retainer 25 presses one or both of the heads 27a and 27b provided at both ends of the fastening pin 27 to the annular divided body through an elastic washer.
  • the elastic washer is made of metal made of spring steel or the like, or made of synthetic resin such as fluororesin or a composite material thereof, and has elasticity in the annular axial direction, and particularly its kind
  • the spring washer also referred to as a spring washer
  • an elastic washer such as a wave washer or a disc spring
  • the spring washer has a spring action by cutting a part of the flat washer and twisting the cut portion.
  • the step of the cut portion is about 50% of the thickness of the cut portion (40 to 40%). 60%, preferably 45 to 55%) is preferable for obtaining moderate elasticity.
  • An elastic washer such as a spring washer can also be used in combination with a flat washer to protect the cage.
  • a disc spring, a spherical washer, and a wave washer can be used as an elastic washer having a higher spring constant than the spring washer.
  • the pair of annular divided bodies 25a and 25b constituting the cage 25 are integrated by the elastic force of the elastic washer, and the fastening pin 27 is the cage 25. Since the material has a low thermal expansion coefficient equal to or lower than the thermal expansion coefficient, the annular divided bodies 25a and 25b, which are greatly heat-shrinked compared to the fastening pin 27 when the room temperature is changed to an extremely low temperature state, have a diameter of the through hole 26. It shrinks and contracts until it approaches or comes into contact with the outer peripheral surface of the fastening pin 27 to reduce the radial gap or closely contact to prevent the fastening pin 27 of the retainer 25 from vibrating in the radial direction and rattling.
  • the annular divided bodies 25 a and 25 b that are greatly contracted compared to the fastening pin 27 contract without being regulated in the axial direction of the fastening pin 27.
  • the fastening pins 27 are also elastic to the contracted annular divided bodies 25a and 25b.
  • the pressure contact force of the washer acts to maintain the elastically integrated state of the pair of annular divided bodies 25a and 25b in the cage 25, and the pair of annular divided bodies 25a and 25b by the fastening pin 27 are kept at a cryogenic temperature.
  • the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
  • the structure of the rolling bearing which abbreviate
  • the fourth embodiment shown in FIGS. 9 and 10 shows a configuration exactly the same except that a wave washer 29 is used instead of the spring washer in the third embodiment.
  • the wave washer 29 is formed by bending a flat washer made of spring steel into a corrugated shape, and exhibits elasticity in the axial direction by elastically deforming the corrugated shape.
  • heads 27a and 27b provided at both ends of the fastening pin 27 are integrated with elastic washers such as a spring washer 28 or a wave washer 29, and a pair of annular divided bodies 25a and 25b are integrated with the elastic force of the elastic washer. Therefore, the pressure contact force of the elastic washer acts on the annular divided bodies 25a and 25b contracted in a use state at an extremely low temperature, and the state where the pair of annular divided bodies 25a and 25b are elastically integrated is maintained. 27, a pair of annular divided bodies 25a, 25b is not loosened or gaps are formed on the joint surface in a use state at an extremely low temperature. As a result, the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
  • elastic washers such as a spring washer 28 or a wave washer 29
  • a pair of annular divided bodies 25a and 25b with a fastening pin 27 such as a rivet of steel assembled at room temperature are used as butt surfaces in a use state at a cryogenic temperature.
  • a rolling bearing for a cryogenic environment is obtained in which no looseness or gap is generated, and the rolling element 3 is smoothly rotated to stabilize the bearing performance in a good state.
  • the type (model) of the rolling bearing is not particularly limited, and may be a deep groove ball bearing or a cylindrical roller bearing for a cryogenic environment.
  • the specific use of the rolling bearing for the cryogenic environment according to the present invention may be a rolling bearing of a pump for a liquefied gas, or a rolling bearing used for supporting or driving a satellite antenna. good.
  • the rolling bearing When the application of the rolling bearing is a pump for liquefied gas, it may be a submerged pump for liquefied natural gas (LNG), but in that case, since the rolling bearing directly contacts the cryogenic LNG, the inner and outer rings and rolling elements of the present invention have a remarkable effect of becoming a rolling bearing for a cryogenic environment excellent in durability that withstands long-term use and does not deteriorate wear resistance and lubricity.
  • LNG liquefied natural gas
  • the submerged pump for liquefied natural gas (LNG) exhibits airtightness in a pot (pressure vessel) 8 by immersing the entire pump in the liquid.
  • a pot pressure vessel 8 by immersing the entire pump in the liquid.
  • the pot 8 is opened with the LNG suction port 11 facing outward, and has a discharge port 12 leading to an external pipe (not shown).
  • the motor 13 mounted in the pot 8 has a ball bearing A according to the first to fourth embodiments shown in FIGS. 1, 2, 3, 6 or 9 on the upper and lower sides of the motor shaft 10 rotated by an external power source.
  • a plurality of stages of impellers 14 are attached to the pump shaft 9 that is supported by the motor shaft 10 and rotates integrally with the motor shaft 10.
  • the flow path in the illustrated apparatus of the pump is such that the LNG flowing from the suction port 11 into the pot 8 along the inner surface of the pot 8 by the impeller 14 that rotates integrally with the pump shaft 9 by the driven motor 13. It flows downward and flows into the discharge port 12 from the pipe 16 inside the cylindrical inner wall 15 arranged around the impeller 14, and is sucked in from the lowermost portion of the multistage impeller 14.
  • the other pipe 17 inside the cylindrical inner wall 15 flows in the motor 13 as a lubricating liquid, lubricates and cools the ball bearing A, joins the downward flow along the inner side surface of the pot 8, and again multistage. Is sucked from the tip of the impeller 14.
  • the ball bearing A used in this manner is provided with a hard film mainly composed of diamond-like carbon having a predetermined hardness on the surface of the base material of the inner ring and the outer ring, the wear of the raceway surface and the rolling element is extremely small. It can withstand long-term use in a cryogenic environment where it is lubricated and cooled by LNG, and can be used as a rolling bearing that does not deteriorate wear resistance and lubricity over time.
  • Examples 1 and 2 and Comparative Examples 1 to 3 The inner ring and outer ring for deep groove ball bearings made of martensitic stainless steel (SUS440C) are ultrasonically cleaned with acetone, and then the dried base material is attached to a UBMS device (manufactured by Kobe Steel: UBMS202 / AIP combined device).
  • the first intermediate layer mainly composed of Cr was formed in accordance with the intermediate layer forming step described above, and the second intermediate layer having a WC-C composition gradient was formed thereon.
  • a film mainly composed of DLC was formed on the two intermediate layers described above under the manufacturing conditions shown in Table 1. That is, using graphite as a target, Ar gas as a sputtering gas, and methane gas as a process gas, the degree of vacuum in the UBMS apparatus is 0.3 to 0.9 Pa as shown in Table 1, and the bias voltage is set to 50 to 50 above. Sputtering is performed by plasma irradiation with adjustment in the range of 75 to 150 V (at 400 V) to form a hard film composed mainly of diamond-like carbon with Vickers hardness (Hv) of 1000, 1500, 2000, 3000, 4000 on the raceway surface. did.
  • Hv Vickers hardness
  • test balls For a sphere with a diameter of 7.9375 mm (nominal diameter 5/16) made of martensitic stainless steel (SUS440C), graphite is targeted with a UBMS device (manufactured by Kobe Steel: UBMS202 / AIP combined device), and methane gas as the process gas Is used to adjust the degree of vacuum in the UBMS apparatus to the range of 0.3 to 0.9 Pa and the bias voltage to the range of 75 to 150 V, and sputtering by plasma irradiation is performed under the same conditions as the examples and comparative examples shown in Table 2. Then, test balls having a hard film mainly composed of diamond-like carbon having Vickers hardness (Hv) of 1000, 1500, 2000, 3000, 4000 on the surface were prepared.
  • Hv Vickers hardness
  • Examples 3 to 6 The inner ring and outer ring for deep groove ball bearings made of martensitic stainless steel (SUS440C) are ultrasonically cleaned with acetone, and then the dried base material is attached to a UBMS device (manufactured by Kobe Steel: UBMS202 / AIP combined device).
  • the first intermediate layer mainly composed of Cr was formed in accordance with the intermediate layer forming step described above, and the second intermediate layer having a WC-C composition gradient was formed thereon.
  • the first hard film and the second hard film having different hardnesses of two layers mainly composed of DLC under the manufacturing conditions shown in Table 3 are stacked on the two intermediate layers described above.
  • the hard films were formed in this order, that is, using graphite as a target, using Ar gas as the sputtering gas, and methane gas as the process gas, as shown in Table 3, the degree of vacuum in the UBMS apparatus was 0.25-0.
  • Sputtering is performed by adjusting the bias voltage to be 0.3 Pa within the range of .82 Pa and the bias voltage being 75 to 100 V within the range of 50 to 400 V, and the second hard coating is formed on the raceway surface.
  • 4 types of hard coatings mainly composed of DLC with Vickers hardness (Hv) of 1000 or 1500 and first hard coating of 2000 or 3000 Made.
  • the hardness of the hard film is (Hv) 2000 to 3000, the friction coefficient is higher than 0.7, but the wear amount is lower than that of (Hv) 1000 to 1500. As a result, particularly excellent wear resistance was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

転がり軸受(A)のマルテンサイト系ステンレス鋼または高速度工具鋼からなる内輪(1)および外輪(2)の間に、転動体(3)を回転自在に保持する保持器(4)を設け、また保持器(4)は固体潤滑性を有する樹脂素材からなり、内輪(1)および外輪(2)の基材表面に、ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜(5)を、基材に対し表面へ向けて段階的または連続的に硬度を高めた中間層を介して設けた極低温環境用転がり軸受である。

Description

極低温環境用転がり軸受
 この発明は、液化天然ガスなどの極低温状態の液化ガスを移送するサブマージドポンプに用いられる軸受のように、極低温下で用いられる極低温環境用転がり軸受に関するものである。
 一般に、常温の環境で用いられる転がり軸受は、内輪と外輪の間に転動体を回転自在に保持し、潤滑油等による液体潤滑が必要であるが、例えば-100℃以下または-200℃以下のような極低温の液化ガス等が存在する環境や、これらを取り扱う環境下で用いられる転がり軸受には、通常の潤滑油等による液体潤滑を期待できない。また、極低温環境用転がり軸受には、部品の収縮変形に伴う強度や耐久性の低下などが起こりやすいこともあり、そのような厳しい使用条件に耐える特性が必要である。
 因みに、極低温の液化ガスの代表例である液化天然ガス(LNG)は、メタンを主成分とし、常圧下では-161.5℃(約-162℃)以下でなければ液化しない物性のものである。LNGの他にも、例えば冷媒、熱媒体、充填用ガスなどに液化された状態で利用される液化ガスとして、窒素、ヘリウムなどがある。
 このような液化ガスを極低温で液体の状態を維持して移送したり保管したりする場合、極低温下での専用ポンプを用いる必要があり、そのようなポンプの型式としてサブマージド型のポンプが知られている。
 この型式のポンプは、モータを含むポンプ装置の全体を液化ガス中に浸漬して用いるので、本体を外気から密封するためのメカニカルシールを必要とせず、気化ガスの散逸によるロスの少ない点でも優れたものである。
 しかしながら、このようなサブマージド型のポンプは、モータなども直接に液化ガスに触れる状態で用いられるので、モータ軸などを支持する転がり軸受についても極低温下で潤滑性に乏しいLNGで潤滑されながら、長期にわたって安定して良好な回転状態であることが求められる。
 また、極低温環境の他の例としては、上記した液化ガスの存在する環境ばかりではなく、地表から遠く離れた成層圏以上の高高度の宇宙空間や、さらに離れた宇宙空間でも、環境温度は-50~-270℃程度になることから、そのような人工衛星や宇宙船で用いられる極低温環境用転がり軸受にも同様な特性が求められる。
 このような極低温環境で用いられる転がり軸受の公知技術として、外輪および内輪がマルテンサイト系ステンレス鋼で形成され、かつ転動体がセラミックで形成され、保持器はフッ素樹脂で形成されたものが知られている(下記特許文献1)。
 また、軸受の摺動面などに用いられる耐摩耗性に優れた硬質皮膜を形成するダイヤモンドライクカーボン(以下、DLCと略称する)の皮膜処理が周知であり、基材との密着性を高めるために中間層を介して形成することが好ましいことが知られている(下記特許文献2)。
 さらにまた、内輪と外輪、転動体および保持器を鉄系基材や超硬材で形成し、DLC被膜を内輪または外輪の軌道面に形成して耐摩耗性を高めた転がり軸受が知られている(下記特許文献3、図1)。
特開2014-20490号公報 特開2011-68940号公報 国際公開第2013/042765号
 しかし、特許文献3に記載されているようにDLC被膜を内輪または外輪の軌道面に形成して耐摩耗性を高めても、転がり軸受における内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の低下しないという耐久性を極低温環境用転がり軸受に安定して発揮させることは容易でなく、極低温下での軸受の耐久性および軸受性能の高い安定性についてさらに改善するべき問題点が残されていた。
 そこで、この発明の課題は、上記した問題点を解決し、転がり軸受の内外輪の軌道面の摩耗が極めて少なく、摩擦係数も低い状態で安定し、特にLNG等の液化ガスによって潤滑されかつ冷却される極低温環境下でも内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の良い状態に保たれることにより高性能でありかつ耐久性に優れた極低温環境用転がり軸受とすることである。
 上記の課題を解決するために、この発明は、鋼材製の内輪と外輪の間に、複数の転動体を回転自在に保持する保持器を設けた転がり軸受において、前記内輪および外輪の軌道面に、ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜を設けた極低温環境用転がり軸受としたのである。
 上記したように構成されるこの発明の極低温環境用転がり軸受は、内輪および外輪の軌道面に設けたダイヤモンドライクカーボンを主体とする硬質皮膜が、その硬度を所定の範囲内に特定したものであるから、この所定範囲内においては前記硬質皮膜が、極低温環境下で低摩擦係数の状態でありかつ耐摩耗性にも優れている状態が保たれることは、後述する試験結果からも明らかである。
 すなわち、この試験結果から、ビッカース硬度(Hv)1000~1500の所定範囲内を超える高い硬度の皮膜では、皮膜の耐摩耗性は低く保たれ、摩擦係数も低い特性であるが、Hv1500を超えると摩擦係数は急激に増大傾向を示すので、前記所定範囲を超えるHv値の硬質皮膜では、軸受の内外輪の軌道面に対して転動体の回転安定性が損なわれる場合があると考える。
 上記所定範囲内の硬度より低い皮膜硬度では、硬質皮膜の長期使用時の耐摩耗性は所期した程度に得られないと考えられ、耐久性の点で充分ではない。
 このようにDLC皮膜が、充分に低摩擦係数である状態は、転がり摩擦面の熱エネルギーによる黒鉛状炭素系物質の摩擦相手材への移着またはDLC皮膜の軟化による摩擦係数低減の効果が安定している状態であると考えられるが、あまり皮膜硬度が低くDLC皮膜が軟質に過ぎると、低摩擦係数化に要する熱エネルギーは小さいが、DLC皮膜が速く摩耗してしまい効果の持続性が損なわれる。
 従って、液体潤滑の困難な極低温環境下では、上記所定範囲のビッカース硬度(Hv)が1000~1500の範囲において、黒鉛状炭素系物質の優れた低摩擦係数および耐摩耗性が両立し、安定して優れた軸受性能が奏される状態になる。
 上記硬質皮膜が、内輪または外輪の基材上に強く密着して剥がれにくい状態で維持されるように、硬質皮膜は、中間層に重ねて一体に設けられたものであり、前記中間層は表面へ向けて段階的または連続的に硬度を高めたものであることが好ましい。硬質皮膜と内輪または外輪の基材が直接接するとき、それら接触面間に硬度の差が大きい場合は、接触面に歪が溜まりやすく、硬質皮膜は剥がれやすくなるからである。
 また、耐摩耗性についてさらに優れたものを得るために、上記ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜が、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする第1の硬質皮膜に重ねて設けられた第2の硬質皮膜とする構成を採用することができる。
 換言すれば、上記の課題を解決するために、この発明は、鋼材製の内輪と外輪の間に、複数の転動体を回転自在に保持する保持器を設けた転がり軸受において、前記内輪および外輪の軌道面に、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする第1の硬質皮膜を設け、この第1の硬質皮膜に重ねてビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする第2の硬質皮膜を設けた極低温環境用転がり軸受としたのである。
 内輪および外輪の軌道面に設けた第1の硬質皮膜は、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とし、この硬質皮膜は、前述の第2の硬質皮膜よりも少し硬質であり、摩擦係数は少し高いが、耐摩耗性については第2の硬質皮膜よりも優れている。
 そのため、このような硬質の第1の硬質皮膜を下地として、少し軟質の第2の硬質皮膜を重ねて一体化することにより、第2の硬質皮膜の低摩擦係数の特性を発揮させながら、より耐摩耗性の高い機能を発揮させることができ、複合的な硬質皮膜としてより優れた機能を発揮させることができる。
 上記第1の硬質皮膜が、内輪または外輪の基材上に強く密着して剥がれにくい状態で維持されるように、第1の硬質皮膜は、中間層に重ねて一体に設けられたものであり、前記中間層は表面へ向けて段階的または連続的に硬度を高めたものであることが好ましい。第1の硬質皮膜と内輪または外輪の基材が直接接するとき、それら接触面間に硬度の差が大きい場合は、接触面に歪が溜まりやすく、第1の硬質皮膜は剥がれやすくなるからである。
 また、内輪と外輪を形成する鋼材は、マルテンサイト系ステンレス鋼または高速度工具鋼を採用することが、内輪と外輪の硬度を高め、硬質皮膜との一体性を高めて硬質皮膜の剥離を予防するために好ましく、また内輪および外輪の基材自体の耐摩耗性を高めるために好ましい。
 また、上記極低温環境用転がり軸受としては、液化ガス用ポンプの転がり軸受である用途が適用される。そのような液化ガス用ポンプとして、液化天然ガス用サブマージドポンプを採用すれば、特に、この発明の実用的利用価値を高めることができる。
 この発明は、転がり軸受の内輪および外輪の軌道面に、所定範囲のビッカース硬度のダイヤモンドライクカーボンを主体とする硬質皮膜を設けたので、軌道面の摩耗が極めて少なく、摩擦係数も低い状態で安定し、特にLNG等の液化ガスによって潤滑されかつ冷却される極低温環境下でも内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の良い状態に保たれ、高性能でありかつ耐久性に優れた極低温環境用転がり軸受となる利点がある。
 また、転がり軸受の内輪および外輪の軌道面に、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする第1の硬質皮膜を設け、この第1の硬質皮膜に重ねてビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする第2の硬質皮膜を設けたものでは、上記利点に加えて耐摩耗性が特に優れてたものになる。
第1実施形態を示す極低温環境用転がり軸受の要部断面図 第1実施形態の要部を示し、硬質皮膜の層構成を説明する拡大断面図 第2実施形態の要部を示し、硬質皮膜の層構成を説明する拡大断面図 ボールオンディスク型摩擦摩耗試験機の概略機構説明図 摩擦摩耗試験結果を示し、硬質皮膜の皮膜硬度と摩擦係数および摩耗量の関係を示す図表 第3実施形態を示す転がり軸受の要部断面図 第3実施形態に用いたばね座金の斜視図 第3実施形態に用いた保持器の一部を切り欠いてばね座金と締結ピンの組み付け状態を説明する部品分解斜視図 第4実施形態を示し、転がり軸受の要部断面図 第4実施形態に用いた波ワッシャの斜視図 第1~4の実施形態の使用状態を説明し、液化天然ガス用サブマージドポンプの概略構成図
 この発明の実施形態を以下に添付図面に基づいて説明する。
 図1、2に示すように第1実施形態は、転がり軸受Aの所定基材からなる内輪1および外輪2の間に、転動体(玉)3を回転自在に保持する保持器4を設け、この保持器4は固体潤滑性を有する樹脂素材からなり、内輪1および外輪2の基材表面に、ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜5を、基材6(図2参照)に対し表面へ向けて段階的または連続的に硬度を高めた中間層7を介して設けた極低温環境用転がり軸受である。
 上記した内輪1および外輪2の基材6は、マルテンサイト系ステンレス鋼または高速度工具鋼であり、これらは硬質で耐摩耗性に優れた鋼材である。マルテンサイト系ステンレス鋼の例としては、SUS403、SUS420、SUS440Cなどが挙げられる。また、高速度工具鋼としては、米国鉄鋼協会AISI規格の高速度鋼M50、日本工業規格のSKH4等が挙げられる。
 このような基材6の表面側、少なくとも軌道面(または転走面とも別称される。)に設けるビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボン(DLC)を主体とする硬質皮膜5は、この実施形態では中間層7を介して設けていることにより、基材6との密着性を高めている。
 DLCは、ダイヤモンドとグラファイトが混ざり合った中間構造のものであり、ダイモンドと同等の硬度に形成できるものである。
 DLC皮膜の形成方法としては、スパッタリングやイオンプレーティングなどの物理的蒸着法、化学的蒸着法、アンバランスド・マグネトロン・スパッタリング(UBMS)法などの周知の皮膜形成法を採用することができる。
 中間層7は、表面へ向けて段階的または連続的に硬度を高めたものであり、例えば後述する「中間層の形成方法」によって形成することができる。
 密着性を改善するために追加できる補助的な方法としては、基材の表面を粗面化し、アンカー効果が発揮されるようにしても良い。粗面化は、表面粗さRaが0.5μm以下、好ましくはRaが0.05μm以下であるように、周知のArイオン衝撃処理などによって行なうことができる。
 [中間層の形成]
 図2を参照して説明すると、中間層7は、先ず、基材6との密着性を増すために、基材6上に金属系材料を主体とする第1の中間層7aを形成し、その上に重ねて表面側に近づくほど炭素の組成比を増加させた組成傾斜性の第2の中間層7bで構成することが好ましい。
 第1の中間層7aの金属系材料としては、基材6との密着性を増すため、鉄系材料と相性のよい、Cr、Al、W、Ta、Mo、Nb、Si、Tiから選択される1種類以上の金属を含む材料であることが好ましい。より好ましいのはCrおよびWである。
 例えば、基材6の表面にCrを主体とする第1の中間層7aを形成し、その上にW-炭素の組成傾斜性の第2の中間層7bを形成することが好ましい。
 図2では中間層7として2層構造の例を示したが、必要に応じて、1層または3層以上の数の層からなるものであってもよい。
 また、第2の中間層7bの組成傾斜は、スパッタリングに用いるターゲットである金属および黒鉛に印加するスパッタ電力を調整することで、金属-炭素の組成を傾斜させて形成することができる。
 基材6と中間層7との密着性を高めるために、中間層形成工程の前に基材6の表面に窒化処理を施すことが好ましい。
 窒化処理として、基材6の表面に密着性を妨げる酸化層が生じ難いプラズマ窒化処理を施すことが好ましく、表面に窒化層を形成された基材6は、ビッカース硬さでHv1000以上とすることが、中間層7との密着性を向上させるので好ましい。
[DLCを主体とする硬質皮膜の形成]
 硬質皮膜5は、アモルファスのカーボンであるダイヤモンドライクカーボン(DLC)を主体とする硬質の皮膜である。
 硬質皮膜5を形成するには、アンバランスドマグネトロンスパッタ(UBMS)法と称される周知技術を採用できる。UBMS法は、スパッタカソードの磁場を意図的に非平衡にすることで、基板へのプラズマ照射を強化したスパッタリングを採用することができ、イオンアシスト効果によって緊密な硬質皮膜を製膜することができる。
 UBMS法を具体的に説明すると、UBMS装置(神戸製鋼所製:UBMS202/AIP複合装置)内(チャンバー内)の真空度が0.2~0.9Paであり、基材に印加するバイアス電圧が50~400Vである条件で、炭素供給源となるターゲットから生じる炭素原子を、中間層7上に堆積させてDLCを主体とする硬質皮膜を形成することが好ましい。
 UBMS装置内の真空度と、基材に印加するバイアス電圧のいずれかが上記範囲外では、硬質皮膜に上述の物性を確実に得ることができないので、前記したように基材に印加するバイアス電圧が50~400Vである場合に、UBMS装置内の真空度は0.25~0.82Paであることがより好ましい。
 硬質皮膜5は、DLCを主体とする層であるため、成膜時の炭素供給源として黒鉛ターゲットを使用する。また、炭素供給源として、上記黒鉛ターゲットと、炭化水素系ガスとを併用することによって、中間層に対する密着性を向上させることもできる。
 炭素水素系ガスとしては、メタンガス、アセチレンガス、ベンゼン等で特に指定されないが、コストおよび取り扱い性の点からメタンガスが好ましい。
 炭素供給源として、黒鉛ターゲットと炭化水素系ガスとを併用する場合、炭化水素系ガスの導入量の割合が、アルゴンガスのUBMS装置内(成膜チャンバー内)への導入量100に対して、1以上、5以下であることが好ましい。この範囲であれば、密着性を向上させつつ、硬質皮膜の硬さを維持でき、かつ比摩耗量の低減が可能となる。
 なお、スパッタリングガスであるArガスの導入量は、例えば、50~200ml/minであることが好ましい。
 硬質皮膜5は、第2の中間層7bとの密着性が向上するように、第2の中間層7b側から最表層側へ徐々に硬度を段階的または連続的に上げていき、第2の中間層7bと表面の硬質皮膜5との急激な硬度差をなくすことが好ましい。
 具体的には、硬質皮膜5を、UBMS法において黒鉛ターゲットを用いて、基材6に対するバイアス電圧を連続的または段階的に上昇させながら成膜することで、DLC傾斜層が得られる。
 このDLC傾斜層の硬度が、連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(sp2)とダイヤモンド構造(sp3)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。
 このような硬質皮膜5は、ビッカース硬度(Hv)1000~1500に調整した硬さで形成する。
 前述のように、バイアス電圧を上昇させることにより、上記数値範囲内でHV値を上げて硬度調整することができる。
 次に、この発明に用いる転動体は、マルテンサイト系ステンレス鋼、高速度工具鋼またはセラミックスからなり、前記2種類の鋼材は、前述の内輪または外輪の鋼材と同じものである。また、転動体が、セラミックス製である場合、特にセラミックスの材質は限定されないが、窒化ケイ素系、ジルコニア系、炭化ケイ素系、アルミナ系の各系のセラミックスを調製することができる。例えば窒化ケイ素系セラミックス製の転動体は、特に硬質で耐摩耗性に優れているので好ましい。
 この発明に用いる保持器4は、ポリテトラフルオロエチレン(PTFE)を主成分とする樹脂素材からなるものを採用するか、または固体潤滑剤を含有する繊維補強された樹脂(FRP)の組成物を採用することが好ましい。
 ポリテトラフルオロエチレン(PTFE)を主成分とする樹脂素材は、市販品を採用することができ、例えばNTN精密樹脂株式会社製のベアリーFLが挙げられる。
 また、保持器を構成する樹脂組成物の樹脂の種類は、特に限定されるものではないが、脆化温度が使用する液化ガスより低温であるものが好ましく、例えば-100℃未満の脆化温度であるポリカーボネート、フッ素樹脂、ポリフェニレンオキシド(PPO)などが挙げられる。
 また、繊維補強材を用いて脆化温度を調整して、ポリアミド樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン樹脂(PEEK)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン-エチレン共重合体(ECTFE)を用いることもできる。
 繊維状補強材は、所要強度に必要なものを選択的に採用すればよく、例えばホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー、カーボンウィスカー、グラファイトウィスカー、炭化ケイ素ウィスカー、窒化ケイ素ウィスカー、アルミナウィスカー、炭素繊維、ガラス繊維などが挙げられる。
 また、固体潤滑剤は、転がり軸受の耐久性の向上を図るために選択的に採用すればよく、例えば黒鉛、六方晶窒化ホウ素、フッ素雲母、メラミンシアヌレート、フッ化黒鉛、二硫化モリブデン、二硫化タングステンなどが挙げられる。
 保持器4の形式は、特に限定されるものではなく周知のタイプであってよく、例えば冠型タイプであっても良く、また円筒状の周方向にポケット穴を等間隔に形成した円環状タイプ、さらに環状の軸方向に二つ割り可能なもので、これらをピンで加締めて一体化可能なタイプのいずれであっても良い。
 図1、3に示すように、第2実施形態は、転がり軸受Aの所定基材からなる内輪1および外輪2の間に、転動体(玉)3を回転自在に保持する保持器4を設け、保持器4は固体潤滑性を有する樹脂素材からなり、内輪1および外輪2の基材表面に、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする第1の硬質皮膜5aを設け、この第1の硬質皮膜に重ねてビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする第2の硬質皮膜5bを設けたものであり、第1の硬質皮膜5aを、基材6に対し表面へ向けて段階的または連続的に硬度を高めた中間層7を介して設けた極低温環境用転がり軸受である。
 第2実施形態においては、第1実施形態におけるビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜が、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする硬質皮膜の上に重ねて一体に設けられていることの他は、第1実施形態と同じ構成である。
 このようにビッカース硬度(Hv)2000~3000のDLCを主体とする第1の硬質皮膜を設け、その後、この第1の硬質皮膜に重ねてそれより軟質のビッカース硬度(Hv)1000~1500のDLCを主体とする第2の硬質皮膜を設けるには、アンバランスドマグネトロンスパッタ(UBMS)法などにおいて、基材側に印加するバイアス電圧を、第1の硬質皮膜の形成時に比べて第2の硬質皮膜の形成時に下げること、さらに成膜圧力を上げること、またCHガス流量比を高く調整することによって複合的に成膜することができる。
 また、前記同様に、第1の硬質皮膜は、第2の中間層7bとの密着性が向上するように、第2の中間層7b側から最表層側へ徐々に硬度を段階的または連続的に上げていき、第2の中間層7bと第1の硬質皮膜5aとの急激な硬度差をなくすことが好ましい。
 この実施形態では、第1の硬質皮膜を下地として、それより軟質の第2の硬質皮膜を重ねて一体化することにより、第2の硬質皮膜の低摩擦係数の特性を発揮させながら、より耐摩耗性の高い機能を発揮させることができる。
 この発明の極低温環境用転がり軸受の第3実施形態として、上記実施形態における保持器の構造を変更し、環状の軸方向に分割可能なものとしても良い。
 すなわち、図6~8に示す第3実施形態は、内輪1と外輪2の間の環状空間に、環状の周方向に間隔を空けて複数の球からなる転動体3を回転自在に保持するポケット穴24を等間隔に形成した保持器25を設け、保持器25は、前記環状の軸方向に分割可能な一対の環状分割体25a、25bを分割面25cにおいて一体に結合した極低温環境用転がり軸受としている。
 一対の環状分割体25a、25b同士が突き合された状態での複数の接触面には、それぞれ環状分割体25a、25bの軸方向に貫通する貫通孔26を形成し、この貫通孔26に挿通した締結ピン27で一対の環状分割体25a、25bを一体に締結している。
 締結ピン27は、保持器25より低い熱膨張率の素材で形成し、基端部の頭部27aと、先端部の加締めた頭部27bとの少なくとも一方を弾性ワッシャであるばね座金28を介して環状分割体25a、25bの端面に圧接することにより、一対の環状分割体25a、25bが、ばね座金28の弾性力で一体化されて保持器25となる。
 上記条件の熱膨張率は、線熱膨張率または体積熱膨張率(=線膨張率×3)のいずれであっても良い。
 上記した保持器25は、その全体が内輪1と外輪2の間の環状空間に収まる大きさの円筒体等の周知の筒(環)形であり、環状の軸方向に2分割した一対の環状分割体25a、25bを分割前の状態になるように分割面25cを突き合せて合体させている。
 一対の環状分割体25a、25bの分割面25cは、突き合わせる環状分割体25a、25bの一方の端面の内周側を突出させ、他方の内周側を凹ませて、いわゆる「印籠継ぎ」による継手形態を採用したものである。そのような分割面25cを貫通するように、保持器25の軸方向に貫通する貫通孔26を設け、これに締結ピン27を挿通して締結し、一対の環状分割体25a、25bを一体化している。
 分割面25cの形成位置は、保持器25の筒形の軸方向の中程であって、ポケット穴24を半割する位置に形成することが、転動体3をポケット穴24に組み入れる作業性が良いなどの理由で好ましい。
 保持器25を構成する環状分割体25a、25bは、第1実施形態と同様にポリテトラフルオロエチレン樹脂(PTFE)を主成分とする樹脂素材からなるものを採用する。PTFE以外の添加成分の樹脂としては、ポリアミド樹脂(例えばポリアミド46、ポリアミド66、ポリアミド9T等)、ポリカーボネート、ポリエーテルケトン系樹脂、ポリフェニレンオキシド(PPO)、ポリフェニレンサルファイド樹脂などが挙げられる。
 分割面に貫通させて設ける貫通孔26は、締結ピン27が挿通可能な径と形状に設けたものであり、特に円穴形状に限定されず、多角形状の穴、その他の周知形状の穴であっても良い。
 締結ピン27は、一端に貫通孔26の径よりも大径の頭部27aが使用前当初から形成されているものが好ましく、頭部27aの形状は、円盤状、多角盤状、半球体状、錐台状などであり、図示した形状に限定されない。例えば、リベット用に周知の締結ピン27を用いると、組み付けやすく好ましい。
 また、締結ピン27は、貫通穴26の一端から挿し込まれた際、他端から突出する長さの軸長を有するものであり、他端から突出した部分には、常温または加熱する条件で加圧により塑性変形させることにより、前記した頭部27aと同様な大径に加締めた頭部21bを形成する。
 締結ピン27は、加締めた頭部27bを形成可能であるように、加圧により塑性変形可能なステンレス鋼、その他の鋼合金などの金属、または熱可塑性樹脂等の合成樹脂を素材とし、少なくとも保持器25よりも低い熱膨張率の素材を採用する。
 例えば、保持器25の材質と締結ピン27の材質として、金属類または樹脂類のいずれか同類のものを採用する場合にも、締結ピン27の熱膨張率(線膨張率または体積膨張率)は、保持器25の熱膨張率と同一またはそれ以下の低い熱膨張率のものを採用する。
 また保持器25の材質として、合成樹脂を採用した場合には、締結ピン27としてステンレス鋼、その他の鋼合金を採用すれば、保持器25と同一、またはそれより低い熱膨張率の素材を採用した締結ピン27を採用したことになる。
 さらにまた、保持器25の材質として、合成樹脂を採用し、かつ締結ピン27の材質も合成樹脂を採用する場合には、合成樹脂の種別に応じた熱膨張率を勘案し、例えば下記の表に示されるような低温での脆化温度-100℃未満のものを選択的に採用することが好ましい。特に、PTFEは、-267℃まで低温に耐える材質である。
Figure JPOXMLDOC01-appb-T000001
 また、前記した保持器25は、締結ピン27の両端に設けた頭部27a、27bの一方、または両方を弾性ワッシャを介して前記環状分割体に圧接する。
 弾性ワッシャは、ばね鋼などで形成された金属製もしくはフッ素樹脂等の合成樹脂製またはこれらの複合材料からなる環状のものであって、環状の軸方向に弾性を有するものであり、特にその種類や形態を限定することなく、図7~9に示したばね座金(スプリングワッシャとも別称される。)の他、波ワッシャまたは皿ばね等の弾性ワッシャを例示することができる。
 ばね座金は、平座金の一部を切断し、切り口部を捩じることによりばね作用を持たせたものであり、例えば、切り口部分の段差が、切り口の厚さの50%程度(40~60%、好ましくは45~55%)になるようにねじ込んで使用することが、適度の弾性を得るために好ましい。
 ばね座金等の弾性ワッシャは、保持器を保護するために、平座金と組み合わせて用いることもできる。また、ばね座金よりばね定数の高い弾性ワッシャとして、皿ばね、球面座金、波ワッシャを用いることもできる。
 上記したように構成される極低温環境用転がり軸受は、保持器25を構成する一対の環状分割体25a、25bが弾性ワッシャの弾性力で一体化されており、しかも締結ピン27が保持器25の熱膨張率以下の低熱膨張率の素材からなるので、常温の状態から極低温の状態になると、締結ピン27に比べて大きく熱収縮した環状分割体25a、25bは、貫通孔26の径を縮めて、締結ピン27の外周面に接近するかまたは接するまで収縮し、径方向の隙間を小さくするか、または密接して保持器25の締結ピン27の径方向の振動やガタツキを防止する。
 また、常温の状態から極低温の状態になるときに、締結ピン27に比べて大きく収縮した環状分割体25a、25bは、締結ピン27の軸方向に規制されずに収縮する。このとき、締結ピン27は、その両端の頭部27a、27bのうち少なくとも一方が、弾性ワッシャで前記環状分割体25a、25bに圧接されているので、収縮した環状分割体25a、25bにも弾性ワッシャの圧接力が作用し、保持器25における一対の環状分割体25a、25bの弾性的に一体化した状態は維持され、締結ピン27による一対の環状分割体25a、25b同士の極低温下の使用状態での接合面に緩みや隙間が生じない。これにより転動体は3、円滑に回転して極低温下での軸受性能が良好な状態で安定する。
 なお、上記のような環状分割体についての技術的課題のみを解決するためには、図中の硬質皮膜5を省略した転がり軸受の構成を採用することもできる。
 図9、10に示す第4実施形態は、第3実施形態におけるばね座金に代えて、波ワッシャ29を使用したこと以外は、全く同様に構成したものを示している。
 波ワッシャ29は、ばね鋼製の平座金を波型に曲げ成形したものであり、波型がつぶれるように弾性変形させることにより、軸方向に弾性を発揮するものである。
 保持器25は、締結ピン27の両端に設けた頭部27a、27bをばね座金28または波ワッシャ29などの弾性ワッシャを介し、一対の環状分割体25a、25bを弾性ワッシャの弾性力で一体化したので、極低温下の使用状態で収縮した環状分割体25a、25bに弾性ワッシャの圧接力が作用し、一対の環状分割体25a、25bが弾性的に一体化した状態が維持され、締結ピン27による一対の環状分割体25a、25b同士の極低温下の使用状態での接合面に緩みや隙間が生じない。これにより転動体3は、円滑に回転して極低温下での軸受性能が良好な状態で安定する。
 以上のように構成された第3及び第4実施形態では、常温で組み付けた鋼材のリベットなどの締結ピン27による一対の環状分割体25a、25b同士の極低温下の使用状態での突き合わせ面に、緩みや隙間が生じないようになり、転動体3を円滑に回転させて軸受性能が良好な状態で安定する極低温環境用転がり軸受になる。
 また、この発明においては、転がり軸受の種類(型式)は、特に限定されるものではなく、例えば、深溝玉軸受または円筒ころ軸受の極低温環境用転がり軸受であっても良い。
 そして、この発明の極低温環境用転がり軸受は、その具体的な用途は、液化ガス用ポンプの転がり軸受であっても良く、また人工衛星アンテナの支持や駆動装置に用いる転がり軸受であっても良い。
 転がり軸受の用途が液化ガス用ポンプである場合は、液化天然ガス(LNG)用サブマージドポンプであってもよいが、その場合には、転がり軸受が直接に極低温のLNGに接触するため、この発明の内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の低下しない耐久性に優れた極低温環境用転がり軸受となる効果が顕著に現れる。
 図11に示すように、液化天然ガス(LNG)用サブマージドポンプは、ポンプ全体を液中に浸漬することにより、ポット(圧力容器)8内で気密性を発揮するものであり、ポンプ軸9は、モータ軸10が同軸上に一体に連結された構造である。
 ポット8は、LNGの吸込口11を外側に向けて開口しており、また外部配管(図示せず。)に通じる吐出口12を有している。ポット8内に装着されたモータ13は、外部電源によって回転するモータ軸10の上側と下側を、図1、2、3、6または9に示される第1~4の実施形態の玉軸受Aで支持し、このモータ軸10と一体に回転するポンプ軸9には、複数段の羽根車(インペラー)14が取り付けられている。
 このポンプの図示した装置内の流路は、駆動したモータ13によるポンプ軸9と一体に回転する羽根車14によって、ポット8内に吸込口11から流入したLNGが、ポット8の内側面に沿って下向きに流れ、多段の羽根車14の最下段部分から吸い込まれて、羽根車14の周囲に配置された筒状内壁15の内側の配管16から吐出口12に流れるが、LNGの一部は筒状内壁15の内側の他の配管17からモータ13内を潤滑液として流れて、玉軸受Aを潤滑および冷却し、ポット8の内側面に沿って下向きの流れに合流して、再度、多段の羽根車14の先端部分から吸い込まれる。
 このようにして使用される玉軸受Aは、内輪および外輪の基材表面に所定硬度のダイヤモンドライクカーボンを主体とする硬質皮膜が設けられているので、軌道面および転動体の摩耗が極めて少なく、LNGによって潤滑されかつ冷却されるという極低温環境で長期間の使用に耐え経時的に耐摩耗性および潤滑性の低下しない転がり軸受として使用に耐えることができる。
[実施例1、2、比較例1~3]
 マルテンサイト系ステンレス鋼(SUS440C)からなる深溝玉軸受用の内輪と外輪に対し、アセトンで超音波洗浄した後、乾燥した基材をUBMS装置(神戸製鋼所製:UBMS202/AIP複合装置)に取り付け、前記した中間層形成の工程に従ってCrを主体とする第1の中間層を形成し、その上にWC-Cの組成傾斜性の第2の中間層を形成した。
 さらに、同UBMS装置を用いて、前記した2層の中間層の上に重ねて、表1に示す製造条件でDLCを主成分とする皮膜を形成した。すなわち、黒鉛をターゲットとし、スパッタリングガスとしてArガス、プロセスガスとしてメタンガスを用いて、UBMS装置内の真空度を表1に示すように0.3~0.9Pa、バイアス電圧を(前記の50~400Vにおける)75~150Vの範囲で調整してプラズマ照射によるスパッタリングを行ない、軌道面にビッカース硬度(Hv)が1000,1500,2000,3000,4000のダイヤモンドライクカーボンを主成分とする硬質皮膜を形成した。
 そして、窒化ケイ素系のセラミックス製の玉を転動体とし、ポリテトラフルオロエチレン(PTFE)を主成分とするNTN精密樹脂株式会社製のベアリーFL製の円環状の保持器を用いて、転がり軸受を組み立てた。
Figure JPOXMLDOC01-appb-T000002
 次に、硬質皮膜について極低温環境用転がり軸受での使用状態を想定し、耐摩耗性と低摩擦係数の特性を調べるために、所定範囲の硬度で作製した硬質皮膜の試験用ボールについて、セラミックス面に対する摩擦係数と摩耗量の測定試験を以下のように行なった。
[試験用ボールの作製]
 マルテンサイト系ステンレス鋼(SUS440C)からなる直径7.9375mm(呼び径5/16)の球に対し、UBMS装置(神戸製鋼所製:UBMS202/AIP複合装置)で黒鉛をターゲットとし、プロセスガスとしてメタンガスを用いて、UBMS装置内の真空度を0.3~0.9Pa、バイアス電圧を75~150Vの範囲に調整し、表2に示す実施例と比較例と同じ条件でプラズマ照射によるスパッタリングを行ない、表面にビッカース硬度(Hv)が1000,1500,2000,3000,4000のダイヤモンドライクカーボンを主成分とする硬質皮膜を有する試験用ボールを作製した。
[摩擦係数と摩耗量の測定試験]
 図4に示すボールオンディスク型の摩擦摩耗試験機を用いた試験を行なった。
 すなわち、上記のように作製した5種類のHv硬度で硬質皮膜を形成した試験用のボール20を、直径127mmの窒化ケイ素系セラミックス製のディスク(円盤)21上に載置すると共に、ボール20が自由回転するよう保持した状態で下向きに荷重を加えて面圧1.5GPaでディスクに押し付け、その状態で-196℃の液体窒素に容器23内で浸漬してディスク20をモータ22で10rpmで回転させ、ディスク21の周速58mm/秒でボール20を7500秒間(=125分)転動させた。
 上記試験後のボールの摩耗量(10-5mm)を測定すると共に、ボールのディスクに対する静止摩擦係数を調べ、図5中にプロットした。
 なお、ブランクテストとして、ダイヤモンドライクカーボンを主成分とする硬質皮膜を形成せずに、マルテンサイト系ステンレス鋼(SUS440C)からなる同径の球についても摩耗量および静止摩擦係数を調べ、図5中にプロットした。
 図5に示される結果からも明らかなように、硬質皮膜の硬度(Hv)と摩擦係数の関係をみると、Hv1000からHv1500にかけて摩擦係数は若干低下するが、低く安定した傾向が認められた。またHv1500を超えてHv2000までは、急激な摩擦係数の上昇が認められ、このとき硬質皮膜の黒鉛状の炭素系物質はディスク表面に移着する量が急激に減少したと考えられた。また、Hv2000を超える硬さでは、徐々に摩擦係数が上昇する傾向が認められた。
 また、硬質皮膜の硬さと摩耗量の傾向をみると、Hv1000からHv3000にかけて摩耗量は減少し、また安定した少摩耗量の傾向が認められた。またHv3000を超えてHv4000では皮膜強度が不足して皮膜が剥離しやすくなって摩耗が促進された。
 このような摩擦摩耗の傾向からみて、低い摩擦係数であると共に摩耗量についても少なく両特性とも好ましい硬質皮膜の硬度は、(Hv)1000~1500であると認められた。
[実施例3~6]
 マルテンサイト系ステンレス鋼(SUS440C)からなる深溝玉軸受用の内輪と外輪に対し、アセトンで超音波洗浄した後、乾燥した基材をUBMS装置(神戸製鋼所製:UBMS202/AIP複合装置)に取り付け、前記した中間層形成の工程に従ってCrを主体とする第1の中間層を形成し、その上にWC-Cの組成傾斜性の第2の中間層を形成した。
 さらに、同UBMS装置を用いて、前記した2層の中間層の上に重ねて、表3に示す製造条件でDLCを主成分とする2層の硬度の異なる第1の硬質皮膜および第2の硬質皮膜を、この順に重ねて形成した
 すなわち、黒鉛をターゲットとし、スパッタリングガスとしてArガス、プロセスガスとしてメタンガスを用いて表3に示すように、UBMS装置内の真空度を前記0.25~0.82Paの範囲内のうち0.3Paとし、バイアス電圧を前記の50~400Vの範囲のうち75~100Vとする条件で調整してプラズマ照射によるスパッタリングを行ない、軌道面に第2の硬質皮膜がビッカース硬度(Hv)が1000または1500であり、第1の硬質皮膜が2000または3000であるDLCを主成分とする硬質皮膜4種類を形成した。
 そして、窒化ケイ素系のセラミックス製の玉を転動体とし、ポリテトラフルオロエチレン(PTFE)を主成分とするNTN精密樹脂株式会社製のベアリーFL製の円環状の保持器を用いて、転がり軸受を組み立てた。
Figure JPOXMLDOC01-appb-T000003
 次に、硬質皮膜について極低温環境用転がり軸受での使用状態を想定し、耐摩耗性と低摩擦係数の特性を調べるために、所定範囲の硬度で作製した硬質皮膜の試験用ボールについて、前記した[試験用ボールの作製]、[摩擦係数と摩耗量の測定試験]を同様に行ない、セラミックス面に対する摩擦係数と摩耗量を調べたところ、図5に示される結果と同様の結果が得られた。
 また、図5に示される結果から、硬質皮膜の硬度は、(Hv)2000~3000では、摩擦係数は0.7以上に高くなるが、摩耗量は(Hv)1000~1500の場合よりも低くなっており、特に耐摩耗性に優れた結果が得られた。
1 内輪
2 外輪
3 転動体
4 保持器
5 硬質皮膜
6 基材
7 中間層
7a 第1の中間層
7b 第2の中間層
8 ポット
9 ポンプ軸
10 モータ軸
11 吸込口
12 吐出口
13 モータ
14 羽根車
15 筒状内壁
16、17 配管
20 ボール
21 ディスク
22 モータ
23 容器
24 ポケット穴
25 保持器
25a、25b 環状分割体
25c 分割面
26 貫通孔
27 締結ピン
27a、27b 頭部
28 ばね座金
29 波ワッシャ

Claims (7)

  1.  鋼材製の内輪と外輪の間に、複数の転動体を回転自在に保持する保持器を設けた転がり軸受において、
     前記内輪および外輪の軌道面に、ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜を設けたことを特徴とする極低温環境用転がり軸受。
  2.  上記硬質皮膜は、中間層に重ねて一体に設けられたものであり、前記中間層は表面へ向けて段階的または連続的に硬度を高めた中間層である請求項1に記載の極低温環境用転がり軸受。
  3.  上記ビッカース硬度(Hv)1000~1500のダイヤモンドライクカーボンを主体とする硬質皮膜が、ビッカース硬度(Hv)2000~3000のダイヤモンドライクカーボンを主体とする第1の硬質皮膜に重ねて設けられた第2の硬質皮膜である請求項1に記載の極低温環境用転がり軸受。
  4.  上記第1の硬質皮膜は、中間層に重ねて一体に設けられたものであり、前記中間層は表面へ向けて段階的または連続的に硬度を高めた中間層である請求項3に記載の極低温環境用転がり軸受。
  5.  上記鋼材が、マルテンサイト系ステンレス鋼または高速度工具鋼からなる鋼材である請求項1~4のいずれかに記載の極低温環境用転がり軸受。
  6.  上記極低温環境用転がり軸受が、液化ガス用ポンプの転がり軸受である請求項1~5のいずれかに記載の極低温環境用ポンプの転がり軸受。
  7.  上記液化ガス用ポンプが、液化天然ガス用サブマージドポンプである請求項6に記載の極低温環境用転がり軸受。
PCT/JP2016/056274 2015-03-03 2016-03-01 極低温環境用転がり軸受 WO2016140225A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503664A JPWO2016140225A1 (ja) 2015-03-03 2016-03-01 極低温環境用転がり軸受

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015041415 2015-03-03
JP2015-041415 2015-03-03
JP2015053163 2015-03-17
JP2015053169 2015-03-17
JP2015-053169 2015-03-17
JP2015-053163 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016140225A1 true WO2016140225A1 (ja) 2016-09-09

Family

ID=56848153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056274 WO2016140225A1 (ja) 2015-03-03 2016-03-01 極低温環境用転がり軸受

Country Status (2)

Country Link
JP (1) JPWO2016140225A1 (ja)
WO (1) WO2016140225A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013220A1 (ja) * 2017-07-12 2019-01-17 Thk株式会社 転動装置
WO2020031995A1 (ja) * 2018-08-08 2020-02-13 Ntn株式会社 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
CN111734744A (zh) * 2019-03-25 2020-10-02 斯凯孚公司 轴承组件
WO2023145881A1 (ja) * 2022-01-28 2023-08-03 日本精工株式会社 転がり軸受

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235748A (ja) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd 転がり摺動部品
JP2003056575A (ja) * 2001-08-15 2003-02-26 Nsk Ltd 転がり摺動部材及び転動装置
JP2006097871A (ja) * 2004-09-30 2006-04-13 Nsk Ltd 転がり摺動部材及び転動装置
JP2008151264A (ja) * 2006-12-18 2008-07-03 Nsk Ltd 転がり軸受用保持器
JP2009133408A (ja) * 2007-11-30 2009-06-18 Nsk Ltd 転がり摺動部材およびこれを用いた転動装置ならびにプーリ装置
JP2013228010A (ja) * 2012-04-24 2013-11-07 Nsk Ltd 製紙機械用ころ軸受及びその製造方法
JP2014020490A (ja) * 2012-07-19 2014-02-03 Nsk Ltd 転がり軸受及び液化ガス用ポンプ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235748A (ja) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd 転がり摺動部品
JP2003056575A (ja) * 2001-08-15 2003-02-26 Nsk Ltd 転がり摺動部材及び転動装置
JP2006097871A (ja) * 2004-09-30 2006-04-13 Nsk Ltd 転がり摺動部材及び転動装置
JP2008151264A (ja) * 2006-12-18 2008-07-03 Nsk Ltd 転がり軸受用保持器
JP2009133408A (ja) * 2007-11-30 2009-06-18 Nsk Ltd 転がり摺動部材およびこれを用いた転動装置ならびにプーリ装置
JP2013228010A (ja) * 2012-04-24 2013-11-07 Nsk Ltd 製紙機械用ころ軸受及びその製造方法
JP2014020490A (ja) * 2012-07-19 2014-02-03 Nsk Ltd 転がり軸受及び液化ガス用ポンプ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013220A1 (ja) * 2017-07-12 2019-01-17 Thk株式会社 転動装置
JPWO2019013220A1 (ja) * 2017-07-12 2020-05-07 Thk株式会社 転動装置
JP7016365B2 (ja) 2017-07-12 2022-02-21 Thk株式会社 転動装置
WO2020031995A1 (ja) * 2018-08-08 2020-02-13 Ntn株式会社 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
CN111734744A (zh) * 2019-03-25 2020-10-02 斯凯孚公司 轴承组件
WO2023145881A1 (ja) * 2022-01-28 2023-08-03 日本精工株式会社 転がり軸受

Also Published As

Publication number Publication date
JPWO2016140225A1 (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2016140225A1 (ja) 極低温環境用転がり軸受
US5961218A (en) Water lubricated machine component having contacting sliding surfaces
WO2013042765A1 (ja) 硬質膜、硬質膜形成体、および転がり軸受
CN203009563U (zh) 滚动轴承及液化气用泵装置
JP2002235748A (ja) 転がり摺動部品
WO2016140224A1 (ja) 極低温環境用転がり軸受
JP5993680B2 (ja) 転がり軸受およびその製造方法
WO2017146047A1 (ja) 極低温環境用転がり軸受
JP5938321B2 (ja) 硬質膜およびその成膜方法、硬質膜形成体およびその製造方法
JP2009133408A (ja) 転がり摺動部材およびこれを用いた転動装置ならびにプーリ装置
JP2007120613A (ja) 転がり摺動部材及び転動装置
JP2005516164A (ja) セラミック製転がり要素及び鋼製内輪又は外輪を有する転がり軸受
JP2008169939A (ja) 真空ポンプ用転がり軸受およびこれを用いた真空ポンプ
JP2007155022A (ja) 転動装置
JP2002349577A (ja) 転がり摺動部材
JP3821976B2 (ja) 通電用途向転がり軸受
JP2007232092A (ja) 球面滑り軸受
JP4838455B2 (ja) 転がり摺動部材及び転動装置
WO2017082205A1 (ja) 極低温環境用転がり軸受
JP2020034064A (ja) 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置
JP3761731B2 (ja) 転がり軸受
WO2017043445A1 (ja) 極低温環境用転がり軸受
JP2007127263A (ja) 転がり部材及び転動装置
JP2003222143A (ja) 転がり摺動部材
JP2006097871A (ja) 転がり摺動部材及び転動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758918

Country of ref document: EP

Kind code of ref document: A1