WO2016136904A1 - チーズの製造方法及びチーズ改質用の製剤 - Google Patents

チーズの製造方法及びチーズ改質用の製剤 Download PDF

Info

Publication number
WO2016136904A1
WO2016136904A1 PCT/JP2016/055687 JP2016055687W WO2016136904A1 WO 2016136904 A1 WO2016136904 A1 WO 2016136904A1 JP 2016055687 W JP2016055687 W JP 2016055687W WO 2016136904 A1 WO2016136904 A1 WO 2016136904A1
Authority
WO
WIPO (PCT)
Prior art keywords
cheese
oxidase
milk
metal
preparation
Prior art date
Application number
PCT/JP2016/055687
Other languages
English (en)
French (fr)
Inventor
佐藤 弘明
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to EP16755648.9A priority Critical patent/EP3262946B1/en
Priority to JP2017502483A priority patent/JPWO2016136904A1/ja
Publication of WO2016136904A1 publication Critical patent/WO2016136904A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/032Making cheese curd characterised by the use of specific microorganisms, or enzymes of microbial origin
    • A23C19/0325Making cheese curd characterised by the use of specific microorganisms, or enzymes of microbial origin using yeasts, alone or in combination with lactic acid bacteria or with fungi, without using other bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/04Making cheese curd characterised by the use of specific enzymes of vegetable or animal origin
    • A23C19/043Enzymes other than proteolytic enzymes or milk clotting enzymes, e.g. lipase, lysosyme
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/05Treating milk before coagulation; Separating whey from curd
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/063Addition of, or treatment with, enzymes or cell-free extracts of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)

Definitions

  • the present invention relates to a cheese production method and a cheese modification preparation.
  • ⁇ Cheese is divided into natural cheese and processed cheese. Natural cheese is further divided into non-aged cheese (fresh cheese) and aged cheese.
  • a milk coagulation enzyme or the like is added to a milk raw material such as milk to form an aggregate (cheese curd).
  • fresh cheese is obtained by separating and recovering the cheese curd from whey.
  • ripened cheese is obtained by ripening fresh cheese.
  • natural cheese fresh cheese or ripened cheese obtained in this way can be heated and melted to produce processed cheese.
  • the yield increases as the water retention amount increases.
  • cheese that is excessively retained water generally has a low physical strength and an unpleasant texture as cheese. Therefore, from the viewpoint of palatability and economical viewpoint, there is a demand for a cheese that has a high water retention capacity but also exhibits a favorable texture as a cheese.
  • cheese is raw milk that has not been subjected to a heat sterilization process, pasteurized milk treated at 63 to 68 ° C. for about 30 minutes, or high temperature sterilized treated at 71 to 75 ° C. for about 15 seconds. Manufactured from milk.
  • the ultrahigh temperature pasteurized milk heat-processed at 120 degreeC or more is used as a raw material, it is said that a cheese curd is not formed and cheese cannot be manufactured.
  • pasteurized milk and pasteurized milk have a consumption period as short as about 10 days, and thus there is a problem that cheese cannot be produced in a remote area from a dairy farm where it is difficult to procure raw milk.
  • ultra-high temperature pasteurized milk can be stored for as long as 6 months at room temperature when it is aseptically packaged, if cheese can be produced using ultra-high temperature pasteurized milk as a raw material, it will be difficult to procure raw milk from dairy areas. A great advantage is that cheese can be produced even in remote locations.
  • Non-Patent Document 1 discloses a method for producing cheese by adding hydrochloric acid to skim milk that has been heat-treated at 80 ° C to 130 ° C. On the other hand, Non-Patent Document 1 does not disclose the use of an oxidizing agent or a metal component.
  • Patent Document 1 discloses a cheese production method using a protein cross-linking enzyme such as glucose oxidase. On the other hand, Patent Document 1 does not disclose the use of a metal component. In addition, Patent Document 1 does not include an example in which cheese is manufactured using ultra-high temperature pasteurized milk as a raw material.
  • Patent Document 2 discloses a method for producing cheese containing lactobionic acid, in which a liquid cheese mix containing milk components, lactose and oxidase is prepared, and at least a part of the lactose is catalytically produced using the oxidase.
  • a method for producing cheese is disclosed that includes a step of producing lactobionic acid in the cheese mix by oxidation and a step of solidifying the cheese mix to obtain a cheese product.
  • Patent Document 2 does not disclose the use of metal components or the production of cheese using ultra-high temperature pasteurized milk as a raw material.
  • Patent Document 3 discloses a cheese production method including adding calcium chloride to ultra-high temperature pasteurized milk. On the other hand, Patent Document 3 does not disclose the use of an oxidizing agent.
  • Patent Document 4 discloses a method for producing a processed fishery product characterized by adding glucose oxidase and a metal-containing yeast to a marine product raw material, and an enzyme preparation for modifying a processed fishery product containing glucose oxidase and a metal-containing yeast. It is disclosed. On the other hand, Patent Document 4 does not disclose a cheese production method or a cheese modification preparation.
  • This invention makes it a subject to provide the manufacturing method of cheese, and the formulation for cheese modification.
  • a method for producing cheese comprising treating a food material containing milk protein with an oxidase and a metal component, The method, wherein the metal component is one or more components selected from metal-containing yeast and metal-bound lactoferrin.
  • the food ingredient is one or more ingredients selected from whole milk, skim milk, partially skim milk, whey, cream, buttermilk, processed products thereof, and preparations thereof.
  • the oxidase is one or more enzymes selected from lactose oxidase and glucose oxidase.
  • the above method wherein 0.05 to 200 U of the oxidase is added per gram of milk protein.
  • the metal-containing yeast is iron-containing yeast.
  • the method wherein the metal-containing yeast is added in an amount of 0.00003 g to 0.03 g in terms of dry matter weight per gram of food material.
  • the method further comprises treating the food material with transglutaminase and / or calcium salt.
  • the method wherein the food material is a food material containing a heat-treated milk protein.
  • the method wherein the food material is heat-treated at 120 ° C. or higher for 0.5 to 15 seconds.
  • a preparation for modifying cheese containing an oxidase and a metal component The preparation, wherein the metal component is one or more components selected from metal-containing yeast and metal-bound lactoferrin.
  • the preparation, wherein the oxidase is one or more enzymes selected from lactose oxidase and glucose oxidase.
  • the preparation, wherein the metal-containing yeast is iron-containing yeast.
  • the preparation, wherein the preparation contains 0.0000000015 g to 1.5 g of the metal-containing yeast in terms of dry matter weight per 1 U of oxidase contained in the preparation.
  • the said formulation containing a transglutaminase and / or a calcium salt.
  • the said formulation used in order to manufacture cheese from the heat-processed food raw material containing milk protein.
  • the figure which shows the measurement result of the breaking strength of cheese The figure which shows the measurement result of the yield of cheese.
  • the type of cheese is not particularly limited.
  • the cheese may be natural cheese or process cheese.
  • non-aged cheese fresh cheese
  • aged cheese may be sufficient as it.
  • any of soft cheese, semi-hard cheese (semi-hard cheese), and hard / super-hard cheese (hard cheese) may be sufficient as cheese.
  • Natural cheeses include goat milk cheese, goat milk cheese, cottage, cream cheese, string cheese, mozzarella, ricotta, wash cheese such as Pon Levec, Rivaro, Limburger, Gouda, Examples include semi-hard cheeses such as Samso, hard cheeses such as Emmental, Conte, and Purgiano Reggiano, white mold aged cheeses such as Camembert and Brie, and blue mold aged cheeses such as Gorgonzola, Stilton, and Roquefort. is not.
  • Process cheese includes cheese produced by heating and melting these natural cheeses.
  • the formulation of the present invention is a cheese modification formulation containing an oxidizing agent and a metal component.
  • the preparation of the present invention may or may not contain a transglutaminase.
  • the preparation of the present invention may or may not contain a calcium component. That is, the preparation of the present invention may be, for example, a preparation containing an oxidizing agent, a metal component, and transglutaminase, or may be a preparation containing an oxidizing agent, a metal component, and a calcium component.
  • a preparation containing a metal component, a transglutaminase, and a calcium component may be used.
  • the oxidizing agent, the metal component, the transglutaminase, and the calcium component are also collectively referred to as “active ingredients”.
  • the preparation of the present invention can be used to modify cheese.
  • a modified cheese can be obtained by producing a cheese by treating a food material (also referred to as “milk material”) containing milk protein with the preparation of the present invention. That is, the “preparation for cheese modification” referred to here may specifically be an adjuvant for cheese production.
  • cheese can be manufactured even in the case of not using an active ingredient for "reforming” in cheese, the case where the modified cheese can be manufactured by using the active ingredient as compared with the case of not using the active ingredient It is not restricted to this, and cheese cannot be manufactured when an active ingredient is not used, but the case where cheese can be manufactured by using an active ingredient is also included.
  • Modification in cheese includes improvement in yield, improvement in breaking strength, improvement in milk flavor, and improvement in moldability.
  • Yield is the ratio of the weight of cheese to the weight of milk ingredients. The improvement in yield may be due to, for example, an improvement in water retention, an increase in milk protein mass, or a combination thereof.
  • “Breaking strength” is a physical property that is an index of “hardness” when chewing cheese.
  • the oxidizing agent examples include oxidase.
  • the oxidase is not particularly limited as long as it can catalyze the oxidation reaction.
  • the oxidase may contribute directly or indirectly to the oxidation of the milk raw material to be processed.
  • the oxidase include lactose oxidase, glucose oxidase, ascorbate oxidase, phenol oxidase, and lysyl oxidase.
  • lactose oxidase lactose oxidase
  • glucose oxidase ascorbate oxidase
  • phenol oxidase phenol oxidase
  • lysyl oxidase an enzyme selected from lactose oxidase and glucose oxidase is preferable.
  • Lactose oxidase is an enzyme that catalyzes the reaction of producing lactobionic acid and hydrogen peroxide using lactose, oxygen, and water as substrates.
  • lactose oxidase include carbohydrate oxidases described in JP-T-2007-535331.
  • Glucose oxidase is an enzyme that catalyzes a reaction that generates hydrogen peroxide with gluconolactone (gluconolactone is non-enzymatically hydrolyzed to gluconic acid) using glucose, oxygen, and water as substrates.
  • Ascorbate oxidase is an enzyme that catalyzes a reaction that generates dehydroascorbic acid and water using ascorbic acid and oxygen as substrates.
  • Phenol oxidase is a general term for enzymes that catalyze reactions that oxidize phenols such as monophenols, diphenols, and polyphenols. Phenol oxidase is also called tyrosinase, laccase, or polyphenol oxidase.
  • hydrogen peroxide generated by the catalytic reaction of lactose oxidase or glucose oxidase can promote the formation of SS bonds (disulfide bonds) by oxidizing the SH group in the protein and form a cross-linked structure in the protein.
  • the origin of the oxidase is not particularly limited.
  • the oxidase may be derived from any microorganism, animal, plant or the like.
  • a known oxidase homolog or artificially modified product may be used.
  • glucose oxidase those of various origins such as those derived from microorganisms such as Neisseria gonorrhoeae and plants are known, and any of these glucose oxidases may be used.
  • glucose oxidase may be a recombinant enzyme.
  • Specific examples of the oxidase include microorganism-derived glucose oxidase commercially available from Shin Nippon Chemical Industry Co., Ltd.
  • the oxidase may or may not contain a component other than the oxidase.
  • the oxidase may contain other enzymes, for example.
  • many commercially available glucose oxidase preparations contain catalase, but as an oxidase, a mixture of such an oxidase and another enzyme may be used.
  • As the oxidizing agent one kind of oxidizing agent may be used, or two or more kinds of oxidizing agents may be used in combination.
  • metal component a metal and a metal containing material are mentioned.
  • metal component one type of component may be used, or two or more types of components may be used in combination.
  • the metal type is not particularly limited.
  • the metal include zinc, calcium, chromium, selenium, copper, magnesium, manganese, molybdenum, iron, vanadium and the like.
  • the metal may be a metal other than calcium. Among these, metals selected from zinc, magnesium, copper, and iron are preferable, and iron is more preferable.
  • the metal may be in any form such as a simple substance or ions. As the metal, one kind of metal may be used, or two or more kinds of metals may be used in combination.
  • metal-containing materials examples include metal salts, metal-containing yeasts, and lactoferrin. Among these, a component selected from metal-containing yeast and lactoferrin is preferable.
  • a component selected from metal-containing yeast and lactoferrin is preferable.
  • the metal-containing material may contain one kind of metal, or may contain two or more kinds of metals in combination.
  • one type of component may be used, or two or more types of components may be used in combination.
  • the metal salt examples include zinc salt, calcium salt, chromium salt, selenium salt, copper salt, magnesium salt, manganese salt, molybdenum salt, iron salt, vanadium salt and the like.
  • metal salts selected from zinc salts, magnesium salts, and iron salts are preferable, and iron salts are more preferable.
  • the iron salts include iron chloride, ferric chloride, sodium ferrous citrate, iron citrate, ammonium iron citrate, ferrous gluconate, iron sesquioxide, iron chlorophyllin sodium, iron lactate, ferric pyrophosphate
  • Examples include iron, iron sulfate, ferrous sulfate, heme iron and the like.
  • the metal salt may be in any form such as salt or ion.
  • Examples of the metal-containing yeast include, but are not limited to, those in which a metal is added during yeast cultivation and incorporated into yeast cells.
  • Examples of the metal-containing yeast include zinc-containing yeast, calcium-containing yeast, chromium-containing yeast, selenium-containing yeast, copper-containing yeast, magnesium-containing yeast, manganese-containing yeast, molybdenum-containing yeast, iron-containing yeast, and vanadium-containing yeast. .
  • yeast selected from zinc-containing yeast, magnesium-containing yeast, and iron-containing yeast is preferable, and iron-containing yeast is more preferable.
  • the metal contained in the metal-containing yeast may be a metal-containing material such as a metal salt.
  • the metal or metal salt may be contained in any form such as a simple substance, a salt, or an ion.
  • the metal content in the metal-containing yeast of the present invention is, for example, 0.001 g to 0.1 g, preferably 0.01 g to 0.08 g, more preferably 0.04 g to 0.06 g per 1 g of dry matter weight of the yeast. It may be.
  • the metal-containing yeast may be in any form such as powder, paste or suspension. Further, the metal-containing yeast may be viable or sterilized.
  • the type of yeast is not particularly limited.
  • yeast examples include yeast belonging to the genus Saccharomyces such as Saccharomyces cerevisiae, yeast belonging to the genus Schizosaccharomyces such as Schizosaccharomyces pombe, and yeast belonging to the genus Candida such as Candida utilis. Among them, yeast belonging to the genus Saccharomyces or Candida is preferable.
  • yeast belonging to the genus Saccharomyces or Candida is preferable.
  • the metal-containing yeast include iron-containing yeasts marketed under the category name “Metal-containing yeast” from Seti Co., Ltd.
  • Lacoferrin here refers to lactoferrin bonded to metal (metal-bound lactoferrin). Specific examples of the metal-bound lactoferrin include lactoferrin bound to iron (iron-lactoferrin).
  • Transglutaminase is an enzyme that catalyzes the reaction of binding glutamine and lysine residues in a protein to crosslink the protein. In particular, by using transglutaminase in combination, it is expected that a stronger gel is formed and the breaking strength and yield are improved.
  • the origin of transglutaminase is not particularly limited.
  • the transglutaminase may be derived from any microorganism, animal, plant and the like. As the transglutaminase, a known homologue or artificially modified transglutaminase may be used.
  • the transglutaminase may be a recombinant enzyme.
  • Calcium components include calcium and calcium-containing materials. Calcium may be in any form such as simple substance or ion. Examples of calcium-containing materials include calcium salts and calcium-containing yeast. Examples of calcium salts include calcium chloride, calcium citrate, calcium phosphate, calcium sulfate, calcium carbonate, calcium hydroxide, calcium oxide, and calcined calcium. The calcium salt may be in any form such as salt or ion. Among these, as the calcium component, a calcium salt is preferable, and calcium chloride is more preferable. As the calcium component, one type of component may be used, or two or more types of components may be used in combination.
  • a calcium component may be selected alone, but it is usually preferable to select a metal component other than the calcium component.
  • a metal component other than the calcium component may be selected as the metal component, and a calcium component may be used in combination. Note that selecting a metal component other than the calcium component as the metal component and further using the calcium component together and selecting a combination of the metal component other than the calcium component and the calcium component as the metal component may be synonymous. .
  • the calcium component serves as both a metal component and a calcium component.
  • the preparation of the present invention may contain components other than the active ingredients (hereinafter also referred to as “other ingredients”) as long as a cheese modification effect is obtained.
  • other ingredients such as “other ingredients”
  • blended and used for a seasoning, food-drinks, or a pharmaceutical can be utilized, for example.
  • ingredients include lactose, glucose, dextrin, polysaccharide thickener, starch, modified starch, reduced maltose and other excipients, plant proteins, proteins such as gluten, egg white, gelatin, casein, sodium glutamate, animal extracts, Seasonings such as seafood extracts, protein hydrolysates, and partial protein breakdown products, alkali agents such as sodium carbonate and potassium carbonate (pH adjusters), chelating agents such as gluconic acid and citrate, sodium ascorbate, glutathione, and cysteine And other food additives such as alginic acid, citrus, fats and oils, pigments, acidulants, and fragrances.
  • plant proteins proteins such as gluten, egg white, gelatin, casein, sodium glutamate, animal extracts, Seasonings such as seafood extracts, protein hydrolysates, and partial protein breakdown products
  • alkali agents such as sodium carbonate and potassium carbonate (pH adjusters)
  • chelating agents such as gluconic acid and citrate,
  • the preparation of the present invention may contain, for example, an oxidase substrate as another component.
  • oxidase substrates include lactose, which is a substrate for lactose oxidase, glucose, which is a substrate for glucose oxidase, ascorbic acid, which is a substrate for ascorbate oxidase, and phenols, which are substrates for phenol oxidase.
  • Substrates that can take the form of salts may be utilized in the form of salts. That is, the term “substrate” may mean a free substrate, a salt thereof, or a mixture thereof, unless otherwise specified.
  • the salt include sodium salt and potassium salt.
  • the preparation of the present invention may contain a combination of an oxidase and its substrate. That is, for example, the preparation of the present invention may contain lactose oxidase and lactose, may contain glucose oxidase and glucose, and may contain ascorbate oxidase and ascorbic acid. Further, phenol oxidase and phenols may be contained. On the other hand, when the preparation of the present invention does not contain a certain oxidase, it may contain the substrate. That is, for example, the preparation of the present invention may contain glucose when it does not contain glucose oxidase.
  • the preparation of the present invention may contain, for example, an ingredient effective for cheese production as another ingredient.
  • Ingredients effective for the production of cheese include lactic acid bacteria and milk-clotting enzymes.
  • one component may be used, or two or more components may be used in combination.
  • the preparation of the present invention can be produced, for example, by appropriately mixing an active ingredient with these other ingredients.
  • the form of the preparation of the present invention is not particularly limited.
  • the preparation of the present invention may be in any form such as liquid, paste, granule, powder.
  • the blending amount (concentration) of each component (that is, the active component and other components as necessary) in the preparation of the present invention is not particularly limited as long as a cheese reforming effect is obtained.
  • the blending amount (concentration) of each component in the preparation of the present invention may be more than 0% (w / w) and less than 100% (w / w).
  • the concentration of each component in the preparation of the present invention can be appropriately set according to various conditions such as the type of the component, the amount of each component added during cheese manufacture, and the amount of the preparation used during cheese manufacture. it can.
  • the total content (total concentration) of active ingredients in the preparation of the present invention may be more than 0% (w / w) and less than 100% (w / w).
  • the total content (total concentration) of the active ingredients in the preparation of the present invention is, for example, 1 ppm (w / w) or more, 10 ppm (w / w) or more, 100 ppm (w / w) or more, or 1000 ppm (w / w). It may be 99.9% (w / w) or less, 50% (w / w) or less, 10% (w / w) or less, or 1% (w / w) or less. Or a combination thereof.
  • the content (concentration) of the metal-containing yeast in the preparation of the present invention is, for example, 0 by dry matter weight per 1 oxidase. 0.000000015 g to 1.5 g is preferable, and 0.000000015 g to 0.015 g is more preferable.
  • the content (concentration) of transglutaminase in the preparation of the present invention is preferably, for example, 0.001 U to 1000 U, more preferably 0.01 U to 100 U per oxidase. .
  • the content (concentration) of the calcium component in the preparation of the present invention is preferably 0.000005 g to 50 g, more preferably 0.00005 g to 5 g, per 1 oxidase. .
  • an oxidase such as glucose oxidase
  • the activity of an oxidase can be measured according to a conventional method.
  • the following method can be exemplified as a method for measuring glucose oxidase activity.
  • Hydrogen peroxide is generated by allowing glucose oxidase to act in the presence of oxygen using glucose as a substrate.
  • a quinoneimine dye is produced by allowing peroxidase to act on the produced hydrogen peroxide in the presence of aminoantipyrine and phenol.
  • the produced quinoneimine dye is measured at a wavelength of 500 nm, and the amount of enzyme required to oxidize 1 ⁇ mol of glucose per minute is defined as 1 U (unit). Specifically, it is as follows.
  • Glucose oxidase was dissolved in 0.1 mol / L phosphate buffer (potassium dihydrogen phosphate, adjusted to pH 7.0 with aqueous sodium hydroxide) with stirring, diluted 50-fold with 0.1 mol / L phosphate buffer, Use GO solution.
  • the analysis cell is mixed with a phenol-containing buffer (Milli-Q, 1.36 g of potassium dihydrogen phosphate, 3 mL of 5% phenol reagent solution, 3 mL of 5% Triton X-100 solution, and adjusted to pH 7.0, 100 mL with an aqueous sodium hydroxide solution.
  • Adjustment 2.0 mL, 10% glucose solution 500 ⁇ L, 0.01% peroxidase solution (using PO “amano” 3 (1250U ⁇ 250U)) 500 ⁇ L, 0.4% 4-aminoantipyrine solution 100 ⁇ L, respectively, Mix by inversion and hold at 37 ⁇ 0.1 ° C for 10 minutes. Put 100 ⁇ L of GO solution in the above analysis cell, automatically measure 11 points every 30 seconds for 5 minutes, and measure the GO activity value from the increment (slope) between 120 seconds and 300 seconds. In the blank section, the value measured by adding 0.1 mol / L phosphate buffer instead of the GO solution is used and subtracted from the GO test section. For oxidase other than glucose oxidase, the amount of enzyme required to oxidize 1 ⁇ mol of substrate per minute is defined as 1 U (unit).
  • transglutaminase is measured and defined by the hydroxamate method. That is, in a reaction system using benzyloxycarbonyl-L-glutaminylglycine and hydroxylamine as substrates in a Tris buffer solution at a temperature of 37 ° C. and pH 6.0, transglutaminase was allowed to act, and the resulting hydroxamic acid was added in the presence of trichloroacetic acid. Then, the absorbance at 525 nm is measured, the amount of hydroxamic acid is determined by a calibration curve, and the amount of enzyme that produces 1 ⁇ mol of hydroxamic acid per minute is defined as 1 unit (1 U) No. 64-27471).
  • the concentration of each active ingredient in the preparation of the present invention can be set so as to satisfy, for example, the total concentration and content ratio of the active ingredients exemplified above.
  • the concentration of each active ingredient in the preparation of the present invention can be set so that, for example, when the cheese is produced using the composition of the present invention, the amount of each active ingredient added is within a desired range. it can.
  • the amount of each active ingredient added may be, for example, in the range exemplified in the description of the method of the present invention (described later).
  • each component contained in the formulation of the present invention may be mixed with each other and contained in the formulation of the present invention, either separately or in any combination. Separately, it may be contained in the preparation of the present invention.
  • the formulations of the present invention may be provided as a set of oxidizing agent and metal component, each packaged separately. In such a case, the components included in the set can be used together as appropriate at the time of use.
  • an active ingredient that is, an oxidizing agent, a metal component, a transglutaminase, and a calcium component (only when used for transglutaminase and calcium component)
  • a modified cheese is obtained by processing a milk raw material with an active ingredient to produce cheese.
  • the method of the present invention is a method for modifying cheese, comprising treating a milk raw material with an active ingredient.
  • mode of the method of this invention is a manufacturing method of cheese including processing a milk raw material with an active ingredient. “Processing milk ingredients with active ingredients” is also referred to as “acting active ingredients on milk ingredients”. Further, the process of “treating milk raw materials with active ingredients” is also referred to as “reforming process”.
  • the description about the usage mode of the active ingredient in the preparation of the present invention can be applied mutatis mutandis. That is, the method of the present invention is specifically a method for modifying cheese, comprising treating a milk raw material with an oxidizing agent and a metal component. Moreover, the one aspect
  • mode of the method of this invention is a manufacturing method of cheese specifically including processing a milk raw material with an oxidizing agent and a metal component. The method of the present invention may or may not further comprise treating the milk raw material with transglutaminase. The method of the present invention may or may not further comprise treating the milk raw material with a calcium component.
  • a milk raw material can be treated with an active ingredient by treating the milk raw material with the preparation of the present invention.
  • the method of the present invention may be a method for modifying cheese, comprising treating a milk raw material with the formulation of the present invention.
  • mode of the method of this invention may be a manufacturing method of cheese including processing a milk raw material with the formulation of this invention.
  • the cheese of the present invention can be produced from milk raw materials by the same method as ordinary cheese except that the milk raw materials are treated with active ingredients. That is, the method of this invention may include the process of manufacturing cheese which is mentioned later.
  • Milk raw material is a food raw material containing milk protein.
  • a milk raw material will not be restrict
  • milk protein include casein and whey protein (whey protein).
  • whey protein include ⁇ -lactalbumin and ⁇ -lactoglobulin.
  • the milk raw material may contain, for example, one or more of these milk proteins, or may contain all of them.
  • the milk raw material preferably contains at least casein.
  • the content (concentration) of milk protein in the milk raw material can be measured, for example, by measuring nitrogen by the Kjeldahl method and multiplying by the protein conversion factor.
  • the milk raw material include milk, goat milk, sheep milk, buffalo milk, reindeer milk, donkey milk, and camel milk.
  • the raw milk material may or may not be raw milk (raw milk).
  • the milk raw material may or may not be subjected to a treatment such as a heat treatment or a homogenization treatment.
  • the ingredients of the milk raw material may or may not be adjusted.
  • the milk raw material may be, for example, whole milk, skim milk, partially skimmed milk, whey, cream, buttermilk, processed products thereof, component preparations thereof, or combinations thereof.
  • the component-adjusted product include calcium-enriched milk.
  • the milk raw material one kind of raw material may be used, or two or more kinds of raw materials may be used in combination.
  • the milk raw material When the milk raw material is heat-treated, the milk raw material may be sterilized (sterilized) by the heat treatment.
  • the heat treatment is also referred to as “having a heating history”.
  • the temperature of the heat treatment may be, for example, 60 ° C. or higher, 80 ° C. or higher, 100 ° C. or higher, or 120 ° C. or higher, 150 ° C. or lower, or a combination thereof.
  • the heat treatment time may be, for example, 0.5 seconds or more, 1 second or more, 5 seconds or more, or 10 seconds or more, 30 minutes or less, 5 minutes or less, 1 minute or less, 30 seconds or less, 15 seconds. Hereinafter, it may be 5 seconds or less, or 3 seconds or less, or a combination thereof.
  • heat treatment at a low temperature also referred to as “low temperature heat treatment”
  • heat treatment at a high temperature also referred to as “high temperature heat treatment”
  • heat treatment at an extremely high temperature also referred to as “ultra high temperature heat treatment”.
  • the conditions for the low temperature heat treatment include the conditions for the pasteurization of milk, for example, the conditions of heating at 63 to 68 ° C. for about 30 minutes.
  • the conditions for the high-temperature heat treatment include conditions for high-temperature sterilization treatment of milk, for example, conditions of heating at 71 to 75 ° C. for about 15 seconds.
  • Examples of the conditions for the ultrahigh temperature heat treatment include conditions for ultrahigh temperature sterilization and ultrahigh temperature sterilization of milk.
  • the temperature of the ultrahigh temperature heat treatment is, for example, usually 120 ° C. or higher, and preferably 120 to 150 ° C.
  • the time of the ultrahigh temperature heat treatment is, for example, usually 0.5 to 15 seconds, preferably 1 to 5 seconds, more preferably 1 to 3 seconds.
  • the ultra-high temperature heat treatment may be a direct heating method or an indirect heating method.
  • the ultra high temperature heat treatment may involve preheating. In general, the direct heating method often does not involve preheating, but the indirect heating method often involves preheating. Examples of the preheating conditions include heating at 80 to 85 ° C. for 1 to 5 minutes.
  • a milk raw material that has been subjected to high-temperature heat treatment such as whole milk that has been subjected to high-temperature heat treatment, may be referred to as “ultra-high temperature pasteurized milk”.
  • ultra-high temperature pasteurized milk it is difficult or impossible to produce cheese using ultra-high temperature pasteurized milk as a raw material in a normal cheese manufacturing method, but according to the method of the present invention, high-quality pasteurized milk is used as a raw material. Can be manufactured.
  • the curdling step specifically refers to a step of aggregating (coagulating) components in the milk raw material such as milk protein.
  • the curdling step can be performed, for example, by adding lactic acid bacteria (lactic acid fermentation), adding curdling enzymes, adding acid, heating, or a combination thereof.
  • lactic acid bacteria may be added to perform lactic acid fermentation, and then rennet may be added to further advance the curdling process.
  • lactic acid bacteria include Lactococcus bacteria, Lactobacillus bacteria, and Bifidobacterium bacteria.
  • lactic acid bacteria what is marketed as a cheese starter can be utilized, for example.
  • the curdling enzyme include rennet and chymosin.
  • the origin of the curdling enzyme is not particularly limited.
  • the milk-clotting enzyme may be derived from any microorganism, animal, plant, or the like.
  • a milk coagulation enzyme a homologue or artificially modified product of a known milk coagulation enzyme may be used.
  • the curdling enzyme may be a recombinant enzyme. Examples of the acid include vinegar and lemon juice.
  • the time of the curdling process may be, for example, 15 minutes or more, 30 minutes or more, 45 minutes or more, 1 hour or more, 2 hours or more, or 3 hours or more, or 10 hours or less. It may be a combination. Aggregates (cheese curd) are produced by the curdling process.
  • Fresh cheese is obtained by separating and collecting the cheese curd from whey.
  • the separation step can be performed by, for example, shredding, stirring, pressing, natural separation (separation by its own weight), or a combination thereof.
  • the recovered cheese curd fresh cheese
  • the recovered cheese curd may be further subjected to processes such as molding, salting, drying, and aging.
  • Aged cheese is obtained by passing through an aging process. Natural cheese (fresh cheese or ripened cheese) thus obtained can be heated and melted to produce process cheese.
  • food / beverage products containing cheese, such as cheese food can be manufactured from cheese as a raw material.
  • the active ingredient may act on the milk raw material at any stage of the cheese production process as long as the effect of modifying the cheese is obtained.
  • the active ingredient can act on the milk raw material as it is or by appropriately preparing a solution and coexisting with the milk raw material.
  • the active ingredient may be added to the milk raw material, or the treatment liquid containing the active ingredient and the milk raw material may be mixed.
  • the operation of allowing such active ingredients to coexist with the milk raw material is also collectively referred to as “addition” of the active ingredients.
  • the order in which the active ingredients are allowed to act on the milk raw material is not particularly limited.
  • the active ingredients may be added to and act on the milk ingredients all at the same time, or may be added and acted on the milk ingredients separately or separately in any combination.
  • the active ingredient is preferably added before the completion of the curdling process.
  • the active ingredient may be added, for example, at the same time as or before or after the addition of lactic acid bacteria, or at the same time as or before or after the addition of rennet.
  • the treatment with the preparation of the present invention can be carried out in the same manner.
  • the implementation conditions of the reforming step in the method of the present invention are not particularly limited as long as a cheese reforming effect is obtained.
  • the conditions for carrying out the reforming step in the method of the present invention can be appropriately set according to various conditions such as the type and amount of the active ingredient and the type of milk raw material.
  • the reaction time is not particularly limited as long as the oxidase can act on the substrate substance.
  • the reaction time may be a very short time or a very long time.
  • the reaction time is, for example, preferably 1 minute to 24 hours, more preferably 5 minutes to 24 hours, and even more preferably 5 minutes to 2 hours.
  • the reaction temperature is not particularly limited as long as the oxidase remains active.
  • the reaction temperature is preferably 0 to 80 ° C., for example. That is, for example, a sufficient reaction time can also be obtained through a normal curdling process in the cheese manufacturing process.
  • the cheese production process may also serve as the reforming process, or a separate reforming process may be performed.
  • ingredients other than milk raw materials and active ingredients may be used as long as a cheese modification effect is obtained.
  • examples of such components include raw materials that can be normally used for cheese production other than milk raw materials.
  • the description about components other than the active ingredient in the formulation of this invention can apply mutatis mutandis.
  • the amount ratio of the milk raw material to the total raw materials (all components) in the method of the present invention is not particularly limited as long as cheese can be produced by the method of the present invention.
  • the amount ratio of the milk raw material to the total raw materials (all components) in the method of the present invention is, for example, 50% (w / w) or higher, 70% (w / w) or higher, 90% (w / w) or higher, 95% (W / w) or more, or 99% (w / w) or more.
  • the addition amount and the addition amount ratio of each component (that is, the active component and other components as necessary) in the method of the present invention are not particularly limited as long as a cheese reforming effect is obtained.
  • the use amount and addition ratio of each component in the method of the present invention can be appropriately set according to various conditions such as the conditions for carrying out the reforming step and the type of milk raw material.
  • the amount of oxidase added is preferably 0.05 U to 200 U, more preferably 0.1 U to 100 U, and more preferably 0.5 U to 20 U per gram of milk protein. Further preferred.
  • the addition amount of the metal-containing yeast is preferably 0.00003 g to 0.03 g, for example, in terms of dry matter weight per gram of milk raw material, and 0.0003 to 0 0.03 g is more preferable.
  • the amount of metal-containing yeast added is, for example, 0.0000000015 g to 1.5 g in terms of dry matter weight per 1 oxidase.
  • 0.00000015g to 0.015g is more preferable.
  • transglutaminase When transglutaminase is used as an active ingredient, the amount of transglutaminase added is preferably, for example, 0.00033U to 33U, more preferably 0.0033U to 3.3U per gram of milk protein. When oxidase and transglutaminase are used as active ingredients, the amount of transglutaminase added is, for example, preferably 0.001 U to 1000 U, more preferably 0.01 U to 100 U per 1 U of oxidase.
  • the amount of calcium component added is preferably 0.001 to 1 g, more preferably 0.01 to 1 g, and more preferably 0.03 to 0. 5 g is more preferable.
  • the amount of calcium component added is preferably, for example, 0.000005 g to 50 g, more preferably 0.00005 g to 5 g, per 1 oxidase.
  • a substrate for an oxidase such as glucose or lactose may be used in combination.
  • an oxidase and its substrate together for example, cheese can be modified with a smaller amount of enzyme compared to the case of adding only an oxidase, and thus the amount of oxidase added can be reduced.
  • it is effective to add an oxidase substrate when the content of oxidase substrates such as glucose and lactose in the milk raw material is small.
  • the amount of glucose added is preferably 0.00001 g to 0.1 g, more preferably 0.0001 g to 0.01 g, with respect to 1 g of the milk raw material.
  • Example 1 Ultra-high temperature pasteurized milk (Koshin Milk Industry Co., Ltd., heating history 130 ° C., 2 seconds) 1021 g and pasteurized milk (Takashi Milk Industry Co., Ltd., heating history 66 ° C., 30 minutes) 1021 g, respectively, at 35 ° C. for 30 minutes in a thermostatic bath Keep warm. Thereafter, 1 ml of a solution obtained by dissolving 0.3541 g of lactic acid bacteria R-707 (Christian Hansen Japan Co., Ltd.) in 10 ml of milk was added, and the mixture was allowed to stand at 35 ° C. for 60 minutes.
  • glucose oxidase, glucose, and metal-containing yeast were added in the addition amounts shown in Table 1, and immediately, a solution of 0.2 g of Rennet CHY-MAX (Christian Hansen Japan Co., Ltd.) dissolved in 5 ml of water 0 .5 ml was added and curd was started.
  • Rennet CHY-MAX Christian Hansen Japan Co., Ltd.
  • GO As glucose oxidase, “Sumiteam PGO” (manufactured by Shin Nippon Chemical Industry Co., Ltd., hereinafter sometimes referred to as “GO”) is used.
  • metal-containing yeast “iron-containing yeast” (manufactured by Seti Co., Ltd.) An iron content of 5% by weight, hereinafter sometimes referred to as “iron yeast”) was used.
  • “U / gp” of GO indicates GO activity (U) per gram of milk protein.
  • the produced cheese curd was cut into 2 cm length and breadth with a metal skewer to promote the discharge of whey. Then, the cheese curd was transferred to a strainer with a net, and whey was discharged at room temperature for 3 hours. The whey was discharged so that the whey was uniformly discharged by its own weight by inverting the top and bottom of the cheese curd every 30 minutes. After the whey was discharged, the cheese curd was transferred to a thermostat having a temperature of 22 ° C. and a humidity of 50%, and left to stand for 15 hours to obtain cheese.
  • the yield (measured weight g / 1021 g ⁇ 100 (%)) of the obtained cheese was measured. Furthermore, the obtained cheese was divided into 4 equal parts and cut into 2 cm widths, and then physical properties were evaluated with a texture analyzer (Eihiro Seiki, TA-XT2i). As physical properties, “breaking strength” which is an index of “hardness” of cheese was measured. Furthermore, in order to confirm the taste and texture of the obtained cheese, the “hardness” of the cheese was evaluated in increments of 0.5 from 0 points to 5 points by sensory evaluation by a panel of five people. “Hardness” was defined as the strength of stress felt on teeth when chewing.
  • the sensory score means that “5 points” is very strong, “4 points” is quite strong, “3 points” is moderately strong, “2 points” is slightly weak, and “1 point” is weak. Results are shown as the average score of 5 panels. In addition, comments were made in terms of flavor, taste, color, and other aspects.
  • FIG. 1 shows the measurement results of physical properties
  • FIG. 2 shows the measurement results of yield
  • FIG. 3 shows the photograph of the obtained cheese
  • Table 2 shows the sensory evaluation results.
  • cheese showing a breaking strength of 300 g or more and a yield of about 19% was obtained, and high evaluation was also obtained in sensory evaluation.
  • ultrahigh-temperature pasteurized milk the additive-free product had low breaking strength and yield, and good cheese could not be obtained.
  • iron-containing yeast was added alone to ultra-high temperature pasteurized milk, the breaking strength was sufficiently improved to about 300 g, but the yield was low.
  • Example 2 Cheese was produced by the same procedures as in Example 1 with the formulations shown in Tables 4 to 6, and the obtained cheese was evaluated.
  • “GO” represents a glucose oxidase preparation “Sumiteam PGO” (manufactured by Shin Nippon Chemical Industry Co., Ltd.)
  • “TG” represents a transglutaminase preparation “Activa TG” (manufactured by Ajinomoto Co., Inc.).
  • U / gp” for GO and TG indicates enzyme activity (U) per gram of milk protein.
  • the sensory evaluation criteria are shown in Table 3. The sensory evaluation was carried out by assigning scores in increments of 0.5 in the range of 5 to 1 points.
  • the target values of cheese quality were 250 (g) breaking strength, 19.8 (%) yield (amount of milk curd), 3.0 points of texture, and 3.0 points of milk and flavor.
  • cheese can be modified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Dairy Products (AREA)

Abstract

 チーズの製造方法及びチーズ改質用の製剤を提供する。酸化剤及び金属成分で超高温殺菌乳等の乳原料を処理してチーズを製造することにより、品質のよいチーズが得られる。

Description

チーズの製造方法及びチーズ改質用の製剤
 本発明は、チーズの製造方法及びチーズ改質用の製剤に関するものである。
 チーズは、ナチュラルチーズとプロセスチーズに分けられる。ナチュラルチーズは、さらに、非熟成チーズ(フレッシュチーズ)と熟成チーズに分けられる。
 以下、一般的なチーズの製法について例示する。まず、牛乳等の乳原料に凝乳酵素等を添加し、凝集物(チーズカード)を形成させる。続いて、チーズカードを乳清(ホエイ)と分離回収することにより、フレッシュチーズが得られる。さらに、フレッシュチーズを熟成させることにより、熟成チーズが得られる。また、このようにして得られるナチュラルチーズ(フレッシュチーズや熟成チーズ)を加熱溶融してプロセスチーズを製造することができる。特にフレッシュチーズにおいては、保水量が増加する程、歩留まりも増加する。一方、過保水であるチーズは、一般的に、物理的強度が低く、チーズとして好ましくない食感となる。よって、嗜好性の観点や経済的な観点から、保水力は高いが、チーズとして好ましい食感も示すチーズが望まれている。
 一般的なチーズの製法において、チーズは、加熱殺菌工程を得ていない原料乳、63~68℃で30分程度処理された低温殺菌乳、または71~75℃で15秒程度処理された高温殺菌乳を原料として製造される。一方、120℃以上で加熱処理された超高温殺菌乳を原料とした場合、チーズカードが形成されず、チーズを製造できないとされている。ここで、低温殺菌乳や高温殺菌乳は消費期間が10日程度と短く、よって、原料乳の調達に難がある酪農地帯からの遠隔地等ではチーズを製造できないという課題があった。一方、超高温殺菌乳は無菌包装を施した場合は常温6か月程度の長期保存が出来るため、超高温殺菌乳を原料としてチーズを製造できれば、原料乳の調達に難がある酪農地帯からの遠隔地等でもチーズを製造できるという大きな利点が得られる。
 非特許文献1には、80℃~130℃で加熱処理された脱脂乳に塩酸を添加することにより、チーズを製造する方法が開示されている。一方、非特許文献1には、酸化剤や金属成分を利用することは開示されていない。
 特許文献1には、グルコースオキシダーゼ等のタンパク質架橋酵素を利用したチーズの製造方法が開示されている。一方、特許文献1には、金属成分を利用することは開示されていない。また、特許文献1には、超高温殺菌乳を原料としてチーズを製造した実施例はない。
 特許文献2には、ラクトビオン酸を含むチーズの製造方法であって、乳成分、ラクトース及びオキシダーゼを含む液体チーズミックスを調製し、前記ラクトースの少なくとも一部を、前記オキシダーゼを使用して触媒的に酸化することによって前記チーズミックスの中でラクトビオン酸を生成する工程と、前記チーズミックスを凝固させてチーズ製品を得る工程とを含むチーズの製造方法が開示されている。一方、特許文献2には、金属成分を利用することや、超高温殺菌乳を原料としてチーズを製造することは開示されていない。
 特許文献3には、超高温殺菌乳に対し塩化カルシウムを添加することを含むチーズの製造方法が開示されている。一方、特許文献3には、酸化剤を利用することは開示されていない。
 特許文献4には、水産物原料にグルコースオキシダーゼ及び金属含有酵母を添加することを特徴とする水産加工食品の製造方法、並びにグルコースオキシダーゼ及び金属含有酵母を含有する水産加工食品改質用の酵素製剤が開示されている。一方、特許文献4には、チーズの製造方法やチーズ改質用の製剤については開示されていない。
特表2014-516576公報 特許第4249491号公報 FR2357183A1公報 WO2014/0042279A1公報
characteristics of Mozzarella Cheese Made by Direct Acidification from Ultra-High-Temperature Processed Milk. H.W. Schafer. et.al. April 1975, Volume 58, Issue 4, Pages 494-501
 本発明は、チーズの製造方法及びチーズ改質用の製剤を提供することを課題とする。
 本発明者等は、鋭意研究を行った結果、グルコースオキシダーゼ等の酸化剤と鉄含有酵母等の金属成分とを併用することにより、超高温殺菌乳等の加熱履歴を有する乳原料から品質のよいチーズを製造できることを見出し、本発明を完成するに至った。
 即ち、本発明は以下の通り例示できる。
[1]
 乳蛋白質を含有する食品原料を酸化酵素及び金属成分で処理することを含む、チーズの製造方法であって、
 前記金属成分が、金属含有酵母および金属結合型ラクトフェリンから選択される1種またはそれ以上の成分である、方法。
[2]
 前記食品原料が、全乳、脱脂乳、部分脱脂乳、乳清、クリーム、バターミルク、それらの加工品、およびそれらの成分調整品から選択される1種またはそれ以上の原料である、前記方法。
[3]
 前記酸化酵素が、ラクトースオキシダーゼおよびグルコースオキシダーゼから選択される1種またはそれ以上の酵素である、前記方法。
[4]
 前記酸化酵素が、乳蛋白質1g当たり、0.05U~200U添加される、前記方法。
[5]
 前記金属含有酵母が、鉄含有酵母である、前記方法。
[6]
 前記金属含有酵母が、食品原料1g当たり、乾物重量換算で、0.00003g~0.03g添加される、前記方法。
[7]
 さらに、前記食品原料をトランスグルタミナーゼ及び/又はカルシウム塩で処理することを含む、前記方法。
[8]
 前記食品原料が、加熱処理された乳蛋白質を含有する食品原料である、前記方法。
[9]
 前記食品原料が、120℃以上で0.5~15秒間加熱処理されている、前記方法。
[10]
 酸化酵素及び金属成分を含有する、チーズ改質用の製剤であって、
 前記金属成分が、金属含有酵母および金属結合型ラクトフェリンから選択される1種またはそれ以上の成分である、製剤。
[11]
 前記酸化酵素が、ラクトースオキシダーゼおよびグルコースオキシダーゼから選択される1種またはそれ以上の酵素である、前記製剤。
[12]
 前記金属含有酵母が、鉄含有酵母である、前記製剤。
[13]
 前記製剤が、前記金属含有酵母を、該製剤に含有される酸化酵素1U当たり、乾物重量換算で、0.0000000015g~1.5g含有する、前記製剤。
[14]
 さらに、トランスグルタミナーゼ及び/又はカルシウム塩を含有する、前記製剤。
[15]
 加熱処理された、乳蛋白質を含有する食品原料からチーズを製造するために用いられる、前記製剤。
チーズの破断強度の測定結果を示す図。 チーズの歩留まりの測定結果を示す図。 チーズの外観を示す図(写真)。
 以下、本発明を詳細に説明する。なお、本発明に関する下記の説明は、いずれも単独で採用してもよく、適宜組み合わせて採用してもよい。
<1>チーズ
 本発明において、チーズの種類は特に制限されない。チーズは、ナチュラルチーズであってもよく、プロセスチーズであってもよい。また、チーズは、非熟成チーズ(フレッシュチーズ)であってもよく、熟成チーズであってもよい。また、チーズは、軟質チーズ、半硬質チーズ(セミハードチーズ)、硬質/超硬質チーズ(ハードチーズ)のいずれであってもよい。ナチュラルチーズとしては、サントモール、クロタン、ヴァランセ等のシェーブルチーズ(山羊乳チーズ)、カッテージ、クリームチーズ、ストリングチーズ、モッツァレラ、リコッタ等のフレッシュチーズ、ポンレヴェック、リヴァロ、リンバーガー等のウォッシュチーズ、ゴーダ、サムソー等のセミハードチーズ、エメンタール、コンテ、パルミジャーノレッジャーノ等のハードチーズ、カマンベール、ブリー等の白カビ熟成チーズ、ゴルゴンゾーラ、スティルトン、ロックフォール等の青カビ熟成チーズが挙げられるが、これに限定されるものではない。プロセスチーズとしては、これらナチュラルチーズを加熱溶融して製造されるチーズが挙げられる。
<2>本発明の製剤
 本発明の製剤は、酸化剤及び金属成分を含有する、チーズ改質用の製剤である。本発明の製剤は、さらに、トランスグルタミナーゼを含有していてもよく、していなくてもよい。本発明の製剤は、さらに、カルシウム成分を含有していてもよく、していなくてもよい。すなわち、本発明の製剤は、例えば、酸化剤、金属成分、およびトランスグルタミナーゼを含有する製剤であってもよく、酸化剤、金属成分、およびカルシウム成分を含有する製剤であってもよく、酸化剤、金属成分、トランスグルタミナーゼ、およびカルシウム成分を含有する製剤であってもよい。本発明において、酸化剤、金属成分、トランスグルタミナーゼ、およびカルシウム成分(トランスグルタミナーゼおよびカルシウム成分については利用(含有または添加)される場合のみ)を総称して「有効成分」ともいう。
 本発明の製剤は、チーズを改質するために用いることができる。具体的には、本発明の製剤で乳蛋白質を含有する食品原料(「乳原料」ともいう)を処理してチーズを製造することにより、改質されたチーズが得られる。すなわち、ここでいう「チーズ改質用の製剤」とは、具体的には、チーズ製造用の補助剤であってよい。なお、チーズにおける「改質」には、有効成分を利用しない場合でもチーズを製造できるが、有効成分を利用することにより有効成分を利用しない場合と比較して改質されたチーズを製造できる場合に限られず、有効成分を利用しない場合にはチーズを製造できないが、有効成分を利用することでチーズを製造できるようになる場合も包含される。チーズにおける「改質」としては、歩留りの向上、破断強度の向上、乳風味の向上、成型性の向上が挙げられる。「歩留まり」とは、乳原料の重量に対するチーズの重量の比率である。歩留りの向上は、例えば、保水量の向上、乳蛋白質量の向上、またはそれらの組み合わせによるものであってよい。「破断強度」とは、チーズを噛んだ際の「硬さ」の指標となる物性である。
 酸化剤としては、酸化酵素が挙げられる。酸化酵素は、酸化反応を触媒できるものであれば特に制限されない。酸化酵素は、例えば、直接的または間接的に処理対象の乳原料の酸化に寄与するものであってよい。酸化酵素としては、ラクトースオキシダーゼ、グルコースオキシダーゼ、アスコルビン酸オキシダーゼ、フェノールオキシダーゼ、リジルオキシダーゼ等が挙げられる。中でも、ラクトースオキシダーゼおよびグルコースオキシダーゼから選択される酵素が好ましい。ラクトースオキシダーゼは、ラクトース、酸素、水を基質としてラクトビオン酸と過酸化水素を生成する反応を触媒する酵素である。ラクトースオキシダーゼとしては、特表2007-535331に記載の炭水化物オキシダーゼが挙げられる。グルコースオキシダーゼは、グルコース、酸素、水を基質としてグルコノラクトン(グルコノラクトンは、非酵素的にグルコン酸へと加水分解される)と過酸化水素を生成する反応を触媒する酵素である。アスコルビン酸オキシダーゼは、アスコルビン酸と酸素を基質としてデヒドロアスコルビン酸と水を生成する反応を触媒する酵素である。フェノールオキシダーゼは、モノフェノール類、ジフェノール類、ポリフェノール類等のフェノール類を酸化する反応を触媒する酵素の総称である。フェノールオキシダーゼは、チロシナーゼ、ラッカーゼ、またはポリフェノールオキシダーゼとも呼ばれる。例えば、ラクトースオキシダーゼやグルコースオキシダーゼの触媒反応により生成された過酸化水素は、蛋白質中のSH基を酸化することでSS結合(ジスルフィド結合)生成を促進し、蛋白質中に架橋構造を形成し得る。酸化酵素の由来は特に制限されない。酸化酵素は、微生物、動物、植物等いずれの由来のものであってもよい。また、酸化酵素としては、公知の酸化酵素のホモログや人為的改変体を利用してもよい。例えば、グルコースオキシダーゼとしては、麹菌等の微生物由来、植物由来のものなど種々の起源のものが知られているが、それらいずれのグルコースオキシダーゼを用いてもよい。また、グルコースオキシダーゼは、組み換え酵素であってもよい。酸化酵素として、具体的には、「スミチームPGO」という商品名で新日本化学工業(株)より市販されている微生物由来のグルコースオキシダーゼが例示される。酸化酵素は、酸化酵素以外の成分を含んでいてもよく、含んでいなくてもよい。酸化酵素は、例えば、他の酵素を含有していてもよい。例えば、市販のグルコースオキシダーゼ製剤にはカタラーゼを含有するものが多く見られるが、酸化酵素としては、そのような酸化酵素と他の酵素の混合物を用いてもよい。酸化剤としては、1種の酸化剤を用いてもよく、2種またはそれ以上の酸化剤を組み合わせて用いてもよい。
 金属成分としては、金属や金属含有物が挙げられる。金属成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
 金属の種類は特に制限されない。金属としては、亜鉛、カルシウム、クロム、セレン、銅、マグネシウム、マンガン、モリブデン、鉄、バナジウム等が例示される。金属は、カルシウム以外の金属であってもよい。中でも、亜鉛、マグネシウム、銅、鉄から選択される金属が好ましく、鉄がより好ましい。金属は、単体やイオン等のいずれの形態であってもよい。金属としては、1種の金属を用いてもよく、2種またはそれ以上の金属を組み合わせて用いてもよい。
 金属含有物としては、金属塩、金属含有酵母、ラクトフェリンが挙げられる。中でも、金属含有酵母およびラクトフェリンから選択される成分が好ましい。金属含有物に含有される金属については、上述した金属(有効成分の1つとしての金属)の記載を準用できる。すなわち、金属含有物に含有される金属は、カルシウム以外の金属であってもよい。金属含有物は、1種の金属を含有してもよく、2種またはそれ以上の金属を組み合わせて含有してもよい。金属含有物としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
 金属塩としては、亜鉛塩、カルシウム塩、クロム塩、セレン塩、銅塩、マグネシウム塩、マンガン塩、モリブデン塩、鉄塩、バナジウム塩等が例示される。中でも、亜鉛塩、マグネシウム塩、鉄塩から選択される金属塩が好ましく、鉄塩がより好ましい。鉄塩としては、塩化鉄、塩化第二鉄、クエン酸第一鉄ナトリウム、クエン酸鉄、クエン酸鉄アンモニウム、グルコン酸第一鉄、三二酸化鉄、鉄クロロフィリンナトリウム、乳酸鉄、ピロリン酸第二鉄、硫酸鉄、硫酸第一鉄、ヘム鉄等が例示される。金属塩は、塩やイオン等のいずれの形態であってもよい。
 金属含有酵母としては、例えば、酵母培養時に金属を添加し、酵母菌体内に取り込ませたものが知られているが、これに限定されない。金属含有酵母としては、亜鉛含有酵母、カルシウム含有酵母、クロム含有酵母、セレン含有酵母、銅含有酵母、マグネシウム含有酵母、マンガン含有酵母、モリブデン含有酵母、鉄含有酵母、バナジウム含有酵母等が例示される。中でも、亜鉛含有酵母、マグネシウム含有酵母、鉄含有酵母から選択される酵母が好ましく、鉄含有酵母がより好ましい。なお、金属含有酵母に含有される金属は、金属塩等の金属含有物であってもよい。金属含有酵母において、金属や金属塩は、単体、塩、イオン等のいずれの形態で含有されていてもよい。本発明の金属含有酵母における金属含有量は、酵母の乾物重量1g当たり、例えば、0.001g~0.1g、好ましくは0.01g~0.08g、より好ましくは0.04g~0.06gであってよい。金属含有酵母は、粉末状、ペースト状、懸濁液状等のいずれの形態であってもよい。また、金属含有酵母は、生菌のままでも、殺菌したものでもよい。酵母の種類は特に制限されない。酵母としては、Saccharomyces cerevisiae等のSaccharomyces属に属する酵母、Schizosaccharomyces pombe等のSchizosaccharomyces属に属する酵母、Candida utilis等のCandida属に属する酵母が例示される。中でも、Saccharomyces属又はCandida属に属する酵母が好ましい。金属含有酵母として、具体的には、セティ(株)より「金属含有酵母」というカテゴリー名で市販されている鉄含有酵母が例示される。
 ここでいう「ラクトフェリン」とは、金属と結合したラクトフェリン(金属結合型ラクトフェリン)である。金属結合型ラクトフェリンとして、具体的には、鉄と結合したラクトフェリン(鉄-ラクトフェリン)が挙げられる。
 トランスグルタミナーゼは、タンパク質中のグルタミン残基とリジン残基を結合しタンパク質を架橋する反応を触媒する酵素である。特に、トランスグルタミナーゼを併用することにより、より強固なゲルが形成され、破断強度や歩留まりが向上すると期待される。トランスグルタミナーゼの由来は特に制限されない。トランスグルタミナーゼは、微生物、動物、植物等いずれの由来のものであってもよい。また、トランスグルタミナーゼとしては、公知のトランスグルタミナーゼのホモログや人為的改変体を利用してもよい。トランスグルタミナーゼは、組み換え酵素であってもよい。
 カルシウム成分としては、カルシウムやカルシウム含有物が挙げられる。カルシウムは、単体やイオン等のいずれの形態であってもよい。カルシウム含有物としては、カルシウム塩やカルシウム含有酵母が挙げられる。カルシウム塩としては、塩化カルシウム、クエン酸カルシウム、リン酸カルシウム、硫酸カルシウム、炭酸カルシウム、水酸化カルシウム、酸化カルシウム、焼成カルシウム等が例示される。カルシウム塩は、塩やイオン等のいずれの形態であってもよい。カルシウム成分としては、中でも、カルシウム塩が好ましく、塩化カルシウムがより好ましい。カルシウム成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
 金属成分としては、カルシウム成分を単独で選択してもよいが、通常は、カルシウム成分以外の金属成分を選択するのが好ましい。例えば、金属成分としてカルシウム成分以外の金属成分を選択し、さらにカルシウム成分を併用してもよい。なお、金属成分としてカルシウム成分以外の金属成分を選択しさらにカルシウム成分を併用することと、金属成分としてカルシウム成分以外の金属成分とカルシウム成分との組み合わせを選択することとは、同義であってよい。金属成分としてカルシウム成分を選択した場合、当該カルシウム成分は、金属成分とカルシウム成分とを兼ねる。
 本発明の製剤は、チーズの改質効果が得られる限り、有効成分以外の成分(以下、「他の成分」ともいう)を含有してもよい。他の成分としては、例えば、調味料、飲食品、または医薬品に配合して利用されるものを利用できる。他の成分としては、ラクトース、グルコース、デキストリン、増粘多糖類、澱粉、加工澱粉、還元麦芽糖等の賦形剤、植物蛋白質、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、グルタミン酸ナトリウム、動物エキス、魚介エキス、蛋白質加水分解物、蛋白質部分分解物等の調味料、炭酸ナトリウム、炭酸カリウム等のアルカリ剤(pH調整剤)、グルコン酸、クエン酸塩等のキレート剤、アスコルビン酸ナトリウム、グルタチオン、システイン等の酸化還元剤、アルギン酸、かんすい、油脂、色素、酸味料、香料等その他の食品添加物等が挙げられる。
 本発明の製剤は、他の成分として、例えば、酸化酵素の基質を含有していてよい。酸化酵素の基質としては、ラクトースオキシダーゼの基質であるラクトース、グルコースオキシダーゼの基質であるグルコース、アスコルビン酸オキシダーゼの基質であるアスコルビン酸、フェノールオキシダーゼの基質であるフェノール類が挙げられる。塩の形態を取り得る基質は、塩の形態で利用されてもよい。すなわち、「基質」という用語は、特記しない限り、フリー体の基質、その塩、またはそれらの混合物を意味してよい。塩としては、ナトリウム塩やカリウム塩が挙げられる。本発明の製剤は、酸化酵素とその基質を組み合わせて含有していてよい。すなわち、例えば、本発明の製剤は、ラクトースオキシダーゼとラクトースとを含有していてもよく、グルコースオキシダーゼとグルコースとを含有していてもよく、アスコルビン酸オキシダーゼとアスコルビン酸とを含有していてもよく、フェノールオキシダーゼとフェノール類とを含有していてもよい。一方、本発明の製剤は、或る酸化酵素を含有しない場合に、その基質を含有していてもよい。すなわち、例えば、本発明の製剤は、グルコースオキシダーゼを含有しない場合に、グルコースを含有していてもよい。
 本発明の製剤は、他の成分として、例えば、チーズの製造に有効な成分を含有していてよい。チーズの製造に有効な成分としては、乳酸菌や凝乳酵素が挙げられる。
 他の成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。本発明の製剤は、例えば、有効成分を適宜これら他の成分と混合して製造することができる。
 本発明の製剤の形態は特に制限されない。本発明の製剤は、液体状、ペースト状、顆粒状、粉末状等のいずれの形態であってもよい。
 本発明の製剤における各成分(すなわち、有効成分および必要によりその他の成分)の配合量(濃度)は、チーズの改質効果が得られる限り、特に制限されない。本発明の製剤における各成分の配合量(濃度)は、0%(w/w)より多く、100%(w/w)より少なくてよい。本発明の製剤における各成分の濃度は、成分の種類、チーズ製造の際の各成分の添加量、チーズ製造の際の本発明の製剤の使用量等の諸条件に応じて適宜設定することができる。
 本発明の製剤における有効成分の総含有量(総濃度)は、0%(w/w)より多く、且つ、100%(w/w)より少なくてよい。本発明の製剤における有効成分の総含有量(総濃度)は、例えば、1ppm(w/w)以上、10ppm(w/w)以上、100ppm(w/w)以上、または1000ppm(w/w)以上であってもよく、99.9%(w/w)以下、50%(w/w)以下、10%(w/w)以下、または1%(w/w)以下であってもよく、それらの組み合わせであってもよい。
 有効成分としてグルコースオキシダーゼ等の酸化酵素と鉄含有酵母等の金属含有酵母を用いる場合、本発明の製剤における金属含有酵母の含有量(濃度)は、酸化酵素1U当たり、乾物重量で、例えば、0.0000000015g~1.5gが好ましく、0.00000015g~0.015gがより好ましい。
 有効成分として酸化酵素とトランスグルタミナーゼを用いる場合、本発明の製剤におけるトランスグルタミナーゼの含有量(濃度)は、酸化酵素1U当たり、例えば、0.001U~1000Uが好ましく、0.01U~100Uがより好ましい。
 有効成分として酸化酵素とカルシウム成分を用いる場合、本発明の製剤におけるカルシウム成分の含有量(濃度)は、酸化酵素1U当たり、例えば、0.000005g~50gが好ましく、0.00005g~5gがより好ましい。
 尚、グルコースオキシダーゼ等の酸化酵素の活性は、常法に従って測定することができる。例えば、グルコースオキシダーゼ活性の測定法としては、以下の方法が例示できる。グルコースを基質として、酸素存在下でグルコースオキシダーゼを作用させることで過酸化水素を生成させる。生成した過酸化水素にアミノアンチピリン及びフェノール存在下でペルオキシダーゼを作用させることでキノンイミン色素を生成させる。生成したキノンイミン色素を波長500nmで測定し、1分間に1μmolのグルコースを酸化するのに必要な酵素量を1U(ユニット)と定義する。具体的には以下の通りである。グルコースオキシダーゼを0.1mol/Lリン酸塩緩衝液(リン酸二水素カリウム、水酸化ナトリウム水溶液でpH7.0に調整)に攪拌溶解させ、0.1mol/Lリン酸塩緩衝液で50倍希釈し、GO溶液とする。分析セルに、フェノール含有緩衝液(Milli-Q、リン酸二水素カリウム1.36g、5%フェノール試液3mL、5%トリトンX-100溶液3mLを混合して水酸化ナトリウム水溶液でpH7.0、100mLに調整)を2.0mL、10%グルコース溶液を500μL、0.01%パーオキシダーゼ溶液(PO”amano”3 (1250U±250U)を使用)を500μL、0.4% 4-アミノアンチピリン溶液を100μL、それぞれ順番に添加、転倒混合し、37±0.1℃に10分保持する。上記分析セルにGO溶液を100μL入れ、5分間、30秒毎に11点自動測定し、120秒と300秒の間の増分(傾き)からGO活性値を測定する。尚、ブランク区は上記にてGO溶液の代わりに0.1mol/Lリン酸塩緩衝液を入れて測定した値を用い、GO試験区から差し引く。グルコースオキシダーゼ以外の酸化酵素についても、1分間に1μmolの基質を酸化するのに必要な酵素量を1U(ユニット)と定義する。
 また、トランスグルタミナーゼの活性は、ヒドロキサメート法で測定され、かつ、定義される。すなわち、温度37℃、pH6.0のトリス緩衝液中、ベンジルオキシカルボニル-L-グルタミニルグリシン及びヒドロキシルアミンを基質とする反応系で、トランスグルタミナーゼを作用せしめ、生成したヒドロキサム酸をトリクロロ酢酸存在下で鉄錯体にし、次に、525nmにおける吸光度を測定し、ヒドロキサム酸量を検量線により求め、1分間に1μモルのヒドロキサム酸を生成させる酵素量を1ユニット(1U)と定義する(特開昭64-27471号公報参照)。
 本発明の製剤における各有効成分の濃度は、例えば、上記例示した有効成分の総濃度や含有比率を満たすように設定することができる。また、本発明の製剤における各有効成分の濃度は、例えば、本発明の組成物を利用してチーズを製造した際に、各有効成分の添加量が所望の範囲となるように設定することができる。各有効成分の添加量は、例えば、本発明の方法の説明(後述)において例示する範囲であってよい。
 本発明の製剤に含有される各成分(すなわち、有効成分および必要によりその他の成分)は、互いに混合されて本発明の製剤に含有されていてもよく、それぞれ別個に、あるいは、任意の組み合わせで別個に、本発明の製剤に含有されていてもよい。例えば、本発明の製剤は、それぞれ別個にパッケージングされた、酸化剤と金属成分とのセットとして提供されてもよい。このような場合、セットに含まれる成分は使用時に適宜併用することができる。
<3>本発明の方法
 本発明においては、有効成分(すなわち、酸化剤、金属成分、トランスグルタミナーゼ、およびカルシウム成分(トランスグルタミナーゼおよびカルシウム成分については利用される場合のみ))を利用して、チーズを改質することができる。具体的には、有効成分で乳原料を処理してチーズを製造することにより、改質されたチーズが得られる。すなわち、本発明の方法は、乳原料を有効成分で処理することを含む、チーズを改質する方法である。また、本発明の方法の一態様は、乳原料を有効成分で処理することを含む、チーズの製造方法である。なお、「乳原料を有効成分で処理する」ことを「乳原料に有効成分を作用させる」ともいう。また、「乳原料を有効成分で処理する」工程を「改質工程」ともいう。
 本発明の方法における有効成分の利用態様については、本発明の製剤における有効成分の利用態様についての記載を準用できる。すなわち、本発明の方法は、具体的には、乳原料を酸化剤及び金属成分で処理することを含む、チーズを改質する方法である。また、本発明の方法の一態様は、具体的には、乳原料を酸化剤及び金属成分で処理することを含む、チーズの製造方法である。本発明の方法は、さらに、乳原料をトランスグルタミナーゼで処理することを含んでいてもよく、いなくてもよい。本発明の方法は、さらに、乳原料をカルシウム成分で処理することを含んでいてもよく、いなくてもよい。
 本発明においては、例えば、乳原料を本発明の製剤で処理することにより、乳原料を有効成分で処理することができる。すなわち、言い換えると、本発明の方法は、乳原料を本発明の製剤で処理することを含む、チーズを改質する方法であってよい。また、本発明の方法の一態様は、乳原料を本発明の製剤で処理することを含む、チーズの製造方法であってよい。
 本発明のチーズは、乳原料を有効成分で処理すること以外は、通常のチーズと同様の方法によって乳原料から製造することができる。すなわち、本発明の方法は、後述するような、チーズを製造する工程を含んでいてよい。
 乳原料は乳蛋白質を含有する食品原料である。乳原料は、本発明の方法によりチーズを製造できるものであれば、特に制限されない。乳蛋白質としては、カゼインや乳清蛋白質(ホエイ蛋白質)が挙げられる。乳清蛋白質としては、α-ラクトアルブミンやβ-ラクトグロブリンが挙げられる。乳原料は、例えば、これらの乳蛋白質の1種またはそれ以上を含有していてもよく、全てを含有していてもよい。乳原料は、少なくとも、カゼインを含有するのが好ましい。乳原料における乳蛋白質の含有量(濃度)は、例えば、ケルダール法により窒素を測定し、タンパク質換算係数を乗ずることで測定できる。乳原料としては、牛乳、山羊乳、羊乳、水牛乳、トナカイ乳、ロバ乳、ラクダ乳が挙げられる。乳原料は、生乳(原乳)であってもよく、そうでなくてもよい。乳原料は、例えば、加熱処理やホモジナイズ処理等の処理がなされていてもよく、そうでなくてもよい。乳原料は、例えば、成分が調整されていてもよく、そうでなくてもよい。乳原料は、例えば、全乳、脱脂乳、部分脱脂乳、乳清(ホエイ)、クリーム、バターミルク、それらの加工品、それらの成分調整品、またはそれらの組み合わせであってよい。成分調整品としては、例えば、カルシウム強化乳が挙げられる。乳原料としては、1種の原料を用いてもよく、2種またはそれ以上の原料を組み合わせて用いてもよい。
 乳原料が加熱処理されている場合、加熱処理により乳原料が殺菌(滅菌)されてよい。なお、加熱処理がなされたことを、「加熱履歴を有する」ともいう。加熱処理の温度は、例えば、60℃以上、80℃以上、100℃以上、または120℃以上であってもよく、150℃以下であってもよく、それらの組み合わせであってもよい。加熱処理の時間は、例えば、0.5秒以上、1秒以上、5秒以上、または10秒以上であってもよく、30分以下、5分以下、1分以下、30秒以下、15秒以下、5秒以下、または3秒以下であってもよく、それらの組み合わせであってもよい。加熱処理としては、低温での加熱処理(「低温加熱処理」ともいう)、高温での加熱処理(「高温加熱処理」ともいう)、超高温での加熱処理(「超高温加熱処理」ともいう)が挙げられる。低温加熱処理の条件としては、牛乳の低温殺菌処理の条件、例えば、63~68℃で30分程度加熱する条件が挙げられる。高温加熱処理の条件としては、牛乳の高温殺菌処理の条件、例えば、71~75℃で15秒程度加熱する条件が挙げられる。超高温加熱処理の条件としては、牛乳の超高温殺菌処理や超高温滅菌処理の条件が挙げられる。超高温加熱処理の温度は、例えば、通常120℃以上であり、好ましくは120~150℃であってよい。超高温加熱処理の時間は、例えば、通常0.5~15秒であり、好ましくは1~5秒、より好ましくは1~3秒であってよい。超高温加熱処理は、直接加熱法であってもよく、間接加熱法であってもよい。超高温加熱処理は、予備加熱を伴ってもよい。一般的に、直接加熱法は予備加熱を伴わない場合が多いが、間接加熱法は予備加熱を伴う場合が多い。予備加熱の条件としては、80~85℃で1~5分加熱する条件が挙げられる。高温加熱処理がなされた全乳等の、高温加熱処理がなされた乳原料を、「超高温殺菌乳」という場合がある。特に、通常のチーズの製造法では超高温殺菌乳を原料としてチーズを製造するのが困難あるいは不可能であるが、本発明の方法によれば、超高温殺菌乳を原料として品質のよいチーズを製造することができる。
 チーズは、凝乳工程を経て製造することができる。凝乳工程とは、具体的には、乳蛋白質等の乳原料中の成分を凝集(凝固)させる工程をいう。凝乳工程は、例えば、乳酸菌の添加(乳酸発酵)、凝乳酵素の添加、酸の添加、加熱、またはそれらの組み合わせにより実施することができる。例えば、乳酸菌を添加して乳酸発酵を行い、次いで、レンネットを添加してさらに凝乳工程を進行させてもよい。乳酸菌としては、Lactococcus属細菌、Lactobacillus属細菌、Bifidobacterium属細菌が挙げられる。乳酸菌としては、例えば、チーズスターターとして市販されているものを利用することができる。凝乳酵素としては、レンネットやキモシンが挙げられる。凝乳酵素の由来は特に制限されない。凝乳酵素は、微生物、動物、植物等いずれの由来のものであってもよい。また、凝乳酵素としては、公知の凝乳酵素のホモログや人為的改変体を利用してもよい。凝乳酵素は、組み換え酵素であってもよい。酸としては、食酢やレモン汁が挙げられる。凝乳工程の時間は、例えば、15分以上、30分以上、45分以上、1時間以上、2時間以上、または3時間以上であってもよく、10時間以下であってもよく、それらの組み合わせであってもよい。凝乳工程により、凝集物(チーズカード)が生じる。チーズカードを乳清(ホエイ)と分離回収することにより、フレッシュチーズが得られる。分離工程は、例えば、細断、撹拌、圧搾、自然分離(自重による分離)、またはそれらの組み合わせにより実施することができる。回収したチーズカード(フレッシュチーズ)は、さらに、成型、加塩、乾燥、熟成等の工程に供してもよい。熟成工程を経ることにより、熟成チーズが得られる。このようにして得られたナチュラルチーズ(フレッシュチーズや熟成チーズ)を加熱溶融してプロセスチーズを製造することができる。また、チーズを原料として、チーズフード等のチーズを含有する飲食品を製造できる。
 有効成分は、チーズの改質効果が得られる限り、チーズの製造工程のいずれの段階で乳原料に作用させてもよい。有効成分は、そのまま、あるいは適宜溶液等を調製して、乳原料と共存させることにより、乳原料に作用させることができる。例えば、有効成分を乳原料に添加してもよいし、有効成分を含有する処理液と乳原料を混合してもよい。このような有効成分を乳原料と共存させる操作を総称して有効成分の「添加」ともいう。有効成分を乳原料に作用させる順序は特に制限されない。有効成分は、全て同時に乳原料に添加し、作用させてもよく、それぞれ別個に、あるいは、任意の組み合わせで別個に、乳原料に添加し、作用させてもよい。有効成分は、凝乳工程の完了前に添加されるのが好ましい。有効成分は、例えば、乳酸菌の添加と同時またはその前後に添加してもよく、レンネットの添加と同時またはその前後に添加してもよい。本発明の製剤による処理も同様に実施することができる。
 本発明の方法における改質工程の実施条件は、チーズの改質効果が得られる限り、特に制限されない。本発明の方法における改質工程の実施条件は、有効成分の種類や添加量、及び乳原料の種類等の諸条件に応じて適宜設定できる。例えば、グルコースオキシダーゼ等の酸化酵素を用いる場合、その反応時間は、酸化酵素が基質物質に作用することが可能な時間であれば特に制限されない。反応時間は、非常に短い時間であってもよく、非常に長い時間であってもよい。反応時間としては、例えば、1分~24時間が好ましく、5分~24時間がより好ましく、5分~2時間がさらに好ましい。また、グルコースオキシダーゼ等の酸化酵素を用いる場合、その反応温度は、酸化酵素が活性を保つ範囲であれば特に制限されない。反応温度としては、例えば、0~80℃が好ましい。すなわち、例えば、チーズの製造工程における通常の凝乳工程を経ることでも十分な反応時間が得られる。本発明の方法においては、チーズの製造工程が改質工程を兼ねていてもよいし、別途改質工程を実施してもよい。
 本発明の方法においては、チーズの改質効果が得られる限り、乳原料や有効成分以外の成分を利用してもよい。そのような成分としては、乳原料以外の、チーズの製造に通常用いられ得る原料が挙げられる。また、そのような成分については、本発明の製剤における有効成分以外の成分についての記載を準用できる。
 本発明の方法における全原料(全成分)に対する乳原料の量比は、本発明の方法によりチーズを製造できる限り、特に制限されない。本発明の方法における全原料(全成分)に対する乳原料の量比は、例えば、50%(w/w)以上、70%(w/w)以上、90%(w/w)以上、95%(w/w)以上、または99%(w/w)以上であってよい。
 本発明の方法における各成分(すなわち、有効成分および必要によりその他の成分)の添加量や添加量比は、チーズの改質効果が得られる限り、特に制限されない。本発明の方法における各成分の使添加量や添加量比は、改質工程の実施条件や乳原料の種類等の諸条件に応じて適宜設定できる。
 有効成分としてグルコースオキシダーゼ等の酸化酵素を用いる場合、酸化酵素の添加量は、乳蛋白質1g当たり、例えば、0.05U~200Uが好ましく、0.1U~100Uがより好ましく、0.5U~20Uがさらに好ましい。
 有効成分として鉄含有酵母等の金属含有酵母を用いる場合、金属含有酵母の添加量は、乳原料1g当たり、乾物重量換算で、例えば、0.00003g~0.03gが好ましく、0.0003~0.03gがより好ましい。有効成分としてグルコースオキシダーゼ等の酸化酵素と鉄含有酵母等の金属含有酵母を用いる場合、金属含有酵母の添加量は、酸化酵素1U当たり、乾物重量換算で、例えば、0.0000000015g~1.5gが好ましく、0.00000015g~0.015gがより好ましい。
 有効成分としてトランスグルタミナーゼを用いる場合、トランスグルタミナーゼの添加量は、乳蛋白質1g当たり、例えば、0.00033U~33Uが好ましく、0.0033U~3.3Uがより好ましい。有効成分として酸化酵素とトランスグルタミナーゼを用いる場合、トランスグルタミナーゼの添加量は、酸化酵素1U当たり、例えば、0.001U~1000Uが好ましく、0.01U~100Uがより好ましい。
 有効成分として塩化カルシウム等のカルシウム成分を用いる場合、カルシウム成分の添加量は、乳原料1g当たり、例えば、0.001g~1gが好ましく、0.01g~1gがより好ましく、0.03g~0.5gがさらに好ましい。有効成分として酸化酵素とカルシウム成分を用いる場合、カルシウム成分の添加量は、酸化酵素1U当たり、例えば、0.000005g~50gが好ましく、0.00005g~5gがより好ましい。
 本発明の方法においては、例えば、グルコ-スやラクトース等の酸化酵素の基質を併用してもよい。酸化酵素とその基質を併用することにより、酸化酵素のみを添加する場合と比較して、例えば、より少ない酵素量でチーズを改質することができ、よって、酸化酵素の添加量を低減することができると期待される。特に、乳原料中のグルコ-スやラクトース等の酸化酵素の基質の含量が少ない場合に、酸化酵素の基質を添加するのが有効である。例えば、一般的な牛乳を乳原料として用いる場合、グルコースの添加量は、乳原料1gに対し、好ましくは0.00001g~0.1g、より好ましくは0.0001g~0.01gであってよい。
 以下に実施例を挙げ、本発明をさらに具体的に説明する。本発明は、これらの実施例により何ら限定されない。
<実施例1>
 超高温殺菌乳(興真乳業(株) 加熱履歴130℃2秒)1021gと低温殺菌乳(タカナシ乳業(株) 加熱履歴66℃30分)1021gを、それぞれ、恒温槽にて35℃で30分保温した。その後、乳酸菌R-707(クリスチャンハンセンジャパン(株))0.3541gを10mlの牛乳に溶かした溶液1mlを添加し、35℃で60分静置した。その後、グルコースオキシダーゼ、グルコース、及び金属含有酵母を表1に示した添加量で添加し、すぐにレンネットCHY-MAX(クリスチャンハンセンジャパン(株))0.2gを5mlの水に溶かした溶液0.5mlを添加し、凝乳を開始した。尚、グルコースオキシダーゼとしては「スミチームPGO」(新日本化学工業(株)製、以下「GO」と表記することがある)を、金属含有酵母としては「鉄含有酵母」((株)セティ製、鉄含有量5重量%、以下「鉄酵母」と表記することがある)を、それぞれ用いた。図表中、GOの「U/gp」とは、乳蛋白質1g当たりのGO活性(U)を示す。凝乳3時間後に、生成したチーズカードを金属製の串にて縦横2cmずつにカットし、ホエイの排出を促した。その後、ネットを張ったストレーナーにチーズカードを移し、室温にて3時間ホエイ排出を実施した。ホエイ排出は、30分ごとにチーズカードの上下を反転することで自重にてホエイが均一に排出されるように実施した。ホエイ排出後、チーズカードを温度22℃、湿度50%の恒温槽に移し、15時間静置することによりチーズを得た。
Figure JPOXMLDOC01-appb-T000001
 得られたチーズの歩留まり(測定重量g/1021g×100(%))を測定した。さらに、得られたチーズを4等分し2cm幅に切った後、テクスチャーアナライザー(英弘精機、TA-XT2i)による物性評価を実施した。物性としては、チーズの「硬さ」の指標となる「破断強度」を測定した。さらに、得られたチーズの食味および食感を確認するため、5名のパネルによる官能評価にて、チーズの「硬さ」を0点から5点まで0.5点刻みで評価した。尚、「硬さ」は、噛んだ際に歯に感じる応力の強さとして定義した。官能評点は、「5点」が大変強い、「4点」がかなり強い、「3点」が適度に強い、「2点」がやや弱い、「1点」が弱い、を意味する。結果は、5名のパネルの平均点として示す。さらに、風味、食味、色、その他の観点からコメントを記した。
 物性の測定結果を図1、歩留まりの測定結果を図2、得られたチーズの写真を図3、官能評価結果を表2に示す。低温殺菌乳を使用した際には、300g以上の破断強度および19%程度の歩留まりを示すチーズが得られ、官能評価においても高い評価が得られた。一方、超高温殺菌乳を使用した際には、無添加品では、破断強度および歩留まりが低く、良好なチーズは得られなかった。超高温殺菌乳にGOを単独で添加した場合にも、破断強度および歩留まりが低く、良好なチーズは得られなかった。超高温殺菌乳に鉄含有酵母を単独で添加した場合には、破断強度は300g程度と十分に向上したものの、歩留まりは低い値であった。また、超高温殺菌乳を使用した際には、無添加品、GO単独添加品、および鉄含有酵母単独添加品のいずれも、成型性が悪くすぐに壊れてしまうことが大きな課題であった。一方、超高温殺菌乳にGOと鉄含有酵母を併用添加した場合には、破断強度が300g程度と十分に向上し、歩留まりも低温殺菌乳使用時と同等の値まで大きく向上し、更には低温殺菌乳使用時より大きなチーズが得られた。このように、本発明によれば、チーズを改質することができ、超高温殺菌乳を使用した場合にも低温殺菌乳を使用したチーズと遜色のない品質のよいチーズが得られることが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
<実施例2>
 表4~6の配合で、実施例1と同一の手順によりチーズを製造し、得られたチーズの評価を実施した。表4~6中、「GO」はグルコースオキシダーゼ製剤「スミチームPGO」(新日本化学工業(株)製)を、「TG」はトランスグルタミナーゼ製剤「アクティバTG」(味の素(株)製)を示す。また、表4~6中、GOおよびTGの「U/gp」とは、乳蛋白質1g当たりの酵素活性(U)を示す。官能評価基準を表3に示す。官能評価は、5点~1点の範囲で、0.5点刻みで評点を付すことにより実施した。チーズの品質の目標値は、破断強度を250(g)、歩留まり(対乳カード形成量)を19.8(%)、食感を3.0点、乳味・風味を3.0点とした。
Figure JPOXMLDOC01-appb-T000003
<1>低温殺菌乳からのチーズの製造
 配合と結果を表4に示す。表4の♯1-1のデータは<実施例1>のデータの再掲である。低温殺菌乳を用いた場合に、GOと鉄含有酵母を利用することにより、チーズの品質の向上が認められた。
Figure JPOXMLDOC01-appb-T000004
<2>超高温殺菌乳からのチーズの製造(1)
 配合と結果を表5に示す。表5のデータは<実施例1>のデータの再掲である。超高温殺菌乳を用いた場合に、GOと鉄含有酵母を利用することにより、チーズの品質の向上が認められた。
Figure JPOXMLDOC01-appb-T000005
<3>超高温殺菌乳からのチーズの製造(2)
 配合と結果を表6に示す。超高温殺菌乳を用いた場合に、GOと鉄含有酵母を、TGおよび/または塩化カルシウムと併用することにより、チーズの品質の向上が認められた。
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、チーズを改質することができる。また、本発明によれば、特に、超高温殺菌等の加熱処理がなされた乳原料から品質のよいチーズを製造することができる。よって、本発明は、食品分野において極めて有用である。

Claims (15)

  1.  乳蛋白質を含有する食品原料を酸化酵素及び金属成分で処理することを含む、チーズの製造方法であって、
     前記金属成分が、金属含有酵母および金属結合型ラクトフェリンから選択される1種またはそれ以上の成分である、方法。
  2.  前記食品原料が、全乳、脱脂乳、部分脱脂乳、乳清、クリーム、バターミルク、それらの加工品、およびそれらの成分調整品から選択される1種またはそれ以上の原料である、請求項1に記載の方法。
  3.  前記酸化酵素が、ラクトースオキシダーゼおよびグルコースオキシダーゼから選択される1種またはそれ以上の酵素である、請求項1または2に記載の方法。
  4.  前記酸化酵素が、乳蛋白質1g当たり、0.05U~200U添加される、請求項1~3のいずれか1項に記載の方法。
  5.  前記金属含有酵母が、鉄含有酵母である、請求項1~4のいずれか1項に記載の方法。
  6.  前記金属含有酵母が、食品原料1g当たり、乾物重量換算で、0.00003g~0.03g添加される、請求項1~5のいずれか1項に記載の方法。
  7.  さらに、前記食品原料をトランスグルタミナーゼ及び/又はカルシウム塩で処理することを含む、請求項1~6のいずれか1項に記載の方法。
  8.  前記食品原料が、加熱処理された乳蛋白質を含有する食品原料である、請求項1~7のいずれか1項に記載の方法。
  9.  前記食品原料が、120℃以上で0.5~15秒間加熱処理されている、請求項1~8のいずれか1項に記載の方法。
  10.  酸化酵素及び金属成分を含有する、チーズ改質用の製剤であって、
     前記金属成分が、金属含有酵母および金属結合型ラクトフェリンから選択される1種またはそれ以上の成分である、製剤。
  11.  前記酸化酵素が、ラクトースオキシダーゼおよびグルコースオキシダーゼから選択される1種またはそれ以上の酵素である、請求項10に記載の製剤。
  12.  前記金属含有酵母が、鉄含有酵母である、請求項10または11に記載の製剤。
  13.  前記製剤が、前記金属含有酵母を、該製剤に含有される酸化酵素1U当たり、乾物重量換算で、0.0000000015g~1.5g含有する、請求項10~12のいずれか1項に記載の製剤。
  14.  さらに、トランスグルタミナーゼ及び/又はカルシウム塩を含有する、請求項10~13のいずれか1項に記載の製剤。
  15.  加熱処理された、乳蛋白質を含有する食品原料からチーズを製造するために用いられる、請求項10~14のいずれか1項に記載の製剤。
PCT/JP2016/055687 2015-02-26 2016-02-25 チーズの製造方法及びチーズ改質用の製剤 WO2016136904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16755648.9A EP3262946B1 (en) 2015-02-26 2016-02-25 Cheese production method and preparation for cheese reformulation
JP2017502483A JPWO2016136904A1 (ja) 2015-02-26 2016-02-25 チーズの製造方法及びチーズ改質用の製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-036906 2015-02-26
JP2015036906 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136904A1 true WO2016136904A1 (ja) 2016-09-01

Family

ID=56788969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055687 WO2016136904A1 (ja) 2015-02-26 2016-02-25 チーズの製造方法及びチーズ改質用の製剤

Country Status (3)

Country Link
EP (1) EP3262946B1 (ja)
JP (1) JPWO2016136904A1 (ja)
WO (1) WO2016136904A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115251165A (zh) * 2022-08-02 2022-11-01 华南理工大学 一种长时成熟发酵的干酪制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589595B2 (en) 2019-06-28 2023-02-28 Intercontinental Great Brands Llc Cheese toppings for baked snacks suitable for prebake application
WO2023006728A1 (en) * 2021-07-26 2023-02-02 Dsm Ip Assets B.V. Process for production of a fermented milk product using glucose-fructose oxidoreductase

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357183A1 (fr) * 1976-07-07 1978-02-03 Agronomique Inst Nat Rech Procede pour l'obtention de fromages a partir de lait soumis a un traitement thermique a une temperature superieure a 100 oc
JP2007022989A (ja) * 2005-07-20 2007-02-01 Snow Brand Milk Prod Co Ltd 抗疲労剤
JP2012516319A (ja) * 2009-01-28 2012-07-19 ペローデイン,ジヤン−ポール ラクトフェリンの製造方法
WO2014042279A1 (ja) * 2012-09-12 2014-03-20 味の素株式会社 水産加工食品の製造方法及び水産加工食品改質用の酵素製剤
JP2014516576A (ja) * 2011-06-16 2014-07-17 ヴァリオ・リミテッド チーズおよびその調製

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1416803E (pt) * 2001-05-07 2007-08-27 Kraft Foods R & D Inc Processo para produção de queijos e outros lacticínios e produtos derivados.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357183A1 (fr) * 1976-07-07 1978-02-03 Agronomique Inst Nat Rech Procede pour l'obtention de fromages a partir de lait soumis a un traitement thermique a une temperature superieure a 100 oc
JP2007022989A (ja) * 2005-07-20 2007-02-01 Snow Brand Milk Prod Co Ltd 抗疲労剤
JP2012516319A (ja) * 2009-01-28 2012-07-19 ペローデイン,ジヤン−ポール ラクトフェリンの製造方法
JP2014516576A (ja) * 2011-06-16 2014-07-17 ヴァリオ・リミテッド チーズおよびその調製
WO2014042279A1 (ja) * 2012-09-12 2014-03-20 味の素株式会社 水産加工食品の製造方法及び水産加工食品改質用の酵素製剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAMOTSU IMADE ET AL.: "Effects of calcium and pH on the hardness of rennet curd of high- temperature-heated milk", TECHNICAL BULLETIN OF FACULTY OF AGRICULTURE, vol. 38, March 1987 (1987-03-01), pages 17 - 23, XP009505863 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115251165A (zh) * 2022-08-02 2022-11-01 华南理工大学 一种长时成熟发酵的干酪制备方法
CN115251165B (zh) * 2022-08-02 2023-06-06 华南理工大学 一种长时成熟发酵的干酪制备方法

Also Published As

Publication number Publication date
EP3262946A1 (en) 2018-01-03
EP3262946A4 (en) 2018-12-05
JPWO2016136904A1 (ja) 2017-12-07
EP3262946B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP4249491B2 (ja) チーズおよびその他の乳製品ならびにそれらの製品の製造方法
US5681598A (en) Process for producing cheese using transglutaminase
JP6479879B2 (ja) チーズおよびその調製
US20100092609A1 (en) method for producing cheese
AU2012270301A1 (en) Cheese and preparing the same
WO2016136904A1 (ja) チーズの製造方法及びチーズ改質用の製剤
DE60010179T2 (de) Verfahren zur Einarbeitung von Molkeproteinen in Käse mittels Transglutaminase
JP2015180197A (ja) 豆腐類又は豆腐加工品の製造方法並びに豆腐類及び豆腐加工品改質用の製剤
JP6696500B2 (ja) チーズの製造方法及びチーズ改質用の製剤
JP3766054B2 (ja) 軟質ナチュラルチーズ及びその製造方法
JP5441534B2 (ja) チーズ、及びその製造方法
JPS59113869A (ja) 風味の強いチ−ズフレ−バ−の生成方法
BR112020010971A2 (pt) uso de celobiose oxidase para redução de redução de reação de maillard
US20110151054A1 (en) Reduced Sodium Natural Cheese And Method Of Manufacturing
JP3092909B2 (ja) 半硬質又は硬質チーズ及びその製造法
WO2004032641A1 (ja) チーズの製造法
Scott et al. Coagulants and precipitants
Sathya et al. Influence of microbial rennet on the production of cheddar cheese made using cow milk
KR20240000825A (ko) 유청분말을 첨가한 치즈
JP2021524241A (ja) メイラード反応を減らすことを目的としたヘキソース酵素および/またはセロビオース酵素の利用
FR2670089A1 (fr) Procede d'obtention et de maturation de produits laitiers, notamment de formages, par incorporation de sel de magnesium dans le lait et produits obtenus.
JPH10215767A (ja) 白カビチーズ及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502483

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE