WO2016136723A1 - ナノ粒子の精製方法 - Google Patents

ナノ粒子の精製方法 Download PDF

Info

Publication number
WO2016136723A1
WO2016136723A1 PCT/JP2016/055209 JP2016055209W WO2016136723A1 WO 2016136723 A1 WO2016136723 A1 WO 2016136723A1 JP 2016055209 W JP2016055209 W JP 2016055209W WO 2016136723 A1 WO2016136723 A1 WO 2016136723A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
phase
nanoparticles
particles
purifying
Prior art date
Application number
PCT/JP2016/055209
Other languages
English (en)
French (fr)
Inventor
池田 泰之
丸子 智弘
竹内 正史
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to JP2017502376A priority Critical patent/JPWO2016136723A1/ja
Priority to US15/546,293 priority patent/US20180009038A1/en
Publication of WO2016136723A1 publication Critical patent/WO2016136723A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D12/00Displacing liquid, e.g. from wet solids or from dispersions of liquids or from solids in liquids, by means of another liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a method for purifying nanoparticles.
  • a centrifugal separation method has been used as a method for purifying nanoparticles, but there are very few nanoparticles obtained for the amount of solvent used.
  • many solvents used for adjusting the affinity with nanoparticles by centrifugation are low in flash point, and are not suitable for handling in large quantities.
  • the purification method using the centrifugal separation method cannot obtain a large amount of nanoparticles safely and in a short time, and mass production of the nanoparticles has not been practical.
  • An object of the present invention is to provide a nanoparticle purification method capable of obtaining a large amount of nanoparticles safely and in a short time as compared with a conventional nanoparticle purification method.
  • the method for purifying nanoparticles according to the present invention is the method for purifying nanoparticles, wherein the nanoparticles are purified from a dispersion in which the nanoparticles are dispersed in the solvent A used for the synthesis of the nanoparticles.
  • the washing step includes a step 1a for taking out the phase of the solvent C, and a concentrated phase containing the nanoparticles at a high concentration by shaking the phase of the taken out solvent C. Removing the solvent A from the concentrated phase by repeatedly performing a washing cycle having at least the step 2a to be formed and the concentrated phase, and at least the step 3a of mixing the concentrated phase, the solvent B, and the solvent C.
  • the step of forming the third phase is preferred. Nanoparticles can be separated and purified without using a high-rotation body device.
  • the washing step includes a step 1b for taking out the phase of the solvent C and a step 2b for centrifuging the taken out phase of the solvent C to form the third phase.
  • the solvent C is preferably nonflammable or has a flash point of 21 ° C. or higher. Nanoparticles can be safely separated and purified using a high-rotation apparatus.
  • the average particle size of the nanoparticles is preferably 30 nm or less. Nanoparticles suitable for the catalyst can be obtained.
  • the nanoparticles are preferably Ru particles or Pd—Ru alloy particles. Nanoparticles suitable for the catalyst can be obtained.
  • the Ru particles preferably have an fcc structure, and the Pd—Ru alloy particles preferably form a solid solution. It can be used as a catalyst having higher catalytic activity.
  • the solvent B is preferably an aqueous solvent
  • the solvent C is preferably an organic solvent that does not mix with the aqueous solvent. Nanoparticles can be separated and purified more efficiently.
  • the organic solvent that is not mixed with the aqueous solvent is preferably an organic solvent containing carbon and halogen as constituent elements. Nanoparticles can be separated and purified more efficiently.
  • Nanoparticles can be separated and purified more efficiently.
  • the present invention can provide a nanoparticle purification method capable of obtaining a large amount of nanoparticles safely and in a short time as compared with the conventional nanoparticle purification method.
  • FIG. 1 is a TEM image of Example 1.
  • 3 is an XRD pattern of Example 1.
  • the nanoparticle purification method according to the present embodiment is a nanoparticle purification method in which nanoparticles are purified from a dispersion in which nanoparticles are dispersed in a solvent A used for nanoparticle synthesis.
  • Mixing step of mixing the solvent B to be mixed with the solvent C forming a two-phase with the solvent B, a concentration step of concentrating the nanoparticles in the phase of the solvent C, and containing the nanoparticles in the phase of the solvent C A cleaning step for forming the third phase, and a purification step for taking out the third phase and removing the solvent C from the third phase.
  • a nanoparticle means the fine particle whose average particle diameter is 100 nm or less.
  • the average particle diameter of the nanoparticles is a value calculated by measuring the particle diameter of at least 100 particles from a particle image obtained by a transmission electron microscope (TEM) and obtaining the average. The observation magnification of TEM is preferably, for example, 150,000 times or 200000 times.
  • the average particle size of the nanoparticles is preferably 30 nm or less.
  • Nanoparticles suitable for the catalyst can be obtained.
  • the average particle diameter of the nanoparticles is more preferably 20 nm or less.
  • the minimum of the average particle diameter of a nanoparticle is not specifically limited, It is preferable that it is 1 nm or more.
  • Nanoparticles are, for example, metal particles such as Ru particles, Pd particles, Pt particles, Ir particles or Au particles, or alloy particles such as Pd—Ru alloy particles.
  • the nanoparticles are preferably Ru particles or Pd—Ru alloy particles. Nanoparticles suitable for the catalyst can be obtained.
  • the Ru particles preferably have an fcc structure. Since the Ru particles have an fcc structure, they can be used as a catalyst having higher catalytic activity. Ru particles having an fcc structure can be synthesized, for example, by the method described in Patent Document 1 or Non-Patent Document 1. The crystal structure of the Ru particles can be confirmed by, for example, an X-ray diffraction pattern (XRD pattern).
  • XRD pattern X-ray diffraction pattern
  • the average particle diameter of the Ru particles is preferably 30 nm or less, and more preferably 10 nm or less.
  • the lower limit of the average particle diameter of the Ru particles is not particularly limited, but is preferably 1 nm or more.
  • the Pd—Ru alloy particles preferably form a solid solution. It can be used as a catalyst having higher catalytic activity. More preferably, the Pd—Ru alloy particles form a solid solution single phase.
  • the Pd—Ru alloy particles forming the solid solution can be synthesized, for example, by the method described in Patent Document 2 or Non-Patent Document 2.
  • the state of the Pd—Ru alloy particles can be confirmed, for example, by elemental mapping of energy dispersive X-ray fluorescence (EDS) using scanning transmission electron microscopy (STEM). In the melting method, when the Ru content in the Pd—Ru alloy particles is 10 to 90 atomic%, a solid solution of the Pd—Ru alloy is not formed. However, in the method described in Patent Document 2 or Non-Patent Document 2, the Pd—Ru alloy A solid solution can be formed.
  • the average particle size of the Pd—Ru alloy particles is preferably 30 nm or less, and more preferably 20 nm or less.
  • the lower limit of the average particle diameter of the Pd—Ru alloy particles is not particularly limited, but is preferably 1 nm or more.
  • the solvent A is a solvent used for the synthesis of nanoparticles.
  • the kind of the solvent A is a matter appropriately selected depending on the nanoparticle synthesis method, and the present invention is not particularly limited.
  • the nanoparticle synthesis method is, for example, a polyol process as shown in Patent Literature 1, Non-Patent Literature 1 and 2, the solvent A is an organic solvent having 2 or more carbon atoms and having reducibility. More preferably, the organic solvent has 4 or more carbon atoms.
  • the upper limit of the carbon number of the organic solvent is not particularly limited, but is more preferably liquid at normal temperature.
  • the boiling point of the solvent A is preferably 100 ° C. or higher, and more preferably 160 ° C. or higher. Excellent handleability. Moreover, nanoparticles can be obtained more safely.
  • the upper limit of the boiling point of the solvent A is not particularly limited, it is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, from the viewpoint that the solvent can be removed more easily.
  • Solvent A is polyhydric alcohol, butanol, isobutanol, ethoxyethanol, dimethylformamide, xylene, N-methylpyrrolidinone, dichlorobenzene, toluene, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethyl lactate, Diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl From ether, triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, triethylene
  • the polyhydric alcohol is preferably at least one selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol. Among these, triethylene glycol (TEG) is more preferable. Nanoparticles can be obtained more safely and more efficiently.
  • the dispersion is a reaction solution after nanoparticle synthesis.
  • the dispersion contains Ru particles, polyvinylpyrrolidone (PVP), and TEG.
  • the nanoparticles are Pd—Ru alloy particles and the synthesis method of the Pd—Ru alloy particles is the method of Non-Patent Document 2
  • the dispersion liquid contains Pd—Ru alloy particles, polyvinylpyrrolidone (PVP), Contains TEG.
  • the solvent B is preferably an aqueous solvent.
  • the solvent B is, for example, water or saturated saline. Among these, water is more preferable in terms of excellent handleability and high miscibility with the solvent A.
  • the solvent C is preferably an organic solvent that does not mix with the aqueous solvent.
  • the organic solvent that does not mix with the aqueous solvent is preferably an organic solvent containing carbon and halogen as constituent elements.
  • the solvent C is, for example, chloroform, dichloromethane or carbon tetrachloride. Among these, chloroform is more preferable in terms of excellent handleability.
  • the mixing step In the mixing step, the dispersion, the solvent B, and the solvent C are mixed to prepare a mixed solution.
  • the order of adding each chemical is not particularly limited.
  • the usage-amount of the solvent B and the solvent C is not specifically limited.
  • the water-soluble electrolyte is further mixed in the mixing step.
  • Solvent A may have the effect of increasing the miscibility of solvent B and solvent C.
  • Mixing a water-soluble electrolyte increases the polarity of solvent B and improves the separation between solvent B and solvent C. Can be made. As a result, the nanoparticles can be separated and purified more efficiently.
  • the water-soluble electrolyte is, for example, potassium chloride, sodium chloride, calcium carbonate or ammonium carbonate.
  • a concentration process is a process which shakes and leaves the liquid mixture obtained at the mixing process.
  • the mixed solution forms two phases consisting of a solvent B phase and a solvent C phase.
  • the phase of the solvent B aqueous phase
  • the phase of the solvent C organic phase
  • the nanoparticles are concentrated in the solvent C phase.
  • the solvent A is miscible in both the solvent B phase and the solvent C phase, but it is preferable that the solvent A is more miscible in the solvent B phase. Nanoparticles can be separated and purified more efficiently.
  • the washing process is not particularly limited as long as the third phase containing nanoparticles can be formed in the phase of the solvent C.
  • the method for forming the third phase containing nanoparticles in the phase of the solvent C is, for example, a method in which the solvent extraction method is applied to solid-liquid separation, a centrifugal separation method, or a flotation method.
  • a method in which the solvent extraction method is applied to solid-liquid separation is more preferable in that the nanoparticles can be separated and purified relatively easily without using a high-rotation body apparatus.
  • the washing step is a step 1a for taking out the phase of the solvent C, a step 2a for shaking the taken out phase of the solvent C to form a concentrated phase containing nanoparticles at a high concentration, a step of taking out the concentrated phase, It is preferable to repeat the washing cycle having at least the step 3a for mixing the solvent B and the solvent C to remove the solvent A from the concentrated phase to form the third phase.
  • step 1a only the phase of solvent C is taken out from the mixed solution that has undergone the concentration step.
  • step 2a the phase of solvent C taken out in step 1a is shaken. Then, when allowed to stand, a concentrated phase is formed in the phase of solvent C.
  • the concentrated phase is a phase in which nanoparticles are dispersed at a high concentration in the solvent C.
  • the boundary between the concentrated phase and the phase of the solvent C other than the concentrated phase can be visually recognized by the difference in color density.
  • the solvent B is taken into both the concentrated phase and the phase of the solvent C other than the concentrated phase, but it is preferable that more of the solvent B is taken into the phase of the solvent C other than the concentrated phase. Nanoparticles can be separated and purified more efficiently.
  • step 3a only the concentrated phase is taken out from the phase of solvent C that has undergone step 2a. And the solvent B and the solvent C are newly mixed with the taken-out concentrated phase, and a liquid mixture is produced.
  • this mixed solution is allowed to stand after shaking, for example, a two-phase consisting of a solvent B phase and a solvent C phase is formed.
  • a foamy phase is formed in the phase of the solvent C.
  • the foam-like phase is formed by mixing the solvent A in the solvent C and moving a small amount of the solvent A and nanoparticles into the solvent C.
  • the phase of the solvent C is divided into two phases in the step 3a to form a foamy third phase.
  • This third phase contains nanoparticles at a high concentration and does not contain solvent A.
  • the concentration of PVP in the phase of solvent C decreases.
  • the mechanism by which the third phase is generated in step 3a will be described.
  • the concentration of nanoparticles in the phase of solvent C in step 3a increases and the concentration of solvent A in the phase of solvent C decreases.
  • the nanoparticles are dispersed in the entire phase of the solvent C in a state of being dispersed in the solvent A. For this reason, a clear boundary is not seen between the foam-like phase formed in the step 3a and the phase of the solvent C other than the foam-like phase.
  • the washing cycle is repeated and most of the solvent A is removed from the phase of the solvent C, the nanoparticles cannot be dispersed in the solvent C, adhere to the bubbles in the foamy phase, Form a third phase on top. As a result, most of the nanoparticles are incorporated into the foamy phase.
  • the solvent B is water and the solvent C is chloroform
  • the third phase is an intermediate layer formed at the boundary between the solvent B phase and the solvent C layer.
  • the washing cycle ends when a foamy third phase is generated in step 3a.
  • the foam-like third phase is colored black due to the high concentration of nanoparticles, whereas the phase present under the foam-like third phase is almost transparent and the phase of solvent C is two-phased. It can be confirmed that they are separated.
  • the washing step includes a step 1b for taking out the phase of the solvent C, and a step 2b for forming the third phase by centrifuging the taken out phase of the solvent C.
  • the solvent C is nonflammable or has a flash point. Is preferably 21 ° C. or higher.
  • step 1b only the phase of solvent C is taken out from the mixed solution that has undergone the concentration step.
  • step 2b the phase of solvent C taken out in step 1b is centrifuged.
  • the solvent C is preferably a nonflammable solvent listed as the solvent C or a solvent having a flash point of 21 ° C. or higher. Nanoparticles can be safely separated and purified using a high-rotation apparatus.
  • Non-flammable solvents are, for example, chloroform, dichloromethane or carbon tetrachloride.
  • the solvent having a flash point of 21 ° C. or higher is, for example, ethyl acetate. Of these, nonflammable solvents are preferable, and chloroform is more preferable.
  • the phase of the solvent C is taken out from the mixed solution that has passed through the concentration step, and a foaming agent is added to the phase of the taken out solvent C and stirred. Then, nanoparticles adhere to the surface of the bubble. The air bubbles with the nanoparticles attached gather at the top of the solvent C phase to form the third phase.
  • a known foaming agent can be used, and is appropriately selected according to the type of nanoparticles or the type of solvent A.
  • the third phase formed in the washing step is taken out from the phase of the solvent C, and the solvent C is removed from the third phase.
  • the method for removing the solvent C is not particularly limited, and examples thereof include a vacuum distillation method using an evaporator or a distillation tower, a heat drying method, and a freeze drying method.
  • the purification method according to the present embodiment can purify a large amount of nanoparticles at one time, if purification of nanoparticles with the same mass is performed by the conventional purification method by the centrifugal method, a plurality of purification operations are performed. Is required. As a result, the purification method according to the present embodiment can obtain a large amount of nanoparticles in a short period of time as compared with the conventional purification method by the centrifugal separation method.
  • Example 1 500 mL of triethylene glycol (hereinafter, TEG) (solvent A) was added to the flask.
  • TEG triethylene glycol
  • solution A A solution in which 7.9681 g (20 mmol) of tris (acetylacetonato) ruthenium (III) (hereinafter Ru (acac) 3 ) and 1.11 g of polyvinylpyrrolidone (hereinafter PVP) are weighed and added to the TEG ( Hereinafter, solution A) was prepared.
  • the solution A was heated to a temperature of 200 ° C. or higher. After heating, the solution A was heated and stirred for 3 hours, and then cooled to obtain a dispersion in which Ru particles were dispersed in the TEG.
  • a mixture was prepared by adding 1500 mL of chloroform (solvent C) and 1000 mL of pure water (solvent B) to the dispersion (mixing step), and left standing for a while. This mixed solution was divided into four equal parts, and 500 mL of chloroform was further added to each of the mixture. Thereafter, only the organic phase was taken out (washing step 1a), and the organic phase excluding the aqueous phase was shaken again to form a concentrated phase of nanoparticles on the organic phase (washing step 2a).
  • washing step 3a The washing steps 1a to 3a are repeated as an intermediate phase (third phase) between the aqueous phase and the organic phase until a concentrated phase of nanoparticles is formed, and the resulting concentrated phase is concentrated and dried to give Ru.
  • the particles were obtained as a solid (purification step). The yield was 1.9360 g.
  • Example 2 500 mL of pure water was put into the flask. Ruthenium (III) chloride n hydrate (RuCl 3 .nH 2 O) 1.2116 g (Ru: 5 mmol) and potassium tetrachloropalladate (II) (K 2 PdCl 4 ) 1.6411 g (Pd: 5 mmol) Were added to the pure water to prepare an aqueous solution containing a Ru compound and a Pd compound. Moreover, TEG300mL was thrown into the beaker. 0.3376 g of PVP was weighed and added to the TEG to prepare a suspended TEG solution, which was heated to 205 ° C.
  • the aqueous solution containing the Ru compound and Pd compound was added to the heated TEG solution in the form of a mist, then heated and held for 10 minutes, and then cooled to obtain a dispersion in which Pd—Ru alloy particles were dispersed in the TEG.
  • Chloroform 700mL and pure water 700mL were mixed with this dispersion liquid, and the liquid mixture was produced (mixing process).
  • the mixed solution was shaken to separate into two phases, an aqueous phase and an organic phase, and Pd—Ru alloy particles were extracted into the organic phase (concentration step).
  • washing step 1a Thereafter, only the organic phase was taken out (washing step 1a), and the organic phase excluding the aqueous phase was shaken again to form a concentrated phase of nanoparticles on the organic phase (washing step 2a).
  • washing step 2a Next, only the concentrated phase is taken out, and 500 mL of chloroform and 500 mL of pure water are newly added to the extracted concentrated phase, shaken again, and divided into two phases of an aqueous phase and an organic phase, and Pd—Ru alloy particles are added to the organic phase. Extracted (washing step 3a).
  • washing steps 1a to 3a are repeated as an intermediate phase (third phase) between the aqueous phase and the organic phase until a nanoparticle concentrated phase is formed, and the resulting concentrated phase is concentrated and dried to give Pd -Ru alloy particles were obtained as a solid (purification step). The yield was 0.79g.
  • Example 1 (Average particle diameter of Ru particles) The Ru particles of Example 1 were observed with a TEM at a magnification of 200,000, and the particle diameter of 100 particles was measured from the obtained particle image, and the average was obtained to obtain the average particle diameter of the Ru particles.
  • FIG. 1 shows a TEM image of Example 1A. The average particle size of Example 1 was 3.27 nm.
  • FIG. 2 shows the XRD pattern of Example 1A.
  • the Ru pattern shows the (fcc) Ru pattern, and it was confirmed that the Ru particles had the fcc structure.
  • a slight amount of PVP-derived pattern was observed around 20 °. It was found that the residual amount of PVP was at the same level as the conventional purification method by centrifugation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の目的は、従来のナノ粒子の精製方法と比較して、多量のナノ粒子を安全、かつ、短時間で得ることができるナノ粒子の精製方法を提供することである。本発明に係るナノ粒子の精製方法は、ナノ粒子がナノ粒子の合成に用いられた溶媒Aに分散した分散液からナノ粒子を精製するナノ粒子の精製方法において、分散液と、溶媒Aと混和する溶媒Bと、溶媒Bと二相を形成する溶媒Cと、を混合する混合工程と、ナノ粒子を溶媒Cの相中に濃縮する濃縮工程と、溶媒Cの相中にナノ粒子を含有する第三相を形成する洗浄工程と、第三相を取り出し、第三相から溶媒Cを除去する精製工程と、を有する。

Description

ナノ粒子の精製方法
 本発明は、ナノ粒子の精製方法に関する。
 (fcc)Ruナノ粒子の製造方法が開示されている(例えば、特許文献1、又は非特許文献1を参照。)。また、Pd-Ru合金ナノ粒子の製造方法が開示されている(例えば、特許文献2、又は非特許文献2を参照。)。
WO2013/038674号公報 WO2014/045570号公報
J.Am.Chem.Soc.,2013,135(15),pp5493-5496 J.Am.Chem.Soc.,2014,136(5),pp1864-1871
 従来、ナノ粒子の精製方法には、遠心分離法が用いられているが、使用する溶媒量に対して得られるナノ粒子が非常に少ない。また、遠心分離法でナノ粒子との親和性を調整するために用いられる溶媒は引火点の低いものが多く、大量に取り扱うことが不向きであった。このように、遠心分離法を用いた精製方法は、多量のナノ粒子を安全、かつ、短時間で得ることができず、ナノ粒子の量産化は現実的ではなかった。
 本発明の目的は、従来のナノ粒子の精製方法と比較して、多量のナノ粒子を安全、かつ、短時間で得ることができるナノ粒子の精製方法を提供することである。
 本発明に係るナノ粒子の精製方法は、ナノ粒子が該ナノ粒子の合成に用いられた溶媒Aに分散した分散液から前記ナノ粒子を精製するナノ粒子の精製方法において、前記分散液と、前記溶媒Aと混和する溶媒Bと、前記溶媒Bと二相を形成する溶媒Cと、を混合する混合工程と、前記ナノ粒子を前記溶媒Cの相中に濃縮する濃縮工程と、前記溶媒Cの相中に前記ナノ粒子を含有する第三相を形成する洗浄工程と、前記第三相を取り出し、該第三相から前記溶媒Cを除去する精製工程と、を有することを特徴とする。
 本発明に係るナノ粒子の精製方法では、前記洗浄工程は、前記溶媒Cの相を取り出す工程1aと、取り出した前記溶媒Cの相を振盪して、前記ナノ粒子を高濃度に含む濃縮相を形成する工程2aと、該濃縮相を取り出し、該濃縮相と、溶媒Bと、溶媒Cとを混合する工程3aとを少なくとも有する洗浄サイクルを繰返し行い、前記濃縮相から前記溶媒Aを除去して前記第三相を形成する工程であることが好ましい。高回転体の装置を用いずに、ナノ粒子を分離・精製することができる。
 本発明に係るナノ粒子の精製方法では、前記洗浄工程は、前記溶媒Cの相を取り出す工程1bと、取り出した前記溶媒Cの相を遠心分離して前記第三相を形成する工程2bを有し、前記溶媒Cは、不燃性であるか、又は引火点が21℃以上であることが好ましい。高回転体の装置を用いても、安全にナノ粒子を分離・精製することができる。
 本発明に係るナノ粒子の精製方法では、前記ナノ粒子の平均粒子径は、30nm以下であることが好ましい。触媒に適したナノ粒子を得ることができる。
 本発明に係るナノ粒子の精製方法では、前記ナノ粒子は、Ru粒子又はPd-Ru合金粒子であることが好ましい。触媒に適したナノ粒子を得ることができる。
 本発明に係るナノ粒子の精製方法では、前記Ru粒子は、fcc構造を有し、前記Pd-Ru合金粒子は、固溶体を形成していることが好ましい。触媒活性のより高い触媒として用いることができる。
 本発明に係るナノ粒子の精製方法では、前記溶媒Bは、水系溶媒であり、前記溶媒Cは、水系溶媒と混じり合わない有機溶媒であることが好ましい。ナノ粒子をより効率的に分離・精製することができる。
 本発明に係るナノ粒子の精製方法では、前記水系溶媒と混じり合わない有機溶媒は、構成元素として炭素及びハロゲンを含む有機溶媒であることが好ましい。ナノ粒子をより効率的に分離・精製することができる。
 本発明に係るナノ粒子の精製方法では、前記混合工程では、水溶性電解質を更に混合することが好ましい。ナノ粒子をより効率的に分離・精製することができる。
 本発明は、従来のナノ粒子の精製方法と比較して、多量のナノ粒子を安全、かつ、短時間で得ることができるナノ粒子の精製方法を提供することができる。
実施例1のTEM像である。 実施例1のXRDパターンである。
 次に本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 本実施形態に係るナノ粒子の精製方法は、ナノ粒子がナノ粒子の合成に用いられた溶媒Aに分散した分散液からナノ粒子を精製するナノ粒子の精製方法において、分散液と、溶媒Aと混和する溶媒Bと、溶媒Bと二相を形成する溶媒Cと、を混合する混合工程と、ナノ粒子を溶媒Cの相中に濃縮する濃縮工程と、溶媒Cの相中にナノ粒子を含有する第三相を形成する洗浄工程と、第三相を取り出し、第三相から溶媒Cを除去する精製工程と、を有する。
 まず、精製方法において用いられる薬品について説明する。
(ナノ粒子)
 本明細書において、ナノ粒子とは、平均粒子径が100nm以下の微細粒子をいう。ナノ粒子の平均粒子径は、透過型電子顕微鏡(TEM)によって得られた粒子像から少なくとも100個以上の粒子の粒子径を計測し、その平均を求めることによって算出した値である。TEMの観察倍率は、例えば、150000倍又は200000倍であることが好ましい。本実施形態に係るナノ粒子の精製方法では、ナノ粒子の平均粒子径は、30nm以下であることが好ましい。触媒に適したナノ粒子を得ることができる。ナノ粒子の平均粒子径は、20nm以下であることがより好ましい。ナノ粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。
 ナノ粒子は、例えば、Ru粒子、Pd粒子、Pt粒子、Ir粒子若しくはAu粒子などの金属粒子、又はPd-Ru合金粒子などの合金粒子である。本実施形態に係るナノ粒子の精製方法では、ナノ粒子は、Ru粒子又はPd-Ru合金粒子であることが好ましい。触媒に適したナノ粒子を得ることができる。
 Ru粒子は、fcc構造を有することが好ましい。Ru粒子がfcc構造を有することで、触媒活性のより高い触媒として用いることができる。fcc構造を有するRu粒子は、例えば、特許文献1又は非特許文献1に記載された方法で合成することができる。Ru粒子の結晶構造は、例えば、X線回折パターン(XRDパターン)によって確認できる。
 Ru粒子の平均粒子径は30nm以下であることが好ましく、10nm以下であることがより好ましい。Ru粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。
 Pd-Ru合金粒子は、固溶体を形成していることが好ましい。触媒活性のより高い触媒として用いることができる。より好ましくは、Pd-Ru合金粒子が固溶体の単相を形成している。固溶体を形成しているPd-Ru合金粒子は、例えば、特許文献2又は非特許文献2に記載された方法で合成することができる。Pd-Ru合金粒子の状態は、例えば、走査透過電子顕微鏡法(STEM)を用いたエネルギー分散型蛍光X線分析法(EDS)の元素マッピングによって確認できる。溶解法ではPd-Ru合金粒子中のRu含有量が10~90原子%ではPd-Ru合金の固溶体を形成しないが、特許文献2又は非特許文献2に記載された方法ではPd-Ru合金の固溶体を形成することができる。
 Pd-Ru合金粒子の平均粒子径は30nm以下であることが好ましく、20nm以下であることがより好ましい。Pd-Ru合金粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。
(溶媒A)
 溶媒Aは、ナノ粒子の合成に用いられた溶媒である。溶媒Aの種類は、ナノ粒子の合成法によって適宜選択される事項であり、本発明は特に限定されない。ナノ粒子の合成法が、例えば特許文献1、非特許文献1及び2に示されるようなポリオールプロセスであるとき、溶媒Aは、炭素数が2以上であり、還元性をもつ有機溶媒である。有機溶媒の炭素数は、4以上であることがより好ましい。有機溶媒の炭素数の上限は、特に限定されないが、常温において液体であることがより好ましい。
 溶媒Aの沸点は、100℃以上であることが好ましく、160℃以上であることがより好ましい。取り扱い性に優れる。また、ナノ粒子をより安全に得ることができる。溶媒Aの沸点の上限は、特に限定されないが、溶媒をより容易に除去できる点で、300℃以下であることが好ましく、290℃以下であることがより好ましい。
 溶媒Aは、多価アルコール、ブタノール、イソブタノール、エトキシエタノール、ジメチルホルムアミド、キシレン、N-メチルピロリジノン、ジクロロベンゼン、トルエン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチルラクテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル及びポリエチレングリコールモノメチルエーテルの中から選ばれる1種以上であることが好ましい。このうち、ナノ粒子をより安全、かつ、より効率的に得ることができる点で、多価アルコールがより好ましい。
 多価アルコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール及びブチレングリコールの中から選ばれる1種以上であることが好ましい。このうち、トリエチレングリコール(TEG)がより好ましい。ナノ粒子をより安全、かつ、より効率的に得ることができる。
(分散液)
 分散液は、ナノ粒子合成後の反応溶液である。例えば、ナノ粒子がRu粒子であり、Ru粒子の合成法が特許文献1又は非特許文献1の方法であるとき、分散液は、Ru粒子と、ポリビニルピロリドン(PVP)と、TEGとを含有する。また、ナノ粒子がPd-Ru合金粒子であり、Pd-Ru合金粒子の合成法が非特許文献2の方法であるとき、分散液は、Pd-Ru合金粒子と、ポリビニルピロリドン(PVP)と、TEGとを含有する。
(溶媒B)
 溶媒Bは、水系溶媒であることが好ましい。溶媒Bは、例えば、水、飽和食塩水である。このうち、取り扱い性に優れ、溶媒Aとの混和性が高い点で、水であることがより好ましい。
(溶媒C)
 溶媒Cは、水系溶媒と混じり合わない有機溶媒であることが好ましい。水系溶媒と混じり合わない有機溶媒は、構成元素として炭素及びハロゲンを含む有機溶媒であることが好ましい。溶媒Cは、例えば、クロロホルム、ジクロロメタン又は四塩化炭素である。このうち、取り扱い性に優れる点で、クロロホルムであることがより好ましい。溶媒Bを水系溶媒とし、溶媒Cを水系溶媒と混じり合わない有機溶媒とすることで、溶媒Bと溶媒Cとが二相を形成して、ナノ粒子をより効率的に分離・精製することができる。
 次いで、精製方法の各工程について説明する。
(混合工程)
 混合工程では、分散液と、溶媒Bと、溶媒Cと、を混合して混合液を作製する。本発明は、各薬品の添加順は特に限定されない。溶媒B及び溶媒Cの使用量は特に限定されない。
 本実施形態に係るナノ粒子の精製方法では、混合工程では、水溶性電解質を更に混合することが好ましい。溶媒Aは溶媒Bと溶媒Cとの混和性を高める作用をもつ場合があるところ、水溶性電解質を混合することで、溶媒Bの極性を高めて、溶媒Bと溶媒Cとの分離性を向上させることができる。その結果、ナノ粒子をより効率的に分離・精製することができる。水溶性電解質は、例えば、塩化カリウム、塩化ナトリウム、炭酸カルシウム又は炭酸アンモニウムである。
(濃縮工程)
 濃縮工程は、混合工程で得られた混合液を振盪して静置する工程であることが好ましい。濃縮工程を経ると、混合液は溶媒Bの相と溶媒Cの相とからなる二相を形成する。例えば、溶媒Bが水であり、溶媒Cがクロロホルムであるとき、溶媒Bの相(水相)が上相となり、溶媒Cの相(有機相)が下相となる。ナノ粒子は溶媒Cの相中に濃縮される。また、溶媒Aは、溶媒Bの相及び溶媒Cの相の両方に混和するが、溶媒Bの相により多く混和することが好ましい。ナノ粒子の分離・精製をより効率的に行うことができる。
(洗浄工程)
 洗浄工程は、溶媒Cの相中にナノ粒子を含有する第三相を形成することができればよく、洗浄方法は特に限定されない。溶媒Cの相中にナノ粒子を含有する第三相を形成する方法は、例えば、溶媒抽出法を固液分離に応用した方法、遠心分離法又は浮遊選鉱法である。このうち、高回転体の装置を用いずに、比較的簡便にナノ粒子を分離・精製することができる点で、溶媒抽出法を固液分離に応用した方法であることがより好ましい。
 洗浄工程の一例として、溶媒抽出法を固液分離に応用した方法を採用した例を説明する。洗浄工程は、溶媒Cの相を取り出す工程1aと、取り出した溶媒Cの相を振盪して、ナノ粒子を高濃度に含む濃縮相を形成する工程2aと、濃縮相を取り出し、濃縮相と、溶媒Bと、溶媒Cとを混合する工程3aとを少なくとも有する洗浄サイクルを繰返し行い、濃縮相から溶媒Aを除去して第三相を形成する工程であることが好ましい。
 工程1aでは、濃縮工程を経た混合液から溶媒Cの相だけを取り出す。
 工程2aでは、工程1aで取り出した溶媒Cの相を振盪する。その後、静置すると、溶媒Cの相中に濃縮相が形成される。濃縮相は、溶媒Cにナノ粒子が高濃度で分散した相である。濃縮相と濃縮相以外の溶媒Cの相との境界は、色濃度の違いによって目視で認識することができる。工程2aにおいて、溶媒Bは、濃縮相及び濃縮相以外の溶媒Cの相の両方に取り込まれるが、濃縮相以外の溶媒Cの相により多く取り込まれることが好ましい。ナノ粒子の分離・精製をより効率的に行うことができる。
 工程3aでは、工程2aを経た溶媒Cの相から濃縮相だけを取り出す。そして、取り出した濃縮相に、溶媒Bと溶媒Cとを新たに混合して混合液を作製する。この混合液を、例えば振盪後静置すると、溶媒Bの相と溶媒Cの相とからなる二相を形成する。このとき、溶媒Cの相中には、泡状の相が形成される。泡状の相は、溶媒C中に溶媒Aが混和し、その際に微量の溶媒A及びナノ粒子が溶媒C中に移動することで形成する。
 工程1a~3aを少なくとも有する洗浄サイクルを繰り返すと、工程3aにおいて溶媒Cの相が二相に分かれて泡状の第三相が生成する。この第三相は、ナノ粒子を高濃度で含み、かつ、溶媒Aを含まない。また、洗浄サイクルを繰り返すにつれて、溶媒Cの相中のPVP濃度が低くなっていく。工程3aにおいて第三相が生成するメカニズムについて説明する。洗浄サイクルを繰返し行うにしたがって、工程3aにおける溶媒Cの相中のナノ粒子の濃度が高まっていくとともに、溶媒Cの相中の溶媒Aの濃度が低くなっていく。初期の洗浄サイクルでは、溶媒Cの相中に溶媒Aが存在するため、ナノ粒子は、溶媒Aに分散した状態で溶媒Cの相の全体に分散している。このため、工程3aで形成される泡状の相と泡状の相以外の溶媒Cの相との間に明確な境界は見られない。洗浄サイクルを繰り返して溶媒Cの相から溶媒Aの大部分が除去されると、ナノ粒子は溶媒Cに分散することができなくなり、泡状の相中の気泡に付着し、溶媒Cの相の上部に第三相を形成する。その結果、ナノ粒子の大部分が泡状の相に取り込まれる。溶媒Bが水であり、溶媒Cがクロロホルムであるとき、第三相は、溶媒Bの相と溶媒Cの層との境界部分に生成された中間層となる。
 洗浄サイクルは、工程3aにおいて泡状の第三相が生成されたところで終了する。泡状の第三相はナノ粒子が高濃度に含むため黒色に色づいているのに対して、泡状の第三相の下に存在する相はほぼ透明となり、溶媒Cの相が二相に分かれていることが確認できる。
 洗浄工程の別の例として、遠心分離法を採用した例を説明する。洗浄工程は、溶媒Cの相を取り出す工程1bと、取り出した溶媒Cの相を遠心分離して第三相を形成する工程2bを有し、溶媒Cは、不燃性であるか、又は引火点が21℃以上であることが好ましい。
 工程1bでは、濃縮工程を経た混合液から溶媒Cの相だけを取り出す。
 工程2bでは、工程1bで取り出した溶媒Cの相を遠心分離する。
 洗浄工程を遠心分離法で行う場合、溶媒Cは、溶媒Cとして列挙した溶媒のうち、不燃性であるか、又は引火点が21℃以上である溶媒であることが好ましい。高回転体の装置を用いても、安全にナノ粒子を分離・精製することができる。不燃性の溶媒は、例えば、クロロホルム、ジクロロメタン又は四塩化炭素である。また、引火点が21℃以上の溶媒は、例えば、酢酸エチルである。このうち、不燃性の溶媒であることが好ましく、クロロホルムであることがより好ましい。
 洗浄工程として、浮遊選鉱法を採用する場合は、濃縮工程を経た混合液から溶媒Cの相だけを取り出し、取り出した溶媒Cの相に気泡剤を添加して攪拌する。そうすると、気泡の表面にナノ粒子が付着する。ナノ粒子が付着した気泡は、溶媒Cの相の上部に集まって第三相となる。気泡剤は、公知の気泡剤を用いることができ、ナノ粒子の種類又は溶媒Aの種類に応じて適宜選択される。
(精製工程)
 精製工程は、洗浄工程で形成された第三相を溶媒Cの相から取り出し、第三相から溶媒Cを除去する。溶媒Cの除去方法は、特に限定されず、例えば、エバポレータ若しくは蒸留塔などを用いた減圧蒸留法、加熱乾燥法又は凍結乾燥法である。
 本実施形態に係る精製方法は1回で多量のナノ粒子を精製できるのに対して、従来技術である遠心分離法による精製方法で同じ質量のナノ粒子を精製しようとすると、複数回の精製作業が必要となる。結果として、本実施形態に係る精製方法は、従来技術である遠心分離法による精製方法と比較して多量のナノ粒子を短期間で得ることができる。
 以降、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。
(実施例1)
 フラスコにトリエチレングリコール(以下、TEG)(溶媒A)を500mL投入した。トリス(アセチルアセトナト)ルテニウム(III)(以下、Ru(acac))を7.9681g(20mmol)とポリビニルピロリドン(以下、PVP)を1.11gとを秤とり前記TEG中に添加した溶液(以下、溶液A)を作製した。前記溶液Aの温度が200℃以上になるように加熱し、加熱後、溶液Aの加熱撹拌を3hr行った後、冷却してRu粒子がTEG中に分散した分散液を得た。分散液にクロロホルム(溶媒C)1500mLと純水(溶媒B)1000mLとを添加した混合液を作製し(混合工程)、しばらく静置した。この混合液を4等分しそれぞれにクロロホルム500mLを更に添加してから振盪し、水相と有機相との二相に分けて有機相にRu粒子を抽出した(濃縮工程)。その後有機相だけを取出し(洗浄工程1a)、水相を除いた有機相を再度振盪することで、有機相の上部にナノ粒子の濃縮相を形成させた(洗浄工程2a)。次いで、濃縮相だけを取出し、取り出した濃縮相にクロロホルム500mLと純水500mLとを新たに添加し、再度振盪し水相と有機相との二相に分けて有機相にRu粒子を抽出した(洗浄工程3a)。この洗浄工程1a~3aを水相と有機相との間に中間相(第三相)としてナノ粒子の濃縮相が形成されるまで繰り返し、得られた濃縮相を濃縮、乾固することによってRu粒子を固体として得た(精製工程)。収量は1.9360gであった。
(実施例2)
 フラスコに純水を500mL投入した。塩化ルテニウム(III)n水和物(RuCl・nHO)を1.2116g(Ru:5mmol)とテトラクロロパラジウム酸カリウム(II)(KPdCl)を1.6411g(Pd:5mmol)とを秤とり前記純水に添加してRu化合物及びPd化合物を含む水溶液を作製した。また、ビーカーにTEG300mLを投入した。PVPを0.3376g秤とり、前記TEGに添加して懸濁したTEG溶液を作製し、205℃に加熱した。加熱したTEG溶液に前記Ru化合物及びPd化合物を含む水溶液を霧状に添加した後、10min加熱保持した後冷却し、Pd-Ru合金粒子がTEG中に分散した分散液を得た。この分散液にクロロホルム700mLと純水700mLとを混合して混合液を作製した(混合工程)。混合液を振盪し、水相と有機相との二相に分けて有機相にPd-Ru合金粒子を抽出した(濃縮工程)。その後有機相だけを取出し(洗浄工程1a)、水相を除いた有機相を再度振盪することで、有機相の上部にナノ粒子の濃縮相を形成させた(洗浄工程2a)。次いで、濃縮相だけを取出し、取り出した濃縮相にクロロホルム500mLと純水500mLとを新たに添加し、再度振盪し水相と有機相との二相に分けて有機相にPd-Ru合金粒子を抽出した(洗浄工程3a)。この洗浄工程1a~3aを水相と有機相との間に中間相(第三相)としてナノ粒子の濃縮相が形成されるまで繰り返し、得られた濃縮相を濃縮、乾固することによってPd-Ru合金粒子を固体として得た(精製工程)。収量は0.79gであった。
(Ru粒子の平均粒子径)
 実施例1のRu粒子をTEMで倍率200000倍で観察し、得られた粒子像から100個の粒子の粒子径を計測し、その平均を求め、Ru粒子の平均粒子径とした。図1に実施例1AのTEM像を示す。実施例1の平均粒子径は3.27nmであった。
(結晶状態)
 実施例1のRu粒子について、XRD測定を行った。XRD測定条件は、室温でλ=CuKαである。図2に実施例1AのXRDパターンを示す。図2において、Ruのパターンは(fcc)Ruのパターンを示しており、Ru粒子がfcc構造を有することが確認できた。20°付近に若干量のPVP由来のパターンが確認された。PVPの残存量は従来技術である遠心分離法による精製方法と同レベルであることがわかった。

Claims (9)

  1.  ナノ粒子が該ナノ粒子の合成に用いられた溶媒Aに分散した分散液から前記ナノ粒子を精製するナノ粒子の精製方法において、
     前記分散液と、前記溶媒Aと混和する溶媒Bと、前記溶媒Bと二相を形成する溶媒Cと、を混合する混合工程と、
     前記ナノ粒子を前記溶媒Cの相中に濃縮する濃縮工程と、
     前記溶媒Cの相中に前記ナノ粒子を含有する第三相を形成する洗浄工程と、
     前記第三相を取り出し、該第三相から前記溶媒Cを除去する精製工程と、を有することを特徴とするナノ粒子の精製方法。
  2.  前記洗浄工程は、前記溶媒Cの相を取り出す工程1aと、取り出した前記溶媒Cの相を振盪して、前記ナノ粒子を高濃度に含む濃縮相を形成する工程2aと、該濃縮相を取り出し、該濃縮相と、溶媒Bと、溶媒Cとを混合する工程3aとを少なくとも有する洗浄サイクルを繰返し行い、前記濃縮相から前記溶媒Aを除去して前記第三相を形成する工程であることを特徴とする請求項1に記載のナノ粒子の精製方法。
  3.  前記洗浄工程は、前記溶媒Cの相を取り出す工程1bと、取り出した前記溶媒Cの相を遠心分離して前記第三相を形成する工程2bを有し、
     前記溶媒Cは、不燃性であるか、又は引火点が21℃以上であることを特徴とする請求項1に記載のナノ粒子の精製方法。
  4.  前記ナノ粒子の平均粒子径は、30nm以下であることを特徴とする請求項1~3のいずれか一つに記載のナノ粒子の精製方法。
  5.  前記ナノ粒子は、Ru粒子又はPd-Ru合金粒子であることを特徴とする請求項1~4のいずれか一つに記載のナノ粒子の精製方法。
  6.  前記Ru粒子は、fcc構造を有し、
     前記Pd-Ru合金粒子は、固溶体を形成していることを特徴とする請求項5に記載のナノ粒子の精製方法。
  7.  前記溶媒Bは、水系溶媒であり、
     前記溶媒Cは、水系溶媒と混じり合わない有機溶媒であることを特徴とする請求項1~6のいずれか一つに記載のナノ粒子の精製方法。
  8.  前記水系溶媒と混じり合わない有機溶媒は、構成元素として炭素及びハロゲンを含む有機溶媒であることを特徴とする請求項7に記載のナノ粒子の精製方法。
  9.  前記混合工程では、水溶性電解質を更に混合することを特徴とする請求項1~8のいずれか一つに記載のナノ粒子の精製方法。
PCT/JP2016/055209 2015-02-23 2016-02-23 ナノ粒子の精製方法 WO2016136723A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017502376A JPWO2016136723A1 (ja) 2015-02-23 2016-02-23 ナノ粒子の精製方法
US15/546,293 US20180009038A1 (en) 2015-02-23 2016-02-23 Method for nanoparticle purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015032986 2015-02-23
JP2015-032986 2015-02-23

Publications (1)

Publication Number Publication Date
WO2016136723A1 true WO2016136723A1 (ja) 2016-09-01

Family

ID=56788797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055209 WO2016136723A1 (ja) 2015-02-23 2016-02-23 ナノ粒子の精製方法

Country Status (3)

Country Link
US (1) US20180009038A1 (ja)
JP (1) JPWO2016136723A1 (ja)
WO (1) WO2016136723A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
JP2010007124A (ja) * 2008-06-26 2010-01-14 Dic Corp 銀含有粉体の製造方法、銀含有粉体及びその分散液
JP2014505969A (ja) * 2010-12-21 2014-03-06 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導電性被膜の製造用のピッカリングエマルジョン及びピッカリングエマルジョンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
JP2010007124A (ja) * 2008-06-26 2010-01-14 Dic Corp 銀含有粉体の製造方法、銀含有粉体及びその分散液
JP2014505969A (ja) * 2010-12-21 2014-03-06 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導電性被膜の製造用のピッカリングエマルジョン及びピッカリングエマルジョンの製造方法

Also Published As

Publication number Publication date
US20180009038A1 (en) 2018-01-11
JPWO2016136723A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP2020044535A (ja) 担持触媒の製造方法
JP6807667B2 (ja) 金属ナノワイヤ分散液の製造方法および金属ナノワイヤインクの製造方法
JP4815586B2 (ja) Au25クラスターの選択的大量合成方法
CN107298436A (zh) 获取高纯度半导体性单壁碳纳米管的方法
JP5139848B2 (ja) 没食子酸の誘導体に被覆された銀ナノ粒子
JP6587192B2 (ja) 金属ナノワイヤーを精製するための方法
JP4868490B2 (ja) カーボンナノチューブの精製方法
WO2016136723A1 (ja) ナノ粒子の精製方法
JP6709557B2 (ja) 担持触媒
CN106086470A (zh) 一种以高岭土尾矿为原料获取铷盐的方法
JP6481998B2 (ja) 担持触媒
DE102014007354A1 (de) Verfahren und Vorrichtung zum Aufbereiten von Rückständen aus der mechanischen Bearbeitung von Siliziumprodukten
CN103754857A (zh) 一种高效提取单金属内嵌富勒烯m@c82的方法
WO2001047813A1 (fr) Procede pour produire un cristal de tantalate de potassium fluore et cristal de tantalate de potassium fluore
JP2009191320A (ja) パラジウムサブナノ粒子の製造方法
Zhou et al. Preparation and Self‐Assembly of a 2: 1 Polyoxometalate‐Fullerene C60 Shape Amphiphile
KR101622274B1 (ko) 에틸렌글리콜다이알킬에테르의 정제방법
WO2016136939A1 (ja) 高分子保護材フリー担持触媒の製造方法
TWI473762B (zh) 內含富勒烯之活門囚籠錯合物以及利用其來純化富勒烯的方法
KR102132239B1 (ko) 다공성 실리카-철-구리 제조방법
JP2009137912A (ja) 芳香族アミン化合物の合成方法
Shahid et al. Adsorption behavior of Pb (II) onto potassium polytitanate nanofibres
JP2016183092A (ja) 植物部位からバイオモルフィックシリカのナノ粒子を得る方法であって、前記植物部位はその高含有量によって特徴付けられる方法。
JP5268298B2 (ja) アルカリ金属を内包するフラーレンベース材料誘導体
CN105713232B (zh) 一种芳基膦酸盐纳米成核剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546293

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017502376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755467

Country of ref document: EP

Kind code of ref document: A1