WO2016136566A1 - 送電装置および電力伝送システム - Google Patents

送電装置および電力伝送システム Download PDF

Info

Publication number
WO2016136566A1
WO2016136566A1 PCT/JP2016/054641 JP2016054641W WO2016136566A1 WO 2016136566 A1 WO2016136566 A1 WO 2016136566A1 JP 2016054641 W JP2016054641 W JP 2016054641W WO 2016136566 A1 WO2016136566 A1 WO 2016136566A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
power transmission
detected
detector
Prior art date
Application number
PCT/JP2016/054641
Other languages
English (en)
French (fr)
Inventor
市川敬一
末定剛
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201690000402.4U priority Critical patent/CN207124490U/zh
Publication of WO2016136566A1 publication Critical patent/WO2016136566A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power transmission device that wirelessly transmits power to a power receiving device, and a power transmission system including the power transmission device.
  • Patent Document 1 discloses a power transmission device that determines whether or not a foreign object is approaching a coil that is electromagnetically coupled to a coil on the power receiving device side, and the type of the foreign material.
  • the power transmission device shown in Patent Literature 1 includes a resonance circuit including a coil. The resonance curve of the resonance circuit changes between a state in which no foreign object is approaching the coil and a state in which the coil is approaching.
  • the power transmission device disclosed in Patent Document 1 obtains a phase difference from the drive voltage of the resonance circuit based on an alternating current flowing through the coil, and detects an alternating voltage generated at the coil end. Then, a change in the resonance curve is detected based on the detected voltage and the obtained phase difference, and a state determination such as the presence / absence of a foreign object on the coil is performed.
  • an object of the present invention is to provide a power transmission device and a power transmission system that detect states such as whether or not a power receiving device is mounted, a mounting position, a load fluctuation state, and an abnormal state with a simple circuit configuration.
  • the present invention provides a power transmission device that includes a power transmission coupling unit, and that couples the power reception coupling unit of the power reception device and the power transmission coupling unit with at least one of an electric field or a magnetic field, and transmits electric power to the power reception device.
  • Inverter circuit for converting to AC voltage and outputting to the power transmission coupling unit, the power transmission coupling unit including the resonance circuit provided between the inverter circuit and the power transmission coupling unit, and input to the inverter circuit
  • a direct current voltage detector that detects a direct current voltage
  • a direct current detector that detects a direct current input to the inverter circuit
  • an alternating current voltage detector that detects the magnitude of the alternating voltage output from the inverter circuit
  • An alternating current detection unit that detects the magnitude of the alternating current output from the inverter circuit, a direct current voltage that is detected by the direct current voltage detection unit, and the direct current Based on the direct current detected by the output section, the magnitude of the alternating voltage detected by the alternating voltage detector, and the magnitude of the alternating current detected by the alternating current detector, the power transmission coupling section is viewed from the inverter circuit.
  • An impedance information detection unit that detects information on the impedance
  • a state detection unit that detects a state on the power transmission
  • the power receiving device is mounted on the power transmitting device, whether it is mounted, the mounting position, the load fluctuation state, the abnormal state, etc.
  • State detection and state determination can be performed.
  • the abnormal state on the power transmission coupling unit side is, for example, a state in which a foreign object has contacted (approached) the power transmission coupling unit.
  • the power transmission device includes a DC power detection unit that detects DC power input to the inverter circuit based on a DC voltage detected by the DC voltage detection unit and a DC current detected by the DC current detection unit. And an apparent power of the AC power output from the inverter circuit based on the magnitude of the AC voltage detected by the AC voltage detector and the magnitude of the AC current detected by the AC current detector.
  • the power receiving device is mounted on the power transmitting device, whether it is mounted, the mounting position, the load fluctuation state, the abnormal state, etc. State detection and state determination can be performed.
  • the impedance information includes the DC voltage detected by the DC voltage detector, the DC current detected by the DC current detector, and the magnitude of the AC voltage detected by the AC voltage detector. And the phase of the impedance calculated from the ratio of the alternating current detected by the alternating current detector to the magnitude of the alternating current.
  • the impedance phase can be calculated without performing complicated arithmetic processing.
  • State detection is performed based on the calculated phase. For example, an abnormal state is detected when the phase greatly varies from the reference. Since there is no need for complicated arithmetic processing, it is possible to perform state detection and state determination, such as whether or not the power receiving device is mounted on the power transmitting device, the mounting position, the load fluctuation state, and the presence or absence of an abnormal state with a simple circuit configuration.
  • the impedance information includes the DC voltage detected by the DC voltage detector, the DC current detected by the DC current detector, and the magnitude of the AC voltage detected by the AC voltage detector. And a power factor calculated from the ratio of the alternating current detected by the alternating current detector to the magnitude of the alternating current.
  • the power factor can be calculated without performing complicated arithmetic processing.
  • State detection is performed based on the calculated power factor. For example, an abnormal state is detected when the power factor greatly fluctuates from the reference. Since there is no need for complicated arithmetic processing, it is possible to perform state detection and state determination, such as whether or not the power receiving device is mounted on the power transmitting device, the mounting position, the load fluctuation state, and the presence or absence of an abnormal state with a simple circuit configuration.
  • the impedance information includes the DC voltage detected by the DC voltage detector, the DC current detected by the DC current detector, and the magnitude of the AC voltage detected by the AC voltage detector.
  • reactive power can be calculated without performing complicated arithmetic processing.
  • State detection is performed based on the calculated reactive power. For example, an abnormal state is detected when the variation in reactive power is large from the reference. Since there is no need for complicated arithmetic processing, it is possible to perform state detection and state determination, such as whether or not the power receiving device is mounted on the power transmitting device, the mounting position, the load fluctuation state, and the presence or absence of an abnormal state with a simple circuit configuration.
  • the power transmission coupling unit is a coil that is magnetically coupled to the power reception coupling unit of the power reception device.
  • the power transmission system includes any one of the power transmission devices of the present invention, the power reception coupling unit coupled to the power transmission coupling unit by at least one of an electric field or a magnetic field, and a voltage induced in the power reception coupling unit. And a power receiving device having a rectifying / smoothing circuit for rectifying and smoothing and outputting to a load.
  • a simple circuit configuration is used to detect and determine whether the power reception device is mounted on the power transmission device, the mounting position, the load fluctuation state, whether there is an abnormal state, etc. It can be carried out. For example, it is possible to detect an abnormality immediately and stop power transmission or perform power transmission reliably.
  • the abnormal state State detection such as presence / absence and state determination can be performed.
  • FIG. 1 is a circuit diagram of a power transmission system according to the present embodiment.
  • FIG. 2 is a block diagram illustrating functions of the control circuit.
  • FIG. 3 is a circuit diagram when the power transmission device is a differential circuit.
  • FIG. 4 is a diagram illustrating an example in which an AC voltage and AC current detection circuit is provided at a position where the reactance is zero.
  • 5A and 5B are diagrams illustrating an example in which an AC voltage detection circuit is provided at a position where the voltage is high.
  • FIG. 6 is a circuit diagram of a power transmission system in which a power transmission device and a power reception device are coupled in an electric field.
  • FIG. 1 is a circuit diagram of a power transmission system 100 according to the present embodiment.
  • the power transmission system 100 includes a power transmission device 101 and a power reception device 201.
  • the power receiving device 201 includes a load circuit 21.
  • the load circuit 21 includes a charging circuit and a secondary battery.
  • the secondary battery may be detachable from the power receiving apparatus 201.
  • the power receiving apparatus 201 is a portable electronic device provided with the secondary battery, for example. Examples of portable electronic devices include cellular phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs, and digital cameras.
  • the power transmission device 101 is a charging stand for charging the secondary battery of the power receiving device 201 placed thereon.
  • the power transmission apparatus 101 includes a DC power source Vin that outputs a DC voltage.
  • the DC power source Vin is an AC adapter connected to a commercial power source.
  • the inverter circuit 12 and the power transmission side resonance coupling unit 13 are sequentially connected to the DC power source Vin.
  • the inverter circuit 12 converts a DC voltage into an AC voltage.
  • the inverter circuit may include a filter circuit that removes harmonic components and high frequency components.
  • the power transmission side resonance coupling unit 13 includes a primary coil N1 and capacitors C11 and C12.
  • the primary coil N1 is an example of the “power transmission coupling unit” according to the present invention.
  • the power transmission side resonance coupling unit 13 is an example of the “resonance circuit” according to the present invention.
  • the power transmission device 101 includes a control circuit 14.
  • the control circuit 14 When power is transmitted from the power transmitting apparatus 101 to the power receiving apparatus 201, the control circuit 14 performs switching control of the inverter circuit 12 at an optimal switching frequency. Further, the control circuit 14 detects the state on the power transmission side resonance coupling unit 13 side. The control circuit 14 will be described later.
  • the power receiving apparatus 201 includes a power receiving side resonance coupling unit 23.
  • the power receiving side resonance coupling unit 23 includes a secondary coil N2 and a capacitor C2.
  • the secondary coil N2 is magnetically coupled to the primary coil N1 of the power transmission side resonance coupling unit 13 of the power transmission device 101. Power is transmitted wirelessly from the power transmitting apparatus 101 to the power receiving apparatus 201 through this coupling.
  • the secondary coil N2 is an example embodiment that corresponds to the “power receiving coupling portion” according to the present invention.
  • a power receiving side circuit 22 is connected to the power receiving side resonance coupling portion 23.
  • the power receiving side circuit 22 rectifies and smoothes the voltage induced in the secondary coil N2, converts it to a stabilized predetermined voltage, and supplies it to the load circuit 21.
  • the power receiving side circuit 22 is an example of the “rectifying / smoothing circuit” according to the present invention.
  • FIG. 2 is a block diagram illustrating functions of the control circuit 14.
  • the control circuit 14 includes a switching control unit 140.
  • the switching control unit 140 performs switching control of the inverter circuit 12 at a predetermined switching frequency (for example, using 6.78 MHz or 13.56 MHz in the ISM band).
  • the constants of the resonance circuit are set so that the resonance frequencies of the power transmission side resonance coupling unit 13 and the power reception side resonance coupling unit 23 are close to the switching frequency.
  • the control circuit 14 includes a DC current detection unit 141, a DC voltage detection unit 142, and a DC power calculation unit 143.
  • a current detection element R ⁇ b> 1 is provided in the DC power line between the inverter circuits 12.
  • the direct current detection unit 141 detects the direct current IDC input to the inverter circuit 12 from the current detection element R1.
  • the current detection element R1 includes a resistor connected in series to the DC power line and a differential amplifier circuit that amplifies the voltage across the resistor.
  • the current detection element R1 may be configured by a Hall element, a magnetoresistive element or the like instead of the resistor and the differential amplifier circuit.
  • voltage dividing resistors R21 and R22 are provided on the input side of the inverter circuit 12.
  • the DC voltage detection unit 142 detects the DC voltage VDC input to the inverter circuit 12 by the voltage dividing resistors R21 and R22.
  • the DC power calculation unit 143 is an example of the “DC power detection unit” according to the present invention.
  • the DC power calculation unit 143 may calculate the DC power Pin1 in consideration of the loss of the inverter circuit 12 that increases or decreases according to the power in order to reduce the error.
  • the control circuit 14 includes an AC current detection unit 144, an AC voltage detection unit 145, and an AC power calculation unit 146.
  • the alternating current detector 144 detects the magnitude IAC of the alternating current output from the inverter circuit 12 (hereinafter referred to as alternating current IAC).
  • alternating current IAC the magnitude of the alternating current output from the inverter circuit 12
  • a primary winding of a current transformer CT is provided in a signal line between the inverter circuit 12 and the power transmission side resonance coupling unit 13.
  • a load circuit including a resonance capacitor (not shown), a filter circuit 15 and a rectifier circuit 16 is connected to the secondary winding of the current transformer CT.
  • a DC voltage proportional to the magnitude of the voltage (AC voltage) output from the load circuit is input to the AC current detection unit 144. Thereby, the alternating current detection unit 144 detects the alternating current IAC.
  • the filter circuit 15 When the waveform is distorted by the harmonic component included in the current flowing through the primary side of the current transformer CT, the filter circuit 15 removes the harmonic component (second harmonic, third harmonic,). In order to eliminate detection errors, it is provided as appropriate.
  • the filter circuit 15 may be an LPF (Low-pass filter), a BPF (Band-pass filter), or a BEF (Band-elimination filter).
  • the configuration for detecting the alternating current IAC may be a configuration in which a resistor is connected in parallel to the secondary winding of the current transformer CT and the alternating current IAC is detected from the voltage across the resistor.
  • the AC current detection unit 144 may detect the voltage at both ends and obtain the magnitude of the AC current from the detection result.
  • the magnitude of the alternating current is any value that does not include phase information such as amplitude and effective value (rms). Further, the magnitude of the alternating current when calculating the alternating-current power described later indicates an effective value.
  • the AC voltage detector 145 detects the AC voltage magnitude VAC (hereinafter referred to as AC voltage VAC) output from the inverter circuit 12.
  • AC voltage VAC AC voltage magnitude
  • a voltage dividing circuit including capacitors C21 and C22 is provided on the output side of the inverter circuit 12.
  • the capacitor C21 preferably has a small capacity (several pF to several tens pF) in order to reduce the influence on the power transmission side resonance coupling unit 13.
  • the capacitor C22 is set to a constant according to the voltage division ratio.
  • the AC voltage divided by the capacitors C21 and C22 is converted into a DC voltage proportional to the magnitude of the AC voltage by a filter circuit, a rectification and smoothing circuit (not shown) for removing harmonic components,
  • the voltage is input to the voltage detector 145.
  • the alternating voltage detection part 145 detects the alternating voltage VAC.
  • the configuration for detecting the AC voltage VAC is not limited to the configuration for detecting the divided voltage by the capacitors C21 and C22. It may be configured to detect voltage division by a resistance voltage dividing circuit, or may be configured to detect a voltage stepped down by a transformer. Moreover, the structure which detects the partial pressure by the voltage dividing circuit which combined LC may be sufficient.
  • the DC voltages input to the AC current detection unit 144 and the AC voltage detection unit 145 are amounts proportional to the AC current IAC and the AC voltage VAC, respectively, and are appropriately corrected when calculating the power.
  • the magnitude of the AC voltage is any value that does not include phase information such as amplitude and effective value (rms).
  • size of the alternating voltage in the case of calculating the below-mentioned alternating current power points out an effective value.
  • the AC power Pin2 is an apparent power of the AC power output from the inverter circuit 12.
  • the AC power calculation unit 146 is an example of the “apparent power detection unit” according to the present invention.
  • the control circuit 14 includes an information detection unit 147.
  • the information detection unit 147 detects information related to the input impedance from the calculated DC power Pin1 and AC power Pin2.
  • the input impedance is the impedance when the power transmission side resonance coupling unit 13 side is viewed from the inverter circuit 12, and includes the power transmission side resonance coupling unit 13.
  • the information detection unit 147 is an example embodiment that corresponds to the “impedance information detection unit” according to the present invention.
  • the information detection unit 147 calculates the input impedance phase ⁇ from the DC power Pin1 and the AC power Pin2.
  • ( VAC / IAC) of the input impedance.
  • Z R + jX
  • ⁇ cos ⁇ and the imaginary part X
  • the control circuit 14 includes a state determination unit 148.
  • the state determination unit 148 is an example of the “state detection unit” according to the present invention. As an example of state detection, a method for detecting an abnormal state will be described. In addition, since the detection method of an abnormal condition is an example, it is not restricted to this.
  • the state determination unit 148 holds (stores) a range of impedance (real part and imaginary part, or absolute value and phase, etc.) that can be regarded as a normal state.
  • the power transmission side resonance coupling unit 13 side is in an abnormal state, such as a foreign object placed on the power transmission device 101, the resonance condition of the power transmission side resonance coupling unit 13 varies, and the input impedance varies.
  • the control circuit 14 When the state determination unit 148 determines that the power transmission side resonance coupling unit 13 side is in an abnormal state, the control circuit 14 reduces, for example, the transmission power or stops the power transmission operation. In addition, an abnormality can be notified by lighting of a lamp, a warning sound, or the like.
  • state detection other than detection of an abnormal state for example, whether or not the power receiving apparatus 201 is mounted on the power transmission apparatus 101, a mounting position, a load fluctuation state, and the like can be similarly detected by the value of the input impedance or its fluctuation mode.
  • the mounting position of the power receiving device 201 is shifted, the resonance frequencies of the power transmission side resonance coupling unit 13 and the power reception side resonance coupling unit 23 are shifted, so that the power transmission efficiency is lowered, and the current and voltage amplitudes are increased. Or fever. In that case, the transmission power can be reduced for safety.
  • the power transmission device 101 can detect the state on the power transmission side resonance coupling unit 13 side from the DC power Pin1 and the AC power Pin2. For this reason, it is possible to perform state determination with a simple circuit configuration as compared with the conventional case in which impedance (absolute value and phase information) is detected by high-speed processing from alternating voltage and alternating current to detect the state. .
  • the state determination unit 148 determines the state on the power transmission side resonance coupling unit 13 side from the calculated reactive power Q.
  • the state on the power transmission resonance coupling unit 13 side can be determined from the detected and calculated DC power Pin1 and AC power Pin2.
  • the power is calculated from the detected voltage and current.
  • the information detection unit 147 calculates the phase ⁇ by directly using the detected voltage and current without calculating the power. It may be.
  • the DC power calculation unit 143 and the AC power calculation unit 146 shown in FIG. 2 are not necessary. That is, the state on the power transmission side resonance coupling unit 13 side can be determined from the detected or predetermined four scalar quantities of the DC voltage VDC, the DC current IDC, the AC voltage VAC, and the AC current IAC.
  • the power transmission apparatus 101 has a configuration in which the ground is shared, but may have a configuration of a differential circuit in which the ground is not shared.
  • FIG. 3 is a circuit diagram when the power transmission device 101 is a differential circuit.
  • a differential output inverter circuit 12A is provided instead of the inverter circuit 12.
  • the line connected to the output side of the differential output inverter circuit 12A is a differential line, and a differential voltage is applied to the primary coil N1.
  • a balanced / unbalanced conversion circuit is provided on the output side of the differential output inverter circuit 12A.
  • a voltage dividing circuit including capacitors C21, C22, and C23 is provided on the output side of the differential output inverter circuit 12A.
  • Capacitors C21 and C22 preferably have a small capacitance (several pF to several tens of pF) in order to reduce the influence on power transmission side resonance coupling unit 13.
  • the capacitor C23 is set to a constant according to the voltage division ratio.
  • the primary winding of the transformer T1 is connected to the capacitor C23.
  • One end of the secondary winding of the transformer T1 is grounded, and the other end is connected to the control circuit 14 via the load circuit 18.
  • the transformer T1 is an insulating transformer or a common mode choke coil.
  • the load circuit 18 includes a filter circuit, a rectifying / smoothing circuit, and the like.
  • the voltage across the capacitor C23 is input to the control circuit 14 via the transformer T1 and the like. Thereby, the control circuit 14 (AC voltage detection unit 145) detects the AC voltage VAC.
  • the position where the circuit for detecting the AC voltage VAC and the AC current IAC is provided is not limited to the position immediately after the output side of the inverter circuit 12 described in FIG.
  • the reactance when the power receiving side is viewed from the power transmitting side is zero.
  • a foreign object such as a clip
  • the reactance thereof varies. That is, since the amplitude of the AC voltage greatly varies due to the variation in reactance, the detection sensitivity can be increased by providing the detection circuit at the reference position where the reactance is zero.
  • FIG. 4 is a diagram illustrating an example in which the detection circuit for the AC voltage VAC and the AC current IAC is provided at a position where the reactance becomes zero.
  • Inductors 12L 1 and 12L 2 shown in FIG. 4 are a part of an impedance adjusting element connected to the inverter circuit 12 and a filter element for removing high frequency components.
  • the impedance including the primary coil N1 and the power receiving device 201 is represented by “resistance component Req + reactance component Xeq”.
  • the position where the capacitor having the reactance of ⁇ Xeq is connected in series to the primary coil N1 is the position where the reactance becomes zero.
  • a detection circuit (capacitors C21, C22, current transformer CT, etc.) for the AC voltage VAC and the AC current IAC is provided at that position. For example, if the reactances of the capacitors C11 and C12 are both -Xeq / 2, the reactance at the broken line position in FIG. 4 is zero.
  • the inductance of the current transformer CT may also be used as an impedance adjustment element connected to the inverter circuit 12.
  • the detection circuit may be provided at a position where the voltage is high so that the amplitude value of the AC voltage VAC equal to or greater than a certain value can be detected.
  • 5 (A) and 5 (B) are diagrams showing an example in which the detection circuit for the AC voltage VAC is provided at a position where the voltage is high.
  • FIG. 5A shows an example in which a voltage dividing circuit including capacitors C21, C22, and C23 is connected to both ends of the primary coil N1 having the highest voltage at both ends.
  • the primary winding of the transformer T1 is connected to the capacitor C23.
  • One end of the secondary winding of the transformer T1 is grounded, and the other end is connected to the control circuit 14 via the load circuit 18.
  • FIG. 5B shows an example in which a voltage dividing circuit of capacitors C13 and C14 and a voltage dividing circuit of capacitors C15 and C16 are connected to both ends of the primary coil N1.
  • an AC voltage VAC that is lower than that in the case of FIG.
  • FIG. 5A and FIG. 5B it is possible to output a higher AC voltage VAC than in the case of FIG.
  • the power transmission system 100 performs power transmission by magnetically coupling the power transmission device 101 and the power receiving device 201.
  • the power transmission system 100 performs electric field coupling or electromagnetic field coupling (electric field coupling and magnetic field coupling) to generate power. Transmission may be performed.
  • FIG. 6 is a circuit diagram of the power transmission system 100A in which the power transmission device 101A and the power reception device 201A are coupled in an electric field.
  • the power transmission device 101A includes an active electrode 19A and a passive electrode 19B.
  • the active electrode 19A and the passive electrode 19B are connected to the output of the inverter circuit 12 via the transformer T2.
  • the capacitor C3 is connected between the active electrode 19A and the passive electrode 19B.
  • Capacitor C3 includes a capacitance generated between active electrode 19A and passive electrode 19B.
  • the capacitor C3 forms a resonance circuit with the secondary winding of the transformer T2.
  • the active electrode 19A and the passive electrode 19B are examples of the “power transmission coupling portion” according to the present invention.
  • the power receiving device 201A includes an active electrode 29A and a passive electrode 29B.
  • the active electrode 29A and the passive electrode 29B are connected to the power receiving side circuit 22 via the transformer T3.
  • the capacitor C4 is connected between the active electrode 29A and the passive electrode 29B.
  • Capacitor C4 includes a capacitance generated between active electrode 29A and passive electrode 29B.
  • the capacitor C4 forms a resonance circuit with the primary winding of the transformer T3.
  • the active electrode 29A and the passive electrode 29B are examples of the “power receiving coupling portion” according to the present invention.
  • the active electrodes 19A and 29A face each other, and the passive electrodes 19B and 29B face each other, so that electric field coupling is performed. Through this coupling, power is wirelessly transmitted from the power transmitting apparatus 101A to the power receiving apparatus 201A.
  • Other configurations are the same as those in FIG.
  • the conventional case of detecting the state by detecting impedance (absolute value and phase information) by high-speed processing from the AC voltage and AC current Compared to the above, it is possible to detect the state and determine the state of the power receiving apparatus 201A with respect to the power transmitting apparatus 101A, such as whether or not the power receiving apparatus 201A is mounted, the mounting position, the load fluctuation state, and the abnormal state.

Abstract

 磁界結合して受電装置(201)へ電力を伝送する送電装置(101)において、送電装置(101)は、インバータ回路(12)と、1次コイル(N1)を含む送電側共振結合部(13)と、制御回路(14)とを備える。制御回路(14)は、インバータ回路(12)へ入力される直流電力と、インバータ回路(12)から出力される交流電力とを検出し、直流電力と交流電力との比から、入力インピーダンスの位相φを算出する。算出した位相φに基づいて、送電側共振結合部(13)側の状態を判定する。これにより、簡易な回路構成で、応答性よく状態判定を行う送電装置および電力伝送システムを提供する。

Description

送電装置および電力伝送システム
 本発明は、ワイヤレスで受電装置に電力伝送する送電装置、および、それを備えた電力伝送システムに関する。
 送電装置および受電装置が電界結合または磁界結合して、ワイヤレスで送電装置から受電装置へ電力を伝送する電力伝送システムが知られている。特許文献1には、受電装置側のコイルと電磁結合するコイルに対する異物の接近の有無、およびその異物の種類を判定する送電装置が開示されている。特許文献1に示す送電装置は、コイルを含む共振回路を備えている。この共振回路の共振曲線は、コイルに異物が接近していない状態と接近している状態とで変化する。特許文献1に示す送電装置は、コイルへ流れる交流電流に基づいて共振回路の駆動電圧との位相差を求め、また、コイル端に発生する交流電圧を検出する。そして、検出電圧と求めた位相差に基づき共振曲線の変化を検出し、コイルに対する異物の有無などの状態判定を行う。
特開2008-236917号公報
 しかしながら、特許文献1の構成のように、位相を含めたインピーダンスを検出する場合、高周波交流電流等を検出して、駆動周波数に同期させて高速に信号処理を行う必要がある。高速処理の演算回路が必要となり、回路構成が複雑化し、演算処理が複雑化する。
 そこで、本発明の目的は、簡易な回路構成で、受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出を行う送電装置および電力伝送システムを提供することにある。
 本発明は、送電結合部を備え、受電装置が有する受電結合部と前記送電結合部とを電界または磁界の少なくとも一方により結合させて、前記受電装置へ電力を伝送する送電装置において、直流電圧を交流電圧に変換し、前記送電結合部へ出力するインバータ回路と、前記送電結合部を含み、前記インバータ回路と前記送電結合部との間に設けられた共振回路と、前記インバータ回路へ入力される直流電圧を検出する直流電圧検出部と、前記インバータ回路へ入力される直流電流を検出する直流電流検出部と、前記インバータ回路から出力される交流電圧の大きさを検出する交流電圧検出部と、前記インバータ回路から出力される交流電流の大きさを検出する交流電流検出部と、前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとに基づいて、前記インバータ回路から送電結合部を視たインピーダンスの情報を検出するインピーダンス情報検出部と、前記インピーダンス情報検出部が検出した情報に基づいて、前記送電結合部側の状態を検出する状態検出部と、を備える、ことを特徴とする。
 この構成では、交流電圧および交流電流の位相を検出して状態を検出する場合と比べて、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。送電結合部側の異常状態とは、例えば、送電結合部に対して異物が接触(接近)した状態等である。
 本発明に係る送電装置は、前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流に基づいて、前記インバータ回路へ入力される直流電力を検出する直流電力検出部と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさに基づいて、前記インバータ回路から出力される交流電力の皮相電力を検出する皮相電力検出部と、を備え、前記インピーダンス情報検出部は、前記直流電力検出部が検出する直流電力と、前記皮相電力検出部が検出する皮相電力とに基づいて、前記インピーダンスの情報を検出することが好ましい。
 この構成では、交流電圧および交流電流の位相を検出して状態を検出する場合と比べて、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
 本発明に係る送電装置において、前記インピーダンスの情報は、前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとの比率から算出される、前記インピーダンスの位相を含むことが好ましい。
 この構成では、複雑な演算処理を行うことなく、インピーダンスの位相を算出できる。この算出した位相に基づいて状態検出を行う。例えば、位相が基準から大きく変動した場合に、異常状態を検出する。複雑な演算処理の必要がないため、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
 本発明に係る送電装置において、前記インピーダンスの情報は、前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとの比率から算出される力率を含むことが好ましい。
 この構成では、複雑な演算処理を行うことなく、力率を算出できる。この算出した力率に基づいて状態検出を行う。例えば、力率が基準から大きく変動した場合に、異常状態を検出する。複雑な演算処理の必要がないため、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
 本発明に係る送電装置において、前記インピーダンスの情報は、前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとから算出される、前記インピーダンスへの無効電力を含むことが好ましい。
 この構成では、複雑な演算処理を行うことなく、無効電力を算出できる。この算出した無効電力に基づいて状態検出を行う。例えば、無効電力の変動が基準からの変動が大きい場合に、異常状態を検出する。複雑な演算処理の必要がないため、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
 本発明に係る送電装置において、前記送電結合部は、前記受電装置が有する前記受電結合部と磁界結合するコイルであることが好ましい。
 この構成では、空間自由度が高く、かつ、安全性を高めたシステムを構成できる。磁界共振型(磁界共鳴型)の場合では、装置間の距離を離すことを前提とし、また、給電対象の受電装置も複数ある。その結果、異物搭載などの確率も格段に増えることが想定される。このため、状態判定(正常状態と異常状態とを識別)するには、インピーダンスの絶対値のみでは不足するため、位相情報を含めることで、状態判定をより確実に行える。
 本発明に係る電力伝送システムは、本発明のいずれかの送電装置と、電界または磁界の少なくとも一方により前記送電結合部と結合する前記受電結合部、および、前記受電結合部に誘起される電圧を整流平滑し、負荷へ出力する整流平滑回路を有する受電装置とを備えたことを特徴とする。
 この構成では、送電装置から受電装置へ電力伝送する際、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。例えば、異常を即座に検出して、電力伝送を停止し、または、確実に電力伝送を行える。
 本発明によれば、交流電圧および交流電流の位相を検出して状態を検出する場合と比べて、簡易な回路構成で、送電装置に対する受電装置の搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
図1は、本実施形態に係る電力伝送システムの回路図である。 図2は、制御回路が有する機能を示すブロック図である。 図3は、送電装置が差動回路である場合の回路図である。 図4は、交流電圧および交流電流の検出回路を、リアクタンスがゼロとなる位置に設けた例を示す図である。 図5(A)及び図5(B)は、交流電圧の検出回路を、電圧が高い位置に設けた例を示す図である。 図6は、送電装置と受電装置とが電界結合する電力伝送システムの回路図である。
 図1は、本実施形態に係る電力伝送システム100の回路図である。
 電力伝送システム100は、送電装置101と受電装置201とを備えている。受電装置201は負荷回路21を備えている。この負荷回路21は充電回路および二次電池を含む。なお、二次電池は受電装置201に対し着脱式であってもよい。そして、受電装置201は、その二次電池を備えた、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA(Personal Digital Assistant)、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。送電装置101は、載置された受電装置201の二次電池を充電するための充電台である。
 送電装置101は、直流電圧を出力する直流電源Vinを備えている。直流電源Vinは、商用電源に接続されるACアダプタである。直流電源Vinには、インバータ回路12および送電側共振結合部13が順次接続されている。インバータ回路12は、直流電圧を交流電圧に変換する。なお、インバータ回路には、高調波成分、高周波成分を除去するフィルタ回路が含まれる場合がある。送電側共振結合部13は、1次コイルN1およびキャパシタC11,C12を含む。
 1次コイルN1は、本発明に係る「送電結合部」の一例である。また、送電側共振結合部13は、本発明に係る「共振回路」の一例である。
 送電装置101は制御回路14を備えている。制御回路14は、送電装置101から受電装置201へ電力伝送する際、インバータ回路12を最適なスイッチング周波数でスイッチング制御する。また、制御回路14は、送電側共振結合部13側の状態を検出する。制御回路14については、後述する。
 受電装置201は、受電側共振結合部23を備えている。受電側共振結合部23は、2次コイルN2およびキャパシタC2を含む。2次コイルN2は、送電装置101の送電側共振結合部13の1次コイルN1と磁界結合する。この結合を介して、送電装置101から受電装置201へワイヤレスで電力が伝送される。2次コイルN2は、本発明に係る「受電結合部」の一例である。
 受電側共振結合部23には受電側回路22が接続されている。受電側回路22は、2次コイルN2に誘起された電圧を整流および平滑し、安定化された所定電圧に変換して、負荷回路21へ供給する。受電側回路22は、本発明に係る「整流平滑回路」の一例である。
 以下に、制御回路14について詳述する。図2は、制御回路14が有する機能を示すブロック図である。
 制御回路14は、スイッチング制御部140を備えている。スイッチング制御部140は、所定のスイッチング周波数(例えば、ISM帯の6.78MHz、13.56MHzなどを利用する。)でインバータ回路12をスイッチング制御する。送電側共振結合部13および受電側共振結合部23それぞれの共振周波数がスイッチング周波数の近傍になるよう共振回路の定数が設定される。
 制御回路14は、直流電流検出部141、直流電圧検出部142および直流電力算出部143を備えている。
 図1に示すように、インバータ回路12間の直流電力ラインには、電流検出素子R1が設けられている。直流電流検出部141は、電流検出素子R1から、インバータ回路12へ入力される直流電流IDCを検出する。なお、電流検出素子R1は、直流電力ラインに直列接続される抵抗、および、その抵抗の両端電圧を増幅する差動増幅回路により構成される。電流検出素子R1は、抵抗および差動増幅回路に変えて、ホール素子、磁気抵抗素子等により構成されていてもよい。
 また、図1に示すように、インバータ回路12の入力側には、分圧抵抗R21,R22が設けられている。直流電圧検出部142は、分圧抵抗R21,R22により、インバータ回路12へ入力される直流電圧VDCを検出する。
 なお、常時所定の直流電圧VDCおよび直流電流IDCがインバータ回路12へ入力される場合、その値をメモリに予め記憶し、直流電流検出部141および直流電圧検出部142は、メモリからその値を読み込むようにしてもよい。
 直流電力算出部143は、直流電流検出部141が検出した直流電流IDC、および、直流電圧検出部142が検出した直流電圧VDCから、直流電力Pin1(=VDC×IDC)を算出する。直流電力算出部143は、本発明に係る「直流電力検出部」の一例である。
 なお、直流電力算出部143は、直流電力Pin1を算出する際、誤差低減のために、電力に応じて増減するインバータ回路12の損失を考慮して、直流電力Pin1を算出してもよい。例えば、直流電力算出部143はメモリを有し、そのメモリにインバータ回路12の損失補正関数F(VDC,IDC)を予め記憶しておく。そして、直流電力算出部143は、損失補正関数F(VDC,IDC)を用いて、補正後の直流電力Pin1*=F(VDC,IDC)を算出する。
 制御回路14は、交流電流検出部144、交流電圧検出部145および交流電力算出部146を備えている。
 交流電流検出部144は、インバータ回路12から出力される交流電流の大きさIAC(以下、交流電流IACと言う)を検出する。図1に示すように、インバータ回路12および送電側共振結合部13間の信号ラインには、カレントトランスCTの1次巻線が設けられている。カレントトランスCTの2次巻線には、不図示の共振用キャパシタ、フィルタ回路15および整流回路16等を含む負荷回路が接続されている。交流電流検出部144には、この負荷回路から出力される電圧(交流電圧)の大きさに比例した直流電圧が入力される。これにより、交流電流検出部144は、交流電流IACを検出する。
 なお、フィルタ回路15は、カレントトランスCTの1次側を流れる電流に含まる高調波成分によって波形が歪む場合、その高調波成分(2次高調波、3次高調波、、、)を除去して、検出誤差をなくすために適宜設けられる。このフィルタ回路15は、LPF(Low-pass filter)、BPF(Band-pass filter)であってもよいし、BEF(Band-elimination filter)であってもよい。また、交流電流IACの検出する構成としては、カレントトランスCTの2次巻線に抵抗を並列接続して、その抵抗の両端電圧から交流電流IACを検出する構成であってもよい。
 また、カレントトランスCTに代えて、既知のインピーダンスを直列接続し、交流電流検出部144は、その両端電圧を検出し、その検出結果から交流電流の大きさを得る構成であってもよい。なお、ここでいう交流電流の大きさとは振幅、実効値(rms)等の位相情報を含まない値の何れかである。また、後述の交流電力を算出する場合の交流電流の大きさは、実効値を指す。
 交流電圧検出部145は、インバータ回路12から出力される交流電圧の大きさVAC(以下、交流電圧VACと言う)を検出する。図1に示すように、インバータ回路12の出力側には、キャパシタC21,C22からなる分圧回路が設けられている。キャパシタC21は、送電側共振結合部13への影響を小さくするため、小容量(数pF~数10pF)とすることが好ましい。キャパシタC22は分圧比に応じて定数設定される。キャパシタC21,C22で分圧された交流電圧は、高調波成分を除去するためのフィルタ回路、整流、平滑回路(図示せず)により、交流電圧の大きさに比例する直流電圧に変換され、交流電圧検出部145に入力される。これにより、交流電圧検出部145は、交流電圧VACを検出する。
 なお、交流電圧VACを検出する構成は、キャパシタC21,C22による分圧を検出する構成に限定されない。抵抗分圧回路による分圧を検出する構成であってもよいし、トランスで降圧された電圧を検出する構成であってもよい。また、LCを組み合わせた分圧回路による分圧を検出する構成であってもよい。
 また、交流電流検出部144および交流電圧検出部145に入力される直流電圧は、それぞれ交流電流IAC、交流電圧VACに比例する量であり、電力演算する際には、適宜補正を行う。なお、ここでいう交流電圧の大きさとは振幅、実効値(rms)等の位相情報を含まない値の何れかである。また、後述の交流電力を算出する場合の交流電圧の大きさは、実効値を指す。
 交流電力算出部146は、交流電圧検出部145が検出した交流電流IAC、および、交流電力算出部146が検出した交流電圧VACから、交流電力Pin2(=VAC×IAC)を算出する。交流電力Pin2は、インバータ回路12から出力される交流電力の皮相電力である。交流電力算出部146は、本発明に係る「皮相電力検出部」の一例である。
 制御回路14は情報検出部147を備えている。情報検出部147は、算出された直流電力Pin1および交流電力Pin2から、入力インピーダンスに係る情報を検出する。入力インピーダンスは、インバータ回路12から送電側共振結合部13側を視たときのインピーダンスであり、送電側共振結合部13を含んでいる。情報検出部147は、本発明に係る「インピーダンス情報検出部」の一例である。
 情報検出部147は、直流電力Pin1および交流電力Pin2から、入力インピーダンスの位相φを算出する。位相φは、φ=cos-1(Pin1/Pin2)で算出できる。また、情報検出部147は、入力インピーダンスの絶対値|Zin|(=VAC/IAC)を算出する。入力インピーダンスをZ=R+jXで表すと、情報検出部147は、入力インピーダンスの実部R=|Zin|×cosφおよび虚部X=|Zin|×sinφを算出する。
 制御回路14は、状態判定部148を備えている。状態判定部148は、本発明に係る「状態検出部」の一例である。状態検出の一例として、異常状態の検出方法について述べる。なお、異常状態の検出方法は一例であるため、これに限らない。状態判定部148は、正常状態と見なせるインピーダンス(実部と虚部、または、絶対値と位相など)の範囲を保持(記憶)している。送電装置101に異物が載置されているなど、送電側共振結合部13側が異常状態である場合、送電側共振結合部13の共振条件が変動し、入力インピーダンスは変動する。状態判定部148は、算出した入力インピーダンスZ(=R+jX)が、記憶している正常時での入力インピーダンスの範囲と比較する。そして、例えば、実部Rがしきい値を超えている場合、または、虚部Xが正常時での入力インピーダンスと異なる場合、状態判定部148は、送電側共振結合部13側が異常状態であると判定する。
 状態判定部148が、送電側共振結合部13側が異常状態であると判定した場合、制御回路14は、例えば、伝送電力を低下させ、または、電力伝送動作を停止する。また、ランプの点灯、警告音等によって異常を報知することもできる。
 なお、異常状態検出以外の状態検出、例えば、受電装置201の送電装置101への搭載有無、搭載位置、負荷変動状態なども、同様に入力インピーダンスの値、または、その変動態様により検出できる。受電装置201の搭載位置がずれている場合には、送電側共振結合部13および受電側共振結合部23それぞれの共振周波数がずれるため、電力伝送効率が低下し、電流、電圧の振幅が上昇し、または発熱する。その場合、安全のために送電電力を低下させることができる。
 以上のように、本実施形態に係る送電装置101は、直流電力Pin1および交流電力Pin2から、送電側共振結合部13側の状態を検出できる。このため、交流電圧および交流電流から高速処理してインピーダンス(絶対値および位相の情報)を検出して状態を検出する従来の場合と比べて、簡易な回路構成で、状態判定を行うことができる。
 なお、本実施形態では、状態判定部148は、位相φを算出し、さらに、入力インピーダンスZを算出して状態の判定を行っているが、位相φのみの変動に基づいて、送電側共振結合部13側の状態を判定してもよい。また、情報検出部147は、直流電力Pin1および交流電力Pin2から、力率cosφ(=Pin1/Pin2)を算出し、入力インピーダンスZを算出するようにしてもよい。
 また、情報検出部147は、直流電力Pin1および交流電力Pin2から、交流電力の無効電力Q(=√(Pin2-Pin1)=Pin2×sinφ)を算出するようにしてもよい。この場合、状態判定部148は、算出された無効電力Qから、送電側共振結合部13側の状態を判定する。
 つまり、検出および算出した、直流電力Pin1および交流電力Pin2から、送電側共振結合部13側の状態を判定することができる。
 さらに、本実施形態では、検出した電圧および電流から電力を算出しているが、情報検出部147は、電力を算出することなく、検出した電圧および電流を直接用いて、位相φを算出するようにしてもよい。この場合、図2に示す直流電力算出部143および交流電力算出部146は不要である。つまり、検出したまたは所定の、直流電圧VDC、直流電流IDC、交流電圧VAC、交流電流IACの4つのスカラー量から、送電側共振結合部13側の状態を判定することができる。
 本実施形態では、送電装置101はグランドを共通にした構成としているが、グランドを共通にしない差動回路の構成であってもよい。
 図3は、送電装置101が差動回路である場合の回路図である。
 この例では、インバータ回路12に変えて差動出力インバータ回路12Aを設けている。差動出力インバータ回路12Aの出力側に接続される線路は差動線路であって、1次コイルN1には差動電圧が印加される。差動電圧である交流電圧VACを検出する構成として、差動出力インバータ回路12Aの出力側には、平衡不平衡変換回路が設けられている。
 具体的には、差動出力インバータ回路12Aの出力側には、キャパシタC21,C22,C23からなる分圧回路が設けられている。キャパシタC21,C22は、送電側共振結合部13への影響を小さくするため、小容量(数pF~数10pF)とすることが好ましい。キャパシタC23は分圧比に応じて定数設定される。
 キャパシタC23にはトランスT1の1次巻線が接続されている。トランスT1の2次巻線の一方端は接地され、他方端は負荷回路18を介して、制御回路14に接続されている。トランスT1は、絶縁トランスまたはコモンモードチョークコイル等である。負荷回路18は、フィルタ回路、整流平滑回路等を含む。キャパシタC23の両端電圧は、トランスT1等を介して制御回路14に入力される。これにより、制御回路14(交流電圧検出部145)は、交流電圧VACを検出する。
 また、交流電圧VACおよび交流電流IACを検出する回路を設ける位置は、図1で説明した、インバータ回路12の出力側直後の位置に限定されない。受電装置201が送電装置101の正規の位置に置かれた場合、送電側から受電側を視たときのリアクタンスはゼロとなる。送電装置101に異物(クリップ等)が載置されると、そのリアクタンスは変動する。すなわち、リアクタンスの変動によって交流電圧の振幅が大きく変動するため、リアクタンスがゼロとなる基準位置に、検出回路を設けるようにすれば、検出感度を高めることができる。
 図4は、交流電圧VACおよび交流電流IACの検出回路を、リアクタンスがゼロとなる位置に設けた例を示す図である。図4に示すインダクタ12L,12Lは、インバータ回路12に接続されるインピーダンス調整用素子、高周波成分を除去するフィルタ素子の一部である。
 1次コイルN1および受電装置201を含む(図4の破線領域内)インピーダンスを「抵抗成分Req+リアクタンス成分Xeq」で表す。この場合、リアクタンスが-Xeqのキャパシタが1次コイルN1に直列接続された位置が、リアクタンスがゼロとなる位置である。その位置に、交流電圧VACおよび交流電流IACの検出回路(キャパシタC21,C22、カレントトランスCT等)を設ける。例えば、キャパシタC11,C12のリアクタンスが何れも-Xeq/2であれば、図4の破線位置のリアクタンスはゼロとなる。この位置に、交流電圧VACおよび交流電流IACの検出回路を設けることで、交流電圧VACおよび交流電流IACの検出感度を高くできる。
 なお、カレントトランスCTのインダクタンスを、インバータ回路12に接続されるインピーダンス調整用素子と兼用させてもよい。
 また、一定値以上の交流電圧VACの振幅値が検出できるように、検出回路を、電圧が高い位置に設けるようにしてもよい。
 図5(A)及び図5(B)は、交流電圧VACの検出回路を、電圧が高い位置に設けた例を示す図である。
 図5(A)は、両端電圧が最も高くなる1次コイルN1の両端に、キャパシタC21,C22,C23からなる分圧回路を接続した例である。図3で説明したように、キャパシタC23にはトランスT1の1次巻線が接続されている。トランスT1の2次巻線の一方端は接地され、他方端は負荷回路18を介して、制御回路14に接続されている。図5(B)は、1次コイルN1の両端に、キャパシタC13,C14の分圧回路と、キャパシタC15,C16の分圧回路とを接続した例である。この例では、1次コイルN1の両端電圧を分圧しているため、図5(A)の場合よりも、低い交流電圧VACが制御回路14に入力される。図5(A)及び図5(B)の何れの場合であっても、図1の場合と比べて、より高い交流電圧VACを出力できる。
 また、本実施形態では、電力伝送システム100は、送電装置101と受電装置201とを磁界結合させて電力伝送を行っているが、電界結合または電磁界結合(電界結合および磁界結合)させて電力伝送を行うようにしてもよい。
 図6は、送電装置101Aと受電装置201Aとが電界結合する電力伝送システム100Aの回路図である。
 送電装置101Aは、アクティブ電極19Aとパッシブ電極19Bとを有している。アクティブ電極19Aとパッシブ電極19Bとは、トランスT2を介してインバータ回路12の出力に接続されている。キャパシタC3は、アクティブ電極19Aとパッシブ電極19Bとの間に接続される。キャパシタC3は、アクティブ電極19Aとパッシブ電極19Bとの間に生じる容量を含む。キャパシタC3は、トランスT2の2次巻線と共振回路を構成する。アクティブ電極19Aとパッシブ電極19Bとは、本発明に係る「送電結合部」の一例である。
 受電装置201Aは、アクティブ電極29Aと、パッシブ電極29Bとを有している。アクティブ電極29Aとパッシブ電極29Bとは、トランスT3を介して受電側回路22に接続されている。キャパシタC4は、アクティブ電極29Aとパッシブ電極29Bとの間に接続される。キャパシタC4は、アクティブ電極29Aとパッシブ電極29Bとの間に生じる容量を含む。キャパシタC4は、トランスT3の1次巻線と共振回路を構成する。アクティブ電極29Aとパッシブ電極29Bとは、本発明に係る「受電結合部」の一例である。
 送電装置101Aと受電装置201Aとは、アクティブ電極19A,29A同士が対向し、パッシブ電極19B,29B同士が対向して、電界結合する。この結合を介して、送電装置101Aから受電装置201Aへワイヤレスで電力が伝送される。なお、他の構成は、図1と同様であるため、説明は省略する。
 この電界結合方式の場合であっても、図1での説明と同様に、交流電圧および交流電流から高速処理してインピーダンス(絶対値および位相の情報)を検出して状態を検出する従来の場合と比べて、簡易な回路構成で、送電装置101Aに対する受電装置201Aの搭載有無、搭載位置、負荷変動状態、異常状態有無などの状態検出、および、状態判定を行うことができる。
C11,C12,C13,C14,C15,C16…キャパシタ
C2,C21,C22,C23…キャパシタ
C3,C4…キャパシタ
IAC…交流電流
IDC…直流電流
VAC…交流電圧
VDC…直流電圧
R1…電流検出素子
R21,R22…分圧抵抗
T1,T2,T3…トランス
Vin…直流電源
N1…1次コイル
N2…2次コイル
12…インバータ回路
12A…差動出力インバータ回路
12L,12L…インダクタ
13…送電側共振結合部
14…制御回路
15…フィルタ回路
16…整流回路
18…負荷回路
19A,29A…アクティブ電極
19B,29B…パッシブ電極
21…負荷回路
22…受電側回路
23…受電側共振結合部
100,100A…電力伝送システム
101,101A…送電装置
140…スイッチング制御部
141…直流電流検出部
142…直流電圧検出部
143…直流電力算出部
144…交流電流検出部
145…交流電圧検出部
146…交流電力算出部
147…情報検出部
148…状態判定部
201,201A…受電装置

Claims (7)

  1.  送電結合部を備え、受電装置が有する受電結合部と前記送電結合部とを電界または磁界の少なくとも一方により結合させて、前記受電装置へ電力を伝送する送電装置において、
     直流電圧を交流電圧に変換し、前記送電結合部へ出力するインバータ回路と、
     前記送電結合部を含み、前記インバータ回路と前記送電結合部との間に設けられた共振回路と、
     前記インバータ回路へ入力される直流電圧を検出する直流電圧検出部と、
     前記インバータ回路へ入力される直流電流を検出する直流電流検出部と、
     前記インバータ回路から出力される交流電圧の大きさを検出する交流電圧検出部と、
     前記インバータ回路から出力される交流電流の大きさを検出する交流電流検出部と、
     前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとに基づいて、前記インバータ回路から送電結合部を視たインピーダンスの情報を検出するインピーダンス情報検出部と、
     前記インピーダンス情報検出部が検出した情報に基づいて、前記送電結合部側の状態を検出する状態検出部と、
     を備える、送電装置。
  2.  前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流に基づいて、前記インバータ回路へ入力される直流電力を検出する直流電力検出部と、
     前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさに基づいて、前記インバータ回路から出力される交流電力の皮相電力を検出する皮相電力検出部と、
     を備え、
     前記インピーダンス情報検出部は、
     前記直流電力検出部が検出する直流電力と、前記皮相電力検出部が検出する皮相電力とに基づいて、前記インピーダンスの情報を検出する、
     請求項1に記載の送電装置。
  3.  前記インピーダンスの情報は、
     前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとの比率から算出される、前記インピーダンスの位相を含む、
     請求項1または2に記載の送電装置。
  4.  前記インピーダンスの情報は、
     前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとの比率から算出される、力率を含む、
     請求項1から3のいずれかに記載の送電装置。
  5.  前記インピーダンスの情報は、
     前記直流電圧検出部が検出する直流電圧、および前記直流電流検出部が検出する直流電流と、前記交流電圧検出部が検出する交流電圧の大きさ、および前記交流電流検出部が検出する交流電流の大きさとから算出される、無効電力を含む、
     請求項1から4のいずれかに記載の送電装置。
  6.  前記送電結合部は、前記受電装置が有する前記受電結合部と磁界結合するコイルである、
     請求項1から5のいずれかに記載の送電装置。
  7.  請求項1から5のいずれかに記載の送電装置と、
     電界または磁界の少なくとも一方により前記送電結合部と結合する前記受電結合部、および、前記受電結合部に誘起される電圧を整流平滑し、負荷へ出力する整流平滑回路を有する受電装置と、
     を備えた電力伝送システム。
PCT/JP2016/054641 2015-02-26 2016-02-18 送電装置および電力伝送システム WO2016136566A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201690000402.4U CN207124490U (zh) 2015-02-26 2016-02-18 供电装置以及电力传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-036763 2015-02-26
JP2015036763 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136566A1 true WO2016136566A1 (ja) 2016-09-01

Family

ID=56788657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054641 WO2016136566A1 (ja) 2015-02-26 2016-02-18 送電装置および電力伝送システム

Country Status (2)

Country Link
CN (1) CN207124490U (ja)
WO (1) WO2016136566A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370484B1 (ja) * 2017-03-10 2018-08-08 三菱電機エンジニアリング株式会社 共振型電力送信装置及び共振型電力伝送システム
WO2018146786A1 (ja) * 2017-02-10 2018-08-16 富士通株式会社 送電装置、電力伝送システム、及び、送電装置の制御方法
CN109690905A (zh) * 2016-09-13 2019-04-26 麦克赛尔株式会社 电功率输送装置
CN110268597A (zh) * 2017-02-08 2019-09-20 三菱电机工程技术株式会社 输电侧设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020233552A1 (en) * 2019-05-23 2020-11-26 The University Of Hong Kong Battery charging system and method using dynamically adjusted battery voltage threshold for switching charging modes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106126A (ja) * 2007-10-25 2009-05-14 Meleagros Corp 電力伝送装置、電力伝送装置の送電装置および受電装置
JP2012504931A (ja) * 2008-10-03 2012-02-23 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電力システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106126A (ja) * 2007-10-25 2009-05-14 Meleagros Corp 電力伝送装置、電力伝送装置の送電装置および受電装置
JP2012504931A (ja) * 2008-10-03 2012-02-23 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 電力システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109690905A (zh) * 2016-09-13 2019-04-26 麦克赛尔株式会社 电功率输送装置
CN109690905B (zh) * 2016-09-13 2022-12-02 麦克赛尔株式会社 电功率输送装置
CN110268597A (zh) * 2017-02-08 2019-09-20 三菱电机工程技术株式会社 输电侧设备
WO2018146786A1 (ja) * 2017-02-10 2018-08-16 富士通株式会社 送電装置、電力伝送システム、及び、送電装置の制御方法
CN110268596A (zh) * 2017-02-10 2019-09-20 富士通株式会社 送电装置、电力传输系统以及送电装置的控制方法
JPWO2018146786A1 (ja) * 2017-02-10 2019-11-07 富士通株式会社 送電装置、電力伝送システム、及び、送電装置の制御方法
JP6370484B1 (ja) * 2017-03-10 2018-08-08 三菱電機エンジニアリング株式会社 共振型電力送信装置及び共振型電力伝送システム
WO2018163408A1 (ja) * 2017-03-10 2018-09-13 三菱電機エンジニアリング株式会社 共振型電力送信装置及び共振型電力伝送システム

Also Published As

Publication number Publication date
CN207124490U (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2016136566A1 (ja) 送電装置および電力伝送システム
JP6168254B2 (ja) 電圧検出回路、送電装置および電力伝送システム
CN109742870B (zh) 无线电力传送装置
US9784777B2 (en) Methods and systems for measuring power in wireless power systems
JP5662954B2 (ja) 制御装置および無線電力伝送装置
WO2017019297A1 (en) System and method for detecting and characterizing an object for wireless charging
US20180138756A1 (en) Wireless power transmission system and method for driving same
US9124168B2 (en) Method and apparatus for electric isolation transmission
JP6189554B2 (ja) ワイヤレス電力充電システム内の電力およびインピーダンスを測定するためのシステムおよび方法
CN107394902B (zh) 谐振电源
US9711972B2 (en) Auxiliary receiver coil to adjust receiver voltage and reactance
JP2017524327A (ja) 共振周波数補償
US8664803B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
KR20120080136A (ko) 비접촉 전력 전송 장치 및 이를 위한 전력 전송 방법
WO2014125732A1 (ja) パラメータ導出方法
JP6035284B2 (ja) 非接触電力伝送装置
WO2016208402A1 (ja) 送電装置、受電装置及び電力伝送システム
JP6977654B2 (ja) ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP6112222B2 (ja) 周波数特性測定方法
JP2019162023A (ja) ワイヤレス電力伝送装置及びその受電側電流検出回路
JP5141228B2 (ja) 能動フィルタ装置及び電力変換装置
CN110323844B (zh) 无线受电装置、及无线电力传输系统
JP7301706B2 (ja) 受電装置及び無線給電システム
JP5932001B2 (ja) 制御装置、無線電力伝送装置および電力伝送効率推定方法
KR20130102511A (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16755313

Country of ref document: EP

Kind code of ref document: A1