WO2016136551A1 - Valve, fluid device, and method for producing fluid device - Google Patents

Valve, fluid device, and method for producing fluid device Download PDF

Info

Publication number
WO2016136551A1
WO2016136551A1 PCT/JP2016/054546 JP2016054546W WO2016136551A1 WO 2016136551 A1 WO2016136551 A1 WO 2016136551A1 JP 2016054546 W JP2016054546 W JP 2016054546W WO 2016136551 A1 WO2016136551 A1 WO 2016136551A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
substrate
flow path
valve
fluid
Prior art date
Application number
PCT/JP2016/054546
Other languages
French (fr)
Japanese (ja)
Inventor
一木 隆範
晨陽 蒋
博文 塩野
太郎 上野
Original Assignee
国立大学法人東京大学
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社ニコン filed Critical 国立大学法人東京大学
Priority to JP2017502292A priority Critical patent/JPWO2016136551A1/en
Publication of WO2016136551A1 publication Critical patent/WO2016136551A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a valve, a fluid device, and a fluid device manufacturing method.
  • ⁇ -TAS is superior to conventional testing equipment in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost. Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, the method is attracting attention as a highly useful method.
  • a microvalve is an indispensable element for controlling the flow of a fluid containing a biological sample or the like in a channel in a chip.
  • microvalves that have been proposed use a movable member such as an actuator, but in recent years, microvalves that close the flow path by applying gas pressure to the ceiling of the flow path have been proposed (for example, see Patent Document 1 and Non-Patent Document 1.)
  • the present invention provides a valve that can be easily manufactured at low cost and has a high degree of freedom in designing a fluid device.
  • the present invention also provides a flow channel device including the valve and a method for manufacturing the flow channel device.
  • the present invention includes the following aspects.
  • a substance having shape memory property is accommodated in an accommodating portion provided in the flow path, and the fluid in the flow path is formed by the deformation of the substance having shape memory property. It is characterized by adjusting the flow of the water.
  • a valve according to an embodiment of the present invention includes a flat plate portion that is provided in the flow path and includes a material having shape memory, and a protruding portion that protrudes from the first surface of the flat plate portion, The flow of the fluid in the flow path is adjusted by deforming the flat plate portion.
  • a fluid device includes the valve described above.
  • a fluid device includes a flow path substrate having a flow path, and a substrate bonded to the flow path substrate at a first surface, the substrate facing the flow path. And a valve that adjusts the flow of fluid in the flow path when the substance having shape memory property is deformed.
  • a fluid device manufacturing method is a fluid device manufacturing method including a channel substrate having a channel and a substrate bonded to the channel substrate on a first surface.
  • (b) containing a substance having shape memory property in the housing part is containing a substance having shape memory property in the housing part.
  • the valve in one embodiment of the present invention is provided locally in the flow path through which the fluid flows, and includes a storage portion in which the shape memory polymer is stored. It is characterized by adjusting the flow of the fluid therein.
  • the valve according to one embodiment of the present invention includes a shape memory polymer that is locally provided in the flow path through which the fluid flows and has a flat plate portion and a protruding portion protruding from the first surface of the flat plate portion, The flat plate portion and the protruding portion are made of the same shape memory polymer, and the second surface of the flat plate portion opposite to the first surface forms at least a part of the flow path, and the flat plate portion The flow of the fluid in the flow path is adjusted by deforming the part.
  • a fluid device includes the valve described above.
  • a fluid device includes a flow path substrate having a flow path, and a substrate bonded to the flow path substrate on a first surface, the substrate facing the flow path.
  • a storage portion that is locally provided at a position where the shape memory polymer is stored; and a valve that adjusts the flow of fluid in the flow path when the shape memory polymer is deformed.
  • a fluid device manufacturing method is a fluid device manufacturing method including a channel substrate having a channel and a substrate bonded to the channel substrate on a first surface.
  • FIG. 3 is a photograph showing a manufacturing process of the fluidic device of Example 1.
  • FIG. It is a photograph which shows the 2nd board
  • 3 is a photograph showing a manufacturing process of the fluidic device of Example 1.
  • FIG. 2 is a photograph showing a fluidic device of Example 1.
  • FIG. It is a graph which shows the relationship between applied voltage and measured fluorescence intensity, and time.
  • Example 2 It is the fluorescence-microscope photograph of the flow path when a valve is an open state, and a flow path when a valve is a closed state. It is a graph which shows the relationship between the response time of a valve
  • Example 2 it is a photograph which shows the 2nd board
  • 6 is a photograph showing a second substrate after wiring formation in Example 2.
  • a substance having shape memory property is accommodated in an accommodating part provided in the flow channel, and the flow of fluid in the flow channel is adjusted by the deformation of the material having shape memory property.
  • the substance having the shape memory property is a substance having a property (shape memory effect) that even when deformed at a certain temperature or lower, recovers to its original shape when heated to the temperature or higher.
  • it may be a shape memory alloy or a shape memory polymer.
  • the valve is locally provided in the flow path through which the fluid flows, and includes a storage portion in which the shape memory polymer is stored.
  • the shape memory polymer is deformed to adjust the flow of the fluid in the flow path.
  • a valve may be used.
  • the fluid flowing means that the fluid moves.
  • adjusting the flow of the fluid in the flow path means, for example, blocking the flow of the fluid or causing the stopped fluid to flow.
  • the amount of deformation of the substance having shape memory property may be controlled by controlling the heating conditions, and the flow rate and flow rate may be adjusted quantitatively. Examples of heating conditions include heating time and heat.
  • the valve of this embodiment can be manufactured easily and at low cost, and the flow of fluid can be controlled easily and freely. Moreover, it is not a sandwich structure device in which a sheet of shape memory polymer is sandwiched between two substrates, but is configured by a housing part that is locally provided in the flow path and contains a substance having shape memory properties. . Therefore, the upper and lower substrates are not separated by the shape memory polymer sheet, and the degree of freedom in designing the fluid device is high.
  • the valve according to this embodiment includes a storage portion that is locally provided in the flow path and stores a substance having shape memory properties.
  • the accommodating portion will be described with reference to FIG.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the valve of this embodiment.
  • a valve 200 shown in FIG. 2 is provided locally in a flow path 210 through which a fluid flows, and includes a housing portion 230 in which a material 220 having shape memory properties is housed. The material 220 having shape memory properties is deformed. The flow of the fluid in the flow path 210 is adjusted.
  • the flow path 210 includes a flow path substrate 240 having a flow path (for example, a groove), and a substrate 250 joined to the flow path substrate 240 by the first surface 251.
  • the accommodating part 230 is locally provided in the flow path 210.
  • the housing part 230 is locally provided at a position facing a part of the flow path 210 in the substrate 250.
  • “Locally provided in the flow path 210” means that the accommodating portion 230 is formed not in the entire first surface 251 constituting the flow path 210 but in a limited region of the first surface 251.
  • a part of the channel 210 faces the substance 220 having shape memory property, and at least a part of the channel 210 that does not face the substance 220 having shape memory property faces the first surface 251.
  • a part of the fluid flowing through the flow path 210 is in contact with the first surface 251 of the substrate 250 and in contact with the surface of the substance 220 having shape memory property in the valve portion.
  • the accommodating portion 230 is, for example, a concave shape or a hole having an opening on the first surface 251 and is a portion in which the substance 220 having shape memory property is accommodated.
  • the accommodating portion 230 is a space surrounded by a surface that forms a recess formed in the substrate 250, that is, a side surface and a bottom surface of the recess.
  • the accommodating portion may be common to the plurality of valves.
  • the plurality of valves when a plurality of valves are adjacent to each other, the plurality of valves may be formed of a material having shape memory property accommodated in a common accommodating portion.
  • the plurality of valves may be formed of a material having shape memory property accommodated in different accommodating portions.
  • the substance having shape memory property may be a shape memory alloy or a shape memory polymer.
  • shape memory alloys include alloys of titanium and nickel, and iron-manganese-silicon alloys.
  • a shape memory polymer is a polymer that recovers its original shape when heated above a certain temperature, even if deformed by applying external force after molding, and is reversible and has fluidity at a certain temperature (hereinafter referred to as the shape recovery temperature). It is composed of a stationary phase composed of a phase and a physical or chemical bonding site (crosslinking point) that does not deform at a temperature at which the reversible phase deforms.
  • FIG. 1 is a diagram for explaining the characteristics of a shape memory polymer.
  • the shape memory polymer memorizes the shape formed by molding or machining by the stationary phase in the resin, and the memorized shape at a temperature within the temperature range between the shape recovery temperature and the melting point. It can be transformed into a free shape.
  • the deformation can be fixed by cooling to a temperature lower than the shape recovery temperature while maintaining the deformed state.
  • the shape formed by molding or machining is restored by heating the fixed deformation after cooling to a temperature below the shape recovery temperature to a temperature above the shape recovery temperature and below the melting point.
  • the shape memory polymer material is not particularly limited, and examples thereof include polymer materials such as elastomers having shape memory properties.
  • Specific examples of the elastomer having shape memory property include polyurethane, polyisoprene, polyethylene, polynorbornene, styrene-butadiene copolymer, epoxy resin, phenol resin, acrylic resin, polyester, melanin resin, polycaprolactone, polyvinyl chloride, Polymers such as polystyrene, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, etc., which have been crosslinked by a chemical crosslinking method using heat or the like using a peroxide such as an organic peroxide or benzoyl peroxide. Is mentioned.
  • the valve is molded from a material having shape memory by molding or machining.
  • the valve is formed in an open state in which a fluid flows in the flow path or a closed state in which a fluid flow is blocked.
  • the deformation is fixed by cooling to a temperature lower than the shape recovery temperature.
  • This deformation is a deformation for closing the valve in the open state or a deformation for opening the valve in the closed state.
  • the modified valve is disposed in the flow path.
  • the deformed valve is in the open state, the fluid freely flows in the flow path after the valve is disposed.
  • the shape of the deformed valve is in the closed state, the fluid flow in the flow path is blocked after the valve is disposed.
  • valve molding is restored by heating the valve at a temperature within the temperature range between the shape recovery temperature of the substance having shape memory property and lower than the melting point.
  • the valve that has been deformed so as to be in the open state is closed by being heated, and the flow of the fluid in the flow path is blocked.
  • the valve, which has been deformed so as to be in the closed state is opened when heated, so that the fluid flows freely in the flow path.
  • the valve of this embodiment in the flow path, the flow of fluid in the flow path can be freely controlled.
  • at least a part of the substance having shape memory property forms at least a part of the flow path.
  • the fluid flowing through the flow path is in contact with at least a portion of the substance having shape memory properties. Therefore, it can be manufactured simply and at low cost, and the open state and the closed state can be controlled easily and freely.
  • the valve of this embodiment can be deformed into an open state in which a fluid flows in the flow path or a closed state in which the fluid flow is blocked by a temperature change such as heating.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the valve of this embodiment.
  • a valve 200 shown in FIG. 2 is provided locally on a flow path 210 through which a fluid flows, and includes a storage portion 230 in which a material 220 having shape memory property is stored, and the material 220 having shape memory property is deformed.
  • the flow path 210 includes a flow path substrate 240 having a flow path, a substrate 250 bonded to the flow path substrate 240 by the first surface 251, and a part of the substance 220 having shape memory properties.
  • a part of the material 220 having shape memory property that is, a part 220 a of the material 220 having shape memory property that is in contact with the flow channel 210 forms a part of the flow channel 210.
  • the first region in which the substance 220 having shape memory property faces a part of the channel 210 and the substance (substrate 250) different from the substance 220 having shape memory property faces a part of the channel 210.
  • a second area exists.
  • the valve of this embodiment is a valve that is suitably used for a fluid device.
  • Examples of the valve include a normally open valve and a normally closed valve. Details of each valve will be described below.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a normally open valve.
  • the valve of the present embodiment is a normally open valve that is deformed from an open state in which a fluid flows in the flow path 210 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
  • the normally open valve 200 includes a flow path 210 and a storage portion 230 in which a substance 220 having shape memory property is stored, and the fluid 220 in the flow path 210 is deformed when the substance 220 having shape memory property is deformed. Adjust the flow.
  • the flow path 210 is formed by stacking a flow path substrate 240 having a flow path and a substrate 250 bonded to the flow path substrate 240 and the first surface 251.
  • the flow path substrate 240 is laminated on the substrate 250 to form the flow path 210.
  • the positional relationship is not limited, and for example, the substrate 250 is laminated on the flow path substrate 240.
  • the flow path 210 may be formed by this lamination.
  • the flow path substrate 240 has a weir 245, and the flow of the fluid in the flow path 210 is blocked by the weir 245.
  • the normally open valve 200 functions as a flow path (bypass path) as a bypass for bypassing the fluid blocked by the weir 245 in a steady state.
  • the substance 220 having shape memory property memorizes a flat shape when formed.
  • the normally open valve 200 is formed into a concave shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 220 having shape memory property and higher than the melting point.
  • the normally open valve 200 has a shape for bypassing the closed state in which the fluid flow is blocked before heating, and is in an open state in which the fluid flows through the flow path 210.
  • the normally open valve 200 is in an open state having a concave shape for bypassing the closed state.
  • normally open valve 200 is in a concave open state in a steady state.
  • the material 220 having shape memory property is restored to a flat shape, so that the fluid flow is deformed into a closed state where the fluid flow is blocked.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a normally open valve.
  • the valve of this embodiment is a normally open valve that is deformed from an open state in which a fluid flows through the flow path 310 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
  • the normally open valve 300 includes a flow path 310 and a storage portion 330 in which a substance 320 having a shape memory property is accommodated.
  • the deformation of the substance 320 having a shape memory property causes the fluid in the flow path 310 to flow. Adjust the flow.
  • the flow path 310 is formed by stacking a flow path substrate 340 having a flow path and a substrate 350 bonded to the flow path substrate 340 on the first surface 351.
  • the flow path substrate 340 is laminated on the substrate 350 to form the flow path 310, but their positional relationship is not limited, for example, the substrate 350 is laminated on the flow path substrate 340.
  • the flow path 310 may be formed by this lamination.
  • the open state is a state having a through shape (a shape having a through hole) for bypassing the closed state.
  • the normally open valve 300 is formed into a penetrating shape by applying an external force at a temperature in the temperature range between the shape recovery temperature and the melting point of the substance 320 having shape memory properties. That is, normally open valve 300 is in the open state of the penetrating shape in the steady state.
  • the material 320 having shape memory property is restored to a flat shape, so that the normally open valve 300 is deformed to a closed state in which the fluid flow is blocked.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a normally closed valve.
  • the valve of this embodiment is a normally closed valve that is deformed from a closed state in which the flow of fluid in the flow path 410 is blocked by heating to an open state in which the fluid flows. It is.
  • the normally closed valve 400 includes a flow path 410 and a storage portion 430 in which a substance 420 having shape memory property is stored.
  • the deformation of the substance 420 having shape memory ability causes the fluid in the flow path 410 to flow. Adjust the flow.
  • the flow path 410 is formed by stacking a flow path substrate 440 having a flow path and a substrate 450 bonded to the flow path substrate 440 and the first surface 451.
  • the flow path substrate 440 is laminated on the substrate 450 to form the flow path 410.
  • the positional relationship is not limited, and for example, the substrate 450 is laminated on the flow path substrate 440.
  • the flow path 410 may be formed by this lamination.
  • the flow path substrate 440 has a weir 445, and the flow of the fluid in the flow path 410 is blocked by the weir 445.
  • the normally closed valve 400 has a flat shape in a steady state, and the fluid flow is blocked.
  • the substance 420 having shape memory has a concave shape when it is formed.
  • the normally closed valve 400 is formed into a flat shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 420 having shape memory property and higher than the melting point.
  • the normally closed valve 400 has a shape for bypassing the closed state in which the fluid flow is blocked after heating, and is in an open state in which the fluid flows through the flow path 410.
  • the normally closed valve 400 in the open state is a state having a concave shape for bypassing the closed state.
  • the substance 420 having shape memory property is restored to the concave shape, so that the normally closed valve 400 is deformed to an open state in which a fluid flows in the flow path.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of a normally closed valve.
  • the valve of this embodiment is a normally closed valve that is deformed from an open state in which a fluid flows through the flow path 510 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
  • the normally closed valve 500 includes a flow path 510 and a storage portion 530 in which a substance 520 having a shape memory property is accommodated.
  • the deformation of the substance 520 having a shape memory property causes the fluid in the flow path 510 to flow. Adjust the flow.
  • the flow path 510 is formed by stacking a flow path substrate 540 having a flow path and a substrate 550 bonded to the flow path substrate 540 with the first surface 551.
  • the flow path substrate 540 is stacked on the substrate 550 to form the flow path 510, but the positional relationship thereof is not limited, for example, the substrate 550 is stacked on the flow path substrate 540.
  • the flow path 510 may be formed by this lamination.
  • the open state is a state having a through shape (a shape having a through hole) for bypassing the closed state.
  • a normally closed valve 500 is formed into a flat shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 520 having a shape memory property and less than the melting point. That is, the normally closed valve 500 is in a closed state having a flat shape in a steady state.
  • the substance 520 having shape memory property is restored to the penetrating shape, so that the normally closed valve 500 is deformed to an open state in which a fluid flows.
  • Examples of the material having shape memory that constitutes a normally closed valve include the same materials as those having shape memory that constitute a normally open valve.
  • the present invention provides a fluidic device comprising the valve described above.
  • the fluidic device of this embodiment can be manufactured easily and at low cost, and has a high degree of design freedom.
  • the substance having shape memory property is locally disposed in the valve portion of the fluid device, it is used for a fluid device having a region where light irradiation is required only for the fluid.
  • Cheap For example, it is possible to easily observe without performing precise optical design in consideration of the refractive index of a material having shape memory by making the material having shape memory in the observation region so that it does not exist. Become.
  • the size of the fluid device may be a millifluidic device in which the flow path and the structure are millimeter (mm) size, and the microfluidic device in which the flow path and the structure are micrometer ( ⁇ m) size. There may be.
  • the fluidic device of this embodiment may include a plurality of the valves described above.
  • a normally open valve and a normally closed valve arranged in series may be provided.
  • normally open valves and normally closed valves arranged in series may be referred to as “series valves”.
  • FIG. 6 is a schematic sectional view showing one embodiment of the series valve.
  • two valves a normally closed valve 660 and a normally open valve 670, are arranged in this order from the upstream side of the flow path 610 with a space between them.
  • a series valve 680 is formed.
  • the arrangement of the normally closed valve 660 and the normally open valve 670 is not limited to this, and the normally open valve 670 and the normally closed valve 660 may be arranged in this order from the upstream side of the flow path 610. Good.
  • both the normally closed valve 660 and the normally open valve 670 are in the open state.
  • both may be a through-type shape, or It may be a combination of penetrating shapes.
  • the flow path 610 is formed by laminating a flow path substrate 640 having a flow path and a substrate 650 bonded to the flow path substrate 640 by the first surface 651.
  • the flow path substrate 640 is stacked on the substrate 650 to form the flow path 610, but the positional relationship thereof is not limited, and for example, the substrate 650 is stacked on the flow path substrate 640.
  • the flow path 610 may be formed by this lamination.
  • the flow path substrate 640 has a weir 645a and a weir 645b in this order from the upstream side, and a normally closed valve 660 and a normally open valve 670 are the weir 645a and the weir 645, respectively, as valves corresponding to the weirs. It is provided immediately below 645b.
  • the fluid flow is first blocked by a weir 645 a located on the upstream side of the flow path 610.
  • the normally closed valve 660 has a flat shape in a steady state, and the fluid flow remains blocked. Therefore, the series valve 680 is closed as a whole.
  • the normally closed valve 660 is transformed into an open state in which a fluid flows.
  • the fluid that bypasses the weir 645a can further bypass the weir 645b located on the downstream side when the normally open valve 670 is in the open state. Therefore, the series valve 680 is in an open state as a whole.
  • the normally open valve 670 is deformed to a closed state in which the fluid flow is blocked.
  • the flow of the fluid bypassing the weir 645a is blocked by the weir 645b when the normally open valve 670 is changed to the closed state. Therefore, the series valve 680 is closed as a whole.
  • a valve made of a substance having shape memory property is generally considered to be irreversible in the open / closed state, but according to the fluidic device of the present embodiment, The fluid flow can be flexibly controlled by changing from the closed state to the open state and from the open state to the closed state.
  • FIG. 7 is a schematic diagram illustrating a basic configuration of a fluidic device 700 according to one embodiment.
  • the fluid device 700 includes a drive source 710, a branch flow path 721, a normally open valve 730, a normally close valve 740, and a series valve 750.
  • the branch channel 721 includes an upstream channel 720 that is a channel upstream of the branch point 722 and downstream channels 723, 724, and 725 that are channels downstream of the branch point 722.
  • the drive source 710 is connected to the upstream flow path 720 and sends fluid to the downstream side with a predetermined pushing force.
  • Examples of the drive source 710 include a syringe pump.
  • a normally open valve 730, a normally closed valve 740, and a series valve 750 are provided in the downstream flow paths 723, 724, and 725, respectively, and selectively (locally) the flow of fluid in each flow path. Arranged at adjustable positions.
  • normally open valve 730, the normally closed valve 740, and the series valve 750 are provided with temperature changing portions 730a, 740a, and 750a, respectively.
  • the fluidic device 700 of the present embodiment can be used for a purified sample recovery unit when purifying a biomolecule such as a nucleic acid from a specimen such as blood.
  • the sample lysate washed away by the drive source such as the buffer solution by the drive source 710 passes through a branching point 722 through a purification device such as a column (not shown) existing in the upstream flow path 720. Since the first solution that passes through the branch point 722 in the sample lysate is an unnecessary substance, it is discharged through the downstream flow path 723 provided with the normally open valve 730 that is open.
  • the normally open valve 730 is closed by heating by the temperature changing unit 730a.
  • the series valve 750 is opened by heating by the temperature changing unit 750a.
  • the second sample passing through the branch point 722 in the sample lysate passes through the downstream flow path 725 and is collected as the first fraction material.
  • the series valve 750 is closed by heating by the temperature changing unit 750a, and the normally closed valve 740 is opened by heating by the temperature changing unit 740a.
  • the sample that passes through the branch point 722 third in the sample lysate passes through the downstream channel 724 and is collected as the second fraction material.
  • the sample solution can be efficiently fractionated in the purified sample recovery unit.
  • the temperature changing units 730a, 740a, and 750a provided in the normally open valve 730, the normally closed valve 740, and the series valve 750 are, for example, an electrothermal converter that converts electrical energy such as a heater into thermal energy.
  • an electrothermal converter that converts electrical energy such as a heater into thermal energy.
  • a photothermal conversion unit that converts light energy such as laser light into heat energy may be used.
  • the electrothermal converter include electrodes and conductive wires.
  • the amount of change in the substance having shape memory can be further controlled by controlling the heating conditions.
  • the electrode has a configuration in which the electric resistance value decreases from the upstream side to the downstream side of the flow path.
  • FIG. 8 is a diagram for explaining the temperature changing portion using a normally open valve 800 as an example.
  • a photothermal conversion layer 830a is provided at the bottom of the storage portion 830 for storing the substance 820 having shape memory properties. It may be.
  • the photothermal conversion layer 830a includes a light absorber. Radiant energy applied to the photothermal conversion layer 830a by the laser light is absorbed by the light absorber and converted to thermal energy. Due to the generated thermal energy, the substance 820 having shape memory property is heated and deformed. That is, the fluid device of the present embodiment may include a temperature changing unit using a light absorbent. Note that heating by laser light irradiation may be performed selectively (locally) using a mask or the like.
  • the light absorber a material that absorbs radiation energy at a wavelength to be used can be used.
  • the wavelength of the radiant energy is, for example, 300 to 2000 nm, for example, 300 to 1500 nm.
  • the light absorber examples include fine particle metal powders such as carbon black, graphite powder, iron, aluminum, copper, nickel, cobalt, manganese, chromium, zinc, and tellurium; metal oxide powders such as black titanium oxide; aromatic diamino -Based metal complexes, aliphatic diamine-based metal complexes, aromatic dithiol-based metal complexes, mercaptophenol-based metal complexes, squarylium-based compounds, cyanine-based dyes, methine-based dyes, naphthoquinone-based dyes, anthraquinone-based dyes, etc. Can be mentioned.
  • fine particle metal powders such as carbon black, graphite powder, iron, aluminum, copper, nickel, cobalt, manganese, chromium, zinc, and tellurium
  • metal oxide powders such as black titanium oxide
  • aromatic diamino -Based metal complexes aliphatic diamine-based metal complexes, aromatic dithiol-based metal
  • the photothermal conversion layer 830a may be formed of a resin containing these dyes or pigments.
  • the resin used for the photothermal conversion layer 830a is not particularly limited, and may be the same as the substance having shape memory properties, for example.
  • the photothermal conversion layer 830a may be a film-like form containing these light absorbers including a metal vapor deposition film.
  • FIG. 8 shows that the substance 820 having shape memory and the photothermal conversion layer 830a are independent
  • the substance 820 having shape memory may itself contain the above-described light absorber.
  • a substance having shape memory property containing a light absorbing material is locally introduced only into the bulb portion. Therefore, even if the excitation light is irradiated to a wide range including the target valve without carrying out precise optical design considering the refractive index of the transparent material and polymer forming the flow path, only the desired valve portion is applied. Can be deformed.
  • the valve structure provided with the material having shape memory property locally in the flow path suppresses optical restrictions in the fluid device design and increases the degree of freedom in design.
  • the concentration of the light absorber in the photothermal conversion layer 830a varies depending on the type of light absorber, the particle form, the degree of dispersion, etc., but is, for example, 5 to 70% by volume.
  • concentration of the light absorber is 5% by volume or more, the substance 820 having shape memory property tends to be efficiently deformed due to the heat generation of the photothermal conversion layer 830a.
  • concentration of the light absorber is 70% by volume or less, the film-forming property of the photothermal conversion layer is good, and the adhesiveness with the substance 820 having shape memory property tends to be good.
  • the thickness of the photothermal conversion layer 830a is, for example, 0.1 to 5 ⁇ m. If the thickness of the photothermal conversion layer 830a is 0.1 ⁇ m or more, sufficient light absorption is possible. Therefore, the required concentration of the photoabsorbent does not become too high, and the film formability of the photothermal conversion layer is good. Also, the adhesiveness with the substance 820 having shape memory property tends to be improved. Further, when the thickness of the light-to-heat conversion layer is 5 ⁇ m or less, the light transmittance in the light-to-heat conversion layer 830a is good and the heat generation efficiency tends to be good.
  • the material of the substrate 850 a material having transparency to the laser beam is used, and the photothermal conversion layer 830a is irradiated with the laser beam from the substrate 850 side, thereby irradiating the substance in the channel with the laser beam. Adverse effects can be suppressed.
  • FIG. 9 is a schematic diagram illustrating a basic configuration of a fluidic device 900 according to one embodiment.
  • the fluid device 900 can be used, for example, in a purifier introduction part when purifying a biomolecule such as nucleic acid from a specimen such as blood.
  • the fluid device 900 has four liquid reservoirs 921, 922, 923, and 924 downstream of the drive source 910. Liquid, cleaning liquid, and liquid specimens are stored. A driving liquid is stored in a liquid reservoir 925 located upstream of the driving source 910. Furthermore, a normally closed valve 930, a normally open valve 940, and a series valve 950 are provided in the flow paths upstream of the liquid reservoirs 921, 922, 923, and 924, respectively.
  • the drive liquid pushed out from the drive source 910 selectively pushes out the liquid stored in the liquid reservoir located downstream of each valve by opening and closing these valves, so that each liquid becomes a liquid reservoir.
  • 921, 922, 923, and 924 are selectively extruded into a purifier 960 located downstream.
  • the liquid sample stored in the liquid reservoir 924 and the dissolved liquid stored in the liquid reservoir 922 provided downstream of the normally open valve 940 in the open state by the drive source 910 The biomolecules in the specimen are dissolved and captured by the purification device 960 after passing through the purification device 960 constituted by a column or the like.
  • the normally open valve 940 is closed by heating by the temperature changing unit 940a provided in the normally open valve 940, and the inflow of the solution to the purifier 960 is stopped.
  • the series valve 950 is opened by heating by the temperature change unit 950a provided in the series valve 950, and the cleaning liquid stored in the liquid reservoir 923 flows into the purifier 960, and unnecessary substances are removed from the purifier 960. Discharged.
  • the series valve 950 is closed by heating by the temperature changing unit 950a, and the flow of the cleaning liquid into the purifier 960 is stopped.
  • the normally closed valve 930 is opened by heating by the temperature changing unit 930a provided in the normally closed valve 930, and the eluate stored in the liquid reservoir 921 flows into the purifier 960, A purified sample is eluted from the purification device 960.
  • the fluidic device 900 of this embodiment biomolecules can be purified efficiently.
  • the valves may be deformed by heating and used as a liquid feed pump for microfluids in the flow path.
  • the flow path substrate constituting the fluidic device according to this embodiment will be described.
  • the flow path substrate is provided with a concave portion that constitutes a storage portion of a substance having shape memory property and a substance having shape memory property, and constitutes a fluid device together with the substrate bonded to the flow path substrate at the first surface. .
  • the channel substrate is not particularly limited, but may be a resin substrate with a channel from the viewpoint of easily manufacturing a fluid device.
  • the material of the flow path substrate is polyisoprene, polybutadiene, polychloroprene, polyisobutylene, poly (styrene-butadiene-styrene), polyurethane, silicone polymer, poly (bis (fluoroalkoxy) phosphazene) (PNF, Eypel-F), Poly (carborane-siloxane) (Dexsil), poly (acrylonitrile-butadiene) (nitrile rubber), poly (1-butene), poly (chlorotrifluoroethylene-vinylidene fluoride) copolymer (Kel-F), poly (Ethyl vinyl ether), poly (vinylidene fluoride), poly (vinylidene fluoride-hexafluoropropylene) copolymer (Viton), polyvinyl chloride (PVC) elastomer composition, police Hong, polycarbonate, polymethyl methacrylate (PMMA), polyt
  • the dimensions of the flow path formed on the flow path substrate made of these materials are not particularly limited as long as the flow of the fluid can be controlled by the above-described valve.
  • the following dimensions may be used.
  • the ratio of width to depth is for example 0.1: 1 to 100: 1, for example 1: 1 to 50: 1, for example 2: 1 to 20: 1, for example 3: 1 to 15: 1.
  • the width of the flow path is, for example, 0.01 to 1000 ⁇ m, for example, 0.05 to 1000 ⁇ m, for example, 0.2 to 500 ⁇ m, for example, 1 to 250 ⁇ m, for example, 10 to 200 ⁇ m. Further, as an example, the width of the flow path is 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, and 1.5 to 15 mm.
  • the depth of the channel is, for example, 0.01 to 1000 ⁇ m, for example 0.05 to 500 ⁇ m, for example 0.2 to 250 ⁇ m, for example 1 to 100 ⁇ m, for example 2 to 20 ⁇ m. Further, as an example, the depth of the channel may be 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, 1.5 to 15 mm.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the fluidic device 1000 of this embodiment.
  • the valve of the fluid device 1000 is a normally open valve, but may be a normally closed valve.
  • the fluid device 1000 includes a flow path substrate 1040 having a flow path 1010, and a substrate 1050 bonded to the flow path substrate 1040 at the first surface 1051.
  • a valve is locally provided on the first surface 1051 of the substrate 1050 at a position facing the flow path 1010.
  • the valve includes a housing portion 1030 in which a substance 1020 having shape memory properties is accommodated, and the flow of the fluid in the flow path 1010 is adjusted by the deformation of the substance 1020 having shape memory properties.
  • the flow path 1010 includes a groove formed in the flow path substrate 1040, and the first flow path portion 1010a in which the groove formed in the flow path substrate 1040 and the first surface 1051 of the substrate 1050 are in contact with the fluid. And a second flow path portion 1010b in which a groove formed in the flow path substrate 1040 and the substance 1020 having shape memory property are in contact with the fluid.
  • the reason why the first flow path portion 1010a and the second flow path portion 1010b are present in the fluid device of the present embodiment is because the valves are locally provided.
  • the accommodating portion 1030 may have a concave shape, and may be expressed as a “concave portion” below.
  • the housing portion 1030 since the housing portion 1030 is locally provided, it is not necessary to sandwich a shape memory polymer sheet between the flow path substrate 1040 and the substrate 1050 (entire surface), and the fluid device 1000 is locally provided in the flow path.
  • the flow path since the upper and lower substrates are not separated by the sheet of shape memory polymer, the flow path can be three-dimensionally arranged and the degree of freedom in design is high.
  • the same material as the material of the flow path substrate described above can be used.
  • the flow path substrate and the substrate 1050 may be made of different materials or the same material. When the same material is used, the substrates can be easily bonded to each other.
  • FIG. 11A is a schematic cross-sectional view showing the structure of the fluidic device 1100 of the present embodiment.
  • the valve of the fluid device 1100 is a normally open valve, but may be a normally closed valve.
  • the fluidic device 1100 includes a flow path substrate 1140 having a flow path 1110 and a substrate 1150 bonded to the flow path substrate 1140 on the first surface 1151.
  • a concave portion 1130 is locally provided on the first surface of the substrate 1150, and the concave portion 1130 constitutes an accommodating portion 1130 that accommodates a substance 1120 having shape memory properties.
  • the substance having shape memory property may be a shape memory polymer.
  • the accommodating portion 1130 has a bottom portion 1131
  • the substrate 1150 has a through hole 1160 that penetrates the second surface 1152 opposite to the first surface 1151 and the bottom portion 1131.
  • the through-hole 1160 constitutes a supply unit that serves as an inlet for the substance 1120 having shape memory properties.
  • the substrate 1150 may further include a discharge portion 1170 that passes through the second surface 1152 and the bottom portion 1131 and serves as an air vent when injecting the material 1120 having shape memory properties.
  • a substance 1120 having shape memory property can be injected from the supply unit 1160. Further, if the discharge portion 1170 is provided, it is easy to remove air from the storage portion 1130, and the material 1120 having shape memory property can be reliably injected by the storage portion 1130. The discharge unit 1170 may be released to the atmosphere or may be sucked from the discharge unit 1170.
  • FIG. 11B is a diagram illustrating the structure of the substance 1120 having shape memory property in the fluid device 1100.
  • the material 1120 having shape memory inside the accommodating portion 1130 forms a flat plate portion 1120a (plate, thin film portion), and the material having shape memory property remaining in the supply portion 1160 is the first surface of the flat plate portion 1120a.
  • a leg portion (protruding portion) 1120b protruding from 1121 (corresponding to the bottom portion 1131 of the accommodating portion 1130) is formed.
  • the second surface 1122 (the main surface on the flow path side) opposite to the first surface 1121 (the main surface on the non-flow path side) of the flat plate portion 1120a forms at least a part of the flow path 1110.
  • the flow of the fluid in the flow path 1110 is adjusted by deforming the flat plate portion 1120a (the material 1120 having shape memory property).
  • the substance 1120 having shape memory property when the substance 1120 having shape memory property is injected from the supply unit 1160, a part of the substance having shape memory property may remain in the discharge unit 1170.
  • the material having the shape memory property remaining in the discharge portion 1170 forms the leg portion 1120c.
  • the protrusion 1120b protrudes in the direction of the second surface 1122 facing the flow path. Therefore, the protruding portion may be called a protruding portion or a raised portion.
  • the protruding portion 1120b has, for example, a column shape or a rod shape, and may have a hook shape formed on the substrate.
  • the cross section of the protrusion 1120b is smaller than the first surface and the second surface of the flat plate portion.
  • the thickness of the protruding portion 1120b is thicker than that of the flat plate portion 1120a. Note that a plurality of protrusions may be provided for the flat plate portion 1120a.
  • the first leg portion 1120b may be provided on the flat plate portion 1120a
  • the second leg portion 1120c may be provided on the opposite side of the first leg portion 1120b with respect to the center of the flat plate portion 1120a.
  • the structure in which the first leg portion 1120b and the second leg portion 1120c are provided on the opposite side across the center of the flat plate portion 1120a is the same as the structure in which the supply portion 1160 and the discharge portion 1170 are located on the opposite side across the center of the housing portion. It is made when it is. In this case, when a material having shape memory property is injected from the supply unit 1160, bubbles are unlikely to remain in the housing portion, and the flat plate portion 1120a can be easily formed from the material having shape memory property without mixing bubbles.
  • the first leg portion 1120b and the second leg portion 1120c may be provided on the outer edge portion of the flat plate portion.
  • the structure in which the first leg portion 1120b and the second leg portion 1120c are provided at the outer edge portion of the flat plate portion is produced by providing the supply portion 1160 and the discharge portion 1170 at the outer edge of the housing portion. In this case, when a material having shape memory property is injected from the supply unit 1160, bubbles are unlikely to remain at the edge of the housing portion, and formation of the flat plate portion 1120a with the material having shape memory property without air bubble mixing can be realized.
  • the leg part 1120b or the leg part 1120c may extend in the thickness direction of the flat plate part 1120a.
  • the leg 1120b or the leg 1120c may extend in a direction intersecting the thickness direction of the flat plate 1120a.
  • the leg portion 1120b or the leg portion 1120c is hardly detached from the substrate 1150, and the material has shape memory property. 1120 becomes difficult to peel off from the accommodating portion 1130.
  • the leg 1120b or the leg 1120c may be a non-linear shape with a circular or polygonal cross section. That is, it may be bent.
  • a circle includes an ellipse.
  • the number of sides constituting the polygon is not particularly limited, and may be, for example, a triangle, a quadrangle, or an octagon.
  • the surface area of the first surface 1121 of the flat plate portion 1120a may be larger than the surface area of the second surface 1122.
  • the shape of the flat plate portion 1120a and the shape of the accommodating portion 1130 are not particularly limited, and may be a columnar shape, a truncated cone shape, a polygonal columnar shape, or a polygonal frustum shape.
  • the first surface 1121 of the flat plate portion 1120a is disposed so as to be in contact with a temperature changing portion described later directly or indirectly. Accordingly, heat can be transferred to the material 1120 having shape memory property, and the material 1120 having shape memory property can be deformed.
  • the flat plate portion 1120a may be a thin film that is thin enough to deform the material 1120 having shape memory by heat transferred from the temperature changing portion.
  • the first surface 1151 constituting the flow path 1110 is formed as flat as possible.
  • the first surface 1151 of the substrate 1150 and the surface 1122 in contact with the fluid of the substance 1120 having shape memory properties are preferably flush with each other.
  • being flush means that the flat surface has no step, and the interface (connection) between the substrate 1150 and the material 1120 having shape memory property is in contact with the first surface 1151 (or the surface 1122). Part)), it means that there is no step or it is flat enough that it does not adversely affect the operation of the valve.
  • the step is 10 ⁇ m or less, for example 5 ⁇ m or less, for example 1 ⁇ m or less, for example 0.5 ⁇ m or less.
  • the first surface 1151 constituting the flow path 1110 and the surface 1122 of the substance 1120 having shape memory can be formed as flat as possible.
  • a flat lid substrate is disposed on the surface 1151 of the substrate 1150 or bonded removably to cover the opening of the housing portion 1130 and a material having shape memory property is injected from the supply portion 1160.
  • the first surface 1151 constituting the channel 1110 and the surface 1122 of the substance 1120 having shape memory property can be formed as flat as possible.
  • FIGS. 12A to 12C are schematic cross-sectional views showing the structure of the fluidic device 1200 of this embodiment.
  • the valve of the fluidic device 1200 is a normally open valve, but may be a normally closed valve.
  • the fluidic device 1200 includes a flow path substrate 1240 having a flow path 1210 and a substrate 1250 bonded to the flow path substrate 1240 at the first surface 1251.
  • a concave portion 1230 is locally provided on the first surface 1251 of the substrate 1250, and the concave portion 1230 constitutes an accommodating portion 1230 for accommodating the substance 1220 having shape memory properties.
  • the substrate 1250 includes a first substrate 1250a including the first surface 1251 and bonded to the flow path substrate 1240, and a second substrate 1250b bonded to the first substrate 1250a and a surface 1253 opposite to the first surface 1251.
  • the accommodating portion 1230 includes a through hole 1260a that penetrates the first substrate 1250a, and the second substrate 1250b is provided with a support portion 1254 that supports the material 1220 having shape memory at the tip, and is inserted into the through hole 1260a.
  • Convex part 1255 is provided.
  • substrate 1250b is locally arrange
  • the substrate 1250b may include a supply portion 1260 that penetrates the surface 1252 and the bottom portion 1231 of the substrate 1250b and serves as an inlet for the substance 1220 having shape memory properties. Further, the substrate 1250b may further include a discharge portion 1270 that passes through the second surface 1252 and the bottom portion 1231 and serves as an air vent when injecting the material 1220 having shape memory properties.
  • a substance 1220 having shape memory property can be injected from the supply unit 1260.
  • the discharge portion 1270 it is easy to remove the air from the storage portion 1230, and the material 1220 having shape memory property can be reliably injected by the storage portion 1230.
  • FIG. 12B is a schematic cross-sectional view showing the structure of the first substrate 1250a
  • FIG. 12C is a schematic cross-sectional view showing the structure of the second substrate 1250b.
  • the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, so that a temperature change portion can be formed on the surface of the support portion 1254, for example.
  • the temperature changing portion include an electrothermal conversion portion such as a heater formed from wiring, and a photothermal conversion portion such as a photothermal conversion layer that performs heating by irradiation with laser light or the like.
  • the first surface 1251 constituting the flow path 1210 it is preferable to form the first surface 1251 constituting the flow path 1210 as flat as possible.
  • the substrate 1250 since the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, a temperature change portion can be formed inside the substrate 1250 (for example, the surface of the support portion 1254). . There is no need to arrange the temperature changing portion on the first surface 1251, and the first surface 1251 can be formed as flat as possible without affecting the processing accuracy of the flow path 1210.
  • the temperature change portion is preferably formed in the very vicinity of the material 1220 having shape memory properties, and the viewpoint of efficiently conducting heat. Therefore, it is preferable that the thickness of the substance 1220 having shape memory property is small.
  • the substrate 1250 since the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, the temperature change portion can be formed in the very vicinity of the substance 1220 having shape memory property, The material 1220 having shape memory properties can be thinned.
  • FIGS. 13A to 13C are schematic cross-sectional views showing the structure of the fluidic device 1300 of this embodiment.
  • the valve of the fluid device 1300 is a normally open valve, but may be a normally closed valve.
  • the fluid device 1300 includes a flow path substrate 1340 having a flow path 1310, and a substrate 1350 bonded to the flow path substrate 1340 on the first surface 1351.
  • a concave portion 1330 is locally provided on the first surface 1351 of the substrate 1350, and the concave portion 1330 constitutes a housing portion 1330 for housing the substance 1320 having shape memory properties.
  • the substrate 1350 includes a first substrate 1350a including the first surface 1351 and bonded to the flow path substrate 1340, and a second substrate 1350b bonded to the first substrate 1350a and the surface 1353 opposite to the first surface 1351.
  • the accommodating portion 1330 includes a through hole 1360a that penetrates the first substrate 1350a, and the second substrate 1350b is provided with a support portion 1354 that supports a material 1320 having shape memory at the tip, and is inserted into the through hole 1360a.
  • Convex part 1355 is provided.
  • the substrate 1350b may include a supply portion 1360 that penetrates the surface 1352 and the bottom portion 1331 of the substrate 1350b and serves as an inlet for the substance 1320 having shape memory properties.
  • the substrate 1350b may further include a discharge portion 1370 that passes through the second surface 1352 and the bottom portion 1331 and serves as an air vent when injecting the material 1220 having shape memory properties.
  • the effect which the discharge part 1370 produces is the same as the effect which the discharge part 1270 in the fluid device 1200 of 3rd Embodiment mentioned above shows.
  • the side surface 1356 of the convex portion 1355 is an inclined surface that increases in diameter toward the surface 1357 of the second substrate 1350b.
  • the temperature change part provided in the bottom part 1331 is an electrothermal conversion part, it can wire easily because the side surface 1356 is an inclined surface. For example, wiring can be performed on the side surface 1356 without disconnection by sputtering, photolithography, screen printing, or the like.
  • FIG. 13B is a schematic cross-sectional view showing the structure of the first substrate 1350a
  • FIG. 13C is a schematic cross-sectional view showing the structure of the second substrate 1350b.
  • the substrate 1350 includes the first substrate 1350a and the second substrate 1350b.
  • the effect obtained by the substrate 1250 of the fluid device 1200 according to the third embodiment described above is the first substrate 1250a.
  • the second substrate 1250b are the same as the effects produced.
  • FIG. 20 is a schematic cross-sectional view showing the structure of the fluidic device 2000 of the present embodiment.
  • the fluidic device 2000 includes a flow path 2010 and valves 2020 and 2030.
  • Valves 2020 and 2030 may be normally open valves or normally closed valves.
  • the flow path 2010 may be arranged three-dimensionally (three-dimensionally).
  • the substance having shape memory property is locally provided in the valve 2020 and the valve 2030, and the flow path 2010 includes a portion that does not contact the substance having shape memory property.
  • the valve may be manufactured by locally providing a substance having shape memory after the flow path 2010 is formed on the substrate.
  • a valve having a flow path shape memory property may be locally provided to form a valve, and the remaining flow path may be formed.
  • a plurality of flow paths may be arranged three-dimensionally.
  • valve can be disposed locally, a fluid device having a high degree of design freedom can be configured in this way.
  • a normally closed valve and a normally open valve may be disposed to face each other.
  • FIG. 21 is a schematic diagram showing the basic configuration of the fluidic device 241 of the present embodiment.
  • the fluid device 241 of the present embodiment includes a normally open valve 242 disposed on the first surface and a normally closed valve 243 disposed on the second surface facing the first surface. And.
  • the normally open valve 242 and the normally closed valve 243 are disposed to face each other.
  • the fluid bypasses the normally closed valve 243 functioning as a weir through the normally open valve 242 formed in the lower part of the flow path 240.
  • the normally open valve 242 is closed by the heating means 242a provided at the lower part of the normally open valve 242, and the fluid flow is blocked by the normally close valve 243.
  • the normally closed valve 243 is opened by the heating means 243a provided on the upper part of the normally closed valve 243, and the fluid that has been dammed flows out again.
  • the flow of the fluid can be flexibly controlled because the valve is deformed from the open state to the closed state and from the closed state to the open state as a whole. Further, in the fluid device 241 of the present embodiment, since the valve structure in which the substance having shape memory property is locally provided in the flow path, the normally open valve and the normally closed valve can be simply and at low cost. A structure facing the valve can be manufactured.
  • the size of the flow path can be changed by heating by adjusting the deformation amount of the substance having shape memory property.
  • the valve variously “half-open”, the width and depth of the flow path are limited, and the fluid flow can be selectively controlled freely.
  • the width of the flow path constituting the flow path device to the millimeter size, the amount of change in the substance having shape memory property according to the change in the heating condition is strictly controlled.
  • molecules having a desired size in the fluid can be selected as shown in FIG. 22B without providing a separate gel filtration column device or the like in the fluid device.
  • red blood cells and circulating tumor cells (CTC; circulating blood cancer cells) in blood can be sorted by size.
  • CTC circulating tumor cells
  • FIG. 22C when a plurality of structures are arranged in the flow path, by adjusting the distance between the structures (microstructures) in advance, molecules of a desired size in the liquid can be obtained. Sorting can be done.
  • the flow of fluid can be selectively controlled freely by controlling the deformation amount of the structure according to the process.
  • a structure was used to select a molecule of a desired size in the fluid and temporarily damped it, and then the structure was dammed by being completely opened by heating or the like.
  • a microstructure is provided in the fluidic device that allows small particles to pass through and large particles to be damped. In this case, the structure functions as a normally closed valve only for large particles. After that, by deforming the structure and opening the valve so that large particles pass through, it is possible to sort only large particles.
  • the valve in the present embodiment can function as a filter in the flow path by selectively controlling the deformation amount of the structure.
  • the fluidic device of the present embodiment may include a plurality of structures, and the plurality of structures may be made of a material having shape memory properties that are housed in independent housing portions. Further, the deformation amounts of the plurality of structures may be the same or different. The deformation amount of the structure body may be controlled by the heating time, or a structure body having a different deformation amount may be made. In the fluidic device of the present embodiment, when the plurality of structures are made of substances having independent shape memory properties, it is possible to create a plurality of structures having different deformation amounts easily and at low cost.
  • the present invention provides a fluid device manufacturing method comprising a flow path substrate having a flow path and a substrate bonded to the flow path substrate on a first surface, the flow path substrate having a flow path. And a step (a) of preparing a substrate having a housing portion locally formed at a position facing the flow path on the first surface, and a step of housing a substance having shape memory property in the housing portion ( b) and a method of manufacturing a fluidic device.
  • the above-described fluidic device can be manufactured.
  • a plurality of embodiments of a fluid device manufacturing method will be described.
  • FIG. 10 is a schematic cross-sectional view showing a fluid device including a flow path substrate 1040 having a flow path 1010 and a substrate 1050 bonded to the flow path substrate 1040 on the first surface 1051.
  • a housing portion (concave portion) 1030 is locally formed at a position facing the flow path 1010 on the first surface 1051 of the substrate 1050.
  • the formation method in particular of the recessed part 1030 is not restrict
  • a substance 1020 having shape memory properties is accommodated.
  • the storage of the substance 1020 having shape memory property can be performed by, for example, injecting a shape memory polymer composition before curing from the opening of the storage unit 1030 and curing the composition in the storage unit 1030. .
  • FIG. 11A is a schematic cross-sectional view showing a fluid device including a flow path substrate 1140 having a flow path 1110 and a substrate 1150 bonded to the flow path substrate 1140 on the first surface 1151.
  • a housing portion (concave portion) 1130 is locally provided on the first surface of the substrate 1150.
  • the substrate 1150 includes a supply unit 1160 that passes through the second surface 1152 opposite to the first surface 1151 and the bottom 1131 of the housing unit 1130 and serves as an inlet for the substance 1120 having shape memory properties.
  • step (a) may be performed in the same manner as in the first embodiment described above.
  • step (b) the shape memory polymer composition shown in FIG. 11B is injected by injecting the shape memory polymer composition before curing from the supply unit 1160 into the housing unit 1130 and curing the composition in the housing unit 1030.
  • the substance 1120 having the above is accommodated in the accommodating portion 1130.
  • FIG. 14 is a schematic cross-sectional view for explaining a third embodiment of the fluid device manufacturing method.
  • the concave portion 1430 is locally formed on the first surface 1451 of the substrate 1450 to form the accommodating portion 1430.
  • a supply portion 1460 that penetrates the second surface 1452 of the substrate 1450 and the bottom portion 1431 of the recess 1430 and serves as an inlet for the substance 1420 having shape memory properties may be formed.
  • a discharge portion 1470 that penetrates through the second surface 1452 of the substrate 1450 and the bottom portion 1431 of the recess 1430 and serves to release air when the material 1420 having shape memory property is injected may be further formed.
  • the formation method in particular of the recessed part 1430, the supply part 1460, and the discharge part 1470 is not restrict
  • a lid substrate 1480 that closes the accommodating portion 1430 is bonded to the first surface 1451 of the substrate 1450.
  • the lid substrate 1480 may contact the first surface 1451 of the substrate 1450 so that the shape memory polymer composition described later does not leak.
  • the material of the lid substrate 1480 is not particularly limited, and examples thereof include glass, metal, semiconductor, plastic, and rubber.
  • the lid substrate 1480 is preferably as flat as possible on the first surface 1451 of the substrate 1450.
  • the first surface 1451 can be formed as flat as possible when the substance 1420 having shape memory property is accommodated in the accommodating portion 1430. That is, the lid substrate 1480 has a transfer surface 1481 that is transferred to the substance 1420 having shape memory properties at a position facing the housing portion 1430.
  • the substance 1420 having shape memory property is accommodated.
  • the material 1420 having shape memory property can be accommodated by injecting a shape memory polymer composition before curing from the supply unit 1460 using a syringe or the like and curing the composition.
  • the shape memory polymer composition can be cured by heat curing, photocuring, or the like.
  • the shape memory polymer composition may shrink when cured. Therefore, the lid substrate 1480 may have a recess having a depth corresponding to the amount of contraction of the shape memory polymer 1420 accommodated in the accommodating portion 1430. Thereby, the 1st surface 1451 can be formed more flatly.
  • the temperature is within a temperature range of the shape recovery temperature of the substance having shape memory property and less than the melting point.
  • the method may further include a step (c) of forming a structure body that is deformed by applying an external force to the material having shape memory property accommodated in the accommodating portion, and returns to the original shape by heating. Step (c) will be described later.
  • FIG. 15A to 15C are schematic cross-sectional views illustrating a fourth embodiment of a fluid device manufacturing method.
  • a recess 1530 having a bottom 1531 is locally formed on the first surface 1551 of the substrate 1550, and a storage portion 1530 in which a substance 1520 having shape memory properties is stored.
  • a substance 1520 having shape memory properties is stored.
  • step (a2) a supply portion 1560 that penetrates the second surface 1552 of the substrate 1550 and the bottom portion 1531 of the concave portion 1530 and serves as an injection port of the substance 1520 having shape memory properties is formed. Further, a discharge portion 1570 that passes through the second surface 1552 of the substrate 1550 and the bottom portion 1531 of the recess 1530 and serves as an air vent when injecting the material 1520 having shape memory property may be further formed.
  • the formation method in particular of the recessed part 1530, the supply part 1560, and the discharge part 1570 is not restrict
  • step (b1) the shape memory polymer composition before curing is injected from the supply unit 1560 using a syringe or the like, and the material 1520 having shape memory properties is accommodated by curing the composition.
  • the shape memory polymer composition can be cured by heat curing, photocuring, or the like.
  • a normally open valve, a normally closed valve, a series valve, etc. are formed by performing at least one of the following.
  • a normally open valve molding process and a normally closed valve molding process are combined.
  • FIG. 15B shows the structure of a molded first normally open valve.
  • the shape memory polymer 1520 is provided with a first recess by applying an external force to the shape memory polymer 1520 at a temperature in the range of the shape recovery temperature of the shape memory polymer 1520 and lower than the melting point, and the first normally open valve is provided on the shape memory polymer 1520. Mold.
  • the shape memory polymer 1520 is provided with a first through-hole by applying an external force to the shape memory polymer 1520 at a temperature in the range of the shape recovery temperature of the shape memory polymer 1520 and below the melting point, and the shape memory polymer 1520 is provided with a second normally open valve. Mold.
  • a second recess is formed in the shape memory polymer 1520 by molding or machining at a temperature lower than the melting point of the shape memory polymer 1520, and at a temperature in the temperature range of the shape memory polymer 1520 to a temperature higher than the shape recovery temperature and lower than the melting point. An external force is applied to the second recess to flatten the second recess, and the first normally closed valve is molded on the shape memory polymer 1520.
  • a second through-hole is formed in the shape memory polymer 1520 by molding or machining at a temperature lower than the melting point of the shape memory polymer 1520, and at a temperature in a temperature range not lower than the shape recovery temperature of the shape memory polymer 1520 and lower than the melting point. Then, an external force is applied to the second through hole to flatten the second through hole, and a second normally closed valve is formed on the shape memory polymer 1520.
  • FIG. 15C shows a schematic cross-sectional view of a fluidic device 1500 manufactured by the manufacturing method of the present embodiment.
  • a substrate 1350 of a fluidic device 1300 manufactured by the manufacturing method of the present embodiment includes a first substrate 1350a including a first surface 1351 and bonded to a flow path substrate 1340, a first substrate 1350a, 2nd board
  • the first substrate 1350a is formed with a through-hole 1360a serving as a storage portion 1330 in which the substance 1320 having shape memory property is stored.
  • the second substrate 1350b is provided with a support portion 1354 that supports the substance 1320 having the shape memory property at the tip, and is inserted into the through hole 1360a.
  • a supply portion 1360 that penetrates the portion 1355, the surface 1352 opposite to the surface provided with the convex portion 1355, and the support portion 1354 and serves as an inlet for the material 1320 having shape memory properties, and the material 1320 having shape memory properties
  • a temperature changing portion (not shown) for changing at least a part of the temperature.
  • a discharge portion 1370 may be further formed, which passes through the surface 1352 opposite to the surface provided with the convex portion 1355 and the support portion 1354 and serves as an air vent when injecting the material 1320 having shape memory properties.
  • the temperature change portion may be formed on the surface of the support portion 1354.
  • the temperature change unit may be an electrothermal conversion unit that converts electrical energy such as a heater into thermal energy, for example, and may be a photothermal conversion unit that converts optical energy such as laser light into thermal energy.
  • a heater made of wiring it can be formed by sputtering of Cr / Au thin film, photolithography, screen printing, or the like.
  • step (a3) the first substrate 1350a and the second substrate 1350b are joined by inserting the convex portion 1355 into the through hole 1360a to form the accommodating portion 1330 including the through hole 1360a and the support portion 1354.
  • the shape memory polymer composition before curing is injected from the supply unit 1360 using a syringe or the like, and the material 1320 having shape memory is accommodated by curing the composition.
  • the shape memory polymer composition can be cured by heat curing, photocuring, or the like.
  • a step of bonding a lid substrate that closes the accommodating portion 1330 to the first surface 1351 of the substrate 1350a may be provided before the step (b1 ′).
  • the lid substrate may be peeled off before the step (c).
  • a normally open valve, a normally closed valve, a series valve and the like are formed in the same manner as in the step (c) of the third embodiment described above.
  • step (d) a flow path substrate 1340 having a flow path is bonded to the first surface 1351 of the substrate 1350.
  • Example 1 A flow channel device shown in FIG. 13A was produced. Hereinafter, the manufacture of the flow path device of Example 1 will be described with reference to FIGS. 13A, 16A, 16B, and 17A to 17C.
  • a through-hole 1360a was formed in an acrylic plastic substrate (hereinafter referred to as “MS substrate”) to produce a first substrate 1350a.
  • FIG. 16A is a photograph showing a pattern of the heater formed on the surface of the MS substrate.
  • FIG. 16B is a photograph showing a substrate 1350b having a convex portion with a heater pattern formed on the top.
  • the diameter of the support portion 1354 was 2 mm, and the diameter of the bottom surface of the convex portion 1355 was 4 mm.
  • FIG. 17A is a photograph showing the second substrate 1350b after wiring formation.
  • first substrate 1350a and the second substrate 1350b were joined. Specifically, first, toluene vapor was exposed for 30 minutes to the first substrate 1350a on which no heater wiring was formed. Subsequently, vacuuming was performed for 3 minutes to evaporate toluene molecules on the surface of the first substrate 1350a.
  • first substrate 1350a and the second substrate 1350b were joined by inserting the convex portion 1355 of the second substrate 1350b into the through-hole 1360a of the first substrate 1350a and press-bonding with a pressure of 6 MPa for 30 minutes.
  • FIG. 17B is a photograph showing a state in which the first substrate 1350a and the second substrate 1350b are bonded.
  • PCL Polycaprolactone
  • IRGACURE819 bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • a glass substrate coated with a fluororesin (trade name “CYTOP (CTL-809M)” manufactured by Asahi Glass Co., Ltd.) was used as a lid substrate and was brought into close contact with the first surface 1351 of the substrate 1350.
  • the above composition was filled from the supply unit 1360 to the housing unit 1330 using a syringe. Subsequently, UV light having an illuminance of 7.8 mW / cm 2 and a wavelength of 365 nm is irradiated from the upper part of the lid substrate toward the housing portion 1330 for 4 minutes to crosslink and cure the PCL in the composition, and the shape memory polymer is cured. Obtained.
  • a flow path substrate 1340 having a flow path formed of an MS substrate was bonded to the substrate 1350. Specifically, toluene vapor was exposed to the flow path substrate 1340 for 30 minutes. Subsequently, evacuation was performed for 3 minutes to evaporate toluene molecules on the surface of the flow path substrate 1340.
  • the flow path substrate 1340 and the first surface 1351 of the substrate 1350 were laminated, and the flow path substrate 1340 and the substrate 1350 were joined by pressure bonding at a pressure of 6 MPa for 30 minutes.
  • FIG. 17C is a photograph showing the completed fluidic device of Example 1.
  • Example 1 (Valve drive) The valve of the fluid device of Example 1 was driven. First, a conductive silver paste was used to connect the conducting wire to the fluidic device. Next, a liquid containing a fluorescent dye was sent to the flow path of the fluid device.
  • FIG. 18A is a graph showing the relationship between applied voltage and measured fluorescence intensity and time.
  • FIG. 18B is a fluorescence micrograph of the channel when the valve is open and the channel when the valve is closed.
  • FIG. 18C is a graph showing the relationship between valve response time and power consumption.
  • Example 2 (Production of fluidic devices with integrated valves) A fluid device of Example 2 in which nine valves were integrated was produced by the same procedure as in Example 1.
  • FIG. 19A is a photograph showing a second substrate having a convex portion with a heater pattern formed on the top.
  • FIG. 19B is a photograph showing the second substrate after wiring formation.
  • FIG. 19C is a photograph showing a state in which the first substrate and the second substrate are bonded.
  • FIG. 19D is a photograph showing the completed fluidic device of Example 2.
  • the present invention it is possible to provide a valve that can be manufactured easily and at a low cost and has a high degree of freedom in designing a fluid device. Moreover, the flow path device provided with the said valve
  • Normally open valve 210, 240, 310, 410, 510, 610, 1010, 1110, 1210, 1310, 2010 ... flow path, 2020, 2030 ... valve , 220, 220 a, 320, 420, 520, 620 a, 620 b, 820, 1020, 1120, 1220, 1320, 1420, 1520...
  • Shape memory polymer (substance having shape memory), 230, 330, 430, 530, 830 , 1030, 1130, 1230, 1330, 1430, 1530 ...
  • receiving portion (recess), 240, 340, 440, 540, 640, 1040, 1140, 1240, 1340, 1540 ... flow path substrate, 242a, 243a ... heating means, 245, 445, 645a, 6 5b ... weir, 250, 350, 450, 550, 650, 1050, 1150, 1250, 1350, 1450, 1550 ... substrate, 251, 351, 451, 551, 651, 1051, 1151, 1251, 1351, 1451, 1551 ... 1st surface, 243,400,500,660,740,930 ... normally closed valve, 241,600,700,900,1000,1100,1200,1300,1500,2000 ...
  • Fluid device 680,750,950 ... Series valve, 710, 910 ... Driving source, 720 ... Upstream channel, 721 ... Branch channel, 722 ... Branch point, 723, 724, 725 ... Downstream channel, 730a, 740a, 750a, 930a, 940a, 950a ... Temperature changing portion, 830a ... photothermal conversion layer, 921, 922, 9 3,924,925 ... Liquid reservoir, 960 ... Purification device, 1010a ... First flow path, 1010b ... Second flow path, 1131, 1231, 1331, 1431, 1531 ... Bottom, 1152, 1252, 1352, 1452, 1552 ...

Landscapes

  • Micromachines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

 A valve wherein a substance having shape memory properties is accommodated in a housing part provided to a flow path, and the substance having shape memory properties is deformed, thereby regulating the flow of the fluid in the flow path. This valve can be manufactured simply and at low cost, and offers a high degree of freedom to the design of fluid devices, and is therefore useful.

Description

バルブ、流体デバイスおよび流体デバイスの製造方法Valve, fluid device, and fluid device manufacturing method
 本発明は、バルブ、流体デバイスおよび流体デバイスの製造方法に関する。本願は、2015年2月25日に、日本に出願された特願2015-035920号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a valve, a fluid device, and a fluid device manufacturing method. This application claims priority based on Japanese Patent Application No. 2015-035920 filed in Japan on February 25, 2015, the contents of which are incorporated herein by reference.
 近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ-TAS(Micro-Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。 In recent years, the development of μ-TAS (Micro-Total Analysis Systems) aimed at increasing the speed, efficiency, and integration of tests in the in-vitro diagnostic field, or the miniaturization of test equipment has attracted attention. Active research is ongoing worldwide.
 μ-TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨てが可能なこと等、従来の検査機器に比べて優れている。更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。 Μ-TAS is superior to conventional testing equipment in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost. Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, the method is attracting attention as a highly useful method.
 μ-TASにおいて、マイクロバルブは、チップ中の流路における生体試料等を含む流体の流れを制御するために不可欠な要素である。従来提案されているマイクロバルブは、アクチュエーター等の可動部材を用いるものが一般的であったが、近年では、流路の天井にガス圧をかけて流路を塞ぐマイクロバルブが提案されている(例えば、特許文献1、非特許文献1を参照。)。 In μ-TAS, a microvalve is an indispensable element for controlling the flow of a fluid containing a biological sample or the like in a channel in a chip. Conventionally, microvalves that have been proposed use a movable member such as an actuator, but in recent years, microvalves that close the flow path by applying gas pressure to the ceiling of the flow path have been proposed ( For example, see Patent Document 1 and Non-Patent Document 1.)
特表2003-516129号公報Special table 2003-516129 gazette
 しかしながら、特許文献1及び非特許文献1に記載のマイクロバルブでは、流体の流れる流路の上部に、ガス流路のネットワークを形成する必要があり、簡便にかつ低コストでマイクロバルブを製造するという点においては改良の余地がある。また、このようなマイクロバルブを用いることにより、流体デバイスの設計の自由度が奪われている。 However, in the microvalves described in Patent Document 1 and Non-Patent Document 1, it is necessary to form a network of gas flow channels above the flow channels through which the fluid flows, and the microvalves are manufactured easily and at low cost. There is room for improvement in terms. Further, the use of such a microvalve deprives the design freedom of the fluid device.
 本発明は、簡便にかつ低コストで製造することができ、流体デバイスの設計自由度の高いバルブを提供する。本発明はまた、上記バルブを備える流路デバイス及び流路デバイスの製造方法を提供する。 The present invention provides a valve that can be easily manufactured at low cost and has a high degree of freedom in designing a fluid device. The present invention also provides a flow channel device including the valve and a method for manufacturing the flow channel device.
 本発明は以下の態様を含む。
(1)本発明の一実施態様におけるバルブは、流路に設けられた収容部に形状記憶性を有する物質が収容され、前記形状記憶性を有する物質が変形することにより前記流路中の流体の流れを調節することを特徴とする。
(2)本発明の一実施態様におけるバルブは、流路に設けられ、形状記憶性を有する物質で構成された平板部と、前記平板部の第1面から突出した突出部とを備え、前記平板部が変形することにより、前記流路中の流体の流れを調節することを特徴とする。
(3)本発明の一実施態様における流体デバイスは、上記のバルブを備えることを特徴とする。
(4)本発明の一実施態様における流体デバイスは、流路を有する流路基板と、前記流路基板と第1面で接合される基板と、を備え、前記基板は、前記流路と対向する位置に設けられ、形状記憶性を有する物質が収容された収容部を備え、前記形状記憶性を有する物質が変形することにより、前記流路中の流体の流れを調節するバルブを備えることを特徴とする。
(5)本発明の一実施態様における流体デバイスの製造方法は、流路を有する流路基板と、前記流路基板と第1面で接合される基板とを備える流体デバイスの製造方法であって、流路を有する流路基板と、前記流路基板と第1面で接合される基板であって、前記第1面における前記流路と対向する位置に局所的に収容部が形成された基板を用意する工程(a)と、前記収容部に形状記憶性を有する物質を収容する工程(b)と、を備えることを特徴とする。
(6)本発明の一実施態様におけるバルブは、流体が流れる流路に局所的に設けられ、形状記憶ポリマーが収容された収容部を備え、前記形状記憶ポリマーが変形することにより、前記流路中の流体の流れを調節することを特徴とする。
(7)本発明の一実施態様におけるバルブは、流体が流れる流路に局所的に設けられ、平板部と前記平板部の第1面から突出した突出部とを有する形状記憶ポリマーを含み、前記平板部と前記突出部とは互いに同じ形状記憶ポリマーで構成されており、前記平板部の前記第1面の反対側の第2面が前記流路の少なくとも一部を形成しており、前記平板部が変形することにより、前記流路中の流体の流れを調節することを特徴とする。
(8)本発明の一実施態様における流体デバイスは、上記のバルブを備えることを特徴とする。
(9)本発明の一実施態様における流体デバイスは、流路を有する流路基板と、前記流路基板と第1面で接合される基板と、を備え、前記基板は、前記流路と対向する位置に局所的に設けられ、形状記憶ポリマーが収容された収容部を備え、前記形状記憶ポリマーが変形することにより、前記流路中の流体の流れを調節するバルブを備えることを特徴とする。
(10)本発明の一実施態様における流体デバイスの製造方法は、流路を有する流路基板と、前記流路基板と第1面で接合される基板とを備える流体デバイスの製造方法であって、流路を有する流路基板と、前記流路基板と第1面で接合される基板であって、前記第1面における前記流路と対向する位置に局所的に収容部が形成された基板を用意する工程(a)と、前記収容部に形状記憶ポリマーを収容する工程(b)と、を備えることを特徴とする。
The present invention includes the following aspects.
(1) In the valve according to an embodiment of the present invention, a substance having shape memory property is accommodated in an accommodating portion provided in the flow path, and the fluid in the flow path is formed by the deformation of the substance having shape memory property. It is characterized by adjusting the flow of the water.
(2) A valve according to an embodiment of the present invention includes a flat plate portion that is provided in the flow path and includes a material having shape memory, and a protruding portion that protrudes from the first surface of the flat plate portion, The flow of the fluid in the flow path is adjusted by deforming the flat plate portion.
(3) A fluid device according to an embodiment of the present invention includes the valve described above.
(4) A fluid device according to an embodiment of the present invention includes a flow path substrate having a flow path, and a substrate bonded to the flow path substrate at a first surface, the substrate facing the flow path. And a valve that adjusts the flow of fluid in the flow path when the substance having shape memory property is deformed. Features.
(5) A fluid device manufacturing method according to an embodiment of the present invention is a fluid device manufacturing method including a channel substrate having a channel and a substrate bonded to the channel substrate on a first surface. A substrate having a flow path, and a substrate bonded to the flow path substrate on a first surface, wherein a housing portion is locally formed at a position facing the flow channel on the first surface. And (b) containing a substance having shape memory property in the housing part.
(6) The valve in one embodiment of the present invention is provided locally in the flow path through which the fluid flows, and includes a storage portion in which the shape memory polymer is stored. It is characterized by adjusting the flow of the fluid therein.
(7) The valve according to one embodiment of the present invention includes a shape memory polymer that is locally provided in the flow path through which the fluid flows and has a flat plate portion and a protruding portion protruding from the first surface of the flat plate portion, The flat plate portion and the protruding portion are made of the same shape memory polymer, and the second surface of the flat plate portion opposite to the first surface forms at least a part of the flow path, and the flat plate portion The flow of the fluid in the flow path is adjusted by deforming the part.
(8) A fluid device according to an embodiment of the present invention includes the valve described above.
(9) A fluid device according to an embodiment of the present invention includes a flow path substrate having a flow path, and a substrate bonded to the flow path substrate on a first surface, the substrate facing the flow path. A storage portion that is locally provided at a position where the shape memory polymer is stored; and a valve that adjusts the flow of fluid in the flow path when the shape memory polymer is deformed. .
(10) A fluid device manufacturing method according to an embodiment of the present invention is a fluid device manufacturing method including a channel substrate having a channel and a substrate bonded to the channel substrate on a first surface. A substrate having a flow path, and a substrate bonded to the flow path substrate on a first surface, wherein a housing portion is locally formed at a position facing the flow channel on the first surface. The step (a) which prepares, and the process (b) which accommodates a shape memory polymer in the said accommodating part, It is characterized by the above-mentioned.
形状記憶ポリマーの特性を説明する図である。It is a figure explaining the characteristic of a shape memory polymer. ノーマリーオープン・バルブの1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the normally open valve | bulb. ノーマリーオープン・バルブの1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the normally open valve | bulb. ノーマリークローズ・バルブの1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the normally closed valve | bulb. ノーマリークローズ・バルブの1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the normally closed valve | bulb. 直列バルブの1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a series valve. 流体デバイスの1実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a fluid device. 温度変化部を説明する図である。It is a figure explaining a temperature change part. 流体デバイスの1実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a fluid device. 流体デバイスの第1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st Embodiment of a fluid device. 流体デバイスの第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of a fluid device. 流体デバイスの第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of a fluid device. 流体デバイスの第3実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of a fluid device. 流体デバイスの第3実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of a fluid device. 流体デバイスの第3実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of a fluid device. 流体デバイスの第4実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th Embodiment of a fluid device. 流体デバイスの第4実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th Embodiment of a fluid device. 流体デバイスの第4実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th Embodiment of a fluid device. 流体デバイスの製造方法の第3実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 3rd Embodiment of the manufacturing method of a fluid device. 流体デバイスの製造方法の第4実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 4th Embodiment of the manufacturing method of a fluid device. 流体デバイスの製造方法の第4実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 4th Embodiment of the manufacturing method of a fluid device. 流体デバイスの製造方法の第4実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 4th Embodiment of the manufacturing method of a fluid device. 実施例1の流体デバイスの製造工程を示す写真である。MS基板の表面に形成されたヒーターのパターンを示す写真である。3 is a photograph showing a manufacturing process of the fluidic device of Example 1. FIG. It is a photograph which shows the pattern of the heater formed in the surface of MS board | substrate. 実施例1の流体デバイスの製造工程を示す写真である。頂上部にヒーターのパターンが形成された凸部を有する基板を示す写真である。3 is a photograph showing a manufacturing process of the fluidic device of Example 1. FIG. It is a photograph which shows the board | substrate which has the convex part in which the pattern of the heater was formed in the top part. 実施例1の流体デバイスの製造工程を示す写真である。配線形成後の第2基板を示す写真である。3 is a photograph showing a manufacturing process of the fluidic device of Example 1. FIG. It is a photograph which shows the 2nd board | substrate after wiring formation. 実施例1の流体デバイスの製造工程を示す写真である。第1基板及び第2基板が接合された様子を示す写真である。3 is a photograph showing a manufacturing process of the fluidic device of Example 1. FIG. It is a photograph which shows a mode that the 1st board | substrate and the 2nd board | substrate were joined. 実施例1の流体デバイスの製造工程を示す写真である。実施例1の流体デバイスを示す写真である。3 is a photograph showing a manufacturing process of the fluidic device of Example 1. FIG. 2 is a photograph showing a fluidic device of Example 1. FIG. 印加電圧及び測定された蛍光強度と時間との関係を示すグラフである。It is a graph which shows the relationship between applied voltage and measured fluorescence intensity, and time. バルブが開状態の時の流路及びバルブが閉状態の時の流路の蛍光顕微鏡写真である。It is the fluorescence-microscope photograph of the flow path when a valve is an open state, and a flow path when a valve is a closed state. バルブの応答時間及び消費電力の関係を示すグラフである。It is a graph which shows the relationship between the response time of a valve | bulb, and power consumption. 実施例2における、頂上部にヒーターのパターンが形成された凸部を有する第2基板を示す写真である。In Example 2, it is a photograph which shows the 2nd board | substrate which has the convex part by which the pattern of the heater was formed in the top part. 実施例2における、配線形成後の第2基板を示す写真である。6 is a photograph showing a second substrate after wiring formation in Example 2. 実施例2において、第1基板及び第2基板が接合された様子を示す写真である。In Example 2, it is a photograph which shows a mode that the 1st board | substrate and the 2nd board | substrate were joined. 完成した実施例2の流体デバイスを示す写真である。It is a photograph which shows the fluid device of Example 2 completed. 流体デバイスの第5実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 5th Embodiment of a fluid device. 流体デバイスの第6実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 6th Embodiment of a fluid device. 流体デバイスの第7実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 7th Embodiment of a fluid device. 流体デバイスの第7実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 7th Embodiment of a fluid device. 流体デバイスの第7実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 7th Embodiment of a fluid device. 流体デバイスの第7実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining 7th Embodiment of a fluid device.
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。なお、各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same or corresponding reference numerals, and redundant description is omitted. Note that the dimensional ratio in each drawing is exaggerated for the sake of explanation, and does not necessarily match the actual dimensional ratio.
 また、以下の実施形態は、発明の趣旨をより良く理解させるために一例として説明するものであり、特に指定のない限り、本発明を限定するものではない。 Further, the following embodiments are described as examples for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
<バルブ>
 一実施態様において、本発明は、流路に設けられた収容部に形状記憶性を有する物質が収容され、前記形状記憶性を有する物質が変形することにより前記流路中の流体の流れを調節するバルブを提供する。前記形状記憶性を有する物質は、ある温度以下で変形しても、その温度以上に加熱すると元の形状に回復する性質(形状記憶効果)をもった物質である。例えば、形状記憶合金であってもよく、形状記憶ポリマーであってもよい。
<Valve>
In one embodiment, according to the present invention, a substance having shape memory property is accommodated in an accommodating part provided in the flow channel, and the flow of fluid in the flow channel is adjusted by the deformation of the material having shape memory property. Provide a valve. The substance having the shape memory property is a substance having a property (shape memory effect) that even when deformed at a certain temperature or lower, recovers to its original shape when heated to the temperature or higher. For example, it may be a shape memory alloy or a shape memory polymer.
 上記のバルブは、流体が流れる流路に局所的に設けられ、形状記憶ポリマーが収容された収容部を備え、前記形状記憶ポリマーが変形することにより、前記流路中の流体の流れを調節する、バルブであってもよい。本明細書において、流体が流れるとは、流体が移動することを意味する。 The valve is locally provided in the flow path through which the fluid flows, and includes a storage portion in which the shape memory polymer is stored. The shape memory polymer is deformed to adjust the flow of the fluid in the flow path. A valve may be used. In this specification, the fluid flowing means that the fluid moves.
 本バルブにおいて流路中の流体の流れを調節するとは、例えば、流体の流れを堰き止めたり、止まっていた流体を流れさせることである。また、加熱条件の制御により前記形状記憶性を有する物質の変形量を制御し、流量や流速を定量的に調節してもよい。加熱条件の例として、加熱時間や熱量が挙げられる。 In this valve, adjusting the flow of the fluid in the flow path means, for example, blocking the flow of the fluid or causing the stopped fluid to flow. Further, the amount of deformation of the substance having shape memory property may be controlled by controlling the heating conditions, and the flow rate and flow rate may be adjusted quantitatively. Examples of heating conditions include heating time and heat.
 本実施態様のバルブは、簡便にかつ低コストで製造することができ、流体の流れを簡便かつ自在に制御することができる。また、2枚の基板の間に形状記憶ポリマーのシートを挟んだサンドイッチ構造のデバイスではなく、流路に局所的に設けられ、形状記憶性を有する物質が収容された収容部により構成されている。このため、形状記憶ポリマーのシートにより上下の基板が隔てられることがなく、流体デバイス設計の自由度が高い。 The valve of this embodiment can be manufactured easily and at low cost, and the flow of fluid can be controlled easily and freely. Moreover, it is not a sandwich structure device in which a sheet of shape memory polymer is sandwiched between two substrates, but is configured by a housing part that is locally provided in the flow path and contains a substance having shape memory properties. . Therefore, the upper and lower substrates are not separated by the shape memory polymer sheet, and the degree of freedom in designing the fluid device is high.
[収容部]
 本実施態様のバルブは、流路に局所的に設けられ、形状記憶性を有する物質が収容された収容部を含む。収容部について図2を参照しながら説明する。図2は、本実施態様のバルブの1実施形態を示す概略断面図である。
[Container]
The valve according to this embodiment includes a storage portion that is locally provided in the flow path and stores a substance having shape memory properties. The accommodating portion will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing one embodiment of the valve of this embodiment.
 図2に示すバルブ200は、流体が流れる流路210に局所的に設けられ、形状記憶性を有する物質220が収容された収容部230を備え、形状記憶性を有する物質220が変形することにより、流路210中の流体の流れを調節するものである。流路210は、流路(たとえば溝部)を有する流路基板240と、流路基板240と第1面251で接合される基板250とにより構成されている。 A valve 200 shown in FIG. 2 is provided locally in a flow path 210 through which a fluid flows, and includes a housing portion 230 in which a material 220 having shape memory properties is housed. The material 220 having shape memory properties is deformed. The flow of the fluid in the flow path 210 is adjusted. The flow path 210 includes a flow path substrate 240 having a flow path (for example, a groove), and a substrate 250 joined to the flow path substrate 240 by the first surface 251.
 収容部230は、流路210に局所的に設けられている。換言すると、収容部230は、基板250における流路210の一部と対向する位置に局所的に設けられている。「流路210に局所的に設けられる」とは、流路210を構成する第1面251の全面ではなく、第1面251の限られた領域に収容部230が形成されていることを意味する。流路210の一部は形状記憶性を有する物質220と対向し、かつ、形状記憶性を有する物質220と対向しない流路210の少なくとも一部は第1面251と対向する。また、流路210を流れる流体は、一部では基板250の第1面251と接し、バルブ部において、形状記憶性を有する物質220の表面と接する。 The accommodating part 230 is locally provided in the flow path 210. In other words, the housing part 230 is locally provided at a position facing a part of the flow path 210 in the substrate 250. “Locally provided in the flow path 210” means that the accommodating portion 230 is formed not in the entire first surface 251 constituting the flow path 210 but in a limited region of the first surface 251. To do. A part of the channel 210 faces the substance 220 having shape memory property, and at least a part of the channel 210 that does not face the substance 220 having shape memory property faces the first surface 251. Further, a part of the fluid flowing through the flow path 210 is in contact with the first surface 251 of the substrate 250 and in contact with the surface of the substance 220 having shape memory property in the valve portion.
 収容部230は、例えば第1面251に開口部を有する凹型形状や孔であり、内部に形状記憶性を有する物質220が収容される部分である。ここで、形状記憶性を有する物質220は、その少なくとも一部が収容部230の内部に収容されていればよく、形状記憶性を有する物質220の全てが収容されていなくてもよい。収容部230は、基板250に形成された凹部を構成する表面、すなわち、当該凹部の側面及び底面により囲まれた空間であるということもできる。 The accommodating portion 230 is, for example, a concave shape or a hole having an opening on the first surface 251 and is a portion in which the substance 220 having shape memory property is accommodated. Here, at least a part of the material 220 having shape memory property may be accommodated in the accommodating portion 230, and not all of the material 220 having shape memory property may be accommodated. It can also be said that the accommodating portion 230 is a space surrounded by a surface that forms a recess formed in the substrate 250, that is, a side surface and a bottom surface of the recess.
 なお、後述する複数のバルブを有する流体デバイスにおいて、複数のバルブにおいて収容部は共通であってもよい。例えば、複数のバルブが隣接している場合には、共通の収容部に収容された形状記憶性を有する物質によって複数のバルブが形成されていてもよい。また、複数のバルブがそれぞれ異なる収容部に収容された形状記憶性を有する物質によって形成されていてもよい。 In addition, in the fluid device having a plurality of valves, which will be described later, the accommodating portion may be common to the plurality of valves. For example, when a plurality of valves are adjacent to each other, the plurality of valves may be formed of a material having shape memory property accommodated in a common accommodating portion. In addition, the plurality of valves may be formed of a material having shape memory property accommodated in different accommodating portions.
[形状記憶性を有する物質]
 前記形状記憶性を有する物質は、形状記憶合金であってもよく、形状記憶ポリマーであってもよい。形状記憶合金としては、チタンとニッケルの合金、鉄-マンガン-ケイ素合金等が挙げられる。
[Material with shape memory]
The substance having shape memory property may be a shape memory alloy or a shape memory polymer. Examples of shape memory alloys include alloys of titanium and nickel, and iron-manganese-silicon alloys.
 形状記憶ポリマーとは、成形加工後に外力を加えて変形しても、ある温度以上に加熱すると元の形状に回復するポリマーであり、ある温度(以下、形状回復温度)以上で流動性を帯びる可逆相と、可逆相が変形する温度では変形を生じない物理的又は化学的結合部位(架橋点)からなる固定相から構成されている。 A shape memory polymer is a polymer that recovers its original shape when heated above a certain temperature, even if deformed by applying external force after molding, and is reversible and has fluidity at a certain temperature (hereinafter referred to as the shape recovery temperature). It is composed of a stationary phase composed of a phase and a physical or chemical bonding site (crosslinking point) that does not deform at a temperature at which the reversible phase deforms.
 図1は、形状記憶ポリマーの特性を説明する図である。図1に示すように、形状記憶ポリマーは、成形加工又は機械加工により形成した形状を樹脂中の固定相により記憶し、形状回復温度以上融点未満の温度範囲内の温度下において、記憶した形状を自由な形状に変形させることができる。そして、この変形させた状態を維持したまま形状回復温度未満の温度に冷却することで、この変形を固定することができる。この形状回復温度未満の温度に冷却して加えた変形を固定させたものを、形状回復温度以上で融点未満の温度に加熱することにより、成形加工又は機械加工により形成した形状が復元される。 FIG. 1 is a diagram for explaining the characteristics of a shape memory polymer. As shown in FIG. 1, the shape memory polymer memorizes the shape formed by molding or machining by the stationary phase in the resin, and the memorized shape at a temperature within the temperature range between the shape recovery temperature and the melting point. It can be transformed into a free shape. The deformation can be fixed by cooling to a temperature lower than the shape recovery temperature while maintaining the deformed state. The shape formed by molding or machining is restored by heating the fixed deformation after cooling to a temperature below the shape recovery temperature to a temperature above the shape recovery temperature and below the melting point.
 形状記憶ポリマー材料としては、特に限定されず、例えば、形状記憶性を有するエラストマー等の高分子材料を挙げることができる。形状記憶性を有するエラストマーの具体例としては、ポリウレタン、ポリイソプレン、ポリエチレン、ポリノルボルネン、スチレン-ブタジエン共重合体、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリエステル、メラニン樹脂、ポリカプロラクトン、ポリ塩化ビニル、ポリスチレン、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド等のポリマーを、例えば有機過酸化物、過酸化ベンゾイル等の過酸化物を使用した熱等による化学的架橋手法によって架橋されたものが挙げられる。 The shape memory polymer material is not particularly limited, and examples thereof include polymer materials such as elastomers having shape memory properties. Specific examples of the elastomer having shape memory property include polyurethane, polyisoprene, polyethylene, polynorbornene, styrene-butadiene copolymer, epoxy resin, phenol resin, acrylic resin, polyester, melanin resin, polycaprolactone, polyvinyl chloride, Polymers such as polystyrene, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, etc., which have been crosslinked by a chemical crosslinking method using heat or the like using a peroxide such as an organic peroxide or benzoyl peroxide. Is mentioned.
 本実施態様においては、成形加工又は機械加工により、形状記憶性を有する物質からバルブを成形する。バルブは、流路中を流体が流れる状態とする開状態、又は流体の流れを堰き止めた状態とする閉状態に成形される。 In this embodiment, the valve is molded from a material having shape memory by molding or machining. The valve is formed in an open state in which a fluid flows in the flow path or a closed state in which a fluid flow is blocked.
 更に、該形状記憶性を有する物質の形状回復温度以上融点未満の温度範囲内の温度で、このバルブに変形を加えた後、形状回復温度未満の温度に冷却して変形を固定させる。この変形は、開状態のバルブを閉状態とする変形か、閉状態のバルブを開状態とする変形である。このように変形の加えられたバルブを流路に配設する。変形の加えられたバルブの形状が、開状態である場合には、バルブ配設後、流路中を流体が自由に流れる。変形の加えられたバルブの形状が、閉状態である場合には、バルブ配設後、流路中の流体の流れは堰き止められている。 Furthermore, after deforming the valve at a temperature within the temperature range between the shape recovery temperature and the melting point of the substance having the shape memory property, the deformation is fixed by cooling to a temperature lower than the shape recovery temperature. This deformation is a deformation for closing the valve in the open state or a deformation for opening the valve in the closed state. Thus, the modified valve is disposed in the flow path. When the deformed valve is in the open state, the fluid freely flows in the flow path after the valve is disposed. When the shape of the deformed valve is in the closed state, the fluid flow in the flow path is blocked after the valve is disposed.
 次いで、該バルブを形状記憶性を有する物質の形状回復温度以上融点未満の温度範囲内の温度で加熱することにより、バルブ成形時の形状が復元する。開状態となるように変形の加えられたバルブは、加熱されることにより閉状態となり、流路中の流体の流れは堰き止められる。閉状態となるように変形の加えられたバルブは、加熱されることにより開状態となり、流路中を流体が自由に流れるようになる。 Next, the shape at the time of valve molding is restored by heating the valve at a temperature within the temperature range between the shape recovery temperature of the substance having shape memory property and lower than the melting point. The valve that has been deformed so as to be in the open state is closed by being heated, and the flow of the fluid in the flow path is blocked. The valve, which has been deformed so as to be in the closed state, is opened when heated, so that the fluid flows freely in the flow path.
 このように、本実施態様のバルブを流路に配設することにより、流路中の流体の流れを自在に制御することができる。また、本実施態様のバルブは、形状記憶性を有する物質の少なくとも一部分が流路の少なくとも一部を形成している。流路を流れる流体は、形状記憶性を有する物質の少なくとも一部分と接する。そのため、簡便に低コストで製造でき、簡便かつ自在に開状態や閉状態を制御することができる。また、本実施態様のバルブは、加熱などの温度変化によって、流路中を流体が流れる状態とする開状態、又は流体の流れを堰き止めた状態とする閉状態、に変形可能である。 Thus, by disposing the valve of this embodiment in the flow path, the flow of fluid in the flow path can be freely controlled. In the valve of this embodiment, at least a part of the substance having shape memory property forms at least a part of the flow path. The fluid flowing through the flow path is in contact with at least a portion of the substance having shape memory properties. Therefore, it can be manufactured simply and at low cost, and the open state and the closed state can be controlled easily and freely. Further, the valve of this embodiment can be deformed into an open state in which a fluid flows in the flow path or a closed state in which the fluid flow is blocked by a temperature change such as heating.
 ここで、形状記憶性を有する物質の少なくとも一部分が流路の少なくとも一部を形成している状態について、図2を参照しながら説明する。図2は、本実施態様のバルブの1実施形態を示す概略断面図である。 Here, a state in which at least a part of the substance having shape memory property forms at least a part of the flow path will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing one embodiment of the valve of this embodiment.
 図2に示すバルブ200は、流体が流れる流路210上に局所的に設けられ、形状記憶性を有する物質220が収容された収容部230を備え、形状記憶性を有する物質220が変形することにより、流路210中の流体の流れを調節するものである。流路210は、流路を有する流路基板240と、流路基板240と第1面251で接合される基板250と、形状記憶性を有する物質220の一部とにより構成されている。 A valve 200 shown in FIG. 2 is provided locally on a flow path 210 through which a fluid flows, and includes a storage portion 230 in which a material 220 having shape memory property is stored, and the material 220 having shape memory property is deformed. Thus, the flow of the fluid in the flow path 210 is adjusted. The flow path 210 includes a flow path substrate 240 having a flow path, a substrate 250 bonded to the flow path substrate 240 by the first surface 251, and a part of the substance 220 having shape memory properties.
 図2において、形状記憶性を有する物質220の一部分、すなわち、形状記憶性を有する物質220の、流路210に接している部分220aは、流路210の一部を形成しているといえる。換言すると、形状記憶性を有する物質220が流路210の一部と対向する第一領域と、形状記憶性を有する物質220とは異なる物質(基板250)が流路210の一部と対向する第二領域とが存在している。 In FIG. 2, it can be said that a part of the material 220 having shape memory property, that is, a part 220 a of the material 220 having shape memory property that is in contact with the flow channel 210 forms a part of the flow channel 210. In other words, the first region in which the substance 220 having shape memory property faces a part of the channel 210 and the substance (substrate 250) different from the substance 220 having shape memory property faces a part of the channel 210. A second area exists.
 本実施態様のバルブは、流体デバイスに好適に用いられるバルブである。バルブとしては、ノーマリーオープン・バルブ及びノーマリークローズ・バルブが挙げられる。以下、各バルブの詳細について説明する。 The valve of this embodiment is a valve that is suitably used for a fluid device. Examples of the valve include a normally open valve and a normally closed valve. Details of each valve will be described below.
[ノーマリーオープン・バルブ]
 図2は、ノーマリーオープン・バルブの1実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路210中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブである。
[Normally Open Valve]
FIG. 2 is a schematic cross-sectional view showing one embodiment of a normally open valve. The valve of the present embodiment is a normally open valve that is deformed from an open state in which a fluid flows in the flow path 210 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
 ノーマリーオープン・バルブ200は、流路210と、形状記憶性を有する物質220が収容された収容部230とを備え、形状記憶性を有する物質220が変形することにより流路210中の流体の流れを調節する。 The normally open valve 200 includes a flow path 210 and a storage portion 230 in which a substance 220 having shape memory property is stored, and the fluid 220 in the flow path 210 is deformed when the substance 220 having shape memory property is deformed. Adjust the flow.
(凹型形状)
 図2に示すように、流路210は、流路を有する流路基板240と、流路基板240と第1面251で接合される基板250とが積層されることにより形成される。なお、図2においては、基板250の上に流路基板240が積層され流路210が形成されているが、これらの位置関係は問わず、例えば、流路基板240の上に基板250が積層され、この積層により流路210が形成されていてもよい。
(Concave shape)
As shown in FIG. 2, the flow path 210 is formed by stacking a flow path substrate 240 having a flow path and a substrate 250 bonded to the flow path substrate 240 and the first surface 251. In FIG. 2, the flow path substrate 240 is laminated on the substrate 250 to form the flow path 210. However, the positional relationship is not limited, and for example, the substrate 250 is laminated on the flow path substrate 240. The flow path 210 may be formed by this lamination.
 流路基板240は、堰245を有しており、堰245によって流路210中の流体の流れが堰き止められる。 The flow path substrate 240 has a weir 245, and the flow of the fluid in the flow path 210 is blocked by the weir 245.
 これに対し、ノーマリーオープン・バルブ200は、定常状態においては、堰245によって堰き止められた流体を迂回させるためのバイパスとしての流路(バイパス路)として機能する。 On the other hand, the normally open valve 200 functions as a flow path (bypass path) as a bypass for bypassing the fluid blocked by the weir 245 in a steady state.
 形状記憶性を有する物質220は、その形成時に、平坦の形状を記憶している。図2において、ノーマリーオープン・バルブ200は、形状記憶性を有する物質220の形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、凹型形状に成形されている。 The substance 220 having shape memory property memorizes a flat shape when formed. In FIG. 2, the normally open valve 200 is formed into a concave shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 220 having shape memory property and higher than the melting point.
 ノーマリーオープン・バルブ200は、加熱前は、流体の流れが堰き止められた閉状態をバイパスするための形状を有し、流路210を流体が流れる状態とする開状態にある。ここで、図2において、ノーマリーオープン・バルブ200の開状態とは、閉状態をバイパスするための凹型形状を有する状態である。すなわち、ノーマリーオープン・バルブ200は、定常状態では、凹型形状の開状態にある。 The normally open valve 200 has a shape for bypassing the closed state in which the fluid flow is blocked before heating, and is in an open state in which the fluid flows through the flow path 210. Here, in FIG. 2, the normally open valve 200 is in an open state having a concave shape for bypassing the closed state. In other words, normally open valve 200 is in a concave open state in a steady state.
 そして、加熱後は、形状記憶性を有する物質220が平坦形状に復元することにより、流体の流れを堰き止めた状態とする閉状態へと変形する。 And after heating, the material 220 having shape memory property is restored to a flat shape, so that the fluid flow is deformed into a closed state where the fluid flow is blocked.
(貫通型形状)
 図3は、ノーマリーオープン・バルブの1実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路310中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブである。
(Through shape)
FIG. 3 is a schematic cross-sectional view showing an embodiment of a normally open valve. The valve of this embodiment is a normally open valve that is deformed from an open state in which a fluid flows through the flow path 310 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
 ノーマリーオープン・バルブ300は、流路310と、形状記憶性を有する物質320が収容された収容部330とを備え、形状記憶性を有する物質320が変形することにより流路310中の流体の流れを調節する。 The normally open valve 300 includes a flow path 310 and a storage portion 330 in which a substance 320 having a shape memory property is accommodated. The deformation of the substance 320 having a shape memory property causes the fluid in the flow path 310 to flow. Adjust the flow.
 流路310は、流路を有する流路基板340と、流路基板340と第1面351で接合される基板350とが積層されることにより形成される。なお、図3においては、基板350の上に流路基板340が積層され流路310が形成されているが、これらの位置関係は問わず、例えば、流路基板340の上に基板350が積層され、この積層により流路310が形成されていてもよい。 The flow path 310 is formed by stacking a flow path substrate 340 having a flow path and a substrate 350 bonded to the flow path substrate 340 on the first surface 351. In FIG. 3, the flow path substrate 340 is laminated on the substrate 350 to form the flow path 310, but their positional relationship is not limited, for example, the substrate 350 is laminated on the flow path substrate 340. The flow path 310 may be formed by this lamination.
 ノーマリーオープン・バルブ300において、開状態とは、閉状態をバイパスするための貫通型形状(貫通孔を有する形状)を有する状態である。図3において、ノーマリーオープン・バルブ300は、形状記憶性を有する物質320の形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、貫通型形状に成形されている。すなわち、ノーマリーオープン・バルブ300は、定常状態では、貫通型形状の開状態にある。 In the normally open valve 300, the open state is a state having a through shape (a shape having a through hole) for bypassing the closed state. In FIG. 3, the normally open valve 300 is formed into a penetrating shape by applying an external force at a temperature in the temperature range between the shape recovery temperature and the melting point of the substance 320 having shape memory properties. That is, normally open valve 300 is in the open state of the penetrating shape in the steady state.
 そして、加熱後は、形状記憶性を有する物質320が平坦形状に復元することにより、ノーマリーオープン・バルブ300は、流体の流れを堰き止めた状態とする閉状態へと変形する。 After heating, the material 320 having shape memory property is restored to a flat shape, so that the normally open valve 300 is deformed to a closed state in which the fluid flow is blocked.
[ノーマリークローズ・バルブ]
 図4は、ノーマリークローズ・バルブの1実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路410中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブである。
[Normally closed valve]
FIG. 4 is a schematic cross-sectional view showing an embodiment of a normally closed valve. The valve of this embodiment is a normally closed valve that is deformed from a closed state in which the flow of fluid in the flow path 410 is blocked by heating to an open state in which the fluid flows. It is.
 ノーマリークローズ・バルブ400は、流路410と、形状記憶性を有する物質420が収容された収容部430とを備え、形状記憶性を有する物質420が変形することにより流路410中の流体の流れを調節する。 The normally closed valve 400 includes a flow path 410 and a storage portion 430 in which a substance 420 having shape memory property is stored. The deformation of the substance 420 having shape memory ability causes the fluid in the flow path 410 to flow. Adjust the flow.
(凹型形状)
 図4に示すように、流路410は、流路を有する流路基板440と、流路基板440と第1面451で接合される基板450とが積層されることにより形成される。なお、図4においては、基板450の上に流路基板440が積層され流路410が形成されているが、これらの位置関係は問わず、例えば、流路基板440の上に基板450が積層され、この積層により流路410が形成されていてもよい。
(Concave shape)
As shown in FIG. 4, the flow path 410 is formed by stacking a flow path substrate 440 having a flow path and a substrate 450 bonded to the flow path substrate 440 and the first surface 451. In FIG. 4, the flow path substrate 440 is laminated on the substrate 450 to form the flow path 410. However, the positional relationship is not limited, and for example, the substrate 450 is laminated on the flow path substrate 440. The flow path 410 may be formed by this lamination.
 流路基板440は、堰445を有しており、堰445によって流路410中の流体の流れが堰き止められる。 The flow path substrate 440 has a weir 445, and the flow of the fluid in the flow path 410 is blocked by the weir 445.
 これに対し、ノーマリークローズ・バルブ400は、定常状態においては、平坦の形状を有しており、流体の流れが堰き止められた状態となっている。 On the other hand, the normally closed valve 400 has a flat shape in a steady state, and the fluid flow is blocked.
 形状記憶性を有する物質420は、その形成時に、凹型形状を記憶している。図4において、ノーマリークローズ・バルブ400は、形状記憶性を有する物質420の形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、平坦の形状に成形されている。 The substance 420 having shape memory has a concave shape when it is formed. In FIG. 4, the normally closed valve 400 is formed into a flat shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 420 having shape memory property and higher than the melting point.
 ノーマリークローズ・バルブ400は、加熱後は、流体の流れが堰き止められた閉状態をバイパスするための形状を有し、流路410を流体が流れる状態とする開状態にある。ここで、図4において、ノーマリークローズ・バルブ400の開状態とは、閉状態をバイパスするための凹型形状を有する状態である。 The normally closed valve 400 has a shape for bypassing the closed state in which the fluid flow is blocked after heating, and is in an open state in which the fluid flows through the flow path 410. Here, in FIG. 4, the normally closed valve 400 in the open state is a state having a concave shape for bypassing the closed state.
 よって、加熱後は、形状記憶性を有する物質420が凹型形状に復元することにより、ノーマリークローズ・バルブ400は、流路中を流体が流れる状態とする開状態へと変形する。 Therefore, after heating, the substance 420 having shape memory property is restored to the concave shape, so that the normally closed valve 400 is deformed to an open state in which a fluid flows in the flow path.
(貫通型形状)
 図5は、ノーマリークローズ・バルブの1実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路510中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリークローズ・バルブである。
(Through shape)
FIG. 5 is a schematic cross-sectional view showing an embodiment of a normally closed valve. The valve of this embodiment is a normally closed valve that is deformed from an open state in which a fluid flows through the flow path 510 to a closed state in which the flow of the fluid is blocked by heating when heated. It is.
 ノーマリークローズ・バルブ500は、流路510と、形状記憶性を有する物質520が収容された収容部530とを備え、形状記憶性を有する物質520が変形することにより流路510中の流体の流れを調節する。 The normally closed valve 500 includes a flow path 510 and a storage portion 530 in which a substance 520 having a shape memory property is accommodated. The deformation of the substance 520 having a shape memory property causes the fluid in the flow path 510 to flow. Adjust the flow.
 流路510は、流路を有する流路基板540と、流路基板540と第1面551で接合される基板550とが積層されることにより形成される。なお、図5においては、基板550の上に流路基板540が積層され流路510が形成されているが、これらの位置関係は問わず、例えば、流路基板540の上に基板550が積層され、この積層により流路510が形成されていてもよい。 The flow path 510 is formed by stacking a flow path substrate 540 having a flow path and a substrate 550 bonded to the flow path substrate 540 with the first surface 551. In FIG. 5, the flow path substrate 540 is stacked on the substrate 550 to form the flow path 510, but the positional relationship thereof is not limited, for example, the substrate 550 is stacked on the flow path substrate 540. The flow path 510 may be formed by this lamination.
 ノーマリークローズ・バルブ500において、開状態とは、閉状態をバイパスするための貫通型形状(貫通孔を有する形状)を有する状態である。図5において、ノーマリークローズ・バルブ500は、形状記憶性を有する物質520の形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、平坦の形状に成形されている。すなわち、ノーマリークローズ・バルブ500は、定常状態では、平坦の形状の閉状態にある。 In the normally closed valve 500, the open state is a state having a through shape (a shape having a through hole) for bypassing the closed state. In FIG. 5, a normally closed valve 500 is formed into a flat shape by applying an external force at a temperature in the range of the shape recovery temperature of the substance 520 having a shape memory property and less than the melting point. That is, the normally closed valve 500 is in a closed state having a flat shape in a steady state.
 そして、加熱後は、形状記憶性を有する物質520が貫通型形状に復元することにより、ノーマリークローズ・バルブ500は、流体が流れる状態とする開状態へと変形する。 Then, after heating, the substance 520 having shape memory property is restored to the penetrating shape, so that the normally closed valve 500 is deformed to an open state in which a fluid flows.
 ノーマリークローズ・バルブを構成する形状記憶性を有する物質材料としては、ノーマリーオープン・バルブを構成する形状記憶性を有する物質と同様のものを挙げることができる。 Examples of the material having shape memory that constitutes a normally closed valve include the same materials as those having shape memory that constitute a normally open valve.
<流体デバイス>
 一実施態様において、本発明は、上述したバルブを備える流体デバイスを提供する。本実施態様の流体デバイスは、簡便にかつ低コストで製造することができ、また、設計の自由度が高い。また、本発明の実施形態において、形状記憶性を有する物質は流体デバイスのバルブ部に局所的に配置されているため、流体に対してのみ光照射が必要な領域を備えた流体デバイスに使用しやすい。たとえば、観察領域においては形状記憶性を有する物質が存在しないように作りこむことで、形状記憶性を有する物質の屈折率を考慮した精密な光学設計を行うことなく容易に観察することが可能になる。
<Fluid device>
In one embodiment, the present invention provides a fluidic device comprising the valve described above. The fluidic device of this embodiment can be manufactured easily and at low cost, and has a high degree of design freedom. In the embodiment of the present invention, since the substance having shape memory property is locally disposed in the valve portion of the fluid device, it is used for a fluid device having a region where light irradiation is required only for the fluid. Cheap. For example, it is possible to easily observe without performing precise optical design in consideration of the refractive index of a material having shape memory by making the material having shape memory in the observation region so that it does not exist. Become.
 本実施態様において、流体デバイスのサイズは流路や構造物がミリメートル(mm)サイズであるミリ流体デバイスであってもよく、流路や構造物がマイクロメートル(μm)サイズであるマイクロ流体デバイスであってもよい。 In this embodiment, the size of the fluid device may be a millifluidic device in which the flow path and the structure are millimeter (mm) size, and the microfluidic device in which the flow path and the structure are micrometer (μm) size. There may be.
[直列バルブ]
 本実施態様の流体デバイスは、上述したバルブを複数備えていてもよい。例えば、直列的に配設されたノーマリーオープン・バルブ及びノーマリークローズ・バルブを備えていてもよい。以下、直列的に配設されたノーマリーオープン・バルブ及びノーマリークローズ・バルブを「直列バルブ」という場合がある。
[Series valve]
The fluidic device of this embodiment may include a plurality of the valves described above. For example, a normally open valve and a normally closed valve arranged in series may be provided. Hereinafter, normally open valves and normally closed valves arranged in series may be referred to as “series valves”.
 図6は、直列バルブの1実施形態を示す概略断面図である。本実施形態の流体デバイス600では、1つの流路に互いに間隔をあけてノーマリークローズ・バルブ660及びノーマリーオープン・バルブ670の2つのバルブが、流路610の上流からこの順に配設されており、直列バルブ680を形成している。ノーマリークローズ・バルブ660及びノーマリーオープン・バルブ670の配置はこれに限定されず、流路610の上流からノーマリーオープン・バルブ670及びノーマリークローズ・バルブ660がこの順に配設されていてもよい。 FIG. 6 is a schematic sectional view showing one embodiment of the series valve. In the fluidic device 600 of this embodiment, two valves, a normally closed valve 660 and a normally open valve 670, are arranged in this order from the upstream side of the flow path 610 with a space between them. A series valve 680 is formed. The arrangement of the normally closed valve 660 and the normally open valve 670 is not limited to this, and the normally open valve 670 and the normally closed valve 660 may be arranged in this order from the upstream side of the flow path 610. Good.
 本実施形態においては、ノーマリークローズ・バルブ660及びノーマリーオープン・バルブ670の開状態が、ともに凹型形状である場合について説明するが、ともに貫通型形状であってもよく、または、凹型形状及び貫通型形状の組合せであってもよい。 In the present embodiment, the case where both the normally closed valve 660 and the normally open valve 670 are in the open state will be described. However, both may be a through-type shape, or It may be a combination of penetrating shapes.
 図6に示すように、流路610は、流路を有する流路基板640と、流路基板640と第1面651で接合される基板650とが積層されることにより形成される。なお、図6においては、基板650の上に流路基板640が積層され流路610が形成されているが、これらの位置関係は問わず、例えば、流路基板640の上に基板650が積層され、この積層により流路610が形成されていてもよい。 As shown in FIG. 6, the flow path 610 is formed by laminating a flow path substrate 640 having a flow path and a substrate 650 bonded to the flow path substrate 640 by the first surface 651. In FIG. 6, the flow path substrate 640 is stacked on the substrate 650 to form the flow path 610, but the positional relationship thereof is not limited, and for example, the substrate 650 is stacked on the flow path substrate 640. The flow path 610 may be formed by this lamination.
 流路基板640は、堰645a及び堰645bを上流側からこの順に有しており、それぞれの堰に対応するバルブとして、ノーマリークローズ・バルブ660及びノーマリーオープン・バルブ670がそれぞれ堰645a及び堰645bの直下に設けられている。 The flow path substrate 640 has a weir 645a and a weir 645b in this order from the upstream side, and a normally closed valve 660 and a normally open valve 670 are the weir 645a and the weir 645, respectively, as valves corresponding to the weirs. It is provided immediately below 645b.
 流体の流れは、先ず、流路610の上流側に位置する堰645aによって、堰き止められている。ノーマリークローズ・バルブ660は、定常状態においては、平坦の形状を有しており、流体の流れが堰き止められたままとなっている。したがって、直列バルブ680は全体として閉状態にある。 The fluid flow is first blocked by a weir 645 a located on the upstream side of the flow path 610. The normally closed valve 660 has a flat shape in a steady state, and the fluid flow remains blocked. Therefore, the series valve 680 is closed as a whole.
 次いで、形状記憶性を有する物質620aを加熱することにより、ノーマリークローズ・バルブ660は、流体が流れる状態とする開状態へと変形する。堰645aを迂回した流体は、ノーマリーオープン・バルブ670が開状態であることにより、下流側に位置する堰645bを更に迂回することができる。したがって、直列バルブ680は全体として開状態にある。 Next, by heating the substance 620a having shape memory property, the normally closed valve 660 is transformed into an open state in which a fluid flows. The fluid that bypasses the weir 645a can further bypass the weir 645b located on the downstream side when the normally open valve 670 is in the open state. Therefore, the series valve 680 is in an open state as a whole.
 次いで、形状記憶性を有する物質620bを加熱することにより、ノーマリーオープン・バルブ670は、流体の流れを堰き止めた状態とする閉状態へと変形する。これにより、堰645aを迂回した流体の流れは、ノーマリーオープン・バルブ670が閉状態に変化することにより、堰645bによって堰き止められる。したがって、直列バルブ680は全体として閉状態にある。 Next, by heating the substance 620b having shape memory property, the normally open valve 670 is deformed to a closed state in which the fluid flow is blocked. As a result, the flow of the fluid bypassing the weir 645a is blocked by the weir 645b when the normally open valve 670 is changed to the closed state. Therefore, the series valve 680 is closed as a whole.
 形状記憶性を有する物質の性質上、形状記憶性を有する物質からなるバルブは、開閉状態の変化が不可逆的であるものと一般的に考えられているが、本実施形態の流体デバイスによれば、閉状態から開状態へ、更に開状態から閉状態へと変形し、流体の流れを柔軟に制御することができる。 Due to the nature of the substance having shape memory property, a valve made of a substance having shape memory property is generally considered to be irreversible in the open / closed state, but according to the fluidic device of the present embodiment, The fluid flow can be flexibly controlled by changing from the closed state to the open state and from the open state to the closed state.
[流体デバイスの構成例]
(第1実施形態)
 図7は、1実施形態に係る流体デバイス700の基本構成を示す模式図である。図7に示すように、流体デバイス700は、駆動源710、分岐流路721、ノーマリーオープン・バルブ730、ノーマリークローズ・バルブ740及び直列バルブ750を備えている。分岐流路721は、分岐点722よりも上流側の流路である上流流路720と、分岐点722よりも下流側の流路である下流流路723、724、725とからなる。
[Example of fluid device configuration]
(First embodiment)
FIG. 7 is a schematic diagram illustrating a basic configuration of a fluidic device 700 according to one embodiment. As shown in FIG. 7, the fluid device 700 includes a drive source 710, a branch flow path 721, a normally open valve 730, a normally close valve 740, and a series valve 750. The branch channel 721 includes an upstream channel 720 that is a channel upstream of the branch point 722 and downstream channels 723, 724, and 725 that are channels downstream of the branch point 722.
 駆動源710は、上流流路720に接続されており、所定の押出力で流体を下流側に送るものである。駆動源710としては、シリンジポンプ等が挙げられる。 The drive source 710 is connected to the upstream flow path 720 and sends fluid to the downstream side with a predetermined pushing force. Examples of the drive source 710 include a syringe pump.
 ノーマリーオープン・バルブ730、ノーマリークローズ・バルブ740及び直列バルブ750は、それぞれ下流流路723、724、725中に設けられ、各流路中の流体の流れを選択的に(局所的に)調節できる位置に配列されている。 A normally open valve 730, a normally closed valve 740, and a series valve 750 are provided in the downstream flow paths 723, 724, and 725, respectively, and selectively (locally) the flow of fluid in each flow path. Arranged at adjustable positions.
 また、ノーマリーオープン・バルブ730、ノーマリークローズ・バルブ740及び直列バルブ750には、温度変化部730a、740a及び750aがそれぞれ備え付けられている。 Further, the normally open valve 730, the normally closed valve 740, and the series valve 750 are provided with temperature changing portions 730a, 740a, and 750a, respectively.
 本実施形態の流体デバイス700は、例えば血液等の検体から核酸等の生体分子を精製する場合の精製試料回収部に用いることができる。 The fluidic device 700 of the present embodiment can be used for a purified sample recovery unit when purifying a biomolecule such as a nucleic acid from a specimen such as blood.
 駆動源710によって、緩衝液等の駆動液に押し流された検体の溶解液は、上流流路720に存在する図示略のカラム等の精製装置を通り、分岐点722を通過する。検体の溶解液中、最初に分岐点722を通過するものは不要物質であるため、開状態であるノーマリーオープン・バルブ730が設けられている下流流路723を通り排出される。 The sample lysate washed away by the drive source such as the buffer solution by the drive source 710 passes through a branching point 722 through a purification device such as a column (not shown) existing in the upstream flow path 720. Since the first solution that passes through the branch point 722 in the sample lysate is an unnecessary substance, it is discharged through the downstream flow path 723 provided with the normally open valve 730 that is open.
 次いで、温度変化部730aによる加熱によって、ノーマリーオープン・バルブ730は閉状態となる。次いで、温度変化部750aによる加熱によって、直列バルブ750は開状態となる。検体の溶解液中2番目に分岐点722を通過するものは、下流流路725を通り、第1分画物質として採取される。 Next, the normally open valve 730 is closed by heating by the temperature changing unit 730a. Next, the series valve 750 is opened by heating by the temperature changing unit 750a. The second sample passing through the branch point 722 in the sample lysate passes through the downstream flow path 725 and is collected as the first fraction material.
 次いで、温度変化部750aによる加熱によって、直列バルブ750は閉状態となり、温度変化部740aによる加熱によって、ノーマリークローズ・バルブ740は開状態となる。検体の溶解液中3番目に分岐点722を通過するものは、下流流路724を通り、第2分画物質として採取される。 Next, the series valve 750 is closed by heating by the temperature changing unit 750a, and the normally closed valve 740 is opened by heating by the temperature changing unit 740a. The sample that passes through the branch point 722 third in the sample lysate passes through the downstream channel 724 and is collected as the second fraction material.
 このように本実施形態の流体デバイス700によれば、精製試料回収部において検体溶解液の分画を効率よく行うことができる。 As described above, according to the fluidic device 700 of the present embodiment, the sample solution can be efficiently fractionated in the purified sample recovery unit.
  本実施形態において、ノーマリーオープン・バルブ730、ノーマリークローズ・バルブ740及び直列バルブ750に備え付けられた温度変化部730a、740a、750aは、例えばヒーター等の電気エネルギーを熱エネルギーに変換する電熱変換部であってもよく、例えばレーザー光等の光エネルギーを熱エネルギーに変換する光熱変換部であってもよい。電熱変換部としては、電極や電導線が挙げられる。加熱手段として電極を備える場合には、加熱条件を制御することにより、形状記憶性を有する物質の変化量をより制御できる。一例として電極は、流路の上流から下流に向けて電気抵抗値が減少する構成を有する。 In this embodiment, the temperature changing units 730a, 740a, and 750a provided in the normally open valve 730, the normally closed valve 740, and the series valve 750 are, for example, an electrothermal converter that converts electrical energy such as a heater into thermal energy. For example, a photothermal conversion unit that converts light energy such as laser light into heat energy may be used. Examples of the electrothermal converter include electrodes and conductive wires. In the case where an electrode is provided as the heating means, the amount of change in the substance having shape memory can be further controlled by controlling the heating conditions. As an example, the electrode has a configuration in which the electric resistance value decreases from the upstream side to the downstream side of the flow path.
 図8は、ノーマリーオープン・バルブ800を例に温度変化部を説明する図である。温度変化部がレーザー光照射による加熱を利用するものである場合には、図8に示されるように、形状記憶性を有する物質820を収容する収容部830の底部に光熱変換層830aが設けられていてもよい。 FIG. 8 is a diagram for explaining the temperature changing portion using a normally open valve 800 as an example. In the case where the temperature change portion uses heating by laser light irradiation, as shown in FIG. 8, a photothermal conversion layer 830a is provided at the bottom of the storage portion 830 for storing the substance 820 having shape memory properties. It may be.
 光熱変換層830aは光吸収剤を含むものである。レーザー光により光熱変換層830aに照射された放射エネルギーは、光吸収剤によって吸収され、熱エネルギーに変換される。発生した熱エネルギーによって、形状記憶性を有する物質820は加熱されて変形する。すなわち、本実施形態の流体デバイスは、光吸収剤を用いた温度変化部を備えていてもよい。なお、レーザー光照射による加熱は、マスク等を用いて選択的に(局所的に)行ってもよい。 The photothermal conversion layer 830a includes a light absorber. Radiant energy applied to the photothermal conversion layer 830a by the laser light is absorbed by the light absorber and converted to thermal energy. Due to the generated thermal energy, the substance 820 having shape memory property is heated and deformed. That is, the fluid device of the present embodiment may include a temperature changing unit using a light absorbent. Note that heating by laser light irradiation may be performed selectively (locally) using a mask or the like.
 光吸収剤としては、使用する波長の放射エネルギーを吸収するものを利用することができる。放射エネルギーの波長は、例えば300~2000nmであり、例えば300~1500nmである。 As the light absorber, a material that absorbs radiation energy at a wavelength to be used can be used. The wavelength of the radiant energy is, for example, 300 to 2000 nm, for example, 300 to 1500 nm.
 光吸収剤としては、例えば、カーボンブラック、グラファイト粉、鉄、アルミニウム、銅、ニッケル、コバルト、マンガン、クロム、亜鉛、テルル等の微粒子金属粉末;黒色酸化チタンなどの金属酸化物粉末;芳香族ジアミノ系金属錯体、脂肪族ジアミン系金属錯体、芳香族ジチオール系金属錯体、メルカプトフェノール系金属錯体、スクアリリウム系化合物、シアニン系色素、メチン系色素、ナフトキノン系色素、アントラキノン系色素等の染料又は顔料等が挙げられる。 Examples of the light absorber include fine particle metal powders such as carbon black, graphite powder, iron, aluminum, copper, nickel, cobalt, manganese, chromium, zinc, and tellurium; metal oxide powders such as black titanium oxide; aromatic diamino -Based metal complexes, aliphatic diamine-based metal complexes, aromatic dithiol-based metal complexes, mercaptophenol-based metal complexes, squarylium-based compounds, cyanine-based dyes, methine-based dyes, naphthoquinone-based dyes, anthraquinone-based dyes, etc. Can be mentioned.
 光熱変換層830aは、これらの染料又は顔料を含有する樹脂により形成されていてもよい。光熱変換層830aに用いられる樹脂としては、特に限定されず、例えば、形状記憶性を有する物質と同じものであってもよい。また、光熱変換層830aは、これらの光吸収剤を、金属蒸着膜を含む膜状の形態としたものであってもよい。 The photothermal conversion layer 830a may be formed of a resin containing these dyes or pigments. The resin used for the photothermal conversion layer 830a is not particularly limited, and may be the same as the substance having shape memory properties, for example. Moreover, the photothermal conversion layer 830a may be a film-like form containing these light absorbers including a metal vapor deposition film.
 図8では、形状記憶性を有する物質820と光熱変換層830aとが独立したものとして示されているが、形状記憶性を有する物質820自体が上述した光吸収剤を含有していてもよい。本発明の実施形態において、光吸収材を含有する形状記憶性を有する物質がバルブ部分にのみ局所的に導入される。そのため、流路を形成する透明材料やポリマーの屈折率を考慮した精密な光学設計を行わずに標的のバルブを含む広い範囲に励起光を照射した場合であっても、所望のバルブ部分のみを変形させることができる。このように、流路において局所的に形状記憶性を有する物質が備えられたバルブ構造によって、流体デバイス設計において光学的な制約が抑えられ、設計自由度が高くなる。 Although FIG. 8 shows that the substance 820 having shape memory and the photothermal conversion layer 830a are independent, the substance 820 having shape memory may itself contain the above-described light absorber. In the embodiment of the present invention, a substance having shape memory property containing a light absorbing material is locally introduced only into the bulb portion. Therefore, even if the excitation light is irradiated to a wide range including the target valve without carrying out precise optical design considering the refractive index of the transparent material and polymer forming the flow path, only the desired valve portion is applied. Can be deformed. As described above, the valve structure provided with the material having shape memory property locally in the flow path suppresses optical restrictions in the fluid device design and increases the degree of freedom in design.
 光熱変換層830a中の光吸収剤の濃度は、光吸収剤の種類、粒子形態、分散度等によっても異なるが、例えば5~70体積%である。光吸収剤の濃度が5体積%以上である場合、光熱変換層830aの発熱により、形状記憶性を有する物質820が効率よく変形する傾向にある。光吸収剤の濃度が70体積%以下である場合、光熱変換層の成膜性がよく、形状記憶性を有する物質820との接着性もよい傾向にある。 The concentration of the light absorber in the photothermal conversion layer 830a varies depending on the type of light absorber, the particle form, the degree of dispersion, etc., but is, for example, 5 to 70% by volume. When the concentration of the light absorber is 5% by volume or more, the substance 820 having shape memory property tends to be efficiently deformed due to the heat generation of the photothermal conversion layer 830a. When the concentration of the light absorber is 70% by volume or less, the film-forming property of the photothermal conversion layer is good, and the adhesiveness with the substance 820 having shape memory property tends to be good.
 光熱変換層830aの厚さとしては、例えば0.1~5μmが挙げられる。光熱変換層830aの厚さが、0.1μm以上であれば、十分な光吸収が可能であるため、要求される光吸収剤の濃度が高くなりすぎず、光熱変換層の成膜性がよく、形状記憶性を有する物質820との接着性もよくなる傾向にある。また、光熱変換層の厚さが、5μm以下であれば、光熱変換層830a中の光透過率がよく、発熱効率もよくなる傾向にある。 The thickness of the photothermal conversion layer 830a is, for example, 0.1 to 5 μm. If the thickness of the photothermal conversion layer 830a is 0.1 μm or more, sufficient light absorption is possible. Therefore, the required concentration of the photoabsorbent does not become too high, and the film formability of the photothermal conversion layer is good. Also, the adhesiveness with the substance 820 having shape memory property tends to be improved. Further, when the thickness of the light-to-heat conversion layer is 5 μm or less, the light transmittance in the light-to-heat conversion layer 830a is good and the heat generation efficiency tends to be good.
 また、ここで、基板850の材質として、レーザー光に対する透過性を有するものを使用し、基板850側から光熱変換層830aにレーザー光を照射することにより、流路中の物質に対するレーザー光照射による悪影響を抑制することができる。 Here, as the material of the substrate 850, a material having transparency to the laser beam is used, and the photothermal conversion layer 830a is irradiated with the laser beam from the substrate 850 side, thereby irradiating the substance in the channel with the laser beam. Adverse effects can be suppressed.
(第2実施形態)
 図9は、1実施形態に係る流体デバイス900の基本構成を示す模式図である。流体デバイス900は、例えば血液等の検体から核酸等の生体分子を精製する場合の精製装置導入部に用いることができる。
(Second Embodiment)
FIG. 9 is a schematic diagram illustrating a basic configuration of a fluidic device 900 according to one embodiment. The fluid device 900 can be used, for example, in a purifier introduction part when purifying a biomolecule such as nucleic acid from a specimen such as blood.
 図9に示すように、流体デバイス900は、駆動源910の下流に、4つの液溜部921、922、923、924を有しており、各液溜部には、それぞれ、溶出液、溶解液、洗浄液、液状の検体が溜められている。そして、駆動源910の上流に位置する液溜部925には、駆動液が溜められている。更に、液溜部921、922、923、924の上流の流路には、それぞれ、ノーマリークローズ・バルブ930、ノーマリーオープン・バルブ940、直列バルブ950が設けられている。 As shown in FIG. 9, the fluid device 900 has four liquid reservoirs 921, 922, 923, and 924 downstream of the drive source 910. Liquid, cleaning liquid, and liquid specimens are stored. A driving liquid is stored in a liquid reservoir 925 located upstream of the driving source 910. Furthermore, a normally closed valve 930, a normally open valve 940, and a series valve 950 are provided in the flow paths upstream of the liquid reservoirs 921, 922, 923, and 924, respectively.
 駆動源910から押出された駆動液が、これらのバルブの開閉により、各バルブの下流に位置する液溜部に溜められている液体を選択的に押出すことにより、各液体が、液溜部921、922、923、924の下流に位置する精製装置960へと選択的に押出される。 The drive liquid pushed out from the drive source 910 selectively pushes out the liquid stored in the liquid reservoir located downstream of each valve by opening and closing these valves, so that each liquid becomes a liquid reservoir. 921, 922, 923, and 924 are selectively extruded into a purifier 960 located downstream.
 まず、駆動源910によって、液溜部924に溜められている液状の検体、及び開状態であるノーマリーオープン・バルブ940の下流に設けられている液溜部922に溜められている溶解液が押出され、カラム等で構成される精製装置960を通り、検体中の生体分子が溶解され、精製装置960に捕捉される。次いで、ノーマリーオープン・バルブ940に備え付けられた温度変化部940aによる加熱によって、ノーマリーオープン・バルブ940は閉状態となり、精製装置960への溶解液の流入が止められる。 First, the liquid sample stored in the liquid reservoir 924 and the dissolved liquid stored in the liquid reservoir 922 provided downstream of the normally open valve 940 in the open state by the drive source 910 The biomolecules in the specimen are dissolved and captured by the purification device 960 after passing through the purification device 960 constituted by a column or the like. Next, the normally open valve 940 is closed by heating by the temperature changing unit 940a provided in the normally open valve 940, and the inflow of the solution to the purifier 960 is stopped.
 次いで、直列バルブ950に備え付けられた温度変化部950aによる加熱によって、直列バルブ950は開状態となり、液溜部923に溜められている洗浄液が精製装置960へ流入し、精製装置960から不要物が排出される。 Next, the series valve 950 is opened by heating by the temperature change unit 950a provided in the series valve 950, and the cleaning liquid stored in the liquid reservoir 923 flows into the purifier 960, and unnecessary substances are removed from the purifier 960. Discharged.
 次いで、温度変化部950aによる加熱によって、直列バルブ950は閉状態となり、精製装置960への洗浄液の流入が止められる。次いで、ノーマリークローズ・バルブ930に備え付けられた温度変化部930aによる加熱によって、ノーマリークローズ・バルブ930は開状態となり、液溜部921に溜められている溶出液が精製装置960へ流入し、精製試料が精製装置960から溶出される。 Next, the series valve 950 is closed by heating by the temperature changing unit 950a, and the flow of the cleaning liquid into the purifier 960 is stopped. Next, the normally closed valve 930 is opened by heating by the temperature changing unit 930a provided in the normally closed valve 930, and the eluate stored in the liquid reservoir 921 flows into the purifier 960, A purified sample is eluted from the purification device 960.
 このように本実施形態の流体デバイス900によれば、生体分子の精製を効率よく行うことができる。なお、バルブが複数個配列された流体デバイスにおいて、バルブを加熱により変形させて流路内の微小流体の送液ポンプとして使用してもよい。 Thus, according to the fluidic device 900 of this embodiment, biomolecules can be purified efficiently. In a fluid device in which a plurality of valves are arranged, the valves may be deformed by heating and used as a liquid feed pump for microfluids in the flow path.
[流路基板]
 本実施態様に係る流体デバイスを構成する流路基板について説明する。流路基板は、形状記憶性を有する物質、形状記憶性を有する物質の収容部を構成する凹部が設けられ、流路基板と第1面で接合される基板とともに流体デバイスを構成するものである。
[Channel substrate]
The flow path substrate constituting the fluidic device according to this embodiment will be described. The flow path substrate is provided with a concave portion that constitutes a storage portion of a substance having shape memory property and a substance having shape memory property, and constitutes a fluid device together with the substrate bonded to the flow path substrate at the first surface. .
 流路基板としては特に限定されないが、簡便に流体デバイスを製造できる観点から、流路付き樹脂基板であってもよい。 The channel substrate is not particularly limited, but may be a resin substrate with a channel from the viewpoint of easily manufacturing a fluid device.
 流路基板の材質としては、ポリイソプレン、ポリブタジエン、ポリクロロプレン、ポリイソブチレン、ポリ(スチレン-ブタジエン-スチレン)、ポリウレタン、シリコーンポリマー、ポリ(ビス(フルオロアルコキシ)ホスファゼン)(PNF、Eypel-F)、ポリ(カルボラン-シロキサン)(デキシル(Dexsil))、ポリ(アクリロニトリル-ブタジエン)(ニトリルゴム)、ポリ(1-ブテン)、ポリ(クロロトリフルオロエチレン-ビニリデンフルオリド)コポリマー(Kel-F)、ポリ(エチルビニルエーテル)、ポリ(ビニリデンフルオリド)、ポリ(ビニリデンフルオリド-ヘキサフルオロプロピレン)コポリマー(バイトン(Viton))、ポリビニルクロリド(PVC)のエラストマー組成物、ポリスルホン、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン、クロロシラン、メチルシラン、エチルシラン、フェニルシラン、ポリジメチルシロキサン(PDMS)、メタクリルスチレン等のスチレン系ポリマー等が挙げられる。 The material of the flow path substrate is polyisoprene, polybutadiene, polychloroprene, polyisobutylene, poly (styrene-butadiene-styrene), polyurethane, silicone polymer, poly (bis (fluoroalkoxy) phosphazene) (PNF, Eypel-F), Poly (carborane-siloxane) (Dexsil), poly (acrylonitrile-butadiene) (nitrile rubber), poly (1-butene), poly (chlorotrifluoroethylene-vinylidene fluoride) copolymer (Kel-F), poly (Ethyl vinyl ether), poly (vinylidene fluoride), poly (vinylidene fluoride-hexafluoropropylene) copolymer (Viton), polyvinyl chloride (PVC) elastomer composition, police Hong, polycarbonate, polymethyl methacrylate (PMMA), polytetrafluoroethylene, chlorosilanes, methylsilane, ethylsilane, phenylsilane, polydimethylsiloxane (PDMS), include styrene-based polymers such as methacrylic styrene.
 これらの材質からなる流路基板に形成される流路の寸法としては、上述したバルブによって、流体の流れを制御し得るものであれば特に限定されないが、例えば以下の寸法であってもよい。 The dimensions of the flow path formed on the flow path substrate made of these materials are not particularly limited as long as the flow of the fluid can be controlled by the above-described valve. For example, the following dimensions may be used.
 幅対深さの比は、例えば0.1:1~100:1であり、例えば1:1~50:1であり、例えば2:1~20:1であり、例えば3:1~15:1である。 The ratio of width to depth is for example 0.1: 1 to 100: 1, for example 1: 1 to 50: 1, for example 2: 1 to 20: 1, for example 3: 1 to 15: 1.
 流路の幅は、例えば0.01~1000μmであり、例えば0.05~1000μmであり、例えば0.2~500μmであり、例えば1~250μmであり、例えば10~200μmである。また、更に一例として、流路の幅は、0.01~100mm、0.05~100mm、0.2~50mm、1~25mm、1.5~15mmが挙げられる。 The width of the flow path is, for example, 0.01 to 1000 μm, for example, 0.05 to 1000 μm, for example, 0.2 to 500 μm, for example, 1 to 250 μm, for example, 10 to 200 μm. Further, as an example, the width of the flow path is 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, and 1.5 to 15 mm.
 流路の深さは、例えば0.01~1000μmであり、例えば0.05~500μmであり、例えば0.2~250μmであり、例えば1~100μmであり、例えば2~20μmである。また、更に一例として、流路の深さとしては、0.01~100mm、0.05~100mm、0.2~50mm、1~25mm、1.5~15mmが挙げられる。 The depth of the channel is, for example, 0.01 to 1000 μm, for example 0.05 to 500 μm, for example 0.2 to 250 μm, for example 1 to 100 μm, for example 2 to 20 μm. Further, as an example, the depth of the channel may be 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, 1.5 to 15 mm.
[流体デバイスの構造]
 以下、流体デバイスの構造に関する複数の実施形態について説明する。
[Structure of fluid device]
Hereinafter, a plurality of embodiments relating to the structure of the fluidic device will be described.
(第1実施形態)
 図10は、本実施形態の流体デバイス1000の構造を示す概略断面図である。流体デバイス1000のバルブはノーマリーオープン・バルブであるが、ノーマリークローズ・バルブであってもよい。
(First embodiment)
FIG. 10 is a schematic cross-sectional view showing the structure of the fluidic device 1000 of this embodiment. The valve of the fluid device 1000 is a normally open valve, but may be a normally closed valve.
 流体デバイス1000は、流路1010を有する流路基板1040と、流路基板1040と第1面1051で接合される基板1050とを備える。基板1050の第1面1051には、流路1010と対向する位置に局所的にバルブが設けられている。当該バルブは、形状記憶性を有する物質1020が収容された収容部1030を備え、形状記憶性を有する物質1020が変形することにより、流路1010中の流体の流れを調節するものである。 The fluid device 1000 includes a flow path substrate 1040 having a flow path 1010, and a substrate 1050 bonded to the flow path substrate 1040 at the first surface 1051. A valve is locally provided on the first surface 1051 of the substrate 1050 at a position facing the flow path 1010. The valve includes a housing portion 1030 in which a substance 1020 having shape memory properties is accommodated, and the flow of the fluid in the flow path 1010 is adjusted by the deformation of the substance 1020 having shape memory properties.
 また、流体デバイス1000は、流路1010は流路基板1040に形成された溝を含み、流路基板1040に形成された溝と基板1050の第1面1051とが流体に接する第一流路部1010aと、流路基板1040に形成された溝と形状記憶性を有する物質1020とが流体に接する第二流路部1010bとを含む。本実施形態の流体デバイスに第一流路部1010a及び第二流路部1010bが存在するのは、バルブが局所的に設けられているためである。 In the fluid device 1000, the flow path 1010 includes a groove formed in the flow path substrate 1040, and the first flow path portion 1010a in which the groove formed in the flow path substrate 1040 and the first surface 1051 of the substrate 1050 are in contact with the fluid. And a second flow path portion 1010b in which a groove formed in the flow path substrate 1040 and the substance 1020 having shape memory property are in contact with the fluid. The reason why the first flow path portion 1010a and the second flow path portion 1010b are present in the fluid device of the present embodiment is because the valves are locally provided.
 本実施形態の流体デバイスにおいて、収容部1030は、凹型形状を有していてもよく、以下「凹部」と表現する場合がある。 In the fluidic device of the present embodiment, the accommodating portion 1030 may have a concave shape, and may be expressed as a “concave portion” below.
 流体デバイス1000では、収容部1030が局所的に設けられていることにより、流路基板1040と基板1050の間(全面)に形状記憶ポリマーのシートを挟む必要がなく、流路に局所的に設けられた収容部において形状記憶性を有する物質が存在する。そのため、形状記憶ポリマーと基板との貼り合わせが不要であり、簡便に製造することができる。また、必要以上に形状記憶性を有する物質を使用することが無く、低コストでの製造が可能となる。また、形状記憶ポリマーのシートにより上下の基板が隔てられることがないため、流路の三次元配置が可能となり、設計の自由度が高い。 In the fluid device 1000, since the housing portion 1030 is locally provided, it is not necessary to sandwich a shape memory polymer sheet between the flow path substrate 1040 and the substrate 1050 (entire surface), and the fluid device 1000 is locally provided in the flow path. There is a substance having shape memory property in the accommodating portion. Therefore, it is not necessary to bond the shape memory polymer and the substrate, and the shape memory polymer can be easily manufactured. In addition, it is possible to manufacture at a low cost without using a substance having shape memory properties more than necessary. In addition, since the upper and lower substrates are not separated by the sheet of shape memory polymer, the flow path can be three-dimensionally arranged and the degree of freedom in design is high.
 基板1050の材質としては、上述した流路基板の材質と同様のものを使用することができる。流路基板と基板1050とは、異なる材質であっても同じ材質であってもよい。同じ材質を用いた場合、基板同士の貼り合わせが容易となる。 As the material of the substrate 1050, the same material as the material of the flow path substrate described above can be used. The flow path substrate and the substrate 1050 may be made of different materials or the same material. When the same material is used, the substrates can be easily bonded to each other.
(第2実施形態)
 図11Aは、本実施形態の流体デバイス1100の構造を示す概略断面図である。流体デバイス1100のバルブはノーマリーオープン・バルブであるが、ノーマリークローズ・バルブであってもよい。
(Second Embodiment)
FIG. 11A is a schematic cross-sectional view showing the structure of the fluidic device 1100 of the present embodiment. The valve of the fluid device 1100 is a normally open valve, but may be a normally closed valve.
 流体デバイス1100は、流路1110を有する流路基板1140と、流路基板1140と第1面1151で接合される基板1150とを備える。基板1150の第1面には、凹部1130が局所的に設けられており、凹部1130は、形状記憶性を有する物質1120を収容する収容部1130を構成する。本実施形態においては、形状記憶性を有する物質は形状記憶ポリマーであってもよい。 The fluidic device 1100 includes a flow path substrate 1140 having a flow path 1110 and a substrate 1150 bonded to the flow path substrate 1140 on the first surface 1151. A concave portion 1130 is locally provided on the first surface of the substrate 1150, and the concave portion 1130 constitutes an accommodating portion 1130 that accommodates a substance 1120 having shape memory properties. In the present embodiment, the substance having shape memory property may be a shape memory polymer.
 また、収容部1130は底部1131を有しており、基板1150は、第1面1151の反対側の第2面1152と底部1131とを貫通する貫通孔1160を有する。貫通孔1160は、形状記憶性を有する物質1120の注入口となる供給部を構成する。また、基板1150は、第2面1152と底部1131とを貫通し形状記憶性を有する物質1120を注入するときのエア抜きとなる排出部1170を更に有していてもよい。 Further, the accommodating portion 1130 has a bottom portion 1131, and the substrate 1150 has a through hole 1160 that penetrates the second surface 1152 opposite to the first surface 1151 and the bottom portion 1131. The through-hole 1160 constitutes a supply unit that serves as an inlet for the substance 1120 having shape memory properties. The substrate 1150 may further include a discharge portion 1170 that passes through the second surface 1152 and the bottom portion 1131 and serves as an air vent when injecting the material 1120 having shape memory properties.
 流体デバイスの製造方法については後述するが、流体デバイス1100の製造においては、形状記憶性を有する物質1120を供給部1160から注入することができる。また、排出部1170があれば、収容部1130のエア抜きが容易となり、形状記憶性を有する物質1120を収容部1130により確実に注入することができる。排出部1170は大気解放されていてもよく、また、排出部1170から吸引してもよい。 Although the manufacturing method of the fluid device will be described later, in manufacturing the fluid device 1100, a substance 1120 having shape memory property can be injected from the supply unit 1160. Further, if the discharge portion 1170 is provided, it is easy to remove air from the storage portion 1130, and the material 1120 having shape memory property can be reliably injected by the storage portion 1130. The discharge unit 1170 may be released to the atmosphere or may be sucked from the discharge unit 1170.
 図11Bは、流体デバイス1100における形状記憶性を有する物質1120の構造を説明する図である。流体デバイス1100の製造において、形状記憶性を有する物質1120を供給部1160から注入した場合、供給部1160にも形状記憶性を有する物質の一部が残存する場合がある。この場合、収容部1130の内部の形状記憶性を有する物質1120は平板部1120a(プレート、薄膜部)を形成し、供給部1160に残存した形状記憶性を有する物質は平板部1120aの第1面1121(収容部1130の底部1131に対応する。)から突出した脚部(突出部)1120bを形成することになる。そして、平板部1120aの第1面1121(非流路側の主面)の反対側の第2面1122(流路側の主面)が流路1110の少なくとも1部を形成することになる。流体デバイス1100においては、平板部1120a(形状記憶性を有する物質1120)が変形することにより、流路1110中の流体の流れが調節される。 FIG. 11B is a diagram illustrating the structure of the substance 1120 having shape memory property in the fluid device 1100. In the manufacture of the fluid device 1100, when the substance 1120 having shape memory property is injected from the supply unit 1160, a part of the substance having shape memory property may remain in the supply unit 1160. In this case, the material 1120 having shape memory inside the accommodating portion 1130 forms a flat plate portion 1120a (plate, thin film portion), and the material having shape memory property remaining in the supply portion 1160 is the first surface of the flat plate portion 1120a. A leg portion (protruding portion) 1120b protruding from 1121 (corresponding to the bottom portion 1131 of the accommodating portion 1130) is formed. The second surface 1122 (the main surface on the flow path side) opposite to the first surface 1121 (the main surface on the non-flow path side) of the flat plate portion 1120a forms at least a part of the flow path 1110. In the fluidic device 1100, the flow of the fluid in the flow path 1110 is adjusted by deforming the flat plate portion 1120a (the material 1120 having shape memory property).
 また、流体デバイス1100の製造において、形状記憶性を有する物質1120を供給部1160から注入した場合、排出部1170にも形状記憶性を有する物質の一部が残存する場合がある。この場合、排出部1170に残存した形状記憶性を有する物質は脚部1120cを形成することになる。突出部1120bは、流路に面した第2面1122の方向に突起している。よって、突出部を突起部、隆起部と呼んでもよい。突出部1120bは、例えば柱状、棒状であり、基板に形成されたフック状であってもよい。このとき、突出部1120bの断面は平板部の第1面および第2面より小さい。また、突出部1120bの厚さは平板部1120aよりも厚い。なお、突起部は平板部1120aに対して複数設けられていてもよい。 Further, in the manufacture of the fluid device 1100, when the substance 1120 having shape memory property is injected from the supply unit 1160, a part of the substance having shape memory property may remain in the discharge unit 1170. In this case, the material having the shape memory property remaining in the discharge portion 1170 forms the leg portion 1120c. The protrusion 1120b protrudes in the direction of the second surface 1122 facing the flow path. Therefore, the protruding portion may be called a protruding portion or a raised portion. The protruding portion 1120b has, for example, a column shape or a rod shape, and may have a hook shape formed on the substrate. At this time, the cross section of the protrusion 1120b is smaller than the first surface and the second surface of the flat plate portion. Further, the thickness of the protruding portion 1120b is thicker than that of the flat plate portion 1120a. Note that a plurality of protrusions may be provided for the flat plate portion 1120a.
 第1脚部1120bは平板部1120aに設けられ、第2脚部1120cは、第1脚部1120bとは平板部1120aの中心を挟んだ逆側に設けられてもよい。第1脚部1120bと第2脚部1120cとが平板部1120aの中心を挟んだ逆側に設けられた構造は、供給部1160と排出部1170とが収容部の中心を挟んだ逆側に設けられている場合に作製される。この場合、供給部1160から形状記憶性を有する物質を注入した際に収容部に気泡が残存しにくく、気泡混入の無い形状記憶性を有する物質による平板部1120aの形成が容易となる。また、第1脚部1120bおよび第2脚部1120cは平板部の外縁部に設けられていてもよい。第1脚部1120bおよび第2脚部1120cは平板部の外縁部に設けられた構造は、供給部1160および排出部1170を収容部の外縁に設けることで作製される。この場合、供給部1160から形状記憶性を有する物質を注入した際に収容部の縁に気泡が残存しにくく、気泡混入の無い形状記憶性を有する物質による平板部1120aの形成が実現できる。 The first leg portion 1120b may be provided on the flat plate portion 1120a, and the second leg portion 1120c may be provided on the opposite side of the first leg portion 1120b with respect to the center of the flat plate portion 1120a. The structure in which the first leg portion 1120b and the second leg portion 1120c are provided on the opposite side across the center of the flat plate portion 1120a is the same as the structure in which the supply portion 1160 and the discharge portion 1170 are located on the opposite side across the center of the housing portion. It is made when it is. In this case, when a material having shape memory property is injected from the supply unit 1160, bubbles are unlikely to remain in the housing portion, and the flat plate portion 1120a can be easily formed from the material having shape memory property without mixing bubbles. The first leg portion 1120b and the second leg portion 1120c may be provided on the outer edge portion of the flat plate portion. The structure in which the first leg portion 1120b and the second leg portion 1120c are provided at the outer edge portion of the flat plate portion is produced by providing the supply portion 1160 and the discharge portion 1170 at the outer edge of the housing portion. In this case, when a material having shape memory property is injected from the supply unit 1160, bubbles are unlikely to remain at the edge of the housing portion, and formation of the flat plate portion 1120a with the material having shape memory property without air bubble mixing can be realized.
 脚部1120b又は脚部1120cは、平板部1120aの厚さ方向に延びていてもよい。 The leg part 1120b or the leg part 1120c may extend in the thickness direction of the flat plate part 1120a.
 あるいは、脚部1120b又は脚部1120cは、平板部1120aの厚さ方向と交差する方向に延びていてもよい。これにより、例えば、流体デバイス1100の製造中に、形状記憶性を有する物質1120に外力が加わった場合においても、脚部1120b又は脚部1120cが基板1150から抜けにくくなり、形状記憶性を有する物質1120が収容部1130から剥がれにくくなる。 Alternatively, the leg 1120b or the leg 1120c may extend in a direction intersecting the thickness direction of the flat plate 1120a. Thereby, for example, even when an external force is applied to the material 1120 having shape memory property during the manufacture of the fluid device 1100, the leg portion 1120b or the leg portion 1120c is hardly detached from the substrate 1150, and the material has shape memory property. 1120 becomes difficult to peel off from the accommodating portion 1130.
 脚部1120b又は脚部1120cは、断面が円又は多角形の非直線形状であってもよい。すなわち、曲がっていてもよい。本明細書において、円は楕円を含む。また、多角形を構成する辺の数は特に制限されず、例えば3角形であってもよく、4角形であってもよく、8角形であってもよい。 The leg 1120b or the leg 1120c may be a non-linear shape with a circular or polygonal cross section. That is, it may be bent. In this specification, a circle includes an ellipse. Further, the number of sides constituting the polygon is not particularly limited, and may be, for example, a triangle, a quadrangle, or an octagon.
 平板部1120aの第1面1121の表面積は、第2面1122の表面積よりも大きくてもよい。また、平板部1120aの形状及び収容部1130の形状は、特に制限されず、円柱状、円錐台状、多角柱状又は多角錐台状であってもよい。 The surface area of the first surface 1121 of the flat plate portion 1120a may be larger than the surface area of the second surface 1122. Further, the shape of the flat plate portion 1120a and the shape of the accommodating portion 1130 are not particularly limited, and may be a columnar shape, a truncated cone shape, a polygonal columnar shape, or a polygonal frustum shape.
 また、平板部1120aの第1面1121は、直接的又は間接的に、後述する温度変化部に接するように配置される。これにより、形状記憶性を有する物質1120に熱を伝達し、形状記憶性を有する物質1120を変形することができる。平板部1120aは、温度変化部から伝達された熱により形状記憶性を有する物質1120を変形させられる程度に薄い薄膜状であってもよい。 Further, the first surface 1121 of the flat plate portion 1120a is disposed so as to be in contact with a temperature changing portion described later directly or indirectly. Accordingly, heat can be transferred to the material 1120 having shape memory property, and the material 1120 having shape memory property can be deformed. The flat plate portion 1120a may be a thin film that is thin enough to deform the material 1120 having shape memory by heat transferred from the temperature changing portion.
 流体デバイスにおいては、流路1110を構成する第1面1151を極力平坦に形成されていることが好ましい。すなわち、基板1150の第1面1151と、形状記憶性を有する物質1120の流体に接する面1122とが面一であることが好ましい。ここで、面一であるとは、段差を有しない平坦面であることを意味し、基板1150と形状記憶性を有する物質1120とが第1面1151(又は面1122)上で接する界面(接続部)において、段差が存在しないか、存在してもバルブの動作に悪影響を生じない程度に平坦であることを意味する。例えば上記段差は10μm以下、例えば5μm以下、例えば1μm以下、例えば0.5μm以下である。 In the fluid device, it is preferable that the first surface 1151 constituting the flow path 1110 is formed as flat as possible. In other words, the first surface 1151 of the substrate 1150 and the surface 1122 in contact with the fluid of the substance 1120 having shape memory properties are preferably flush with each other. Here, being flush means that the flat surface has no step, and the interface (connection) between the substrate 1150 and the material 1120 having shape memory property is in contact with the first surface 1151 (or the surface 1122). Part)), it means that there is no step or it is flat enough that it does not adversely affect the operation of the valve. For example, the step is 10 μm or less, for example 5 μm or less, for example 1 μm or less, for example 0.5 μm or less.
 後述するように、流体デバイス1100においては、供給部1160を利用することにより、流路1110を構成する第1面1151及び形状記憶性を有する物質1120の面1122を極力平坦に形成することができる。例えば、基板1150の面1151に、平坦な蓋体基板を配置して、あるいは、再剥離可能に接着して、収容部1130の開口部を覆い、供給部1160から形状記憶性を有する物質を注入することにより、流路1110を構成する第1面1151及び形状記憶性を有する物質1120の面1122を極力平坦に形成することができる。 As will be described later, in the fluid device 1100, by using the supply unit 1160, the first surface 1151 constituting the flow path 1110 and the surface 1122 of the substance 1120 having shape memory can be formed as flat as possible. . For example, a flat lid substrate is disposed on the surface 1151 of the substrate 1150 or bonded removably to cover the opening of the housing portion 1130 and a material having shape memory property is injected from the supply portion 1160. By doing so, the first surface 1151 constituting the channel 1110 and the surface 1122 of the substance 1120 having shape memory property can be formed as flat as possible.
(第3実施形態)
 図12A~Cは、本実施形態の流体デバイス1200の構造を示す概略断面図である。流体デバイス1200のバルブはノーマリーオープン・バルブであるが、ノーマリークローズ・バルブであってもよい。
(Third embodiment)
12A to 12C are schematic cross-sectional views showing the structure of the fluidic device 1200 of this embodiment. The valve of the fluidic device 1200 is a normally open valve, but may be a normally closed valve.
 図12Aに示すように、流体デバイス1200は、流路1210を有する流路基板1240と、流路基板1240と第1面1251で接合される基板1250とを備える。基板1250の第1面1251には、凹部1230が局所的に設けられており、凹部1230は、形状記憶性を有する物質1220を収容する収容部1230を構成する。 As shown in FIG. 12A, the fluidic device 1200 includes a flow path substrate 1240 having a flow path 1210 and a substrate 1250 bonded to the flow path substrate 1240 at the first surface 1251. A concave portion 1230 is locally provided on the first surface 1251 of the substrate 1250, and the concave portion 1230 constitutes an accommodating portion 1230 for accommodating the substance 1220 having shape memory properties.
 基板1250は、第1面1251を含み流路基板1240と接合される第1基板1250aと、第1基板1250aと第1面1251の反対側の面1253で接合される第2基板1250bとを備え、収容部1230は、第1基板1250aを貫通する貫通孔1260aを含み、第2基板1250bは、先端に形状記憶性を有する物質1220を支持する支持部1254が設けられ貫通孔1260aに挿入される凸部1255を備える。第2基板1250bの凸部1255は、バルブが設置される位置に対応して、基板1250b上に局所的に配置される。 The substrate 1250 includes a first substrate 1250a including the first surface 1251 and bonded to the flow path substrate 1240, and a second substrate 1250b bonded to the first substrate 1250a and a surface 1253 opposite to the first surface 1251. The accommodating portion 1230 includes a through hole 1260a that penetrates the first substrate 1250a, and the second substrate 1250b is provided with a support portion 1254 that supports the material 1220 having shape memory at the tip, and is inserted into the through hole 1260a. Convex part 1255 is provided. The convex part 1255 of the 2nd board | substrate 1250b is locally arrange | positioned on the board | substrate 1250b corresponding to the position where a valve | bulb is installed.
 また、基板1250bは、基板1250bの面1252と底部1231とを貫通し形状記憶性を有する物質1220の注入口となる供給部1260を有していてもよい。また、基板1250bは、第2面1252と底部1231とを貫通し形状記憶性を有する物質1220を注入するときのエア抜きとなる排出部1270を更に有していてもよい。 Further, the substrate 1250b may include a supply portion 1260 that penetrates the surface 1252 and the bottom portion 1231 of the substrate 1250b and serves as an inlet for the substance 1220 having shape memory properties. Further, the substrate 1250b may further include a discharge portion 1270 that passes through the second surface 1252 and the bottom portion 1231 and serves as an air vent when injecting the material 1220 having shape memory properties.
 流体デバイスの製造方法については後述するが、流体デバイス1200の製造においては、形状記憶性を有する物質1220を供給部1260から注入することができる。また、排出部1270があれば、収容部1230のエア抜きが容易となり、形状記憶性を有する物質1220を収容部1230により確実に注入することができる。 Although the manufacturing method of the fluid device will be described later, in manufacturing the fluid device 1200, a substance 1220 having shape memory property can be injected from the supply unit 1260. In addition, if the discharge portion 1270 is provided, it is easy to remove the air from the storage portion 1230, and the material 1220 having shape memory property can be reliably injected by the storage portion 1230.
 図12Bは第1基板1250aの構造を示す概略断面図であり、図12Cは、第2基板1250bの構造を示す概略断面図である。 FIG. 12B is a schematic cross-sectional view showing the structure of the first substrate 1250a, and FIG. 12C is a schematic cross-sectional view showing the structure of the second substrate 1250b.
 流体デバイス1200は、基板1250が第1基板1250aと第2基板1250bとから構成されていることにより、例えば支持部1254の表面に温度変化部を形成することができる。温度変化部としては、例えば配線から形成されるヒーター等の電熱変換部、レーザー光等の照射により加熱を行う光熱変換層等の光熱変換部等が挙げられる。 In the fluid device 1200, the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, so that a temperature change portion can be formed on the surface of the support portion 1254, for example. Examples of the temperature changing portion include an electrothermal conversion portion such as a heater formed from wiring, and a photothermal conversion portion such as a photothermal conversion layer that performs heating by irradiation with laser light or the like.
 流体デバイスにおいては、流路1210を構成する第1面1251を極力平坦に形成することが好ましい。流体デバイス1200では、基板1250が第1基板1250aと第2基板1250bとから構成されていることにより、基板1250の内部(例えば支持部1254の表面)に温度変化部を形成することが可能となる。その第1面1251に温度変化部を配置する必要が無く、第一面1251を極力平坦に形成することができ、流路1210の加工精度に影響を与えない。 In the fluid device, it is preferable to form the first surface 1251 constituting the flow path 1210 as flat as possible. In the fluidic device 1200, since the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, a temperature change portion can be formed inside the substrate 1250 (for example, the surface of the support portion 1254). . There is no need to arrange the temperature changing portion on the first surface 1251, and the first surface 1251 can be formed as flat as possible without affecting the processing accuracy of the flow path 1210.
 また、形状記憶性を有する物質1220の形状を効率よく制御するためには、温度変化部は形状記憶性を有する物質1220の極近傍に形成することが好ましく、また、熱を効率よく伝導する観点から、形状記憶性を有する物質1220の厚さは薄い方が好ましい。 In order to efficiently control the shape of the material 1220 having shape memory properties, the temperature change portion is preferably formed in the very vicinity of the material 1220 having shape memory properties, and the viewpoint of efficiently conducting heat. Therefore, it is preferable that the thickness of the substance 1220 having shape memory property is small.
 流体デバイス1200においては、基板1250が第1基板1250aと第2基板1250bとから構成されていることにより、温度変化部を形状記憶性を有する物質1220の極近傍に形成することができ、また、形状記憶性を有する物質1220を薄くすることができる。 In the fluidic device 1200, since the substrate 1250 includes the first substrate 1250a and the second substrate 1250b, the temperature change portion can be formed in the very vicinity of the substance 1220 having shape memory property, The material 1220 having shape memory properties can be thinned.
(第4実施形態)
 図13A~Cは、本実施形態の流体デバイス1300の構造を示す概略断面図である。流体デバイス1300のバルブはノーマリーオープン・バルブであるが、ノーマリークローズ・バルブであってもよい。
(Fourth embodiment)
13A to 13C are schematic cross-sectional views showing the structure of the fluidic device 1300 of this embodiment. The valve of the fluid device 1300 is a normally open valve, but may be a normally closed valve.
 図13Aに示すように、流体デバイス1300は、流路1310を有する流路基板1340と、流路基板1340と第1面1351で接合される基板1350とを備える。基板1350の第1面1351には、凹部1330が局所的に設けられており、凹部1330は、形状記憶性を有する物質1320を収容する収容部1330を構成する。 As shown in FIG. 13A, the fluid device 1300 includes a flow path substrate 1340 having a flow path 1310, and a substrate 1350 bonded to the flow path substrate 1340 on the first surface 1351. A concave portion 1330 is locally provided on the first surface 1351 of the substrate 1350, and the concave portion 1330 constitutes a housing portion 1330 for housing the substance 1320 having shape memory properties.
 基板1350は、第1面1351を含み流路基板1340と接合される第1基板1350aと、第1基板1350aと第1面1351の反対側の面1353で接合される第2基板1350bとを備え、収容部1330は、第1基板1350aを貫通する貫通孔1360aを含み、第2基板1350bは、先端に形状記憶性を有する物質1320を支持する支持部1354が設けられ貫通孔1360aに挿入される凸部1355を備える。 The substrate 1350 includes a first substrate 1350a including the first surface 1351 and bonded to the flow path substrate 1340, and a second substrate 1350b bonded to the first substrate 1350a and the surface 1353 opposite to the first surface 1351. The accommodating portion 1330 includes a through hole 1360a that penetrates the first substrate 1350a, and the second substrate 1350b is provided with a support portion 1354 that supports a material 1320 having shape memory at the tip, and is inserted into the through hole 1360a. Convex part 1355 is provided.
 また、基板1350bは、基板1350bの面1352と底部1331とを貫通し形状記憶性を有する物質1320の注入口となる供給部1360を有していてもよい。また、基板1350bは、第2面1352と底部1331とを貫通し形状記憶性を有する物質1220を注入するときのエア抜きとなる排出部1370を更に有していてもよい。排出部1370が奏する効果は、上述した第3実施形態の流体デバイス1200における排出部1270が奏する効果と同様である。 Further, the substrate 1350b may include a supply portion 1360 that penetrates the surface 1352 and the bottom portion 1331 of the substrate 1350b and serves as an inlet for the substance 1320 having shape memory properties. The substrate 1350b may further include a discharge portion 1370 that passes through the second surface 1352 and the bottom portion 1331 and serves as an air vent when injecting the material 1220 having shape memory properties. The effect which the discharge part 1370 produces is the same as the effect which the discharge part 1270 in the fluid device 1200 of 3rd Embodiment mentioned above shows.
 流体デバイス1300において、凸部1355の側面1356は、第2基板1350bの表面1357に向かうにしたがって拡径する傾斜面である。底部1331に設けられた温度変化部が電熱変換部である場合、側面1356が傾斜面であることにより、容易に配線できる。例えば側面1356に、例えばスパッタリング及びフォトリソグラフィー、スクリーン印刷等により、断線することなく配線することができる。 In the fluid device 1300, the side surface 1356 of the convex portion 1355 is an inclined surface that increases in diameter toward the surface 1357 of the second substrate 1350b. When the temperature change part provided in the bottom part 1331 is an electrothermal conversion part, it can wire easily because the side surface 1356 is an inclined surface. For example, wiring can be performed on the side surface 1356 without disconnection by sputtering, photolithography, screen printing, or the like.
 図13Bは第1基板1350aの構造を示す概略断面図であり、図13Cは、第2基板1350bの構造を示す概略断面図である。 FIG. 13B is a schematic cross-sectional view showing the structure of the first substrate 1350a, and FIG. 13C is a schematic cross-sectional view showing the structure of the second substrate 1350b.
 流体デバイス1300において、基板1350が第1基板1350aと第2基板1350bとから構成されていることにより奏される効果は、上述した第3実施形態の流体デバイス1200の基板1250が、第1基板1250aと第2基板1250bとから構成されていることにより奏される効果と同様である。 In the fluid device 1300, the substrate 1350 includes the first substrate 1350a and the second substrate 1350b. The effect obtained by the substrate 1250 of the fluid device 1200 according to the third embodiment described above is the first substrate 1250a. And the second substrate 1250b are the same as the effects produced.
(第5実施形態)
 図20は、本実施形態の流体デバイス2000の構造を示す概略断面図である。流体デバイス2000は、流路2010と、バルブ2020及び2030とを備える。バルブ2020及び2030は、ノーマリーオープン・バルブであってもノーマリークローズ・バルブであってもよい。
(Fifth embodiment)
FIG. 20 is a schematic cross-sectional view showing the structure of the fluidic device 2000 of the present embodiment. The fluidic device 2000 includes a flow path 2010 and valves 2020 and 2030. Valves 2020 and 2030 may be normally open valves or normally closed valves.
 流体デバイス2000のように、流路2010は3次元的に(立体的に)配置されていてもよい。流体デバイス2000において、形状記憶性を有する物質はバルブ2020及びバルブ2030に局所的に設けられており、流路2010には形状記憶性を有する物質と接しない部分が存在する。バルブは、流路2010を基板に成形したのちに、形状記憶性を有する物質を局所的に設けることで作製してもよい。また、流路の一部を作製したのち、流路形状記憶性を有する物質を局所的に設けてバルブを作製し、更に残りの流路を形成してもよい。また、図20では流路を1つしか示していないが、複数の流路が3次元的に配置されていてもよい。 Like the fluid device 2000, the flow path 2010 may be arranged three-dimensionally (three-dimensionally). In the fluid device 2000, the substance having shape memory property is locally provided in the valve 2020 and the valve 2030, and the flow path 2010 includes a portion that does not contact the substance having shape memory property. The valve may be manufactured by locally providing a substance having shape memory after the flow path 2010 is formed on the substrate. Alternatively, after a part of the flow path is manufactured, a valve having a flow path shape memory property may be locally provided to form a valve, and the remaining flow path may be formed. Moreover, although only one flow path is shown in FIG. 20, a plurality of flow paths may be arranged three-dimensionally.
 上述したバルブは、局所的に配置することが可能であるため、このように設計自由度の高い流体デバイスを構成することができる。 Since the above-described valve can be disposed locally, a fluid device having a high degree of design freedom can be configured in this way.
(第6実施形態)
 流体デバイス中において、ノーマリークローズ・バルブとノーマリーオープン・バルブとが互いに対向して配設されていてもよい。
(Sixth embodiment)
In the fluidic device, a normally closed valve and a normally open valve may be disposed to face each other.
 図21は、本実施形態の流体デバイス241の基本構成を示す模式図である。図21に示すように、本実施形態の流体デバイス241は、第一面に配置されたノーマリーオープン・バルブ242と、第一面と対向した第二面に配置されたノーマリークローズ・バルブ243と、を備えている。そして、本実施形態の流体デバイス241において、ノーマリーオープン・バルブ242とノーマリークローズ・バルブ243とが互いに対向して配置されている。 FIG. 21 is a schematic diagram showing the basic configuration of the fluidic device 241 of the present embodiment. As shown in FIG. 21, the fluid device 241 of the present embodiment includes a normally open valve 242 disposed on the first surface and a normally closed valve 243 disposed on the second surface facing the first surface. And. In the fluid device 241 of the present embodiment, the normally open valve 242 and the normally closed valve 243 are disposed to face each other.
 定常状態において、流体は、流路240の下部に形成されたノーマリーオープン・バルブ242を介して、堰として機能しているノーマリークローズ・バルブ243を迂回している。 In the steady state, the fluid bypasses the normally closed valve 243 functioning as a weir through the normally open valve 242 formed in the lower part of the flow path 240.
 次いで、ノーマリーオープン・バルブ242の下部に備え付けられた加熱手段242aによって、ノーマリーオープン・バルブ242は閉状態となり、流体の流れは、ノーマリークローズ・バルブ243によって堰き止められる。 Next, the normally open valve 242 is closed by the heating means 242a provided at the lower part of the normally open valve 242, and the fluid flow is blocked by the normally close valve 243.
 次いで、ノーマリークローズ・バルブ243の上部に備え付けられた加熱手段243aによって、ノーマリークローズ・バルブ243は開状態となり、堰き止められていた流体は再び流れ出す。 Next, the normally closed valve 243 is opened by the heating means 243a provided on the upper part of the normally closed valve 243, and the fluid that has been dammed flows out again.
 本実施形態の流体デバイス241によれば、全体として開状態から閉状態へ、さらに閉状態から開状態へと変形するバルブを有するため、流体の流れを柔軟に制御することができる。また、本実施形態の流体デバイス241において、形状記憶性を有する物質が流路中に局所的に設けられたバルブ構造であるため、簡便にかつ低コストでノーマリーオープン・バルブとノーマリークローズ・バルブとが対向した構造を製造することができる。 According to the fluid device 241 of the present embodiment, the flow of the fluid can be flexibly controlled because the valve is deformed from the open state to the closed state and from the closed state to the open state as a whole. Further, in the fluid device 241 of the present embodiment, since the valve structure in which the substance having shape memory property is locally provided in the flow path, the normally open valve and the normally closed valve can be simply and at low cost. A structure facing the valve can be manufactured.
(第7実施形態)
 ノーマリーオープン・バルブ及びノーマリークローズ・バルブにおいて、形状記憶性を有する物質の変形量を調整することで、加熱により流路のサイズを変更することも可能である。例えば、図22Aに示すように、バルブを種々「半開き」の状態にすることにより、流路の幅及び深さを制限し、流体の流れを自在に選択的に制御することができる。一例として流路デバイスを構成する流路の幅をミリメートルサイズにすることにより、加熱条件の変化に応じた形状記憶性を有する物質の変化量が厳密に制御されたものとなる。
(Seventh embodiment)
In the normally open valve and the normally closed valve, the size of the flow path can be changed by heating by adjusting the deformation amount of the substance having shape memory property. For example, as shown in FIG. 22A, by making the valve variously “half-open”, the width and depth of the flow path are limited, and the fluid flow can be selectively controlled freely. As an example, by setting the width of the flow path constituting the flow path device to the millimeter size, the amount of change in the substance having shape memory property according to the change in the heating condition is strictly controlled.
 本実施形態のバルブによれば、流体デバイス中に別途ゲルろ過カラム装置等を設けずとも、図22Bに示すように、流体中の所望の大きさの分子を選別することができる。例えば、本実施形態の構造体によれば、血液中の赤血球とCirculating tumor cell(CTC;血中循環がん細胞)を大きさで選別することができる。また、図22Cに示すように、複数の構造体を流路に配設した場合に、構造体(マイクロ構造体)間の距離をあらかじめ調整することによって、液体中の所望の大きさの分子の選別をすることができる。 According to the valve of the present embodiment, molecules having a desired size in the fluid can be selected as shown in FIG. 22B without providing a separate gel filtration column device or the like in the fluid device. For example, according to the structure of the present embodiment, red blood cells and circulating tumor cells (CTC; circulating blood cancer cells) in blood can be sorted by size. Further, as shown in FIG. 22C, when a plurality of structures are arranged in the flow path, by adjusting the distance between the structures (microstructures) in advance, molecules of a desired size in the liquid can be obtained. Sorting can be done.
 また、本実施形態のバルブによれば、工程に応じて構造体の変形量を制御することで、流体の流れを自在に選択的に制御することができる。一例として、図22Dに示すように、構造体によって流体中の所望の大きさの分子を選別して一時的にせき止め、その後構造体を加熱などによって完全に開状態にすることで、せき止めていた分子を流すことができる。例えば、サイズの小さい粒子は通過し、大きい粒子はせき止められるようなマイクロ構造体を流体デバイス中に設ける。この場合、構造体はサイズの大きい粒子にとってのみノーマリークローズ・バルブとして機能している。その後、構造体を変形させてサイズの大きい粒子も通過するようにバルブを開状態にすることで、サイズの大きい粒子のみ選別が可能である。 Further, according to the valve of this embodiment, the flow of fluid can be selectively controlled freely by controlling the deformation amount of the structure according to the process. As an example, as shown in FIG. 22D, a structure was used to select a molecule of a desired size in the fluid and temporarily damped it, and then the structure was dammed by being completely opened by heating or the like. Can flow molecules. For example, a microstructure is provided in the fluidic device that allows small particles to pass through and large particles to be damped. In this case, the structure functions as a normally closed valve only for large particles. After that, by deforming the structure and opening the valve so that large particles pass through, it is possible to sort only large particles.
 このように、本実施形態におけるバルブは、その構造体の変形量を選択的に制御することによって、流路中におけるフィルターとして機能させることが可能である。なお、本実施形態の流体デバイスは複数の構造体を備えていてもよく、複数の構造体はそれぞれ独立した収容部に収容された形状記憶性を有する物質によって成ってもよい。また、複数の構造体の変形量は同じであっても異なってもよい。構造体の変形量は、加熱時間によって制御してもよく、また、異なる変形量を持つ構造体を作ってもよい。本実施形態の流体デバイスにおいて、複数の構造体がそれぞれ独立した形状記憶性を有する物質によって成る場合、それぞれ異なる変形量をもつ複数の構造体を簡便かつ低コストで作成することが可能である。 As described above, the valve in the present embodiment can function as a filter in the flow path by selectively controlling the deformation amount of the structure. Note that the fluidic device of the present embodiment may include a plurality of structures, and the plurality of structures may be made of a material having shape memory properties that are housed in independent housing portions. Further, the deformation amounts of the plurality of structures may be the same or different. The deformation amount of the structure body may be controlled by the heating time, or a structure body having a different deformation amount may be made. In the fluidic device of the present embodiment, when the plurality of structures are made of substances having independent shape memory properties, it is possible to create a plurality of structures having different deformation amounts easily and at low cost.
<流体デバイスの製造方法>
 一実施態様において、本発明は、流路を有する流路基板と、前記流路基板と第1面で接合される基板とを備える流体デバイスの製造方法であって、流路を有する流路基板と、前記第1面における前記流路と対向する位置に局所的に収容部が形成された基板とを用意する工程(a)と、前記収容部に形状記憶性を有する物質を収容する工程(b)と、を備える、流体デバイスの製造方法を提供する。
<Method for manufacturing fluid device>
In one embodiment, the present invention provides a fluid device manufacturing method comprising a flow path substrate having a flow path and a substrate bonded to the flow path substrate on a first surface, the flow path substrate having a flow path. And a step (a) of preparing a substrate having a housing portion locally formed at a position facing the flow path on the first surface, and a step of housing a substance having shape memory property in the housing portion ( b) and a method of manufacturing a fluidic device.
 本実施態様の製造方法によれば、上述した流体デバイスを製造することができる。以下、流体デバイスの製造方法の複数の実施形態について説明する。 According to the manufacturing method of this embodiment, the above-described fluidic device can be manufactured. Hereinafter, a plurality of embodiments of a fluid device manufacturing method will be described.
[第1実施形態]
 図10を参照しながら、流体デバイスの製造方法の第1実施形態を説明する。図10は、流路1010を有する流路基板1040と、流路基板1040と第1面1051で接合される基板1050とを備える流体デバイスを示す概略断面図である。
[First Embodiment]
A first embodiment of a fluid device manufacturing method will be described with reference to FIG. FIG. 10 is a schematic cross-sectional view showing a fluid device including a flow path substrate 1040 having a flow path 1010 and a substrate 1050 bonded to the flow path substrate 1040 on the first surface 1051.
 まず、工程(a)において、基板1050の第1面1051における流路1010と対向する位置に局所的に収容部(凹部)1030を形成する。凹部1030の形成方法は特に制限されず、例えば射出成形、機械加工、ホットエンボス、エッチング等が挙げられる。 First, in step (a), a housing portion (concave portion) 1030 is locally formed at a position facing the flow path 1010 on the first surface 1051 of the substrate 1050. The formation method in particular of the recessed part 1030 is not restrict | limited, For example, injection molding, machining, hot embossing, an etching etc. are mentioned.
 続いて、工程(b)において、形状記憶性を有する物質1020を収容する。形状記憶性を有する物質1020の収容は、例えば収容部1030の開放部から、硬化前の形状記憶ポリマー組成物を注入し、収容部1030内で当該組成物を硬化させること等により行うことができる。 Subsequently, in the step (b), a substance 1020 having shape memory properties is accommodated. The storage of the substance 1020 having shape memory property can be performed by, for example, injecting a shape memory polymer composition before curing from the opening of the storage unit 1030 and curing the composition in the storage unit 1030. .
[第2実施形態]
 図11A及びBを参照しながら、流体デバイスの製造方法の第2実施形態を説明する。図11Aは、流路1110を有する流路基板1140と、流路基板1140と第1面1151で接合される基板1150とを備える流体デバイスを示す概略断面図である。基板1150の第1面には、収容部(凹部)1130が局所的に設けられている。また、基板1150は、第1面1151の反対側の第2面1152と収容部1130の底部1131とを貫通し形状記憶性を有する物質1120の注入口となる供給部1160を備えている。
[Second Embodiment]
A second embodiment of a fluid device manufacturing method will be described with reference to FIGS. 11A and 11B. FIG. 11A is a schematic cross-sectional view showing a fluid device including a flow path substrate 1140 having a flow path 1110 and a substrate 1150 bonded to the flow path substrate 1140 on the first surface 1151. A housing portion (concave portion) 1130 is locally provided on the first surface of the substrate 1150. In addition, the substrate 1150 includes a supply unit 1160 that passes through the second surface 1152 opposite to the first surface 1151 and the bottom 1131 of the housing unit 1130 and serves as an inlet for the substance 1120 having shape memory properties.
 本実施形態の流体デバイスの製造方法において、工程(a)は、上述した第1実施形態と同様に実施すればよい。続いて、工程(b)において、供給部1160から収容部1130に硬化前の形状記憶ポリマー組成物を注入し、収容部1030内で当該組成物を硬化させることにより、図11Bに示す形状記憶性を有する物質1120を収容部1130に収容する。 In the fluid device manufacturing method of the present embodiment, step (a) may be performed in the same manner as in the first embodiment described above. Subsequently, in step (b), the shape memory polymer composition shown in FIG. 11B is injected by injecting the shape memory polymer composition before curing from the supply unit 1160 into the housing unit 1130 and curing the composition in the housing unit 1030. The substance 1120 having the above is accommodated in the accommodating portion 1130.
[第3実施形態]
 図14は、流体デバイスの製造方法の第3実施形態を説明する概略断面図である。まず、工程(a)において、基板1450の第1面1451に局所的に凹部1430を形成し、収容部1430を形成する。
[Third Embodiment]
FIG. 14 is a schematic cross-sectional view for explaining a third embodiment of the fluid device manufacturing method. First, in the step (a), the concave portion 1430 is locally formed on the first surface 1451 of the substrate 1450 to form the accommodating portion 1430.
 本実施形態においては、基板1450の第2面1452と、凹部1430の底部1431とを貫通し、形状記憶性を有する物質1420の注入口となる供給部1460を形成してもよい。また、基板1450の第2面1452と、凹部1430の底部1431とを貫通し、形状記憶性を有する物質1420を注入する時のエア抜きとなる排出部1470を更に形成してもよい。 In the present embodiment, a supply portion 1460 that penetrates the second surface 1452 of the substrate 1450 and the bottom portion 1431 of the recess 1430 and serves as an inlet for the substance 1420 having shape memory properties may be formed. Further, a discharge portion 1470 that penetrates through the second surface 1452 of the substrate 1450 and the bottom portion 1431 of the recess 1430 and serves to release air when the material 1420 having shape memory property is injected may be further formed.
 凹部1430、供給部1460及び排出部1470の形成方法は特に制限されず、例えばエッチング等が挙げられる。 The formation method in particular of the recessed part 1430, the supply part 1460, and the discharge part 1470 is not restrict | limited, For example, an etching etc. are mentioned.
 続いて、基板1450の第1面1451に、収容部1430を閉塞する蓋体基板1480を接合する。また、蓋体基板1480は基板1450の第1面1451に対して、後述する形状記憶ポリマー組成物が漏れないように接触してもよい。蓋体基板1480の材質としては特に限定されず、例えばガラス、金属、半導体、プラスチック、ゴム等が挙げられる。蓋体基板1480が基板1450の第1面1451には極力平坦であることが好ましい。 Subsequently, a lid substrate 1480 that closes the accommodating portion 1430 is bonded to the first surface 1451 of the substrate 1450. The lid substrate 1480 may contact the first surface 1451 of the substrate 1450 so that the shape memory polymer composition described later does not leak. The material of the lid substrate 1480 is not particularly limited, and examples thereof include glass, metal, semiconductor, plastic, and rubber. The lid substrate 1480 is preferably as flat as possible on the first surface 1451 of the substrate 1450.
 蓋体基板1480が存在することにより、収容部1430に形状記憶性を有する物質1420を収容した場合に、第1面1451を極力平坦に形成することができる。すなわち、蓋体基板1480は、収容部1430と対向する位置に、形状記憶性を有する物質1420に転写される転写面1481を有する。 Since the lid substrate 1480 is present, the first surface 1451 can be formed as flat as possible when the substance 1420 having shape memory property is accommodated in the accommodating portion 1430. That is, the lid substrate 1480 has a transfer surface 1481 that is transferred to the substance 1420 having shape memory properties at a position facing the housing portion 1430.
 その後、工程(b)において、形状記憶性を有する物質1420を収容する。形状記憶性を有する物質1420の収容は、供給部1460からシリンジ等を用いて硬化前の形状記憶ポリマー組成物を注入し、当該組成物を硬化させること等により行うことができる。形状記憶ポリマー組成物の硬化は、熱硬化、光硬化等により行うことができる。 Thereafter, in the step (b), the substance 1420 having shape memory property is accommodated. The material 1420 having shape memory property can be accommodated by injecting a shape memory polymer composition before curing from the supply unit 1460 using a syringe or the like and curing the composition. The shape memory polymer composition can be cured by heat curing, photocuring, or the like.
 なお、形状記憶ポリマー組成物は、硬化すると収縮する場合がある。そこで、蓋体基板1480は、収容部1430に収容した形状記憶ポリマー1420の収縮量に応じた深さの窪みを有していてもよい。これにより、第1面1451を更に平坦に形成することができる。 Note that the shape memory polymer composition may shrink when cured. Therefore, the lid substrate 1480 may have a recess having a depth corresponding to the amount of contraction of the shape memory polymer 1420 accommodated in the accommodating portion 1430. Thereby, the 1st surface 1451 can be formed more flatly.
 上記した第1~第3実施形態の流体デバイスの製造方法は、形状記憶性を有する物質を収容部に収容した後、形状記憶性を有する物質の形状回復温度以上融点未満の温度範囲の温度下で、前記収容部に収容された形状記憶性を有する物質に外力を加えて変形させ、加熱により元の形状に戻る構造体を形成する、工程(c)を更に備えていてもよい。工程(c)については後述する。 In the fluid device manufacturing method according to the first to third embodiments described above, after a substance having shape memory property is accommodated in the accommodating part, the temperature is within a temperature range of the shape recovery temperature of the substance having shape memory property and less than the melting point. The method may further include a step (c) of forming a structure body that is deformed by applying an external force to the material having shape memory property accommodated in the accommodating portion, and returns to the original shape by heating. Step (c) will be described later.
[第4実施形態]
 図15A~Cは、流体デバイスの製造方法の第4実施形態を説明する概略断面図である。まず、図15Aに示すように、工程(a1)において、基板1550の第1面1551に底部1531を有する凹部1530を局所的に形成し、形状記憶性を有する物質1520が収容される収容部1530を形成する。
[Fourth Embodiment]
15A to 15C are schematic cross-sectional views illustrating a fourth embodiment of a fluid device manufacturing method. First, as shown in FIG. 15A, in step (a1), a recess 1530 having a bottom 1531 is locally formed on the first surface 1551 of the substrate 1550, and a storage portion 1530 in which a substance 1520 having shape memory properties is stored. Form.
 続いて、工程(a2)において、基板1550の第2面1552と、凹部1530の底部1531とを貫通し、形状記憶性を有する物質1520の注入口となる供給部1560を形成する。また、基板1550の第2面1552と、凹部1530の底部1531とを貫通し、形状記憶性を有する物質1520を注入する時のエア抜きとなる排出部1570を更に形成してもよい。 Subsequently, in step (a2), a supply portion 1560 that penetrates the second surface 1552 of the substrate 1550 and the bottom portion 1531 of the concave portion 1530 and serves as an injection port of the substance 1520 having shape memory properties is formed. Further, a discharge portion 1570 that passes through the second surface 1552 of the substrate 1550 and the bottom portion 1531 of the recess 1530 and serves as an air vent when injecting the material 1520 having shape memory property may be further formed.
 工程(a1)と工程(a2)の順序には特に制限はなく、いずれを先に実施してもよく、同時に実施してもよい。 There is no restriction | limiting in particular in the order of a process (a1) and a process (a2), which may be implemented first and may be implemented simultaneously.
 凹部1530、供給部1560及び排出部1570の形成方法は特に制限されず、例えばエッチング等が挙げられる。 The formation method in particular of the recessed part 1530, the supply part 1560, and the discharge part 1570 is not restrict | limited, For example, an etching etc. are mentioned.
 その後、工程(b1)において、供給部1560からシリンジ等を用いて硬化前の形状記憶ポリマー組成物を注入し、当該組成物を硬化させることにより形状記憶性を有する物質1520を収容する。形状記憶ポリマー組成物の硬化は、熱硬化、光硬化等により行うことができる。 Thereafter, in step (b1), the shape memory polymer composition before curing is injected from the supply unit 1560 using a syringe or the like, and the material 1520 having shape memory properties is accommodated by curing the composition. The shape memory polymer composition can be cured by heat curing, photocuring, or the like.
 続いて、工程(c)において、次の少なくとも1つを実施することにより、ノーマリーオープン・バルブ、ノーマリークローズ・バルブ、直列バルブ等を成形する。直列バルブの成形においては、ノーマリーオープン・バルブの成形工程、ノーマリークローズ・バルブの成形工程を組み合わせて実施する。一例として、図15Bに、成形された第1のノーマリーオープン・バルブの構造を示す。 Subsequently, in step (c), a normally open valve, a normally closed valve, a series valve, etc. are formed by performing at least one of the following. In the series valve molding, a normally open valve molding process and a normally closed valve molding process are combined. As an example, FIG. 15B shows the structure of a molded first normally open valve.
(第1のノーマリーオープン・バルブの成形)
 形状記憶ポリマー1520の形状回復温度以上融点未満の温度範囲の温度下で、形状記憶ポリマー1520に外力を加えて第1の凹部を設け、形状記憶ポリマー1520上に第1のノーマリーオープン・バルブを成形する。
(Forming the first normally open valve)
The shape memory polymer 1520 is provided with a first recess by applying an external force to the shape memory polymer 1520 at a temperature in the range of the shape recovery temperature of the shape memory polymer 1520 and lower than the melting point, and the first normally open valve is provided on the shape memory polymer 1520. Mold.
(第2のノーマリーオープン・バルブの成形)
 形状記憶ポリマー1520の形状回復温度以上融点未満の温度範囲の温度下で、形状記憶ポリマー1520に外力を加えて第1の貫通孔を設け、形状記憶ポリマー1520に第2のノーマリーオープン・バルブを成形する。
(Formation of second normally open valve)
The shape memory polymer 1520 is provided with a first through-hole by applying an external force to the shape memory polymer 1520 at a temperature in the range of the shape recovery temperature of the shape memory polymer 1520 and below the melting point, and the shape memory polymer 1520 is provided with a second normally open valve. Mold.
(第1のノーマリークローズ・バルブの成形)
 形状記憶ポリマー1520の融点未満の温度下で成形加工若しくは機械加工により、形状記憶ポリマー1520に第2の凹部を形成し、形状記憶ポリマー1520の形状回復温度以上融点未満の温度範囲の温度下で、第2の凹部に外力を加えて第2の凹部を平坦にし、形状記憶ポリマー1520上に第1のノーマリークローズ・バルブを成形する。
(Forming the first normally closed valve)
A second recess is formed in the shape memory polymer 1520 by molding or machining at a temperature lower than the melting point of the shape memory polymer 1520, and at a temperature in the temperature range of the shape memory polymer 1520 to a temperature higher than the shape recovery temperature and lower than the melting point. An external force is applied to the second recess to flatten the second recess, and the first normally closed valve is molded on the shape memory polymer 1520.
(第2のノーマリークローズ・バルブの成形)
 形状記憶ポリマー1520の融点未満の温度下で成形加工若しくは機械加工により、形状記憶ポリマー1520に第2の貫通孔を形成し、形状記憶ポリマー1520の形状回復温度以上融点未満の温度範囲の温度下で、第2の貫通孔に外力を加えて第2の貫通孔を平坦にし、形状記憶ポリマー1520に、第2のノーマリークローズ・バルブを成形する。
(Formation of second normally closed valve)
A second through-hole is formed in the shape memory polymer 1520 by molding or machining at a temperature lower than the melting point of the shape memory polymer 1520, and at a temperature in a temperature range not lower than the shape recovery temperature of the shape memory polymer 1520 and lower than the melting point. Then, an external force is applied to the second through hole to flatten the second through hole, and a second normally closed valve is formed on the shape memory polymer 1520.
 続いて、工程(d)において、基板1550の第1面1551に流路を有する流路基板1540を接合する。図15Cに、本実施形態の製造方法により製造された流体デバイス1500の概略断面図を示す。 Subsequently, in step (d), a flow path substrate 1540 having a flow path is bonded to the first surface 1551 of the substrate 1550. FIG. 15C shows a schematic cross-sectional view of a fluidic device 1500 manufactured by the manufacturing method of the present embodiment.
[第5実施形態]
 図13A~Cを参照しながら、流体デバイスの製造方法の第5実施形態を説明する。図13Aに示すように、本実施形態の製造方法により製造される流体デバイス1300の基板1350は、第1面1351を含み流路基板1340と接合される第1基板1350aと、第1基板1350aと第1面1351の反対側の面1353で接合される第2基板1350bとを備える。
[Fifth Embodiment]
A fifth embodiment of the fluid device manufacturing method will be described with reference to FIGS. 13A to 13C. As shown in FIG. 13A, a substrate 1350 of a fluidic device 1300 manufactured by the manufacturing method of the present embodiment includes a first substrate 1350a including a first surface 1351 and bonded to a flow path substrate 1340, a first substrate 1350a, 2nd board | substrate 1350b joined by the surface 1353 on the opposite side of the 1st surface 1351 is provided.
 まず、図13Bに示すように、工程(a1’)において、第1基板1350aに、形状記憶性を有する物質1320が収容される収容部1330となる貫通孔1360aを形成する。 First, as shown in FIG. 13B, in the step (a1 ′), the first substrate 1350a is formed with a through-hole 1360a serving as a storage portion 1330 in which the substance 1320 having shape memory property is stored.
 次に、図13Cに示すように、工程(a2’)において、第2基板1350bに、先端に前記形状記憶性を有する物質1320を支持する支持部1354が設けられ貫通孔1360aに挿入される凸部1355と、凸部1355が設けられた面の反対側の面1352と支持部1354とを貫通し形状記憶性を有する物質1320の注入口となる供給部1360と、形状記憶性を有する物質1320の少なくとも一部の温度を変化させる温度変化部(図示略)とを形成する。 Next, as shown in FIG. 13C, in step (a2 ′), the second substrate 1350b is provided with a support portion 1354 that supports the substance 1320 having the shape memory property at the tip, and is inserted into the through hole 1360a. A supply portion 1360 that penetrates the portion 1355, the surface 1352 opposite to the surface provided with the convex portion 1355, and the support portion 1354 and serves as an inlet for the material 1320 having shape memory properties, and the material 1320 having shape memory properties And a temperature changing portion (not shown) for changing at least a part of the temperature.
 また、凸部1355が設けられた面の反対側の面1352と支持部1354とを貫通し形状記憶性を有する物質1320を注入する時のエア抜きとなる排出部1370を更に形成してもよい。 In addition, a discharge portion 1370 may be further formed, which passes through the surface 1352 opposite to the surface provided with the convex portion 1355 and the support portion 1354 and serves as an air vent when injecting the material 1320 having shape memory properties. .
 温度変化部は、支持部1354の表面に形成するとよい。温度変化部は、例えばヒーター等の電気エネルギーを熱エネルギーに変換する電熱変換部であってもよく、例えばレーザー光等の光エネルギーを熱エネルギーに変換する光熱変換部であってもよい。例えば、温度変化部として配線からなるヒーターを形成する場合、Cr/Au薄膜のスパッタリング及びフォトリソグラフィー、スクリーン印刷等により形成することができる。 The temperature change portion may be formed on the surface of the support portion 1354. The temperature change unit may be an electrothermal conversion unit that converts electrical energy such as a heater into thermal energy, for example, and may be a photothermal conversion unit that converts optical energy such as laser light into thermal energy. For example, when a heater made of wiring is formed as the temperature changing portion, it can be formed by sputtering of Cr / Au thin film, photolithography, screen printing, or the like.
 工程(a1’)と工程(a2’)の順序には特に制限はなく、いずれを先に実施してもよく、同時に実施してもよい。 There is no restriction | limiting in particular in order of a process (a1 ') and a process (a2'), which may be implemented first and may be implemented simultaneously.
 続いて、工程(a3)において、第1基板1350aと第2基板1350bとを、貫通孔1360aに凸部1355を挿入して接合し、貫通孔1360a及び支持部1354を含む収容部1330を形成する。 Subsequently, in step (a3), the first substrate 1350a and the second substrate 1350b are joined by inserting the convex portion 1355 into the through hole 1360a to form the accommodating portion 1330 including the through hole 1360a and the support portion 1354. .
 その後、工程(b1’)において、供給部1360からシリンジ等を用いて硬化前の形状記憶ポリマー組成物を注入し、当該組成物を硬化させることにより形状記憶性を有する物質1320を収容する。形状記憶ポリマー組成物の硬化は、熱硬化、光硬化等により行うことができる。 Thereafter, in the step (b1 ′), the shape memory polymer composition before curing is injected from the supply unit 1360 using a syringe or the like, and the material 1320 having shape memory is accommodated by curing the composition. The shape memory polymer composition can be cured by heat curing, photocuring, or the like.
 また、工程(b1’)の前に基板1350aの第1面1351に収容部1330を閉塞する蓋体基板を接合する工程を備えていてもよい。この場合、工程(c)の前に蓋体基板を剥離するとよい。蓋体基板の材質及び蓋体基板を用いることにより奏される効果は、上述した第2実施形態の流体デバイスの製造方法におけるものと同様である。 Further, before the step (b1 ′), a step of bonding a lid substrate that closes the accommodating portion 1330 to the first surface 1351 of the substrate 1350a may be provided. In this case, the lid substrate may be peeled off before the step (c). The effects produced by using the lid substrate material and the lid substrate are the same as those in the fluid device manufacturing method of the second embodiment described above.
 続いて、工程(c)において、上述した第3実施形態の工程(c)と同様にして、ノーマリーオープン・バルブ、ノーマリークローズ・バルブ、直列バルブ等を成形する。 Subsequently, in the step (c), a normally open valve, a normally closed valve, a series valve and the like are formed in the same manner as in the step (c) of the third embodiment described above.
 続いて、工程(d)において、基板1350の第1面1351に流路を有する流路基板1340を接合する。以上の工程により、流体デバイス1300を製造することができる。 Subsequently, in step (d), a flow path substrate 1340 having a flow path is bonded to the first surface 1351 of the substrate 1350. Through the above steps, the fluid device 1300 can be manufactured.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
<実施例1>
 図13Aに示す流路デバイスを作製した。以下、図13A、図16A、図16B及び図17A~Cを参照しながら、実施例1の流路デバイスの製造について説明する。
<Example 1>
A flow channel device shown in FIG. 13A was produced. Hereinafter, the manufacture of the flow path device of Example 1 will be described with reference to FIGS. 13A, 16A, 16B, and 17A to 17C.
[第1基板の作製]
 アクリル系プラスチック基板(以下「MS基板」という。)に貫通孔1360aを形成し、第1基板1350aを作製した。
[Fabrication of the first substrate]
A through-hole 1360a was formed in an acrylic plastic substrate (hereinafter referred to as “MS substrate”) to produce a first substrate 1350a.
[第2基板の作製]
(ヒーターの形成)
 スパッタリングにより、MS基板1350bの表面にCr/Au薄膜を形成した。続いて、フォトリソグラフィーにより、ジグザグ状のヒーターのパターン(温度変化部)を形成した。MS基板は耐薬品性が高いため、CrやAuのウェットエッチングを問題なく行うことができる。図16Aは、MS基板の表面に形成されたヒーターのパターンを示す写真である。
[Production of second substrate]
(Heater formation)
A Cr / Au thin film was formed on the surface of the MS substrate 1350b by sputtering. Subsequently, a zigzag heater pattern (temperature change portion) was formed by photolithography. Since the MS substrate has high chemical resistance, wet etching of Cr and Au can be performed without any problem. FIG. 16A is a photograph showing a pattern of the heater formed on the surface of the MS substrate.
(凸部の形成)
 続いて、上記MS基板1350bの表面を切削し、山形の凸部1355を形成した。凸部1355の頂上(支持部)1354に上記のヒーターのパターンが形成されている。図16Bは、頂上部にヒーターのパターンが形成された凸部を有する基板1350bを示す写真である。支持部1354の直径は2mmであり、凸部1355の底面の直径は4mmであった。
(Formation of convex parts)
Subsequently, the surface of the MS substrate 1350b was cut to form a convex portion 1355 having a mountain shape. The heater pattern is formed on the top (supporting portion) 1354 of the convex portion 1355. FIG. 16B is a photograph showing a substrate 1350b having a convex portion with a heater pattern formed on the top. The diameter of the support portion 1354 was 2 mm, and the diameter of the bottom surface of the convex portion 1355 was 4 mm.
(配線の形成)
 続いて、マスクをかぶせて再度スパッタリングを行い、Cr/Au薄膜からなる配線を形成した。この配線は、ヒーターに電力を供給するものである。図17Aは、配線形成後の第2基板1350bを示す写真である。
(Wiring formation)
Subsequently, the mask was put on and sputtering was performed again to form a wiring made of a Cr / Au thin film. This wiring supplies power to the heater. FIG. 17A is a photograph showing the second substrate 1350b after wiring formation.
[第1基板と第2基板の接合]
 続いて、上記の第1基板1350aと第2基板1350bとを接合した。具体的には、まず、ヒーター配線が形成されていない第1基板1350aにトルエン蒸気を30分間暴露した。続いて、3分間真空引きを行って第1基板1350a表面のトルエン分子を蒸発させた。
[Bonding of the first substrate and the second substrate]
Subsequently, the first substrate 1350a and the second substrate 1350b were joined. Specifically, first, toluene vapor was exposed for 30 minutes to the first substrate 1350a on which no heater wiring was formed. Subsequently, vacuuming was performed for 3 minutes to evaporate toluene molecules on the surface of the first substrate 1350a.
 続いて、第2基板1350bの凸部1355を第1基板1350aの貫通孔1360aに挿入し、6MPaの圧力で30分間圧着することにより、第1基板1350a及び第2基板1350bを接合した。 Subsequently, the first substrate 1350a and the second substrate 1350b were joined by inserting the convex portion 1355 of the second substrate 1350b into the through-hole 1360a of the first substrate 1350a and press-bonding with a pressure of 6 MPa for 30 minutes.
 これにより、凸部の頂上(支持部)1354、貫通孔1360aの側面を含む収容部1330が形成された。収容部1330の高さは200μmであった。図17Bは、第1基板1350a及び第2基板1350bが接合された様子を示す写真である。 Thereby, the top portion (support portion) 1354 of the convex portion and the accommodating portion 1330 including the side surface of the through hole 1360a were formed. The height of the accommodating portion 1330 was 200 μm. FIG. 17B is a photograph showing a state in which the first substrate 1350a and the second substrate 1350b are bonded.
[形状記憶ポリマーの充填]
 ポリカプロラクトン(PCL)マクロモノマー、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名「IRGACURE184」、BASFジャパン社製)及びビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(商品名「IRGACURE819」、BASFジャパン社製)を100:10:1の質量比で混合し、70℃に加熱溶融させた組成物を作製した。
[Filling of shape memory polymer]
Polycaprolactone (PCL) macromonomer, 1-hydroxy-cyclohexyl-phenyl-ketone (trade name “IRGACURE184”, manufactured by BASF Japan Ltd.) and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (trade name “ IRGACURE819 ”(manufactured by BASF Japan) was mixed at a mass ratio of 100: 10: 1, and a composition was prepared by heating and melting at 70 ° C.
 ガラス基板の表面にフッ素樹脂(商品名「サイトップ(CTL-809M)」、旭硝子社製)を塗布したものを蓋体基板として用い、上記の基板1350の第1面1351に密着させた。 A glass substrate coated with a fluororesin (trade name “CYTOP (CTL-809M)” manufactured by Asahi Glass Co., Ltd.) was used as a lid substrate and was brought into close contact with the first surface 1351 of the substrate 1350.
 続いて、シリンジを用いて供給部1360から収容部1330に上記の組成物を充填した。続いて、蓋体基板の上部から収容部1330に向かって照度7.8mW/cm、波長365nmの紫外光を4分間照射して組成物中のPCLを架橋させて硬化させ、形状記憶ポリマーを得た。 Subsequently, the above composition was filled from the supply unit 1360 to the housing unit 1330 using a syringe. Subsequently, UV light having an illuminance of 7.8 mW / cm 2 and a wavelength of 365 nm is irradiated from the upper part of the lid substrate toward the housing portion 1330 for 4 minutes to crosslink and cure the PCL in the composition, and the shape memory polymer is cured. Obtained.
 続いて、常温まで冷却し蓋体基板を取り除いた。なお、常温まで冷却すると形状記憶ポリマーが収縮し、一部に隙間ができる。そこで、蓋体基板として、収縮を見越して表面をドライエッチングし数μm削ったガラス基板を使用した。 Subsequently, it was cooled to room temperature and the lid substrate was removed. In addition, when it cools to normal temperature, a shape memory polymer will shrink | contract and a clearance gap will be made in one part. Therefore, a glass substrate whose surface was dry-etched by anticipating shrinkage and was cut by several μm was used as the lid substrate.
[ホットエンボス加工]
 続いて、高さ約50μm、直径約400μmのドーム状の突起物を有するガラスモールドを、上記の形状記憶ポリマーの面1351に、温度60℃、圧力1MPaで押し当て、3分間保持した。
[Hot embossing]
Subsequently, a glass mold having a dome-shaped projection having a height of about 50 μm and a diameter of about 400 μm was pressed against the surface 1351 of the shape memory polymer at a temperature of 60 ° C. and a pressure of 1 MPa, and held for 3 minutes.
 続いて、温度を常温まで戻し、圧力は印加したまま2時間保持した。これにより、形状記憶ポリマー表面に、ノーマリーオープン・バルブとなる凹部を形成した。その後、圧力印加をやめ、ガラスモールドを外した。 Subsequently, the temperature was returned to room temperature and kept for 2 hours while the pressure was applied. As a result, a concave portion serving as a normally open valve was formed on the shape memory polymer surface. Then, the pressure application was stopped and the glass mold was removed.
[流路基板の接合]
 続いて、MS基板により形成された、流路を有する流路基板1340を、基板1350と接合した。具体的には、流路基板1340にトルエン蒸気を30分間暴露した。続いて、3分間真空引きを行って流路基板1340表面のトルエン分子を蒸発させた。
[Bonding of flow path substrates]
Subsequently, a flow path substrate 1340 having a flow path formed of an MS substrate was bonded to the substrate 1350. Specifically, toluene vapor was exposed to the flow path substrate 1340 for 30 minutes. Subsequently, evacuation was performed for 3 minutes to evaporate toluene molecules on the surface of the flow path substrate 1340.
 続いて、流路基板1340と基板1350の第1面1351とを積層し、6MPaの圧力で30分間圧着することにより、流路基板1340及び基板1350を接合した。 Subsequently, the flow path substrate 1340 and the first surface 1351 of the substrate 1350 were laminated, and the flow path substrate 1340 and the substrate 1350 were joined by pressure bonding at a pressure of 6 MPa for 30 minutes.
 以上の工程により、実施例1の流体デバイスが得られた。図17Cは、完成した実施例1の流体デバイスを示す写真である。 Through the above steps, the fluid device of Example 1 was obtained. FIG. 17C is a photograph showing the completed fluidic device of Example 1.
<実験例1>
(バルブの駆動)
 実施例1の流体デバイスのバルブを駆動させた。まず、導電性銀ペーストを使用して導線を流体デバイスに接続した。次に、流体デバイスの流路に蛍光色素を含む液体を送液した。
<Experimental example 1>
(Valve drive)
The valve of the fluid device of Example 1 was driven. First, a conductive silver paste was used to connect the conducting wire to the fluidic device. Next, a liquid containing a fluorescent dye was sent to the flow path of the fluid device.
 続いて、流体デバイスのバルブ部分の蛍光強度を測定しながら、バルブのヒーターに1000ミリ秒間のパルス電圧を印加してバルブを駆動させた。図18Aは、印加電圧及び測定された蛍光強度と時間との関係を示すグラフである。図18Bは、バルブが開状態の時の流路及びバルブが閉状態の時の流路の蛍光顕微鏡写真である。図18Cは、バルブの応答時間及び消費電力の関係を示すグラフである。 Subsequently, while measuring the fluorescence intensity of the bulb portion of the fluid device, a pulse voltage of 1000 milliseconds was applied to the bulb heater to drive the bulb. FIG. 18A is a graph showing the relationship between applied voltage and measured fluorescence intensity and time. FIG. 18B is a fluorescence micrograph of the channel when the valve is open and the channel when the valve is closed. FIG. 18C is a graph showing the relationship between valve response time and power consumption.
 その結果、1.5×10mWの電力で463±35ミリ秒(n=3)の応答時間が得られた。また、電力を変化させてバルブを駆動させたところ、従来のシート型の形状記憶ポリマーバルブよりも低電力で駆動可能であることが示された。これは、おそらく、無溶媒でPCLを架橋したことにより、PCLの融点(相転移点)が低下したことによると考えられた。 As a result, a response time of 463 ± 35 milliseconds (n = 3) was obtained with a power of 1.5 × 10 2 mW. Further, when the valve was driven by changing the electric power, it was shown that it can be driven with lower electric power than the conventional seat-type shape memory polymer valve. This was probably due to a decrease in the melting point (phase transition point) of PCL due to the crosslinking of PCL without solvent.
<実施例2>
(バルブを集積した流体デバイスの作製)
 実施例1と同様の手順により、バルブを9個集積した、実施例2の流体デバイスを作製した。図19Aは、頂上部にヒーターのパターンが形成された凸部を有する第2基板を示す写真である。図19Bは、配線形成後の第2基板を示す写真である。図19Cは、第1基板及び第2基板が接合された様子を示す写真である。図19Dは、完成した実施例2の流体デバイスを示す写真である。
<Example 2>
(Production of fluidic devices with integrated valves)
A fluid device of Example 2 in which nine valves were integrated was produced by the same procedure as in Example 1. FIG. 19A is a photograph showing a second substrate having a convex portion with a heater pattern formed on the top. FIG. 19B is a photograph showing the second substrate after wiring formation. FIG. 19C is a photograph showing a state in which the first substrate and the second substrate are bonded. FIG. 19D is a photograph showing the completed fluidic device of Example 2.
 本発明により、簡便にかつ低コストで製造することができ、流体デバイスの設計の自由度も高いバルブを提供することができる。また、上記バルブを備える流路デバイス及び流路デバイスの製造方法を提供することができる。 According to the present invention, it is possible to provide a valve that can be manufactured easily and at a low cost and has a high degree of freedom in designing a fluid device. Moreover, the flow path device provided with the said valve | bulb and the manufacturing method of a flow path device can be provided.
 200,242,300,670,730,800,940…ノーマリーオープン・バルブ、210,240,310,410,510,610,1010,1110,1210,1310,2010…流路、2020,2030…バルブ、220,220a,320,420,520,620a,620b,820,1020,1120,1220,1320,1420,1520…形状記憶ポリマー(形状記憶性を有する物質)、230,330,430,530,830,1030,1130,1230,1330,1430,1530…収容部(凹部)、240,340,440,540,640,1040,1140,1240,1340,1540…流路基板、242a,243a…加熱手段、245,445,645a,645b…堰、250,350,450,550,650,1050,1150,1250,1350,1450,1550…基板、251,351,451,551,651,1051,1151,1251,1351,1451,1551…第1面、243,400,500,660,740,930…ノーマリークローズ・バルブ、241,600,700,900,1000,1100,1200,1300,1500,2000…流体デバイス、680,750,950…直列バルブ、710,910…駆動源、720…上流流路、721…分岐流路、722…分岐点、723,724,725…下流流路、730a,740a,750a,930a,940a,950a…温度変化部、830a…光熱変換層、921,922,923,924,925…液溜部、960…精製装置、1010a…第一流路部、1010b…第二流路部、1131,1231,1331,1431,1531…底部、1152,1252,1352,1452,1552…第2面、1160,1260,1360,1460,1560…供給部、1170,1270,1370,1470,1570…排出部、1250a,1350a…第1基板、1250b,1350b…第2基板、1120a…平板部、1120b,1120c…脚部(突出部)、1121,1122,1253,1353…面、1254,1354…支持部、1255,1355…凸部、1260a,1260a,1360a…貫通孔、1356…側面、1357…表面、1480…蓋体基板、1481…転写面。 200,242,300,670,730,800,940 ... Normally open valve, 210, 240, 310, 410, 510, 610, 1010, 1110, 1210, 1310, 2010 ... flow path, 2020, 2030 ... valve , 220, 220 a, 320, 420, 520, 620 a, 620 b, 820, 1020, 1120, 1220, 1320, 1420, 1520... Shape memory polymer (substance having shape memory), 230, 330, 430, 530, 830 , 1030, 1130, 1230, 1330, 1430, 1530 ... receiving portion (recess), 240, 340, 440, 540, 640, 1040, 1140, 1240, 1340, 1540 ... flow path substrate, 242a, 243a ... heating means, 245, 445, 645a, 6 5b ... weir, 250, 350, 450, 550, 650, 1050, 1150, 1250, 1350, 1450, 1550 ... substrate, 251, 351, 451, 551, 651, 1051, 1151, 1251, 1351, 1451, 1551 ... 1st surface, 243,400,500,660,740,930 ... normally closed valve, 241,600,700,900,1000,1100,1200,1300,1500,2000 ... fluid device, 680,750,950 ... Series valve, 710, 910 ... Driving source, 720 ... Upstream channel, 721 ... Branch channel, 722 ... Branch point, 723, 724, 725 ... Downstream channel, 730a, 740a, 750a, 930a, 940a, 950a ... Temperature changing portion, 830a ... photothermal conversion layer, 921, 922, 9 3,924,925 ... Liquid reservoir, 960 ... Purification device, 1010a ... First flow path, 1010b ... Second flow path, 1131, 1231, 1331, 1431, 1531 ... Bottom, 1152, 1252, 1352, 1452, 1552 ... 2nd surface, 1160, 1260, 1360, 1460, 1560 ... supply part, 1170, 1270, 1370, 1470, 1570 ... discharge part, 1250a, 1350a ... first board, 1250b, 1350b ... second board, 1120a ... Flat plate part, 1120b, 1120c ... Leg part (protruding part), 1121, 1122, 1253, 1353 ... surface, 1254, 1354 ... support part, 1255, 1355 ... convex part, 1260a, 1260a, 1360a ... through hole, 1356 ... side face 1357 ... surface, 1480 ... lid substrate, 1481 ... transfer surface.

Claims (53)

  1.  流路に設けられた収容部に形状記憶性を有する物質が収容され、前記形状記憶性を有する物質が変形することにより前記流路中の流体の流れを調節するバルブ。 A valve that adjusts the flow of fluid in the flow path when a substance having shape memory property is accommodated in a housing portion provided in the flow path, and the material having shape memory property is deformed.
  2.  前記収容部は前記流路に形成された孔部である請求項1に記載のバルブ。 The valve according to claim 1, wherein the accommodating portion is a hole formed in the flow path.
  3.  前記収容部は前記流路に開口部を有する凹型形状である請求項1又は2に記載のバルブ。 The valve according to claim 1 or 2, wherein the accommodating portion has a concave shape having an opening in the flow path.
  4.  前記形状記憶性を有する物質は形状記憶ポリマーである請求項1~3のいずれか一項に記載のバルブ。 The valve according to any one of claims 1 to 3, wherein the substance having shape memory property is a shape memory polymer.
  5.  前記形状記憶性を有する物質の少なくとも一部が前記流路の少なくとも一部を形成する請求項1~4のいずれか一項に記載のバルブ。 The valve according to any one of claims 1 to 4, wherein at least a part of the substance having shape memory property forms at least a part of the flow path.
  6.  温度変化によって、前記流路中を前記流体が流れる状態とする開状態、又は前記流体の流れを堰き止めた状態とする閉状態、に変形可能である請求項1~5のいずれか一項に記載のバルブ。 The deformation according to any one of claims 1 to 5, wherein the fluid can be transformed into an open state in which the fluid flows in the flow path or a closed state in which the fluid flow is blocked. The valve described.
  7.  加熱されることにより、前記流路中を前記流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブである請求項6に記載のバルブ。 The normally open valve which is deformed from an open state in which the fluid flows through the flow path to a closed state in which the fluid flow is blocked by being heated. The valve described.
  8.  前記バルブは、流体を堰き止める堰を有し、前記形状記憶性を有する物質は、流体が前記堰を迂回するためのバイパス路となる凹部を有し、前記加熱により前記凹部が消失する請求項7に記載のバルブ。 The valve has a weir for damming a fluid, and the substance having shape memory property has a recess serving as a bypass for allowing the fluid to bypass the weir, and the recess disappears by the heating. 7. The valve according to 7.
  9.  前記形状記憶性を有する物質は、流体が通過する貫通孔を有し、前記加熱により前記貫通孔が消失する請求項7に記載のバルブ。 The valve according to claim 7, wherein the substance having shape memory property has a through hole through which a fluid passes, and the through hole disappears by the heating.
  10.  加熱されることにより、前記流路中の前記流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブである請求項6に記載のバルブ。 The normally closed valve which is deformed from a closed state in which the flow of the fluid in the flow path is blocked by heating to an open state in which the fluid flows. The valve described.
  11.  流路に設けられ、
     形状記憶性を有する物質で構成された平板部と、前記平板部の第1面から突出した突出部とを備え、
     前記平板部が変形することにより、前記流路中の流体の流れを調節するバルブ。
    Provided in the flow path,
    A flat plate portion made of a material having shape memory, and a protruding portion protruding from the first surface of the flat plate portion,
    A valve that adjusts the flow of fluid in the flow path when the flat plate portion is deformed.
  12.  前記平板部と前記突出部とは互いに同じ形状記憶性を有する物質で構成されている、請求項11に記載のバルブ。 The valve according to claim 11, wherein the flat plate portion and the protruding portion are made of a material having the same shape memory property.
  13.  前記形状記憶性を有する物質は形状記憶ポリマーである請求項11又は12に記載のバルブ。 The valve according to claim 11 or 12, wherein the substance having shape memory property is a shape memory polymer.
  14.  前記突出部は、前記平板部の厚さ方向に延びている請求項11~13のいずれか一項に記載のバルブ。 The valve according to any one of claims 11 to 13, wherein the protruding portion extends in a thickness direction of the flat plate portion.
  15.  前記突出部は、前記平板部の厚さ方向と交差する方向に延びている請求項11~13のいずれか一項に記載のバルブ。 The valve according to any one of claims 11 to 13, wherein the protruding portion extends in a direction intersecting a thickness direction of the flat plate portion.
  16.  前記突出部は、前記平板部に設けられた第1突出部と、前記第1突出部とは前記平板部の中心を挟んだ逆側に設けられた第2突出部とを備える請求項11~15のいずれか一項に記載のバルブ。 The projecting portion includes a first projecting portion provided on the flat plate portion, and a second projecting portion provided on the opposite side of the center of the flat plate portion from the first projecting portion. The valve according to any one of 15.
  17.  前記突出部は断面が円又は多角形の非直線形状である請求項11~16のいずれか一項に記載のバルブ。 The valve according to any one of claims 11 to 16, wherein the protruding portion has a non-linear shape having a circular or polygonal cross section.
  18.  前記平板部の前記第1面の反対側の第2面が前記流路の少なくとも一部を形成しており、
     前記第1面の表面積は、前記第2面の表面積よりも大きい請求項11~17のいずれか一項に記載のバルブ。
    A second surface opposite to the first surface of the flat plate portion forms at least a part of the flow path;
    The valve according to any one of claims 11 to 17, wherein a surface area of the first surface is larger than a surface area of the second surface.
  19.  前記平板部は、円柱状、円錐台状、多角柱状又は多角錐台状である請求項11~18のいずれか一項に記載のバルブ。 The valve according to any one of claims 11 to 18, wherein the flat plate portion has a columnar shape, a truncated cone shape, a polygonal column shape, or a polygonal frustum shape.
  20.  温度変化部を更に備え、前記平板部の前記第1面は、直接的又は間接的に前記温度変化部に接する請求項11~19のいずれか一項に記載のバルブ。 The valve according to any one of claims 11 to 19, further comprising a temperature changing portion, wherein the first surface of the flat plate portion directly or indirectly contacts the temperature changing portion.
  21.  請求項1~20のいずれか一項に記載のバルブを備える流体デバイス。 A fluidic device comprising the valve according to any one of claims 1 to 20.
  22.  前記バルブを複数備える請求項21に記載の流体デバイス。 The fluid device according to claim 21, comprising a plurality of the valves.
  23.  1つの前記流路に互いに間隔をあけて2つの前記バルブを備える請求項22に記載の流体デバイス。 23. The fluidic device according to claim 22, comprising two of the valves spaced apart from each other in the one flow path.
  24.  直列的に配設された、請求項7~9のいずれか一項に記載のバルブ及び請求項10に記載のバルブを備える請求項22又は23に記載の流体デバイス。 The fluid device according to claim 22 or 23, comprising the valve according to any one of claims 7 to 9 and the valve according to claim 10, which are arranged in series.
  25.  請求項6~20のいずれか一項に記載のバルブ、及び前記形状記憶性を有する物質の少なくとも一部の温度を変化させる温度変化部を備える請求項21~24のいずれか一項に記載の流体デバイス。 The valve according to any one of claims 6 to 20, and a temperature changing unit that changes the temperature of at least a part of the substance having shape memory properties. Fluid device.
  26.  前記温度変化部は、電気エネルギーを熱エネルギーに変換する電熱変換部を備える請求項25に記載の流体デバイス。 The fluid device according to claim 25, wherein the temperature changing unit includes an electrothermal converting unit that converts electrical energy into thermal energy.
  27.  前記温度変化部は、光エネルギーを熱エネルギーに変換する光熱変換部を備える請求項25に記載の流体デバイス。 The fluid device according to claim 25, wherein the temperature changing unit includes a photothermal conversion unit that converts light energy into heat energy.
  28.  流路を有する流路基板と、
     前記流路基板と第1面で接合される基板と、を備え、
     前記基板は、前記流路と対向する位置に設けられたバルブを備え、前記バルブは、形状記憶性を有する物質が収容された収容部を備え、前記形状記憶性を有する物質が変形することにより、前記流路中の流体の流れを調節する流体デバイス。
    A channel substrate having a channel;
    A substrate bonded to the flow path substrate and the first surface;
    The substrate includes a valve provided at a position facing the flow path, and the valve includes a storage portion in which a substance having shape memory property is stored, and the substance having shape memory property is deformed. , A fluidic device for regulating the flow of fluid in the flow path.
  29.  前記収容部は前記基板に形成された凹部の側面及び底面により囲まれた空間である請求項28に記載の流体デバイス。 The fluid device according to claim 28, wherein the accommodating portion is a space surrounded by a side surface and a bottom surface of a recess formed in the substrate.
  30.  前記形状記憶性を有する物質は形状記憶ポリマーである請求項28又は29に記載の流体デバイス。 30. The fluidic device according to claim 28 or 29, wherein the substance having shape memory property is a shape memory polymer.
  31.  前記流路は前記流路基板に形成された溝を含み、
     前記流路基板に形成された溝と前記基板の第1面とが流体に接する第一流路部と、前記流路基板に形成された溝と前記形状記憶性を有する物質とが流体に接する第二流路部と、を含む、請求項28~30のいずれか一項に記載の流体デバイス。
    The flow path includes a groove formed in the flow path substrate,
    A first flow path portion in which the groove formed in the flow path substrate and the first surface of the substrate are in contact with the fluid, and a groove formed in the flow path substrate and the substance having shape memory property are in contact with the fluid. The fluidic device according to any one of claims 28 to 30, comprising a two-channel portion.
  32.  前記基板の第1面と、前記形状記憶性を有する物質の前記流体に接する面とが面一である請求項31に記載の流体デバイス。 32. The fluidic device according to claim 31, wherein the first surface of the substrate is flush with a surface of the substance having shape memory property that is in contact with the fluid.
  33.  前記収容部は底部を有し、
     前記基板は前記第1面の反対側の第2面と前記底部とを貫通する貫通孔を有する請求項28~32のいずれか一項に記載の流体デバイス。
    The receiving portion has a bottom;
    The fluidic device according to any one of claims 28 to 32, wherein the substrate has a through-hole penetrating the second surface opposite to the first surface and the bottom portion.
  34.  前記基板は前記第1面を含み前記流路基板と接合される第1基板と、前記第1基板と前記第1面の反対側の面で接合される第2基板とを備え、
     前記収容部は、前記第1基板を貫通する貫通孔を含み、
     前記第2基板は、先端に前記形状記憶性を有する物質を支持する支持部が設けられ前記貫通孔に挿入される凸部を備える請求項28~33のいずれか一項に記載の流体デバイス。
    The substrate includes a first substrate including the first surface and bonded to the flow path substrate, and a second substrate bonded to the first substrate and a surface opposite to the first surface;
    The accommodating portion includes a through hole penetrating the first substrate,
    The fluidic device according to any one of claims 28 to 33, wherein the second substrate is provided with a support part that supports the substance having shape memory property at a tip thereof, and a convex part that is inserted into the through hole.
  35.  前記第2基板は、前記凸部が設けられた面の反対側の面と前記支持部とを貫通し前記形状記憶性を有する物質の注入口となる供給部を有する請求項34に記載の流体デバイス。 35. The fluid according to claim 34, wherein the second substrate has a supply portion that penetrates the surface opposite to the surface on which the convex portion is provided and the support portion and serves as an inlet for the substance having the shape memory property. device.
  36.  前記支持部に前記温度変化部が設けられた請求項34又は35に記載の流体デバイス。 36. The fluidic device according to claim 34 or 35, wherein the temperature changing portion is provided in the support portion.
  37.  前記凸部の側面は、前記第2基板の表面に向かうにしたがって拡径する傾斜面である請求項34~36のいずれか一項に記載の流体デバイス。 The fluidic device according to any one of claims 34 to 36, wherein a side surface of the convex portion is an inclined surface that increases in diameter toward the surface of the second substrate.
  38.  前記流路が3次元的に配置されている請求項21~37のいずれか一項に記載の流体デバイス。 The fluidic device according to any one of claims 21 to 37, wherein the flow path is three-dimensionally arranged.
  39.  複数の前記流路が3次元的に配置されている請求項38に記載の流体デバイス。 The fluid device according to claim 38, wherein the plurality of flow paths are three-dimensionally arranged.
  40.  流路を有する流路基板と、前記流路基板と第1面で接合される基板とを備える流体デバイスの製造方法であって、
     流路を有する流路基板と、前記流路基板と第1面で接合される基板であって、前記第1面における前記流路と対向する位置に局所的に収容部が形成された基板を用意する工程(a)と、
     前記収容部に形状記憶性を有する物質を収容する工程(b)と、
     を備える流体デバイスの製造方法。
    A fluid device manufacturing method comprising a channel substrate having a channel and a substrate bonded to the channel substrate on a first surface,
    A flow path substrate having a flow path, and a substrate bonded to the flow path substrate on a first surface, the substrate having a housing portion locally formed at a position facing the flow path on the first surface. Preparing step (a);
    A step (b) of containing a substance having shape memory in the containing portion;
    A method for manufacturing a fluidic device.
  41.  前記形状記憶性を有する物質は形状記憶ポリマーである請求項40に記載の流体デバイスの製造方法。 41. The method of manufacturing a fluid device according to claim 40, wherein the substance having shape memory property is a shape memory polymer.
  42.  前記工程(b)において、硬化前の前記形状記憶ポリマー組成物を前記収容部に注入し、前記収容部内で硬化する請求項41に記載の流体デバイスの製造方法。 42. The method of manufacturing a fluid device according to claim 41, wherein, in the step (b), the shape memory polymer composition before curing is injected into the housing portion and cured in the housing portion.
  43.  前記基板は前記第1面の反対側の第2面と前記収容部の底部とを貫通し前記形状記憶ポリマーの注入口となる供給部を備え、
     前記工程(b)において、前記供給部から前記収容部に硬化前の形状記憶ポリマー組成物を注入する請求項42に記載の流体デバイスの製造方法。
    The substrate includes a supply portion that penetrates the second surface opposite to the first surface and the bottom of the housing portion and serves as an inlet for the shape memory polymer,
    43. The method of manufacturing a fluid device according to claim 42, wherein in the step (b), a shape memory polymer composition before curing is injected from the supply unit into the housing unit.
  44.  前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記収容部に収容された形状記憶ポリマーに外力を加えて変形させ、加熱により元の形状に戻る構造体を形成する、工程(c)を更に備える請求項41~43のいずれか一項に記載の流体デバイスの製造方法。 Under the temperature in the temperature range of the shape memory polymer above the shape recovery temperature and below the melting point, an external force is applied to the shape memory polymer housed in the housing portion to deform and form a structure that returns to its original shape by heating. The method for producing a fluidic device according to any one of claims 41 to 43, further comprising a step (c).
  45.  工程(b)の前に前記基板の前記第1面に前記収容部を閉塞する蓋体基板を接合する工程を更に備える請求項40~44のいずれか一項に記載の流体デバイスの製造方法。 The method for producing a fluidic device according to any one of claims 40 to 44, further comprising a step of bonding a lid substrate that closes the housing portion to the first surface of the substrate before the step (b).
  46.  前記蓋体基板は、前記収容部と対向する位置に、前記形状記憶性を有する物質に転写される転写面を有する請求項45に記載の流体デバイスの製造方法。 46. The method of manufacturing a fluid device according to claim 45, wherein the lid substrate has a transfer surface to be transferred to the substance having shape memory property at a position facing the housing portion.
  47.  前記蓋体基板は、前記収容部に収容した前記形状記憶性を有する物質の収縮量に応じた深さの窪みを有する請求項45又は46に記載の流体デバイスの製造方法。 The fluid device manufacturing method according to claim 45 or 46, wherein the lid substrate has a recess having a depth corresponding to a contraction amount of the substance having shape memory property accommodated in the accommodating portion.
  48.  前記工程(c)は、
     前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記形状記憶ポリマーに外力を加えて、第1の凹部を設け、前記形状記憶ポリマー上に、第1のノーマリーオープン・バルブを成形する工程、
     前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記形状記憶ポリマーに外力を加えて、第1の貫通孔を設け、前記形状記憶ポリマーに、第2のノーマリーオープン・バルブを成形する工程、
     前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、前記形状記憶ポリマーに第2の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第2の凹部に外力を加えて前記第2の凹部を平坦にし、前記形状記憶ポリマー上に、第1のノーマリークローズ・バルブを成形する工程、及び、
     前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、前記形状記憶ポリマーに第2の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第2の貫通孔に外力を加えて前記第2の貫通孔を平坦にし、前記形状記憶ポリマーに、第2のノーマリークローズ・バルブを成形する工程からなる群から選ばれる少なくとも一工程であり、
     前記基板の前記第1面に流路を有する流路基板を接合する工程(d)を更に備える請求項41~47のいずれか一項に記載の流体デバイスの製造方法。
    The step (c)
    An external force is applied to the shape memory polymer at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point to provide a first recess, and the first normally open Forming a valve;
    A first through hole is provided by applying an external force to the shape memory polymer at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point, and the shape memory polymer has a second normally open Forming a valve;
    By forming or machining at a temperature lower than the melting point of the shape memory polymer, a second recess is formed in the shape memory polymer, and at a temperature in a temperature range not lower than the melting point of the shape memory polymer and lower than the melting point, Applying an external force to the second recess to flatten the second recess and molding a first normally closed valve on the shape memory polymer; and
    A second through-hole is formed in the shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer, and the temperature is within a temperature range not lower than the melting point of the shape memory polymer and lower than the melting point. Applying at least one external force to the second through hole to flatten the second through hole, and forming at least one step selected from the group consisting of forming a second normally closed valve on the shape memory polymer. Yes,
    The method for manufacturing a fluidic device according to any one of claims 41 to 47, further comprising a step (d) of joining a flow path substrate having a flow path to the first surface of the substrate.
  49.  前記基板は、前記第1面を含み前記流路基板と接合される第1基板と、前記第1基板と前記第1面の反対側の面で接合される第2基板とを備え、
     前記工程(a)が、前記第1基板に、形状記憶ポリマーが収容される収容部となる貫通孔を形成する工程(a1’)と、
     前記第2基板に、先端に前記形状記憶ポリマーを支持する支持部が設けられ前記貫通孔に挿入される凸部と、前記凸部が設けられた面の反対側の面と前記支持部とを貫通し前記形状記憶ポリマーの注入口となる供給部と、前記形状記憶ポリマーの少なくとも一部の温度を変化させる温度変化部とを形成する工程(a2’)と、
     前記第1基板と前記第2基板とを、前記貫通孔に前記凸部を挿入して接合し、前記貫通孔及び前記支持部を含む収容部を形成する工程(a3)と、を備え、
     前記工程(b)が、前記供給部から前記収容部に硬化前の形状記憶ポリマー組成物を注入し、当該組成物を硬化させる工程(b1’)を備える請求項48に記載の流体デバイスの製造方法。
    The substrate includes a first substrate that includes the first surface and is bonded to the flow path substrate, and a second substrate that is bonded to the first substrate and a surface opposite to the first surface;
    The step (a) is a step (a1 ′) of forming a through-hole serving as a storage portion in which the shape memory polymer is stored in the first substrate;
    The second substrate is provided with a convex portion that supports the shape memory polymer at the tip and is inserted into the through hole, a surface opposite to the surface where the convex portion is disposed, and the support portion. A step (a2 ′) of forming a supply part that penetrates and serves as an inlet for the shape memory polymer, and a temperature change part that changes the temperature of at least a part of the shape memory polymer;
    A step (a3) of joining the first substrate and the second substrate by inserting the convex portion into the through hole and forming a housing portion including the through hole and the support portion,
    49. The manufacture of a fluidic device according to claim 48, wherein the step (b) includes a step (b1 ′) of injecting a shape memory polymer composition before curing from the supply unit into the housing unit and curing the composition. Method.
  50.  前記工程(a2’)が、前記第2基板に、先端に前記形状記憶ポリマーを支持する支持部が設けられ前記貫通孔に挿入される凸部と、前記凸部が設けられた面の反対側の面と前記支持部とを貫通し前記形状記憶ポリマーの注入口となる供給部と、前記凸部が設けられた面の反対側の面と前記支持部とを貫通し前記形状記憶ポリマーを注入するときのエア抜きとなる排出部と、前記形状記憶ポリマーの少なくとも一部の温度を変化させる温度変化部とを形成する工程である請求項49に記載の流体デバイスの製造方法。 In the step (a2 ′), the second substrate is provided with a support portion that supports the shape memory polymer at the tip and is inserted into the through hole, and the opposite side of the surface on which the protrusion portion is provided. The shape memory polymer is injected through the supply portion penetrating the surface and the support portion and serving as the injection port of the shape memory polymer, the surface opposite to the surface provided with the convex portion, and the support portion. 50. The method of manufacturing a fluid device according to claim 49, wherein the fluid device is a step of forming a discharge portion for releasing air when the temperature is changed and a temperature changing portion for changing the temperature of at least a part of the shape memory polymer.
  51.  前記温度変化部は、電気エネルギーを熱エネルギーに変換する電熱変換部を備える請求項49又は50に記載の流体デバイスの製造方法。 51. The method of manufacturing a fluid device according to claim 49, wherein the temperature change unit includes an electrothermal conversion unit that converts electrical energy into thermal energy.
  52.  前記温度変化部は、光エネルギーを熱エネルギーに変換する光熱変換部を備える請求項49又は50に記載の流体デバイスの製造方法。 The said temperature change part is a manufacturing method of the fluid device of Claim 49 or 50 provided with the photothermal conversion part which converts light energy into heat energy.
  53.  前記工程(b)の前に前記基板の前記第1面に前記収容部を閉塞する蓋体基板を接合する工程を備え、前記工程(c)の前に前記蓋体基板を剥離する工程を更に備える請求項40~52のいずれか一項に記載の流体デバイスの製造方法。 A step of bonding a lid substrate that closes the housing portion to the first surface of the substrate before the step (b); and a step of peeling the lid substrate before the step (c) A method for producing a fluidic device according to any one of claims 40 to 52.
PCT/JP2016/054546 2015-02-25 2016-02-17 Valve, fluid device, and method for producing fluid device WO2016136551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017502292A JPWO2016136551A1 (en) 2015-02-25 2016-02-17 Valve, fluid device, and fluid device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035920 2015-02-25
JP2015-035920 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136551A1 true WO2016136551A1 (en) 2016-09-01

Family

ID=56788695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054546 WO2016136551A1 (en) 2015-02-25 2016-02-17 Valve, fluid device, and method for producing fluid device

Country Status (2)

Country Link
JP (1) JPWO2016136551A1 (en)
WO (1) WO2016136551A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187294A1 (en) * 2018-03-30 2019-10-03 富士フイルム株式会社 Tip, mixing device, and mixing method
WO2019207644A1 (en) * 2018-04-24 2019-10-31 株式会社ニコン Fluid device, valve device, and detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181684A (en) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd Fluid control device
WO2013153912A1 (en) * 2012-04-12 2013-10-17 国立大学法人東京大学 Valve, microfluidic device, microstructure, valve seat, method for manufacturing valve seat, and method for manufacturing microfluidic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275929A1 (en) * 2011-04-27 2012-11-01 Aptina Imaging Corporation Ferrofluid control and sample collection for microfluidic application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181684A (en) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd Fluid control device
WO2013153912A1 (en) * 2012-04-12 2013-10-17 国立大学法人東京大学 Valve, microfluidic device, microstructure, valve seat, method for manufacturing valve seat, and method for manufacturing microfluidic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187294A1 (en) * 2018-03-30 2019-10-03 富士フイルム株式会社 Tip, mixing device, and mixing method
JPWO2019187294A1 (en) * 2018-03-30 2021-04-08 富士フイルム株式会社 Chips, mixers and mixing methods
JP7123125B2 (en) 2018-03-30 2022-08-22 富士フイルム株式会社 Chip, mixing device and mixing method
US11448332B2 (en) 2018-03-30 2022-09-20 Fujifilm Corporation Chip, mixing device, and mixing method
WO2019207644A1 (en) * 2018-04-24 2019-10-31 株式会社ニコン Fluid device, valve device, and detection device
JPWO2019207644A1 (en) * 2018-04-24 2021-05-27 株式会社ニコン Fluid devices, valve devices and detectors
JP7192859B2 (en) 2018-04-24 2022-12-20 株式会社ニコン Fluidic device, valve device and detection device

Also Published As

Publication number Publication date
JPWO2016136551A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6304688B2 (en) Valve, microfluidic device, microstructure, valve seat, valve seat manufacturing method, and microfluidic device manufacturing method
US8333935B2 (en) Microfluidic device using microfluidic chip and microfluidic device using biomolecule microarray chip
CA2508475C (en) Devices and methods for programmable microscale manipulation of fluids
KR101258434B1 (en) Microfluidic system and fabricating method of the same
JP5208480B2 (en) Valve unit, microfluidic device equipped with valve unit, and microfluidic substrate
JP5600180B2 (en) Valve unit, microfluidic device provided with the same, and driving method of valve unit
US8235073B2 (en) Microfluidic valve unit for controlling flow of fluid and method of fabricating the same
EP1884284A1 (en) Closing valve unit and reaction apparatus having closing valve
JP2007170469A (en) Temperature responsive valve and its manufacturing method
US20110300034A1 (en) Disposable, High Pressure Microfluidic Chips
US20070095393A1 (en) Devices and methods for programmable microscale manipulation of fluids
WO2016136551A1 (en) Valve, fluid device, and method for producing fluid device
JP2003139660A (en) Microfluid device and method of manufacturing the same
Attia et al. Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques
Beck et al. Fundamentals of hydrogel‐based valves and chemofluidic transistors for lab‐on‐a‐chip technology: a tutorial review
Podbiel et al. From CAD to microfluidic chip within one day: Rapid prototyping of lab-on-chip cartridges using generic polymer parts
JP2001070784A (en) Extremely small chemical device with valve mechanism
Meffan et al. Transistor off-valve based feedback, metering and logic operations in capillary microfluidics
Angelini et al. Real-time and reversible light-actuated microfluidic channel squeezing in dye-doped PDMS
US11110451B2 (en) Micro-channel device and method for manufacturing micro-channel device
CN105289767B (en) Micro-fluidic chip
KR20080112573A (en) Fabricating method of valve unit for controlling microfluid, valve unit for controlling microfluid, and microfluidic device with the valve unit
JP2009274067A (en) Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit
JP2003083256A (en) Micro fluid device with a pump mechanism, pump mechanism driving device and fluid transporting method
JP2007211889A (en) Check valve and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755298

Country of ref document: EP

Kind code of ref document: A1