JP2007170469A - Temperature responsive valve and its manufacturing method - Google Patents

Temperature responsive valve and its manufacturing method Download PDF

Info

Publication number
JP2007170469A
JP2007170469A JP2005366262A JP2005366262A JP2007170469A JP 2007170469 A JP2007170469 A JP 2007170469A JP 2005366262 A JP2005366262 A JP 2005366262A JP 2005366262 A JP2005366262 A JP 2005366262A JP 2007170469 A JP2007170469 A JP 2007170469A
Authority
JP
Japan
Prior art keywords
temperature
valve
responsive
gel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366262A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Youho Cho
耀鵬 張
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2005366262A priority Critical patent/JP2007170469A/en
Publication of JP2007170469A publication Critical patent/JP2007170469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature responsive valve easy to manufacture as a micro valve which can open/close or switch a flow path, is driven at a small temperature difference and is used for a micro fluid device, and to provide its manufacturing method. <P>SOLUTION: The valve comprises the fine flow path, and a valve element arranged in the fine flow path for opening/closing the fine flow path, switching it or controlling its flow amount. The valve element is formed of a joint body consisting of a temperature responsive gel having a gel-solid transition temperature and a flexible member. It is deformed with a temperature change to open/close the fine flow path, switch it or control its flow amount. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、温度変化により流路の開閉、切替、あるいは流量制御を行うことができる温度応答性バルブ及びその製造方法に関し、特に、マイクロ流体デバイス、即ち、部材に微小な流路が形成された化学・生化学用微小デバイスに組み込まれ、或いは接続されて好適に使用される微小な温度応答性バルブ及びその製造方法に関する。   The present invention relates to a temperature responsive valve capable of opening / closing, switching, or controlling a flow rate according to a temperature change, and a manufacturing method thereof, and in particular, a microfluidic device, that is, a minute flow channel is formed in a member. The present invention relates to a minute temperature-responsive valve that is incorporated in or connected to a chemical / biochemical microdevice, and a method for manufacturing the same.

マイクロ流体デバイスの流路の開閉、流量制御、流路切り替えなどを行うバルブの駆動方法としては、圧縮空気、機械的な力や変位、磁気、温度、流体の水素イオン濃度(pH)など様々な方法が知られている。これらの中でも、温度変化により開閉等の制御が可能なものは、レーザーや赤外線などにより非接触で駆動できるため、各種の温度応答性のバルブの検討がなされている。   There are various driving methods for valves that perform opening / closing, flow control, and channel switching of microfluidic devices, such as compressed air, mechanical force and displacement, magnetism, temperature, and fluid hydrogen ion concentration (pH). The method is known. Among these, those that can be controlled such as opening and closing by temperature change can be driven in a non-contact manner by laser or infrared rays, and therefore various types of temperature-responsive valves have been studied.

温度応答性バルブに関する先行文献として、本発明者等の出願になる特許文献1には、感温性モノマ−を用いた、ゲル化可能な多孔質体の製造方法と、該多孔質体を不織布などの液体透過性の基材上に形成した温度の変化によりろ過速度が変化する濾過膜が開示されている。該濾過膜は、温度応答性バルブとして使用することが出来る。しかしながら本文献で開示されている前記濾過膜は、開閉バルブや流量調節バルブとしてのみ機能するものであり、流路切り変えバルブは形成できない上、マイクロ流体デバイスに組み込むには、微小な弁体を取り扱わなければならないという困難があった。   As a prior document relating to a temperature-responsive valve, Patent Document 1 filed by the present inventors includes a method for producing a gelable porous body using a temperature-sensitive monomer, and a nonwoven fabric containing the porous body. A filtration membrane in which the filtration rate is changed by a change in temperature formed on a liquid-permeable substrate such as is disclosed. The filtration membrane can be used as a temperature responsive valve. However, the filtration membrane disclosed in this document functions only as an open / close valve and a flow rate adjustment valve, and a flow path switching valve cannot be formed. There was a difficulty that had to be handled.

また、本発明者等の出願になる特許文献2には、部材中に毛細管状の流路を有し、該流路の途中に流路に面して、温度応答性ゲルが充填されたゲル室を有する温度応答性バルブ、及びその製造方法が開示されている(特許文献2参照)。しかしながら、当該構成のバルブは、温度変化により温度応答性ゲルをゲル室中で膨潤させることにより流路を閉塞するものであるため、流路切り替えバルブを形成することが出来なかった。また、流体を流通できるようゲル室中に一定の空隙が設けられた流路開放状態から、ゲル室が膨潤したゲルで実質的に満たされる流路閉塞状態への移行には、ゲルの体積の大きな変化が必要であるため応答速度も不十分であった。   Further, in Patent Document 2, which is an application of the present inventors, a gel having a capillary channel in a member and facing the channel in the middle of the channel and filled with a temperature-responsive gel A temperature responsive valve having a chamber and a manufacturing method thereof are disclosed (see Patent Document 2). However, since the valve having such a configuration closes the flow path by causing the temperature-responsive gel to swell in the gel chamber due to temperature change, a flow path switching valve cannot be formed. In addition, the transition from the channel open state in which a certain gap is provided in the gel chamber so that the fluid can flow to the channel blockage state in which the gel chamber is substantially filled with the swollen gel, The response speed was also insufficient due to the large change required.

一方、温度変化により電気の流通/切断を行うスイッチとして、いわゆるバイメタル式のサーモスタットが知られている。これは、互いに熱膨張係数の異なる2種の金属板を接合した板が、温度変化により曲率を変えることを利用して電気の流通/切断を行うものである。しかしながら、これを流体の開閉バルブに使用しようとすると、温度変化に対する曲率変化が緩慢であるため、開閉や切り替え動作には大きな温度差が必要であった。また、微小なバイメタルを作製しマイクロ流体デバイスに組み込むことは相当に困難であった。   On the other hand, a so-called bimetal thermostat is known as a switch for distributing / cutting electricity according to a temperature change. In this method, electricity is circulated / cut by utilizing the fact that a plate obtained by joining two kinds of metal plates having different thermal expansion coefficients changes the curvature according to a temperature change. However, if this is used for a fluid on-off valve, the curvature change with respect to the temperature change is slow, so that a large temperature difference is required for opening and closing and switching operations. Also, it has been considerably difficult to produce a minute bimetal and incorporate it into a microfluidic device.

特開平6-228215号公報JP-A-62-228215 特開2002-66999号公報JP 2002-66999 A

本発明が解決しようとする課題は、流路の開閉や切り替えが可能で、小さな温度差で駆動可能で、かつ、マイクロ流体デバイスに使用可能な微小なバルブの製造が容易な温度応答性バルブ及びその製造方法を提供することにある。   A problem to be solved by the present invention is a temperature-responsive valve that can be opened and closed and switched, that can be driven with a small temperature difference, and that is easy to manufacture a minute valve that can be used in a microfluidic device. It is in providing the manufacturing method.

本発明においては、バルブを構成する弁体が、ゲル−固体転移温度を有する温度応答性ゲルと可撓性部材との接合体からなるものであるため、温度変化により温度応答性ゲルがゲル−固体転移を生じる際に、接合された可撓性部材との曲率の違いから弁体が変形する。これにより、温度応答性ゲルのゲル−固体転移の体積変化が少しの体積変化であっても、弁体の変形に大きく影響を与えるため、過度な温度変化を与える必要がなく、優れた応答速度で好適に流路の開閉や切り替えが可能である。   In the present invention, since the valve body constituting the valve is a joined body of a temperature-responsive gel having a gel-solid transition temperature and a flexible member, the temperature-responsive gel is gel- When the solid transition occurs, the valve body is deformed due to a difference in curvature from the joined flexible member. Due to this, even if the volume change of the gel-solid transition of the temperature-responsive gel is a small volume change, it greatly affects the deformation of the valve body, so there is no need to give an excessive temperature change and excellent response speed Therefore, it is possible to open / close or switch the flow path.

即ち、本発明は、微細流路と、微細流路内に配置された微細流路を開閉する弁体とからなるバルブであって、弁体が、ゲル−固体転移温度を有する温度応答性ゲルと可撓性部材との接合体からなり、温度変化により変形して微細流路を開閉するものである温度応答性バルブを提供する。   That is, the present invention relates to a valve comprising a fine flow path and a valve body that opens and closes the fine flow path disposed in the fine flow path, and the valve body has a gel-solid transition temperature. There is provided a temperature responsive valve which is composed of a joined body of a flexible member and is deformed by temperature change to open and close a fine flow path.

さらに本発明は、前記温度応答性バルブの製造方法であって、
フィルム状の可撓性部材の少なくとも前記弁体と成す部分に温度応答性ゲルを接合し、該接合部に舌片部分を形成するための表裏を貫通する欠切部を形成して前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層する温度応答性バルブの製造方法を提供する。
Furthermore, the present invention is a method of manufacturing the temperature responsive valve,
A temperature-responsive gel is bonded to at least a portion of the film-like flexible member formed with the valve body, and the valve body is formed with a notched portion penetrating the front and back for forming a tongue piece portion at the joint portion. Forming a valve layer having
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. A temperature responsive valve manufacturing method for stacking is provided.

さらに本発明は、前記温度応答性バルブの製造方法であって、
支持体上に活性エネルギー線硬化性樹脂組成物を塗布し、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射してフィルム状の可撓性部材を形成し、
該フィルム状の可撓性部材に、活性エネルギー線硬化性の温度応答性ゲル形成組成物を塗布して、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射した後、非照射部の未硬化成分を除去することにより、前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層する温度応答性バルブの製造方法を提供するものである。
Furthermore, the present invention is a method of manufacturing the temperature responsive valve,
An active energy ray-curable resin composition is applied onto a support, and the active energy rays are irradiated to portions other than the cut-out portions penetrating the front and back for forming the tongue piece portion. Forming a sex member,
The film-like flexible member is coated with an active energy ray-curable temperature-responsive gel-forming composition and applied to a portion other than the portion formed as a notch that penetrates the front and back surfaces for forming the tongue portion. After irradiating the active energy ray, by removing the uncured component of the non-irradiated part, the valve body layer having the valve body is formed,
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. The present invention provides a method for manufacturing a temperature-responsive valve that is laminated.

本発明は、流路の開閉、切り替え、流量調節が可能であり、小さな温度差で駆動することが可能であり、かつ、マイクロ流体デバイスに容易に組み込み可能な、温度応答性バルブ及びその製造方法を提供することができる。   The present invention is a temperature responsive valve that can open / close, switch, and adjust flow rate, can be driven with a small temperature difference, and can be easily incorporated into a microfluidic device, and a method for manufacturing the same. Can be provided.

また、本発明の温度応答性バルブは、積層構造のマイクロ流体デバイスを作製する際に、同時にあるいは並行して形成することが可能であるため、弁体の位置あわせが容易であり、複雑な工程等を必要としない。   In addition, the temperature-responsive valve of the present invention can be formed simultaneously or in parallel when manufacturing a microfluidic device having a laminated structure, so that positioning of the valve body is easy, and a complicated process is required. Etc. are not required.

本発明の温度応答性バルブは、微細流路と、微細流路内に配置された微細流路を開閉する弁体とからなるバルブであり、該弁体が、ゲル−固体転移温度を有する温度応答性ゲルと可撓性部材との接合体からなり、温度変化により変形して微細流路を開閉するものである。   The temperature-responsive valve of the present invention is a valve composed of a fine channel and a valve body that opens and closes the fine channel disposed in the fine channel, and the valve body has a gel-solid transition temperature. It consists of a joined body of a responsive gel and a flexible member, and is deformed by a temperature change to open and close a fine channel.

[微細流路]
本発明の温度応答性バルブを構成する微細流路の例としては、化学反応、生化学反応の分野や化学工学的処理の分野において、処理の高速化、副生成物の減少、条件検討の高速化などが期待されるマイクロ流体デバイスに設けられた微細な流路が挙げられる。ここで、マイクロ流体デバイスとは、マイクロ流路、マイクロ流路チップ、化学アイシー(IC)、マイクロリアクター、マイクロ分析チップ、マイクロタス(μ−TAS)等と称され、部材中に微細な毛細管状の流路を有するデバイスをいい、化学的、生化学的、電気化学的などの、反応、処理、分析、検出などに用いられるものである。
[Fine channel]
Examples of the fine flow path constituting the temperature responsive valve of the present invention include high-speed processing, reduction of by-products, and high-speed examination of conditions in the fields of chemical reaction, biochemical reaction and chemical engineering processing. A fine flow path provided in a microfluidic device that is expected to be made into a fluid. Here, the microfluidic device is referred to as a microchannel, a microchannel chip, a chemical IC (IC), a microreactor, a microanalysis chip, a microtas (μ-TAS), and the like, and a fine capillary tube in the member. A device having a flow path of, such as chemical, biochemical, and electrochemical, used for reaction, processing, analysis, detection, and the like.

微細流路の断面の幅(本温度応答性バルブの外形が板状やフィルム状などの場合には、流路に直角な方向の断面における、本温度応答性バルブの長軸方向の最大流路寸法を流路の「幅」、長軸方向に垂直な方向の最大流路寸法を流路の「高さ」と称する。マイクロ流体デバイスが棒状等の場合には、互いに直角な任意の方向を幅及び高さとしてよい。)は任意であり、好ましくは1〜1000μm、さらに好ましくは3〜500μm、最も好ましくは5〜300μmである。流路断面の高さも任意であり、好ましくは1〜3000μm、さらに好ましくは3〜1000μm、最も好ましくは5〜500μmである。これらの範囲内の場合には本発明の効果が十分に発揮されるため好ましい。   The width of the cross section of the micro flow path (if the temperature responsive valve has an outer shape such as a plate or film, the maximum flow path in the long axis direction of the temperature responsive valve in the cross section perpendicular to the flow path The dimension is referred to as the “width” of the flow path, and the maximum flow path dimension in the direction perpendicular to the major axis direction is referred to as the “height” of the flow path. The width and the height may be arbitrary, and are preferably 1 to 1000 μm, more preferably 3 to 500 μm, and most preferably 5 to 300 μm. The height of the channel cross section is also arbitrary, preferably 1 to 3000 μm, more preferably 3 to 1000 μm, and most preferably 5 to 500 μm. Within these ranges, the effects of the present invention are sufficiently exhibited, which is preferable.

また、微細流路の断面積は好ましくは1μm〜1mmであり、更に好ましくは10μm2〜0.1mm2である。流路断面積が1μm以上であると製造が容易であり、液体の遮断性が良好である。また、1mm以下であれば、良好にバルブの耐圧性や応答速度を確保できる。 The cross-sectional area of the fine channel is preferably 1 μm 2 to 1 mm 2 , more preferably 10 μm 2 to 0.1 mm 2 . When the cross-sectional area of the flow path is 1 μm 2 or more, the production is easy and the liquid blocking property is good. Moreover, if it is 1 mm < 2 > or less, the pressure | voltage resistance and response speed of a valve | bulb can be ensured favorable.

[温度応答性ゲル]
本発明の弁体を構成するゲル−固体転移温度を有する温度応答性ゲル(固体状態や乾燥状態にあるものも含む。)は、感温性ゲルとも呼ばれ、膨潤媒の凝固点と沸点の間にゲル−固体転移温度を持つものである。温度の変化によるゲルの膨潤度は、ゲル−固体転移温度付近で大きく変化するため、このような温度応答性ゲルを用いることにより、狭い温度範囲で開閉や流路切り替えが出来るバルブを形成することができる。ゲル−固体転移温度は、同じ単量体から成る線状高分子の場合の相分離温度(臨界共溶解温度とも言う)に相当する相転移温度を言う。本発明の温度応答性バルブを使用する温度変化の範囲は、必ずしもゲル−固体転移温度をまたぐ範囲である必要はない。例えば、ゲル−固体転移温度以上の温度範囲内での温度変化であっても良いし、ゲル−固体転移温度以下の温度範囲内での温度変化であってもよい。しかしながら、ゲル−固体転移温度付近での温度変化であることが好ましく、ゲル−固体転移温度をまたぐ温度変化であることがさらに好ましい。一般に、ゲルが下限臨界共溶解温度(LCST)型のゲル−固体転移を示す場合、即ち、ゲル−固体転移温度より低温側でゲル状態、高温側で固体状態となる場合には、低温側で一定温度差での曲率変化が大きくなるが、応答速度は遅くなる。上限臨界共溶解温度(UCST)を示す場合はこの逆となる。温度応答性の水性ゲルはLCST型のものが多く、温度応答性の非水ゲルはUCST型のものが多く知られている。
[Temperature-responsive gel]
The temperature-responsive gel (including those in a solid state or a dry state) having a gel-solid transition temperature constituting the valve body of the present invention is also called a thermosensitive gel, and is between the freezing point and boiling point of the swelling medium. Have a gel-solid transition temperature. Since the degree of swelling of the gel due to temperature changes greatly near the gel-solid transition temperature, by using such a temperature-responsive gel, a valve that can be opened and closed and the flow path can be switched in a narrow temperature range. Can do. The gel-solid transition temperature refers to a phase transition temperature corresponding to a phase separation temperature (also referred to as critical co-solution temperature) in the case of a linear polymer composed of the same monomer. The range of temperature change using the temperature-responsive valve of the present invention does not necessarily need to be in the range across the gel-solid transition temperature. For example, it may be a temperature change within a temperature range equal to or higher than the gel-solid transition temperature, or may be a temperature change within a temperature range equal to or lower than the gel-solid transition temperature. However, it is preferably a temperature change near the gel-solid transition temperature, and more preferably a temperature change across the gel-solid transition temperature. In general, when the gel exhibits a lower critical co-melting temperature (LCST) type gel-solid transition, that is, when the gel is in a gel state at a lower temperature side than the gel-solid transition temperature and becomes a solid state at a higher temperature side, The change in curvature at a certain temperature difference increases, but the response speed decreases. The opposite is true when the upper critical co-melting temperature (UCST) is indicated. Many temperature-responsive aqueous gels are of the LCST type, and many temperature-responsive non-aqueous gels are of the UCST type.

本発明に使用する温度応答性ゲルは、水性ゲルであっても非水ゲルであっても良いが、本温度応答性バルブに流す流体により膨潤して温度応答性ゲルとなるものである。該ゲル−固体転移温度は、ゲル素材を選定することにより、使用目的に応じて好適な値に設計することが出来る。また、ゲル−固体転移温度は基本的には該ゲルを構成する単量体の特性で決まるが、架橋剤の種類、架橋密度、共重合モノマーの種類と共重合比、膨潤媒の種類や膨潤媒の塩濃度などの影響を受けるため、本温度応答性バルブに流す流体の種類に応じて、ゲル−固体転移温度を調節することが好ましい。   The temperature-responsive gel used in the present invention may be an aqueous gel or a non-aqueous gel, but is swollen by a fluid flowing through the temperature-responsive valve to become a temperature-responsive gel. The gel-solid transition temperature can be designed to a suitable value according to the purpose of use by selecting a gel material. The gel-solid transition temperature is basically determined by the characteristics of the monomer constituting the gel, but the type of crosslinking agent, the crosslinking density, the type and copolymerization ratio of the copolymerization monomer, the type of swelling medium and the swelling. Since it is affected by the salt concentration of the medium, it is preferable to adjust the gel-solid transition temperature according to the type of fluid flowing through the temperature-responsive valve.

このような温度応答性ゲルを構成する単量体(以下、「感温性単量体」と称する)は任意のものを使用することが出来、例えば水性ゲルの場合、N−アルキル(メタ)アクリルアミド及び/又はN−アルキレン(メタ)アクリルアミド等のN−置換(メタ)アクリルアミドや、ミリスチル(メタ)アクリレート等の長鎖アルキル基や長鎖アルキレン基を有する(メタ)アクリレート等を挙げることができる。   Any monomer (hereinafter referred to as “temperature-sensitive monomer”) constituting such a temperature-responsive gel can be used. For example, in the case of an aqueous gel, N-alkyl (meth) is used. N-substituted (meth) acrylamides such as acrylamide and / or N-alkylene (meth) acrylamide, long chain alkyl groups such as myristyl (meth) acrylate, and (meth) acrylates having a long chain alkylene group can be exemplified. .

N−アルキル(メタ)アクリルアミド及び/又はN−アルキレン(メタ)アクリルアミドの例としては、N−エチルアクリルアミド、N−イソプロピルアクリルアミド、N−n−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−メチルエチルアクリルアミド、N,N−メチルイソプロピルアクリルアミド、N,N−メチル−n−プロピルアクリルアミド、N,N−ジエチルアクリルアミド、N,N−シクロプロピルアクリルアミド、N−アクリロイルピロリジン、N−アクリロイルピペリジン、N,N−シクロプロピルメタクリルアミド、、N,N−ジエチルメタクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルメタクリルアミド、N−メタクリロイルピロリジン、N−メタクリロイルピペリジン等を挙げることができる。   Examples of N-alkyl (meth) acrylamide and / or N-alkylene (meth) acrylamide include N-ethylacrylamide, N-isopropylacrylamide, Nn-propylacrylamide, N, N-dimethylacrylamide, N, N- Methylethylacrylamide, N, N-methylisopropylacrylamide, N, N-methyl-n-propylacrylamide, N, N-diethylacrylamide, N, N-cyclopropylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N, N-cyclopropylmethacrylamide, N, N-diethylmethacrylamide, N-isopropylmethacrylamide, Nn-propylmethacrylamide, N-methacryloylpyrrolidine, N-methacryloylpiperidine It can be mentioned.

長鎖アルキル基や長鎖アルキレン基を有する(メタ)アクリレートの例としては、炭素数9〜20のアルキル(メタ)アクリレートを挙げることができる。なかでも、室温付近で転移が起こることから、N−イソプロピルアクリルアミドやミリスチル(メタ)アクリレートが好ましい。勿論、これらの感温性単量体は、これら同士、或いは感温性を示さない他の単量体との共重合体とすることも出来る。   Examples of the (meth) acrylate having a long-chain alkyl group or a long-chain alkylene group include alkyl (meth) acrylates having 9 to 20 carbon atoms. Of these, N-isopropylacrylamide and myristyl (meth) acrylate are preferred because the transition occurs near room temperature. Of course, these thermosensitive monomers can also be made into a copolymer with these or other monomers that do not exhibit temperature sensitivity.

非水ゲルの場合、例えば架橋ポリスチレン−シクロヘキサン系のように、多くの架橋重合体−θ溶媒の組み合わせがUCST型のゲル−固体転移温度を示す。また、多くのアルケン型重合体−脂肪族又は芳香族溶媒系はLCST型のゲル−固体転移温度を示す。その他、架橋ポリイソブチレン−ベンゼン系のように、UCST型とLCST型の2つのゲル−固体転移温度を持つものもある。   In the case of non-aqueous gels, many cross-linked polymer-θ solvent combinations exhibit a UCST-type gel-solid transition temperature, for example, cross-linked polystyrene-cyclohexane system. Many alkene-type polymer-aliphatic or aromatic solvent systems also exhibit LCST-type gel-solid transition temperatures. In addition, there are those having two gel-solid transition temperatures of UCST type and LCST type, such as a crosslinked polyisobutylene-benzene system.

温度応答性ゲルは固体状態からゲル状態へ膨潤することにより膨張する。膨張の程度は任意であるが、好ましくは膨潤前に対する膨潤後の長さの比が、1.03〜2であり、更に好ましくは1.05〜1.6である。この値が上記下限値以上であると、上記弁体の曲率を好適に変化させることができ、バルブを良好に開閉できる。また、大きな弁体が必要とならず、バルブ部のデッドボリュームの増加等の不都合が生じにくいため好ましい。上記上限値以下であると、ゲル層と他方の素材間の剥離、ゲルの自己破壊、バルブの耐圧性の低下、耐久性の低下等が生じにくいため好ましい。   A temperature-responsive gel expands by swelling from a solid state to a gel state. The degree of expansion is arbitrary, but the ratio of the length after swelling to that before swelling is preferably 1.03 to 2, more preferably 1.05 to 1.6. When this value is equal to or greater than the lower limit, the curvature of the valve body can be suitably changed, and the valve can be opened and closed satisfactorily. Further, it is preferable because a large valve body is not required and inconveniences such as an increase in the dead volume of the valve portion hardly occur. It is preferable that it is not more than the above upper limit value because peeling between the gel layer and the other material, gel self-destruction, reduction in pressure resistance of the valve, reduction in durability, and the like hardly occur.

温度変化によるゲルの寸法変化量は、感温性単量体の選択、架橋重合性単量体の添加量などによる架橋度の調節、前記感温性単量体と共重合性の、その重合体が温度応答性ゲルとならない単量体(以下、「非感温性単量体」と称する)の混合比、温度応答性ゲルへの非膨潤性重合体、固体粒子、非感温性ゲル粒子の添加量などによって調節できる。温度応答性ゲルへの非膨潤性重合体等の添加は、温度応答性ゲル素材にこれらを添加してゲル化させる方法で実施できる。   The amount of dimensional change of the gel due to temperature change depends on the selection of the temperature-sensitive monomer, adjustment of the degree of cross-linking by the addition amount of the cross-linkable monomer, etc. Mixing ratio of monomers (hereinafter referred to as “non-temperature-sensitive monomers”) whose coalescence does not become a temperature-responsive gel, non-swellable polymer, solid particles, non-temperature-sensitive gel It can be adjusted by the amount of particles added. The addition of a non-swellable polymer or the like to the temperature responsive gel can be carried out by a method of adding these to a temperature responsive gel material to cause gelation.

本発明で使用する温度応答性ゲルは、室温で製造出来ることが生産性の面から好ましいが、室温で製造すると、室温で平らに伸びた弁体が形成されることが多い。これに対し、室温で反った形状とする場合には、例えば、室温以外の温度で製造する方法、温度応答性ゲルを形成する際に使用する溶剤(膨潤媒)として、本バルブに使用する流体より温度応答性ゲルの膨潤度が小さい溶剤を使用する方法、本バルブに使用する流体で膨潤する架橋重合体粒子をゲル形成材料に添加する方法、温度応答性ゲルを形成する際に使用する溶剤(膨潤媒)と、本バルブに流す流体とで膨潤度が異なる非温度応答性ゲル粒子をゲル形成材料に添加する方法、弁体形成時に反った形状に形成する方法、等により製造することが出来る。このように、室温で反った形状のものは、弁座を有する構造の場合には、室温において弁体が弁座を押さえつけて、閉状態での漏洩を防止するために、或いは、室温において弁体が弁座から完全に離れて流路を完全な開状態とするために、室温で弁体が反った状態にあることが好ましい場合が多い。   It is preferable from the viewpoint of productivity that the temperature-responsive gel used in the present invention can be manufactured at room temperature. However, when manufactured at room temperature, a valve body that extends flatly at room temperature is often formed. On the other hand, in the case of a warped shape at room temperature, for example, a method of manufacturing at a temperature other than room temperature, a fluid used for this valve as a solvent (swelling medium) used when forming a temperature-responsive gel A method of using a solvent having a smaller degree of swelling of the temperature-responsive gel, a method of adding crosslinked polymer particles swollen by the fluid used in the valve to the gel-forming material, and a solvent used in forming the temperature-responsive gel (Swelling medium) and non-temperature-responsive gel particles with different degrees of swelling depending on the fluid flowing through the valve can be manufactured by a method of adding to a gel-forming material, a method of forming a warped shape when forming a valve body, etc. I can do it. In this way, in the case of a structure having a valve seat, the shape warped at room temperature is for the valve body to hold down the valve seat at room temperature to prevent leakage in the closed state, or at room temperature. In many cases, it is preferable that the valve body is warped at room temperature so that the body is completely separated from the valve seat and the flow path is completely opened.

温度応答性ゲルの形成方法は任意である。例えば、
(I)架橋重合法として、
(I−i)感温性単量体が架橋重合性単量体であって、該感温性単量体を架橋重合させる方法、
(I−ii)温度応答性ゲル素材が、非架橋重合性の感温性単量体と、該感温性単量体と共重合する架橋重合性化合物を含有し、これらを共重合させる方法、
(II)後架橋法として、
(II−i)感温性単量体から成る非架橋重合体を例えば電離放射線により架橋する方法、
(II−ii)温度応答性ゲル素材が、感温性単量体の非架橋重合体を架橋させる架橋剤、例えば光(又は熱又は水)架橋剤を含有し、感温性単量体の熱(又は光)重合に引き続いて該重合体の光(又は熱又は水)架橋反応を行う方法、
を例示できる。これらの中、上記(I−ii)の架橋重合法が製造が容易で好ましく、中でも、該架橋重合が、活性エネルギー線架橋重合であることが、形成速度が速く、また、容易に後述の多孔質ゲルを形成できるため好ましい。活性エネルギー線としては、紫外線、可視光線、赤外線の如き光線;エックス線、ガンマ線の如き電離放射線;電子線、イオンビーム、ベータ線、重粒子線の如き粒子線が挙げられる。
The method for forming the temperature-responsive gel is arbitrary. For example,
(I) As a crosslinking polymerization method,
(Ii) a method in which the temperature-sensitive monomer is a cross-linkable monomer, and the temperature-sensitive monomer is cross-linked.
(I-ii) A method in which a temperature-responsive gel material contains a non-crosslinked polymerizable thermosensitive monomer and a crosslinkable polymerizable compound copolymerized with the thermosensitive monomer, and these are copolymerized ,
(II) As a post-crosslinking method,
(II-i) a method of crosslinking a non-crosslinked polymer comprising a thermosensitive monomer, for example, with ionizing radiation,
(II-ii) The temperature-responsive gel material contains a crosslinking agent that crosslinks the non-crosslinked polymer of the temperature-sensitive monomer, such as a light (or heat or water) crosslinking agent, A method of performing a photo (or heat or water) cross-linking reaction of the polymer subsequent to thermal (or photo) polymerization,
Can be illustrated. Among these, the cross-linking polymerization method of (I-ii) is preferable because it is easy to produce. Among them, the cross-linking polymerization is active energy ray cross-linking polymerization, and the formation speed is high, and the below-described porosity can be easily obtained. It is preferable because a gel can be formed. Examples of the active energy rays include rays such as ultraviolet rays, visible rays, and infrared rays; ionizing radiations such as X-rays and gamma rays; and particle rays such as electron beams, ion beams, beta rays, and heavy particle rays.

非架橋重合性の感温性単量体を用いる場合、これと共重合させる架橋重合性化合物は、代表的には1分子内に2個以上の重合性炭素−炭素二重結合を有する多官能単量体や多官能オリゴマーを挙げることができる。このような多官能単量体としては、例えば、メチレンビスアクリルアミド、エチレンビスアクリルアミド、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2,2’−ビス(4−(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパン、2,2’−ビス(4−(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン等の2官能モノマー、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、イソシアヌレートトリ(メタ)アクリレート等の3官能モノマー、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能モノマー、ジペンタエリスリト−ルヘキサアクリレート等の6官能モノマー等が挙げられる。これらのモノマーを混合して用いることも勿論可能である。   When a non-crosslinked polymerizable temperature-sensitive monomer is used, the crosslinked polymerizable compound copolymerized therewith is typically a polyfunctional compound having two or more polymerizable carbon-carbon double bonds in one molecule. A monomer and a polyfunctional oligomer can be mentioned. Examples of such polyfunctional monomers include methylene bisacrylamide, ethylene bisacrylamide, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and polyethylene. Bifunctional such as glycol di (meth) acrylate, 2,2′-bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) propane, 2,2′-bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane Monomers, trifunctional monomers such as trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, isocyanurate tri (meth) acrylate, pentaerythritol tetra (meth) acrylate Tetrafunctional monomers etc., dipentaerythritol - 6-functional monomer such as Le hexaacrylate. Of course, it is also possible to use a mixture of these monomers.

エネルギー線照射により架橋可能な多官能オリゴマーは、例えば、重量平均分子量が500〜50000のオリゴマー(プレポリマーとも言う)であってもよく、例えば、エポキシ樹脂の(メタ)アクリル酸エステル、ポリエーテル樹脂の(メタ)アクリル酸エステル、ポリブタジエン樹脂の(メタ)アクリル酸エステル、分子末端にアクリル基又はメタクリル基を有するポリウレタン樹脂等を挙げることができる。もちろんこれらのオリゴマ−同士を混合して用いることもできるし、単量体と混合して用いることもできる。   The polyfunctional oligomer that can be cross-linked by irradiation with energy rays may be, for example, an oligomer having a weight average molecular weight of 500 to 50,000 (also referred to as a prepolymer). For example, (meth) acrylic acid ester of an epoxy resin, polyether resin (Meth) acrylic acid ester, polybutadiene resin (meth) acrylic acid ester, polyurethane resin having an acrylic group or methacrylic group at the molecular end, and the like. Of course, these oligomers can also be used by mixing with each other, and can also be used by mixing with monomers.

架橋重合性化合物は、前記感温性単量体と混合可能であるか、共通溶剤を有するものであればよい。また、後述のように、多孔質の温度応答性ゲルを形成する場合には、孔形成剤と相溶するものを選択することができる。架橋重合性化合物の混合量や種類を選択することで、温度応答性ゲルの膨潤度やその変化の程度を調節することが出来る。架橋重合性化合物の添加量を増すか、或いは官能基数の多い架橋重合性化合物を使用して、架橋密度を上げるほど、温度応答性ゲルの硬度や強度は増し、寸法変化量は減少する。   The cross-linkable polymerizable compound only needs to be mixed with the temperature-sensitive monomer or have a common solvent. Further, as described later, when forming a porous temperature-responsive gel, one that is compatible with the pore-forming agent can be selected. By selecting the mixing amount and type of the crosslinkable compound, the degree of swelling of the temperature responsive gel and the degree of change thereof can be adjusted. Increasing the crosslink density by increasing the addition amount of the crosslinkable compound or using a crosslinkable compound having a large number of functional groups increases the hardness and strength of the temperature-responsive gel and decreases the amount of dimensional change.

本発明においては、温度応答性ゲルの強度、硬度、膨潤度、応答温度、応答感度などを調節する目的で、温度応答性ゲル素材に、感温性単量体と共重合可能な他の重合性化合物を加えることもできる。   In the present invention, for the purpose of adjusting the strength, hardness, swelling degree, response temperature, response sensitivity, etc. of the temperature-responsive gel, other polymerization that can be copolymerized with the temperature-sensitive monomer is used for the temperature-responsive gel material. Sexual compounds can also be added.

感温性単量体と共重合させることの出来る他の重合性化合物としては、温度応答性ゲル素材に溶解するものであればよく、単官能の単量体又は単官能オリゴマーを使用できる。例えば、アクリルアミド、メタクリルアミド、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、アクリル酸、メタクリル酸、ビニルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−フェニルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸エチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルセロソルブ(メタ)アクリレート、n−ビニルピロリドン、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレートを挙げることができる。   Any other polymerizable compound that can be copolymerized with the temperature-sensitive monomer may be any compound that dissolves in the temperature-responsive gel material, and a monofunctional monomer or a monofunctional oligomer can be used. For example, acrylamide, methacrylamide, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, acrylic acid, methacrylic acid, vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-2-phenylpropane sulfonic acid, 2-acrylamide 2-methylpropanesulfonic acid ethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, hydroxyethyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, phenyl (meth) acrylate, phenyl cellosolve (meth) acrylate, n-vinylpyrrolidone, isobornyl (meth) acrylate, dicyclopentenyl ( Data) acrylate, and di cyclopentenylene b carboxyethyl (meth) acrylate.

温度応答性ゲルは少なくともゲル状態か固体状態のいずれかに於いて多孔質であることが好ましい(以下このようなゲルを「多孔質ゲル」と称する)。多孔質ゲルとは、重合体部分と空隙部分から成る多孔質体であり、該重合体部分がゲル又はゲル化しうる重合体で構成されている多孔質体である。該多孔質ゲルは、ゲル状態でも固体状態でも多孔質であることがさらに好ましい。   The temperature-responsive gel is preferably porous at least in either a gel state or a solid state (hereinafter, such a gel is referred to as a “porous gel”). The porous gel is a porous body composed of a polymer portion and a void portion, and the polymer portion is formed of a gel or a gelable polymer. More preferably, the porous gel is porous both in a gel state and in a solid state.

温度応答性ゲルが固体状態で多孔質である場合には、電子顕微鏡により多孔質であることを確認することが出来るが、温度応答性ゲルがゲル相状態で多孔質である場合には測定が困難である。しかし、ゲル相状態で多孔質であることは、応答速度が桁違いに増加することで確認できる。即ち、多孔質とすることで、相変化時の膨潤媒の必要拡散距離が極端に短くなるため、膨潤媒の吸収によるゲル化や膨潤媒の吐き出しによる固体化の応答速度が増し、それにより、開閉等の応答速度が向上すると考えられる。従って、ゲル状態で多孔質、固体状値で非多孔質であるような多孔質ゲルは、(ゲル−固体転移温度マイナス5℃)以上の温度範囲で温度変化させることが、高い応答速度が得られるため好ましく、ゲル−固体転移温度以上の温度範囲で温度変化させることがさらに好ましい。また、ゲル状態で非多孔質、固体状値で多孔質であるような多孔質ゲルは、(ゲル−固体転移温度プラス5℃)以下の温度範囲で温度変化させることが、高い応答速度が得られるため好ましく、ゲル−固体転移温度以下の温度範囲で温度変化させることがさらに好ましい。ゲル状態でも固体状態でも多孔質であるような多孔質ゲルは、ゲル−固体転移温度をまたぐ温度で温度変化させることが、高い応答速度が得られるため好ましく、低温側を(ゲル−固体転移温度マイナス5℃)以下の温度とし、高温側を(ゲル−固体転移温度プラス5℃)以上の温度として温度変化させることがさらに好ましい。   When the temperature-responsive gel is porous in the solid state, it can be confirmed to be porous by an electron microscope. However, if the temperature-responsive gel is porous in the gel phase state, the measurement is not possible. Have difficulty. However, it is confirmed that the porous structure in the gel phase state is an order of magnitude increase in response speed. That is, by making it porous, the required diffusion distance of the swelling medium at the time of phase change becomes extremely short, so that the response speed of gelation by absorption of the swelling medium and solidification by discharging of the swelling medium increases, It is considered that the response speed such as opening and closing is improved. Therefore, a porous gel that is porous in a gel state and non-porous in a solid state can change the temperature in a temperature range of (gel-solid transition temperature minus 5 ° C.) or higher to obtain a high response speed. Therefore, it is preferable to change the temperature in a temperature range equal to or higher than the gel-solid transition temperature. In addition, a porous gel that is non-porous in a gel state and porous in a solid state value can obtain a high response speed by changing the temperature within a temperature range of (gel-solid transition temperature plus 5 ° C.) or less. Therefore, it is preferable to change the temperature in the temperature range below the gel-solid transition temperature. For a porous gel that is porous in both a gel state and a solid state, it is preferable to change the temperature at a temperature that crosses the gel-solid transition temperature because a high response speed is obtained. More preferably, the temperature is changed to a temperature of minus 5 ° C. or lower and the high temperature side is set to a temperature of (gel-solid transition temperature plus 5 ° C.) or higher.

多孔質ゲルの製造方法は任意であるが、例えば、特開平5−16076号公報に開示されている方法で製造することが出来る。即ち、感温性単量体、架橋重合性単量体、及び、これらと相溶し、これらの共重合体とは相溶しない化合物〔以下、相分離剤と称する〕の均一混合溶液(以下、「多孔質ゲル原料」と称する場合がある)を調製し、この多孔質ゲル原料を用いて、上記の通常の温度応答性ゲル形成と同様の方法で、エネルギー線を照射して架橋重合体を形成すると共に相分離させて多孔質体となし、必要に応じて細孔中の相分離剤を水系液体と置換する方法により製造することが出来る。この方法により、相分離剤の混合比を多くすると、ゲル状態でも固体状態でも多孔質であるような多孔質ゲルが得られ、相分離剤を比較的少なくすると、ゲル状態で多孔質、固体状態で非多孔質であるような多孔質ゲルが得られる。また、溶剤として感温性ゲルとなる膨潤剤を用いて、固体となる温度で架橋重合させる方法、例えばN−イソプロピルアクリルアミドの場合には、相分離剤として水を用い、30℃以上の温度で架橋重合させる方法により、相分離剤の混合比を多くすると、ゲル状態でも固体状態でも多孔質であるような多孔質ゲルが得られ、相分離剤を比較的少なくすると、ゲル状態で非多孔質、固体状態で多孔質であるような多孔質ゲルが得られる。   The method for producing the porous gel is arbitrary, but for example, it can be produced by the method disclosed in JP-A-5-16076. That is, a temperature-sensitive monomer, a cross-linkable monomer, and a homogeneous mixed solution (hereinafter referred to as a phase separation agent) of a compound compatible with these and incompatible with these copolymers (hereinafter referred to as a phase separation agent) , And may be referred to as “porous gel raw material”), and using this porous gel raw material, a crosslinked polymer is irradiated with energy rays in the same manner as in the above-mentioned normal temperature-responsive gel formation. And forming a porous body by phase separation, and if necessary, the phase separation agent in the pores can be replaced with an aqueous liquid. By this method, when the mixing ratio of the phase separation agent is increased, a porous gel that is porous in both the gel state and the solid state is obtained, and when the phase separation agent is relatively decreased, the gel state is porous and solid state. A porous gel that is non-porous is obtained. In addition, a method of cross-linking polymerization at a temperature that becomes a solid using a swelling agent that becomes a thermosensitive gel as a solvent, for example, in the case of N-isopropylacrylamide, water is used as a phase separation agent at a temperature of 30 ° C. or higher. When the mixing ratio of the phase separation agent is increased by the crosslinking polymerization method, a porous gel that is porous in both the gel state and the solid state is obtained, and when the phase separation agent is relatively small, the gel state is non-porous. A porous gel that is porous in a solid state is obtained.

相分離剤としては、感温性単量体と架橋重合性単量体の混合物とは相溶するが、該混合物にエネルギー線を照射することにより生成する架橋重合体を膨潤させず、かつエネルギー線に対して不活性なものであれば特に限定無く用いることが出来る。   As a phase separation agent, a mixture of a temperature-sensitive monomer and a cross-linkable polymerizable monomer is compatible, but the cross-linked polymer formed by irradiating the mixture with energy rays does not swell, and energy. Any material that is inert to the wire can be used without any particular limitation.

より具体的には水、一価又は多価アルコール類、カプリン酸メチル等のアルキルエステル類、ジイソブチルケトン等のジアルキルケトン類、液状ポリエチレングリコ−ル、ポリエチレングリコ−ルのモノエステル、ポリエチレングリコールのモノエーテル、ポリエチレングリコールソルビタンモノエステル、ポリエチレングリコールソルビタンジエステル、ポリエチレングリコールソルビタントリエステル、ポリエステルポリオール、ポリエチレングリコ−ルアミン等のオリゴマー類、酢酸セルロース、エチルセルロース、ニトロセルロース、ヒドロキシメチルセルロース、キトサン、ポリスチレン、ポリ塩化ビニル、ポリカ−ボネ−ト、ポリスルホン、ポリエ−テルスルホン、ポリウレタン、フェノキシ樹脂、ポリアリレート、ポリアクリロニトリル、ポリアクリル酸エステル、ポリアクリル酸、ポリメチルメタクリレート、ポリアクリルアミド、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリビニルアルコール等及びこれらの共重合体等のオリゴマーやポリマー類が挙げられる。相分離剤はこれら同士やこれらを含む混合物であってよいし、これらに生成する架橋重合体を膨潤させる溶剤を混合したものであっても良い。   More specifically, water, monohydric or polyhydric alcohols, alkyl esters such as methyl caprate, dialkyl ketones such as diisobutyl ketone, liquid polyethylene glycol, polyethylene glycol monoester, polyethylene glycol monoester Ether, polyethylene glycol sorbitan monoester, polyethylene glycol sorbitan diester, polyethylene glycol sorbitan triester, polyester polyol, oligomers such as polyethylene glycol amine, cellulose acetate, ethyl cellulose, nitrocellulose, hydroxymethyl cellulose, chitosan, polystyrene, polyvinyl chloride, Polycarbonate, polysulfone, polyethersulfone, polyurethane, phenoxy resin, polyarylate, polyacrylate Nitrile, polyacrylic acid esters, polyacrylic acid, polymethyl methacrylate, polyacrylamide, polyethylene glycol, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl alcohol and oligomers or polymers such as a copolymer thereof. The phase-separating agent may be a mixture containing them or a mixture thereof, or may be a mixture of a solvent that swells the cross-linked polymer formed thereon.

相分離剤は、エネルギー線照射により重合体を成形した後、系によっては除去せずに用いることもできるが、除去することもできる。除去は洗浄、乾燥、置換等の任意の方法を採用しうるが、相分離剤を除去する必要がある場合には、相分離剤が水溶性であることが、除去しやすい為、好ましい。   The phase separation agent can be used without being removed depending on the system after forming the polymer by irradiation with energy rays, but can also be removed. The removal can employ any method such as washing, drying, and substitution. However, when the phase separation agent needs to be removed, it is preferable that the phase separation agent is water-soluble because it is easy to remove.

多孔質ゲル原料の粘度は任意であり、弁体となる部分に塗布して活性エネルギー線を照射する製造方法に於いては、1〜100PaSであることが、塗布が容易であり、好ましいが、(一時的な)支持体上に塗布して、活性エネルギー線をパターン露光する製造方法に於いては、25℃において0.1〜10PaSであることが、塗布が容易であり好ましい。   The viscosity of the porous gel raw material is arbitrary, and in the production method in which it is applied to the valve body and irradiated with active energy rays, it is preferably 1 to 100 PaS because it is easy to apply, In the production method in which the active energy ray is applied to a (temporary) support and subjected to pattern exposure, it is preferably 0.1 to 10 PaS at 25 ° C. because it is easy to apply.

[可撓性部材]
弁体を構成する他方の素材である可撓性部材は、温度に対する膨張収縮特性が前記温度応答性ゲルと異なるものであれば任意であり、例えば、有機重合体、金属、ガラス、水晶やダイヤモンドなどの結晶、セラミック、炭素などであってよいが、有機重合体が、好適なヤング率を有し、成形性も良いため好ましい。有機重合体は架橋重合体であることが、クリープが少なく、バルブ動作の再現性と安定性が向上するため好ましい。
可撓性部材の厚みは任意であるが、好適な厚みは引張弾性率に依存し、引張弾性率が大きいほど薄くすることが好ましい。例えば、「引張弾性率物性×厚み」の値を好ましくは0.1〜10kPam、更に好ましくは0.3〜3kPamとする。
可撓性部材は、温度応答性ゲルと良好に接合させる為に、温度応答性ゲルと共有結合できる官能基を表面に有することが好ましい。このような官能基を持たせる方法は任意であるが、例えば下記の方法を例示できる。即ち、
(i)可撓性部材を、温度応答性ゲル素材に含有される単量体と共重合可能な単量体の重合体で形成し、該部材の表面に未反応の該単量体を残存させておく方法、
(ii)可撓性部材を、温度応答性ゲル素材に含有される単量体と共重合可能な官能基、例えば(メタ)アクリロイル基を分子内に含有する熱重合性単量体、例えばエポキシ化合物)の熱重合による重合体で形成し、該部材の表面に未反応の該単量体を残存させておく方法、
(iii)可撓性部材を、例えば(メタ)アクリロイル基を軍資内に持つシランカップリング剤などの表面処理剤で処理し、表面に温度応答性ゲル素材に含有される単量体と共重合可能な官能基を導入する方法、
(iv)可撓性部材を、例えばエポキシ基、イソシアナト基、アルデヒド基、クロロアルデヒド基、水酸基、などの官能基を分子内に有する単量体の(共)重合体で形成し、一方、温度応答性ゲル素材に含有される例えば多感能単量体に、上記の官能基と結合する官能基をを分子内に有する化合物を使用する方法。
このとき、上記(i)の方法においては、可撓性部材を、特に(メタ)アクリロイル基含有単量体のエネルギー線インサイチュー重合で形成し、その際、照射量を不十分として不完全線硬化状態とする方法で作成できる。また、上記(i)〜(iii)においては、上記重合性官能基を有する可撓性部材の上に温度応答性ゲル素材を塗布して、エネルギー線照射によりゲルを形成する方法により、好ましく、共有結合で接合させることが出来る。
[Flexible member]
The flexible member, which is the other material constituting the valve body, is arbitrary as long as the expansion and contraction characteristics with respect to temperature are different from those of the temperature-responsive gel. For example, organic polymer, metal, glass, crystal and diamond The organic polymer is preferable because it has a suitable Young's modulus and good moldability. It is preferable that the organic polymer is a cross-linked polymer because there is little creep and the reproducibility and stability of the valve operation is improved.
The thickness of the flexible member is arbitrary, but the preferred thickness depends on the tensile elastic modulus, and it is preferable to make it thinner as the tensile elastic modulus is larger. For example, the value of “tensile modulus physical property × thickness” is preferably 0.1 to 10 kPam, more preferably 0.3 to 3 kPam.
The flexible member preferably has a functional group on the surface that can be covalently bonded to the temperature-responsive gel in order to be bonded well to the temperature-responsive gel. Although the method of giving such a functional group is arbitrary, the following method can be illustrated, for example. That is,
(I) The flexible member is formed of a polymer of a monomer copolymerizable with the monomer contained in the temperature-responsive gel material, and the unreacted monomer remains on the surface of the member. How to keep,
(Ii) Thermally polymerizable monomer containing, for example, epoxy, a functional group copolymerizable with the monomer contained in the temperature-responsive gel material, such as a (meth) acryloyl group. Compound) is a polymer formed by thermal polymerization, and the unreacted monomer is left on the surface of the member.
(Iii) The flexible member is treated with a surface treatment agent such as a silane coupling agent having a (meth) acryloyl group in the military, and the surface is co-polymerized with the monomer contained in the temperature-responsive gel material. A method for introducing a polymerizable functional group;
(Iv) The flexible member is formed of a monomer (co) polymer having a functional group such as an epoxy group, an isocyanato group, an aldehyde group, a chloroaldehyde group, or a hydroxyl group in the molecule, while the temperature is The method of using the compound which has the functional group couple | bonded with said functional group in the molecule | numerator, for example in the multisensitive monomer contained in the responsive gel raw material.
At this time, in the above method (i), the flexible member is formed by energy beam in situ polymerization of the (meth) acryloyl group-containing monomer, and in this case, the irradiation amount is insufficient and the incomplete line is formed. It can be created by a method of making it hardened. Further, in the above (i) to (iii), a method of applying a temperature-responsive gel material on the flexible member having the polymerizable functional group and forming a gel by irradiation with energy rays is preferable. It can be joined by covalent bond.

[弁体]
本発明の温度応答性バルブを構成する弁体は、温度応答性ゲルと可撓性部材との接合体からなるものであり、温度変化により温度応答性ゲルがゲル−固体転移を生じ、接合された可撓性部材との膨張収縮状態の違いにより弁体が変形して流路の開閉や切り替えを行うことができる。
[Valve]
The valve body constituting the temperature responsive valve of the present invention is composed of a joined body of a temperature responsive gel and a flexible member, and the temperature responsive gel undergoes a gel-solid transition due to a temperature change and joined. The valve body can be deformed due to the difference in expansion and contraction with the flexible member, and the channel can be opened and closed or switched.

前記弁体の平面形状や寸法は流路の開閉や切り替えができるよう、流路の形状や構成により適宜設計すればよい。その形状としては舌片状のものが特に好適に使用でき、例えば、一方の端に線状の固定端を持つ舌片状、複数の点状の固定部を持つ舌片状、周囲の一部に複数の固定部を持つ短冊形や星形であり、複数の舌片が集合した形状であり得る。これらの中で、一方の端が固定された舌片状が、製造が容易で動作が確実なため好ましく、該舌片は、U字形、コの字形、又は台形が好ましい。該舌片は、固定端である基部に於ける幅が長さの1.0〜2倍が好ましく、1.1〜1.8倍が更に好ましく、1.2〜1.6倍が最も好ましい。この範囲とすることにより、弁体のねじれを抑制し、開閉、切り替え、流量調節、逆止などの動作が確実で再現性のあるものにすることが出来、かつ、寸法も過度に大きくならない。   What is necessary is just to design suitably the planar shape and dimension of the said valve body by the shape and structure of a flow path so that a flow path can be opened and closed and switched. As the shape, a tongue-like shape can be particularly preferably used. For example, a tongue-like shape having a linear fixed end at one end, a tongue-like shape having a plurality of point-like fixing portions, and a part of the periphery It is a strip shape or a star shape having a plurality of fixed portions, and can be a shape in which a plurality of tongue pieces are gathered. Of these, a tongue-like shape with one end fixed is preferable because it is easy to manufacture and reliable, and the tongue is preferably U-shaped, U-shaped, or trapezoidal. The tongue piece preferably has a width of 1.0 to 2 times, more preferably 1.1 to 1.8 times, most preferably 1.2 to 1.6 times the length at the base which is the fixed end. . By setting it within this range, it is possible to suppress twisting of the valve body, and to ensure reliable and reproducible operations such as opening / closing, switching, flow rate adjustment, and non-returning, and the dimensions do not become excessively large.

前記弁体においては、温度応答性ゲルと可撓性部材とが層状に積層されている状態が好ましい。また、積層弁体部分全体に両部材が積層されていても、可撓性部材の一部に温度応答性ゲルが積層されていてもよく、可撓性部材上に温度応答性の異なる二種以上の温度応答性ゲルが積層されていてもよい。   In the valve body, it is preferable that the temperature-responsive gel and the flexible member are laminated in layers. Moreover, even if both members are laminated | stacked on the whole laminated valve body part, the temperature-responsive gel may be laminated | stacked on a part of flexible member, and two types from which temperature responsiveness differs on a flexible member. The above temperature-responsive gel may be laminated.

また、微小なバルブを形成する場合には、微小な弁体をしかるべき位置に正確に固定する必要があるが、そのためには、弁体がフィルム状の部材の一部に設けられていることが好ましい。このためには、弁体がフィルム状の可撓性部材に設けられた舌片部分と、該舌片部分に積層された温度応答性ゲルとの接合体からなる構造であることが好ましく、具体的には次のような構造とすることが好ましい。
(1)弁体の基部にそれより大きな、例えば弁体の10〜10000倍の面積を持つ固定部が着いた弁部材を形成し、弁体部のみを残して、前記固定部を温度応答性バルブの部材に埋め込んだ形状。
(2)本温度応答性バルブ全体に渡るフィルム状の前記可撓性部材の一部に、コの字型やUの字型の貫通溝で囲まれた舌片状の弁体が形成された形状。
In addition, when a minute valve is formed, it is necessary to accurately fix the minute valve body at an appropriate position. For this purpose, the valve body is provided on a part of a film-like member. Is preferred. For this purpose, the valve body preferably has a structure comprising a tongue piece provided on a film-like flexible member and a temperature-responsive gel laminated on the tongue piece. Specifically, the following structure is preferable.
(1) A valve member having a fixed portion having a larger area, for example, 10 to 10,000 times as large as the valve body, is formed at the base of the valve body, and only the valve body portion is left, and the fixed portion is temperature responsive. Shape embedded in the valve member.
(2) A tongue-like valve body surrounded by a U-shaped or U-shaped through groove is formed on a part of the film-like flexible member over the entire temperature-responsive valve. shape.

弁体の形成順序は任意であり、例えば上記(2)の場合、可撓性部材に貫通溝で囲まれた舌片状部分を形成した後にゲルを接合しても良いし、可撓性部材の一部に舌片状に温度応答性ゲルを接合して弁体部を形成し、該弁体の周囲部を貫通溝を形成して舌片状の弁体と成しても良い。上記の貫通溝は、例えばフォトリソグラフィー、レーザー切断機、機械的打ち抜き、プラズマ加工により形成できる。   For example, in the case of (2) above, the gel may be joined after the tongue-shaped portion surrounded by the through groove is formed on the flexible member. It is also possible to form a valve body part by joining a temperature-responsive gel in the form of a tongue piece to a part of this, and form a through-groove around the valve body to form a tongue piece-like valve body. The through groove can be formed by, for example, photolithography, laser cutting machine, mechanical punching, or plasma processing.

該弁体に於ける前記温度応答性ゲルと他方の可撓性部材の厚み方向の形状は任意であり、例えば、一定厚みのフィルム状、厚みがテーパー状に変化するフィルム状、枠や支持部が厚くその他の部分がフィルム状等であり得るが、一定厚みのフィルム状であることが製造が容易であり好ましい。   The shape of the temperature-responsive gel and the other flexible member in the valve body in the thickness direction is arbitrary, for example, a film shape with a constant thickness, a film shape whose thickness changes into a taper shape, a frame or a support portion However, a film having a certain thickness is preferable because it is easy to produce.

前記弁体の厚みの下限は任意であるが、1μm以上が好ましく、5μm以上が更に好ましく、10μm以上が更に好ましい。前記弁体の厚みの下限は、上記範囲であって、かつ、開閉や切り変えすべき流路、即ち、本バルブに接続される流路の直径の1/10以上であることが好ましく、該流路の直径の1/5以上であることが好ましい。前記流路の直径は、流路の断面形状が円以外の場合には、相当する断面積の円の直径とする。前記弁体の厚みをこの下限以上にすることにより、圧力差のある流路であっても開閉や切り替えが可能になり、又製造も容易になる。   Although the minimum of the thickness of the said valve body is arbitrary, 1 micrometer or more is preferable, 5 micrometers or more are more preferable, and 10 micrometers or more are still more preferable. The lower limit of the thickness of the valve body is within the above range, and is preferably 1/10 or more of the diameter of the flow path to be opened / closed or switched, that is, the flow path connected to the valve, It is preferable that it is 1/5 or more of the diameter of a flow path. The diameter of the flow path is the diameter of a circle having a corresponding cross-sectional area when the cross-sectional shape of the flow path is other than a circle. By setting the thickness of the valve body to be equal to or greater than this lower limit, it is possible to open / close and switch even in a flow path having a pressure difference, and manufacture is facilitated.

前記弁体の厚みの上限も任意であるが、500μm以下であることが好ましく、300μm以下であることが更に好ましく、150μm以下であることが最も好ましい。前記弁体の厚みの上限は、上記範囲であって、かつ、流路の直径の10倍以下であることが好ましく、5倍以下であることが更に好ましく、2倍以下であることが最も好ましい。上記上限以下とすることで、該弁体の曲率変化を大きくすることが容易になるため弁体を小さくでき、微小なバルブの形成が容易になる上、応答速度も速くなる。なお、弁体の厚みが場所により異なる場合には、前記弁体の厚みは平均厚みとする。   The upper limit of the thickness of the valve body is also arbitrary, but is preferably 500 μm or less, more preferably 300 μm or less, and most preferably 150 μm or less. The upper limit of the thickness of the valve body is within the above range, and is preferably 10 times or less, more preferably 5 times or less, and most preferably 2 times or less the diameter of the flow path. . By setting it to the upper limit or less, it becomes easy to increase the curvature change of the valve body, so that the valve body can be made small, the formation of a minute valve is facilitated, and the response speed is also increased. In addition, when the thickness of a valve body changes with places, the thickness of the said valve body shall be average thickness.

可撓性部材の厚みとゲル層の厚みの比は任意であるが、好適な比は可撓性部材の硬度に依存する。可撓性部材の「引張弾性率物性×厚み」の値をゲル層の該値の好ましくは1〜3000倍、さらに好ましくは1〜1000倍、最も好ましくは1〜300倍にする。この範囲の下限以上とすることにより、耐久性と再現性のある弁体が得られ易く、この範囲の上限以下とすることにより、弁体の曲率の変化量を大きくすることができる。しかし、ゲルのヤング率は他方の素材のヤング率に比べて数桁低い場合が多いので、前記他方の素材の厚みを上記範囲まで薄くすることが困難な場合には、前記他方の素材の厚みは出来るだけ上記範囲に近づけることが好ましい。なお、一般にゲルの引張弾性率の測定は困難であるため、曲げ剛性率の3倍を引張弾性率として良い。   The ratio between the thickness of the flexible member and the thickness of the gel layer is arbitrary, but a suitable ratio depends on the hardness of the flexible member. The value of “tensile modulus physical property × thickness” of the flexible member is preferably 1 to 3000 times, more preferably 1 to 1000 times, and most preferably 1 to 300 times that of the gel layer. By setting it above the lower limit of this range, it is easy to obtain a valve body having durability and reproducibility. By setting it below the upper limit of this range, the amount of change in the curvature of the valve body can be increased. However, the Young's modulus of the gel is often several orders of magnitude lower than the Young's modulus of the other material, so if it is difficult to reduce the thickness of the other material to the above range, the thickness of the other material is Is preferably as close to the above range as possible. In general, since it is difficult to measure the tensile modulus of gel, three times the bending rigidity may be used as the tensile modulus.

本発明で使用する弁体は、設定温度(例えば前記ゲル−固体転移温度)を中心とする±10℃の温度変化で、曲率が好ましくは0.1(mm−1)以上、さらに好ましくは、0.3(mm−1)以上、最も好ましくは、0.5(mm−1)以上変化するものである。曲率の変化範囲は正〜正の範囲で変化してもよいし、0〜正の範囲で変化してもよいし、負〜正の範囲で変化してもよい。形成するマイクロバルブの流路や弁座の形状に応じて好適なものを選択使用すればよい。これらの中で。負〜正の範囲で変化するものが、流路形状に対する適用性が広く、又、閉状態で弁座を圧迫する方向に付勢されるため流体の漏洩量が少なくなり好ましい。 The valve body used in the present invention has a temperature change of ± 10 ° C. centering on a set temperature (for example, the gel-solid transition temperature), and the curvature is preferably 0.1 (mm −1 ) or more, more preferably, It is 0.3 (mm −1 ) or more, and most preferably 0.5 (mm −1 ) or more. The change range of the curvature may be changed in a positive to positive range, may be changed in a 0 to positive range, or may be changed in a negative to positive range. What is necessary is just to select and use a suitable thing according to the flow path of the microvalve to form, or the shape of a valve seat. Among these. What changes in the negative to positive range is preferable because it has wide applicability to the shape of the flow path and is biased in the direction of pressing the valve seat in the closed state, so that the amount of fluid leakage is reduced.

[温度応答性バルブ]
本発明の温度応答性バルブは、前記弁体が温度変化により変形して前記微細流路を開閉、切替、あるいは流量制御をできれば、その構成は任意であり、同一平面内に形成された一つの微細流路の流路途中に弁体が設けられた構成、同一平面内に形成された分岐状の微細流路の分岐部分に弁体が設けられた構成、又は、孔や切欠を有する層が多層に積層されて形成される連通孔による微細流路の流路途中に弁体層が設けられた構成などが例示できる。
[Temperature responsive valve]
The temperature-responsive valve according to the present invention can have any configuration as long as the valve body is deformed by temperature change to open, close, switch, or control the flow rate of the fine flow path. A structure in which a valve body is provided in the middle of the flow path of the fine flow path, a structure in which a valve body is provided in a branch portion of a branched fine flow path formed in the same plane, or a layer having a hole or a notch The structure etc. which the valve body layer was provided in the middle of the flow path of the fine flow path by the communicating hole formed by laminating | stacking in multiple layers can be illustrated.

特に、積層構造により形成される温度応答性バルブは、流路途中への弁体の設置が容易であり、また、温度変化により変形する弁体が流路を好適に閉鎖させやすいため、好ましい。このような積層構造の温度応答性バルブとしては、フィルム状の可撓性部材に設けられた舌片部分と、該舌片部分に温度応答性ゲルが積層された温度応答性ゲルとの接合体からなる弁体を有するフィルム状の可撓性部材からなる弁体層と、微細流路を構成する溝又は貫通孔を有する二つの流路層とからなり、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように、二つの流路層が弁体層を挟持して積層された多層構造を有するものを好ましく例示できる。   In particular, a temperature-responsive valve formed by a laminated structure is preferable because a valve body can be easily installed in the middle of the flow path, and a valve body that is deformed by a temperature change can easily close the flow path. As a temperature-responsive valve having such a laminated structure, a joined body of a tongue piece provided on a film-like flexible member and a temperature-responsive gel in which a temperature-responsive gel is laminated on the tongue piece. A valve body layer made of a film-like flexible member having a valve body made of the above and two flow path layers having grooves or through holes constituting a fine flow path, and the grooves or penetrations of the two flow path layers A preferable example is one having a multilayer structure in which two flow path layers are laminated with the valve body layer sandwiched so that the holes communicate and are isolated by deformation of the valve body.

本発明の温度応答性バルブは、温度変化の前後のいずれかにおいて、弁体が微細流路を構成する部材の少なくとも一部に近接又は接触することで、流路断面積を減少させたり流路を閉鎖し、流量制御や流路の開閉を行うものである。(以下、微細流路を構成する部分のうち、温度変化の前後のいずれかにおいて弁体が近接又は接触する部分を弁座という。)   The temperature responsive valve of the present invention reduces the cross-sectional area of the flow path or allows the flow path to be close to or in contact with at least a part of the members constituting the fine flow path either before or after the temperature change. Is closed to control the flow rate and open / close the flow path. (Hereinafter, of the parts constituting the fine flow path, the part where the valve body approaches or contacts either before or after the temperature change is referred to as a valve seat.)

また、分岐状の微細流路の分岐部分に弁体が設けられた構成、例えば、微細流路が三叉状の分岐流路を有し、且つ、前記弁体が、常体で三叉状の分岐流路の一の流路を閉鎖し、温度変化により前記一の流路を開放すると共に他の一つの流路を閉鎖する構成のものは、流路の切替が可能であるため、好適に使用できる。   In addition, a configuration in which a valve body is provided at a branch portion of a branching micro flow path, for example, the micro flow path has a trifurcated branch flow path, and the valve body is a regular trifurcated branch. A configuration in which one of the channels is closed and the one channel is opened due to a temperature change and the other channel is closed is preferable because the channel can be switched. it can.

弁座は弁体が押さえることにより流路を遮断したり、流路断面積を減少させたりする部分であり、流路内開口部の周囲部である。弁座の構造は任意であり、例えば平面に開けられた孔の周囲、筒の先端、舌片状の弁体の固定端側から該弁体の中ほどまで、弁体に接して弁体の面と平行に伸びた流路の端部付近の周囲部等であり得る。これらの中で、上記流路の端部付近の周囲部であることが、構造が単純で製造が容易であるため好ましい。流路内開口部の平面形状も任意であり、用途目的によって設計できる。例えば、本発明のバルブが流量調節バルブである場合には弁座の平面形状をテーパー状として、弁体の曲率が小さな時には弁体で押さえられていない開口面積が小さく、弁体の曲率が大きくなるにつれ該開口面積が徐々に大きくなる形状が好ましい。また例えば、本発明のバルブが開閉バルブや流路切り替えバルブである場合には、弁座の平面形状を弁体の長さ方向に短く、幅方向に長くして、弁体が僅かに反れば一気に全開となる形状が好ましい。   The valve seat is a part that shuts off the flow path or reduces the cross-sectional area of the flow path when pressed by the valve body, and is the periphery of the opening in the flow path. The structure of the valve seat is arbitrary, for example, around the hole formed in a plane, the tip of the tube, the fixed end side of the tongue-like valve body, and the middle of the valve body in contact with the valve body, It may be a peripheral portion in the vicinity of the end of the flow path extending in parallel with the surface. Among these, the peripheral portion in the vicinity of the end portion of the flow path is preferable because the structure is simple and the manufacture is easy. The planar shape of the opening in the channel is also arbitrary and can be designed according to the purpose of use. For example, when the valve of the present invention is a flow control valve, the planar shape of the valve seat is tapered, and when the curvature of the valve body is small, the opening area not pressed by the valve body is small, and the curvature of the valve body is large. A shape in which the opening area gradually increases as it becomes is preferable. Further, for example, when the valve of the present invention is an on-off valve or a flow path switching valve, if the planar shape of the valve seat is shortened in the length direction of the valve body and lengthened in the width direction, the valve body slightly warps. A shape that is fully open at once is preferable.

弁室は弁体が可動な空間であり、その構造は任意である。流路の一部であっても良いし、弁体の形状に応じた形状に形成しても良い。しかし、弁体と平行な方向に伸びる流路の一部とすることが、構造が単純で製造が容易なため好ましい。   The valve chamber is a space in which the valve body is movable, and its structure is arbitrary. It may be a part of the flow path, or may be formed in a shape corresponding to the shape of the valve body. However, it is preferable to use a part of the flow path extending in a direction parallel to the valve body because the structure is simple and the manufacturing is easy.

弁座に接続される流路や弁室に接続される流路の形状や構造も任意であるが、溝を有するフィルム状部材や板状部材に設けられた溝が他の部材と積層されることにより形成された形状であることが、構造が単純で製造が容易なため好ましい。   The shape and structure of the flow path connected to the valve seat and the flow path connected to the valve chamber are arbitrary, but the groove provided in the film-like member or plate-like member having the groove is laminated with other members. The shape formed by this is preferable because the structure is simple and the manufacture is easy.

本発明の温度応答性バルブの弁体以外の素材は任意であり、ガラス、石英のような結晶、シリコンのような半導体、ステンレススチールのような金属、セラミック、炭素、高分子重合体(以下、単に重合体と称する)などであり得るが、重合体が、電熱係数が低いことにより必要な部分のみ、例えば微小な弁質部のみを選択的に温度変化させることが容易であり、また、熱容量が小さいため、本温度応答性バルブが組み込まれたマイクロ流体デバイス全体の温度を変化させる場合に、省エネルギーであり好ましい。   Materials other than the valve body of the temperature responsive valve of the present invention are arbitrary, such as glass, crystals such as quartz, semiconductors such as silicon, metals such as stainless steel, ceramics, carbon, high molecular polymers (hereinafter, It is easy to selectively change the temperature of only a necessary part, for example, only a minute valve body part due to a low electrothermal coefficient, and the heat capacity. Therefore, when the temperature of the entire microfluidic device in which the temperature responsive valve is incorporated is changed, energy saving is preferable.

重合体は、単独重合体であっても、共重合体であっても良く、また、熱可塑性重合体であっても、熱硬化性重合体であっても良い。生産性の面から、熱可塑性重合体又はエネルギー線硬化性組成物の硬化物であることが好ましい。   The polymer may be a homopolymer or a copolymer, and may be a thermoplastic polymer or a thermosetting polymer. From the viewpoint of productivity, a cured product of a thermoplastic polymer or an energy beam curable composition is preferable.

本発明の温度応答性バルブを形成する弁体以外の部材に使用できる重合体としては、例えば、ポリスチレン、ポリ−α−メチルスチレン、ポリスチレン/マレイン酸共重合体、ポリスチレン/アクリロニトリル共重合体の如きスチレン系重合体;ポルスルホン、ポリエーテルスルホンの如きポリスルホン系重合体;ポリメチルメタクリレート、ポリアクリロニトリルの如き(メタ)アクリル系重合体;ポリマレイミド系重合体;   Examples of the polymer that can be used for members other than the valve body forming the temperature-responsive valve of the present invention include polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, polystyrene / acrylonitrile copolymer, and the like. Styrene polymers; Polysulfone polymers such as porsulfone and polyethersulfone; (Meth) acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; Polymaleimide polymers;

ビスフェノールA系ポリカーボネート、ビスフェノールF系ポリカーボネート、ビスフェノールZ系ポリカーボネートの如きポリカーボネート系重合体;ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1の如きポリオレフィン系重合体;塩化ビニル、塩化ビニリデンの如き塩素含有重合体;酢酸セルロース、メチルセルロースの如きセルロース系重合体; Polycarbonate polymers such as bisphenol A polycarbonate, bisphenol F polycarbonate, and bisphenol Z polycarbonate; polyolefin polymers such as polyethylene, polypropylene, and poly-4-methylpentene-1; chlorine-containing heavy compounds such as vinyl chloride and vinylidene chloride Cellulose polymer such as cellulose acetate and methylcellulose;

ポリウレタン系重合体;ポリアミド系重合体;ポリイミド系重合体;ポリ−2,6−ジメチルフェニレンオキサイド、ポリフェニレンサルファイドの如きポリエーテル系又はポリチオエーテル系重合体;ポリエーテルエーテルケトンの如きポリエーテルケトン系重合体;ポリエチレンテレフタレート、ポリアリレートの如きポリエステル系重合体;エポキシ樹脂;ウレア樹脂;フェノール樹脂などが挙げられる。 Polyurethane polymers; Polyamide polymers; Polyimide polymers; Polyether or polythioether polymers such as poly-2,6-dimethylphenylene oxide and polyphenylene sulfide; Polyether ketone polymers such as polyether ether ketone Polyester polymers such as polyethylene terephthalate and polyarylate; epoxy resins; urea resins; phenol resins and the like.

これらの中でも、接着性が良好な点などから、スチレン系重合体、(メタ)アクリル系重合体、ポリカーボネート系重合体、ポリスルホン系重合体、ポリエステル系重合体が好ましい。   Among these, a styrene polymer, a (meth) acrylic polymer, a polycarbonate polymer, a polysulfone polymer, and a polyester polymer are preferable from the viewpoint of good adhesiveness.

エネルギー線硬化性組成物を構成するエネルギー線硬化性化合物は、ラジカル重合性、アニオン重合性、カチオン重合性等の任意のものであってよい。
エネルギー線硬化性化合物は、重合開始剤の非存在下で重合するものに限らず、重合開始剤の存在下でのみエネルギー線により重合するものも使用することができる。
The energy beam curable compound constituting the energy beam curable composition may be any one such as radical polymerizable, anionic polymerizable, and cationic polymerizable.
The energy ray-curable compound is not limited to those that polymerize in the absence of a polymerization initiator, and those that polymerize with energy rays only in the presence of a polymerization initiator can also be used.

そのようなエネルギー線硬化性化合物としては、重合性の炭素−炭素二重結合を有するものが好ましく、中でも、反応性の高い(メタ)アクリル系化合物やビニルエーテル類、また光重合開始剤の不存在下でも硬化するマレイミド系化合物が好ましい。   As such an energy ray-curable compound, those having a polymerizable carbon-carbon double bond are preferable, and among them, a highly reactive (meth) acrylic compound or vinyl ether, or absence of a photopolymerization initiator is preferred. A maleimide compound that cures even underneath is preferred.

エネルギー線硬化性化合物として好ましく使用することができる架橋重合性の(メタ)アクリル系単量体としては、例えば、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,8−オクタンジオールジ(メタ)アクリレート、2,2’−ビス(4−(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパン、   Examples of the crosslinkable (meth) acrylic monomer that can be preferably used as the energy ray curable compound include diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 2,2′-bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) propane,

2,2’−ビス(4−(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン、ヒドロキシジピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレート、ビス(アクロキシエチル)ヒドロキシエチルイソシアヌレート、N−メチレンビスアクリルアミドの如き2官能単量体; 2,2′-bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane, hydroxydipivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl diacrylate, bis (acryloxyethyl) hydroxyethyl isocyanurate , Bifunctional monomers such as N-methylenebisacrylamide;

トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリス(アクロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクロキシエチル)イソシアヌレートの如き3官能単量体;ペンタエリスリトールテトラ(メタ)アクリレートの如き4官能単量体;ジペンタエリスリトールヘキサ(メタ)アクリレートの如き6官能単量体などが挙げられる。 Trifunctional monomers such as trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meta) ) Tetrafunctional monomer such as acrylate; hexafunctional monomer such as dipentaerythritol hexa (meth) acrylate.

また、エネルギー線硬化性化合物として、重合性オリゴマー(プレポリマーとの呼ばれる)を用いることもでき、例えば、重量平均分子量が500〜50000のものが挙げられる。そのような重合性オリゴマーしては、例えば、エポキシ樹脂の(メタ)アクリル酸エステル、ポリエーテル樹脂の(メタ)アクリル酸エステル、ポリブタジエン樹脂の(メタ)アクリル酸エステル、分子末端に(メタ)アクリロイル基を有するポリウレタン樹脂などが挙げられる。   Moreover, a polymerizable oligomer (referred to as a prepolymer) can also be used as the energy ray curable compound, and examples thereof include those having a weight average molecular weight of 500 to 50,000. Examples of such polymerizable oligomers include (meth) acrylic acid ester of epoxy resin, (meth) acrylic acid ester of polyether resin, (meth) acrylic acid ester of polybutadiene resin, and (meth) acryloyl at the molecular end. Examples thereof include a polyurethane resin having a group.

マレイミド系の架橋重合性のエネルギー線硬化性化合物としては、例えば、4,4’−メチレンビス(N−フェニルマレイミド)、2,3−ビス(2,4,5−トリメチル−3−チエニル)マレイミド、1,2−ビスマレイミドエタン、1,6−ビスマレイミドヘキサン、トリエチレングリコールビスマレイミド、N,N’−m−フェニレンジマレイミド、m−トリレンジマレイミド、N,N’−1,4−フェニレンジマレイミド、N,N’−ジフェニルメタンジマレイミド、N,N’−ジフェニルエーテルジマレイミド、   Examples of maleimide-based crosslinkable energy ray-curable compounds include 4,4′-methylenebis (N-phenylmaleimide), 2,3-bis (2,4,5-trimethyl-3-thienyl) maleimide, 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, triethylene glycol bismaleimide, N, N′-m-phenylene dimaleimide, m-tolylene dimaleimide, N, N′-1,4-phenylene diene Maleimide, N, N′-diphenylmethane dimaleimide, N, N′-diphenyl ether dimaleimide,

N,N’−ジフェニルスルホンジマレイミド、1,4−ビス(マレイミドエチル)−1,4−ジアゾニアビシクロ−[2,2,2]オクタンジクロリド、4,4’−イソプロピリデンジフェニル=ジシアナート・N,N’−(メチレンジ−p−フェニレン)ジマレイミドの如き2官能マレイミド;N−(9−アクリジニル)マレイミドの如きマレイミド基とマレイミド基以外の重合性官能基とを有するマレイミドなどが挙げられる。 N, N'-diphenylsulfone dimaleimide, 1,4-bis (maleimidoethyl) -1,4-diazoniabicyclo- [2,2,2] octane dichloride, 4,4'-isopropylidenediphenyl dicyanate , N ′-(methylenedi-p-phenylene) dimaleimide, bifunctional maleimide; N- (9-acridinyl) maleimide, and maleimide having a polymerizable functional group other than maleimide group.

マレイミド系の架橋重合性オリゴマーとしては、例えば、ポリテトラメチレングリコールマレイミドカプリエート、ポリテトラメチレングリコールマレイミドアセテートの如きポリテトラメチレングリコールマレイミドアルキレートなどが挙げられる。マレイミド系の単量体やオリゴマーは、これら同士、及び/又はビニル単量体、ビニルエーテル類、アクリル系単量体の如き重合性炭素・炭素二重結合を有する化合物と共重合させることもできる。これらの化合物は、単独で用いることもでき、2種類以上を混合して用いることもできる。   Examples of maleimide-based cross-linkable oligomers include polytetramethylene glycol maleimide alkylates such as polytetramethylene glycol maleimide capriate and polytetramethylene glycol maleimide acetate. Maleimide monomers and oligomers can be copolymerized with each other and / or with compounds having a polymerizable carbon / carbon double bond such as vinyl monomers, vinyl ethers, and acrylic monomers. These compounds can also be used independently and can also be used in mixture of 2 or more types.

エネルギー線硬化性組成物には、必要に応じて、光重合開始剤を添加することもできる。光重合開始剤は、使用するエネルギー線に対して活性であり、エネルギー線硬化性化合物を重合させることが可能なものであれば、特に制限はなく、例えば、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤であって良い。また、光重合開始剤は、マレイミド化合物であって良い。   If necessary, a photopolymerization initiator can be added to the energy ray curable composition. The photopolymerization initiator is not particularly limited as long as it is active with respect to the energy beam used and can polymerize the energy beam curable compound. For example, a radical polymerization initiator or an anionic polymerization initiator is used. It may be a cationic polymerization initiator. The photopolymerization initiator may be a maleimide compound.

混合使用できる単官能マレイミド系単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−ドデシルマレイミドの如きN−アルキルマレイミド;N−シクロヘキシルマレイミドの如きN−脂環族マレイミド;N−ベンジルマレイミド;N−フェニルマレイミド、N−(アルキルフェニル)マレイミド、N−ジアルコキシフェニルマレイミド、N−(2−クロロフェニル)マレイミド、2,3−ジクロロ−N−(2,6−ジエチルフェニル)マレイミド、   Examples of monofunctional maleimide monomers that can be used in combination include N-alkylmaleimides such as N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, and N-dodecylmaleimide; N-fats such as N-cyclohexylmaleimide. N-benzylmaleimide; N-phenylmaleimide, N- (alkylphenyl) maleimide, N-dialkoxyphenylmaleimide, N- (2-chlorophenyl) maleimide, 2,3-dichloro-N- (2,6 -Diethylphenyl) maleimide,

2,3−ジクロロ−N−(2−エチル−6−メチルフェニル)マレイミドの如きN−(置換又は非置換フェニル)マレイミド;N−ベンジル−2,3−ジクロロマレイミド、N−(4’−フルオロフェニル)−2,3−ジクロロマレイミドの如きハロゲンを有するマレイミド;ヒドロキシフェニルマレイミドの如き水酸基を有するマレイミド;N−(4−カルボキシ−3−ヒドロキシフェニル)マレイミドの如きカルボキシ基を有するマレイミド; N- (substituted or unsubstituted phenyl) maleimide such as 2,3-dichloro-N- (2-ethyl-6-methylphenyl) maleimide; N-benzyl-2,3-dichloromaleimide, N- (4′-fluoro A maleimide having a halogen such as phenyl) -2,3-dichloromaleimide; a maleimide having a hydroxyl group such as hydroxyphenylmaleimide; a maleimide having a carboxy group such as N- (4-carboxy-3-hydroxyphenyl) maleimide;

N−メトキシフェニルマレイミドの如きアルコキシ基を有するマレイミド;N−[3−(ジエチルアミノ)プロピル]マレイミドの如きアミノ基を有するマレイミド;N−(1−ピレニル)マレイミドの如き多環芳香族マレイミド;N−(ジメチルアミノ−4−メチル−3−クマリニル)マレイミド、N−(4−アニリノ−1−ナフチル)マレイミドの如き複素環を有するマレイミド等が挙げられる。 A maleimide having an alkoxy group such as N-methoxyphenylmaleimide; a maleimide having an amino group such as N- [3- (diethylamino) propyl] maleimide; a polycyclic aromatic maleimide such as N- (1-pyrenyl) maleimide; And maleimide having a heterocyclic ring such as (dimethylamino-4-methyl-3-coumarinyl) maleimide and N- (4-anilino-1-naphthyl) maleimide.

エネルギー線としては、紫外線、可視光線、赤外線の如き光線;エックス線、ガンマ線の如き電離放射線;電子線、イオンビーム、ベータ線、重粒子線の如き粒子線が挙げられる。また、部材はポリマーブレンドやポリマーアロイであっても良いし、発泡体、積層体、その他の複合体であっても良い。また、部材は改質剤、着色剤など、その他の成分を含有していても良い。   Examples of energy rays include rays such as ultraviolet rays, visible rays, and infrared rays; ionizing radiations such as X-rays and gamma rays; and particle rays such as electron rays, ion beams, beta rays, and heavy particle rays. The member may be a polymer blend or a polymer alloy, or may be a foam, a laminate, or another composite. The member may contain other components such as a modifier and a colorant.

改質剤としては、例えば、シリコンオイルやフッ素置換炭化水素の如き疎水化剤(撥水剤);アニオン系、カチオン系、ノニオン系などの界面活性剤、シリカゲルの如き無機粉末、ポリビニルピロリドンの如き親水性重合体などの親水化剤;引張弾性率を調節するための可塑剤などが挙げられる。着色剤としては、例えば、任意の染料や顔料、蛍光性の染料や顔料、紫外線吸収剤が挙げられる。   Examples of the modifier include hydrophobizing agents (water repellents) such as silicone oil and fluorine-substituted hydrocarbons; surfactants such as anionic, cationic and nonionic surfactants, inorganic powders such as silica gel, and polyvinylpyrrolidone. Hydrophilic agents such as hydrophilic polymers; plasticizers for adjusting the tensile modulus. Examples of the colorant include arbitrary dyes and pigments, fluorescent dyes and pigments, and ultraviolet absorbers.

また、本発明の温度応答性バルブは、他の機構が形成されたマイクロ流体デバイスに組み込むことも好ましく、他の部材や他の機構と積層や接着などにより一体化することも好ましい。また、複数の温度応答性バルブを1つの部材中に形成することも可能であり、製造後、これらを切断して複数の温度応答性バルブとすることも可能である。   Further, the temperature responsive valve of the present invention is preferably incorporated into a microfluidic device in which another mechanism is formed, and preferably integrated with another member or another mechanism by lamination or adhesion. In addition, a plurality of temperature responsive valves can be formed in one member, and after manufacturing, these can be cut into a plurality of temperature responsive valves.

以上のとおり、本発明の温度応答性バルブは、バルブを構成する弁体が、ゲル−固体転移温度を有する温度応答性ゲルと可撓性部材との接合体からなるものであるため、温度変化により温度応答性ゲルがゲル−固体転移を生じる際に、接合された可撓性部材との膨張収縮特性の違いから弁体が変形する。これにより、温度応答性ゲルのゲル−固体転移の体積変化が少しの体積変化であっても、弁体の変形に大きく影響を与えるため、過度な温度変化を与える必要がなく、優れた応答速度で好適に流路の開閉や切り替えが可能である。   As described above, in the temperature responsive valve of the present invention, the valve body constituting the valve is composed of a joined body of a temperature responsive gel having a gel-solid transition temperature and a flexible member. Therefore, when the temperature-responsive gel causes a gel-solid transition, the valve body is deformed due to the difference in expansion and contraction characteristics with the joined flexible member. Due to this, even if the volume change of the gel-solid transition of the temperature-responsive gel is a small volume change, it greatly affects the deformation of the valve body, so there is no need to give an excessive temperature change and excellent response speed Therefore, it is possible to open / close or switch the flow path.

また、本発明の温度応答性バルブは、例えば積層構造の流路を形成する際にその積層部材の一部として組み込むことができるため、微細流路との正確な位置あわせが容易となる。   Moreover, since the temperature-responsive valve of the present invention can be incorporated as a part of a laminated member when forming a flow path having a laminated structure, for example, accurate alignment with a fine flow path is facilitated.

[温度応答性バルブの製造方法]
前記温度応答性バルブの製造方法は、前記構成を形成できる方法であれば特に制限されず、微細流路を形成する部材と弁体を形成する部材とを適宜積層する方法を好適に使用できる。このような方法としては、下記の方法を好ましく例示できる。
[Method of manufacturing temperature-responsive valve]
The method for producing the temperature responsive valve is not particularly limited as long as it can form the above-described configuration, and a method of appropriately laminating a member that forms a fine flow path and a member that forms a valve body can be suitably used. As such a method, the following method can be illustrated preferably.

(I)フィルム状の可撓性部材の少なくとも前記弁体と成す部分に温度応答性ゲルを接合し、該接合部に舌片部分を形成するための表裏を貫通する欠切部を形成して前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層する温度応答性バルブの製造方法。
(I) A temperature-responsive gel is joined to at least a portion of the film-like flexible member that forms the valve body, and a notch that penetrates the front and back for forming a tongue piece portion is formed in the joint. Forming a valve body layer having the valve body;
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. Manufacturing method of temperature responsive valve to be laminated.

(II)支持体上に活性エネルギー線硬化性樹脂組成物を塗布し、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射してフィルム状の可撓性部材を形成し、
該フィルム状の可撓性部材に、活性エネルギー線硬化性の温度応答性ゲル形成組成物を塗布して、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射した後、非照射部の未硬化成分を除去することにより、前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層する温度応答性バルブの製造方法。
(II) The active energy ray-curable resin composition is applied onto the support, and the active energy rays are irradiated to the part other than the part formed as a notched part penetrating the front and back for forming the tongue part. Forming a flexible member of
The film-like flexible member is coated with an active energy ray-curable temperature-responsive gel-forming composition and applied to a portion other than the portion formed as a notch that penetrates the front and back surfaces for forming the tongue portion. After irradiating the active energy ray, by removing the uncured component of the non-irradiated part, the valve body layer having the valve body is formed,
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. Manufacturing method of temperature responsive valve to be laminated.

前記方法における弁体の接合は、前述したように官能基を持たせた可撓性部材や、不完全線硬化状態とした可撓性部材上で、温度応答性ゲルを形成する方法により、好ましく接合させることが出来る。なかでも、弁体となる部分を含む範囲に、活性エネルギー線硬化性の温度応答性ゲル形成組成物を塗布し、活性エネルギー線照射により温度応答性ゲルを形成してフィルム状の可撓性部材に接合させる方法を好ましく使用できる。   As described above, the joining of the valve body in the above method is preferably performed by a method of forming a temperature-responsive gel on a flexible member having a functional group or a flexible member in an incomplete line-cured state. Can be joined. In particular, an active energy ray-curable temperature-responsive gel-forming composition is applied to a range including a valve body, and a temperature-responsive gel is formed by irradiation with active energy rays to form a film-like flexible member. The method of joining to can be preferably used.

また、ゲル形成素材として、活性エネルギー線硬化性の温度応答性ゲル形成組成物を使用する場合には、該組成物中に孔形成剤を含有させることで好適に多孔質ゲルを形成できる。   Moreover, when using an active energy ray-curable temperature-responsive gel-forming composition as the gel-forming material, a porous gel can be suitably formed by including a pore-forming agent in the composition.

[実施態様]
本発明の温度応答性バルブの実施態様について説明する。なお、同じ機能を持つ機構は各実施態様に共通した同じ番号で示す。
[Embodiment]
An embodiment of the temperature responsive valve of the present invention will be described. In addition, the mechanism which has the same function is shown with the same number common to each embodiment.

本発明の第1態様は、図1、図2に示したように、表面に流入側流路(1)となる溝(1)と、弁体(15)が入り込む弁室(2)となる凹部(2)を有する板状の第1部材(3)、表裏を貫通する切欠部(4)(以下、切欠部(4)と略記。)で囲まれた部分として弁体(15)を構成する舌片(5)となる部分が形成されたフィルム状の第2部材(6)、及び、表面に流出側流路(7)となる溝を有する板状の第3部材(8)が積層して固着されており、該第2部材の舌片(5)の第1部材(8)側にはフィルム状の温度応答性ゲル(9)が接合されて弁体(5)とされている。   As shown in FIGS. 1 and 2, the first aspect of the present invention is a groove (1) that becomes an inflow side flow path (1) on the surface and a valve chamber (2) into which the valve body (15) enters. The valve body (15) is configured as a part surrounded by a plate-like first member (3) having a recess (2) and a notch (4) (hereinafter abbreviated as notch (4)) penetrating the front and back. A film-like second member (6) in which a portion to be a tongue piece (5) is formed, and a plate-like third member (8) having a groove to be an outflow side channel (7) on the surface are laminated. A film-like temperature-responsive gel (9) is joined to the first member (8) side of the tongue piece (5) of the second member to form a valve body (5). .

第1部材(3)に設けられた流入側流路(1)の一方の端(図2中左側)は第2部材(6)及び第3部材(8)に開けられた連絡孔(10)を経て本温度応答性バルブ外に開口しており、流入口(11)とされる。流入側流路(1)の他端(図2中右側)は弁室(2)に接続されている。   One end (left side in FIG. 2) of the inflow side flow path (1) provided in the first member (3) is a communication hole (10) opened in the second member (6) and the third member (8). And is opened to the outside of the temperature-responsive valve, and serves as an inlet (11). The other end (the right side in FIG. 2) of the inflow channel (1) is connected to the valve chamber (2).

第3部材(8)の流出側流路(7)の一方の端(図2中左側)は、第2部材(6)に設けられた舌片状の弁体(5)の基部側から弁体(15)と重なるように弁体(15)の中央部まで形成されており、弁体(15)と第3部材(8)が接触する部分が弁座(12)として機能する。第3部材(8)の流出側流路(7)の他方の端(図2中右側)は、第3部材(8)に開けられた連絡孔(13)を通じて、本温度応答性バルブ外に開口しており、流出口(14)とされる。   One end (left side in FIG. 2) of the outflow side flow path (7) of the third member (8) is a valve from the base side of the tongue-like valve body (5) provided in the second member (6). The valve body (15) is formed so as to overlap with the body (15), and the portion where the valve body (15) and the third member (8) are in contact functions as the valve seat (12). The other end (right side in FIG. 2) of the outflow side flow path (7) of the third member (8) is connected to the outside of the temperature responsive valve through a communication hole (13) opened in the third member (8). It is open and serves as an outlet (14).

本第1態様の弁体(15)は、温度応答性ゲル(9)が下限臨界共溶解温度(LCST)型のゲル−固体転移温度を持つものである場合には、該転移温度付近より高温側では温度応答性ゲル(9)の収縮により、図2の下方へ反り、弁体(15)は弁室(2)に入り込んで弁座(12)から離れることにより流入側流路(1)と流出側流路(7)は連絡する。逆に、該転移温度付近より低温側では膨張して図2の上方へ反る力が発生し、弁体(15)は弁座(12)を押さえる方向に付勢されて流路を遮断する。温度応答性ゲルが上限臨界共溶解温度(UCST)型のゲル−固体転移温度を持つものである場合には、温度と動作の関係は上記の逆になる。   When the temperature-responsive gel (9) has a lower critical co-melting temperature (LCST) type gel-solid transition temperature, the valve body (15) of the first aspect is higher than the vicinity of the transition temperature. On the side, the shrinkage of the temperature-responsive gel (9) warps downward in FIG. 2, and the valve body (15) enters the valve chamber (2) and separates from the valve seat (12), thereby causing the inflow side flow path (1). And the outflow channel (7) communicate with each other. On the contrary, a force that expands and warps upward in FIG. 2 is generated on the low temperature side near the transition temperature, and the valve body (15) is urged in the direction of pressing the valve seat (12) to block the flow path. . When the temperature-responsive gel has an upper critical co-melting temperature (UCST) type gel-solid transition temperature, the relationship between temperature and operation is reversed.

第1部材(3)や第3部材(8)の溝の形成方法は任意であり、例えば射出成型や光造形法により溝を有する部材を直接形成する方法、エッチング工程を有するフォトリソグラフィー、機械的切削加工、レーザー加工、プラズマ加工等により部材に溝を形成する方法、貫通溝を有するフィルム状又は板状の部材(3b)(8b)と他の部材(3a)(8a)の貼り合わせや、部材の上に活性エネルギー線硬化性樹脂組成物を塗布し、選択的露光と洗浄を行うことにより、貫通溝を有するフィルム状の部材(3b)(8b)を形成すると同時に他の部材(3a)(8a)に貼り合わせる方法を例示できる。   The method of forming the grooves of the first member (3) and the third member (8) is arbitrary. For example, a method of directly forming a member having grooves by injection molding or stereolithography, photolithography having an etching process, mechanical A method of forming a groove in a member by cutting, laser processing, plasma processing, etc., bonding of a film-like or plate-like member (3b) (8b) having a through groove and another member (3a) (8a), By applying the active energy ray-curable resin composition on the member, and performing selective exposure and washing, a film-like member (3b) (8b) having a through groove is formed and another member (3a) at the same time. A method of bonding to (8a) can be exemplified.

第1部材(3)、第2部材(6)、第3部材(8)の固着方法も任意であり、接着剤による接着、熱融着、超音波融着、不完全硬化状態の重合体を接触させて完全硬化させる固着などを利用できる。   The fixing method of the first member (3), the second member (6), and the third member (8) is also arbitrary. Adhesion with an adhesive, thermal fusion, ultrasonic fusion, incompletely cured polymer is used. Adhesion that is completely cured by contact can be used.

なお、上記説明に於いて、便宜上流入側と流出側を設けて説明したが、上記説明に於ける流入側、流出側とは逆の向きに使用しても良い。但し、その場合、流路を遮断する力は本例よりも弱くなる。本第1態様の温度応答性バルブは開閉バルブとして使用できるし、また、温度応答性ゲル(9)がLCST型のゲル−固体転移温度を持つものである場合には該転移温度付近より低温側で逆止弁になり、高温側で常時開となるバルブ、UCST型のゲル−固体転移温度を持つものである場合には該転移温度付近より高温側で逆止弁になり、低温側で常時開となるバルブとして使用できる。   In the above description, the inflow side and the outflow side are provided for convenience, but the inflow side and the outflow side in the above description may be used in opposite directions. In this case, however, the force for blocking the flow path is weaker than in this example. The temperature responsive valve according to the first aspect can be used as an open / close valve. When the temperature responsive gel (9) has an LCST type gel-solid transition temperature, the temperature responsive valve (9) has a lower temperature than the vicinity of the transition temperature. When the valve has a UCST-type gel-solid transition temperature, it becomes a check valve on the higher temperature side than the transition temperature, and always on the lower temperature side. Can be used as an open valve.

本第1態様のバリエーションとして、第3部材(8)の流出側流路(7)の弁体(15)と重なる側の端を、先端に行くほど徐々に細くなるテーパー状に形成すると、弁体の曲率変化に応じて流路抵抗が変わる流量調節弁として使用できる。   As a variation of the first aspect, when the end of the third member (8) on the side of the outflow side flow path (7) that overlaps the valve element (15) is formed in a tapered shape that gradually decreases toward the tip, It can be used as a flow control valve whose flow path resistance changes according to the curvature change of the body.

本発明の第2態様は、図3に示したように、第2部材(6)が、舌片(5)を有する前記第一態様の第2部材(6)と同じ形状の部材(6a)と、舌片(5)が欠損していること以外は部材(6a)と同様の部材(6b)が積層固着されて形成されていること、温度応答性ゲル(9)が部材(6a)の舌片(5)の第3部材(8)側に、部材(6b)と同じ厚みだけコーティングされていること以外は前記第1態様と同様じである。本第2態様においては、温度応答性ゲル(9)が第1態様と比べて弁体(15)の裏面に形成されているため、本第2態様の温度応答性バルブは、温度変化に対して第1態様のバルブとは逆の動作をする。   In the second aspect of the present invention, as shown in FIG. 3, the second member (6) has the same shape as the second member (6) of the first aspect having the tongue piece (5). And a member (6b) that is the same as the member (6a) except that the tongue piece (5) is missing, and that the temperature-responsive gel (9) is formed on the member (6a). The same as the first aspect except that the tongue (5) is coated on the third member (8) side by the same thickness as the member (6b). In this 2nd aspect, since the temperature-responsive gel (9) is formed in the back surface of the valve body (15) compared with the 1st aspect, the temperature-responsive valve of this 2nd aspect is against temperature change. Thus, the operation reverse to that of the first mode valve is performed.

本発明の第3態様は、図4、図5に示したように、表面に流入側流路(1)となる溝と、流出側流路(7)となる溝を有する板状の第1部材(16)、切欠部(4)で囲まれた部分として舌片(5)となる部分が形成されフィルム状の第2部材(6)、及び表面に弁室(2)となる凹部を有する板状の第3部材(17)が積層して固着され、第2部材の舌片(5)の第3部材(17)側には温度応答性ゲル(9)がコーティングされて弁体(15)とされている。   As shown in FIGS. 4 and 5, the third aspect of the present invention is a plate-shaped first having a groove serving as the inflow side flow channel (1) and a groove serving as the outflow side flow channel (7) on the surface. A portion that becomes a tongue piece (5) is formed as a portion surrounded by the member (16) and the notch (4), and has a film-like second member (6), and a concave portion that becomes a valve chamber (2) on the surface. A plate-like third member (17) is laminated and fixed, and a temperature-responsive gel (9) is coated on the third member (17) side of the tongue piece (5) of the second member to coat the valve body (15 ).

第1部材(16)の流入側流路(1)の一方の端(図5中左側)は第2部材(6)及び第3部材(17)に開けられた連絡孔(10)を経て本温度応答性バルブ外に開口して流入口(11)とされ、流入側流路(1)の他端(図5中右側)は第2部材(6)の弁体(5)周囲に設けられた切欠部(4)に連絡する位置まで形成されている。   One end (the left side in FIG. 5) of the inflow channel (1) of the first member (16) is connected to the second member (6) and the third member (17) through a communication hole (10). It opens to the outside of the temperature responsive valve to serve as an inlet (11), and the other end (right side in FIG. 5) of the inflow side flow path (1) is provided around the valve body (5) of the second member (6). It is formed to the position where it communicates with the notch (4).

また、第1部材(16)の流出側流路(7)の一方の端(図5中左側)は弁体(15)の基部側から弁体(15)と重なるように弁体(15)の中央部まで形成されており、弁体(15)と第1部材(16)が接触する部分が弁座(12)として機能する。流出側流路(7)の他端(図5中右側)は第2部材(6)及び第3部材(17)に開けられた連絡孔(13)を経て本温度応答性バルブ外に開口して流出口(14)とされる。第1部材(16)には、弁体(15)が入り込み得る大きさのの凹部状の弁室(2)が形成されている。該弁室(2)は第2部材(6)に設けられた切欠部(4)を経て第1部材(3)の流入側流路(1)に連絡している。   Further, one end (left side in FIG. 5) of the outflow side flow path (7) of the first member (16) overlaps the valve body (15) from the base side of the valve body (15). The portion where the valve body (15) and the first member (16) are in contact functions as the valve seat (12). The other end (the right side in FIG. 5) of the outflow side channel (7) opens out of the temperature-responsive valve through a communication hole (13) opened in the second member (6) and the third member (17). The outlet (14). The first member (16) is formed with a recessed valve chamber (2) having a size that allows the valve body (15) to enter. The valve chamber (2) communicates with the inflow side flow path (1) of the first member (3) through a notch (4) provided in the second member (6).

本第2態様の温度応答性バルブは、温度応答性ゲル(9)がLCST型のゲル−固体転移温度を持つものである場合には、該転移温度付近より低温側では温度応答性ゲルの膨張により、弁体(15)は図5の下方へ反る力が発生し、弁座(12)を押さえる方向に付勢されて流路を遮断する。一方、該転移温度付近より高温側では温度応答性ゲルの収縮により弁体(15)は図5の上方へ反り、弁体(15)は弁座(12)から離れて弁室(2)に入り込むことにより流入側流路(1)と流出側流路(7)は連絡する。温度応答性ゲル(9)がUCST型のゲル−固体転移温度を持つものである場合には、温度と動作の関係は上記の逆になる。   When the temperature-responsive gel (9) has an LCST type gel-solid transition temperature, the temperature-responsive valve according to the second aspect of the present invention is expanded at a temperature lower than the vicinity of the transition temperature. As a result, the valve body (15) generates a force that warps downward in FIG. 5, and is biased in the direction of pressing the valve seat (12) to block the flow path. On the other hand, on the higher temperature side near the transition temperature, the valve body (15) warps upward in FIG. 5 due to the shrinkage of the temperature-responsive gel, and the valve body (15) moves away from the valve seat (12) into the valve chamber (2). By entering, the inflow side flow path (1) and the outflow side flow path (7) communicate with each other. When the temperature-responsive gel (9) has a UCST type gel-solid transition temperature, the relationship between the temperature and the operation is reversed.

なお、上記説明に於いて、便宜上流入側と流出側を設けて説明したが、上記説明に於ける流入側、流出側とは逆の向きに使用しても良い。但し、その場合、流路を遮断する力は本例よりも弱くなる。本第3態様の温度応答性バルブは開閉バルブとして使用できるし、また、温度応答性ゲル(9)がLCST型のゲル−固体転移温度を持つものである場合には該転移温度付近より低温側で逆止弁になり、高温側で常時開となるバルブ、UCST型のゲル−固体転移温度を持つものである場合には該転移温度付近より高温側で逆止弁になり、低温側で常時開となるバルブとして使用できる。   In the above description, the inflow side and the outflow side are provided for convenience, but the inflow side and the outflow side in the above description may be used in opposite directions. In this case, however, the force for blocking the flow path is weaker than in this example. The temperature-responsive valve according to the third aspect can be used as an open / close valve. When the temperature-responsive gel (9) has an LCST type gel-solid transition temperature, the temperature-responsive valve (9) can be used at a lower temperature than the vicinity of the transition temperature. When the valve has a UCST-type gel-solid transition temperature, it becomes a check valve on the higher temperature side than the transition temperature, and always on the lower temperature side. Can be used as an open valve.

本第3態様のバリエーションとして、第1部材(16)の流出側流路(7)の弁体(15)側の端を、先端に行くほど徐々に細くなるテーパー状に形成すると、弁体(7)の曲率変化に応じて、流路抵抗が変わる流量調節弁として使用できる。   As a variation of the third aspect, if the end of the first member (16) on the valve body (15) side of the outflow side flow path (7) is formed into a tapered shape that gradually decreases toward the tip, the valve body ( It can be used as a flow rate control valve whose flow path resistance changes according to the curvature change of 7).

本第3態様についても第1態様と同様に、上記各部材は複数の部材で構成されていても良い。例えば第1部材(16)は第1態様に於ける第1部材(3)と同様に、貫通溝を有するフィルム状又は板状の部材(16b)と他の部材(16a)の接合体であっても良い。   In the third aspect, each member may be composed of a plurality of members as in the first aspect. For example, the first member (16) is a joined body of a film-like or plate-like member (16b) having a through groove and another member (16a), like the first member (3) in the first embodiment. May be.

本発明の第4態様は、図5に示したように、第2部材(6)が、前記第3態様に於ける第2部材(6)と同じ構造の部材(6a)と、舌片(5)が欠損していること以外は部材(6a)と同様の部材(6b)が積層されて形成されていること、温度応答性ゲル(9)が部材(6a)の舌片(5)の第1部材(3)側に、部材(6b)と同じ厚みだけコーティングされていること、以外は前記第3態様と同様じである。本第4態様においては、温度応答性ゲル(9)が第3態様と比べて弁体(15)の裏面に形成されているため、本第4態様の温度応答性バルブは、温度変化に対して第1態様のバルブとは逆の動作をする。   In the fourth aspect of the present invention, as shown in FIG. 5, the second member (6) includes a member (6a) having the same structure as the second member (6) in the third aspect, and a tongue piece ( 5) A member (6b) similar to the member (6a) is formed except that it is missing, and the temperature-responsive gel (9) is formed on the tongue (5) of the member (6a). The same as the third aspect except that the first member (3) is coated with the same thickness as the member (6b). In this 4th aspect, since the temperature-responsive gel (9) is formed in the back surface of the valve body (15) compared with the 3rd aspect, the temperature-responsive valve of this 4th aspect is against temperature change. Thus, the operation reverse to that of the first mode valve is performed.

本発明の第5態様は、図7、図8に示したように、一つの流入口と2つの流出口を有する流路切り替えバルブであって、表面に流入側流路(1)となる溝と第1流出側流路(21)となる溝を有する板状の第1部材(22)、切欠部(4)で囲まれた部分として舌片(5)となる部分が形成されたフィルム状の第2部材(6)、弁室(2)となる貫通孔が設けられたフィルム状の第3部材(23)、弁室(2)と第2流出側流路(24)とを連絡する連絡孔(25)が設けられたフィルム状の第4部材(26)、及び、表面に第2流出側流路(24)となる溝を有する板状の第5部材(27)が積層して固着され、前記第2部材(6)の舌片(5)の第3部材側(23)には温度応答性ゲル(9)がコーティングされている。   As shown in FIGS. 7 and 8, the fifth aspect of the present invention is a flow path switching valve having one inflow port and two outflow ports, and a groove serving as an inflow side flow channel (1) on the surface. And a plate-like first member (22) having a groove serving as a first outflow channel (21), and a film-like shape in which a portion to be a tongue piece (5) is formed as a portion surrounded by a notch (4) The second member (6), the film-like third member (23) provided with a through-hole serving as the valve chamber (2), the valve chamber (2) and the second outflow side flow path (24) communicate with each other. A film-like fourth member (26) provided with a communication hole (25) and a plate-like fifth member (27) having a groove serving as a second outflow channel (24) on the surface are laminated. The third member side (23) of the tongue (5) of the second member (6) is coated with a temperature-responsive gel (9).

第1部材(22)の流入側流路(1)の一方の端(図8中左側)は第2部材(6)、第3部材(23)、第4部材(26)、及び第5部材(27)に設けられた連絡孔(10)を経て本温度応答性バルブ外に開口して流入口(11)とされ、他端(図8中右側)は弁体(5)の周囲に設けられた切欠部(4)に連絡する位置まで形成されている。第1部材(22)に設けられた第1流出側流路(21)の一方の端(図8中左側)は弁体(15)の基部側から該弁体(15)と重なるように弁体(15)の中央部まで形成されており、弁体(15)と第1部材(22)が接触する部分が第1流出側の弁座(28)として機能する。第1流出側流路(21)の他方の端(図8中右側)は第2部材(6)、第3部材(23)、第4部材(26)、及び第5部材(27)に開けられた連絡孔(31)を経て本温度応答性バルブ外に開口し、第1流出口(32)とされている。   One end (left side in FIG. 8) of the inflow channel (1) of the first member (22) is the second member (6), the third member (23), the fourth member (26), and the fifth member. (27) is opened to the outside of the temperature-responsive valve through the communication hole (10) provided as the inlet (11), and the other end (right side in FIG. 8) is provided around the valve body (5). It is formed up to the position where it communicates with the notch (4). One end (left side in FIG. 8) of the first outflow side flow path (21) provided in the first member (22) is overlapped with the valve body (15) from the base side of the valve body (15). It is formed to the center part of the body (15), and the part where the valve body (15) and the first member (22) are in contact functions as the valve seat (28) on the first outflow side. The other end (right side in FIG. 8) of the first outflow side channel (21) is opened in the second member (6), the third member (23), the fourth member (26), and the fifth member (27). It opens to the outside of this temperature-responsive valve through the formed communication hole (31) and serves as a first outlet (32).

第3部材(23)の貫通孔(12)は、弁体(15)が入り込み得る大きさに形成されて弁室(2)となっている。第4部材(26)に設けられた孔(25)は、弁体(15)より小さく、弁体(15)により塞がれる位置に設けられて、該弁体(15)と第4部材(26)表面との接触部は第2流出側の弁座(29)として機能する。第4部材(26)に設けられた第2流出側流路(24)の一方の端(図8中左側)は、第4部材(26)の第2流出側の弁座(33)に続く連絡孔(25)に接続されており、第2流出側流路(24)の他端(図8中右側)は第5部材(27)に開けられた連絡孔(33)を通じて、本温度応答性バルブ外に開口し、第2流出口(34)とされる。   The through hole (12) of the third member (23) is formed in a size that allows the valve body (15) to enter and serves as a valve chamber (2). The hole (25) provided in the fourth member (26) is smaller than the valve body (15) and is provided at a position closed by the valve body (15). The valve body (15) and the fourth member ( 26) The contact portion with the surface functions as a valve seat (29) on the second outflow side. One end (left side in FIG. 8) of the second outflow channel (24) provided in the fourth member (26) continues to the second outflow side valve seat (33) of the fourth member (26). The other end (right side in FIG. 8) of the second outflow side channel (24) is connected to the communication hole (25), and this temperature response is made through the communication hole (33) opened in the fifth member (27). The second outlet (34) is opened outside the control valve.

本第5態様についても第1態様と同様に、上記各部材は複数の部材で構成されていても良い。例えば第1部材(22)は第1態様に於ける第1部材(3)と同様に、貫通溝を有するフィルム状又は板状の部材(22b)と他の部材(22a)の接合体であっても良い。   In the fifth aspect, each member may be composed of a plurality of members, as in the first aspect. For example, the first member (22) is a joined body of a film-like or plate-like member (22b) having a through groove and another member (22a), like the first member (3) in the first embodiment. May be.

本第5態様の温度応答性バルブは、温度応答性ゲルがLCST型のゲル−固体転移温度を持つ場合には、、該転移温度付近より低温側では温度応答性ゲル(9)の膨張により弁体(15)は図8の下方へ反る力が発生し、第1流出側の弁座(28)を塞いで流入側流路(1)と第1流出側流路(21)は遮断されると共に、弁体(15)は第2流出側の弁座(29)から離れ、流入側流路(1)と第2流出側流路(24)は連絡される。   When the temperature-responsive gel has an LCST type gel-solid transition temperature, the temperature-responsive valve according to the fifth aspect is expanded by expansion of the temperature-responsive gel (9) at a temperature lower than the vicinity of the transition temperature. The body (15) generates a force that warps downward in FIG. 8, closes the valve seat (28) on the first outflow side, and shuts off the inflow side channel (1) and the first outflow side channel (21). In addition, the valve body (15) is separated from the second outflow side valve seat (29), and the inflow side flow path (1) and the second outflow side flow path (24) are connected.

一方、該転移温度付近より高温側では温度応答性ゲル(9)の収縮により、弁体(15)は図8の上方へ反り、第1流出側の弁座(28)から離れて、流入側流路(1)と第1流出側流路(21)が連絡すると共に、弁室(2)に入り込んで第2流出側の弁座(29)を押さえて流入側流路(1)と第2流出側流路(24)を遮断する。温度応答性ゲルがUCST型のゲル−固体転移温度を持つものである場合には、温度と動作の関係は上記の逆になる。   On the other hand, the valve body (15) warps upward in FIG. 8 due to the shrinkage of the temperature-responsive gel (9) on the higher temperature side than the vicinity of the transition temperature, and moves away from the valve seat (28) on the first outflow side. The flow path (1) and the first outflow side flow path (21) communicate with each other, and enter the valve chamber (2) to press the second outflow side valve seat (29) to thereby connect the inflow side flow path (1) and the first flow path. 2. Shut off the outflow channel (24). When the temperature-responsive gel has a UCST type gel-solid transition temperature, the relationship between the temperature and the operation is reversed.

なお、上記説明に於いて、便宜上流入側と流出側を設けて説明したが、上記説明に於ける流入側、流出側とは逆の向きに使用して、2つの流入口と1つの流出口を持つ流路切り替えバルブとして使用しても良い。   In the above description, the inflow side and the outflow side are provided for the sake of convenience. However, the inflow side and the outflow side in the above description are used in opposite directions, and two inflow ports and one outflow port are used. It may be used as a flow path switching valve having

本発明の温度応答性バルブの開閉、流路切り替え、流量調節などの制御は、上記の温度応答性バルブの少なくとも弁体部分を温度調節することにより行うことができる。温度調節方法や用いる温度調節機構は任意であり、例えば温度応答性バルブに組み込まれた電気ヒーターによる加熱、組み込まれた熱媒流路や冷媒流路による加熱や冷却、組み込まれた又は接触されたペルチエ素子による加熱や冷却、温度調節された固体、液体、又は気体との接触による加熱や冷却、レーザー光線や赤外線やマイクロ波などの電磁波による加熱、超音波による加熱などが挙げられる。本発明で温度調節する領域は、他の部分に差し支えがなければ、該温度応答性バルブが組み込まれたマイクロ流体デバイス全体であっても良い。温度調節機構は本発明の温度応答性バルブに組み込まれていても良いし、外部機構であっても良いが、温度応答性バルブが組み込まれたマイクロ流体デバイスを保持する筐体に設けられていて、該マイクロ流体デバイス部分を取り替えて使用出来るものが好ましい。   Controls such as opening and closing of the temperature responsive valve, flow path switching, and flow rate adjustment of the present invention can be performed by adjusting the temperature of at least the valve body portion of the temperature responsive valve. The temperature adjustment method and the temperature adjustment mechanism to be used are arbitrary. For example, heating by an electric heater incorporated in a temperature responsive valve, heating or cooling by an incorporated heat medium passage or refrigerant passage, incorporated or contacted Examples thereof include heating and cooling by a Peltier element, heating and cooling by contact with a temperature-adjusted solid, liquid, or gas, heating by an electromagnetic wave such as a laser beam, infrared rays, and microwaves, and heating by an ultrasonic wave. In the present invention, the temperature control region may be the entire microfluidic device in which the temperature responsive valve is incorporated, as long as other parts can be used. The temperature adjustment mechanism may be incorporated in the temperature responsive valve of the present invention or may be an external mechanism, but is provided in a housing that holds the microfluidic device in which the temperature responsive valve is incorporated. It is preferable that the microfluidic device portion can be replaced and used.

例えば、本温度応答性バルブを吸脱着式分離装置の自動流路切り替えバルブ使用する場合には、本温度応答性バルブが組み込まれたマイクロ流体デバイス全体を温度調節機構である温度調節された固体、液体、又は気体と接触させる方法が好ましい。また、一つのマイクロ流体デバイスに複数の本温度応答性バルブを組み込み、それらを独立に制御する場合には、各弁室付近に温度調節された固体を接触させる方法やペルチエ素子を用いる方法が単純であり好ましい。   For example, when this temperature responsive valve is used as an automatic flow path switching valve of an adsorption / desorption separation device, the entire microfluidic device in which this temperature responsive valve is incorporated is a temperature controlled solid, A method of contacting with a liquid or gas is preferred. In addition, when a plurality of temperature-responsive valves are incorporated in one microfluidic device and controlled independently, a method of contacting a temperature-controlled solid in the vicinity of each valve chamber or a method using a Peltier element is simple. It is preferable.

本発明の温度応答性バルブは、単純な構造で微小な流路の開閉や流量調節を行うことができる。本発明の温度応答性バルブは、反応、分析、検査などに使用するに当たり、マイクロ流体デバイス毎に、又は一つのマイクロ流体デバイスに組み込まれた独立した流路系毎に独立した送液ポンプを必要とせず、共通の圧力で原液を供給し、各デバイスの流量調節や流通/遮断を本バルブで行えるため、多数を同時・並列処理することが容易であり、作業効率の向上が計れる。   The temperature-responsive valve of the present invention can open and close a minute flow path and adjust the flow rate with a simple structure. The temperature-responsive valve of the present invention requires an independent liquid pump for each microfluidic device or for each independent flow path system incorporated in one microfluidic device when used for reaction, analysis, inspection, etc. However, since the stock solution is supplied at a common pressure and the flow rate of each device can be adjusted and distributed / blocked by this valve, it is easy to process a large number simultaneously and in parallel, and work efficiency can be improved.

また本発明の温度応答性バルブは、混合、反応、抽出、ろ過などの一つのマイクロ流体デバイスに複数の流体を流す用途においても、原液を共通の圧力で供給しながら流路毎の流量を調節することができるため、装置を単純化することができる。
さらに、本発明の温度応答性バルブで流路切り替えバルブを構成した場合には、例えば微小液体クロマトグラフのサンプル注入など、マイクロ流体デバイス内の流路切り替えバルブ一般の用途に広く使用できる。
In addition, the temperature responsive valve of the present invention adjusts the flow rate of each flow path while supplying a stock solution at a common pressure even in applications where multiple fluids flow through a single microfluidic device such as mixing, reaction, extraction, and filtration. The device can be simplified.
Furthermore, when the flow path switching valve is constituted by the temperature responsive valve of the present invention, it can be widely used for general applications of the flow path switching valve in the microfluidic device such as sample injection of a micro liquid chromatograph.

以下、実施例及び比較例を用いて、本発明を更に詳細に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。なお、以下の実施例において、「部」は、特に断りがない限り「質量部」を表わす。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to the range of these Examples. In the following examples, “part” represents “part by mass” unless otherwise specified.

[エネルギー線照射装置]
200wメタルハライドランプが組み込まれた、ウシオ電機株式会社製のマルチライト200型露光装置用光源ユニットを用いた。紫外線強度は50mw/cm2である。
[Energy beam irradiation equipment]
A light source unit for a multi-light 200 type exposure apparatus manufactured by USHIO INC., In which a 200w metal halide lamp was incorporated, was used. The ultraviolet intensity is 50 mw / cm 2.

[エネルギー線硬化性組成物の調製]
〔組成物(x−1)〕
架橋重合性化合物として平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)を60部、1,6−ヘキサンジオールジアクリレート(第1工業製薬株式会社製の「ニューフロンティアHDDA」)を20部、ノニルフェノキシポリエチレングリコール(n=17)アクリレート(第1工業製薬株式会社製の「N−177E」)20部、紫外線重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」;光重合開始剤)を5部、及び重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(関東化学株式会社製;重合遅延剤)0.1部を均一に混合してエネルギー線硬化性組成物(x−1)を調製した。
[Preparation of energy beam curable composition]
[Composition (x-1)]
60 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 (“Unidic V-4263” manufactured by Dainippon Ink & Chemicals, Inc.) as a cross-linkable polymerizable compound, 1,6-hexanediol diacrylate (Daiichi Kogyo Seiyaku) 20 parts of “New Frontier HDDA” manufactured by Co., Ltd., 20 parts of nonylphenoxypolyethylene glycol (n = 17) acrylate (“N-177E” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 1-hydroxy as an ultraviolet polymerization initiator 5 parts of cyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Geigy Inc .; photopolymerization initiator) and 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Inc .; polymerization retarder) as a polymerization retarder ) Prepare an energy ray curable composition (x-1) by uniformly mixing 0.1 parts. It was.

本エネルギー線硬化性組成物(x−1)の紫外線硬化フィルムは引張弾性率が約580MPa、破断伸び率が約7.3%である。   The ultraviolet ray cured film of the present energy beam curable composition (x-1) has a tensile elastic modulus of about 580 MPa and an elongation at break of about 7.3%.

[温度応答性ゲル材料の調製]
〔多孔質ゲル材料(y−1)〕
感温性単量体としてN−イソプロピルアクリルアミド(和光純薬株式会社製)を95部、架橋重合性単量体として上記平均分子量約2000の3官能ウレタンアクリレートオリゴマーを5部、光重合開始剤として上記、1−ヒドロキシシクロヘキシルフェニルケトンを5部、孔形成剤として分子量4万のポリビニルピロリドン(和光純薬株式会社製)を25部、及び架橋ポリビニルピロリドン粉末(半井化学株式会社製)を50部、N,N−ジメチルアセトアミド(和光純薬株式会社製)110部を混合してゲル材料(y−1)を調製した。
[Preparation of temperature-responsive gel material]
[Porous gel material (y-1)]
95 parts of N-isopropylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) as a temperature-sensitive monomer, 5 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 as a crosslinking polymerizable monomer, and a photopolymerization initiator 5 parts of the above 1-hydroxycyclohexyl phenyl ketone, 25 parts of polyvinylpyrrolidone having a molecular weight of 40,000 (manufactured by Wako Pure Chemical Industries, Ltd.) as a pore-forming agent, and 50 parts of crosslinked polyvinylpyrrolidone powder (manufactured by Hanai Chemical Co., Ltd.), 110 parts of N, N-dimethylacetamide (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed to prepare a gel material (y-1).

なお、ポリ−N−イソプロピルアクリルアミド水性ゲルは32度〜37度付近にLCST型のゲル−固体転移温度を有することが知られている。   Poly-N-isopropylacrylamide aqueous gel is known to have an LCST-type gel-solid transition temperature around 32 to 37 degrees.

[実施例1]
本実施例では前記第1態様の温度応答性バルブについてさらに詳細に述べる。
〔温度応答性バルブの作製〕
<第3部材>
図1、図2に示したように、75mm×25mm×1mmのアクリル板(8a)に、活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、フォトマスクを通してて、流出側流路(7)となす部分以外の部分に紫外線を照射し、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、アクリル板(8a)と硬化した樹脂組成物(x−1)硬化フィルム(8b)の積層固着体であり、該硬化フィルム(8b)の貫通溝(欠損部)として、流出側流路(7)となる溝(7)を有する第3部材(8)を作成した。その後、該第3部材の流出側流路(7)となる溝(7)の端にドリルで孔を開け、連絡孔(13)と流出口(14)を形成した。
[Example 1]
In this example, the temperature responsive valve of the first aspect will be described in more detail.
[Production of temperature-responsive valve]
<Third member>
As shown in FIGS. 1 and 2, the active energy ray-curable resin composition (x-1) is applied to an acrylic plate (8a) having a size of 75 mm × 25 mm × 1 mm, and is passed through a photomask. (7) Irradiate ultraviolet rays to portions other than the portion to be formed, and wash and remove the uncured resin composition of the non-irradiated portion with a 50% aqueous ethanol solution, thereby curing the acrylic plate (8a) and the cured resin composition (x -1) A third member (8) which is a laminated fixed body of a cured film (8b) and has a groove (7) serving as an outflow channel (7) as a through groove (defect) of the cured film (8b). )created. Thereafter, a hole was drilled at the end of the groove (7) to be the outflow side channel (7) of the third member to form a communication hole (13) and an outlet (14).

<第2部材及び弁体>
厚さ60μmのポリプロピレンシートを一時的な支持体(図示略)として用い、これに活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、フォトマスクを通して、切欠部(4)となす部分以外の部分に、該活性エネルギー線硬化性樹脂組成物(x−1)が完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、切欠部(4)とそれにより囲まれた舌片(5)となる部分を有する第2部材(6)を形成した。これを、図2(イ)に示したように位置を合わせて第3部材(8)に積層し、紫外線を照射して第2部材(6)を硬化させると同時に第3部材(8)に接合した。
<Second member and valve body>
Using a polypropylene sheet having a thickness of 60 μm as a temporary support (not shown), applying the active energy ray-curable resin composition (x-1) thereto, and forming a notch (4) through a photomask Except for the part other than the active energy ray-curable resin composition (x-1), the irradiation part is semi-cured by irradiating ultraviolet rays by an amount insufficient for complete curing, and the uncured resin of the non-irradiated part The composition was washed and removed with a 50% aqueous ethanol solution to form a second member (6) having a notch (4) and a portion to be a tongue piece (5) surrounded by the cutout (4). As shown in FIG. 2 (a), this is aligned and laminated on the third member (8), and the second member (6) is cured by irradiating with ultraviolet rays. Joined.

その後、前記一時的な支持体(図示略)を剥離除去し、第2部材(6)の舌片(5)に多孔質温度応答性ゲル材料(y−2)を塗布し、弁体(5)となす部分に紫外線照射して、温度応答性ゲル(9)をコーティングし、水で十分洗浄して弁体(15)とした。   Thereafter, the temporary support (not shown) is peeled off, the porous temperature-responsive gel material (y-2) is applied to the tongue piece (5) of the second member (6), and the valve body (5 ) Were irradiated with ultraviolet rays, coated with a temperature-responsive gel (9), and thoroughly washed with water to obtain a valve body (15).

<第1部材>
第2部材(6)の作製に用いたものと同じ一時的な支持体(図示略)に、活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させて部材(3a)を形成した。
<First member>
The active energy ray-curable resin composition (x-1) is applied to the same temporary support (not shown) as used for the production of the second member (6) and is insufficient for complete curing. The irradiated part was semi-cured by irradiating ultraviolet rays in an amount to form a member (3a).

次いで、その上にさらに活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、フォトマスクを通して、流入側流路(1)及び弁室(2)となす部分以外の部分に紫外線を完全硬化するには不十分な量だけ照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、流入側流路(1)となる溝(1)と、それに接続された、弁室(2)となる凹部が形成された部材(3b)を形成すると同時に部材(3a)と接合し、第1部材(3)とした。   Next, the active energy ray-curable resin composition (x-1) is further applied thereon, and the ultraviolet rays are completely applied to the portions other than the portion that becomes the inflow side flow path (1) and the valve chamber (2) through the photomask. By irradiating only an insufficient amount for curing, the irradiated part is semi-cured, and the uncured resin composition of the non-irradiated part is washed and removed with a 50% aqueous ethanol solution to form the inflow side flow path (1). A member (3b) having a groove (1) and a recess (valve chamber 2) connected thereto was formed and simultaneously joined to the member (3a) to form a first member (3).

これを、図2(イ)(ロ)に示したように位置を合わせて第2部材(6)と第3部材(8)の接合体に積層し、紫外線を照射して第3部材(8)を硬化させると同時に第2部材(6)と第3部材(8)に接合し、その後、第3部材側から流入側流路(1)に連絡する深さまでドリルで孔を開けて、連絡孔(10)と流入口(11)を形成し、温度応答性バルブを作製した。   As shown in FIGS. 2 (a) and 2 (b), these are aligned and laminated on the joined body of the second member (6) and the third member (8), and irradiated with ultraviolet rays to irradiate the third member (8 ) Is cured and simultaneously joined to the second member (6) and the third member (8), and then a hole is drilled to a depth communicating with the inflow channel (1) from the third member side. A hole (10) and an inlet (11) were formed to produce a temperature responsive valve.

〔各部の寸法〕
作製した温度応答性バルブは長さ75mm×幅25mm×厚さ1.45mmの板状であり、第1部材(3)は厚さ300μm、第2部材(6)は厚さ50μm、第3部材は厚さ1100μm、流入側流路(1)は幅300μm、長さ20mm、深さ200μm、弁室(2)は幅6mm、長さ5mm、深さ200μm、舌片(5)は幅5mm、長さ4mm、厚さ50μm、切欠部(4)は幅200μm、温度応答性ゲル(9)は幅5mm、長さ4mm、厚さ100μm、弁体(15)は幅5mm、長さ4mm、厚さ150μm、流出側流路(7)は幅300μm、長さ25mm、深さ100μm、連絡孔(10)、(13)は両方とも直径500μmである。
[Dimensions of each part]
The produced temperature-responsive valve has a plate shape of length 75 mm × width 25 mm × thickness 1.45 mm, the first member (3) is 300 μm thick, the second member (6) is 50 μm thick, and the third member. Is 1100 μm thick, the inflow channel (1) is 300 μm wide, 20 mm long, 200 μm deep, the valve chamber (2) is 6 mm wide, 5 mm long, 200 μm deep, the tongue piece (5) is 5 mm wide, Length 4mm, thickness 50μm, notch (4) width 200μm, temperature-responsive gel (9) width 5mm, length 4mm, thickness 100μm, valve element (15) width 5mm, length 4mm, thickness The outlet side flow path (7) has a width of 300 μm, a length of 25 mm, a depth of 100 μm, and the connecting holes (10) and (13) both have a diameter of 500 μm.

〔使用試験〕
作製した温度応答性バルブの流入口(11)にフィッティング(図示略)を接着し、軟質塩化ビニルチューブ(図示略)を介して内径10mmのガラス管(図示略)に接続した。前記ガラス管を立てて着色水を入れて、流入口(11)に300mm水柱の圧力を掛け、温度応答性バルブを45℃に調節された温調プレートに乗せると、着色水は流路を流れて流出口(14)から流出した。着色水が流れている状態で、温度応答性バルブを25度に調節された温調プレートに乗せ変えたところ、約3秒後に着色水の流れは遮断された。次いで、温度応答性バルブを45℃に調節された温調プレートに再び乗せ変えると、着色水は2秒後に再度流通した。
[Use test]
A fitting (not shown) was bonded to the inlet (11) of the produced temperature-responsive valve, and connected to a glass tube (not shown) having an inner diameter of 10 mm via a soft vinyl chloride tube (not shown). When colored water is put up with the glass tube standing, pressure of 300 mm water column is applied to the inlet (11), and the temperature responsive valve is placed on the temperature control plate adjusted to 45 ° C, the colored water flows through the flow path. Then flowed out of the outlet (14). When the temperature-responsive valve was placed on a temperature control plate adjusted to 25 degrees with the colored water flowing, the colored water flow was cut off after about 3 seconds. Next, when the temperature responsive valve was placed again on the temperature control plate adjusted to 45 ° C., the colored water again flowed after 2 seconds.

[実施例2]
本実施例では前記第2態様の温度応答性バルブについてさらに詳細に述べる。
〔温度応答性バルブの作製〕
<第3部材>
実施例1と全く同様にして、実施例1と同じ第3部材(7)を作製した。
[Example 2]
In this example, the temperature responsive valve of the second aspect will be described in more detail.
[Production of temperature-responsive valve]
<Third member>
In the same manner as in Example 1, the same third member (7) as in Example 1 was produced.

<第2部材>
<第2部材及び弁体>
厚さ60μmのポリプロピレンシートを一時的な支持体(図示略)として用い、これに活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、フォトマスクを通して、切欠部(4)となす部分以外の部分に、完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより切欠部(4)とそれにより囲まれた舌片(5)を有する部材(6a)を形成した。
<Second member>
<Second member and valve body>
Using a polypropylene sheet having a thickness of 60 μm as a temporary support (not shown), applying the active energy ray-curable resin composition (x-1) thereto, and forming a notch (4) through a photomask Except for the part that is not sufficiently cured to irradiate with ultraviolet rays, the irradiated part is semi-cured, and the uncured resin composition of the non-irradiated part is washed away with 50% aqueous ethanol to remove the notched part. A member (6a) having (4) and a tongue piece (5) surrounded thereby was formed.

部材(6a)の上に活性エネルギー線硬化性樹脂組成物(x−1)を塗布し、フォトマスクを通して、切欠部(4)及び弁体(5)と成す部分以外の部分に、完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより部材(6b)を部材(6a)の上に接合された形状に形成し、第2部材(6)とした。   The active energy ray-curable resin composition (x-1) is applied on the member (6a), and is completely cured to a portion other than the portion formed of the notch (4) and the valve body (5) through a photomask. Insufficient amount of ultraviolet light is irradiated to semi-cure the irradiated part, and the uncured resin composition of the non-irradiated part is washed and removed with a 50% aqueous ethanol solution to remove the member (6b) from the member (6a). It formed in the shape joined on the top and was set as the 2nd member (6).

次いで、部材(6a)の舌片(5)に多孔質温度応答性ゲル材料(y−2)を部材(6b)と同じ厚さだけ塗布し、弁体(5)となす部分に紫外線照射して、温度応答性ゲル(9)をコーティングし、水で十分洗浄して弁体(5)とした。これを、図3(イ)に示したように位置を合わせて第3部材(8)に積層し、紫外線を照射して第2部材(6)を硬化させると同時に第3部材(8)に接合した。その後、前記一時的な支持体(図示略)を第2部材(6)から剥離除去した。   Next, the porous temperature-responsive gel material (y-2) is applied to the tongue piece (5) of the member (6a) by the same thickness as that of the member (6b), and the portion to be the valve body (5) is irradiated with ultraviolet rays. Then, the temperature-responsive gel (9) was coated and sufficiently washed with water to obtain a valve body (5). As shown in FIG. 3 (a), this is aligned and laminated on the third member (8), and the second member (6) is cured by irradiating with ultraviolet rays. Joined. Thereafter, the temporary support (not shown) was peeled off from the second member (6).

<第1部材>
実施例1と全く同様にして、実施例1と同じ第1部材(7)を第3部材(7)−第2部材(6)接合体に接合し、第2態様の得温度応答性バルブを作製した。
<First member>
In exactly the same manner as in Example 1, the same first member (7) as in Example 1 was joined to the third member (7) -second member (6) assembly, and the temperature-responsive valve of the second mode was obtained. Produced.

〔各部の寸法〕
作製した温度応答性バルブは、部材(6a)、部材(6b)が共に厚さ50μmで第2部材(6)の厚さが100μmであること、温度応答性ゲル(9)の厚さが50μmであること、板状の本バルブ全体の厚さが1.5mmであること以外は実施例1と同様である。。
[Dimensions of each part]
The manufactured temperature-responsive valve has the members (6a) and (6b) both having a thickness of 50 μm and the second member (6) having a thickness of 100 μm, and the temperature-responsive gel (9) having a thickness of 50 μm. The same as in Example 1 except that the thickness of the entire plate-like valve is 1.5 mm. .

〔使用試験〕
実施例1と同様の試験を行ったところ、25℃にて着色水は流路を流れて流出口(14)から流出した。着色水が流れている状態で、温度応答性バルブを45℃に調節された温調プレートに乗せ変えたところ、約3秒後に着色水の流れは遮断された。次いで、温度応答性バルブを25度に調節された温調プレートに乗せ変えると、5秒後に着色水は再度流通した。
[Use test]
When the test similar to Example 1 was done, colored water flowed through the flow path at 25 degreeC, and flowed out from the outflow port (14). When the temperature-responsive valve was placed on a temperature control plate adjusted to 45 ° C. while the colored water was flowing, the colored water flow was cut off after about 3 seconds. Next, when the temperature responsive valve was placed on the temperature control plate adjusted to 25 degrees, the colored water again flowed after 5 seconds.

本発明の第1態様の温度応答性バルブの組み立て模式図である。It is an assembly schematic diagram of the temperature-responsive valve of the first aspect of the present invention. 本発明の第1態様の温度応答性バルブの(イ)平面模式図、(ロ)上記(イ)のA部に於ける、弁体が下方へ反るべく付勢している状態の側面断面模式図、(ハ)上記(イ)のA部に於ける、弁体が上方へ反った状態の側面断面模式図である。(A) A schematic plan view of the temperature-responsive valve according to the first aspect of the present invention, (b) a side cross-section in a state where the valve body is urged to warp downward in section A of (b) above. Schematic diagram, (c) A side cross-sectional schematic diagram of the state in which the valve body is warped upward in part A of (b) above. 本発明の第1態様の温度応答性バルブの(イ)平面模式図、(ロ)上記イ)のB部に於ける、弁体が下方へ反った状態の側面断面模式図、(ハ)上記(イ)のB部に於ける、弁体が上方へ反るべく付勢している状態の側面断面模式図である。(A) a schematic plan view of the temperature-responsive valve according to the first aspect of the present invention, (b) a schematic side sectional view of the valve body warped downward in section B of (b) above, (c) above It is a side cross-sectional schematic diagram of the state which is energizing so that the valve body may warp upwards in the B section of (A). 本発明の第3態様の温度応答性バルブの組み立て模式図である。It is an assembly schematic diagram of the temperature-responsive valve of the third aspect of the present invention. 本発明の第3態様の温度応答性バルブの(イ)平面模式図、(ロ)上記(イ)のC部に於ける、弁体が下方へ反るべく付勢している状態の断面側面模式図、(ハ)上記(イ)のC部に於ける、弁体が上方へ反った状態の側面断面模式図である。(A) A schematic plan view of the temperature-responsive valve according to the third aspect of the present invention, (b) a cross-sectional side view in a state in which the valve body is biased to warp downward in part C of (b) above. Schematic view, (c) A side cross-sectional schematic view of the state in which the valve body is warped upward in section C of (b) above. 本発明の第4態様の温度応答性バルブの(イ)平面模式図、(ロ)上記(イ)のD部に於ける、弁体が下方へ反るべく付勢している状態の断面側面模式図、(ハ)上記(イ)のD部に於ける、弁体が上方へ反った状態の側面断面模式図である。(A) A schematic plan view of a temperature-responsive valve according to the fourth aspect of the present invention, (b) a cross-sectional side view in a state where the valve body is biased to warp downward in the D part of (b) above. Schematic diagram, (C) A side cross-sectional schematic diagram showing a state in which the valve body is warped upward in D section of (A) above. 本発明の第5態様の温度応答性バルブの組み立て模式図である。It is an assembly schematic diagram of the temperature-responsive valve according to the fifth aspect of the present invention. 本発明の第5態様の温度応答性バルブの(イ)弁体付近の平面模式図、(ロ)上記(イ)のE部に於ける、弁体が下方へ反るべく付勢している状態の側面断面模式図、(ハ)上記(イ)のE部に於ける、弁体が上方へ反った状態の側面断面模式図である。(B) a schematic plan view of the vicinity of the valve body of the temperature-responsive valve of the fifth aspect of the present invention; (b) the valve body in section E of (b) above is biased to warp downward. FIG. 4 is a side cross-sectional schematic diagram of a state, (c) a side cross-sectional schematic diagram of a state in which the valve body is warped upward in the E portion of (a) above.

符号の説明Explanation of symbols

1:流入側流路、溝
2:弁室
3:第1態様及び第2態様における第1部材
4:切欠部
5:舌片
6:第2部材
7:流出側流路
8:第1態様及び第2態様における第3部材
9:温度応答性ゲル
10:連絡孔
11:流入口
12:弁座
13:連絡孔
14:流出口
15:弁体
16:第3態様及び第4態様におけるの第1部材
17:第3態様及び第4態様におけるの第3部材
21:第1流出側流路
22:第5態様における第1部材
23:第5態様における第3部材
24:第2流出側流路
25:連絡孔
26:第5態様における第4部材
27:第5態様における第5部材
28:第1流出側の弁座
29:第2流出側の弁座
31:連絡孔
32:第1流出口
33:連絡孔
34:第2流出口


1: Inflow side channel, groove 2: Valve chamber 3: First member in the first and second modes 4: Notch portion 5: Tongue piece 6: Second member 7: Outflow side channel 8: First mode and 3rd member in 2nd aspect 9: Temperature-responsive gel 10: Communication hole 11: Inflow port 12: Valve seat 13: Communication hole 14: Outflow port 15: Valve body 16: 1st in 3rd aspect and 4th aspect Member 17: Third member 21 in the third aspect and the fourth aspect 21: First outflow side flow path 22: First member 23 in the fifth aspect: Third member 24 in the fifth aspect 24: Second outflow side flow path 25 : Communication hole 26: fourth member 27 in the fifth aspect 27: fifth member 28 in the fifth aspect 28: first outlet valve seat 29: second outlet valve seat 31: communication hole 32: first outlet 33 : Communication hole 34: Second outlet


Claims (10)

微細流路と、微細流路内に配置された微細流路を開閉、切替又は流量制御する弁体とからなるバルブであって、弁体が、ゲル−固体転移温度を有する温度応答性ゲルと可撓性部材との接合体からなり、温度変化により変形して微細流路を開閉、切替又は流量制御することを特徴とする温度応答性バルブ。 A valve composed of a microchannel and a valve body that opens, closes, switches, or controls the flow rate of the microchannel disposed in the microchannel, and the valve body is a temperature-responsive gel having a gel-solid transition temperature. A temperature responsive valve comprising a joined body with a flexible member and deforming due to a temperature change to open, close, switch or control a flow rate of a fine flow path. 前記弁体が、フィルム状の可撓性部材に設けられた舌片部分と、該舌片部分に積層された温度応答性ゲルとの接合体からなるものである請求項1又は2に記載の温度応答性バルブ。 The said valve body consists of a joined body of the tongue piece part provided in the film-like flexible member, and the temperature-responsive gel laminated | stacked on this tongue piece part. Temperature responsive valve. フィルム状の可撓性部材に設けられた舌片部分と、該舌片部分に温度応答性ゲルが積層された温度応答性ゲルとの接合体からなる弁体を有するフィルム状の可撓性部材からなる弁体層と、
微細流路を構成する溝又は貫通孔を有する二つの流路層とからなり、
二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように、二つの流路層が弁体層を挟持して積層された多層構造を有する請求項2に記載の温度応答性バルブ。
A film-like flexible member having a valve body comprising a tongue piece provided on a film-like flexible member and a temperature-responsive gel in which a temperature-responsive gel is laminated on the tongue piece. A valve layer comprising:
It consists of two flow path layers having grooves or through holes that make up the fine flow path,
3. The multi-layer structure according to claim 2, wherein the two flow path layers have a multilayer structure in which the valve body layers are sandwiched so that the grooves or through holes of the two flow path layers are communicated and separated by deformation of the valve body. Temperature responsive valve.
前記微細流路が三叉状の分岐流路を有し、且つ、前記弁体が、常体で三叉状の分岐流路の一の流路を閉鎖し、温度変化により前記一の流路を開放すると共に他の一つの流路を閉鎖するものである請求項1〜3のいずれかに記載の温度応答性バルブ。 The fine channel has a trifurcated branch channel, and the valve element closes one of the regular trident branch channels and opens the one channel due to temperature change. The temperature responsive valve according to claim 1, wherein the other one flow path is closed. 前記温度応答性ゲルが、活性エネルギー線硬化性樹脂組成物の硬化物からなるゲルである請求項1〜4のいずれかに記載の温度応答性バルブ。 The temperature-responsive valve according to any one of claims 1 to 4, wherein the temperature-responsive gel is a gel made of a cured product of an active energy ray-curable resin composition. 前記温度応答性ゲルが、固体状態で多孔質体である請求項1〜5のいずれかに記載の温度応答性バルブ。 The temperature-responsive valve according to any one of claims 1 to 5, wherein the temperature-responsive gel is a porous body in a solid state. 請求項1〜6に記載の温度応答性バルブの製造方法であって、
フィルム状の可撓性部材の少なくとも前記弁体と成す部分に温度応答性ゲルを接合し、該接合部に舌片部分を形成するための表裏を貫通する欠切部を形成して前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層することを特徴とする温度応答性バルブの製造方法。
It is a manufacturing method of the temperature responsive valve according to claim 1,
A temperature-responsive gel is bonded to at least a portion of the film-like flexible member formed with the valve body, and the valve body is formed with a notched portion penetrating the front and back for forming a tongue piece portion at the joint portion. Forming a valve layer having
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. And a temperature-responsive valve manufacturing method.
前記フィルム状の可撓性部材への温度応答性ゲルの接合が、前記弁体となる部分を含む範囲に、活性エネルギー線硬化性の温度応答性ゲル形成組成物を塗布し、活性エネルギー線照射により温度応答性ゲルを形成してフィルム状の可撓性部材に接合させるものである請求項7に記載の温度応答性バルブの製造方法。 An active energy ray-curable temperature-responsive gel-forming composition is applied to a range in which the temperature-responsive gel is bonded to the film-like flexible member including the valve body, and active energy ray irradiation is performed. The method for producing a temperature responsive valve according to claim 7, wherein a temperature responsive gel is formed by bonding to a film-like flexible member. 請求項1〜6に記載の温度応答性バルブの製造方法であって、
支持体上に活性エネルギー線硬化性樹脂組成物を塗布し、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射してフィルム状の可撓性部材を形成し、
該フィルム状の可撓性部材に、活性エネルギー線硬化性の温度応答性ゲル形成組成物を塗布して、舌片部分を形成するための表裏を貫通する欠切部と成す部分以外の部分に活性エネルギー線を照射した後、非照射部の未硬化成分を除去することにより、前記弁体を有する弁体層を形成し、
該弁体層を、微細流路を構成する溝又は貫通孔を有する二つの流路層で、二つの流路層の溝又は貫通孔が前記弁体の変形により連通及び隔絶するように挟持して積層することを特徴とする温度応答性バルブの製造方法。
It is a manufacturing method of the temperature responsive valve according to claim 1,
An active energy ray-curable resin composition is applied onto a support, and the active energy rays are irradiated to portions other than the cut-out portions penetrating the front and back for forming the tongue piece portion. Forming a sex member,
The film-like flexible member is coated with an active energy ray-curable temperature-responsive gel-forming composition and applied to a portion other than the portion formed as a notch that penetrates the front and back surfaces for forming the tongue portion. After irradiating the active energy ray, by removing the uncured component of the non-irradiated part, the valve body layer having the valve body is formed,
The valve body layer is sandwiched between two flow path layers having grooves or through-holes constituting a fine flow path so that the grooves or through-holes of the two flow path layers are communicated and isolated by deformation of the valve body. And a temperature-responsive valve manufacturing method.
前記活性エネルギー線硬化性の温度応答性ゲル形成組成物が孔形成剤を含有するものである請求項8又は9に記載の温度応答性バルブの製造方法。
The method for producing a temperature-responsive valve according to claim 8 or 9, wherein the active energy ray-curable temperature-responsive gel-forming composition contains a pore-forming agent.
JP2005366262A 2005-12-20 2005-12-20 Temperature responsive valve and its manufacturing method Pending JP2007170469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366262A JP2007170469A (en) 2005-12-20 2005-12-20 Temperature responsive valve and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366262A JP2007170469A (en) 2005-12-20 2005-12-20 Temperature responsive valve and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007170469A true JP2007170469A (en) 2007-07-05

Family

ID=38297294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366262A Pending JP2007170469A (en) 2005-12-20 2005-12-20 Temperature responsive valve and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007170469A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278502A (en) * 2006-04-04 2007-10-25 Samsung Electronics Co Ltd Valve unit and device having the same
JP2010222465A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Array of autonomously responding gel, autonomously responding material, autonomously responding device, autonomously responding method and method for producing array of autonomously responding gel
JP2011033144A (en) * 2009-08-03 2011-02-17 Ricoh Co Ltd Microvalve and method of manufacturing the same
JP2011505548A (en) * 2007-11-22 2011-02-24 サムスン エレクトロニクス カンパニー リミテッド Thin film valve device and its control device
JP2012042115A (en) * 2010-08-18 2012-03-01 Fujitsu Ltd Loop-type heat pipe and electronic equipment
JP2014510878A (en) * 2011-01-21 2014-05-01 バイオカーティス ソシエテ アノニム Micro pump or normal OFF type (NORMALLY-OFF) micro valve
JP2015511181A (en) * 2012-02-24 2015-04-16 フォンズ エスピシ ジョルジュ シャルパクFonds Espci Georges Charpak Microchannel with open and / or closed and / or pumping device
EP3029363A1 (en) * 2014-12-05 2016-06-08 BiFlow Systems GmbH Fluidic device and method for operating the same
JP2020062843A (en) * 2018-10-18 2020-04-23 日本電信電話株式会社 Laminate, manufacturing method of laminate, and shape control device
CN111979087A (en) * 2019-05-22 2020-11-24 湖南乐准智芯生物科技有限公司 PCR micro-reaction chamber chip and sample injection method thereof
CN114018812A (en) * 2021-11-10 2022-02-08 重庆大学 Integrated micro-fluidic fluorescent chip for bacteria collection and detection and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134078A (en) * 1981-02-13 1982-08-19 Matsushita Electric Ind Co Ltd Electrically operated three-way valve
JPH06228215A (en) * 1993-02-03 1994-08-16 Dainippon Ink & Chem Inc Production of temperature-sensitive porous polymer
JPH07332219A (en) * 1994-06-02 1995-12-22 Zenichi Ogita Temperature-sensitive response actuator, temperature-response valve operated by the actuator, and temperature-sensitive switch
JP2002066999A (en) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res Extremely small valve mechanism and manufacturing method of the same
WO2002053290A2 (en) * 2001-01-08 2002-07-11 President And Fellows Of Harvard College Valves and pumps for microfluidic systems and method for making microfluidic systems
JP2002200597A (en) * 2000-12-28 2002-07-16 Matsushita Electric Works Ltd Semiconductor micro actuator, and semiconductor micro valve using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134078A (en) * 1981-02-13 1982-08-19 Matsushita Electric Ind Co Ltd Electrically operated three-way valve
JPH06228215A (en) * 1993-02-03 1994-08-16 Dainippon Ink & Chem Inc Production of temperature-sensitive porous polymer
JPH07332219A (en) * 1994-06-02 1995-12-22 Zenichi Ogita Temperature-sensitive response actuator, temperature-response valve operated by the actuator, and temperature-sensitive switch
JP2002066999A (en) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res Extremely small valve mechanism and manufacturing method of the same
JP2002200597A (en) * 2000-12-28 2002-07-16 Matsushita Electric Works Ltd Semiconductor micro actuator, and semiconductor micro valve using the same
WO2002053290A2 (en) * 2001-01-08 2002-07-11 President And Fellows Of Harvard College Valves and pumps for microfluidic systems and method for making microfluidic systems

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278502A (en) * 2006-04-04 2007-10-25 Samsung Electronics Co Ltd Valve unit and device having the same
US8920753B2 (en) 2006-04-04 2014-12-30 Samsung Electronics Co., Ltd. Valve unit and apparatus having the same
JP2011505548A (en) * 2007-11-22 2011-02-24 サムスン エレクトロニクス カンパニー リミテッド Thin film valve device and its control device
JP2010222465A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Array of autonomously responding gel, autonomously responding material, autonomously responding device, autonomously responding method and method for producing array of autonomously responding gel
JP2011033144A (en) * 2009-08-03 2011-02-17 Ricoh Co Ltd Microvalve and method of manufacturing the same
JP2012042115A (en) * 2010-08-18 2012-03-01 Fujitsu Ltd Loop-type heat pipe and electronic equipment
JP2014510878A (en) * 2011-01-21 2014-05-01 バイオカーティス ソシエテ アノニム Micro pump or normal OFF type (NORMALLY-OFF) micro valve
JP2015511181A (en) * 2012-02-24 2015-04-16 フォンズ エスピシ ジョルジュ シャルパクFonds Espci Georges Charpak Microchannel with open and / or closed and / or pumping device
EP3029363A1 (en) * 2014-12-05 2016-06-08 BiFlow Systems GmbH Fluidic device and method for operating the same
DE102014117976A1 (en) * 2014-12-05 2016-06-09 Biflow Systems Gmbh Fluidic device and method of operating the same
DE102014117976B4 (en) * 2014-12-05 2018-10-11 Biflow Systems Gmbh Fluidic device and method of operating the same
JP2020062843A (en) * 2018-10-18 2020-04-23 日本電信電話株式会社 Laminate, manufacturing method of laminate, and shape control device
JP2022019789A (en) * 2018-10-18 2022-01-27 日本電信電話株式会社 Shape control device
JP7071641B2 (en) 2018-10-18 2022-05-19 日本電信電話株式会社 Laminates, method of manufacturing laminates and shape control devices
CN111979087A (en) * 2019-05-22 2020-11-24 湖南乐准智芯生物科技有限公司 PCR micro-reaction chamber chip and sample injection method thereof
CN111979087B (en) * 2019-05-22 2023-08-15 湖南乐准智芯生物科技有限公司 PCR micro-reaction chamber chip and sample injection method thereof
CN114018812A (en) * 2021-11-10 2022-02-08 重庆大学 Integrated micro-fluidic fluorescent chip for bacteria collection and detection and application thereof
CN114018812B (en) * 2021-11-10 2023-10-20 重庆大学 Bacterial collection and detection integrated microfluidic fluorescent chip and application thereof

Similar Documents

Publication Publication Date Title
JP2007170469A (en) Temperature responsive valve and its manufacturing method
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
US6499499B2 (en) Flow control in multi-stream microfluidic devices
Tan et al. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps
Tsao et al. Bonding of thermoplastic polymer microfluidics
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2002066999A (en) Extremely small valve mechanism and manufacturing method of the same
US20110300034A1 (en) Disposable, High Pressure Microfluidic Chips
US7238325B2 (en) Very small chemical device and flow rate adjusting method therefor
JP6304688B2 (en) Valve, microfluidic device, microstructure, valve seat, valve seat manufacturing method, and microfluidic device manufacturing method
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
JP2002018271A (en) Micro chemical device
JP2000246092A (en) Production of microchemical device
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
Wouters et al. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
Madadi et al. A simple solvent-assisted method for thermal bonding of large-surface, multilayer PMMA microfluidic devices
JP2003136500A (en) Method of manufacturing micro fluid device having resin diaphragm
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2002370200A (en) Method of manufacturing miniature valve mechanism
WO2016136551A1 (en) Valve, fluid device, and method for producing fluid device
JP2002219697A (en) Micro fluid device having valve mechanism, and flow control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830