JP2012042115A - Loop-type heat pipe and electronic equipment - Google Patents

Loop-type heat pipe and electronic equipment Download PDF

Info

Publication number
JP2012042115A
JP2012042115A JP2010183373A JP2010183373A JP2012042115A JP 2012042115 A JP2012042115 A JP 2012042115A JP 2010183373 A JP2010183373 A JP 2010183373A JP 2010183373 A JP2010183373 A JP 2010183373A JP 2012042115 A JP2012042115 A JP 2012042115A
Authority
JP
Japan
Prior art keywords
vapor
heat
pipe
loop
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010183373A
Other languages
Japanese (ja)
Other versions
JP5621404B2 (en
Inventor
Makoto Yoshino
真 吉野
Shigenori Aoki
重憲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010183373A priority Critical patent/JP5621404B2/en
Publication of JP2012042115A publication Critical patent/JP2012042115A/en
Application granted granted Critical
Publication of JP5621404B2 publication Critical patent/JP5621404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Abstract

PROBLEM TO BE SOLVED: To provide a loop-type heat pipe excellent in stable operation and heat transport capacity and an electronic equipment having the same.SOLUTION: The loop-type heat pipe includes: an evaporation part for evaporating an operating fluid by receiving heat from the outside; a first condensation part for condensing vapor of the operating fluid by radiating heat outside; a second condensation part connected in series with the first condensation part at a side near a steam pipe thorough which the vapor from the evaporation part passes, which condenses the vapor of the operating fluid by radiating heat outside; a steam passage opening/closing mechanism arranged before and behind the second condensation part, which opens and closes the steam passage according to a predetermined temperature; and a bypass pipe for bypassing the vapor of the operating fluid in the steam pipe when the steam passage opening/closing mechanism is closed.

Description

本発明は、ループ型ヒートパイプ及び電子機器に関する。   The present invention relates to a loop heat pipe and an electronic device.

近年、コンピュータ等の電子機器の発熱量及び発熱密度が増加し、冷却性能の向上が求められている。そのため、ヒートシンクを冷却ファンの近傍等の冷却に適する場所に配置し、CPU(Central Processing Unit )等の発熱量の大きな電子部品とヒートシンクとをヒートパイプで熱的に接続して冷却する方法が広く用いられている。   In recent years, the heat generation amount and heat generation density of electronic devices such as computers have increased, and improvement in cooling performance has been demanded. For this reason, there is a wide range of methods in which a heat sink is disposed in a location suitable for cooling, such as in the vicinity of a cooling fan, and an electronic component having a large amount of heat, such as a CPU (Central Processing Unit), and the heat sink are thermally connected by a heat pipe for cooling. It is used.

従来、ヒートシンクと電子部品とを熱的に接続するヒートパイプとしては、構造が簡単な単管型ヒートパイプが利用されてきた。しかし、単管型ヒートパイプの熱輸送能力は30〜50W程度と低く、電子機器の冷却を行うのに十分ではない。   Conventionally, as a heat pipe for thermally connecting a heat sink and an electronic component, a single-tube heat pipe having a simple structure has been used. However, the heat transport capacity of the single tube heat pipe is as low as about 30 to 50 W, which is not sufficient for cooling the electronic device.

一方、ループ型ヒートパイプ(Loop Heat Pipe:LHP)は単管型ヒートパイプに比べて熱輸送能力が優れることから、電子機器への搭載を目指した開発が進められている。   On the other hand, a loop heat pipe (LHP) has an excellent heat transport capability as compared with a single tube heat pipe, and therefore, development aimed at mounting on an electronic device is underway.

図6に示すように、LHP10は、作動液(液相の作動流体)を蒸発させる蒸発部12と、蒸気(気相の作動流体)を凝縮させる凝縮部14と、蒸発部に供給する作動液を一時的に貯留する補助チャンバ11とを備えている。蒸発部12と凝縮部14とは蒸気を導く蒸気管13で接続され、凝縮部14と補助チャンバ11とは作動液を導く液管15で接続される。また、蒸発部12の内部には、液管15と連通した作動液流路と蒸気管13と連通した蒸気流路とを隔てるウィック17と呼ばれる多孔質部材が設けられている。このウィック17は、作動液流路の作動液を毛細管力で吸い上げて蒸気流路側に輸送する機能と、蒸気流路の蒸気が作動液流路側に逆流するのを防ぐ機能とを有し、蒸発部12と凝縮部14との間で作動液を循環させている。   As illustrated in FIG. 6, the LHP 10 includes an evaporation unit 12 that evaporates working fluid (liquid phase working fluid), a condensing unit 14 that condenses steam (gas phase working fluid), and a working fluid supplied to the evaporation unit. And an auxiliary chamber 11 for temporarily storing the. The evaporating unit 12 and the condensing unit 14 are connected by a steam pipe 13 that guides the steam, and the condensing unit 14 and the auxiliary chamber 11 are connected by a liquid pipe 15 that guides the working fluid. In addition, a porous member called a wick 17 is provided inside the evaporation section 12 to separate the working fluid flow path communicating with the liquid pipe 15 and the vapor flow path communicating with the steam pipe 13. The wick 17 has a function of sucking up the hydraulic fluid in the hydraulic fluid flow path with a capillary force and transporting it to the vapor flow path side, and a function of preventing the vapor in the vapor flow path from flowing backward to the hydraulic fluid flow path side. The working fluid is circulated between the section 12 and the condenser section 14.

特開2009−168273号公報JP 2009-168273 A 特開2009−115396号公報JP 2009-115396 A 特開2002−340489号公報Japanese Patent Laid-Open No. 2002-340489

しかしながら、電子計算機のCPUは計算の負荷を変えて稼働するため、LHPの凝縮部は、発熱量に対応した放熱面積が必要となる。従来のLHPでは、最大発熱量を放熱できるように凝縮部の放熱面積を設計しているため、発熱量が小さい場合、蒸気管に近い側で凝縮が起こり、作動流体の流動抵抗が大きくなって循環が止まる結果、LHPが動作しなくなるという問題を抱える。   However, since the CPU of the electronic computer operates by changing the calculation load, the LHP condensing unit needs a heat radiation area corresponding to the heat generation amount. In the conventional LHP, the heat radiation area of the condensing part is designed so that the maximum heat generation amount can be dissipated. Therefore, when the heat generation amount is small, condensation occurs near the steam pipe, and the flow resistance of the working fluid increases. As a result of the circulation being stopped, there is a problem that the LHP does not operate.

そこで、上述した問題を解決するため、本発明では、発熱量に変動があっても安定に動作し、熱輸送能力に優れたループ型ヒートパイプを提供する。   Therefore, in order to solve the above-described problem, the present invention provides a loop heat pipe that operates stably even if the calorific value fluctuates and has an excellent heat transport capability.

本発明の一つの態様によれば、外部から受熱して作動液を蒸発させる蒸発部と、外部に放熱して前記作動液の蒸気を凝縮させる第1の凝縮部と、前記蒸発部からの蒸気が通る蒸気管側で前記第1の凝縮部と直列に連結され、外部に放熱して前記作動液の蒸気を凝縮させる第2の凝縮部と、前記第2の凝縮部の入口または出口に設置され、所定温度に応じて蒸気の通過量を制御する蒸気通路開閉機構と、前記作動液の蒸気を前記第2の凝縮部を通過させずに前記第1の凝縮部に送るバイパス管と、を有することを特徴とするループ型ヒートパイプに関する。   According to one aspect of the present invention, an evaporation unit that receives heat from the outside and evaporates the working fluid, a first condensing unit that radiates heat to the outside and condenses the vapor of the working fluid, and a vapor from the evaporation unit Is connected in series with the first condensing unit on the steam pipe side through which the gas passes, and is installed at the second condensing unit for radiating heat to the outside and condensing the vapor of the working fluid, and at the inlet or the outlet of the second condensing unit A steam passage opening / closing mechanism that controls a passage amount of the steam according to a predetermined temperature, and a bypass pipe that sends the steam of the working fluid to the first condensing unit without passing through the second condensing unit. The present invention relates to a loop heat pipe.

本発明によれば、凝縮部を直列に分割した、蒸気管側の凝縮器の入口または出口に温度可変の開閉バルブを設置することによって、冷却対象である電子部品の温度が低い場合にも、安定に動作し、熱輸送能力に優れたループ型ヒートパイプが実現される。   According to the present invention, when the temperature of an electronic component to be cooled is low by installing a temperature variable opening / closing valve at the inlet or outlet of the condenser on the steam pipe side, in which the condenser is divided in series, A loop heat pipe that operates stably and has excellent heat transport capability is realized.

本発明の実施の形態になるループ型ヒートパイプの基本構成とその動作を説明する図である。It is a figure explaining the basic composition of the loop type heat pipe which becomes an embodiment of the invention, and its operation. 本発明の実施の形態になる分断凝縮部の前後の蒸気通路に設置する高分子バルブの構成とその挙動を説明する図である。It is a figure explaining the structure of the polymer valve installed in the vapor | steam passage before and behind the fragmentation condensation part which becomes embodiment of this invention, and its behavior. 本発明の実施の形態になる高分子バルブ開度と発熱量の関係を示す図である。It is a figure which shows the relationship between the polymer valve opening degree which becomes embodiment of this invention, and the emitted-heat amount. 本発明の実施の形態になるループ型ヒートパイプの構造と主要部の構造(断面図)を示す図である。It is a figure which shows the structure (sectional drawing) of the structure of the loop type heat pipe which becomes embodiment of this invention, and a principal part. 本発明の実施の形態になるループ型ヒートパイプを搭載した電子機器を示す図である。It is a figure which shows the electronic device carrying the loop type heat pipe which becomes embodiment of this invention. 従来のループ型ヒートパイプの構成例を示す図である。It is a figure which shows the structural example of the conventional loop type heat pipe.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明のループ型ヒートパイプの基本構成とその動作を説明する図である。ループ型ヒートパイプ10は、外部から受熱して作動液を蒸発させる蒸発部12と外部に放熱して前記作動液の蒸気を凝縮させる凝縮部14とを有する。   FIG. 1 is a diagram for explaining the basic configuration and operation of a loop heat pipe of the present invention. The loop heat pipe 10 includes an evaporating unit 12 that receives heat from the outside and evaporates the working fluid, and a condensing unit 14 that radiates heat to the outside and condenses the vapor of the working fluid.

また、LHP10は、蒸発部12に供給する作動液を貯留する補助チャンバ11と、蒸発部12で発生した作動液の蒸気を凝縮部14に導く蒸気管13と、凝縮部14で凝縮された作動液を補助チャンバ11に導く液管15を有する。また、蒸気管13は、その蒸気管内に配置され、補助チャンバ11と連通した作動液流路と、蒸気管13と連通した蒸気流路とを隔てる多孔質材料よりなるウィック17を有する。   The LHP 10 includes an auxiliary chamber 11 that stores hydraulic fluid to be supplied to the evaporator 12, a vapor pipe 13 that guides the vapor of hydraulic fluid generated in the evaporator 12 to the condenser 14, and an operation that is condensed in the condenser 14. A liquid pipe 15 for guiding the liquid to the auxiliary chamber 11 is provided. Further, the steam pipe 13 has a wick 17 made of a porous material that is disposed in the steam pipe and separates the working fluid flow path communicating with the auxiliary chamber 11 and the steam flow path communicating with the steam pipe 13.

さらに、凝縮部14は、直列に複数分割された分割凝縮部14a、14bと、蒸気管13に近い側の凝縮部(14a)の前後に設置され、作動蒸気液通路の開閉を行う高分子バルブ30と、分割凝縮部14aへの入力を遮断された蒸気をバイパスするバイパス管31を有する。なお、凝縮部14、および分割凝縮部14a、14bは、図示していないが、内部に凝縮管13や液管15と同一径の管と該管の周りに該管を冷却する放熱フィンとを有する構造となっている。さらに、該放熱フィンに送風して冷却する冷却ファン(図にない)を凝縮部近傍に備えている。   Further, the condensing unit 14 is installed in front of and behind the divided condensing units 14a and 14b divided in series and the condensing unit (14a) on the side close to the steam pipe 13, and opens and closes the working vapor liquid passage. 30 and a bypass pipe 31 that bypasses the steam that is blocked from being input to the split condenser 14a. Although not shown, the condensing unit 14 and the divided condensing units 14a and 14b include a tube having the same diameter as the condensing tube 13 and the liquid tube 15 and a radiating fin for cooling the tube around the tube. It has a structure. Further, a cooling fan (not shown) that blows and cools the radiating fins is provided in the vicinity of the condensing unit.

高分子バルブ30には、所定温度よりも低い温度になると蒸気液を吸収して膨張して蒸気通路を閉じ、所定温度よりも高い温度になると収縮して蒸気通路を開くような高分子材料が適用される。なお、分割凝縮部14aの後方部のバルブは逆流を防止するためのものである。なお、実施例では、凝縮部14は2つに分割された例で示しているが、複数個に分割されてもよい。   The polymer valve 30 is made of a polymer material that absorbs vapor liquid when the temperature is lower than a predetermined temperature and expands to close the vapor passage, and contracts when the temperature is higher than the predetermined temperature to open the vapor passage. Applied. In addition, the valve | bulb of the back part of the division | segmentation condensation part 14a is for preventing a backflow. In addition, in the Example, although the condensation part 14 was shown in the example divided | segmented into two, you may divide | segment into two or more.

以下に、本発明のループ型ヒートパイプの動作原理について述べる。   The operating principle of the loop heat pipe of the present invention will be described below.

発熱量が小さい時(または動作開始時)、高分子バルブ30は「閉」状態となり、蒸気が分割凝縮部14aのバイパス管31を通過し、凝縮部14bにおいて液化される。一方、発熱量が大きい時、高分子バルブ30は「開」状態となり、分割凝縮部14aと分割凝縮部14bの両方において液化される。   When the calorific value is small (or when the operation is started), the polymer valve 30 is in a “closed” state, and the vapor passes through the bypass pipe 31 of the split condenser 14a and is liquefied in the condenser 14b. On the other hand, when the calorific value is large, the polymer valve 30 is in the “open” state and is liquefied in both the divided condensing unit 14a and the divided condensing unit 14b.

なお、バルブ「開」のときに流体が凝縮部へ流れる条件として、バイパス管31と分割凝縮部14aの圧損抵抗の大小関係を、
バイパス管の抵抗>凝縮部の抵抗
の関係を満たすようにすれば、流体は分割凝縮部14aを通過することとなる。
As a condition for fluid to flow to the condensing part when the valve is “open”, the magnitude relationship between the pressure loss resistance of the bypass pipe 31 and the divided condensing part 14a is
If the relationship of resistance of the bypass pipe> resistance of the condensing part is satisfied, the fluid passes through the divided condensing part 14a.

実施例では、バイパス管31(内径d1)と分割凝縮部14aの流路管(内径d2)の内径は、それぞれd1=2mm、d2=4mm、また、バイパス管31の長さは、分割凝縮部14aの流路管の長さに比べて3倍以上としている。   In the embodiment, the inner diameters of the bypass pipe 31 (inner diameter d1) and the flow path pipe (inner diameter d2) of the divided condenser section 14a are d1 = 2 mm and d2 = 4 mm, respectively, and the length of the bypass pipe 31 is the divided condenser section. More than three times the length of the channel pipe of 14a.

また、高分子バルブ30に用いる材料は、温度に対して緩やかに縮んでいく性質のある温度応答性の高分子を適用するのが好ましい。   As a material used for the polymer valve 30, it is preferable to apply a temperature-responsive polymer having a property of gradually contracting with respect to temperature.

以上、凝縮部を直列に分割し、蒸気管に近い側の分割凝縮部の前後に高分子バルブによる流路の開閉機構とバイパス管を配置することによって、発熱量に応じたループ型ヒートパイプが実現される。   As described above, the condensing unit is divided in series, and the opening and closing mechanism of the flow path by the polymer valve and the bypass pipe are arranged before and after the divided condensing unit on the side close to the steam pipe, so that the loop heat pipe corresponding to the heat generation amount can be obtained. Realized.

図2は、本発明の分割凝縮部の前後の蒸気通路に設置する高分子バルブの挙動を説明する図である。図2(a)は、高分子バルブの構成例を示し、図2(b)は、高分子バルブに適用する温度応答性高分子の挙動を示している。   FIG. 2 is a diagram for explaining the behavior of the polymer valve installed in the steam passages before and after the divided condensing unit of the present invention. FIG. 2A shows a configuration example of the polymer valve, and FIG. 2B shows the behavior of the temperature-responsive polymer applied to the polymer valve.

図2(a)に示すように、高分子バルブ30は、枠体40に取り付けられた吸収層(温度応答性高分子)30aと支持層30bを有し、蒸気管13から凝縮部14に流れる蒸気の通過を制御する。   As shown in FIG. 2A, the polymer valve 30 includes an absorption layer (temperature-responsive polymer) 30 a and a support layer 30 b attached to the frame body 40, and flows from the steam pipe 13 to the condensing unit 14. Control the passage of steam.

支持層30aは、作動液16に対する化学反応性及び溶解性が低い材料、例えば、ポリプロピレン製の不織布等よりなる。なお、支持層30aの材料は、これに限定されるものではなく、例えば、白金、白金黒、金、パラジウム、ロジウム、銀、水銀、タングステン及び銅の何れか又はこれらの合金等の金属材料、グラファイト及びカーボンファイバー等の炭素材料、単結晶シリコン、アモルファスシリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素及びSOI(シリコン・オン・インシュレータ)等の半導体材料、ガラス、石英ガラス、アルミナ、サファイア、各種セラミクス、フォルステライト及び感光性ガラス等の無機材料、並びに各種高分子材料を用いることができる。   The support layer 30a is made of a material having low chemical reactivity and solubility with respect to the working fluid 16, such as a nonwoven fabric made of polypropylene. In addition, the material of the support layer 30a is not limited to this, For example, metal materials, such as platinum, platinum black, gold | metal | money, palladium, rhodium, silver, mercury, tungsten and copper, or these alloys, Carbon materials such as graphite and carbon fiber, semiconductor materials such as single crystal silicon, amorphous silicon, silicon carbide, silicon oxide, silicon nitride, and SOI (silicon on insulator), glass, quartz glass, alumina, sapphire, various ceramics, Inorganic materials such as forsterite and photosensitive glass, and various polymer materials can be used.

また、吸収層30bは、所定の相転移温度よりも低い温度で作動液を吸収して膨張するとともに、その相転移温度よりも高い温度で作動液を放出して収縮する樹脂材料からなる。ここでは、吸収層30bには、温度によって作動液の吸収及び放出を行う温度応答性高分子の一種であるポリN−イソプロピルアクリルアミドを用いている。   The absorption layer 30b is made of a resin material that absorbs the hydraulic fluid at a temperature lower than a predetermined phase transition temperature and expands, and releases the hydraulic fluid at a temperature higher than the phase transition temperature to contract. Here, poly N-isopropylacrylamide, which is a kind of temperature-responsive polymer that absorbs and releases the working fluid depending on the temperature, is used for the absorption layer 30b.

吸収層30bは、作動液に溶解して消失するのを防ぐために、支持層30aの表面で化学的に結合させている。支持層30aとして高分子材料を用いる場合には、支持層30aの表面と吸収層30bを構成する高分子とをグラフト結合させている。   The absorption layer 30b is chemically bonded on the surface of the support layer 30a in order to prevent it from dissolving and disappearing in the working fluid. When a polymer material is used as the support layer 30a, the surface of the support layer 30a and the polymer constituting the absorption layer 30b are graft-bonded.

図2(b)は、冷却すべき対象物(CPU等)の温度が低い場合、冷却すべき対象物の温度が高い場合に、バルブとして適用する温度応答性高分子の膨張・収縮による作動流体のそれぞれの状態を模式的に示したものである。   FIG. 2B shows a working fluid caused by expansion / contraction of a temperature-responsive polymer applied as a valve when the temperature of an object to be cooled (CPU or the like) is low or when the temperature of the object to be cooled is high. Each of these states is schematically shown.

図2(b)に示すように、冷却対象物が低温にあるときは、高分子鎖が膨潤し、バルブが閉じ状態となり、蒸気がバイパス管31を通過し、高温にあるときは、高分子鎖が収縮し、バルブが開状態となり、蒸気が複数の凝縮部を通過することとなる。すなわち、LHP10動作時に凝縮器の温度が上がり、高分子が所定温度(=相転移温度)以上で収縮する性質を利用して凝縮部前後のバルブ開閉を行うことによって、発熱量が異なる場合のLHP10を安定に動作させることが可能となる。   As shown in FIG. 2B, when the object to be cooled is at a low temperature, the polymer chain swells and the valve is closed, and when the vapor passes through the bypass pipe 31 and is at a high temperature, the polymer is The chain contracts, the valve is opened, and the vapor passes through a plurality of condensing parts. That is, when the LHP 10 operates, the temperature of the condenser rises, and the opening and closing of the valve before and after the condensing part is performed by utilizing the property that the polymer contracts at a predetermined temperature (= phase transition temperature) or higher, so that the LHP 10 when the calorific value is different. Can be operated stably.

高分子バルブ30は、所定の相転移温度よりも低い温度で作動液を吸収して膨張する一方、その相転移温度よりも高い温度で作動液を放出して収縮する樹脂材料からなる。ここでは、温度によって作動液の吸収及び放出を行う温度応答性高分子の一種であるポリN−イソプロピルアクリルアミドを用いている。   The polymer valve 30 is made of a resin material that expands by absorbing a working fluid at a temperature lower than a predetermined phase transition temperature, while releasing the working fluid at a temperature higher than the phase transition temperature. Here, poly-N-isopropylacrylamide, which is a kind of temperature-responsive polymer that absorbs and releases the working fluid depending on the temperature, is used.

ポリN−イソプロピルアクリルアミドは、相転移温度が32℃程度であり、32℃よりも高い温度では、側鎖のアクリルアミド部分が脱水和して高分子鎖が収縮し、その体積が減少する。また、32℃よりも低い温度では、側鎖のアクリルアミドの部分が水分を吸収して分子鎖が膨張して、その体積が増加する。   Poly-N-isopropylacrylamide has a phase transition temperature of about 32 ° C., and at a temperature higher than 32 ° C., the acrylamide portion of the side chain is dehydrated and the polymer chain contracts to reduce its volume. Further, at a temperature lower than 32 ° C., the acrylamide portion of the side chain absorbs moisture and the molecular chain expands, increasing its volume.

なお、高分子バルブ30に用いられる温度応答性高分子は、上述の例に限定されるものではなく、例えば、ポリ(N−置換アクリルアミド)、ポリ(N−置換メタクリルアミド)、ポリ(N,N−二置換アクリルアミド)、ポリ(N,N−二置換メタクリルアミド)及びポリビニルエーテル(一部が置換されていてもよい)等を用いることができる。ここで、上述の材料の置換基は、炭素数1〜20、より好ましくは炭素数1〜6の直鎖又は分岐アルキル基、及び炭素数3〜20、より好ましくは炭素数3〜10のシクロアルキル基の何れか1又は複数から選択されるものとする。   The temperature-responsive polymer used for the polymer valve 30 is not limited to the above-described example. For example, poly (N-substituted acrylamide), poly (N-substituted methacrylamide), poly (N, N-disubstituted acrylamide), poly (N, N-disubstituted methacrylamide), polyvinyl ether (which may be partially substituted), and the like can be used. Here, the substituent of the above-described material is a linear or branched alkyl group having 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms, and a cyclohexane having 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. It shall be selected from any one or more of alkyl groups.

より具体的には、ポリ(N−メチルアクリアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(N−n−プロピルアクリルアミド)、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、ポリ(N−メチルメタクリルアミド)、ポリ(N−エチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N−n−プロピルメタクリルアミド)、N−メチル−N−エチルメタクリルアミド、N−メチル−N−イソプロピルメタクリルアミド、N−メチル−N−n−プロピルメタクリルアミド、N、N−ジメチルメタクリルアミド、N、N−ジエチルメタクリルアミド、ポリビニルメチルエーテル及びポリビニルエチルエーテル等を吸収層30bに用いることができる。   More specifically, poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), poly (Nn-propylacrylamide), N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, poly (N-methylmethacrylamide) ), Poly (N-ethylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (Nn-propylmethacrylamide), N-methyl-N-ethylmethacrylamide N-methyl-N-isopropylmeta Riruamido, N- methyl -N-n-propyl methacrylamide, N, N- dimethyl methacrylamide, N, N- diethyl methacrylamide, polyvinyl methyl ether and polyvinyl ether or the like can be used in the absorbent layer 30b.

また、上記した高分子の単独重合体だけでなく、上記の重合体を構成するモノマーの2種類以上を組み合わせた共重合体や、その他の種類のモノマーと上記した重合体に含まれるモノマーとを組み合わせた共重合体を用いてもよい。また、上記の重合体の何れか1種類を単独で使用してもよいし、複数種類を組み合わせて使用してもよい。   Further, not only the above-described polymer homopolymer, but also a copolymer obtained by combining two or more types of monomers constituting the polymer, or other types of monomers and monomers contained in the polymer described above. A combined copolymer may be used. In addition, any one of the above polymers may be used alone, or a plurality of types may be used in combination.

高分子バルブ30は、以下のようにして作製することができる。ここでは、支持層30aとしてポリプロピレン製の不織布を用い、吸収層30bの温度応答性高分子としてポリ−N−イソプロピルアクリルアミドを支持層30aの表面にグラフト結合させる例について説明する。   The polymer valve 30 can be manufactured as follows. Here, an example in which a polypropylene nonwoven fabric is used as the support layer 30a and poly-N-isopropylacrylamide is graft-bonded to the surface of the support layer 30a as the temperature-responsive polymer of the absorption layer 30b will be described.

まず、支持層30aとして、例えば平均孔径10μm程度のポリプロピレン製の不織布を用意する。次に、この支持層30aの表面にアルゴン雰囲気下でプラズマを照射して支持層30aの表面に活性種を発生させる。支持層30aの表面に活性種を発生させる方法は、プラズマ照射以外に、放射線照射及び電子線照射等で行ってもよい。   First, as the support layer 30a, for example, a polypropylene nonwoven fabric having an average pore diameter of about 10 μm is prepared. Next, the surface of the support layer 30a is irradiated with plasma in an argon atmosphere to generate active species on the surface of the support layer 30a. The method of generating active species on the surface of the support layer 30a may be performed by radiation irradiation, electron beam irradiation, or the like in addition to plasma irradiation.

その後、支持層30aを、温度が60℃程度の脱気した3%N−イソプロピルアクリルアミド水溶液に浸漬する。これにより、支持層30aの表面の活性種を開始点として支持層30aの上にN−イソプロピルアクリルアミドが重合して、支持層30aとグラフト結合した吸収層30bが形成される。   Thereafter, the support layer 30a is immersed in a degassed 3% N-isopropylacrylamide aqueous solution having a temperature of about 60 ° C. Thereby, N-isopropylacrylamide is polymerized on the support layer 30a using the active species on the surface of the support layer 30a as a starting point, thereby forming an absorption layer 30b grafted to the support layer 30a.

次に、支持層30a及び吸収層30bを3%N−イソプロピルアクリルアミド水溶液から取り出し、例えば水とメタノールとを1:1の割合で混合した洗浄液で洗浄し、真空乾燥する。以上のようにして作製された支持層30a及び吸収層30bを複数積層することで本実施形態の高分子バルブ30が完成する。   Next, the support layer 30a and the absorption layer 30b are taken out from the 3% N-isopropylacrylamide aqueous solution, washed with, for example, a washing solution in which water and methanol are mixed at a ratio of 1: 1, and vacuum dried. The polymer valve 30 of this embodiment is completed by laminating a plurality of support layers 30a and absorption layers 30b produced as described above.

上に説明した支持層30aの表面に活性種を発生させる方法に代えて、支持層30aの表面に化学的処理を施して反応性を有する官能基を発生させ、その官能基と反応できる官能基を有する温度応答性高分子をグラフト結合させてもよい。この場合、支持層30aの表面に発生させる官能基としては、カルボキシル基、アルデヒド基、アミノ基、イミノ基、スルホン酸基、エポキシ基、イソシアネート基、酸クロリド基、ヒドロキシ基、チオール基、及びジスルフィド基等が挙げられる。また、支持層30aに化学的処理を施す代わりに、支持層30aを上に列挙したいずれかの官能基を有する高分子材料で形成してもよい。   Instead of the method of generating active species on the surface of the support layer 30a described above, a functional group that reacts with the functional group can be generated by reacting the surface of the support layer 30a with a chemical treatment to generate a reactive functional group. A temperature-responsive polymer having In this case, the functional groups generated on the surface of the support layer 30a include carboxyl group, aldehyde group, amino group, imino group, sulfonic acid group, epoxy group, isocyanate group, acid chloride group, hydroxy group, thiol group, and disulfide. Groups and the like. Further, instead of subjecting the support layer 30a to chemical treatment, the support layer 30a may be formed of a polymer material having any of the functional groups listed above.

図3は、本発明の高分子バルブの開度と発熱量の関係を示す図である。図3は、高分子バルブ30としてポリN−イソプロピルアクリルアミドを用いた場合のバルブの開閉性能について、横軸に発熱量W、縦軸にバルブ開度(%)をプロットしたものである。   FIG. 3 is a diagram showing the relationship between the opening degree of the polymer valve of the present invention and the calorific value. FIG. 3 is a graph in which the heat generation amount W is plotted on the horizontal axis and the valve opening degree (%) is plotted on the vertical axis, regarding the opening and closing performance of the valve when poly N-isopropylacrylamide is used as the polymer valve 30.

図3に示すように、発熱量が小さいケースとして、30W以下では、高分子バルブ30の開度は0%、発熱量が大きいケースとして、30W以上になると高分子バルブ30が開き始め、40Wではバルブの開度は50%、50W以上では高分子バルブ30の開度は100%となっている。   As shown in FIG. 3, when the heating value is small, the opening of the polymer valve 30 is 0% at 30 W or less, and when the heating value is 30 W or more, the polymer valve 30 starts to open when the heating value is 30 W or less. The opening degree of the valve is 50%, and the opening degree of the polymer valve 30 is 100% at 50 W or more.

図4は、本発明のループ型ヒートパイプの構造と主要部の構造(断面図)を示す。図4(a)は、ループ型ヒートパイプ10の全体構成を示し、図4(b)は、蒸発部12及び補助チャンバ11の断面構造を示し、および図4(c)は、凝縮部14の断面構造を示している。   FIG. 4 shows the structure of the loop heat pipe of the present invention and the structure (sectional view) of the main part. 4A shows the overall configuration of the loop heat pipe 10, FIG. 4B shows the cross-sectional structure of the evaporation unit 12 and the auxiliary chamber 11, and FIG. 4C shows the condensing unit 14. A cross-sectional structure is shown.

図4(a)に示すように、本実施形態のループ型ヒートパイプ10は、補助チャンバ11、蒸発部12、蒸気管13、凝縮部14、および液管15を有し、内部には、作動液16が飽和蒸気圧の蒸気と共に封入されている。ここでは、作動液16として水を使用するが、メタノールやエタノール等を使用してもよい。   As shown in FIG. 4A, the loop heat pipe 10 of this embodiment includes an auxiliary chamber 11, an evaporation unit 12, a vapor pipe 13, a condensing unit 14, and a liquid pipe 15. The liquid 16 is enclosed together with steam having a saturated vapor pressure. Here, water is used as the working fluid 16, but methanol, ethanol, or the like may be used.

補助チャンバ11は、図4(b)に示すように、蒸発部12に隣接して配置されており、蒸発部12に供給する作動液16を一時的に貯留する。   As shown in FIG. 4B, the auxiliary chamber 11 is disposed adjacent to the evaporation unit 12 and temporarily stores the working fluid 16 supplied to the evaporation unit 12.

また、蒸発部12は、ヒートブロック20、蒸発管21、およびウィック17を有している。ヒートブロック20は、中身の詰まった金属製の箱体である。ヒートブロック20は、外部から受けた熱をヒートブロック20全体に拡散させるものである。ヒートブロック20には電子部品85がサーマルグリス(図示せず)等を介して接合されている。   Further, the evaporation unit 12 includes a heat block 20, an evaporation tube 21, and a wick 17. The heat block 20 is a metal box filled with contents. The heat block 20 diffuses heat received from the outside throughout the heat block 20. An electronic component 85 is joined to the heat block 20 via thermal grease (not shown) or the like.

また、ヒートブロック21の中央部には、円筒状の蒸発管21が収容されている。蒸発管21は、例えば、銅パイプ等からなり、その内周側に蒸発管21の中心軸に平行な方向に伸びる複数本の溝状の蒸気流路(グルーブ)21aが形成されている。これらの蒸気流路21aは、蒸気集束部23を介して蒸気管13と連通している。   A cylindrical evaporation tube 21 is accommodated in the center of the heat block 21. The evaporation pipe 21 is made of, for example, a copper pipe or the like, and a plurality of groove-like steam flow paths (grooves) 21 a extending in a direction parallel to the central axis of the evaporation pipe 21 are formed on the inner peripheral side thereof. These steam flow paths 21 a communicate with the steam pipe 13 via the steam converging part 23.

ウィック17は、蒸気管13側の端部が閉塞された管状の多孔質部材であり、その外周面が蒸発管21の内周面(蒸気流路21aを除く)と接触するようにして蒸発管21内に収容されている。ウィック17の内周側の空洞部は、作動液流路17aとなっており、この作動液流路17aは補助チャンバ11と連通している。なお、作動液流路17aは、ウィック17によって蒸気流路21aと隔てられている。   The wick 17 is a tubular porous member whose end on the steam tube 13 side is closed, and the outer peripheral surface of the wick 17 is in contact with the inner peripheral surface of the evaporation tube 21 (excluding the steam channel 21a). 21. A hollow portion on the inner peripheral side of the wick 17 serves as a hydraulic fluid channel 17 a, and the hydraulic fluid channel 17 a communicates with the auxiliary chamber 11. The hydraulic fluid channel 17 a is separated from the vapor channel 21 a by the wick 17.

蒸気管13は、蒸発部12と凝縮部14とを接続し、蒸発部12の蒸発管21内で発生した蒸気を凝縮部14に導く。凝縮部14は、ヒートシンク(図示せず)を備え、このヒートシンクで放熱することで蒸気を凝縮させて作動液16を生成させる。液管15は、凝縮部14と補助チャンバ11とを接続し、凝縮部14で生成された作動液16を補助チャンバ11に導く。   The steam pipe 13 connects the evaporator 12 and the condenser 14, and guides the steam generated in the evaporator 21 of the evaporator 12 to the condenser 14. The condensing unit 14 includes a heat sink (not shown), and heat is radiated by the heat sink to condense the vapor and generate the working fluid 16. The liquid pipe 15 connects the condensing unit 14 and the auxiliary chamber 11, and guides the working fluid 16 generated in the condensing unit 14 to the auxiliary chamber 11.

凝縮部14は、図4(c)に示すように、直列に分割され、蒸気管に近い側の分割された分割凝縮部14aの前後に温度応答性の開閉バルブとして高分子バルブ30が設置される。高分子バルブ30は、所定温度よりも低い温度になると蒸気液を吸収して膨張し、蒸気通路を閉止し、別途設けられたバイパス管31に蒸気をバイパスさせる。また、所定温度よりも高い温度になると収縮して蒸気通路を開き、分割凝縮部14a、14bを通過させる。このように、高分子バルブ30は、作動蒸気液通路の開閉機構としての役割りを担う。   As shown in FIG. 4C, the condensing unit 14 is divided in series, and a polymer valve 30 is installed as a temperature-responsive opening / closing valve before and after the divided condensing unit 14a on the side close to the steam pipe. The When the polymer valve 30 reaches a temperature lower than a predetermined temperature, it absorbs the vapor liquid and expands, closes the vapor passage, and bypasses the vapor to the bypass pipe 31 provided separately. Further, when the temperature becomes higher than the predetermined temperature, it contracts to open the vapor passage and pass through the divided condensing parts 14a and 14b. Thus, the polymer valve 30 plays a role as an opening / closing mechanism of the working vapor liquid passage.

さらに、以下、図4(a)、(b)、(c)を用いて、本ループ型ヒートパイプ10の動作を説明する。   Further, the operation of the loop heat pipe 10 will be described below with reference to FIGS. 4 (a), 4 (b), and 4 (c).

電子部品(例えばCPU)85に電源を供給すると、熱がヒートブロック20及び蒸発管21を介してウィック17の外周側から伝わり、ウィック17の外周側で作動液16が蒸発する。このときウィック17の空孔は作動液16で塞がれているため、発生した蒸気はウィック17の空孔を透過して作動液流路17a側に逆流することができない。ウィック17の外周側の作動液の蒸発により濃度差が推進力となり作動液流路17a側から液体が供給され、ループ型ヒートパイプ10内で作動流体の循環が始まり、ループ型ヒートパイプ10が始動する。   When power is supplied to the electronic component (for example, CPU) 85, heat is transmitted from the outer peripheral side of the wick 17 through the heat block 20 and the evaporation tube 21, and the working fluid 16 evaporates on the outer peripheral side of the wick 17. At this time, since the holes of the wick 17 are blocked by the hydraulic fluid 16, the generated vapor cannot pass through the holes of the wick 17 and flow backward to the hydraulic fluid channel 17a. The concentration difference becomes a driving force due to the evaporation of the working fluid on the outer peripheral side of the wick 17, and the liquid is supplied from the working fluid flow path 17 a side. The working fluid circulates in the loop heat pipe 10, and the loop heat pipe 10 starts. To do.

ループ型ヒートパイプ10の作動中は、作動液16が液管15を経て補助チャンバ11内に流入する。作動液流路17a内に移動した作動液16は、ウィック17の毛細管力によってウィック17の外周側に運ばれ、ヒートブロック20を介して加熱されることでウィック17の外周側で蒸発する。ウィック17の外周側で発生した蒸気は蒸気流路21aを経て蒸気集束部23に集められた後、蒸発部12内から流出する。蒸発部12から流出した蒸気は蒸気管13によって凝縮部14に導かれ、凝縮部14で凝縮されて作動液16に戻る。その後、凝縮部14で生成した作動液16は、蒸気流路21aと作動液流路17aとの圧力差によって液管15内を押し上げられて補助チャンバ11内に移動する。   During operation of the loop heat pipe 10, the working fluid 16 flows into the auxiliary chamber 11 through the liquid pipe 15. The hydraulic fluid 16 that has moved into the hydraulic fluid flow path 17 a is carried to the outer peripheral side of the wick 17 by the capillary force of the wick 17, and is heated on the heat block 20 to evaporate on the outer peripheral side of the wick 17. The steam generated on the outer peripheral side of the wick 17 is collected in the steam converging part 23 through the steam flow path 21 a and then flows out from the evaporation part 12. The vapor that has flowed out of the evaporation unit 12 is guided to the condensing unit 14 by the vapor pipe 13, is condensed by the condensing unit 14, and returns to the working liquid 16. Thereafter, the working fluid 16 generated in the condensing unit 14 is pushed up in the liquid pipe 15 by the pressure difference between the vapor passage 21 a and the working fluid passage 17 a and moves into the auxiliary chamber 11.

以上のようにして、ループ型ヒートパイプ10は、作動流体を蒸発と凝縮を繰り返しつつ循環させることで、蒸発部12側の熱を凝縮部14側に輸送する。   As described above, the loop heat pipe 10 circulates the working fluid while repeating evaporation and condensation, thereby transporting the heat on the evaporation unit 12 side to the condensation unit 14 side.

以上説明したように、本実施形態に係るループ型ヒートパイプ10は、凝縮器の前後に相転移温度より下の温度で水分を吸収し、相転移温度より上の温度で水分を放出する樹脂材料からなる温度応答性の開閉バルブを設けている。こうした構成により、ループ型ヒートパイプ10は、コンピュータの発熱量に応じて、指定の凝縮部において、蒸気を液体に相変化させることができ、安定稼動させることが可能となる。また、本ループ型ヒートパイプ10は、熱輸送特性にも優れる。   As described above, the loop heat pipe 10 according to the present embodiment absorbs moisture at a temperature lower than the phase transition temperature before and after the condenser and releases moisture at a temperature higher than the phase transition temperature. A temperature-responsive opening / closing valve is provided. With such a configuration, the loop heat pipe 10 can change the vapor phase into a liquid in a designated condensing unit according to the amount of heat generated by the computer, and can be stably operated. The loop heat pipe 10 is also excellent in heat transport characteristics.

図5は、本発明のループ型ヒートパイプを搭載した電子機器を示す。   FIG. 5 shows an electronic apparatus equipped with the loop heat pipe of the present invention.

図5に示すように、電子機器(コンピュータ)80は、CPU等の発熱量の大きな電子部品85と、電子部品85が実装された配線基板81と、外気を取り入れるための冷却ファン82と、補助記憶装置としてのHDD(ハードディスクドライブ)83と、電源部84とを有する。ループ型ヒートパイプ10は、配線基板81の上に実装され、コンデンサ管14(及びヒートシンク)は、冷却ファン82の近傍に配置されている。また、ループ型ヒートパイプ10の蒸発部12は、サーマルグリス(図示せず)を介して電子部品85の上面に接合されている。   As shown in FIG. 5, an electronic device (computer) 80 includes an electronic component 85 having a large heat generation amount such as a CPU, a wiring board 81 on which the electronic component 85 is mounted, a cooling fan 82 for taking in outside air, and an auxiliary device. An HDD (hard disk drive) 83 as a storage device and a power supply unit 84 are included. The loop heat pipe 10 is mounted on the wiring board 81, and the capacitor tube 14 (and the heat sink) is disposed in the vicinity of the cooling fan 82. The evaporation unit 12 of the loop heat pipe 10 is joined to the upper surface of the electronic component 85 via thermal grease (not shown).

以上のように構成されたループ型ヒートパイプ10を適用することにより、電子機器80は、熱輸送能力が高いので効率のよい冷却が可能となる。また、冷却ファン82の風量を抑制して電子機器80の低騒音化や冷却ファン82の駆動用電力を抑制することが期待される。   By applying the loop heat pipe 10 configured as described above, the electronic device 80 has a high heat transport capability, and thus can be efficiently cooled. Further, it is expected that the air volume of the cooling fan 82 is suppressed to reduce the noise of the electronic device 80 and to suppress the driving power of the cooling fan 82.

本発明は、ループ型ヒートパイプ及びそれを用いた電子機器の技術分野に適用される。   The present invention is applied to the technical field of loop heat pipes and electronic devices using the same.

10 ループ型ヒートパイプ
11 補助チャンバ
12 蒸発部
13 蒸気管
14 コンデンサ管(凝縮部)
15 液管
16 作動液
17 ウィック
17a 作動液流路
20 ヒートブロック
20a 空洞部
21 蒸発管
21a 蒸気流路
23 蒸気集束部
80 電子機器
81 配線基板
82 冷却ファン
83 HDD(ハードディクドライブ)
84 電源部
85 電子部品
DESCRIPTION OF SYMBOLS 10 Loop type heat pipe 11 Auxiliary chamber 12 Evaporating part 13 Steam pipe 14 Condenser pipe (condensing part)
DESCRIPTION OF SYMBOLS 15 Liquid pipe 16 Hydraulic fluid 17 Wick 17a Hydraulic fluid flow path 20 Heat block 20a Cavity part 21 Evaporation pipe 21a Steam flow path 23 Steam condensing part 80 Electronic device 81 Wiring board 82 Cooling fan 83 HDD (hard disk drive)
84 Power supply 85 Electronic parts

Claims (5)

外部から受熱して作動液を蒸発させる蒸発部と、
外部に放熱して前記作動液の蒸気を凝縮させる第1の凝縮部と、
前記蒸発部からの蒸気が通る蒸気管側で前記第1の凝縮部と直列に連結され、外部に放熱して前記作動液の蒸気を凝縮させる第2の凝縮部と、
前記第2の凝縮部の入口または出口に設置され、所定温度に応じて蒸気の通過量を制御する蒸気通路開閉機構と、
前記作動液の蒸気を前記第2の凝縮部を通過させずに前記第1の凝縮部に送るバイパス管と、
を有することを特徴とするループ型ヒートパイプ。
An evaporating section that receives heat from outside and evaporates the working fluid;
A first condensing part that radiates heat to the outside and condenses the vapor of the hydraulic fluid;
A second condensing unit connected in series with the first condensing unit on the vapor pipe side through which the vapor from the evaporating unit passes, and radiating heat to the outside to condense the vapor of the working fluid;
A steam passage opening / closing mechanism that is installed at an inlet or an outlet of the second condensing unit and controls a passage amount of steam according to a predetermined temperature;
A bypass pipe for sending the vapor of the working fluid to the first condensing unit without passing through the second condensing unit;
A loop-type heat pipe characterized by comprising:
前記蒸気通路開閉機構に用いる部材は、相転移温度を境に膨張または収縮する温度応答性高分子を含むことを特徴とする請求項1に記載のループ型ヒートパイプ。   2. The loop heat pipe according to claim 1, wherein a member used for the steam passage opening / closing mechanism includes a temperature-responsive polymer that expands or contracts with a phase transition temperature as a boundary. 前記蒸気通路開閉機構に用いる部材は、前記作動液に溶解しない材料からなる支持層と、前記温度応答性高分子からなる吸収層とが複数積層された構造を有することを特徴とする請求項2に記載のループ型ヒートパイプ。   The member used for the steam passage opening / closing mechanism has a structure in which a plurality of support layers made of a material that does not dissolve in the hydraulic fluid and a plurality of absorption layers made of the temperature-responsive polymer are laminated. Loop type heat pipe described in 1. 前記温度応答性高分子は、ポリN−置換アクリルアミド、ポリN−置換メタクリルアミド、ポリNN−2置換アクリルアミド、ポリNN−2置換メタクリルアミド、及びポリビニルエーテルの何れかの単独重合体、又はこれらの共重合体よりなることを特徴とする請求項2または3に記載のループ型ヒートパイプ。   The temperature-responsive polymer is a homopolymer of any one of poly N-substituted acrylamide, poly N-substituted methacrylamide, poly NN-2 substituted acrylamide, poly NN-2 substituted methacrylamide, and polyvinyl ether, or these The loop heat pipe according to claim 2 or 3, comprising a copolymer. 請求項1乃至4のいずれかに記載のループ型ヒートパイプを搭載した電子機器であって、外部に放熱して作動液の蒸気を凝縮させる凝縮部が、熱を発生する電子部品と熱的に接続されていることを特徴とする電子機器。   5. An electronic device equipped with the loop heat pipe according to claim 1, wherein a condensing unit that radiates heat to the outside and condenses the vapor of the working fluid is thermally coupled with an electronic component that generates heat. An electronic device characterized by being connected.
JP2010183373A 2010-08-18 2010-08-18 Loop heat pipe and electronic equipment Expired - Fee Related JP5621404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183373A JP5621404B2 (en) 2010-08-18 2010-08-18 Loop heat pipe and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183373A JP5621404B2 (en) 2010-08-18 2010-08-18 Loop heat pipe and electronic equipment

Publications (2)

Publication Number Publication Date
JP2012042115A true JP2012042115A (en) 2012-03-01
JP5621404B2 JP5621404B2 (en) 2014-11-12

Family

ID=45898657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183373A Expired - Fee Related JP5621404B2 (en) 2010-08-18 2010-08-18 Loop heat pipe and electronic equipment

Country Status (1)

Country Link
JP (1) JP5621404B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172988A1 (en) * 2012-05-16 2013-11-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Temperature- actuated capillary valve for loop heat pipe system
ITTO20130873A1 (en) * 2013-10-29 2015-04-30 Alenia Aermacchi Spa TWO-PHASE FLUID COOLING / HEATING CIRCUIT WITH TEMPERATURE SENSITIVE FLOW CONTROL VALVES
WO2019039129A1 (en) * 2017-08-21 2019-02-28 株式会社デンソー Device temperature regulating apparatus
JP2019035572A (en) * 2017-08-21 2019-03-07 株式会社デンソー Equipment temperature adjustment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332219A (en) * 1994-06-02 1995-12-22 Zenichi Ogita Temperature-sensitive response actuator, temperature-response valve operated by the actuator, and temperature-sensitive switch
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2007170469A (en) * 2005-12-20 2007-07-05 Kawamura Inst Of Chem Res Temperature responsive valve and its manufacturing method
JP2008532205A (en) * 2004-11-23 2008-08-14 インテル・コーポレーション Switch structure or similar structure based on thermoreactive polymer
JP2009168273A (en) * 2008-01-11 2009-07-30 Fujitsu Ltd Loop-type heat pipe and electronic equipment
JP2010002084A (en) * 2008-06-18 2010-01-07 Fujitsu Ltd Loop-type heat pipe, computer, and cooling apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332219A (en) * 1994-06-02 1995-12-22 Zenichi Ogita Temperature-sensitive response actuator, temperature-response valve operated by the actuator, and temperature-sensitive switch
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2008532205A (en) * 2004-11-23 2008-08-14 インテル・コーポレーション Switch structure or similar structure based on thermoreactive polymer
JP2007170469A (en) * 2005-12-20 2007-07-05 Kawamura Inst Of Chem Res Temperature responsive valve and its manufacturing method
JP2009168273A (en) * 2008-01-11 2009-07-30 Fujitsu Ltd Loop-type heat pipe and electronic equipment
JP2010002084A (en) * 2008-06-18 2010-01-07 Fujitsu Ltd Loop-type heat pipe, computer, and cooling apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172988A1 (en) * 2012-05-16 2013-11-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Temperature- actuated capillary valve for loop heat pipe system
US9146059B2 (en) 2012-05-16 2015-09-29 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
US10030914B2 (en) 2012-05-16 2018-07-24 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
ITTO20130873A1 (en) * 2013-10-29 2015-04-30 Alenia Aermacchi Spa TWO-PHASE FLUID COOLING / HEATING CIRCUIT WITH TEMPERATURE SENSITIVE FLOW CONTROL VALVES
US20150114607A1 (en) * 2013-10-29 2015-04-30 Alenia Aermacchi S.P.A. Dual-phase fluid heating/cooling circuit provided with temperature-sensing flow control valves
EP2869014A1 (en) 2013-10-29 2015-05-06 Alenia Aermacchi S.p.A. Dual-phase fluid heating/cooling circuit provided with temperature-sensing flow control valves
US10337803B2 (en) 2013-10-29 2019-07-02 Alenia Aermacchi S.P.A. Dual-phase fluid heating/cooling circuit provided with temperature-sensing flow control valves
WO2019039129A1 (en) * 2017-08-21 2019-02-28 株式会社デンソー Device temperature regulating apparatus
JP2019035572A (en) * 2017-08-21 2019-03-07 株式会社デンソー Equipment temperature adjustment device
CN110506187A (en) * 2017-08-21 2019-11-26 株式会社电装 Device temperature regulating device
CN110506187B (en) * 2017-08-21 2020-11-27 株式会社电装 Equipment temperature adjusting device

Also Published As

Publication number Publication date
JP5621404B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
US7545644B2 (en) Nano-patch thermal management devices, methods, & systems
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
JP3202014B2 (en) Micro cooling device
JP4627212B2 (en) Cooling device with loop heat pipe
US8335083B2 (en) Apparatus and method for thermal management using vapor chamber
US8333235B2 (en) Heat dissipation system with a plate evaporator
US20190154353A1 (en) Heat pipe having a wick with a hybrid profile
JP6146484B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
JP5621404B2 (en) Loop heat pipe and electronic equipment
US9557118B2 (en) Cooling technique
US20070246194A1 (en) Heat pipe with composite capillary wick structure
KR20040051517A (en) Heat Transfer Device and Electro Device
US7007746B2 (en) Circulative cooling apparatus
US10302367B2 (en) Non-metallic vapor chambers
JP2018194197A (en) Heat pipe and electronic equipment
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP2006242455A (en) Cooling method and device
Lim et al. Flat plate two-phase heat spreader on the thermal management of high-power electronics: a review
JP5532816B2 (en) Loop type heat pipe and electronic device equipped with the same
Chen et al. High power electronic component
JP5938865B2 (en) Loop heat pipe and electronic device
JP2011009312A (en) Heat transfer device and electronic apparatus
JP4627207B2 (en) Heat exchange system
KR200448243Y1 (en) Heat-dissipating device
Hu et al. A small flat-plate vapor chamber fabricated by copper powder sintering and diffusion bonding for cooling electronic packages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees