JP5532816B2 - Loop type heat pipe and electronic device equipped with the same - Google Patents

Loop type heat pipe and electronic device equipped with the same Download PDF

Info

Publication number
JP5532816B2
JP5532816B2 JP2009240706A JP2009240706A JP5532816B2 JP 5532816 B2 JP5532816 B2 JP 5532816B2 JP 2009240706 A JP2009240706 A JP 2009240706A JP 2009240706 A JP2009240706 A JP 2009240706A JP 5532816 B2 JP5532816 B2 JP 5532816B2
Authority
JP
Japan
Prior art keywords
hydraulic fluid
temperature
pipe
compensation chamber
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009240706A
Other languages
Japanese (ja)
Other versions
JP2011085372A (en
Inventor
真 吉野
重憲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009240706A priority Critical patent/JP5532816B2/en
Publication of JP2011085372A publication Critical patent/JP2011085372A/en
Application granted granted Critical
Publication of JP5532816B2 publication Critical patent/JP5532816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、発熱素子等の冷却に用いられるループ型ヒートパイプ及びこれを備えた電子機器に関する。   The present invention relates to a loop heat pipe used for cooling a heating element or the like and an electronic apparatus including the same.

近年、コンピュータ等の電子機器の発熱量及び発熱密度が増加し、冷却性能の向上が求められている。そのため、ヒートシンクを冷却ファンの近傍等の冷却に適する場所に配置し、CPU等の発熱量の大きな電子部品とヒートシンクとをヒートパイプで熱的に接続して冷却する方法が広く用いられている。従来、ヒートシンクと電子部品とを熱的に接続するヒートパイプとしては、構造が簡単な単管型ヒートパイプが利用されてきた。しかし、単管型ヒートパイプの熱輸送能力は30〜50W程度と低く、電子機器の冷却を行うのに十分ではないことがある。一方、ループ型ヒートパイプは単管型ヒートパイプに比べて熱輸送能力が優れることから、電子機器への搭載を目指した開発が進められている。   In recent years, the heat generation amount and heat generation density of electronic devices such as computers have increased, and improvement in cooling performance has been demanded. For this reason, a method is widely used in which a heat sink is disposed in a location suitable for cooling, such as in the vicinity of a cooling fan, and an electronic component having a large amount of heat, such as a CPU, and the heat sink are thermally connected by a heat pipe. Conventionally, as a heat pipe for thermally connecting a heat sink and an electronic component, a single-tube heat pipe having a simple structure has been used. However, the heat transport capacity of the single-tube heat pipe is as low as about 30 to 50 W, and may not be sufficient for cooling the electronic device. On the other hand, loop type heat pipes have better heat transport capability than single pipe type heat pipes, so development aimed at mounting on electronic devices is underway.

ループ型ヒートパイプは、作動液(液相の作動流体)を蒸発させる蒸発部と、蒸気(気相の作動流体)を凝縮させる凝縮部と、蒸発部に供給する作動液を一時的に貯留する補償チャンバとを備える。蒸発部と凝縮部とは蒸気を導く蒸気管で接続され、凝縮部と補償チャンバとは作動液を導く液管で接続される。蒸発部の内部には、液管と連通した作動液流路と蒸気管と連通した蒸気流路とを隔てるウィックと呼ばれる多孔質部材が設けられている。このウィックは、作動液流路の作動液を毛細管力で吸い上げて蒸気流路側に輸送する機能と、蒸気流路の蒸気が作動液流路側に逆流するのを防ぐ機能とを有し、蒸発部と凝縮部との間で作動液を循環させる。   The loop heat pipe temporarily stores an evaporating unit that evaporates the working fluid (liquid phase working fluid), a condensing unit that condenses the vapor (gas phase working fluid), and the working fluid supplied to the evaporating unit. A compensation chamber. The evaporating part and the condensing part are connected by a steam pipe that guides the steam, and the condensing part and the compensation chamber are connected by a liquid pipe that guides the working fluid. Inside the evaporation section, a porous member called a wick is provided that separates the working liquid flow path communicating with the liquid pipe and the vapor flow path communicating with the steam pipe. This wick has a function of sucking up the hydraulic fluid in the hydraulic fluid flow path with a capillary force and transporting it to the vapor flow path side, and a function of preventing the vapor in the vapor flow path from flowing backward to the hydraulic fluid flow path side. Circulates the working fluid between the gas and the condenser.

ところで、コンピュータ等の電子機器は、設置、輸送及び保管等の状況により様々な向きに配置される。そのため、電子機器に搭載されるループ型ヒートパイプは、蒸発部(高温部)が凝縮部(低温部)よりも上側になる、いわゆるトップヒート配置となる場合が想定される。この場合、作動停止時に作動液が重力により補償チャンバ及び蒸発部から流出して、ウィックによる作動液を蒸気流路側に輸送する機能及び蒸気が作動液流路側に逆流するのを防ぐ機能が働かなくなってループ型ヒートパイプを始動することができなくなる。   By the way, electronic devices such as computers are arranged in various directions depending on installation, transportation, storage, and the like. Therefore, it is assumed that the loop heat pipe mounted on the electronic device has a so-called top heat arrangement in which the evaporation portion (high temperature portion) is located above the condensation portion (low temperature portion). In this case, when the operation is stopped, the hydraulic fluid flows out of the compensation chamber and the evaporation section due to gravity, and the function of transporting the hydraulic fluid by the wick to the vapor flow path side and the function of preventing the vapor from flowing back to the hydraulic liquid flow path side do not work. This makes it impossible to start the loop heat pipe.

上記の不具合を防ぐために、ループ型ヒートパイプの凝縮部側の配管内に多孔質フィルタと加熱装置とを設け、始動時に凝縮部に集まった作動液の一部を加熱装置で蒸発させ、発生した蒸気圧で作動液を蒸発部に押し上げてウィックに供給する方法がある。   In order to prevent the above problems, a porous filter and a heating device were provided in the piping on the condensation side of the loop heat pipe, and a part of the working fluid collected in the condensation portion at the start was evaporated by the heating device. There is a method in which hydraulic fluid is pushed up to the evaporation section by vapor pressure and supplied to the wick.

特開2009−168273号公報JP 2009-168273 A 特開2009−115396号公報JP 2009-115396 A 特開2002−340489号公報Japanese Patent Laid-Open No. 2002-340489

しかし、上述の方法では作動流体の流路に多孔質フィルタを設ける必要があり、作動流体の流動抵抗が増加して熱輸送能力が低下してしまう。   However, in the above-described method, it is necessary to provide a porous filter in the flow path of the working fluid, which increases the flow resistance of the working fluid and reduces the heat transport capability.

そこで、始動性及び熱輸送能力に優れたループ型ヒートパイプ及びこれを備えた電子機器を提供することを目的とする。   Then, it aims at providing the loop type heat pipe excellent in startability and heat transport capability, and an electronic device provided with the same.

一観点によれば、外部から受熱して作動液を蒸発させる蒸発部と、外部に放熱して前記作動液の蒸気を凝縮させる凝縮部と、前記蒸発部に供給する前記作動液を貯留する補償チャンバと、前記蒸発部で発生した前記作動液の蒸気を前記凝縮部に導く蒸気管と、前記凝縮部で凝縮された前記作動液を前記補償チャンバに導く液管と、前記蒸発部内に配置され、前記補償チャンバと連通した作動液流路と前記蒸気管と連通した蒸気流路とを隔てる多孔質材料よりなるウィックと、前記補償チャンバ内に配置され、所定温度よりも低い温度になると作動液を吸収して膨張し、前記所定温度よりも高い温度になると収縮して前記作動液を放出する作動液吸収部材と、を有するループ型ヒートパイプが提供される。 According to one aspect, an evaporation unit that receives heat from the outside and evaporates the working fluid, a condensing unit that radiates heat to the outside and condenses the vapor of the working fluid, and a compensation for storing the working fluid supplied to the evaporation unit a liquid pipe for guiding a chamber, a steam pipe for guiding the vapor of the working fluid generated in the evaporation section to the condensing section, the working fluid condensed by the condensing unit to the compensation chamber, disposed within said evaporator section And a wick made of a porous material that separates the working fluid passage communicating with the compensation chamber and the steam passage communicating with the steam pipe, and is disposed in the compensation chamber and operates when the temperature is lower than a predetermined temperature. There is provided a loop heat pipe having a hydraulic fluid absorbing member that absorbs fluid and expands, and contracts when the temperature is higher than the predetermined temperature to release the hydraulic fluid.

上記観点では、補償チャンバ内に、所定温度よりも低い温度のときに作動液を吸収して膨張し、前記所定温度よりも高い温度のときに収縮して作動液を放出する作動液吸収部材を設けている。この作動液吸収部材は、ループ型ヒートパイプが作動停止しているとき、すなわち冷却対象の電子部品の温度が低いときに作動液を吸収し、電子部品の温度が高くなると作動液を放出する。このため、ループ型ヒートパイプがトップヒート配置となり作動液が蒸発部から流出した場合であっても、作動液吸収部材から供給される作動液によってウィックを確実に湿潤させることができ、ループ型ヒートパイプの始動性を向上させることができる。また、作動液の流路に流動抵抗の大きな多孔質フィルタを設ける必要がないので、熱輸送能力にも優れる。   In the above aspect, the working fluid absorbing member that absorbs the working fluid when the temperature is lower than the predetermined temperature and expands in the compensation chamber and contracts and discharges the working fluid when the temperature is higher than the predetermined temperature. Provided. The hydraulic fluid absorbing member absorbs the hydraulic fluid when the loop heat pipe is stopped, that is, when the temperature of the electronic component to be cooled is low, and releases the hydraulic fluid when the temperature of the electronic component becomes high. For this reason, even when the loop heat pipe is in a top heat arrangement and the working fluid flows out of the evaporation section, the wick can be reliably wetted by the working fluid supplied from the working fluid absorbing member, and the loop heat The startability of the pipe can be improved. Further, since it is not necessary to provide a porous filter having a large flow resistance in the flow path of the hydraulic fluid, the heat transport capability is also excellent.

図1(a)は、実施形態に係るループ型ヒートパイプをトップヒート配置で作動停止させた状態で示す図であり、図1(b)は図1(a)の状態における補償チャンバ及び蒸発部を示す断面図である。Fig.1 (a) is a figure which shows the state which stopped the loop type heat pipe which concerns on embodiment in top heat arrangement | positioning, FIG.1 (b) is a compensation chamber and evaporation part in the state of Fig.1 (a) FIG. 図2(a)は、実施形態に係るループ型ヒートパイプの蒸発部をウィックの軸に垂直な面に沿って切断して示す断面図であり、図2(b)は同じくその蒸発部及び補償チャンバを分解して示す斜視図である。FIG. 2A is a cross-sectional view showing the evaporation part of the loop heat pipe according to the embodiment cut along a plane perpendicular to the wick axis, and FIG. It is a perspective view which decomposes | disassembles and shows a chamber. 図3は、実施形態に係るループ型ヒートパイプの蒸発部及び補償チャンバと電子部品との接続構造を示す断面図である。FIG. 3 is a cross-sectional view illustrating a connection structure between the evaporation unit and the compensation chamber of the loop heat pipe and the electronic component according to the embodiment. 図4(a)、(b)は、温度応答性高分子の温度による分子構造の変化を示す模式図である。4A and 4B are schematic diagrams showing changes in the molecular structure of the temperature-responsive polymer with temperature. 図5は、実施形態に係るループ型ヒートパイプの補償チャンバ及び蒸発部の始動時の状態を示す断面図である。FIG. 5 is a cross-sectional view illustrating a state at the start of the compensation chamber and the evaporation unit of the loop heat pipe according to the embodiment. 図6(a)は、実施形態に係るループ型ヒートパイプをトップヒート配置で作動させた状態を示す図であり、図6(b)は図6(a)の補償チャンバ及び蒸発部を示す断面図である。6A is a diagram illustrating a state in which the loop heat pipe according to the embodiment is operated in a top heat arrangement, and FIG. 6B is a cross-sectional view illustrating the compensation chamber and the evaporation unit in FIG. 6A. FIG. 図7は、実施形態に係るループ型ヒートパイプを実装したコンピュータを示す透視図である。FIG. 7 is a perspective view illustrating a computer in which the loop heat pipe according to the embodiment is mounted.

以下、本発明の実施形態について、添付の図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)は、実施形態に係るループ型ヒートパイプをトップヒート配置で作動停止させた状態で示す図であり、図1(b)は図1(a)の状態における補償チャンバ及び蒸発部を示す断面図である。図2(a)は、実施形態に係るループ型ヒートパイプの蒸発部をウィックの軸に垂直な面に沿って切断して示す断面図であり、図2(b)は同じくその蒸発部及び補償チャンバを示す透視図である。図3は、実施形態に係るループ型ヒートパイプの蒸発部及び補償チャンバと電子部品との接続構造を示す断面図である。なお、図1において矢印Aは鉛直上向き方向を示し、他の図についても同様とする。   Fig.1 (a) is a figure which shows the state which stopped the loop type heat pipe which concerns on embodiment in top heat arrangement | positioning, FIG.1 (b) is a compensation chamber and evaporation part in the state of Fig.1 (a) FIG. FIG. 2A is a cross-sectional view showing the evaporation part of the loop heat pipe according to the embodiment cut along a plane perpendicular to the wick axis, and FIG. It is a perspective view which shows a chamber. FIG. 3 is a cross-sectional view illustrating a connection structure between the evaporation unit and the compensation chamber of the loop heat pipe and the electronic component according to the embodiment. In FIG. 1, an arrow A indicates a vertically upward direction, and the same applies to other drawings.

図1(a)に示すように、本実施形態のループ型ヒートパイプ10は、補償チャンバ11、蒸発部12、蒸気管13、コンデンサ管(凝縮部)14及び液管15を備え、内部には作動液18が飽和蒸気圧の蒸気と共に封入されている。ここでは、作動液18として水を使用するものとする。なお、作動液18として、メタノールやエタノール等を使用してもよい。   As shown in FIG. 1A, the loop heat pipe 10 of the present embodiment includes a compensation chamber 11, an evaporation unit 12, a vapor pipe 13, a condenser pipe (condensing part) 14, and a liquid pipe 15, and inside. The working fluid 18 is enclosed together with steam having a saturated vapor pressure. Here, water is used as the working fluid 18. Note that methanol, ethanol, or the like may be used as the working fluid 18.

図1(b)に示すように、補償チャンバ11は、蒸発部12に隣接して配置されており、蒸発部12に供給する作動液18を一時的に貯留する。補償チャンバ11の内部には、作動液吸収部材16が配置されている。この作動液吸収部材16は、支持層16aと吸収層16bとが交互に積層された構造を有している。支持層16aは、作動液18に対する化学反応性及び溶解性が低い材料、例えばポリプロピレン製の不織布等よりなる。   As shown in FIG. 1B, the compensation chamber 11 is disposed adjacent to the evaporation unit 12 and temporarily stores the working fluid 18 supplied to the evaporation unit 12. A working fluid absorbing member 16 is disposed inside the compensation chamber 11. The hydraulic fluid absorbing member 16 has a structure in which support layers 16a and absorbent layers 16b are alternately stacked. The support layer 16a is made of a material having low chemical reactivity and solubility with respect to the working fluid 18, such as a nonwoven fabric made of polypropylene.

なお、支持層16aの材料は上述の例に限定されるものではなく、例えば、白金、白金黒、金、パラジウム、ロジウム、銀、水銀、タングステン及び銅の何れか又はこれらの合金等の金属材料、グラファイト及びカーボンファイバー等の炭素材料、単結晶シリコン、アモルファスシリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素及びSOI(シリコン・オン・インシュレーター)等の半導体材料、ガラス、石英ガラス、アルミナ、サファイア、各種セラミクス、フォルステライト及び感光性ガラス等の無機材料、並びに各種高分子材料を用いることができる。   In addition, the material of the support layer 16a is not limited to the above-mentioned example, For example, metal materials, such as platinum, platinum black, gold | metal | money, palladium, rhodium, silver, mercury, tungsten and copper, or these alloys , Carbon materials such as graphite and carbon fiber, semiconductor materials such as single crystal silicon, amorphous silicon, silicon carbide, silicon oxide, silicon nitride and SOI (silicon on insulator), glass, quartz glass, alumina, sapphire, various ceramics Inorganic materials such as forsterite and photosensitive glass, and various polymer materials can be used.

吸収層16bは、所定の相転移温度よりも低い温度で作動液18を吸収して膨張するとともに、その相転移温度よりも高い温度で作動液18を放出して収縮する樹脂材料からなる。ここでは、吸収層16bには、温度によって作動液の吸収及び放出を行う刺激応答性高分子(温度応答性高分子)の一種であるポリN−イソプロピルアクリルアミドを用いるものとする。ポリN−イソプロピルアクリルアミドは、相転移温度が32℃程度であり、32℃よりも高い温度では側鎖のアクリルアミド部分が脱水和して高分子鎖が収縮して、その体積が減少する。また、32℃よりも低い温度では側鎖のアクリルアミドの部分が水分を吸収して分子鎖が膨張して、その体積が増加する。   The absorption layer 16b is made of a resin material that absorbs the hydraulic fluid 18 at a temperature lower than a predetermined phase transition temperature and expands, and releases the hydraulic fluid 18 at a temperature higher than the phase transition temperature to contract. Here, it is assumed that poly N-isopropylacrylamide, which is a kind of stimulus-responsive polymer (temperature-responsive polymer) that absorbs and releases hydraulic fluid depending on temperature, is used for the absorption layer 16b. Poly-N-isopropylacrylamide has a phase transition temperature of about 32 ° C., and at a temperature higher than 32 ° C., the acrylamide portion of the side chain is dehydrated and the polymer chain contracts to reduce its volume. At a temperature lower than 32 ° C., the acrylamide portion in the side chain absorbs moisture and the molecular chain expands, increasing its volume.

なお、吸収層16bに用いられる温度応答性高分子は、上述の例に限定されるものではなく、例えば、ポリ(N−置換アクリルアミド)、ポリ(N−置換メタクリルアミド)、ポリ(N,N−二置換アクリルアミド)、ポリ(N,N−二置換メタクリルアミド)及びポリビニルエーテル(一部が置換されていてもよい)等を用いることができる。ここで、上述の材料の置換基は、炭素数1〜20、より好ましくは炭素数1〜6の直鎖又は分岐アルキル基、及び炭素数3〜20、より好ましくは炭素数3〜10のシクロアルキル基の何れか1又は複数から選択されるものとする。   In addition, the temperature-responsive polymer used for the absorption layer 16b is not limited to the above-described example. For example, poly (N-substituted acrylamide), poly (N-substituted methacrylamide), poly (N, N -Disubstituted acrylamide), poly (N, N-disubstituted methacrylamide), polyvinyl ether (which may be partially substituted), and the like can be used. Here, the substituent of the above-described material is a linear or branched alkyl group having 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms, and a cyclohexane having 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. It shall be selected from any one or more of alkyl groups.

より具体的には、ポリ(N−メチルアクリアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(N−n−プロピルアクリルアミド)、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、ポリ(N−メチルメタクリルアミド)、ポリ(N−エチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N−n−プロピルメタクリルアミド)、N−メチル−N−エチルメタクリルアミド、N−メチル−N−イソプロピルメタクリルアミド、N−メチル−N−n−プロピルメタクリルアミド、N、N−ジメチルメタクリルアミド、N、N−ジエチルメタクリルアミド、ポリビニルメチルエーテル及びポリビニルエチルエーテル等を吸収層16bに用いることができる。   More specifically, poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), poly (Nn-propylacrylamide), N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, poly (N-methylmethacrylamide) ), Poly (N-ethylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (Nn-propylmethacrylamide), N-methyl-N-ethylmethacrylamide N-methyl-N-isopropylmeta Riruamido, N- methyl -N-n-propyl methacrylamide, N, N- dimethyl methacrylamide, N, N- diethyl methacrylamide, polyvinyl methyl ether and polyvinyl ether or the like can be used in the absorbent layer 16b.

また、上記した高分子の単独重合体だけでなく、上記の重合体を構成するモノマーの2種類以上を組み合わせた共重合体や、その他の種類のモノマーと上記した重合体に含まれるモノマーとを組み合わせた共重合体を用いてもよい。また、上記の重合体の何れか1種類を単独で使用してもよいし、複数種類を組み合わせて使用してもよい。   Further, not only the above-described polymer homopolymer, but also a copolymer obtained by combining two or more types of monomers constituting the polymer, or other types of monomers and monomers contained in the polymer described above. A combined copolymer may be used. In addition, any one of the above polymers may be used alone, or a plurality of types may be used in combination.

さらに、上述の例では吸収層16bを温度応答性高分子とした例を示したが、それ以外にも吸収層16bを、作動液を吸収して膨潤する樹脂と、所定の相転移温度以上で収縮して体積が減少する樹脂との2種類の樹脂を混合した複合樹脂としてもよい。このような複合樹脂によっても、前述の温度応答性高分子と同様の機能が得られる。   Furthermore, in the above-mentioned example, the example in which the absorption layer 16b is a temperature-responsive polymer has been shown, but in addition, the absorption layer 16b has a resin that swells by absorbing hydraulic fluid and a predetermined phase transition temperature or higher. It is good also as composite resin which mixed two types of resin with resin which shrink | contracts and volume decreases. Even with such a composite resin, the same function as the above-described temperature-responsive polymer can be obtained.

吸収層16bは、作動液18に溶解して消失するのを防ぐために、支持層16aの表面に化学的に結合している。支持層16aとして高分子材料を用いる場合には、支持層16aの表面と吸収層16bを構成する高分子とがグラフト結合している。   The absorption layer 16b is chemically bonded to the surface of the support layer 16a in order to prevent it from dissolving and disappearing in the working fluid 18. When a polymer material is used as the support layer 16a, the surface of the support layer 16a and the polymer constituting the absorption layer 16b are graft-bonded.

図1(b)、図2(a)及び図2(b)に示すように、蒸発部12は、ヒートブロック20、蒸発管21及びウィック22を備えている。   As shown in FIG. 1B, FIG. 2A, and FIG. 2B, the evaporation unit 12 includes a heat block 20, an evaporation tube 21, and a wick 22.

ヒートブロック20は中身の詰まった金属製の板体である。ヒートブロック20は、外部から受けた熱をヒートブロック20全体に拡散させる。   The heat block 20 is a metal plate that is filled with contents. The heat block 20 diffuses heat received from the outside throughout the heat block 20.

ヒートブロック21の中央部には、円筒状の蒸発管21が収容されている。蒸発管21は、例えば銅パイプ等からなり、その内周側に蒸発管21の中心軸に平行な方向に伸びる複数本のグルーブ溝(蒸気流路)21aが形成されている。これらの蒸気流路21aは、蒸気収束部23を介して蒸気管13と連通している。   A cylindrical evaporation tube 21 is accommodated in the center of the heat block 21. The evaporation pipe 21 is made of, for example, a copper pipe or the like, and a plurality of groove grooves (steam passages) 21 a extending in a direction parallel to the central axis of the evaporation pipe 21 are formed on the inner peripheral side thereof. These steam flow paths 21 a communicate with the steam pipe 13 via the steam converging part 23.

ウィック22は、蒸気管13側の端部が閉塞された管状の多孔質部材であり、その外周面が蒸発管21の内周面(蒸気流路21aを除く)と接触するようにして蒸発管21内に収容されている。ウィック22の内周側の空洞部は作動液流路22aとなっており、この作動液流路22aは補償チャンバ11と連通している。作動液流路22aは、ウィック22によって蒸気流路21aと隔てられている。   The wick 22 is a tubular porous member whose end on the side of the steam pipe 13 is closed, and the outer peripheral surface of the wick 22 is in contact with the inner peripheral surface of the evaporation pipe 21 (excluding the steam channel 21a). 21. A hollow portion on the inner peripheral side of the wick 22 serves as a hydraulic fluid channel 22 a, and the hydraulic fluid channel 22 a communicates with the compensation chamber 11. The hydraulic fluid passage 22 a is separated from the vapor passage 21 a by the wick 22.

図1(a)に示すように、蒸気管13は、蒸発部12とコンデンサ管14とを接続し、蒸発部12の蒸発管21内で発生した蒸気をコンデンサ管14に導く。コンデンサ管14は、ヒートシンク(図示せず)を備え、このヒートシンクで放熱することで蒸気を凝縮させて作動液18を生成させる。液管15は、コンデンサ管14と補償チャンバ11とを接続し、コンデンサ管14で生成された作動液18を補償チャンバ11に導く。   As shown in FIG. 1A, the steam pipe 13 connects the evaporator 12 and the condenser pipe 14, and guides the steam generated in the evaporator pipe 21 of the evaporator 12 to the condenser pipe 14. The condenser tube 14 includes a heat sink (not shown), and heat is radiated by the heat sink to condense the vapor and generate the working liquid 18. The liquid pipe 15 connects the condenser pipe 14 and the compensation chamber 11, and guides the hydraulic fluid 18 generated by the condenser pipe 14 to the compensation chamber 11.

図3に示すように、本実施形態のヒートブロック20には電子部品85がサーマルグリス(図示せず)等を介して接合されている。また、補償チャンバ11の作動液吸収部材16が設けられた部分に補助ヒートパイプ17の一端が接合されている。この補助ヒートパイプ17の他方の端部は電子部品85とが熱的に接合されており、補助ヒートパイプ17は電子部品85の熱を補償チャンバ11内の作動液吸収部材16に伝える。   As shown in FIG. 3, an electronic component 85 is joined to the heat block 20 of the present embodiment via thermal grease (not shown) or the like. One end of the auxiliary heat pipe 17 is joined to the portion of the compensation chamber 11 where the hydraulic fluid absorbing member 16 is provided. The other end of the auxiliary heat pipe 17 is thermally joined to the electronic component 85, and the auxiliary heat pipe 17 transmits the heat of the electronic component 85 to the working fluid absorbing member 16 in the compensation chamber 11.

作動液吸収部材16は、以下のようにして作製することができる。ここでは、支持層16aとしてポリプロピレン製の不織布を用い、吸収層16bの温度応答性高分子としてポリ−N−イソプロピルアクリルアミドを支持層16aの表面にグラフト結合させる例について説明する。   The hydraulic fluid absorbing member 16 can be produced as follows. Here, an example will be described in which a polypropylene nonwoven fabric is used as the support layer 16a, and poly-N-isopropylacrylamide is grafted to the surface of the support layer 16a as the temperature-responsive polymer of the absorption layer 16b.

まず、支持層16aとして、例えば平均孔径10μm程度のポリプロピレン製の不織布を用意する。次に、この支持層16aの表面にアルゴン雰囲気下でプラズマを照射して支持層16aの表面に活性種を発生させる。支持層16aの表面に活性種を発生させる方法は、プラズマ照射以外に、放射線照射及び電子線照射等で行ってもよい。   First, as the support layer 16a, for example, a polypropylene nonwoven fabric having an average pore diameter of about 10 μm is prepared. Next, the surface of the support layer 16a is irradiated with plasma in an argon atmosphere to generate active species on the surface of the support layer 16a. The method of generating active species on the surface of the support layer 16a may be performed by radiation irradiation, electron beam irradiation, or the like in addition to plasma irradiation.

その後、支持層16aを、温度が60℃程度の脱気した3%N−イソプロピルアクリルアミド水溶液に浸漬する。これにより、支持層16aの表面の活性種を開始点として支持層16aの上にN−イソプロピルアクリルアミドが重合して、支持層16aとグラフト結合した吸収層16bが形成される。   Thereafter, the support layer 16a is immersed in a degassed 3% N-isopropylacrylamide aqueous solution having a temperature of about 60 ° C. Thereby, N-isopropylacrylamide is polymerized on the support layer 16a using the active species on the surface of the support layer 16a as a starting point, and the absorption layer 16b grafted to the support layer 16a is formed.

次に、支持層16a及び吸収層16bを3%N−イソプロピルアクリルアミド水溶液から取り出し、例えば水とメタノールとを1:1の割合で混合した洗浄液で洗浄し、真空乾燥する。以上のようにして作製された支持層16a及び吸収層16bを複数積層することで本実施形態の作動液吸収部材16が完成する。   Next, the support layer 16a and the absorption layer 16b are taken out from the 3% N-isopropylacrylamide aqueous solution, washed with, for example, a cleaning solution in which water and methanol are mixed at a ratio of 1: 1, and vacuum dried. The hydraulic fluid absorbing member 16 of the present embodiment is completed by laminating a plurality of support layers 16a and absorbent layers 16b produced as described above.

上に説明した支持層16aの表面に活性種を発生させる方法に代えて、支持層16aの表面に化学的処理を施して反応性を有する官能基を発生させ、その官能基と反応できる官能基を有する温度応答性高分子をグラフト結合させてもよい。この場合、支持層16aの表面に発生させる官能基としては、カルボキシル基、アルデヒド基、アミノ基、イミノ基、スルホン酸基、エポキシ基、イソシアネート基、酸クロリド基、ヒドロキシ基、チオール基、及びジスルフィド基等が挙げられる。また、支持層16aに化学的処理を施す代わりに、支持層16aを上に列挙したいずれかの官能基を有する高分子材料で形成してもよい。   Instead of the method for generating active species on the surface of the support layer 16a described above, a functional group capable of reacting with the functional group by generating a reactive functional group by chemically treating the surface of the support layer 16a. A temperature-responsive polymer having In this case, the functional groups generated on the surface of the support layer 16a include carboxyl group, aldehyde group, amino group, imino group, sulfonic acid group, epoxy group, isocyanate group, acid chloride group, hydroxy group, thiol group, and disulfide. Groups and the like. Further, instead of performing chemical treatment on the support layer 16a, the support layer 16a may be formed of a polymer material having any of the functional groups listed above.

なお、ループ型ヒートパイプ10のその他の構成は、例えば銅等の金属素材を用いて公知の手法で作製することができる。   In addition, the other structure of the loop type heat pipe 10 can be produced by a known method using a metal material such as copper, for example.

以下、本実施形態に係るループ型ヒートパイプ10をトップヒート配置としたときの始動について説明する。ここに、図4(a)、(b)は、温度応答性高分子の変化を示す模式図である。図5は、実施形態に係るループ型ヒートパイプの補償チャンバ及び蒸発部の始動時の状態を示す断面図である。なお、図4において、符号Bは温度応答性高分子の高分子鎖を示し、符号Cは作動液18の分子を示す。   Hereinafter, starting when the loop heat pipe 10 according to the present embodiment is in the top heat arrangement will be described. Here, FIGS. 4A and 4B are schematic diagrams showing changes in the temperature-responsive polymer. FIG. 5 is a cross-sectional view illustrating a state at the start of the compensation chamber and the evaporation unit of the loop heat pipe according to the embodiment. In FIG. 4, the symbol B indicates the polymer chain of the temperature-responsive polymer, and the symbol C indicates the molecule of the hydraulic fluid 18.

図1(a)、(b)に示すように、ループ型ヒートパイプ10を、トップヒート配置としてその動作を停止させると、ループ型ヒートパイプ10の温度が低下し、吸収層16bを形成する温度応答性高分子の相転移温度以下となる。このとき、図4(a)に示すように、温度応答性高分子の側鎖のアクリルアミド部分が水(作動液18)を吸収し、高分子鎖が伸びて吸収層16bが膨潤する。さらに、図1(b)に示すように、本実施形態の作動液吸収部材16は、吸収層16bが膨潤することにより支持層16a間の隙間を閉塞し、補償チャンバ11内の空間をウィック22側の領域と液管15側の領域とに分断する。これにより、ループ型ヒートパイプ10の動作停止時における作動液18の移動を阻止して補償チャンバ11内に作動液18を保持することができる。   As shown in FIGS. 1 (a) and 1 (b), when the operation of the loop heat pipe 10 is stopped with the top heat arrangement, the temperature of the loop heat pipe 10 decreases and the temperature at which the absorption layer 16b is formed. It becomes below the phase transition temperature of the responsive polymer. At this time, as shown in FIG. 4A, the acrylamide portion of the side chain of the temperature-responsive polymer absorbs water (the working fluid 18), the polymer chain extends, and the absorption layer 16b swells. Further, as shown in FIG. 1B, the hydraulic fluid absorbing member 16 of the present embodiment closes the gap between the support layers 16a when the absorbent layer 16b swells, and wicks 22 the space in the compensation chamber 11. This is divided into a region on the side and a region on the liquid tube 15 side. As a result, the working fluid 18 can be held in the compensation chamber 11 by preventing the working fluid 18 from moving when the operation of the loop heat pipe 10 is stopped.

次に、電子部品(例えばCPU)85に電源を供給すると、電子部品85が発熱し、この熱が補助ヒートパイプ17及び蒸発部12を介して作動液吸収部材16に伝わる。これにより作動液吸収部材16が加熱され、吸収層16bの相転移温度よりも高い温度に達し、図4(b)に示すように吸収層16bが液体の作動液18を放出して収縮する。   Next, when power is supplied to the electronic component (for example, CPU) 85, the electronic component 85 generates heat, and this heat is transmitted to the hydraulic fluid absorbing member 16 via the auxiliary heat pipe 17 and the evaporation unit 12. As a result, the working fluid absorbing member 16 is heated and reaches a temperature higher than the phase transition temperature of the absorbing layer 16b, and the absorbing layer 16b releases the liquid working fluid 18 and contracts as shown in FIG. 4B.

このとき放出された作動液18は、図5に示すように、ウィック22に供給されてウィック22を湿潤させる。さらに、吸収層16bの収縮により支持層16aの隙間が開き、補償チャンバ11内に保持された作動液18がウィック22に供給される。このようにしてウィック22のほぼ全体が作動液18で湿潤した状態となる。   The hydraulic fluid 18 released at this time is supplied to the wick 22 to wet the wick 22 as shown in FIG. Further, the gap between the support layers 16 a is opened by the contraction of the absorption layer 16 b, and the working fluid 18 held in the compensation chamber 11 is supplied to the wick 22. In this way, almost the entire wick 22 is wetted with the hydraulic fluid 18.

さらに電子部品85の熱がヒートブロック20及び蒸発管21を介してウィック22外周側から伝わり、ウィック22の外周側で作動液18が蒸発する。このときウィック22の空孔は作動液18で塞がれているため、発生した蒸気はウィック22の空孔を透過して作動液流路22a側に逆流することができない。ウィック22の外周側の作動液の蒸発による濃度差が推進力となり、作動液流路22a側から作動液18が供給され、ループ型ヒートパイプ10内で作動流体の循環が始まり、ループ型ヒートパイプ10が始動する。   Further, the heat of the electronic component 85 is transmitted from the outer periphery side of the wick 22 through the heat block 20 and the evaporation tube 21, and the working fluid 18 evaporates on the outer periphery side of the wick 22. At this time, since the holes of the wick 22 are blocked by the hydraulic fluid 18, the generated vapor cannot pass through the holes of the wick 22 and flow backward to the hydraulic fluid channel 22a. The concentration difference due to the evaporation of the working fluid on the outer peripheral side of the wick 22 becomes a driving force, the working fluid 18 is supplied from the working fluid flow path 22a side, and the circulation of the working fluid in the loop heat pipe 10 starts. 10 starts.

次に、ループ型ヒートパイプ10の始動開始後の動作について説明する。ここに、図6(a)は、実施形態に係るループ型ヒートパイプをトップヒート配置で作動させた状態を示す図であり、図6(b)は図6(a)の補償チャンバ及び蒸発部を示す断面図である。   Next, the operation after the start of starting of the loop heat pipe 10 will be described. FIG. 6A is a view showing a state in which the loop heat pipe according to the embodiment is operated in the top heat arrangement, and FIG. 6B is a diagram illustrating the compensation chamber and the evaporation unit in FIG. FIG.

図6(a)に示すように、ループ型ヒートパイプ10の作動中は、作動液18が液管15を経て補償チャンバ11内に流入する。図6(b)に示すように、作動液18は、補償チャンバ11内に一時的に貯留される。ループ型ヒートパイプ10の作動中は作動液18の温度が作動液吸収部材16の相転移温度よりも高い状態となるため、吸収層16bは収縮した状態となり、支持層16a間に隙間が生じる。このため、作動液18は支持層16aの隙間を通って作動液流路22a内に移動することができる。なお、作動時は、支持層16a間の隙間が数百μm〜数mm程度と大きいので、作動液吸収部材16は作動液18を比較的少ない流動抵抗で通過させることができる。   As shown in FIG. 6A, during the operation of the loop heat pipe 10, the working fluid 18 flows into the compensation chamber 11 through the liquid pipe 15. As shown in FIG. 6B, the hydraulic fluid 18 is temporarily stored in the compensation chamber 11. During the operation of the loop heat pipe 10, the temperature of the working fluid 18 is higher than the phase transition temperature of the working fluid absorbing member 16, so that the absorbing layer 16 b is contracted and a gap is generated between the support layers 16 a. For this reason, the hydraulic fluid 18 can move into the hydraulic fluid flow path 22a through the gap of the support layer 16a. During operation, since the gap between the support layers 16a is as large as several hundred μm to several mm, the hydraulic fluid absorbing member 16 can pass the hydraulic fluid 18 with a relatively small flow resistance.

作動液流路22a内に移動した作動液18は、ウィック22の毛細管力によってウィック22の外周側に運ばれ、ヒートブロック20を介して加熱されることでウィック22の外周側で蒸発する。ウィック22の外周側で発生した蒸気は蒸気流路21aを経て蒸気集束部23に集められた後、蒸発部12内から流出する。蒸発部12から流出した蒸気は蒸気管13によってコンデンサ管14に導かれ、コンデンサ管14で凝縮されて作動液18に戻る。その後、コンデンサ管14で生成した作動液18は、蒸気流路21aと作動液流路22bとの圧力差によって液管15内を押し上げられて補償チャンバ11内に移動する。   The hydraulic fluid 18 that has moved into the hydraulic fluid flow path 22 a is carried to the outer peripheral side of the wick 22 by the capillary force of the wick 22, and is evaporated via the heat block 20 to evaporate on the outer peripheral side of the wick 22. The steam generated on the outer peripheral side of the wick 22 is collected in the steam converging part 23 through the steam flow path 21 a and then flows out from the evaporation part 12. The steam that has flowed out of the evaporator 12 is guided to the condenser pipe 14 by the steam pipe 13, condensed in the condenser pipe 14, and returned to the working liquid 18. Thereafter, the hydraulic fluid 18 generated in the condenser pipe 14 is pushed up in the liquid pipe 15 by the pressure difference between the vapor channel 21 a and the hydraulic fluid channel 22 b and moves into the compensation chamber 11.

以上のようにして、ループ型ヒートパイプ10は、作動流体を蒸発と凝縮を繰り返しつつ循環させることで、蒸発部12側の熱をコンデンサ管14側に輸送する。   As described above, the loop heat pipe 10 circulates the working fluid while repeating evaporation and condensation, thereby transporting the heat on the evaporation unit 12 side to the condenser tube 14 side.

なお、本実施形態のループ型ヒートパイプ10は、蒸発部12をコンデンサ管(凝縮部)14よりも低い状態に配置するボトムヒート配置であっても、先に図6を参照しつつ説明したトップヒート配置の動作と同様にして動作する。   Note that the loop heat pipe 10 of the present embodiment has the top described with reference to FIG. 6, even in the bottom heat arrangement in which the evaporation section 12 is arranged in a lower state than the condenser pipe (condensing section) 14. It operates in the same manner as the heat placement operation.

以上説明したように、本実施形態に係るループ型ヒートパイプ10は、補償チャンバ11内に相転移温度より下の温度で水分を吸収し、相転移温度より上の温度で水分を放出する樹脂材料(吸収層16)を含む作動液吸収部材16と、これを加熱するための補助ヒートパイプ17とを設けている。このため、ループ型ヒートパイプ10をトップヒート配置とした場合であっても、始動時に吸収層16から作動液18を放出させてウィック22を湿潤させて、作動流体の循環を開始させることができる。さらに、ループ型ヒートパイプ10の作動時には、吸収層16が収縮するので作動流体の流動抵抗の増加を抑制できる。このため、本実施形態のループ型ヒートパイプ10は熱輸送特性にも優れる。   As described above, the loop heat pipe 10 according to the present embodiment absorbs moisture at a temperature lower than the phase transition temperature in the compensation chamber 11 and releases the water at a temperature higher than the phase transition temperature. A hydraulic fluid absorbing member 16 including (absorbing layer 16) and an auxiliary heat pipe 17 for heating the hydraulic fluid absorbing member 16 are provided. For this reason, even when the loop heat pipe 10 is in a top heat arrangement, the working fluid 18 can be released from the absorbing layer 16 at the start-up to wet the wick 22 and start circulation of the working fluid. . Further, when the loop heat pipe 10 is operated, the absorption layer 16 contracts, so that an increase in the flow resistance of the working fluid can be suppressed. For this reason, the loop heat pipe 10 of this embodiment is also excellent in heat transport characteristics.

以下、本実施形態に係るループ型ヒートパイプ10を電子機器に搭載する例について説明する。図7は、実施形態に係るループ型ヒートパイプを実装したコンピュータを示す透視図である。   Hereinafter, an example in which the loop heat pipe 10 according to the present embodiment is mounted on an electronic device will be described. FIG. 7 is a perspective view illustrating a computer in which the loop heat pipe according to the embodiment is mounted.

図7に示すように、電子機器(コンピュータ)80は、CPU等の発熱量の大きな電子部品85と、電子部品85が実装された配線基板81と、外気を取り入れるための冷却ファン82と、補助記憶装置としてのハードディスクドライブ83と、電源部84とを備える。ループ型ヒートパイプ10は、配線基板81の上に実装され、コンデンサ管14(及びヒートシンク)は、冷却ファン82の近傍に配置されている。また、ループ型ヒートパイプ10の蒸発部12は、サーマルグリス(図示せず)を介して電子部品85の上面に接合されている。更に、図3に示すように補償チャンバ11と電子部品86とは、補助ヒートパイプ17で熱的に接続されている。   As shown in FIG. 7, an electronic device (computer) 80 includes an electronic component 85 having a large heat generation amount such as a CPU, a wiring board 81 on which the electronic component 85 is mounted, a cooling fan 82 for taking in outside air, and an auxiliary device. A hard disk drive 83 as a storage device and a power supply unit 84 are provided. The loop heat pipe 10 is mounted on the wiring board 81, and the capacitor tube 14 (and the heat sink) is disposed in the vicinity of the cooling fan 82. The evaporation unit 12 of the loop heat pipe 10 is joined to the upper surface of the electronic component 85 via thermal grease (not shown). Further, as shown in FIG. 3, the compensation chamber 11 and the electronic component 86 are thermally connected by an auxiliary heat pipe 17.

以上のように、本実施形態の電子機器80は、ループ型ヒートパイプ10を搭載しているので、例えば図7において矢印Y1で示す方向が鉛直上向きとなるように配置され、ループ型ヒートパイプ10がトップヒート配置となっても、冷却を行うことができる。さらに、本実施形態のループ型ヒートパイプ10は、熱輸送能力が高いので効率のよい冷却が可能になり、冷却ファン82の風量を抑制して電子機器80の低騒音化や冷却ファン82の駆動用電力を抑制できる。   As described above, since the electronic device 80 according to the present embodiment has the loop heat pipe 10 mounted thereon, for example, the electronic device 80 is arranged so that the direction indicated by the arrow Y1 in FIG. Even if it becomes top heat arrangement | positioning, it can cool. Furthermore, since the loop heat pipe 10 of the present embodiment has a high heat transport capability, efficient cooling is possible, and the air volume of the cooling fan 82 is suppressed to reduce the noise of the electronic device 80 and drive the cooling fan 82. Power consumption can be reduced.

以上の実施形態に関し、更に以下の付記を開示する。   Regarding the above embodiment, the following additional notes are disclosed.

(付記1)外部から受熱して作動液を蒸発させる蒸発部と、
外部に放熱して前記作動液の蒸気を凝縮させる凝縮部と、
前記蒸発部に供給する前記作動液を貯留する補償チャンバと、
前記蒸発部で発生した前記作動液の蒸気を前記凝縮部に導く蒸気管と、
前記凝縮部で凝縮された前記作動液を前記補償チャンバに導く液管と、
前記蒸気管内に配置され、前記補償チャンバと連通した作動液流路と前記蒸気管と連通した蒸気流路とを隔てる多孔質材料よりなるウィックと、
前記補償チャンバ内に配置され、所定温度よりも低い温度になると作動液を吸収して膨張し、前記所定温度よりも高い温度になると収縮して前記作動液を放出する作動液吸収部材と、
を有することを特徴とするループ型ヒートパイプ。
(Supplementary note 1) an evaporation unit that receives heat from outside and evaporates the working fluid;
A condensing part that radiates heat to the outside and condenses the vapor of the hydraulic fluid;
A compensation chamber for storing the hydraulic fluid to be supplied to the evaporation unit;
A steam pipe for guiding the vapor of the hydraulic fluid generated in the evaporation section to the condensation section;
A liquid pipe for guiding the hydraulic fluid condensed in the condensing unit to the compensation chamber;
A wick made of a porous material disposed in the steam pipe and separating a working fluid flow path communicating with the compensation chamber and a steam flow path communicating with the steam pipe;
A hydraulic fluid absorbing member that is disposed in the compensation chamber and absorbs and expands when the temperature is lower than a predetermined temperature, and contracts and releases the hydraulic fluid when the temperature is higher than the predetermined temperature;
A loop-type heat pipe characterized by comprising:

(付記2)前記作動液吸収部材は、温度応答性高分子を含むことを特徴とする付記1に記載のループ型ヒートパイプ。   (Supplementary note 2) The loop heat pipe according to supplementary note 1, wherein the hydraulic fluid absorbing member includes a temperature-responsive polymer.

(付記3)前記作動液吸収部材は、前記作動液に溶解しない材料からなる支持層と前記支持層表面に化学結合した前記温度応答性高分子からなる吸収層とが複数積層された構造を有することを特徴とする付記2に記載のループ型ヒートパイプ。   (Additional remark 3) The said hydraulic fluid absorption member has the structure where the support layer which consists of a material which is not melt | dissolved in the said hydraulic fluid, and the absorption layer which consists of the said temperature-responsive polymer chemically bonded to the said support layer surface were laminated | stacked two or more. The loop-type heat pipe according to Supplementary Note 2, wherein

(付記4)さらに、一方の端部が発熱部品と熱的に接合され、他方の端部が補償チャンバと熱的に接合された補助ヒートパイプを備えたことを特徴とする付記1に記載のループ型ヒートパイプ。   (Supplementary note 4) The supplementary note 1 further includes an auxiliary heat pipe having one end portion thermally joined to the heat generating component and the other end portion thermally joined to the compensation chamber. Loop type heat pipe.

(付記5)前記作動液吸収部材は、前記相転移温度よりも低い温度になると前記作動液を吸収して膨張し、前記補償チャンバ内の空間を前記作動液流路側の領域と前記液管側の領域とに分断することを特徴とする付記1乃至4に記載のループ型ヒートパイプ。   (Supplementary Note 5) When the hydraulic fluid absorbing member reaches a temperature lower than the phase transition temperature, the hydraulic fluid absorbing member absorbs the hydraulic fluid and expands, and the space in the compensation chamber is separated from the hydraulic fluid channel side region and the liquid pipe side. The loop type heat pipe according to any one of appendices 1 to 4, wherein the loop type heat pipe is divided into two regions.

(付記6)前記作動液は水であり、前記温度応答性高分子は、ポリN−置換アクリルアミド、ポリN−置換メタクリルアミド、ポリNN−二置換アクリルアミド、ポリNN−二置換メタクリルアミド、及びポリビニルエーテルの何れかの単独重合体、又はこれらの共重合体よりなることを特徴とする付記2に記載のループ型ヒートパイプ。   (Additional remark 6) The said hydraulic fluid is water, The said temperature-responsive polymer is poly N-substituted acrylamide, poly N-substituted methacrylamide, poly NN-disubstituted acrylamide, poly NN-disubstituted methacrylamide, and polyvinyl. The loop heat pipe according to appendix 2, which is made of any homopolymer of ether or a copolymer thereof.

(付記7)前記温度応答性高分子はポリN−イソプロピルアクリルアミドからなることを特徴とする付記6に記載のループ型ヒートパイプ。   (Supplementary note 7) The loop heat pipe according to supplementary note 6, wherein the temperature-responsive polymer is made of poly-N-isopropylacrylamide.

(付記8)前記支持層は高分子材料からなり、前記温度応答性高分子は前記支持層にグラフト結合していることを特徴とする付記3に記載のループ型ヒートパイプ。   (Supplementary note 8) The loop heat pipe according to supplementary note 3, wherein the support layer is made of a polymer material, and the temperature-responsive polymer is graft-bonded to the support layer.

(付記9)外部から受熱して作動液を蒸発させる蒸発部と、
外部に放熱して前記作動液の蒸気を凝縮させる凝縮部と、
前記蒸発部に供給する前記作動液を貯留する補償チャンバと、
前記蒸発部で発生した前記作動液の蒸気を前記凝縮部に導く蒸気管と、
前記凝縮部で凝縮された前記作動液を前記補償チャンバに導く液管と、
前記蒸気管内に配置され、前記補償チャンバと連通した作動液流路と前記蒸気管と連通した蒸気流路とを隔てる多孔質材料よりなるウィックと、
前記補償チャンバ内に配置され、所定温度よりも低い温度になると作動液を吸収して膨張し、前記所定温度よりも高い温度になると収縮して前記作動液を放出する作動液吸収部材と、
を有するループ型ヒートパイプを搭載した電子機器であって、
前記蒸発部は熱を発生する電子部品と熱的に接続されていることを特徴とする電子機器。
(Supplementary Note 9) An evaporation unit that receives heat from the outside and evaporates the working fluid;
A condensing part that radiates heat to the outside and condenses the vapor of the hydraulic fluid;
A compensation chamber for storing the hydraulic fluid to be supplied to the evaporation unit;
A steam pipe for guiding the vapor of the hydraulic fluid generated in the evaporation section to the condensation section;
A liquid pipe for guiding the hydraulic fluid condensed in the condensing unit to the compensation chamber;
A wick made of a porous material disposed in the steam pipe and separating a working fluid flow path communicating with the compensation chamber and a steam flow path communicating with the steam pipe;
A hydraulic fluid absorbing member that is disposed in the compensation chamber and absorbs and expands when the temperature is lower than a predetermined temperature, and contracts and releases the hydraulic fluid when the temperature is higher than the predetermined temperature;
An electronic device equipped with a loop heat pipe having
The electronic device is characterized in that the evaporation unit is thermally connected to an electronic component that generates heat.

(付記10)前記凝縮部は、冷却ファンの近傍に設けられていることを特徴とする付記9に記載の電子機器。   (Additional remark 10) The said condensation part is provided in the vicinity of the cooling fan, The electronic device of Additional remark 9 characterized by the above-mentioned.

10…ループ型ヒートパイプ、11…補償チャンバ、12…蒸発部、13…蒸気管、14…コンデンサ管(凝縮部)、15…液管、16…作動液吸収部材、16a…支持層、16b…吸収層、17…補助ヒートパイプ、18…作動液、20…ヒートブロック、21…蒸発管、21a…蒸気流路、22…ウィック、22a…作動液流路、23…蒸気集束部、80…電子機器、81…配線基板、82…冷却ファン、83…ハードディクドライブ、84…電源部、85…電子部品。   DESCRIPTION OF SYMBOLS 10 ... Loop type heat pipe, 11 ... Compensation chamber, 12 ... Evaporating part, 13 ... Steam pipe, 14 ... Condenser pipe (condensing part), 15 ... Liquid pipe, 16 ... Hydraulic fluid absorption member, 16a ... Support layer, 16b ... Absorbing layer, 17 ... auxiliary heat pipe, 18 ... working fluid, 20 ... heat block, 21 ... evaporating tube, 21a ... steam channel, 22 ... wick, 22a ... working fluid channel, 23 ... steam converging unit, 80 ... electron Equipment: 81 ... Wiring board, 82 ... Cooling fan, 83 ... Hard disk drive, 84 ... Power supply unit, 85 ... Electronic component.

Claims (6)

外部から受熱して作動液を蒸発させる蒸発部と、
外部に放熱して前記作動液の蒸気を凝縮させる凝縮部と、
前記蒸発部に供給する前記作動液を貯留する補償チャンバと、
前記蒸発部で発生した前記作動液の蒸気を前記凝縮部に導く蒸気管と、
前記凝縮部で凝縮された前記作動液を前記補償チャンバに導く液管と、
前記蒸発部内に配置され、前記補償チャンバと連通した作動液流路と前記蒸気管と連通した蒸気流路とを隔てる多孔質材料よりなるウィックと、
前記補償チャンバ内に配置され、所定温度よりも低い温度になると作動液を吸収して膨張し、前記所定温度よりも高い温度になると収縮して前記作動液を放出する作動液吸収部材と、
を有することを特徴とするループ型ヒートパイプ。
An evaporating section that receives heat from outside and evaporates the working fluid;
A condensing part that radiates heat to the outside and condenses the vapor of the hydraulic fluid;
A compensation chamber for storing the hydraulic fluid to be supplied to the evaporation unit;
A steam pipe for guiding the vapor of the hydraulic fluid generated in the evaporation section to the condensation section;
A liquid pipe for guiding the hydraulic fluid condensed in the condensing unit to the compensation chamber;
Wherein disposed in the evaporation section, a wick made of a porous material that separates the hydraulic fluid flow path and a steam flow path in communication with the steam pipe in communication with the compensation chamber,
A hydraulic fluid absorbing member that is disposed in the compensation chamber and absorbs and expands when the temperature is lower than a predetermined temperature, and contracts and releases the hydraulic fluid when the temperature is higher than the predetermined temperature;
A loop-type heat pipe characterized by comprising:
前記作動液吸収部材は、温度応答性高分子を含むことを特徴とする請求項1に記載のループ型ヒートパイプ。   The loop type heat pipe according to claim 1, wherein the hydraulic fluid absorbing member includes a temperature-responsive polymer. 前記作動液吸収部材は、前記作動液に溶解しない材料からなる支持層と前記支持層表面に化学結合した前記温度応答性高分子からなる吸収層とが複数積層された構造を有することを特徴とする請求項1に記載のループ型ヒートパイプ。   The hydraulic fluid absorbing member has a structure in which a plurality of support layers made of a material that does not dissolve in the hydraulic fluid and a plurality of absorption layers made of the temperature-responsive polymer chemically bonded to the surface of the support layer are laminated. The loop heat pipe according to claim 1. さらに、一方の端部が発熱部品と熱的に接合され、他方の端部が補償チャンバと熱的に接合された補助ヒートパイプを備えたことを特徴とする請求項1に記載のループ型ヒートパイプ。   The loop heat according to claim 1, further comprising an auxiliary heat pipe having one end thermally joined to the heat generating component and the other end thermally joined to the compensation chamber. pipe. 前記作動液は水であり、前記温度応答性高分子は、ポリN−置換アクリルアミド、ポリN−置換メタクリルアミド、ポリNN−二置換アクリルアミド、ポリNN−二置換メタクリルアミド、及びポリビニルエーテルの何れかの単独重合体、又はこれらの共重合体よりなることを特徴とする請求項2に記載のループ型ヒートパイプ。   The working fluid is water, and the temperature-responsive polymer is any one of poly N-substituted acrylamide, poly N-substituted methacrylamide, polyNN-disubstituted acrylamide, polyNN-disubstituted methacrylamide, and polyvinyl ether. The loop type heat pipe according to claim 2, wherein the loop type heat pipe is made of a homopolymer of the above or a copolymer thereof. 外部から受熱して作動液を蒸発させる蒸発部と、
外部に放熱して前記作動液の蒸気を凝縮させる凝縮部と、
前記蒸発部に供給する前記作動液を貯留する補償チャンバと、
前記蒸発部で発生した前記作動液の蒸気を前記凝縮部に導く蒸気管と、
前記凝縮部で凝縮された前記作動液を前記補償チャンバに導く液管と、
前記蒸発部内に配置され、前記補償チャンバと連通した作動液流路と前記蒸気管と連通した蒸気流路とを隔てる多孔質材料よりなるウィックと、
前記補償チャンバ内に配置され、所定温度よりも低い温度になると作動液を吸収して膨張し、前記所定温度よりも高い温度になると収縮して前記作動液を放出する作動液吸収部材と、
を有するループ型ヒートパイプを搭載した電子機器であって、
前記蒸発部は熱を発生する電子部品と熱的に接続されていることを特徴とする電子機器。
An evaporating section that receives heat from outside and evaporates the working fluid;
A condensing part that radiates heat to the outside and condenses the vapor of the hydraulic fluid;
A compensation chamber for storing the hydraulic fluid to be supplied to the evaporation unit;
A steam pipe for guiding the vapor of the hydraulic fluid generated in the evaporation section to the condensation section;
A liquid pipe for guiding the hydraulic fluid condensed in the condensing unit to the compensation chamber;
Wherein disposed in the evaporation section, a wick made of a porous material that separates the hydraulic fluid flow path and a steam flow path in communication with the steam pipe in communication with the compensation chamber,
A hydraulic fluid absorbing member that is disposed in the compensation chamber and absorbs and expands when the temperature is lower than a predetermined temperature, and contracts and releases the hydraulic fluid when the temperature is higher than the predetermined temperature;
An electronic device equipped with a loop heat pipe having
The electronic device is characterized in that the evaporation unit is thermally connected to an electronic component that generates heat.
JP2009240706A 2009-10-19 2009-10-19 Loop type heat pipe and electronic device equipped with the same Expired - Fee Related JP5532816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240706A JP5532816B2 (en) 2009-10-19 2009-10-19 Loop type heat pipe and electronic device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240706A JP5532816B2 (en) 2009-10-19 2009-10-19 Loop type heat pipe and electronic device equipped with the same

Publications (2)

Publication Number Publication Date
JP2011085372A JP2011085372A (en) 2011-04-28
JP5532816B2 true JP5532816B2 (en) 2014-06-25

Family

ID=44078439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240706A Expired - Fee Related JP5532816B2 (en) 2009-10-19 2009-10-19 Loop type heat pipe and electronic device equipped with the same

Country Status (1)

Country Link
JP (1) JP5532816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976111B2 (en) 2017-10-27 2021-04-13 Shinko Electric Industries Co., Ltd. Loop type heat pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661202A (en) * 1970-07-06 1972-05-09 Robert David Moore Jr Heat transfer apparatus with improved heat transfer surface
JPH10139689A (en) * 1996-11-07 1998-05-26 Yoshihito Osada Temperature/electric field response-type copolymer
FR2853883B1 (en) * 2003-04-15 2006-01-27 Cit Alcatel SATELLITE COMPRISING MEANS FOR THE THERMAL TRANSFER OF A SHELF SUPPORTING EQUIPMENT TO RADIATOR PANELS
JP2008215702A (en) * 2007-03-02 2008-09-18 Fujikura Ltd Loop-type heat pipe
JP5061911B2 (en) * 2008-01-11 2012-10-31 富士通株式会社 Loop heat pipe and electronic equipment

Also Published As

Publication number Publication date
JP2011085372A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US8335083B2 (en) Apparatus and method for thermal management using vapor chamber
US7545644B2 (en) Nano-patch thermal management devices, methods, & systems
US8333235B2 (en) Heat dissipation system with a plate evaporator
JP5218660B2 (en) Loop heat pipe and method for starting the same
JP6233125B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
US20190154353A1 (en) Heat pipe having a wick with a hybrid profile
JP4627212B2 (en) Cooling device with loop heat pipe
JP5589666B2 (en) Semiconductor device
KR20040051517A (en) Heat Transfer Device and Electro Device
JP2010045088A (en) Heat spreader, electronic apparatus, and heat spreader manufacturing method
KR20010000110A (en) Micro-cooling system
JP2005180871A (en) Vapor chamber
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP5621404B2 (en) Loop heat pipe and electronic equipment
CN112218481B (en) Radiating plate, manufacturing method thereof and electronic device with radiating plate
EP1815550A2 (en) Fuel cell housing and fuel cell assemblies
JP2011242061A (en) Loop type heat pipe, and electronic equipment
JP2019116990A (en) Heat exchanger, electronic equipment and method for manufacturing heat exchanger
JP5532816B2 (en) Loop type heat pipe and electronic device equipped with the same
JP2000513504A (en) Heat removal device in chip module on multi-layer ceramic support, especially in multi-chip module
JP2004020116A (en) Plate type heat pipe
JP2011009312A (en) Heat transfer device and electronic apparatus
JP5938865B2 (en) Loop heat pipe and electronic device
JP2000353774A (en) Water evaporating-type heating body cooling device
JP4627207B2 (en) Heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees